
AN ABSTRACT OF THE THESIS OF

ROBERT ROSS FOSSUM for the DOCTOR OF PHILOSOPHY
(Name) (Degree)

in STATISTICS
(Major)

presented on March 20, 1969
(Date)

Title: MODELS FOR STATISTICAL DYNAMIC PREDICTION OF THE

500-MILLIBAR SURFACE

Abstract approved:
Donald Guthrie, Jr.

The purpose of this thesis is to construct several stochastic

process models for combined statistical dynamic prediction of the

500-millibar pressure surface for the northern hemisphere. To

achieve this, a random forcing function is added to the spectral form

of the nondivergent vorticity equation. Three models, one linear and

two nonlinear are developed based upon the theory of stochastic ordin-

ary differential equations. Mean value and covariance solutions to

these equations are then found. Each model is converted to a differ-

ence equation and statistical estimation techniques suggested.

The techniques are sufficiently general to be applied to simple

multi-level models. Suggestions for extended range models and other

areas of generalization are given.



Models for Statistical Dynamic Prediction
of the 500-Millibar Surface

by

Robert Ross Fossum

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

June 1969



APPROVED:

Associate Professor of Mathematics and Statistics

in charge of major

Chairman of Department of Statistics

Dean of Graduate School

Date thesis is presented March 20, 1969

Typed by Clover Redfern for Robert Ross Fossum



ACKNOWLEDGMENTS

The author wishes to thank Dr. Donald Guthrie for

constant help. In addition, his thanks go to Dr. Richard

Jones and Professor Arnold True for early encourage-

ment to undertake the study and to Dr. Larry Hunter and

Dr. Julius Brandstatter for constant encouragement dur-

ing the course of the study.



TABLE OF CONTENTS

Chapter

I. INTRODUCTION

Page

1

II. BACKGROUND MATERIAL IN OBJECTIVE FORECAST
METHODS 5

Random Vectors, Vector Processes and Fields 5

Statistical Techniques in Forecasting 19
Dynamics of Random Fields 22

HUERISTICS AND DIAGNOSTICS 39
A Simplified Dynamic Model 39
A Simplified Statistical Model 43
Random Forcing Functions 50
Summary 58

IV. DYNAMIC STATISTICAL MODELS 59
Spectral Form of the Vorticity Equation 60
Existence 67
Random Forcing Function Models 68

Model 1, Linearization Based upon
Meteorological Principles 69

Model 2, Use of Taylor Series Expansions 7 6

Model 3, Solution using the Karhunen-Loeve
Expansion 80

Summary 84

V. STATISTICAL AND NUMERICAL TECHNIQUES 85
Introduction 85
Random Sequence Models 85

Model 1 85
Model 2 91

Model 3 94
Fore casting 95

Preprocessing 95
Prediction 96

VI. CONCLUSIONS AND FURTHER RESEARCH 98
Summary and Conclusions 98
Further Research 98

Theoretical Research 99
Numerical Research 1 03

BIBLIOGRAPHY 104



LIST OF FIGURES

Figure

1. Typical 500 mb height field.

2. Fields and dynamics of fields with equation numbers
referring to text.

3. Phase angle for wave number 3 for 500 mb height
contour on 50° N latitude.

4. Amplitude coefficient for wave number 3 for 500 mb
height contour on 50°N latitude.

5. Phase angle 8 for wave number 5 for 500 mb height
contour on 50°N latitude.

6. Amplitude coefficient for wave number 5 for 500 mb
height contour of 50°N latitude.

7. Values of phase angle for tendency fields for 500 mb
surface; three harmonic components.

Page

18

37

46

47

48

49

101



MODELS FOR STATISTICAL DYNAMIC PREDICTION
OF THE 500-MILLIBAR SURFACE

I. INTRODUCTION

Prediction of meteorological fields is accomplished by tech-

niques belonging to two broad areas--synoptic forecasting and objec-

tive forecasting. Synoptic forecasting is an intricate process of

analysis and predictions carried out by the forecaster himself with a

great deal of subjective decision making. Objective forecasting is

carried out by means of digital computers such that the major deci-

sions are made by the computer on the basis of the objective criteria

used. There are two basic methods of objective forecasting--statisti-

cal and dynamic or numerical. In this chapter, a background in the

major objective forecast techniques is presented.

