
5C~ErlCE

90-80-3

A Production-Quality C* Compiler for a Hypercube Multicomputer

- Philip J. Hatcher, Anthony J. Lapadula, Robert R. Jones
Department of Computer Science

University of New Hampshire
Durham, NH 03824

Michael J. Quinn, Ray J. Anderson
Department of Computer Science

Oregon State University
Corvallis, OR 97331-3202

n
D
n

l

J-

l

l

l

l

l

J

u
u
□

A Production-Quality C* Compiler
for a Hypercube Multicomputer

Philip J. Hatchera, Michael J . Quinnb, Anthony J. Lapadulaa, Robert R. Jones.a, and Ray J.
Andersonb

aDepartment of Computer Science, University of New Hampshire, Durham, NH 03824 U.S .A.

bDepartment of Computer Science, Oregon State University, Corvallis, OR 97331 U.S.A.

Abstract
We describe our thi~d generation C* compiler for a hypercube multicomputer. This production

quality compiler features a full implementation of the language, including general pointer-based
communication and support for separate compilation. The compiler incorporates new optimiza
tions and utilizes an improved set of communication primitives . It supports a variety of standard
domain decomposition primitives, and it also allows the programmer to specify a custom map
ping of data to the distributed memories of the hypercube . The performance of this compiler on
benchmark programs demonstrates that high efficiency can be achieved executing SIMD code
on multicomputer architectures.

1 Introduction

C* is the data parallel C superset designed · by Thinking Machines for the Connection Machine
processor array [12]. Many languages that might be classified as data parallel have been pro
posed, including Blaze [7], Booster [8], Coherent Parallel C [2], Dino [13], The Force [5], Kali
[6], the paralation model [14], and Parallel Pascal [10]. The fully synchronous semantics and the
local view of the computation distinguish C* from these other languages . Synchronous execution
elimin,ates race conditions and makes C* programs deterministic, greatly reducing the complex
ity of program debugging. Having a local view of the computation simplifies the introduction
of data decomposition directives, which are essential in a distributed memory environment.

Our approach has several advantages over systems that translate imperative sequential lan
guages for execution on parallel machines [1, 11]. When using a sequential language, program
mers often introduce unnecessary sequentiality into their programs . Many problems have data
parallel solutions that are shorter and more elegant than the corresponding sequential solutions .

C* associates a virtual processor with a fundamental unit of parallelism. The program
mer takes a local view of the computation, expressing the algorithm in terms of the operations
concurrently performed by each virtual processor. In contrast, traditional sequential programs
take a global view of the computation; the algorithm is expressed in terms of operations per
formed on arrays. Many systems that support the global view require programmers to provide
directives that perform data mapping . This requirement detracts from the global view as the
programmer must think locally when considering issues such as load balancing and communica
tion costs. If the language is to contain data mapping constructs, it should take a local view of
the computation.

Advocates of functional programming languages argue that the property of referential trans
parency provides many opportunities for parallel execution of functional programs-notably in

1

l
0
n
l
fl
l
l

l

I

l

Li
j

u
u

the concurrent evaluation of function arguments. Moreover, like C* , the programs of functional
programming languages do not suffer from timing problems, are deterministic, and can be ex
ecuted on sequential as well as parallel architectures. However, parallel implementations are
hindered by the difficulty of implementing functional languages on sequential processors. The
overhead associated with implementations of functional programming languages makes it ex
tremely difficult for functional programs to be competitive with the performance of programs
hand-crafted for a particular parallel machine. C* programs can be competitive with hand
written parallel programs.

In addition, functional programming languages suffer from a lack of transparency. It is
difficult for a programmer to understand the reasons for the efficiency, or lack of efficiency,
demonstrated by a particular program. The explicit parallelism of C* makes it easier for the
programmer to understand the run-time behavior of programs.

This paper describes experience with our third generation C* compiler for a hypercube
multicomputer . Our first compiler was based upon a general, but less efficient, control flow model
[9). Our second compiler introduced both efficient flow of control and a powerful communication
optimizer, but was implemented in prototype form only [4].

