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Abstract 

Current AASHTO-LRFD specifications use many disparate design provisions to establish 

live load demands in bridge decks. As an example, approximately 17% of Chapter 4 

addresses analysis of decks. One of the AASHTO-LRFD analysis methods for decks uses 

an orthotropic plate model. The present AASHTO-LRFD orthotropic plate model has a 

single formulation for the plate torsional stiffness and this is not generally applicable to 

all deck types. In this paper, new analytical expressions are developed for moment in 

bridge decks subjected to arbitrary patch loading considering each of the three cases of 

orthotropy: 1) relatively torsionally stiff, flexurally soft decks; 2) relatively uniformly 

thick deck (such as a reinforced concrete deck); and 3) relatively torsionally soft, 

flexurally stiff decks.  Using these newly developed expressions, the AASHTO-LRFD 

notional live load models were combined with impact, multiple presence, and live load 

factors to determine maximum strong direction live load moments for the Strength I 

design limit state. Design equations were developed to estimate the maximum strong 

direction live load moments without having to perform cumbersome moving load 

analysis for common deck orientations. Using the proposed formulations, bridge deck 

strength design demands can now be treated in a unified way across different deck types 

using only four equations. Application of these methods can significantly reduce and 
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simplify the analysis of decks and allow bridge engineers to make comparisons across 

different deck design alternatives. 
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Introduction and Background 

Many different types of bridge decks are deployed for both new design and rehabilitation 

of existing bridges. These decks include cast-in-place reinforced concrete; open grid; 

steel grid deck systems fully or partially filled with concrete; as well as open and closed-

ribbed composite, concrete, aluminum, and steel systems. Presently, analysis of decks is 

principally treated in the AASHTO-LRFD Specifications (2007) in Chapter 4.  Over 17% 

of Chapter 4 is spent addressing deck analysis with methods that range from historical 

practice to sophisticated modern treatments. The methods vary in the differing modeling 

assumptions, load placement requirements, and analysis simplifications. As a result, 

designers cannot make direct comparisons between possible alternatives and the design 

provisions do not elucidate the characteristics that would allow an engineer to 

understand the role of the deck stiffness components on deck flexural behavior and 

load distribution in any deep and meaningful way.  This current situation calls for a 

unified analytical approach, based on engineering mechanics, to establish design live load 

moments across all bridge deck types. Such an approach is developed and proposed here. 

 

 

Because of the different size, spacing, and distribution of the components that make up a 

deck, bridge decks can generally be considered orthotropic structures, exhibiting different 

elastic stiffness properties in two orthogonal directions. For cases where the stiffnesses 

are similar in the orthogonal directions, the resulting isotropic response is merely a 

special case of orthotropy. Even for those deck systems designed for parallel longitudinal 

stringers, the orthotropic nature of a deck can strongly influence the structural behavior 

(such as moment magnitude under tire patch loading). Although most deck systems are 

geometrically orthotropic, they have generally been treated as materially orthotropic and 

analyzed utilizing orthotropic thin plate theory. Baker (1991), (concrete filled steel grid 

system (CFSGS)); Gangarao et al. (1992), (CFSGS); Mangelsdorf et al. (2002), 
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(CFSGS); Huang et al. (2002) (open steel grid deck (OSGD)); Higgins (2003, 2004), 

(CFSGS); and Huang et al. (2007) (CFGS) have all used orthotropic thin plate theory for 

analyzing bridge decks.  

 

The present American Association of State Highway Officials Load and Resistance 

Factor Design Specification (AASHTO-LRFD, 2007) accepts orthotropic plate analysis 

as a permissible technique and section 4.6.2.1.8 includes design moment demands for 

fully and partially filled grids and unfilled grid decks composite with reinforced concrete 

slabs that are based on an orthotropic plate formulation. These design equations envelope 

the load effects produced from the specified notional load combinations such as the 

design tandem and multiple truck tire patches (Higgins, 2003). The orthotropic plate 

model can be reduced to isotropic by setting the stiffness ratio between the strong and 

weak directions to unity and thus design demands in section 4.6.2.1.8 can be compared 

with those prescribed in AASHTO-LRFD Table A4-1. As seen in Fig. 1, the design 

demand moments from the orthotropic plate model (reduced to isotropic by setting 

D=1.0) correspond reasonably well to those specified for traditional design of concrete 

decks. It is important to note that the original AASHTO-LRFD orthotropic plate model 

formulation in section 4.6.2.1.8 was not calibrated to these traditional moments and yet 

the outcomes are reasonably coincident for the common transverse to traffic case. This 

further indicates that a unified analysis theory based on general orthotropic plate theory 

may provide consistency in design demands across different deck types. 

