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ABSTRACT

The materiality and neutrality of neutral density and several forms of orthobaric density are calculated and

compared using a simple idealization of the warm-sphere water mass properties of the Atlantic Ocean.

Materiality is the value of the material derivative, expressed as a quasi-vertical velocity, following the motion

of each of the variables: zero materiality denotes perfect conservation. Neutrality is the difference between

the dip in the isopleth surfaces of the respective variables and the dip in the neutral planes. The materiality

and neutrality of the neutral density of a water sample are composed of contributions from the following: (I)

how closely the sample’s temperature and salinity lie in relation to the local reference u–S relation, (II) the

spatial variation of the reference u–S relation, (III) the neutrality of the underlying reference neutral density

surfaces, and (IV) irreversible exchanges of heat and salinity. Type II contributions dominate but have been

neglected in previous assessments of neutral density properties. The materiality and neutrality of surfaces of

simple orthobaric density, defined using a spatially uniform u–S relation, have contributions analogous to

types I and IV, but lack any of types II or III. Extending the concept of orthobaric density to permit spatial

variation of the u–S relation diminishes the type I contributions, but the effect is counterbalanced by the

emergence of type II contributions. Discrete analogs of extended orthobaric density, based on regionally

averaged u–S relations matched at interregional boundaries, reveal a close analogy between the extended

orthobaric density and the practical neutral density. Neutral density is not superior, even to simple orthobaric

density, in terms of materiality or neutrality.

1. Introduction

It has been a century since the demonstration of the

relation of ocean currents to density gradients (Helland-

Hansen and Nansen 1909). The data from the Meteor

expedition (Wüst 1935) showed the close alignment of

core layers in the ocean, on which water properties like

salinity, dissolved oxygen, etc., assumed extremal values,

with strata of density corrected, however crudely, for

adiabatic compression. [Usually, st was used, which is

merely the in situ density with its pressure dependence

neglected; occasionally, the specific volume anomaly has

been employed (Reid 1965).] Montgomery (1938) gave a

cogent, qualitative explanation of why water properties

should spread out along (corrected) density surfaces.

For a long time, potential density was accepted as the

correct standard for comparison with water property

core layers, but Lynn and Reid (1968) showed a sen-

sitive and anomalous dependence of the topography

of potential density surfaces on the choice of their

reference pressure. The distortion of these surfaces

complicates the relationship between potential density

gradients and dynamically important pressure gradients

(de Szoeke 2000). This is most dramatically illustrated

by the well-known reversal of the vertical gradient of

the potential density (referenced to zero pressure) in a

stably stratified region of the deep Atlantic Ocean. The

cause can be traced to the fact that the effective thermal

expansion coefficient of potential density is that of the

in situ density at the potential density’s reference pres-

sure, thereby incorrectly representing thermal effects on

buoyancy at pressures far from the reference pressure

(McDougall 1987b). To mitigate this shortcoming, po-

tential density has been computed over narrow pres-

sure ranges (e.g., 0–500, 500–1500, 1500–2500 dbar, etc.),

referenced to pressures within the respective ranges

(s0, s1, s2, etc.) and matched at the transition pres-

sures to form composite surfaces (Reid and Lynn 1971).
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A further elaboration allows for geographical variation

by matching different values of potential density across

the transition pressures in different regions. This pro-

cedure [sometimes called the patched potential density

method (de Szoeke and Springer 2005)] has been used

successfully (e.g., Reid 1994) to create global-scale

maps of potential temperature and salinity, radio tracers

such as tritium corrected for its radio decay, anthropo-

genic tracers like chlorofluorocarbons, or nutrients like

nitrate and phosphate corrected for oxygen concentra-

tion [so-called NO and PO (Broecker 1981)].

The formulation of the patched potential density is

not entirely satisfactory (de Szoeke and Springer 2005).

A significant limitation is that it is defined discretely in

both the vertical and horizontal directions. The vertical

discretization was refined by de Szoeke and Springer

(2005), who showed that decreasing the vertical pressure

interval of the patches from the typical 1000 to 200 dbar,

say, may render the matching procedure ill-defined

because there is no longer a one-to-one correspon-

dence between potential density surfaces across re-

gional boundaries. Two major definitions of continuous

corrected density variables have been proposed: neutral

density (Jackett and McDougall 1997) and simple or-

thobaric density (de Szoeke et al. 2000). These two var-

iables seem, at least superficially, to be very different.

Part of the goal in this paper is to derive them within a

common framework so that their relationship can be

understood more easily. A second goal is to compare

their performance in idealized settings that are analyt-

ically tractable. We propose three quantitative stan-

dards for comparison: 1) How material are the surfaces

of the variable? 2) How closely do the gradients of the

variable correspond to dynamically important density

gradients? 3) How neutral are surfaces of the variable?

The first two standards are motivated directly by early

discoveries about the relationship between thermo-

dynamic variables and motion, and the third is moti-

vated by considerations of the preferred directions of

mixing. These concepts will now be defined precisely.

Strict materiality is the quality of being material, or

conservative:1 a fluid variable is material (conservative)

if it does not change following the motion, or Dx/Dt 5 0.

Quasi-materiality is the property of a variable changing

only in response to irreversible, diabatic effects; that is,

Dx=Dt 5 _qx [ $ � (K$x), where K is a diffusivity tensor

for the variable. In this paper, by materiality we shall

mean (at very slight risk of confusion) quasi-materiality.

This is not to imply that irreversible contributions to the

balance of x are negligible, only that reversible contri-

butions to strict materiality are under consideration.

Potential temperature and potential density (with a

single reference pressure) are material variables. How-

ever, in situ density r governed by the balance

Dr

Dt
5 c�2 Dp

Dt
1 _qr, where c�2 5

›r

›p

����
u,S

, (1.1)

is not material because of reversible adiabatic com-

pression, apart from irreversible effects _qr.

Though not material, density (or specific volume

V 5 r21) has the following crucial substitution property

for the combination that occurs in the equations of

motion of pressure gradient force and gravitational ac-

celeration:

�r�1$p� gk 5�$
V

M(V) � k9(V)[›
V

M(V) � p],

(1.2)

where M(V) 5 Vp 1 gz is the Montgomery function

(closely related to dynamic height) of density surfaces

and k9(V) 5 (k 2 $Vz)/›Vz.2 The exact replacement, as

it were, of 2r21$p by the three-dimensional gradient

of M(V), expressed relative to nonorthogonal slanting

nonunit basis vectors i, j, and k9(V), and of 2gk by pk9(V)

in the vertical component, is of crucial consequence to

the balance of forces regarded from isopycnal surfaces

(de Szoeke 2000). The effective buoyant force acts in

the direction of k9(V) 5 $V, that is, normal to isopycnals.

When the left side of (1.2) is set equal to the Coriolis

force, this substitution becomes the basis of the thermal

wind calculation of the dynamic height and geostrophic

currents: M(V) 5
Ð

p dV (Sverdrup et al. 1942). Taking

the vertical component of the curl of the momentum

balance relative to isopycnal coordinates furnishes a

potential vorticity based on the spacing of in situ iso-

pycnals. The balance of this potential vorticity is

marred, however, by very strong vortex stretching due

to motions across in situ density surfaces arising from

adiabatic compression.

1 It has been traditional in physical oceanography to denote as

conservative what we call here material. Because the former has

recently been used in a rather different sense (McDougall 2003),

we have adopted the latter term.

2 Notation conventions: $p 5 $zp 1 k›zp and $zp 5 i›xjzp 1

j›yjz p, where ›xjz p 5 pxjz, ›yjz p 5 pyjz, etc., are partial derivatives

at fixed z; ›zp 5 pz, etc., are partial derivatives with respect to z;

i, j, k are orthogonal unit basis vectors, horizontal and vertical; $Vz 5

i›xjVz 1 j›yjVz is the gradient of isopycnal surfaces; ›xjVz 5 zxjV,

›yjVz 5 zyjV, etc., are partial derivatives at constant V; ›Vz 5 zV, etc.,

are partial derivatives with respect to V; and $VM(V) 5 i›xjVM(V) 1

j›yjVM(V) is the two-dimensional vector gradient at constant V of the

Montgomery function M(V). Similar usages with independent vari-

ables other than V will be employed.

1780 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



The density of seawater is a function of potential

temperature, salinity, and pressure. If there were a

temperature–salinity relation unvarying in space or time

in the oceans, density could be regarded as a function

only of pressure and potential temperature u: r21 5

V(p, u). In that case the pressure gradient plus gravi-

tational acceleration combination occurring in the

momentum balance may be replaced by the following:

�r�1$p � gk 5�$
u
M(u) � [›

u
M(u) � P(u)]k9(u),

(1.3)

where M(u) 5 gz 1 H(u) is the Montgomery function, the

sum of the gravitational potential and heat content, the

latter defined by H(u) 5
Ð p

0 V(p, u)dp; P(u) 5 [›H(u)/›u]p

is the Exner function; and k9(u) 5 (k 2 $uz)/›uz 5 $u.

This has obvious parallels to (1.2), with similar inter-

pretations. The potential vorticity based on u-surface

(isentrope) spacing ›uz is far more attractive than the

r-surface potential vorticity because the potential tem-

perature is material and the dientropic vortex stretching

is much reduced or negligible (Eliassen and Kleinschmidt

1954). Also, the potential temperature gradient $u is

parallel to the dianeutral vector,

d 5 r�1(�$r 1 c�2$p) (1.4)

(about which more will be developed below), when

there is an unvarying temperature–salinity relation.

Isentropes in this situation are neutral surfaces. This

property is closely linked to the material property of

potential temperature.