The third, and current, compiler is intended to be production quality. It features a full
implementation of the language, including general pointer based communication and support
for separate compilation. The compiler includes new optimizations and utilizes an improved set
of communication primitives.

In the remainder of this paper we give an overview of C*, describe the design and implemen
tation of our compiler, and present the results of compiling and executing a set of benchmark
C* programs on a 64 node NCUBE 3200 hypercube .

2 The C* Programming Language

The original C* language was documented in a technical report issued by Thinking Machines
in 1987 [12]. However, the language has evolved differently in our systems and at Thinking
Machines. Our primary divergence from the original language design is in the addition of virtual
topologies (discussed at the end of this section) and in the implementation of pointers (discussed
in Section 3.6).

C* is a high-level parallel programming language. It supports a shared memory model of
parallel computation. A programmer can assume that all processors share a common address
space . C* supports virtual processors. This allows a programmer the convenience of ignoring the
actual number of physical processors available. All C* virtual processors execute synchronously.
A synchronous execution model eliminates all timing problems, makes programs deterministic,
and greatly reduces the complexity of program comprehension and the difficulty of program
debugging.

The conceptual model presented to the C* programmer consists of a front-end uniprocessor
attached to an adaptable back-end parallel processor. The sequential portion of the C* program
(consisting of conventional C code) is executed on the front end. The parallel portion of the C*
program (delimited by C* constructs not found in C) is executed on the back end.

The back end is adaptable in that the programmer selects the number of processors to
be activated. This number is independent of the number of physical processors that may be
available on the hardware executing the C* program. For this reason the C* program is said to
activate virtual processors when a parallel construct is entered.

Virtual processors are allocated in groups . Each virtual processor in the group has an
identical memory layout. The C* programmer specifies a virtual processor's memory layout

2

0
n
[l

fl
I
l
l

1

l

I

l
1
1
J
Li
u

domain cell {
double energy, density, temperature, pressure;

};

#define KDIM 54
#define LDIM 54

Figure 1: Declaring a domain.

domain cell mesh[KDIM][LDIM];

Figure 2: Declaring virtual processors.

using syntax similar to the C struct. A new keyword domain is used to indicate that this is
a. parallel data. declaration. Figure 1 contains a partial domain declaration for the mesh points
of a hydrodynamics simulation. As in C structures, the names declared within the domain are
referred to as members.

Instances of a domain are declared using the C array constructor. Each domain instance
becomes the memory for one virtual processor. The array dimension therefore indicates the size
of the virtual back-end parallel processor that is to be allocated. Figure 2 contains a. domain
array declaration. Note that domain arrays can be multidimensional . The number of virtual
processors allocated is the · product of the array dimensions.

Data located in C*'s front-end processor is termed ·mono data. Data located in a back-end
processor is termed poly data. .

Figure 3 illustrates the C* domain select statement. The body of the domain select is
executed by every virtual processor allocated for the particular domain type selected . The
virtual processors execute the body synchronously. The domain members are included within
the scope of the body of the domain select. These names refer to the values local to a particular
virtual processor.

The code executing in a virtual processor of a C* program can reference a variable in the
front-end processor by referring to the variable by name. A variable that is visible in the
immediately enclosing block of a. domain select statement is visible within the domain select.
The C* compiler is responsible for ma.king mono variables accessible at run time to the virtual
processors.

[domain cell].{
double temp!;

}

temp!= calculate_temperature(energy, density);
temperature= (temp!> TFLR? temp! : TFLR);
pressure= calculate_pressure(temperature, density);

Figure 3: Activating virtual processors.

3

0
n

n

l

l

1

I

1

l

1

J

LI
u

Similarly, the members of a domain instance are accessible everywhere in a program. The
members of one domain can be read and written from within a domain select statement for
a different domain. Poly data can also be read and written from the sequential portion of the
program. The syntax employed is to provide a full domain array reference followed by a member
reference.

C*, like C++, has a keyword this. In C* this is a pointer to the domain instance currently
being operated on by a virtual processor. Pointer arithmetic on this can be performed to access
other virtual processors' members.