 



 5 

The original semi-analytical solutions (Higgins 2003) were derived for a particular case 

of torsional stiffness which is typically representative of a uniformly thick deck. Thus 

these equations are not generally applicable to systems with differing relative torsional 

stiffnesses that would be of practical consideration (for example closed-ribbed, sandwich, 

or open grid decks). Recently, an analytical study developed deflection equations for 

orthotropic plates subjected to arbitrary patch loading that include all three cases of 

orthotropy: 1) relatively torsionally stiff, flexurally soft decks; 2) relatively uniformly 

thick decks (reinforced concrete deck); and 3) relatively torsionally soft, flexurally stiff 

decks (Turan, 2009). Utilizing these equations, this paper develops Strength I design live 

load moment equations considering factored load combinations including the design 

tandem and multiple truck tire patches that enables bridge decks to be considered in a 

unified way in the AASHTO-LRFD Specification. By treating all decks in a uniform and 

consistent manner, implementation of the design equations in the AASHTO-LRFD 

Specification would dramatically simplify analysis of bridge decks, while preserving the 

key structural stiffness parameters that elucidate load distribution characteristics and thus 

allow designers to better assess design alternatives. 

 

Orthotropic Plate Theory 

The general differential equation for bending and twisting moments of an orthotropic thin 

plate can be written as (Timoshenko and Woinowski-Krieger, 1959): 
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where 
xD  is the flexural rigidity in the strong direction, yD is the flexural rigidity in the 

weak direction, 1D  is the torsional rigidity contribution from the strong and the weak 

direction rigidities, xyD  is the torsional rigidity, H is the sum of the torsional rigidity 

contribution from the strong and weak direction rigidities (
1D ) and torsional rigidity 

( xyD ), ( , )w x y  is the vertical plate deflection in the Cartesian coordinate system, and 

( , )q x y is the applied transverse load in the Cartesian coordinate system, respectively. 

 

Depending on the torsional rigidity of the plate, there are 3 possibilities (Timoshenko and 

Woinowski-Krieger, 1959): 

Case 1. x yH D D ; the solution has real and unequal roots which corresponds to 

relatively torsionally stiff, flexurally soft decks which correspond to partially and fully 

filled grid decks. 

Case 2. x yH D D ; the solution has equal and real roots which corresponds to relatively 

uniformly thick plate or typical reinforced concrete slab. 

Case 3. x yH D D ; the solution has imaginary roots which corresponds to relatively 

torsionally soft, flexurally stiff decks which correspond to open steel grid deck. 
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Bridge decks can generally be modeled as simply supported infinitely wide plates, as the 

location of transverse supports are relatively wide and continuity effects are accounted 

for by modification coefficients. For such boundary conditions, semi-analytical 

expressions (technically not closed-form due to infinite series) can be developed for 

bending moments. For a single patch load located on an infinitely wide and simply 

supported orthotropic plate, as shown in Fig. 2, the moment equations in the strong 

direction are (Turan, 2009) : 

For Case 1: 
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where 
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For Case 3: 
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Case 2 equations are the same equations provided in Higgins (2003) and in all cases 

Poisson’s ratios in the x and y direction were set to zero, which sets 1D  to zero. Generally 

Poisson’s ratio is measured in uniaxial material tests. As described above, since decks are 

geometrically orthotropic structures and the neutral axis in two orthogonal directions do 

not coincide, applying normal force along one axis creates not only normal force at the 

neutral axis but also a force couple on the other orthogonal axis. Thus, empirically 

measuring Poisson’s ratio is impractical. Mangelsdorf et al. (2002) (CFSGS); Huang et 

al. (2002) (OSGD); Higgins (2003, 2004) (CFSGS) used Poisson’s ratio equal to zero 



 9 

and Baker (1991) (CFSGS) reported that compared to 
xD and 

yD , the effect of 
1D  is 

slight. Thus, Poisson’s ratio can be assumed zero for convenience. Full details of the 

derivation of the above analytical solutions can be found in Turan (2009). 