The nexus among the three properties of potential

temperature—dynamical substitution (1.3), materiality,

and neutrality—is broken when the temperature–salinity

relation is not unvarying but dependent on geographic

location. In such a case the dianeutral vector d cannot

be parallel everywhere to any scalar gradient, let alone

$u, though it may be taken to define at any point a

neutral plane to which it is perpendicular. An early

hope was that the totality of neutral planes would de-

fine a generalization of neutral surfaces, but this does

not happen (McDougall 1987a; Davis 1994). The for-

mation of well-defined surfaces from neutral planes

requires that their helicity vanish everywhere; that is,

d � $ 3 d 5 0. This amounts to demanding an unvary-

ing temperature–salinity relation, which brings us back

to isentropes, closing the logical circle! Failing this,

global measures of the closeness to neutral planes of the

isopleth surfaces of a given variable can be devised—

which could be called the surfaces’ neutrality. For ex-

ample, Eden and Willebrand (1999) considered several

global indices of the mean-square difference, variously

weighted, between slopes of candidate surfaces and the

neutral plane slope. A variable that labels such candi-

date surfaces may be called a neutral density of the first

kind.

Simple orthobaric density s4—a function only of

density and pressure, and called simple to distinguish it

from extended orthobaric density, considered below

(section 5)—is calculated by assuming a virtual com-

pressibility r21c0(r, p)22—also a function only of pres-

sure and density—to correct the in situ density for

compression: u ds4 5 dr 2 c0(r, p)22 dp, where u(r, p)

is an integrating factor. De Szoeke et al. (2000) fitted

a function of p and r to the global field of sound speed

in the ocean to furnish c0(r, p). This was shown to be

equivalent to fitting a global average u–S relation. Be-

cause it depends only on the in situ density and pres-

sure, the simple orthobaric density has the dynamical

property (1.3), with s4 substituted for u. The material

derivative of s4 may be calculated (de Szoeke and

Springer 2005). The simple orthobaric density is not

material unless the true sound speed c is identical with

the hypothetical c0 everywhere; that is, unless the as-

sumed u–S relation actually applies everywhere. The

difference c0 2 c is a measure of the materiality of the

orthobaric density. A normalized index c of material-

ity, called the buoyancy gain factor, was devised for

simple orthobaric density. This factor is so called be-

cause it gives the ratio of the apparent buoyancy fre-

quency squared, based on the orthobaric density, to the

true buoyancy frequency squared. Its difference from

1 is proportional to c0 2 c and is, thereby, a measure of

the ocean’s deviation from the hypothetical universal

u–S relation. One of the tasks of this paper is to quan-

tify the neutrality of the simple orthobaric density

(section 4). Another task is to explore how using spa-

tially variable u–S relations to define the extended or-

thobaric density affects materiality and neutrality

(section 5).

Jackett and McDougall (1997) described how to

compute a variable g, which they called neutral density,

constructed in such a way that its isopleth surfaces3 are

closely tangent to neutral planes everywhere. Given,

say, a synoptic hydrographic section, the method cal-

culates apparent displacements of water samples on the

section from a standard global reference dataset, such as

the Levitus climatology, and associates neutral density

values preassigned to the reference data to the synoptic

samples. One of the goals of this paper is to clarify the

3 Neutral density and its isopleth surfaces are well defined, even

when neutral surfaces do not exist (i.e., nonzero helicity). We will

be careful to refer to neutral density surfaces, not neutral surfaces.
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definition of this neutral density, designated here as the

second kind, and, in particular, to distinguish it from

neutral density of the first kind. McDougall and Jackett

(2005a) proposed measures of materiality and neutral-

ity for neutral density (section 2), modeled on de

Szoeke et al.’s (2000) work with orthobaric density.

However, we will show that in their calculation of

neutral-density materiality a consequential term was

unjustifiably neglected, and their conclusions about the

relative materiality of neutral density and orthobaric

density (McDougall and Jackett 2005b) are suspect. In

addition, we quantify the neutrality of the neutral den-

sity for the first time and derive an expression for the

additional forces that arise on neutral density surfaces,

which do not possess the substitution property (1.3) (see

the appendix).

The plan of this paper is as follows. In section 2

we briefly review how the neutral density of a water

sample is calculated relative to a reference global hy-

drographic dataset. In the appendix, we calculate the

material derivative of neutral density. We also derive a

formula for the difference between the slopes and ori-

entations of neutral density surfaces and neutral

planes (neutrality), and a generalization of the dynam-

ical substitution property (1.3) for neutral density.

In section 3 we take as the reference dataset for neutral

density a simple model of the Atlantic that represents

the ocean’s meridional variation of the u–S rela-

tion, though constructed in such a way that in situ iso-

pycnals are level and the reference ocean is motionless.

Supposing the ‘‘real’’ ocean to have been vertically

displaced from the reference ocean by meridionally

varying amounts, we calculate, by methods analogous to

Jackett and McDougall’s (1997), the distribution of

neutral density and its material derivative. In section 4

we calculate the simple orthobaric density, based on

a mean u–S relation of the reference dataset, of the

displaced real ocean, as well as its material derivative

and neutrality, which we compare to those of neutral

density. We also calculate the dual-hemisphere ortho-

baric density (de Szoeke and Springer 2005), where

different mean northern and southern u–S relations

representative of the respective hemispheres are em-

ployed. We show how the two different simple or-

thobaric densities in the hemispheres may be patched

together. In an extension of these ideas, by subdividing

the ocean into more and more provinces, each with its

distinctive mean u–S relation, and eventually passing to

the obvious continuous limit, we obtain what we have

called the extended orthobaric density (section 5),

whose properties can be compared to those of neutral

density. A discussion and summary conclude the paper

(section 6).

2. Neutral density

a. Preliminaries

In what follows it is useful to have the following

definitions and concepts at hand. The equation of state

r21 5 V(p, u, S) is a function of pressure, potential tem-

perature, and salinity (Jackett et al. 2006). The dianeutral

vector defined by (1.4) may also be written

d 5 a$u� b$S, where a 5 V�1(›V/›u)
p,S

and

b 5�V�1(›V/›S)
p,u

(2.1)

(McDougall 1987a). Its vertical component is k � d 5 N2/g

(where k is a unit vertical vector, g is the earth’s gravi-

tational acceleration, and N is the buoyancy frequency)

and a, b are the thermal expansion and haline contraction

coefficients. The dip of a neutral plane, or neutral dip, is

the two-dimensional vector whose direction in the hori-

zontal gives the orientation of the plane, and whose

magnitude is the tangent of the angle between the neutral

plane and the horizontal, namely,

h 5
(d 3 k) 3 k

k � d 5
�d 1 (k � d)k

k � d 5
�a$

z
u 1 b$

z
S

a›
z
u� b›

z
S

.

(2.2)

[This usage is common in describing bedding planes in

physical geology (Holmes 1945).] The dianeutral vector

is integrable, that is, d 5 u$n, so that h 5 2$zn/›zn 5

$nz, if and only if the helicity vanishes:

d � $ 3 d 5�m*$p � a$u 3 b$S 5 0, (2.3)

where m* 5 ›ln (a/b)/›p. The latter has typical recipro-

cal values for seawater of m2 1
* ’ 5000 dbar (McDougall

1987b; Akitomo 1999; Eden and Willebrand 1999).

Condition (2.3) is satisfied if S 5 S(u, p). In that case,

surfaces of constant n are everywhere tangential to

neutral planes (perpendicular to d) and may be properly

called neutral surfaces. The dynamical substitution (1.3)

is valid, with n substituted for u. (Under the slightly

more restrictive condition S 5 S(u), n may be taken to

be identical to u, as was assumed in the introduction.)

Various practical kinds of neutral density have been

devised even when (2.3) is not satisfied. But the tangent

planes of their surfaces cannot perforce be perpendic-

ular everywhere to the dianeutral vector, so estimates of

their closeness to this ‘‘ideal’’ ought to be formed. This

is one of the tasks undertaken in the following.

b. Neutral density of the first kind

Suppose we call $gz the dip of a surface z 5 z(g, x), as

labeled by the constant parameter g. The vector dif-

ference between this dip and the neutral dip,
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$
g
z� h, (2.4)

is called the neutrality of the surface. Its magnitude

j$gz 2 hj gives the angle between the surface and the

neutral plane. When the neutrality is zero, surfaces of

constant g are said to be neutral. Even if not, we shall

call these surfaces neutral density surfaces of the first

kind and call g the neutral density,4 when $gz ’ h, to

some acceptable degree of approximation. Several ways

of approximating this equality have been described.

One way is to integrate

›z[g, x(s)]/›s 5 h � x9(s)/ x9(s)j j, (2.5)

where s is the distance along a horizontal path x(s), to

form a three-dimensional neutral trajectory x(s), z(g, s).

By repeating this over a network of such paths chosen to

cover the entire ocean, and ‘‘connecting’’ paths sharing

the same value of g, McDougall (1987a) suggested that

‘‘approximate surfaces’’ may be formed. There are un-

avoidable mathematical difficulties with this approach

when the helicity of the dianeutral vector does not

vanish (Davis 1994). However, a realizable approach is

to choose z(g, x) to minimize the neutrality globally,

that is, to minimize

ð
V

jW � ($
g
z� h)j2 dV, (2.6)

where V is the total volume of the ocean and W is a

suitable weight function. Eden and Willebrand (1999)

considered several similar minimization principles. Neu-

tral density surfaces of the first kind exist even when the

neutrality $gz 2 h differs from zero. They must be re-

garded, however, as one step removed from neutral

planes.

c. Neutral density of the second kind

It is impractical to recalculate the global neutral

density field whenever a new hydrographic section be-

comes available. Accordingly, Jackett and McDougall

(1997) described a two-stage procedure for assigning the

value of a second kind of practical neutral density to a

sample of water collected at a certain horizontal posi-

tion and ambient pressure.