C* provides a set of reduction operators. These operators accumulate poly values into a
mono location. All C assignment operators are overloaded for this purpose. New operators have
been added to the language to express reductions that compute the minimum and maximum of
a set of poly values.

The sequential portion of a C* program is just C code and executes following the normal
C semantics. Conceptually, the parallel sections of a C* program execute synchronously under
the control of a master program counter (MPC). A virtual processor's local program counter is
either active, executing in step with the MPC, or inactive, waiting for the MPC to reach it.

For example, the MPC steps through an if-then-else statement by first evaluating the
control expression, then executing the then clause, and finally executing the else clause. A local
program counter would also proceed first to the control expression. However, if the expression
evaluated to zero (false in C), then the local program counter would proceed to the else clause
and wait for the MPC to reach it. If the expression evaluated to non-zero (true in C), then the
local program counter would wait at the then clause for the MPC.

As well as being synchronous at the statement level, C* is also synchronous at the expression
level. No operator executes within a virtual processor unless all active virtual processors have
evaluated their operands for the operator. Once the operands have been evaluated, the operator
is executed as if in some serial order by all active virtual processors. This seemingly odd use of
a serial ordering to define parallel execution is required to make sense of concurrent writes to
the same memory location.

Our implementation of C* allows additional information to be provided by the programmer in
order to aid the compiler in the · mapping of virtual processors to physical processors. The array
dimension of the domain array establishes a virtual topology. A one-dimensional domain array
is considered to be a ring of virtual processors. A two-dimensional domain array is considered
to be a two-dimensional mesh of virtual processors. In general, an n-dimensional domain array
is considered to be an n-dimensional mesh of virtual processors with wrap-around com~ections.

These virtual topologies establish a convention of locality. Virtual processors that are adja
cent in a virtual topology should be mapped by a compiler to physical processors that are "near"
each other. On some architectures this information will be of little value and can be ignored by
the compiler. On other architectures this can lead to large efficiency gains if the programmer
exploits the feature and the compiler effectively implements it.

For the common topologies (low dimension domain arrays), the compiler recognizes macros
that provide convenient access to adjacent elements in the virtual topology. The macros take a
domain element address and return the address of the appropriate adjacent domain element. In
the one dimensional case macros called "successor" and "predecessor" are provided. In the two
dimensional case the macros "north," "south," "east" and "west" are provided.

Additional keywords exist to aid the compiler in mapping a larger number of virtual pro
cessors to a smaller number of physical processors. The keyword contiguous indicates that
blocks of adjacent domain elements should be mapped to the same physical processor. The key
word interleaved indicates that domain elements should be assigned to physical processors in a

4

l

n
n
l

1

l

I

I

u
I
J

The C* construct:

while (condition) {
statementJist1;
communication;
statementJist2;

}

is translated into the following C code:

temp= TRUE;
do {

if (temp) {
temp = condition;

}
if (temp) {

statementJist1;
}
communication;
gtemp = global_or (temp);
if (temp) {

statemenU ist2;
}

} while (gtemp);

Figure 4: Translation of a C* while statement.

round-robin fashion. In the two dimensional case, the keywords contiguous_row, contiguous_col,
interleavecLrow, and interleavecLcol exist to map rows and columns in toto. The keyword user
spec indicates that the compiler should utilize user-written macros to implement an arbitrary
mapping.

3 Design of the C* Compiler

3.1 Overview

The compiler is a C*-to-C translator. It parses C* input, transforms C* syntax trees into C
syntax trees, and then unparses. We use our own port of the GNU C compiler to compile the
output C code for the nodes of the NCUBE 3200.

Our implementation consists of four major components, each discussed in its own subsection
below: processor synchronization, virtual processor emulation, communication optimization, and
a run-time communication library. Our implementation of pointers is discussed in Section 3.6.