 

In order to demonstrate the effect of H  on the deck performance, parametric studies using 

Eq. 5-10 were performed considering x yH D D  and varying the parameter   for 

each of the 3 cases of orthotropy described above. A 71.2 kN (16 kip) patch load with 

dimensions 254 mm x 508 mm (10 in. x 20 in.) was placed at the center of the span and 

using the analytical solutions, strong direction moment under the center of the patch 

versus   values were plotted in Fig. 3 for span lengths a= 1.52 m., 3.05 m., and 4.57 m. 

(5 ft, 10 ft, and 15 ft) and a range of orthotropic stiffness ratios, D =1, 2, 2.5, 5, 8, and 10, 

where /x yD D D . It is observed that the moment values have large gradients for   

between 0 and 1. However for   larger than 1, the gradients are not as large and 

application of Case 2 to decks that are torsionally stiff would provide conservative 

results. If the analytical solution for Case 2 ( 1  ) was applied to decks which are 

torsionally soft ( 1  ), the resulting moments would be unconservative. Thus, the 

current AASHTO-LRFD moment equations on section 4.6.2.1.8 require modification to 

allow for a unified treatment of decks of various types. 

 

Current AASHTO-LRFD Live Load Moment Equations  

The present AASHTO-LRFD (2007) provisions in section 4.6.2.1.8 define live load 

moment equations for two different cases:  main bars transverse to traffic in N-mm/mm 

as: 
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and main bars parallel to traffic in N-mm/mm as: 
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where C is the continuity factor (1.0 for simply supported and 0.8 for continues spans). 

These equations were derived based on x yH D D  and cannot capture the behavior of 

the decks when x yH D D and x yH D D . Thus, to reflect other realistic stiffness 

characteristics of many different bridge deck types, they require modification as 

described in the previous section.  

 

To develop similar design expressions considering all types of orthotropy, moving load 

analysis were done for arbitrarily placed patch loads across representative deck stiffness 

and span parameters. The two common design orientations of the main bars were 

investigated and the AASHTO-LRFD design notional live load models were considered 

in the present analyses. These include the design truck (AASHTO-LRFD 2007, section 

3.6.1.2.2) and design tandem (AASHTO-LRFD 2007, section 3.6.1.2.3) live loads. . 

Unfactored truck patch loads were taken as 71.2 kN (16 kip) and tandem patch loads 

were taken as 55.6 kN (12.5 kip). The patch size was selected as a rectangle with 

dimensions of 254 mm x 508 mm (10 in. x 20 in) (AASHTO-LRFD 2007, section 

3.6.1.2.5). The live load factor, , and dynamic load allowance percent, IM, were used as 
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1.75 and 33%, respectively, and directly implemented to the computed moment 

magnitudes. The main variables were selected as the span length, L  from 0.91 m. (3 ft) 

to 6.10 m. (20 ft) with 0.31 m. (1 ft) increments; the stiffness ratio, D =1, 2, 2.5, 5, 8 and 

10; and  = 0.25, 0.5, 0.75, 1, 2,4 and 8. Other than , the main variables used in the 

current code are the same. However, to investigate the equations for use with open grid 

decks, span lengths less than 1.52 m. (5 ft), (the minimum span length used in Higgins 

(2003)) were also populated. In order to achieve adequate convergence, 30 terms were 

used to represent the infinite series solution for all analyses. The analysis results for the 

two common deck orientations are described and synthesized in the subsequent sections. 

 

New Live Load Design Moment Equations for Main Bars Transverse to Traffic 

For main bars transverse to the direction of traffic, two possible loading conditions, 

shown in Fig. 4, were used. Only one truck axle was used in the analyses as the other axle 

on the same truck is too far away (at least 4.27 m. (14 ft)) from the axle considered to 

produce an important change in the strong direction moment. Both axles of the tandem 

were considered as these are sufficiently close so as to jointly influence moment. 