The advent of the digital computer in the late 1940's motivated

a renewed interest in research on objective forecasting. During the

1950's extensive work was undertaken to achieve both dynamic (nu-

merical) forecasts and statistical forecasts. Occasionally, attempts

at combined statistical and dynamic forecasts were made, but, by and

large, these were not highly successful. Nor were the purely statis-

tical forecast methods very successful. On the other hand, dynamic

forecasting has improved continually until today the routine forecasts

are almost all based upon dynamic prognostications using a



complicated six-level model (Shuman and Hovermale, 1968).

A basic problem in medium-range forecasting of the weather is

the prediction of the pressure field, both at the surface and aloft.

This is true because the pressure field determines the circulation,

and the circulation, in turn, determines the movement of the air

masses and their boundaries, the fronts. The movement of air

masses under the influence of the pressure gradients is instrumental

in determining the changes in temperature and humidity; the relative

vertical motion of the different masses to some extent determines the

precipitation. In addition, the space variations of the pressure field

give rise to accelerations which cause divergence and consequent

vertical motion. If the air mass is moist and the vertical motion is

favorable, considerable precipitation may result. Thus, a fundamen-

tal problem is the prediction of the pressure field.

The objective of this thesis is to introduce new dynamic statis-

tical models for pressure surface prediction based on random pro-

cesses and random differential equations. In this manner, it is hoped

that a start toward effective combined dynamic statistical forecasting

can be made.

Specifically, three new randdm differential equation models for

forecasting the 500mb surface are derived. These models depart

from prior models for prediction in several ways:

(1) The models differ from the usual deterministic models by
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treating the pressure surfaces as random fields.

(2) The models differ from prior statistical forecast methods

by the use of the hydrodynamic equations to remove much

of the non linear prediction problems, reserving the appli-

cation of linear statistical methods for the forecasting of a

"residual field. It

(3) The models differ from prior dynamic-statistical forecast

methods and models by introducing the randomness through

the use of a random forcing function in the hydrodynamic

equations. Prior methods introduce randomness only

through the initial conditions and assume, like the deter-

ministic methods, that the model equations completely de-

scribe the atmospheric processes.

(4) The new models are more general than prior models. In

the absence of the forcing functions they reduce to the de-

terministic or random initial conditions models.

(5) In addition to determining the evolution of the height field

(mean height field) a variance field is predicted which gives

the forecaster some measure of uncertainties in the pre-

dicted height.

(6) The form of the equations modeling the evolution of the

mean field and variance fields are quite general. Because

of this, application of the techniques to more general
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meteorological problems, e. g. , prediction with baroclinic

models, should be possible.

In the next chapter, background material in stochastic pro-

cesses, hydrodynamics and objective forecasting is given. The fol-

lowing chapter contains a simple linear dynamic model which is used

to diagnose some of the problems encountered in purely dynamic or

purely statistical forecasting. This simple model is further used to

suggest the proper type combined dynamic-statistical barotropic

model. Following these hueristics and diagnostics, three barotropic

combined models are presented based upon the spectral form of the

vorticity equation. Next, the discrete form of the models is pre-

sented and statistical techniques discussed. The final chapter pre-

sents conclusions and research plans for future work.
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IL BACKGROUND MATERIAL IN OBJECTIVE
FORECAST METHODS

The objective forecast methods in use today are based upon lin-

ear statistical models and on the hydrodynamic equations for atmos-

pheric motion. This study combines the two basic methods through

the use of stochastic differential equations, based on the hydrody-

namics, with a random forcing function estimated by linear statisti-

cal methods. This chapter presents the background material neces-

sary to understand the prior forecast methods and the tools needed

for constructing the combined statistical-dynamic models.