3.2 Minimizing the Number of Processor Synchronizations

In C* expressions can refer to values stored in arbitrary processing elements. All variable
declarations state, implicitly or explicitly, which processing element holds the variable being
declared. Therefore, the location of potential communication points can be reduced to a type
checking problem. A sufficient set of synchronization points are the locations at which we identify
message passing is potentially needed. We incorporate synchronization into the message-passing
routines.

Parallel looping constructs may require additional synchronization. If the parallel loop body
incorporates virtual processor interaction, the processors must be synchronized every iteration
prior to the message-passing step. Of course, a virtual processor does not actually execute

5

l
l
n
n
n
l
1

1

1

1

l

l

j

u

The C* construct:

if (condition) {
statement_l ist1;
communication;
statementJ.ist2;

}

is translated into the following C code:

temp = condition;
if (temp) {

statement_/, ist1;
}
communication;
if (temp) {

statementJist2;
}

Figure 5: Translation of a C* if statement.

the body of the loop after its local loop control value has gone to false. Rather, the physical
processor on which it resides participates in the message passing and the computation of the
value indicating whether any virtual processors are still active. This means that our C* compiler
must rewrite the control structure of input programs. Figure 4 illustrates how while loops are
rewritten.

Since we have incorporated synchronization into communication, all physical processors must
actively participate in any message-passing operation. This forces our compiler to rewrite all
control statements that have inner statements requiring message passing. Figure 5 illustrates
how an if statement is handled.

Communication steps buried inside nested control structures are pulled out of each enclosing
structure until they reach the outermost level.

The technique just described will not handle arbitrary control flow graphs. For this reason
we have not implemented the goto statement. We do, however; support the break and continue
statements.

3.3 Efficiently Emulating Virtual Processors

Once the message-passing routines have been brought to the outermost level of the program,
emulation of virtual processors is straightforward. The compiler puts for loops around the blocks
of code that have been delimited by message-passing/synchronization steps. Since within the
delimited blocks there is no message passing, there is no interaction between virtual processors.
Therefore, it makes no difference in which order the virtual processors located on a particular
physical processor execute.

3.4 Optimizing Communication

The compiler eliminates one class of messages by keeping copies of the sequential code and data
on each physical processor. Every physical processor executes the sequential code. Note that
this adds nothing to the execution time of the program. Because every physical processor has
copies of the sequential variables, it can access sequential data by doing a local memory fetch.
In other words, assigning the value of a mono variable to a poly variable can be done without
any message passing.

6

1

7
0
n
n
n
l
l

I

l
l

l

l

LI

However, when a virtual processor stores to a mono variable, the value may have to be
broadcast to update all physical processors' copy of the mono. In many cases the compiler can
eliminate this broadcast operation. If it is known that all virtual processors are simultaneously
assigning the same value to the mono, then no broadcast is required-all nodes can perform the
assignment locally. The compiler must determine that all the virtual processors will execute the
assignment and that the right hand side of the assignment will evaluate to the same value on
all processors. To conservatively support this analysis, the compiler tags each expression with
a Boolean flag that indicates whether the expression's leaves consist of only mono variables and
constants. If so, then the expression is known to evaluate to the same value on all p·rocessors
and is termed a strictly mono expression.

Moreover, if a strictly mono expression is the control expression for a conditional or iterative
statement, then it is known that all virtual processors will follow the same path through the
statement. If a statement is at the outermost control flow level, or is nested within conditional
or iterative statements that are all controlled by strictly mono expressions, then the statement
is known to be executed by all virtual processors.

The same analysis is used to eliminate the need to perform a "global-or" calculation in the
implementation of a loop construct (see Figure 4). If the loop is controlled by a strictly mono
expression, then all virtual processors will execute the loop the same number of times. The time
savings achieved is significant if the communication operation within the loop (which required
the loop to be synchronized in the first place) is not powerful enough to perform the "global-or"
calculation as a side effect of its execution. In addition, the loop control is sequentialized
performed only once per physical processor-to reduce the overhead of the virtual processor
emulation.