Depending on the span length, either a single vehicle was placed on the deck with a 

multiple presence factor (MPF) of 1.2 or two vehicles were placed on the deck with an 

MPF of 1.0. For every D , and L  value, the design truck and tandem patch loads were 

moved across the surface at  25.4 mm (1 in.) increments and the strong direction 

moments were calculated every 25.4 mm (1 in.) along the x-axis. Strong direction 

moments were multiplied with the corresponding MPF, IM, and   and the maximum 

computed strong direction moments (Mmax_tr) were recorded. Using Mmax_tr data for the 
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various deck spans, stiffness ratios, and   values (756 cases); two equations were 

obtained by nonlinear curve-fitting and rounding the fit parameters for design 

convenience to estimate the maximum strong direction moments in N-mm/mm as:  

 
0.214 0.468

transverse 0.231

1145D L
M ( L 3000 mm ) C


   (15) 

 
0.194 1.55

transverse 0.233

976D ( L 99209 )
M ( L 3000 mm ) C

L


   (16) 

The form of these equations was selected to be similar to the current AASHTO-LRFD 

formulation but now include the influence of the relative torsional stiffness of the deck. 

These equations provide a direct method to capture the maximum strong direction 

moment produced in an orthotropic deck for design. The mean value for the ratio of 

Mmax_tr to Mtransverse is 1.05 with maximum = 1.28, minimum = 0.91 and coefficient of 

variation = 0.07. Mmax_tr versus Mtransverse are shown in Fig.5a and the equations provide a 

reasonable estimate of the maximum moments produced by the AASHTO notional 

design vehicles and offer a more unified framework for design of different deck types. 

 

The proposed equations were also compared with AASHTO-LRFD (2007) section 

4.6.2.1.8 equations (Eq 11-12) using  =1.0. Although the proposed equations and Eq. 

11-12 should be identical when  =1.0, since different patch sizes (AASHTO 1994 and 

AASHTO-LRFD 2007 section 3.6.1.2.5) and additional points ( D =5.0 and L =0.91 m., 

1.22 m. (3ft, 4 ft)) were used in developing the present equations, results are slightly 

different as shown in Fig.5b. The mean value for the ratio of Mtransverse to Mtransverse(AASHTO) 

is 1.00 with maximum = 1.10, minimum = 0.94 and coefficient of variation = 0.04.  

 



 13 

New Live Load Design Moment Equations for Main Bars Parallel to Traffic 

For main bars parallel to the direction of traffic, two possible loading conditions, shown 

in Fig. 6, were used. Again, the second axle on the same truck is sufficiently far away 

from the considered axle such that the second truck axle was ignored. For any span length 

single or two vehicles were placed on the deck with MPF of 1.2 or 1.0. Since the MPF is 

0.85 for three vehicles located on the deck, the strong direction moment contribution of 

the third vehicle is very small and ignored (Higgins 2003). Patch dimensions were 

changed according to the traffic direction and for every D ,   and L  value; design truck 

(single and two) and tandem (single and two) were marched across the deck at 25.4 mm 

(1 in.) increments. Strong direction moments were calculated along the x-axis at locations 

spaced 25.4 mm (1 in.) apart and multiplied with the corresponding MPF, IM, and  . 

The maximum strong direction moments (Mmax_par) were computed for the various spans, 

stiffness ratios, and relative torsional stiffnesses (756 cases). Nonlinear curve-fitting was 

performed on these data and the obtained fit coefficients rounded for design convenience 

to obtain the maximum strong direction moments for main bars oriented parallel to traffic 

as: 

 
0.12 0.6

parallel 0.145

581D L
M ( L 3000 mm ) C


   (17) 

 
0.11 1.62

parallel 0.174

680D ( L 120461)
M ( L 3000 mm ) C

L


   (18) 

These equations provide a mean value for the ratio of Mmax_par to Mparallel = 1.00 with 

maximum = 1.28, minimum = 0.90 and coefficient of variation = 0.06. The computed 

Mmax_tr versus Mtransverse are shown in Fig.7a and as seen here, the equations provide a 
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reasonable estimate of the maximum moments produced by the AASHTO notional 

design vehicles and framework for design. 

 

The new equations were also compared with AASHTO-LRFD (2007) section 4.6.2.1.8 

equations (Eq 13-14) using   = 1.0. Again, due to additional points and different patch 

size, the new equations are slightly different than Eq. 13-14 as seen in Fig.7b. The mean 

value for the ratio of Mparallel to Mparallel(AASHTO) is 1.04 with maximum = 1.11, min =0.99 

and coefficient of variation =0.02.  

 

Determination of Rigidities for Decks 

In order to use the proposed formulas (Eq. 15-18); xD , yD , and   are needed. 