(i) The first stage is to prepare beforehand a set of

reference neutral density surfaces of the first kind

from an archive of hydrographic data, such as the

Levitus climatology, from which averaged vertical

reference profiles of potential temperature and sa-

linity, uref(p, x), Sref(p, x),5 at any position x in the

world’s oceans have been compiled. (One might call

this the reference ocean.) The reference surfaces

are specified by the function

p 5 p
ref

(g, x) [or its inverse, g 5 g
ref

(p, x)].

(2.7)

(ii) Next, suppose a water sample has been collected

with the values u, S at ambient pressure p, position

x, and time t, from the present ocean (so called to

distinguish it from the reference ocean). The target

pressure level pr is the pressure at which the refer-

ence ocean’s potential density matches the present

sample’s potential density, each referenced to the

weighted-average p 5 l~p 1 lpr [with l~ 1 l 5 1;

Jackett and McDougall (1997) invariably use l 5

l~ 5 0.5 for the weights]. This prescription may be

written as

V[p, u
ref

(pr, x), S
ref

(pr, x)] 5 V(p, u, S) (2.8)

and is called the neutral property (Jackett and

McDougall 1997). It furnishes pr as a function of

u, S, p, and position x. The last step is to obtain

the neutral density of the second kind of the water

sample by substituting pr into the predetermined

function gref(pr, x).

Graphically, this identifies the reference neutral

density surface that goes through the target level pr at

position x in the reference ocean, and associates its

neutral density (first kind) with the present water sam-

ple. This second kind of neutral density is two steps

removed from neutral planes: first by the association the

neutral property [Eq. (2.8)] makes between the present

ocean and the reference ocean, and second by the re-

lation of the reference neutral density to neutral planes.

d. Material rate of change: Cross-neutral mass flow

An important property of neutral density of the

second kind can be obtained by taking the material

derivatives6 of both sides of Eqs. (2.8) and (2.7) and

eliminating Dpr/Dt to furnish an equation for its material

4 Surfaces may be labeled alternatively by any G(g). It is con-

venient to resolve this ambiguity by setting g to the potential

density at a central location (e.g., Jackett and McDougall 1997).

5 We prefer to use pressure p rather than height z as a vertical

coordinate.
6 The material derivative operator is given by any of the fol-

lowing: D/Dt 5 ›tjz 1 u � $z 1 w›z 5 ›tjp 1 u � $p 1 _p›p 5 ›tjg 1

u � $
g

1 _g›
g
, etc., where w 5 _z 5 Dz/Dt, _p 5 Dp/Dt, _g 5 Dg/Dt,

etc.; ›tjz, etc., are partial time derivatives with z, etc., held constant.

This invariance to reference frame is demonstrated by de Szoeke

and Samelson (2002).
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rate of change, _g [ Dg/Dt, in the present ocean. (De-

tails are given in the appendix.) We call the value of _g at

a point in space and time the materiality; if the mate-

riality were zero everywhere, g would be perfectly

material, or conservative. Materiality gives the rate of

flow eg (m s21, positive when upward) across neutral

density surfaces. This is obtained in the appendix by

Eq. (A.2), which is reproduced here:

�rgeg [ _g
›p

›g
5 (ĉg � 1)[l~(›

t
1 u � $)

g
p 1 lu � $

g
pr]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

1 l~m(p� pr)D�1u � $
g
q

ref|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

1 D�1 N2
ref

g
�

$
g

pr

r
ref

g
� h

ref

� �
� u

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

1 D�1 _q
( p)|fflfflfflffl{zfflfflfflffl}

IV

. (2.9)

In this equation, ĉg 5 1� m[q� qref(pr, x)]D�1 is the

neutral-density buoyancy gain factor;7 q, s are normal-

ized forms of u, S (slightly nonlinearly transformed in

the case of q; see the appendix); m 5 Vup/Vu is the

thermobaric parameter (McDougall 1987b); D is a fac-

tor given by (A4) in the appendix; and Ds›p/›g is the

vertical thickness (in pressure units, i.e., decibars) of an

increment Ds of neutral density. The right side of (2.9)

uses a simplified equation of state given by Eqs. (A.1a)

and (A.1b) in the appendix.

One may distinguish four types of contributions to the

material rate of change, or the diapycnal material flow,

arising from the following sources:

(I) the sum of the apparent vertical motion in the

present ocean, wa 5 (›t 1 u � $)g p, as though the

constant-g surface were material, and in the ref-

erence ocean, wr
a 5 u � $g pr (Fig. 1), each weighted

by l~ or l, respectively, and attenuated by ĉg � 1,

which is a measure of the departure of the water

sample’s q, s from the local reference u–S relation;

(II) differences between ambient pressure in the pres-

ent data and target pressure in the reference da-

taset, p 2 pr, combined with advection of the

reference temperature on neutral density surfaces

(if the reference temperature changes on the ref-

erence neutral density surfaces, it is because of

the spatial variation of the reference ocean’s u–S

relation);

(III) reference neutrality, that is, differences between

the neutral density surface dip $gzref 5 2$g pr/

(rrefg) and the true neutral dip href (see the ap-

pendix) in the reference dataset; and

(IV) the irreversible rates of change of temperature

and salinity that constitute the buoyancy rate of

change _q( p) [see Eq. (A5) in the appendix].

e. Neutrality

Another result established in the appendix is an

equation for the neutrality, the difference in the present

ocean between the dip $gz of the neutral density (of the

second kind) and the neutral dip h. This difference is

given by Eq. (A.9):

N2

g
($

g
z� h) 5 D(ĉg � 1)$

g
(l~p 1 lpr)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

1 m(p� pr)$
g
(l~q

ref
1 lq)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

1
N2

ref

g
�

$
g

pr

r
ref

g
� h

ref

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

. (2.10)

One may identify contributions analogous to types I, II,

and III for materiality. Note the distinction between the

FIG. 1. Neutral density schematic. Two neutral density surfaces,

g and g9 5 g 1 Ds, are shown in the (top) ‘‘present’’ dataset (at two

times: t and t 1 Dt) and (bottom) in the reference dataset (fixed).

The distinction between the present thickness p9 2 p 5 Ds›p/›g

and the reference thickness p9r 2 pr 5 Ds›pr/›g is illustrated. Ap-

parent vertical motions in the present dataset, wa 5 (›t 1 u � $)g p,

and in the reference dataset, wr
a 5 u � $g pr [using a horizontal

current from the present data at p, x, t (or g, x, t)], are indicated.

7 McDougall and Jackett (2005a) define cg � 1 5 l(ĉg � 1),

which is convenient when l 5 l~ 5 0.5 is used.
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neutralities of the present ocean (left-hand side) and the

reference ocean (term III).

McDougall and Jackett (2005b) derived an expres-

sion similar to (2.9). Jackett and McDougall (1997)

argued that, given their method of preparing the ref-

erence dataset, the type III term in (2.9) [and by in-

ference in (2.10)] is small. McDougall and Jackett

(2005a) conducted a global census of ĉg from the world

hydrographic dataset showing that it is very close to

1 (q 2 qref ’ 0) and concluded that the type I contri-

bution to the materiality (and, one may infer, neutrality)

of neutral density due to deviations from the local u–S

relation is negligibly small. Further, following from a

claim that m(q 2 qref)u � $g pr (type I) and m(p 2 pr )u �
$gqref (type II) were typically of the same order, they

asserted that diapycnal flow contributions from spa-

tial gradients of the reference u–S relation were like-

wise negligible. This claim is very dubious. In section 3

we shall present an illustration clarifying that type II

contributions to neutrality and materiality cannot be

neglected.

f. Neutral density in the displaced reference ocean

The treatment in the appendix is quite general with

regard to the reference dataset and the present ocean. A

special case is of particular interest. Suppose the present

ocean is obtained from the reference ocean by displac-

ing the latter vertically by an increment Dp, possibly

itself a function of p, x, and t:

q 5 q
ref

(p 1 Dp, x), and s 5 s
ref

(p 1 Dp, x). (2.11)

When this is substituted into the right side of (2.8), an

obvious solution for target pressure is

pr 5 p 1 Dp. (2.12)

Hence, q 2 qref(pr, x) 5 0 and ĉg 5 1 exactly, so that

the type I terms in the materiality and neutrality of

neutral density, Eqs. (2.9) and (2.10), vanish. But the

type II terms, proportional to p 2 pr 5 2Dp 6¼ 0, do not.

3. Properties of neutral density in an
idealized ocean

To evaluate the performance of neutral density (and,

in section 4, orthobaric density) with regard to materi-

ality and neutrality, it is useful to consider a simplified

model of the Atlantic Ocean’s meridional temperature

and salinity structure that illustrates its salient hydro-

graphic features. This model will be taken as the ref-

erence dataset for the neutral density algorithm. Its

motivation is the spatial dependence of the Atlantic’s

u–S relation, which was identified in the preceding sec-

tions as the cause of nonzero helicity and the nonexis-

tence of neutral surfaces. We will suppose the present

ocean to be a vertically displaced form of the reference

ocean from which we can calculate the neutral density

distribution and its materiality and neutrality.

a. A simple model of the warm-water
Atlantic Ocean

The u–S relation of the Atlantic on the horizontal

500-dbar pressure surface is shown in Fig. 2 in terms of

the modified variables q, s [Eq. (A1b) in the appendix].

The diagram shows the main southern and northern

lines of the tropical to temperate upper ocean, with a

constant-density bridge linking the main lines. The

nonlinear transformation of potential temperature u has

straightened a slight curvature of the lines. On any

pressure surface shallower than 1500 dbar [only 500

dbar is shown here, but see de Szoeke and Springer

(2005) for more pressure surfaces], the main lines are

practically identical, while the bridge lies at different

densities. The two fitted lines in Fig. 2,

s 5 R�1q 7 s
1
, with R ’ 2.0 (density ratio) and

s
1
’ 0.23 3 10�3, (3.1)

may be considered idealized representations of the main

u–S lines at temperatures above 48C (q $ 20.11 3 1023).