The knowledge gathered about the control flow of the prograrn-:-whether a given statement is
known to be executed by all virtual processors-can be used to effect another strength reduction
optimization. If virtual topologies are being used, and all virtual processors are reading a value ·
from their neighbor, the read can be implemented with the more efficient write communication
primitive. Since all processors must be able to compute the address of the value being requested
by their neighbor, this optimization will not be performed for the fetching of an array element
indexed by a poly.

In another use of knowledge gathered about both the control flow and strictly mono ex
pressions, some read operations can be implemented as broadcasts. If all virtual processors are
active, and the value being read is expressed as a domain reference using only strictly mono ex
pressions, then all processors are reading the same value, and the processor holding the desired
value can broadcast it to the other processors. If the virtual processors are not all active, this
optimization can still be performed if the domain reference does not contain any side-effects.
The owner of the value can evaluate the value safely, even if the owner is inactive. We conserva
tively assume the existence of a side-effect if there is a function call or an assignment operator.
The compiler attachs to each expression tree a flag indicating whether or not it may have a
side-effect.

Side-effect-free assignments to poly values in sequential code are only performed on the
processor holding the target of the assignment. Even if there is a side-effect, no communication
is done. All processors evaluate the lval and the rval of the assignment for their side-effects, but
only the processor that holds the target location performs the assignment.

We use special-case analysis to optimize two idiomatic C* expressions. The first is the
assignment of a mono from within a conditional statement that selects only one virtual processor.
The programmer intends to broadcast a value from a particular processor a11d we would like to
implement it as such (rather than as a reduction and a broadcast). We check for expressions

7

l
l
0
n
n
l

l
I
1

l

l
l

J

j

that involve testing the virtual processor offset (expressed: this-m, where mis the domain array)
against a constant.

The second idiomatic expression is called a tournament.

if (ABS(x) == (?>= ABS(x)))
pivot= this - m;

The fragment above is from the calculation of the pivot row in a Gaussian elimination program.
The programmer is not interested in the value resulting from the unary maximum(?>=) reduction
operation. Rather, the programmer is interested in which virtual processor owns the "winning"
value. A straightforward implementation would perform a reduction to calculate the maximum
absolute value and a second reduction to update the mono variable pivot. By detecting this as
a special case, we can call a special "tournament" communication primitive that maintains the
virtual processor number of the "winning" value as the first reduction is performed. Both the
result and the corresponding virtual processor value end up on all processors upon completion
of the tournament primitive, saving the cost of the second reduction in the straightforward
translation.

Our catalog of strength reduction optimizations is complemented by optimizations that com
bine communication operations . The goal is to reduce the total message latency. In order to
combine communications, the optimizer attempts to move read operations backward through
the program (toward the beginning) and attempts to move write operations forward through
the program (toward the end). Data can be read earlier if it is known that no statements al
tering the data will execute on the source processor prior to the reader using the copied data.
Write operations can be delayed until the data is actually needed. This message combiner was
originally implemented in our prototype compiler and is described more fully in [4].

3.5 Implementing the Run-Time Routing Library

The routing library has undergone significant changes in the past two years. These changes have
dramatically improved the communication efficiency of the compiled C* programs. We have
added new routines and improved existing routines by giving them the ability to route vectors,
by making use of unbuffered communication primitives, by overlapping communications with
local data shuffling, and by rewriting key data manipulation loops in assembly language.

We have introduced new functions to the routing library to improve the performance of C*
programs executing certain data parallel programming idioms. For example, we have added a
new function called tournament to support the tournament idiom.

One of the principal weaknesses in the original routing library was the amount of time spent
copying data to set up and break down messages. In many cases the data-copying time far
exceeded the time spent sending the message to another processor. We have addressed this
problem in three ways. First, we changed the format of the data packets. Formerly we had
one data packet for each four-byte value. In the new communication library the data packets
contain addresses and lengths, not values. If a virtual processor is copying a vector to or from
another virtual processor, then the transfer can be represented by a single data packet. Less
time is spent assembling the data packets for the routing function, and less time is spent inside
the routing function constructing the message. The second change to reduce the amount of
copying is the use of unbuffered read and write operations . When the original routing library
was written, VERTEX, the NCUBE 3200's node operating system, did not support unbuffered
reads and writes. All outgoing messages were copied from user space into a system buffer before
being send down the DMA channel. Likewise, all incoming messages were stored in the system

8

1

n
n
n
n

J

l

l

l

l

l

l

J

LI

buffer before being copied into user space. Now that VERTEX supports unbuffered reads and
writes, we have made use of this capability in several of our functions. Lastly, we have rewritten
many of the routing functions so that they now do a better job overlapping communications
with internal data movement .