AASHTO-LRFD (2007) states that xD  and yD  can be calculated using transformed area 

method as the moment of inertia times the modulus of elasticity for a unit width of deck. 

Cracked section properties should be considered in the calculation. Experimentally, for 

the strong direction flexural rigidity, the deck can be simply supported at the edges and a 

line load can be applied at the center, parallel to the supports, as shown in Fig 8a. In order 

to better visualize the loading conditions, the deflected shape of a steel grid deck partially 

filled with concrete from a finite element model are shown in Fig. 8. Since this load does 

not produce curvature in the orthogonal direction, the deck can be analyzed as a beam 

and the flexural stiffness of the beam (or unit width of the deck) can be calculated using 

the deflection and the applied load. The same procedure can be followed for weak 

direction stiffness as shown in Fig 8b. 
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For , since Poisson’s ratios in the x and y direction were set to zero, which sets 
1D  zero; 

2 xy x yH D D D  . To establish  , 
xD , 

yD , and
xyD  are needed.  The 

xD  and 
yD  

stiffnesses are determined as above and xyD  is determined experimentally according to 

Tsai (1965). Here the plate is loaded at the corner, shown in Fig. 8c, and using the center 

deflection or the corner deflection under the load, xyD  and  can be calculated as: 

 

2 2

xy xy

L o

PL PL
D  or D

4w 16w
   (19) 

 

where P , Lw  and ow  are point load applied at the corner, deflection under the point load 

and the deflection at the center of the plate, respectively. The resulting    values can be 

computed as: 

 

2 2

x y L x y o

PL PL
 or 

2 D D w 8 D D w
    (20) 

For decks, the xyD  stiffness values should be determined in the uncracked range as field 

observations of decks do not tend to exhibit torsional cracking that would result at large 

twisting loads.  

 

Conclusion 

The current AASHTO-LRFD Specification uses many different design provisions to 

establish live load design demands in bridge decks with approximately 17% of Chapter 4 

used to prescribe analysis of decks.  To unify analysis methods for establishing live load 

moments in decks, a generalized approach was developed. The approach uses a general 

orthotropic plate model that considers all of the cases of orthotropy: 1) relatively 
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torsionally stiff, flexurally soft decks; 2) relatively uniformly thick deck (such as a 

reinforced concrete deck); and 3) relatively torsionally soft, flexurally stiff decks.  Using 

orthotropic plate theory, analytical expressions were derived for calculating strong 

direction moments under arbitrary patch loading. The expressions were used in concert 

with the AASHTO-LRFD notional live load models to sweep all possible patch load 

locations across a deck surface to establish design maxima for two common deck 

orientations:  main bars oriented transverse to the direction of traffic and main bars 

oriented parallel to the direction of traffic. From thousands of moving load analysis 

results, semi-analytical expressions were fit to the analysis results considering a range of 

practical stiffness ratios, span lengths, and relative torsional stiffness values. The 

AASHTO-LRFD prescribed impact, multiple presence, and live load factors were 

incorporated into the solutions to establish Strength I design live load moment 

magnitude. Using the proposed formulations, bridge deck strength design demands can 

now be treated in a unified way across different deck types using only four equations. 

Experimental methods were also presented that can be used to empirically establish the 

elastic rigidities for use in the design equations. Application of these methods can 

significantly reduce and greatly simplify analysis of decks and allow bridge engineers to 

better compare different deck design alternatives. 
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Figures: 

 

Fig 1. AASHTO-LRFD (2007) moment values for D=1.0 and C=1.0, and AASHTO-

LRFD (2007) deck slab design table positive moment values. 
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Fig. 2. Uniformly loaded single patch load located on an infinitely wide and simply 

supported orthotropic plate 
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Fig. 3. Strong direction moment under the center of the patch versus   values. 
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Fig. 4. Design truck and design tandem loads for main bars transverse to direction of 

traffic. 
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Fig. 5. a) Mmax_tr versus Mtransverse b) Mtransverse(AASHTO)versus Mtransverse 
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Fig. 6. Design truck and design tandem loads for main bars parallel to direction of traffic. 
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Fig. 7. a) Mmax_par versus Mparallel b) Mparallel(AASHTO)versus Mparallel 
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Fig. 8. a) Main bars transverse to supports ( xD ) b) Main bars parallel to supports ( yD ) c) 

Twist test ( xyD ) 