FIG. 2. The u–S relation of the Atlantic on the 500-dbar pressure

surface. The ordinate is q: shifted, transformed, and normalized

potential temperature. The abscissa is normalized and shifted sa-

linity. The grayscale clouds represent data points taken from the

World Ocean Circulation Experiment (WOCE). The coefficients

and parameters a1, a2, b, u0, S0, given in the appendix, are chosen so

that unit changes in q or s give unit changes in the normalized

specific volume V/V0. The solid lines are analytic representations

of the main southern and northern u–S lines; their slopes are R 5

dq/ds 5 2.0. The dashed line is a constant-density line linking the

main lines at 500 dbar.
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More elaborate representations of the u–S lines than

(3.1), taking account of the convergence of the northern

and southern lines at colder temperatures, may readily

be considered, though in the interests of brevity we have

foregone such a treatment here. It may be more con-

ventional to show the spatial variation of u–S relations as

in Fig. 3, where each line of data represents a meridional

location. This illustrates the evolution along a meridional

section from the southern to the northern extremes ide-

alized in Eq. (3.1). The near-constant density bridge

structure at each pressure, exemplified in Fig. 2, unfolds

to form the meridionally dependent u–S profiles of Fig. 3.

The fit of parallel, straight lines to the q–s relation at

each latitude for waters warmer than 48C or shallower

than 1500 dbar seems quite accurate. The lines are biased

to the saltier side on passing from 208S to 208N, but are

unvarying with latitude south and north, respectively, of

these limits (overlooking some anomalously salty water

from the Mediterranean at northern midlatitudes). A

linear fit to this bias between 208S and 208N may be

oversimplified but not unrepresentative.

Thus, Figs. 2 and 3 motivate the following idealiza-

tions of the temperature and salinity fields of the

warmer layers of the subtropical to tropical Atlantic:

q
ref

(p, y) 5
d

ref
( p) 1 ( y/L)s

1

n 1 mp
, and (3.2a)

s
ref

(p, y) 5 (1 1 mp)q
ref

(p, y)� d
ref

(p), (3.2b)

for jy/Lj # 1, where y 5 6L are the northern and

southern geographical boundaries of the transequatorial

Atlantic bridge region. For y/L . 11 ( y/L , 21), we

replace y/L in (3.2a) by 11 (21). We take 2L ’ 3000 km

and n 5 1 2 R21 ’ 0.5. (The origin, y 5 0, need not be

the equator.) The qref and sref fields are chosen to give a

horizontally uniform profile of the normalized specific

volume anomaly,

d
ref

( p) 5�s9
B

p, (3.2c)

here assumed linear with depth with constant coefficient

s9B. We call this the quiescent reference ocean (Fig. 4).

One might as well assign the d values of level pressure

surfaces (or rather their negatives) as the neutral den-

sity labels of the reference ocean, that is, as in Eq. (2.7):8

g
ref

(p, x) 5�d
ref

( p) 5 s9
B

p. (3.2d)

If dref is eliminated from (3.2a) and (3.2b), a meridio-

nally variable reference q–s relation emerges:

s
ref

5 R�1q
ref

1 (y/L)s
1
, where y/Lj j # 1 (3.2e)

(cf. Fig. 3). The q–s relations at successive positions

from y 5 2L to L are straight lines of slope R, shifting

to saltier water. The total shift is 2s1. South of y 5 2L

(or north of y 5 L) the q–s relation is taken to be

spatially uniform, as given by Eq. (3.1). The end-point

northern and southern q–s relations, though very sim-

ple, represent the real ocean very well, as does the

mapping of the intermediate q–s relations onto the

FIG. 3. Profiles of u vs S at fixed latitudes on a meridional section

of the Atlantic (grayscale lines). (See Fig. 2 caption and the ap-

pendix for coefficients and parameters.) The variation is greatest

between 158S and 158N. At higher latitudes, the northern and

southern u–S relations are nearly constant. The idealized northern

and southern u–S relations in Fig. 2 are shown.

FIG. 4. A cross section of u (solid) and S (dashed) in a simple

model of the quiescent warm-water Atlantic. The in situ isopycnals

are level.

8 More generally, if the in situ density surfaces of the reference

dataset were not level, the reference neutral density surfaces

would depend on position, g 5 gref(pr, x) (see the appendix).
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constant-density bridges (Fig. 2). More schematic than

strictly accurate is the assumption of a meridionally

linear transition between the end points (Fig. 3).

A consequence of the density-compensated bridge

structure [Eq. (3.2)] is that in situ isopycnals and neutral

planes (McDougall 1987a) are horizontal in the refer-

ence dataset. The dianeutral vector [Eq. (2.1)] is ev-

erywhere vertical,

d
ref

5 kr
ref

g[s9
B

1 mq
ref

(p, y)] 5 kg�1N2
ref(p, y); (3.2f)

hence, the reference helicity is trivially zero: dref � $ 3

dref 5 0. The reference neutrality is also zero; the refer-

ence state exactly (and trivially) satisfies 2$gpr/(rrefg) 5

href 5 0, so that the type III terms that occur in (2.9)

and (2.10) are absent. Reference-neutral surfaces are

level.

From Eq. (3.2) describing the quiescent reference

state, one obtains

N2
ref

r
ref

g2
5 s9

B
1 mq

ref
’ s9

B
,

›pr

›g
5

1

s9
B

,

›q
ref

›pr
5
�s9

B
� mq

ref

n 1 mpr
’�

s9
B

n
,

$
g
q

ref
5 j

s
1
/L

n 1 mpr
’ j

s
1

nL
,

8>>>>>>>>>><
>>>>>>>>>>:

(3.3)

where j is the meridional unit vector. [When approxi-

mations are given in (3.3), the contributions from the

small parameter m have been neglected.]

b. Idealized neutral density in the displaced
reference ocean

Let the place of the hydrographic archive used as the

reference data for the neutral density algorithm (2.8) be

taken by the two-dimensional quiescent reference state

[Eq. (3.2)]. Suppose that the present ocean is the ref-

erence ocean displaced by Dp(p, x), as in Eqs. (2.11). In

general, then, helicity will not be zero and neutral sur-

faces will not exist. However, neutral density and its

isopleth surfaces are well defined and can be obtained

by inserting Eq. (2.11) on the left of (2.8). As remarked

above, the target pressure pr is then given by (2.12), and

the neutral density by

g 5 s9
B

pr 5 s9
B

(p 1 Dp).

Neutral density surfaces are described by pr 5 const.

Interesting properties of neutral density, such as mate-

riality and neutrality, may be estimated. The buoyancy

gain factor for the displaced ocean is ĉg 5 1 (because

q 2 qref(pr, x) 5 0), and type I terms in (2.9) and (2.10)

vanish. In a pressure range centered around 500 dbar

(for p , p0 ; 1000 dbar, say), suppose the displacement

is linear in x and y:

Dp ’ D
0
(«x/L 1 y/L 1 1)/2, (3.4)

with D0 5 100 m. The dominant, type II, contribution to

Eq. (2.9) is, using (3.3),

eg
II ’

l~m

rgs9
B

Dpy
s

1

nL
’ l~

ms
1

rgns9
B

L
yD

0
(y/L 1 1)/2.

(3.5)

The parameter « in (3.4) may be so small as to be neg-

ligible in Dp in (3.5), but it is essential in providing a

nonzero meridional velocity y 5 f21s9B(p 2 p0)D0«/2L

to make (3.5) nonzero and nontrivial. Fundamentally,

the zonal structure of (3.4) provides three-dimensional

structure in the displaced ocean to furnish nonzero

helicity. The meridional dependence of this is shown in

Fig. 5a for l~ 5 0.5, normalized by a parameter including

the meridional velocity y.

The neutrality of neutral density is given by Eq. (2.10).

Applying this formula to the displaced reference ocean,

in which only the type II term on the right survives, one

obtains, using the approximations of (3.3),

$
g
z� h ’�j

mDp

rgs9
B

s
1

nL
’�j

ms
1
D

0

rgns9
B

L
(y/L 1 1)/2.

(3.6)

This difference, or mismatch, is shown in Fig. 5b. Cu-

riously, even if « [ 0, despite the displaced ocean’s

being perfectly two-dimensional with zero helicity (so

that neutral surfaces are well defined), the neutrality of

neutral density surfaces does not vanish. An estimate

of the dimensionless parameter appearing in both (3.5)

and (3.6) is

m

nrg

s
1

L

D
0

s9
B

’
(5000 dbar)�1

(0.5)(1 dbar m�1)

(0.23 3 10�3)

(1500 km)

3
(100 dbar)

(0.6 3 10�6 dbar�1)
’ 1.1 3 10�5.

This gives eg ; 1025 y ; 1027–1026 m s21 for y ;

1022–1021 m s21. In comparison to typical Ekman pump-

ing magnitudes near the ocean surface (;1026 m s21),

such dianeutral material flows are not inconsiderable.

4. Properties of orthobaric density in an
idealized ocean

The idealized representation in section 3 of the

Atlantic Ocean illustrates well the central irremediable
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feature of the ocean’s density field that gives nonzero

helicity: the spatial variation of the u–S relation. We

now turn to calculating orthobaric density functions

predicated on u–S relations from various locations in the

reference ocean. These relations and density functions

are summarized in Table 1. We also calculate their

buoyancy gain factors (Table 2), cross-isopleth mass

flows (materiality), and neutrality (difference of the

surfaces’ $z from neutral dip h), and compare them with

those for neutral density.

a. Simple orthobaric density

An orthobaric density function for the entire ideal-

ized Atlantic may be defined in the following way. Take

the reference q–s relation (3.2e) at some central loca-

tion, say y 5 0, that is, sref 5 R21qref. By (3.2a), qrefjy50

is related to a normalized specific volume anomaly d

[Eq. (A1a) in the appendix] and pressure p by

q
ref
j
y50

5
d

n 1 mp
.