Some of the functions in the routing library do a significant amount of preprocessing. For
example, it is not unusual for 25% of the time spent performing a random write to be dedicated
to the initial bucket sort of the data packets. We have found that, as a rule, recoding key
sections of code in assembly language reduces their execution time by 50%.

Finally, we are exploring ways to implement a true two-way communication facility . Al
though every pair of adjacent processors on the NCUBE share two bit-serial DMA channels
(one for each direction), the three-step handshake protocol built into VERTEX effectively limits
communications to one direction at a time. Most of the functions in the routing library are
based upon the exchange of data among adjacent processors along the various dimensions of the
hypercube. Since VERTEX does not support a simultaneous exchange of data, these routines
take longer to execute than they ought to. We plan to modify VERTEX to allow a new exchange
communication primitive. In some instances this primitive will allow us to reduce the execution
time of the communication routines by 20% or more.

3.6 Implementing Pointers

Our current compiler provides full support for pointers, allowing the convenient use of standard
C library routines that accept pointers as parameters or return pointers; and distinguishing, for
efficiency, "local" pointers from "non-local" pointers.

The compiler requires that the target of a pointer be categorized at compile time. A C*
pointer either points to a domain element, points to a mono, points to a poly, or points locally.
A pointer to a local is defined by context: declared within sequential code the pointer must
point to a mono; declared within a virtual processor the pointer must point to the memory of
that same virtual processor.

The C* keywords mono and poly are used syntactically like the type qualifiers canst and
volatile defined in the ANSI C standard. "Local" is not a keyword in C*, but the default
qualifier for a pointer declaration is "local". In a declaration of multiple levels of indirection,
the innermost pointer inherits its qualifier from its predecessor in the type chain.

Declaring a pointer to be local informs the compiler that the target of the pointer can always
be retrieved using only a local memory fetch . The concept of a pointer to local also allows the
convenient use of many standard C library routines in both sequential and parallel contexts
within a C* program. For instance, the standard strlen routine can always be called and
passed a pointer to a local char. However, if the string to be examined is not local or mono,
then a special C* version of the library routine must be provided and called.

Assignments of pointers are tightly checked to ensure that the compile-time categorization
of pointers will still be valid at run time. The only legal pointer conversions are the promotion
of a pointer to local to a pointer to poly; and, from within sequential code, the promotion of a
pointer to mono to a pointer to local.

4 Execution of C* Programs

To illustrate the performance of our C* compiler, we present benchmark results from five pro
grams: Mandelbrot set computation (mandel); computing the number of relatively prime pairs
found in an integer range (relprime); matrix multiplication (matmult); Warshall's algorithm

9

l
n
n
n
n
n

l
I
I

I

J

1

l
j

J

LI

program I problem size j seq C C* speedup

matmult 64 X 64 32,729 3225 10.15
matmult 128 X 128 273,268 15,288 17.87
matmult 256 X 256t 2,664,968 92,114 28.93
matmult 512 X 512t 20,778,216 655,964 31.68

sieve upto 1.6Mt 213,000 6378 33.40
sieve upto 4.8Mt 690,000 14,907 46.29
sieve upto 8.0Mt 1,173,000 22,930 51.16

warshall 64 X 64 16,673 1681 9.92
warshall 128 X 128 132,748 6166 21.53
warshall 256 X 256t 1,086,240 31,444 34.55
warshall 512 X 512t 8,837,760 208,885 42.31

relprime [1 .. 128] 7554 322 23.46
relprime [1 .. 256] 37,396 1227 30.48

j mandel I 512 x 512 789,864 1 20,656 1 38.24

Table 1: Execution results for a set of benchmark C* programs running on a 64-node NCUBE
I