Random Vectors, Vector Processes and Fields

The important concepts of random processes which are of inter-

est in this study may be found in the book of Yaglom (1962), or in the

more advanced books of Love (1963), Cramer and Leadbetter (1967),

and Rosanov (1963). The reader is assumed to be familiar with the

definitions and properties of sample function, spectral representation

theorems, concepts of almost sure continuity and differentiability,

mean square continuity and differentiability, etc. The main emphasis

in this section is a review of a particular orthogonal expansion

which will be useful in development of a method of solution of a sys-

tem of ordinary differential equations and a review of expansions used

in statistical objective fore.cast techniques.
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Statisticians have long made use of the concept of principal com-

ponents for multivariate random variables whose variances exist. In

particular, if X is a random vector with mean 1.1. and covariance

matrix E, then there exists an orthogonal matrix A, such that

= ADA'

where D is a diagonal matrix having the eigenvalues X . of E

on its main diagonal in descending order; i. e. ,

The new vector Y defined by

Y = A'(X - )

has components taking values on the "principal axes" of the ellipsoids

of concentration of the original distribution. Further,

Var (Y1) =;N.

Coy (Y.Y.) = Ea. i = j
1 1

= 0 i # j

where ai is the eigen ve c to r corresponding to X. with length 1.

The eigen vectors a. make up the columns of A. Principle com-

ponents analysis is used extensively in statistical forecasting.
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The random processes considered in this study will be assumed

to have finite second moments, i. e. , second order random functions.

A very brief review of some topics of interest in the theory of second

order random functions follows. Of particular interest will be topics

related to the existence of solutions to random differential equations

and certain types of orthogonal expansions useful in determining solu-

tions to these equations.

Let (0, 6, 4) be a probability space and consider the space

L2 L2(0, 63, 4) of all complex valued random variables on 1-2

with finite second moments. Random variables which differ on a set

of µ measure zero will be considered identical. For an index set

T (possibly multidimensional), a family of random variables

{Z(t) = Z(t,w), t E T} is called a stochastic process (random process

or random function). For such processes, it is convenient to consid-

er the space of values Z (t, co) as a Hilbert space, H = L2(S-2,63, p.)

with inner product defined as the second mixed central moment

or covariance. The norm in H is defined by the inner produc .

Mean square convergence is then strong convergence in H.

A random process will have strong continuity, strong differentiability,

integrability, etc., according to the properties of the covariance

functions. A concise summary of such properties and relations is

given in Syski (1965).

Turning now to second order random vector processes, let
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Z(t) = (Z 1(t), Z2(t), ) be a vector valued random variable, for each

t in an interval T = [a, b] tandwhere Z.( ) is complex valued for

each i = 1, 2, 3... . The expectation of Z(t) is the vector of ex-

pectation of its components. The covariance matrix of the vector

process is defined as the matrix of elements

R..(s,t) = E Z.1 (s)Z.j (t) ),

which are the cross covariances of lag (s-t) of the individual com-

ponent processes.

Most of the work in this study is concerned with practical appli-

cations of the theory of stochastic processes to hydrodynamics. Con-

sequently, the analytic properties of sample functions Z(t,(.0) are of

great importance. A random function is said to be sample-continuous,

sample-measurable, or sample integrable at a point wES2 if the

corresponding property is true for sample functions. Sample prop-

erties hold almost everywhere if they hold apart from a set of prob-

ability zero. In general, the analytic properties of sample functions

are stronger than the corresponding properties relative to the space

H. For example, almost everywhere sample continuity of Z (t, co)

implies almost everywhere continuity of the stochastic process Z(t)

but the converse is not true.