FIG. 5. (top) The type II contribution to diapycnal mass flow eg
II [Eq. (2.9)] for neutral density

(dashed), and the type I contribution to diapycnal mass flow e4
I [Eq. (4.2)] for simple (global)

orthobaric density (solid), with both normalized by ms1/(ns9B)yD0/(Lrg). (bottom) Neutrality

for neutral density [difference (mismatch) between the dip of the surfaces and the neutral dip;

see Eq. (2.10)] (dashed), and for simple (global) orthobaric density [Eq. (4.5)] (solid), nor-

malized by ms1/(ns9B)D0/Lrg.

TABLE 1. Orthobaric density functions.

q–s (q–d) relation Orthobaric density

Global ( y 5 0) sref 5 R�1qref [qref j0 5 d(n 1 mp)�1] s4 5
�d

1 1 mp/n

Northern ( y 5 L) sref 5 R�1qref 1 s1 [qrefjL 5 (d 1 s1)(n 1 mp)�1] sN 5 m(L)�1 �d� s1

1 1 mp/n
1 s1

� �

Southern ( y 5 2L) s
ref

5 R�1q
ref
� s

1
[q

ref
j�L

5 (d� s
1
)(n 1 mp)�1] sS 5 m(�L)�1 �d 1 s1

1 1 mp/n
� s

1

� �

Arbitrary center (yj) s
ref

5 R�1q
ref

1 s
1
y

j
/L

[qref jyj
5 (d 1 s1yj/L)(n 1 mp)�1]

s
(yj) 5 m(yj)

�1
�d� s1yj/L

1 1 mp/n
1 s1yj/L

� �

Note: m(y) 5 1 1
ms1y

ns9
B

L
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By substituting this into the adiabatic compressibility

anomaly (›d/›p)q,s 5 mq, one obtains the virtual com-

pressibility anomaly, which may be used to pose the

following differential equation:

dd

dp
5 mq

ref
j
y50

5
md

n 1 mp
.

This furnishes the integral 2d/(1 1 mp/n) 5 const. One

may take the value of this ‘‘constant,’’ defining a surface

in d, p space, at a reference pressure, say p 5 0, to be s4.

In this way one obtains a simple ‘‘global’’ orthobaric

density9 as a function of d, p:

s4 5
�d

1 1 mp/n
. (4.1)

The material rate of change of s4 may be calculated. It

can be written as

�rge4 [ ›p/›s4 _s4 5 (c4 � 1)(›
t
1 u � $)

s4 p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

1 ›p/›s4 ~u4c4 _q(p)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IV

(4.2)

(de Szoeke et al. 2000; de Szoeke and Springer 2005).

Here, Ds›p/›s4 is the vertical thickness (dbar) of an

increment Ds of orthobaric density. In addition, e4 is

the net flow (m s21) across a s4 isopycnal and consists

of two parts. The first is an adiabatic part—a residual of

the compressibility effect—given by the apparent mo-

tion (›t 1 u � $)
s4 p of orthobaric isopycnals, attenuated

by c4 2 1, where

c4 5 f1 1 ~u4m[q� q
ref
j
y50

(s4)]›p/›s4g�1 (4.3)

is the buoyancy gain factor, in which

q
ref
j
y50

(s4) 5�s4/n and

~u4 5�›s4/›d 5 (1 1 mp/n)�1.

Only at the location from which the reference q–s re-

lation has been taken (y 5 0) will q 5 qref in the dis-

placed ocean, and c4 5 1, reducing term I in (4.2) to

zero. The remaining part of (4.2), labeled IV, is a term

proportional to _q( p), the sum of all diabatic, irreversible

influences on the negative buoyancy [Eq. (A5), see the

appendix). We have assigned the terms in (4.2) type

designations based on their appearance analogous to

Eq. (2.9). Note that terms of types II or III do not appear.

The buoyancy gain factor of simple orthobaric density

for the displaced reference ocean is listed in Table 2 and

shown in Fig. 6. Note the linear decrease with y of

c4 2 1. A similar decrease is evident in an Atlantic

meridional section of c4 2 1 (de Szoeke et al. 2000,

their Fig. 11). (Since the reference u–S relation in the

latter calculation was taken from southern waters, there

is a positive bias in the real-world section compared to

the idealized section.) Unlike the type I term in the

neutral density materiality, Eq. (2.9), the contribution

of the term of which this is a factor to material flow

across orthobaric isopycnals does not vanish. Consider

the steady-state estimate of the apparent vertical motion,

(›t 1 u � $)
s4 p ’ y(›p/›y)

s4 ’ yD0/2L. The contribution

from the type I term of (4.2) to diapycnal flow is

e4
I ’

ms
1

rgns9
B

L
yD

0

y

2L
. (4.4)

The meridional dependence of this, normalized by

ms1D0/(rgns9BL)y, is shown in Fig. 5a; also shown is the

meridional average value of je4
I j (similarly normalized).

One may compare e4
I to e

g
II, given by (3.5). Though their

meridional dependences are offset one from the other,

their magnitudes and parameter dependences are sim-

ilar. The latter, e
g
II, was neglected by McDougall and

TABLE 2. Buoyancy gain factors in the displaced reference ocean for various orthobaric density functions.

Global c4 � 1 ’
s1m

ns9
B

�1, y . L
�y/L, yj j, L

1, y , �L

0
@

1
A ~u4 5 (1 1 mp/n)�1

Northern cN � 1 ’
s

1
m

ns9B

0, y . L
1� y/L, 0 , y , L

� �
~uN 5 (1 1 mp/n)�1m(L)�1

Southern cS � 1 ’
s1m

ns9B

�1� y/L, �L , y , 0
0, y , �L

� �
~uS 5 (1 1 mp/n)�1m(�L)�1

Arbitrary center (y
j
) c

j
� 1 ’

s1m

ns9B

yj � y

L
, jy� y

j
j, L/(N � 1) ~u

j
5 (1 1 mp/n)�1m(y

j
)�1

Extended cO 2 1 ’ 0 ~uO 5 (1 1 mp/n)�1m(y)�1

9 More systematically, de Szoeke et al. (2000) defined a global

orthobaric density function on the basis of a volumetrically aver-

aged compressibility function—equivalent to a volumetrically av-

eraged u–S relation.
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Jackett (2005a). From (2.9) and (4.2), e
g
I } cg 2 1 and

e4I } c4 2 1. McDougall and Jackett (2005a) show per-

suasively that cg 2 1� c4 2 1, so that indeed e
g
I� e4I .

In our illustration, in fact, e
g
I [ 0, cg 2 1 [ 0. But

in compensation it must be recognized that e
g
II is not

negligible.

The dip of an orthobaric density surface �$
s4 p/(rg)

differs from the neutral plane dip h [Eq. (2.2)] by

�
$

s4 p

rg
� h 5 (c4 � 1)

$
s4 p

rg
’�(c4 � 1)h

’ j
ms

1
D

0

ns9
B

rgL

y

2L
(4.5)

(de Szoeke et al. 2000). The last approximate equality

follows from the first row entry of Table 2, and has a

magnitude similar to the neutrality of neutral density

surfaces [Eq. (3.6)]. See Fig. 5b.

The panels in Fig. 5 illustrate a major result of this

paper. They show typical estimates of diapycnal flow

(materiality) and the neutrality of neutral density and

orthobaric density. The dianeutral material flow eg must

be expected to have magnitudes similar to the ortho-

baric diapycnal flow e4. Likewise, the neutralities of

neutral density and orthobaric density are similar.

b. Regional orthobaric density functions

Orthobaric density functions can be defined specific

to various regions, each predicated on a reference q–s

relation typical of its region. To construct global cor-

rected density surfaces, we must specify how to match

the various density functions across their interregional

boundaries (de Szoeke and Springer 2005). We will il-

lustrate this difficulty with some examples.

1) NORTHERN ORTHOBARIC DENSITY

An orthobaric density might be predicated on the q–s

relation (3.2e) at y 5 L, sref 5 R21 qref 1 s1. This choice

is important because it characterizes the water mass

properties of much of the northern North Atlantic, and

the northern portion of the tropical bridge region. If such

a choice is pursued along the preceding lines, one arrives

at the specification of what might be called the northern

orthobaric density function sN, given in the second row

of Table 1. [Any function of (2d 2 s1)/(1 1 mp/n) might

be chosen for sN. We have chosen a particular linear

function, for a reason that will become clear presently.]

The material derivative of s N gives an equation exactly

like (4.2), involving a buoyancy gain factor cN, defined

like (4.3), with 4 superscripts replaced by N superscripts,

FIG. 6. (top) A dual-hemisphere orthobaric isopycnal for the displaced reference ocean. Note

the discontinuity at y 5 0. Meridional motion will carry material through this discontinuity

(leakage). The dotted line is a surface of simple orthobaric density based on a single global-

average u–S relation. (bottom) Buoyancy gain factor c differences from 1 (Table 2, lines 2 and 3)

(solid) for the joint isopycnal in the top panel. The factor does not account for the material flow

through the discontinuity at y 5 0. The dotted line is the buoyancy gain factor for the simple,

global orthobaric isopycnal (Table 2, line 1).
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and with qrefjy5L(sN) given in Table 1. The buoyancy

gain factor cN and the integrating factor ~uN for this

northern orthobaric density are listed in Table 2 for the

displaced reference ocean; cN is shown in Fig. 6.

Buoyancy gain factors on a meridional Atlantic section

based on a northern (and a southern) u–S relation are

shown in de Szoeke and Springer’s (2005) Fig. 13.

2) SOUTHERN ORTHOBARIC DENSITY

All this might be repeated to develop another ortho-

baric density function sS based on the q–s relation in

(3.2e) at the southern end of the tropical bridge, y 5 2L;

that is, sref 5 R21qref 2 s1. This will yield the entry in

the third row of Table 1, a linear function of (2d 1 s1)/

(1 1 mp/n). Again, the material derivative of sS, anal-

ogous to (4.2), may be obtained. [See also de Szoeke

and Springer’s (2005) Fig. 13.]