3200. The units are NCUBE 3200 clock ticks-on our system there are 7812.5 ticks per second.

(warshall; and the Sieve of Eratosthenes (sieve). Table 1 contains speedup data gathered while
running these programs with varying problem sizes on a 64-processor NCUBE 3200. Speedup
reported for the problem sizes marked with a t is scaled speedup [3] (since the problem size is
too large to fit in the memory of a single processor).

The speedups reported are in some cases limited by choice of algorithm and in some cases by
inefficiencies that remain in our compiler. The point of presenting this data is to demonstrate ·
that we can execute programs written in a high-level parallel programming language on a real
parallel machine and get significant speedup.

Moreover, our compiler is designed to be rugged and will accomodate realistic programs.
In the next few months we expect to be able to report execution results for a set of nontrivial
benchmarks . We are currently working on implementations of irregular mesh computations,
the SIMPLE hydrodynamics simulation from Lawrence Livermore Laboratory, and a differential
equation solver that uses spectral domain decomposition.

Acknowledgements This work was supported by National Science Foundation grants DCR-
8514493, CCR-8814662, and CCR-8906622.

l
n
n
n
n

1
I
I

l

I

.J

j

j

tJ

References

[1] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors.
The Journal of Supercomputing, 2:151-169, 1988.

[2] E. Felten and S. Otto. Coherent parallel C. In Third Conference on Hypercube Concurrent
Computers and Applications, pages 440-450, ACM Press, 1988.

[3] J. Gustafson, G. Montry, and R. Benner. Development of parallel methods for a 1024-
processor hypercube. SIAM Journal on Scientific and Statistical Computing, 9(4), 1988.

[4] L .. Hamel, P. Hatcher, and M. Quinn. An optimizing C* compiler for a hypercube mul
ticomputer. In J. Saltz and P. Mehrotra, editors, Languages, Compilers and Run-Time
Environments for Distributed Memory Machines, Elsevier, 1991. In press.

[5] H. Jordan. The Force. In L. Jamieson, D. Gannon, and R. Douglass, editors, The Charac
teristics of Parallel Algorithms, pages 395-436, The MIT Press, 1987.

[6] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on
distributed memory architectures. In Second ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 177-186, March 1990.

[7] P. Mehrotra and J. Van Rosendale. The BLAZE language: A parallel language for scientific
programming. Parallel Computing, 5:339-361, 1987.

[8] E. Paalvast. The Booster Language. Technical Report PL 89-ITI-B-18, Instituut voor
Toegepaste Informatica TNO, Delft, The Netherlands, 1989.

[9] M. Quinn, P. Hatcher, and K. Jourdenais. Compiling C* programs for a hypercube multi
computer. In SIGPLAN PPEALS 1988, Parallel Programming: Experience with Applica
tions, Languages, and Systems, pages 57-65, July 1987.

[10] A. Reeves. Parallel Pascal: An extended Pascal for parallel computers. Journal of Parallel
and Distributed Computing, 1:64-80, 1984.

[11] A. Rogers and K. Pingali. Process decomposition through locality of reference. In SIG
PLAN '89 Conference on Programming Language Design and Implementation, pages 69-80,
June 1989 .

[12] J. Rose and G. Steele. C*: An Extended C Language for Data Parallel Programming.
Technical Report PL 87-5, Thinking Machines Corporation, Cambridge, MA, 1987.

[13] M. Rosing, R. Schnabel, and R. Weaver. Dino: Summary and examples. In Third Confer
ence on Hypercube Concurrent Computers and Applications, pages 472-481, ACM Press,
1988.

[14] G. Sabot. The Paralation Model. The MIT Press, 1988.

	Hatcher_Lapadula_Jones_Quinn_Anderson_90_80_03_A
	Hatcher_Lapadula_Jones_Quinn_Anderson_90_80_03_B