Suppose that the second-order random vector process U(t) is

defined on the closed interval [a, b] and possess continuous
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covariance functions R..(t, s). It can be shown that the random pro-
1j

cess U(t) is mean-square continuous, hence measurable, and is

also sample integrable and sample square-integrable. Furthermore,

the continuity of RU implies that the indefinite mean-square in-

tegral

t
= U(s )ds a < t < b

a

exists, and is a random variable (up to an equivalence). It can fur-

ther be shown that its mean-square derivative is

ddt (t )
U(t).

The following important result on the relations between random

processes and their sample functions holds in the present case. If

the random function is mean-square continuous, then its stochastic

integral Z (t), and its sample integral defined as a random variable

Z (t, co ) with values (for almost all individual sample functions)

t
1(t, co) = U(s, W )ds

a

coincide.

a < t < b

For second order vector random process there are various
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orthogonal decompositions, that is, decompositions into sums of

orthogonal random variables or decomposition as a stochastic integral

with respect to a process with orthogonal increments. For univariate

or one-dimensional processes, Loeve (1963, Section 34,5) givesthree of

particular interest: the proper orthogonal decomposition theorem,

and the harmonic orthogonal decomposition theorem, and the harmonic

orthogonal decomposition theorem for stationary processes. As a

corollary, the harmonic orthogonal decomposition theorem for sta-

tionary vector processes is also given. Rozanov (1963) gives the

same results which are due in the univariate case to Cramer (1942).

The extension of the proper orthogonal decomposition theorem

will be useful in this study as an aid in finding the mean and covari-

ance solutions of certain ordinary stochastic differential equations.

Kelly and Root (1960) have shown that if 1(0 is defined over a
-11.

finite interval T = [a, b], E(Z)(t)) 0 and

(1) R..(s, t) exiSts for all j and are continuous on

[a, b] X [a, b] and is uniformly bounded

co co
b b

(2) / t)I
2 dsdt < oo

iJ

i=1 j=1 a a

(3) There exists constants such that

b
S I 11:1(S, 01 2 dt < c.

2 for all i = 1, 2, ... , a < s < b,
1J J
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then

where

and

and such that 2
c. = c,

3

oo

Zh(t) = V
v

(t) (m. s. )
v

v=1

CO

SI Z. (t)coiv (t)dt (m. s. )
a

i=1

v = 1, 2, ..., are the eigenfunctions,

00

R.. (t, s )cp.jk (s )ds = Xkco. (t) a < t < b.

j=1 a

Further, V
v

are orthogonal, i. e. ,

E(V ) = 5 X , X > 0.
v vµ v v

where 5 is the Kronecker delta function.
vp.

The mean square covergence in the basic expansion is uniform in t.

If the vector process is finite dimensional then if (1) holds then (2)

and (3) are automatically satisfied. This will be the case in this

study.
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To this point, the processes considered have been vector valued

with the parameter time. Now consider a univariate or scalar pro-

cess over time. Corresponding to stationary univariate processes is

the spectral representation of Cramer. This represents the process

as an integral or sum of orthogonal random variables. A correspond-

ing representation exists for scalar random processes where now the

parameter is no longer time, but is a parameter P varying in

space. Throughout this study, P wil be a point on the sphere, i.e. ,

P = (X , A) where X is longitude and 0 is latitude. Of particular

interest is the representation for isotropic random fields varying

over the unit sphere.

Following Jones (1963a), let g (P) be a collection of real val-

ued random variables indexed by P, the points on the surface of a

unit sphere S in R3. Let (P, W) = (0;X,w) by the sample func-

tions of ,(P) and suppose that

(X, 0, w) cos 0d0dX. < oo

for all Oa E O. The random process (P) is called a second order

scalar random field over the unit sphere.

The set of functions which are complete and orthogonal over

mthe unit sphere are the spherical harmonics Yn of degree

and order m. Obukbov (1947), has shown that



13

oo

(P)

n=0 m=-n

Z Ym(P)nm n

where the characteristics of the random variables Znm depend

upon the spatial variation characteristics of the field,

Yn = elm\ Pm (cos 0'), 8' being colatitude, and Pn is the asso-

ciated Legendre function of order m and degree n.