3) DUAL-HEMISPHERE ORTHOBARIC DENSITY

The constant m factors specifying sN, sS in Table 1

have been chosen so that when the undisplaced refer-

ence bridge specific volume anomaly (SVA) profile

applies, d 5 2s9Bp, the two are numerically identical.

Thus, the overall dual-hemisphere quasi-orthobaric

density function defined by

sO(p, d, y) 5 sN(p, d), for y . 0, and

5 sS(p, d), for y , 0, (4.6)

will be continuous across y 5 0 if the said density profile

pertains there. However, if the density profile differs

from this standard, say, d ’2s9B(p 1 Dp), as in the

displaced ocean of section 2, the difference between the

two expressions of (4.6) on either side of y 5 0 is ap-

proximately (using entries from Table 1)

DsO 5 sO
��
y501

�sO
��
y50�

5 [sN(p, d)� s S(p, d)]
d’�s9

B
( p1Dp)

’�2s
1
mn�1Dp. (4.7)

(In the approximate equality, higher-order terms in m

are neglected.) This gives a discontinuous displacement

for a sO isopycnal across y 5 0 of

Dz 5
DsO

rgs9
B

’�
2s

1
mDp

rgns9
B

(deeper on the north side, Dz , 0 when displacement

from the standard profile is upward, or Dp . 0; see

Fig. 6). This discontinuity is a potential site of material

leakage. Given meridional velocity y, there is volume

flux through this discontinuity of 2s1m/(rgns9B)(vDp)y50

(m2 s21, positive when toward lighter water). Divided

by 2L, this gives an equivalent cross-isopycnal mass

flow, averaged over the bridge region, of

eO
II ’

2s
1
m

rgns9
B

(yDp)
y50

/2L ’
s

1
mD

0

2rgns9
B

L
(y)

y50
. (4.8)

This will be shown normalized below (see Fig. 8a). This

form is convenient for comparison to (4.4) (it is twice

the average of je4
I j), the flow across simple orthobaric

isopycnals (s4 5 const), and to (3.5), the material flow

across neutral density surfaces.

5. Extended orthobaric density

The bridge region need not be split into only two parts,

northern and southern, as for the dual-hemisphere den-

sity function. Suppose the bridge region is subdivided

into a number N of intervals jy� y
j
j, L/(N � 1), where

yj 5 L(2j�N � 1)/(N � 1) for j 5 1, . . . N. The treat-

ment outlined above for the dual-hemisphere density

function may be applied, with obvious modifications, to

each such subinterval, characterized by the u–S relation

given by (3.2e) at its center, y 5 yj. This leads to the

specification in each subinterval of an orthobaric den-

sity function s
(yj) listed in the fourth row of Table 1.

Each such density function has an associated buoyancy

gain factor cj (Table 2). The boundaries between the

subintervals correspond to y 5 0 in the dual-hemisphere

orthobaric density. The cj 21 factors determining the

quasi-materiality of a local orthobaric density, defined

by reference to the local u–S relation, are reduced by a

factor of 1/(N21). The discontinuities, analogous to

(4.7), then occurring at the edges of subintervals,

y
j11/2

5 L(2j�N)/(N � 1), are similarly reduced,

DsO 5 [s(y
j11)(p, d)� s

(y
j
)(p, d)]

d’�s9
B

( p1Dp)

’�2s
1
mn�1Dpj

y
j11/2

/(N � 1),

but are N21 times more numerous (Fig. 7). Given a

meridional flow y, there will be a mass transport through

each such gap, which, averaged over the spacing be-

tween gaps, 2L/(N21), may be thought of as an equiv-

alent diapycnal flow,

eO
II ’

s
1
m

Lrgns9
B

(yDp)j
yj11/2

, (5.1)

distributed over the interval jy�y
j11/2
j,L/(N�1). These

flows are shown in Fig. 8 for N 5 2 (dual-hemisphere

orthobaric density), 4, and 10; also shown are the (me-

ridionally unvarying) averages of |eO
I | ; O[1/(N 2 1)] in

each subinterval. In the limit N / ‘, eO
II tends to the

continuous line shown in Fig. 8.
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An alternative view is gained by starting from the

continuous limit of the arbitrarily centered extended

orthobaric density function (fourth row, Table 1):

sO(d, p, y) 5 s(y)(d, p)

5 m(y)�1 �d� (y/L)s
1

1 1 mp/n
1 (y/L)s

1

� �
. (5.2)

The reference temperature field (3.2a) may be expressed

in terms of this entity as

q
ref

(sO; y) 5 n�1[�m(y)sO 1 (y/L)s
1
].

If the ocean were in the quiescent reference state given

by (3.2), then, substituting in (5.2),

sO 5
s9

B
p

1 1 mp/n
.

Otherwise, in the state displaced by Dp from the qui-

escent,

sO � s9
B

p(1 1 mp/n)�1
’ s9

B
Dp. (5.3)

This approximation will be used below.

a. Material derivative

The material rate of change of (5.2) may be written

�rgeO [ _sO›p/›sO 5 (cO � 1)(›
t
1 u � $)

sO p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

� v
s

1
m

nL

›p

›sO
~uOcO sO

s9
B

(1 1 mp/n)� p

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

1 ›p/›sO ~uOcO _q( p)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IV

, (5.4)

where

cO 5 1 1 ~uOm[q� q
ref

(sO; y)]›p/›sO
� 	�1

,

~uO 5 (1 1 mp/n)�1m(y)�1.

Equation (5.4) gives the rate at which matter crosses a

sO isopycnal. The terms labeled I and IV, a residual

compressibility effect and a diabatic contribution, re-

spectively, are analogous to similar terms in (4.2). For

the displaced reference ocean, it can be easily shown

that q 2 qref(sO; y) 5 0, so that cO 5 1, and the first

FIG. 7. (top) Examples of multilinked orthobaric isopycnals based on u–S relations centered

on multiple intervals for link numbers N 5 4, 10. (The latter has been offset deeper by

100 dbar.) Note the discontinuities at the joints. Meridional motion will carry material through

these discontinuities. The dotted line is the extended orthobaric isopycnal (N / ‘). (bottom)

Buoyancy gain factor differences from 1 or 1.1 for the multilinked isopycnals in the top panel.

These factors do not account for the material flow through the discontinuities. The buoyancy

gain factor for the extended orthobaric isopycnal (dotted) is 1.
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term in (5.4) vanishes. The contribution of term II may

be written

eO
II ’

m

rgs9
B

s
1

nL
yDp ’

ms
1

rgs9
B

nL
yD

0
( y/L 1 1)/2. (5.5)

It is proportional to the meridional motion y, the merid-

ional temperature gradient on sO surfaces ›qref (sO; y)/

›y ’ s1/nL, the thermobaric coefficient m, the reciprocal

buoyancy frequency squared ›p/›sO ~uOcO ’ rg2/N2,

and the displacement Dp from the quiescent state. It

coincides with the continuous limit of (5.1), as shown in

Fig. 8. The neutral density diapycnal flow [Eq. (3.5); see

Fig. 8c] differs only in the factor l~ .

Reviewing the progression from simple global ortho-

baric density to dual-hemisphere orthobaric density, to

N-fold discrete extended orthobaric density (EOB), to

continuous EOB, one sees that type I diapycnal flow,

the sole reversible contributor to diapycnal flow across

simple orthobaric density surfaces, is augmented by a

type II contribution when dual-hemisphere EOB is con-

sidered, of about the same magnitude. As the number

N of subintervals is increased, the type II contributions

supplant the type I contributions, which dwindle in-

versely with N. In the continuous limit, only type II

contributions to the EOB diapycnal flow remain, re-

sembling strongly, other than the factor l~ , the diapycnal

flow for neutral density. McDougall and Jackett (2005a),

while confirming the smallness of the type I contribu-

tions, completely neglected the type II contributions to

neutral density materiality. Their conclusion that neutral

density is superior to orthobaric density in its material

properties rests on this fallacy.

b. Neutrality

The difference between the dips of extended orthobaric

density surfaces and neutral planes can be calculated.

Take the quasi-horizontal gradient of (5.2) on constant

sO surfaces. This gives, after some manipulation,

$
sO z� h 5 (cO � 1)($

p
z� $

sO z)

1 j
g

N2

ms
1

nLs9
B

[�sO(1 1 mp/n) 1 s9
B

p].

(5.6)

For the displaced reference ocean, again cO 5 1, and

(5.3) pertains, so that the last factor in the second term is

2s9BDp; also N2/g ’ rgs9B. Hence,

FIG. 8. Type II diapycnal flow eO
II [Eq. (5.1)] for discrete extended orthobaric density,

equivalent to the meridional mass flow through the gaps shown in Fig. 7, and located at the

heavy vertical lines, for several choices of numbers N of links: (top) N 5 2 (dual-hemispheric

orthobaric density), (middle) N 5 4, and (bottom) N 5 10. The continuous limit (N / ‘) of eO
II

[Eq. (5.5)] is shown in all panels. Type II neutral density diapycnal flow eneutral
II [Eq. (2.9)] is also

shown in the bottom panel. Type I diapycnal flow eO
I for extended orthobaric density is shown

for N 5 4, 10. All normalized by ms1/(ns9B)yD0/(Lrg).
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$
sO z� h ’�j

ms
1
Dp

rgs9
B

nL
’�j

ms
1

rgs9
B

nL

D
0

2L

y

L
1 1


 �
.

(5.7)

This is indistinguishable from Eq. (3.6), the neutrality

of neutral density, shown in Fig. 5b. One may compare

it to (4.5), the neutrality of simple global orthobaric

density surfaces, also shown in Fig. 5b. While the me-

ridional dependence is shifted and reversed, the amount

of variation is identical.

6. Summary and discussion

Density is an important variable, not merely as a

tracer, but especially because of its link to motion ac-

celeration through the buoyant force. As in situ density’s

utility as a tracer is limited by its susceptibility to adia-

batic compression, efforts are made to correct for this

effect. This would be uncontroversial if the temperature–

salinity relation of the ocean were unvarying with po-

sition. As this is not so, however, only partial solutions

to the difficulty are possible. This paper has considered

two attempts at such solutions: neutral density and

orthobaric density. The results are judged by a num-

ber of criteria: materiality, the degree to which reversible

contributions (apart from irreversible, diabatic con-

tributions) to the substantial rate of change of the cor-

rected density variable are minimal; neutrality, the

degree to which isopleth surfaces of the variable are

everywhere normal to the dianeutral vector d [Eq.

(1.4)]; and the degree to which buoyancy forces can be

regarded as acting across isopleth surfaces, embodied in

the paradigm of Eq. (1.3) for isentropes when the

temperature–salinity relation is unvarying. These crite-

ria are not independent, as the resemblances of

Eq. (2.10) (neutrality) to (2.9) (materiality) show.

Our approach was analytic. We constructed an ide-

alization of the temperature–salinity structure of the

upper kilometer or more of the Atlantic Ocean, in

which the ocean transitions continuously with latitude

from a southern u–S relation to a northern one. A

simplified equation of state was assumed, though with a

representative, nonzero, thermobaric parameter, Vup/Vu.

For the reference ocean required by Jackett and

McDougall’s (1997) neutral density method, for which

the Levitus climatology is usually adopted, we supposed

a quiescent rest state, though with the said meridional

u–S variations. On the other hand, for the reference u–S

relation required for simple orthobaric density, we took

an intermediate relation between the northern and

southern extremes. For the present ocean, as a test, we

assumed a vertically displaced form (with resulting

motion) of the quiescent state, and computed distribu-

tions of materiality and neutrality for each candidate

variable. While this test does not exhaust the range of

real-world possibilities, it throws light on the relative

performances of the variables.

We compared, in Fig. 5, the material flow (material-

ity) across isopleths of neutral density and simple or-

thobaric density, and the mismatch (neutrality) of the

dips of said surfaces from the neutral dip. In sections 2

and 4, we identified several contributions to each of

these indices: type I, due to divergence of the local u–S

relation from the reference u–S relation, and type II,

from the meridional gradient of the reference u–S re-

lation. Because the meridional variation of the u–S

relation is built into the reference ocean, there is by

construction no type I contribution for neutral density,

though there must be a type II contribution. For simple

orthobaric density, on the other hand, the reference u–S

relation is meridionally unvarying so there is no type II

contribution, although, since the local u–S relation dif-

fers from the reference relation, there must be a type I

contribution. Although their spatial distributions are

different, the respective types of contribution to the

materiality and neutrality of the two variables are sim-

ilar and comparable in magnitude. McDougall and

Jackett (2005a), who reached a different conclusion,

which favored neutral density, did so by overlooking the

type II contributions.

A dual-hemisphere orthobaric density function was

devised (section 4). It takes advantage of the close

hemispheric validity of two different u–S relations:

southern and northern. This permits the local reduction

of type I materiality and neutrality contributions. But a

correspondence between the two distinct orthobaric

density functions must be established in order to con-

nect isopleth surfaces between hemispheres. This is

achieved by supposing meridional continuity when the

ocean is in the reference state. When the ocean is not in

the reference state, discontinuities occur in the surfaces

connected across the interhemispheric boundary (the

equator). These are important because, even apart

from the materiality of the surfaces in the respective

hemispheres, they are sites where matter may pass

through the gaps in the surfaces. This form of ortho-

baric density is notable because it is a model of the two-

hemisphere form of patched potential density (Reid

1994) obtained in the limit when the vertical intervals

(or patches, typically chosen to be 1000 dbar thick in

practice) are infinitesimally small. The patched poten-

tial density has been seminal in the development of

both neutral density (Jackett and McDougall 1997) and

orthobaric density (de Szoeke et al. 2000; de Szoeke

and Springer 2005).
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The dual-hemisphere idea can be extended to form

multiregional orthobaric density functions, each chosen

with reference to a local u–S relation, and joined be-

tween neighboring regions by the requirement of conti-

nuity when the ocean is in the reference state (section 5).

Thus, type I materiality can be reduced virtually to

nothing, while the discontinuities among regions, and

the material flow across them, even though individually

reduced, become more frequent. In the limit of a me-

ridionally continuous u–S relation, the latter material

flow is seen to be an analog of the type II cross-material

flow of neutral density. This analogy is quantitative.

Apart from a 50% reduction factor for neutral density

{which can be traced to the choice of a half-and-half

reference pressure [Eq. (2.8)]}, the meridional structure

of the type II materiality is identical.

Though the materiality of a variable is of obvious

utility in interpreting its spatial variation, the funda-

mental significance of neutrality is not so clear. It is

often said that the neutral plane at a specific point (the

plane perpendicular to d at that point) contains the

bundle of trajectories on which a water parcel can begin

to move without change in heat or energy, or that

r21(2$p 1 c2$r) 5 2c2d is the buoyant restoring force

of adiabatic test particle excursions. We cannot sub-

stantiate such statements. Rather, when, for example, a

spatially unvarying u–S relation applies, so that neutral

surfaces exist (and are coincident with isentropes), the

combination of the pressure gradient force and buoy-

ancy force with respect to isentropes may be replaced

by the dynamical relation (1.3), in which the effective

buoyant force is P(u)k9(u) 5 P(u)$u, acting parallel to d.

This is indeed a fundamental property of neutral sur-

faces when they exist. From it, familiar inferences may

be drawn about potential vorticity conservation and

thermal wind balances. The extension or modification of

this property to the case of the spatially varying u–S

relation (so that no neutral surfaces exist) is the perti-

nent dynamical question. We obtained in the appendix

the generalization [Eq. (A.12)], with respect to neutral

density surfaces, of the substitution (1.3), and showed

that there are additional terms—virtual, nonconser-

vative forces in effect—associated with the spatial

variation of the u–S relations implicit in the reference

datasets used in the construction of neutral density.

These additional virtual forces are experienced by water

parcels constrained to follow neutral density surfaces. A

systematic study of the importance of these forces is yet

lacking.

The simple orthobaric density s4 is specifically con-

structed to exhibit under any circumstances the dynam-

ical substitution property (1.3) that isentropes possess

when the u–S relation is unvarying. Nonsimple variants

of orthobaric density will, like neutral density, exhibit

extra virtual forces. For example, on dual-hemisphere

orthobaric density surfaces (based on different northern

and southern u–S relations in each hemisphere of the

globe), which may exhibit discontinuities at the equator,

an impetus proportional to the discontinuity must be

administered to a hypothetical water parcel crossing the

equator to move it to the designated continuation of the

surface. This is analogous to the continuous virtual

forces on neutral density surfaces. Such forces must be

applied to water parcels to keep them moving on con-

tinuous, extended orthobaric density surfaces.

An important question remains about the nature of

orthobaric density and neutral density. It concerns the

sizes of the contributions to materiality that have been

the main subject of this paper—the reversible terms,

principally types I and II—relative to the irreversible,

adiabatic terms (denoted as type IV in sections 2 and 4

and in the appendix). The angle between simple

orthobaric density surfaces and neutral planes has been

estimated on long meridional hydrographic sections

through the Atlantic and Pacific Oceans [see de Szoeke

et al.’s (2000) Fig. 12]. This angle is to very good ap-

proximation the neutrality magnitude j$
s4 z� hj calcu-

lated in section 4. De Szoeke et al. (2000) and McDougall

and Jackett (2005a) reached different conclusions about

the significance of the errors incurred in assuming that

the diffusivity tensor’s principal axes are aligned with

orthobaric density surfaces (or neutral density surfaces)

rather than along neutral planes. However, a recent

critical examination of these various alignment hypoth-

eses shows that they are superfluous and makes the di-

vergence of views irrelevant and moot (de Szoeke 2009,

unpublished manuscript).

APPENDIX

Neutral Density

a. Materiality

The general definition of neutral density, Eq. (2.8),

gives the target pressure pr in terms of a water sample’s

values of potential temperature u and salinity S at am-

bient pressure p and horizontal location x, using ar-

chived reference profiles uref and Sref at that location.

Equation (2.7) with pr substituted then gives g. It will be

convenient, though not essential, to use the following

simplified equation of state:

r�1 5 V( p, u, S) 5 V( p) 1 V
0
d and d 5 (1 1 mp)q� s,

(A.1a)
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where

q 5 a
1
(u� u

0
) 1

1

2
a

2
(u� u

0
)2 and s 5 b(S� S

0
).