It is often desirable to assume the meteorological scalar fields

are isotropic, that is, the covariance between two points P and Q

depends only on the spherical distance between the two points and

E(t(P)) is constant, where E is the expectation operator. Without

loss of generality, it will be assumed that E(t(P)) = 0. This im-

plies E(Zmn) = 0 for all m, n. As mentioned above, the concept

of isotropic scalar random fields is analogous to the concept of sta-

tionary second order random processes. A somewhat less restric-

tive assumption on the spatial covariance function is made in the next

section.

For normalized spherical harmonics, i.e.,

51[Yrn(0,X)]2 cos ed0dX.

the necessary and sufficient conditions for isotropy are
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E (Z Z.,) = .5 .f > 0
nm mi n

5 being the Kronecker delta .and fn a spatial spectrum.

By use of the following relations, the complex representation

above may be converted to a real representation (Kaula, 1967):

where

Thus

(P) = Re

Yn

00

=

n=0 m=-n

n=0 m=0

Z Ym(P)nm n

Ze C +Z" S)nm nm nm nm

(-1)m
2-5

Om
)1

C +iS ) m > 02 nm nm

inY -
1

Cnm-iSn
2-5

Om

-iZtt

Omi-

'nm (2_5
1 /2 nm nm

Znm
1

(2-50m)

m < 0

m> 0

m < 0

C = cos mXPn (cos 6a), Snm = sin mXPn (cos 0°).
nm

The real representation is therefore



n

g(P) = {Z' cos mX +Z" sin mX }Pm (cos 0')nm n
n=0 m=0

15

(2. l)

Let P and Q be two points on the unit sphere and let A

be the central angle between P and Q. Then the covariance

function y(P, Q) for g(P) is

E[ (P) (Q)] = y(P, Q)

oo n m

E(Z Z )Yi (P)Yj (Q).mi nj n m
n=0 nn=0 3=-m

Because of isotrophy, this reduces to

00

r(,6 ) = (
2n+1 ) fnPn (cos A )

LITr

n=0

(2. 2)

where Pn is the Legendre polynomial of degree n and fn was

defined before.

The above spectral representation, Equations (2. 1) and (2. 2),

for the isotropic process and its covariance function defined over the

sphere corresponds to the Cramer and Wiener-Khintchine represen-

tations for stochastic processes with a time parameter.

Fundamental to the study of various meteorological fields are
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two types of transformations. The first type is derived from the de-

terministic hydrodynamic equations of motion of the atmosphere,

usually nonlinear. These are studied in future sections. The second

type, reviewed in this section, are linear operators which commute

with those operations describing the homogeniety of the process. This

type of linear operator is called a linear space invariant filter. Most

common filters of interest are differential and integral operators.

According to Hannan (1965), the only differential operator which is a

linear filter of this type for fields on the sphere is the Laplacian

operator

2 a cos o a 1 a
° 2 sin e

ae (sin 0)2 ax

2

or polynomials in this operator.

As in the case of processes over time, the effect of such a lin-

ear filter is completely described by its response function. For the

differential operator above the response function is

h (m, n) = n(n+1).

Time varying linear filters often occur in time parameter pro-

cesses. The corresponding concept in random scalar fields is that of

a space varying linear filter. A basic field measured in weather ob-

servations is the constant pressure height field. A typical example of
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such a field for 500 millibars is shown in Figure I. Such fields are

very important in forecasting for reasons outlined in the introduction.

The derivation of the dynamics of such a field depends on its relation

to the vorticity field which is directly a function of the equations of

motion and the velocity field. In particular, it can be shown that, if

V i s the geostrophic wind field (a reasonable approximation to the

actual velocity field), then the vertical component of relative geo-

strophic vorticity t is

f
v 2h

where h is the height, f is the Coriolis parameter and g is the

gravitational constant. This widely used relation in meteorology is

an example of a linear filter which varies over space, since the

Coriolis parameter varies with latitude.