(A.1b)

Here, r is the density, V is the specific volume, d is the

SVA normalized by V0, u is the potential temperature, S

is the salinity, V(p) 5V(p,u
0
,S

0
), and m 5 (Vpu/Vu)p50 ’

2 3 1024 dbar21 is the thermobaric coefficient

(McDougall 1987b).A1 In (A.1b), we used the parameters

u0 5 58C, S0 5 34.63 psu,A2 a1 5 1.13 3 1024 8C21, a2 5

1.35 3 1025 8C22, and b 5 0.799 3 1023 psu21, for the

first and second thermal expansion coefficients, and

the haline contraction coefficient, respectively. The

potential density rr with respect to a fixed reference

pressure r is given by

r�1
r 5 V(r, u, S) 5 V(r) 1 V

0
[(1 1 mr)q� s]. (A1c)

When the material derivatives of both sides of (2.8)

and (2.7) are taken, and _pr [Dpr/Dt 5 u �$
g

pr 1 _g›
g

pr

is eliminated, one obtains the following relation among

the material derivative _g of neutral density and _q, _s, _p,

and _x [ u:

�rgeg [ _g
›p

›g
5 (ĉg � 1)[l~ (›

t
1 u � $)

g
p 1 lu � $

g
pr]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

1 l~m(p� pr)D�1u � $
g
q

ref|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

1 D�1 N2
ref

g
�

$
g

pr

r
ref

g
� h

ref

� �
� u

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

1 D�1 _q( p)|fflfflfflffl{zfflfflfflffl}
IV

. (A.2)

The first equality of (A.2) defines the material velocity

eg across surfaces of constant neutral density g; the

Roman numerals identify terms referred to in the main

text; and ĉg is the buoyancy gain factor for neutral

density, defined by

ĉg � 1 5�m(q� q
ref

)D�1, (A.3)

D [
N2

ref

r
ref

g2
� l~m(p� pr)

›q
ref

›pr

� �
›pr

›g

�

1 m(q� q
ref

) l
›pr

›g
1 l~

›p

›g

� �

›p

›g

� ��1

5
N2

rg2
1 lm(p� pr)

›q

›p
. (A.4)

The first equality in (A.4) defines D, while the second

follows from taking the partial g derivative, at constant

x and t, of both sides of Eq. (2.8). Also,

_q( p) [ �(1 1 mp) _q 1 _s

5 (11mp)[�$ � (K$q) 1 a
2
$u � K � $u] 1 $ � (K$s).

(A.5)

Here, K is the turbulent diffusivity tensor, _q( p) repre-

sents the total effect on the negative buoyancy of irre-

versible exchanges of heat and salt [the superscript ( p)

emphasizes that the normalized thermal expansion

coefficient V�1
0 ›V/›q 5 1 1 mp, occurring in (A5), is

calculated at pressure p], and a2 5 V21
0 ›2V/›u2 is the

second expansion coefficient, or cabbeling coefficient,

defined after Eq. (A.1b). In obtaining (A.2) use was

made of identities and definitions such as

_p 5 (›
t
1 u � $)

g
p 1 _g›

g
p,

k � d
ref

r
ref

g
5

N2
ref

r
ref

g2
5�(1 1 mpr)

›q
ref

›pr
1

›s
ref

›pr
,

(d
ref

3 k) 3 k 5�(1 1 mpr)$
pr qref

1 $
pr sref

5 (k � d
ref

)h
ref

.

8>>>>>><
>>>>>>:

(A.6)

Here, qref, sref, Nref, dref are functions of pr and position

x {with rref 5 [V(pr, qref, sref)]21} in the reference ocean,

to be evaluated at pr 5 pref(g, x), while q, s, and N are

functions of p (or g), x, and t in the present ocean. The

equalities in the second and third lines of (A.6) define

the vertical and horizontal components of dref, the dia-

neutral vector in the reference dataset. The last equality

defines the neutral dip href, a vector whose magnitude

and direction in the horizontal plane give the gradient

and orientation, respectively, of neutral planes.

The derivation of (A.2) has as yet used no partic-

ular property of the reference neutral density surfaces.

However, the vanishing, if possible, of the factor in pa-

rentheses of term III in (A.2) (which concerns only fields

from the reference dataset) could be used to provide pr 5

pref(g, x) [or its inverse g 5 gref(pr, x)]. The exact van-

ishing of term III is possible if and only if dref � $ 3 dref 5

0. If this condition is not fulfilled, one may settle for

pref(g, x), which makes term III ’ 0 in some appropriate

global minimal sense (Eden and Willebrand 1999).

A1 More generally, what follows may be readily extended to

cover any equation of state of the form d 5 P( p)q(u, S) 2 s(u, S),

where u and S are the true potential temperature and salinity.
A2 Here, psu refers to United Nations Educational, Scientific

and Cultural Organization (UNESCO) Practical Salinity Scale of

1978 (PSS78) salinity units (UNESCO 1981).
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Equation (A.2) is similar to an equation derived by

McDougall and Jackett (2005a,b), except that in the first

expression in (A.4) for the factor D these authors in

effect assume that Nref ’ N and ›pr/›g ’ ›p/›g. We

retain the generality of (A.4) because the buoyancy

frequency and spacing of neutral density surfaces may

differ substantially from the reference ocean to the in-

stantaneous present ocean. We have also retained

generality in the choice of weights l and l~ in the ref-

erence pressure p 5 l~p 1 lpr of the potential densities

in Eq. (2.8); this includes McDougall and Jackett’s

(2005a,b) standard setting of l 5 l~ 5 0.5. McDougall and

Jackett’s cg factor is related to (A.3) by

cg � 1 ’ l(ĉg � 1). (A.7)

One may also see from (A.3) and (A.4) that

ĉg � 1

q� q
ref

5�m
N2

rg2
1 lm(p� pr)

›q

›p

� ��1

, (A.8)

which has a limiting value even when q / qref.

One may compare (A.2) to (5.4) for the flow across

extended orthobaric isopycnals. Term I of Eq. (A.2) is

the sum of two terms weighted, respectively, by l~ and l,

and both multiplied by ĉg 2 1. The first term is the

apparent vertical motion (›t 1 u � $)gp of neutral

density surfaces p 5 p(g, x, t) (as though they were

material) in the present instantaneous dataset. The

second is the apparent vertical motion u � $gpr of neu-

tral density surfaces pr 5 pref(g, x) frozen in the refer-

ence dataset, as though the present instantaneous current

u 5 u(g, x, t) was projected into the reference dataset on

the corresponding neutral density surface (Fig. 1). This

weighted sum of apparent vertical motions seems rather

peculiar. Equation (5.4) contains a counterpart only of

the first of these two contributions. [If the weights

l~ 5 1, l 5 0 were chosen, the correspondence of terms

between (A.2) and (5.4) would be very close.]

Most important, the second term of (5.4) for the

material derivative of the extended orthobaric density

corresponds to the p 2 pr term (II) of (A.2). For

l 5 l~ 5 0.5, using Eq. (A.3) and pz 5 2rg, the first few

terms of Eq. (A.2) become

McDougall and Jackett (2005a) assert that, ‘‘Since

(p 2 pr)u � $gqref is typically of the same order as

(q 2 qref)u � $gpr, all contributions to [Eq. (A.2)9] typi-

cally have the same magnitude.’’ Then, because q 2 qref }

cg 2 1 ’ 0, it would follow that all shown terms, types I

and II, are negligible. However, in the main text we

contest the quoted statement.

b. Neutrality

By taking the gradient along neutral density surfaces

$g of both sides of Eq. (2.8), and making use of the

definitions and identities (A.4) and (A.6), one arrives at

N2

g
($

g
z� h) 5 �m(q� q

ref
)$

g
(l~p 1 lpr)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

1 m(p� pr)$
g
(l~q

ref
1 lq)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

1
N2

ref

g
�

$
g
pr

r
ref

g
� h

ref

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

. (A.9)

(The Roman numerals refer to terms discussed in the

main text.) The two quantities in the parentheses on the

left side and in term III on the right of (A.9) are the

neutralities in the present and reference datasets, that is,

the respective differences between the neutral density

surface dip and the neutral plane dip. Even if the

reference neutrality on the right of (A.9) were zero, the

other two terms, particularly the second, proportional to

m(p2pr), may significantly bias the neutrality in the

present dataset.

c. Generalized Montgomery function

Substituting the equation of state (A.1a) into the

neutral property (2.8), one obtains

(1 1 mp)q
ref

(pr, x)� s
ref

(pr, x) 5 (1 1 mp)q� s

or

d 5 d
ref

(pr, x) 1 m(p� pr)[l~q
ref

(pr, x) 1 lq], (A.10a)

where

d
ref

(pr, x) 5 (1 1 mpr)q
ref

(pr, x)� s
ref

(pr, x), and

pr 5 p
ref

(g, x). (A.10b)

One may regard Eq. (A.10) as a metaequation of state,

furnishing density as a function of metastate variables g

eg 5 �0.5m (q� q
ref

)(›
t gj p 1 u � $

g
p 1 u � $

g
pr)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

� (p� pr)u � $
g
q

ref|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

8><
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9>=
>;(Dp

z
)�1

1 � � � . (A.2)9
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and x, in addition to p and q. Defining a generalized

heat content

H(g)(p, g, q, x) 5

ðp

pr

V dp

5

ðp

pr

V( p)dp 1 V
0
d

ref
(pr, x)(p� pr)

1
1

2
V

0
m(p� pr)2[l~q

ref
(pr, x) 1 lq]

(A.11)

and a generalized Montgomery function M(g) 5 H(g) 1 gz,

one can show that

�r�1$p� gk 5 �$
g
M(g) 1 Q$

g
q 1 X

1 [�›
g
M(g) 1 Q$

g
q 1 P(g)]k9(g),

(A.12)

where k9(g) 5 (k� $
g
z)/›

g
z 5 $g, and

P(g) 5
›H(g)

›g

�����
p,q,x

5
›pr

›g

�����
x

›H(g)

›pr

�����
p,q,x

, (A.13a)

Q 5
›H(g)

›q

�����
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5
1

2
lV

0
m(p� pr)2, (A.13b)
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�����
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(A.13c)
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�����
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5 �V(pr)� V
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(pr, x)

� V
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m(p� pr)[l~q
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1 V
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ref
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›pr
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ref
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, and

(A.13d)

$
p, pr , q

H(g) 5 V
0
(p� pr)$

pr dref
(pr, x)

1
1

2
l~V

0
m(p� pr)2$

pr qref
(pr, x).

(A.13e)

Here P(g), Q, and X are generalized metathermody-

namic forces given by the respective gradients of H(g).

Equation (A.12) is the generalization of the dynamical

substitution property (1.3). To quantitatively consider

distributions of hydrographic variables on neutral den-

sity surfaces and the motion fields that might have

brought them about, one must take account of the extra

forces that occur in the momentum balances with re-

spect to such surfaces. For this the generalized substi-

tution (A.12) is relevant and indispensable.
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