A generalization of the random scalar field is the concept of

random vector field. Random vector fields are studied extensively in

the theory of turbulence. The only example of interest in this study

is the velocity or wind field. In this case, at each point in space, the

random quantity is a vector, rather than a scalar. Because of the

Helmholtz theorem of fluid dynamics, study of this vector field may

be reduced to the sum of two vector fields, a solenoidal (nondivergent)

field and an irrotational field. In meteorological applications it is

often assumed that the irrotational part of the wind field is zero. The
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Figure 1. Typical 500 mb height field (heights in feet).
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remaining nondivergent part of the field can then be expressed in

terms of a scalar stream function, thus reducing the study to scalar

fields. A justification of this for large scale horizontal motions is

found in Eliassen and Kleinschmidt (1957, p. 21). Thus random vec-

tor fields are of only occasipnal interest in this study.

Statistical Techniques in Forecasting

The use of statistics in weather forecasting has had a long and

not too successful history. The techniques may be classified to in-

clude simple graphical techniques, correlation studies and spectrum

searches for periodicity, the application of multivariate analysis, in

particular multiple discriminant analysis, and the use of orthogonal

functions of various types. Serious attempts at statistical objective

short-term forecasting were initiated by Byrant and Wadsworth (1948)

in the late nineteen forties. This work made use of the then develop-

ing theory of prediction. Following this, Lorenz continued statistical

forecasting research, concentrating on the use of principal component

techniques (or "empirical orthogonal functions"). According to

Lorenz (1959) this research had somewhat limited success, probably

due to the linearity of the techniques used. Lorenz did attempt some

diagnostic research into the reasons for limited success and the ad-

vantages of nonlinear techniques. Despite the limited success, these

techniques are still used by some agencies for extended range
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forecasting (Thomas, 1963) apparently with somewhat greater success.

The idea of using principal components has also been discussed by

Obukhov (1960).

To achieve a forecast using empirical orthogonal function, the

meteorological field (usually pressure or temperature) is represented

in terms of the empirical functions. This representation is found by

the usual methods of principle components; i. e., determining the

orthogonal transformation matrix by Gram Schmidt orthogonalization.

As mentioned before, the columns of this matrix are the eigenvectors

or empirical orthogonal functions. Once the representation of field

in terms of these is determined, statistical regression techniques

are used for prediction.

A second branch of statistical forecasting has been developed

by Miller (1962). The techniques are primarily variants of discrimi-

nation (classification) analysis and ordinary regression. A very use-

ful technique for screening groups of variables and selecting good

predictors has been developed by Miller.

The most significant recent work in statistical forecasting is

due to Jones (1963b). In this work can be found the beginning of a

realization by statisticians that meteorological time series analysis

should be more closely related to the underlying physical processes.

The basic result which makes the problem tractable is a spectral rep-

resentation of a time varying scalar field on a sphere in the following
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separation of variables form:

(P, t) = Zii(t)vv(P)

where t is the field to be represented, {Z
v(t)}

are the random

processes, and {cov(P)}
is a complete orthonormal system. The

set of functions {q,
v

} orthogonal over a sphere are surface spherical

harmonics as developed above. In the case discussed before, iso-

tropic fields were assumed. If axial symmetry of the field is as-

sumed, a natural physical assumption in this problem, the represen-

tation. becomes

t)

00

(Zvm (t) cos mX. + Z"vm (t) sin mX.)Pv (cos 0')

v=0 m=0

where as before P = (0, X), X is the longitude, 0' is the colati-

mtude, and Pv are associated Legendre functions. For fixed t,

the {Z } processes have the relationships
vm

E(Zi Z" )= E(Z" Z' ) =S f
vm poa vm tin mn

E(Z " Z' ) = E(Z Z" ) = -6 f'vm µn vm µn mn

The quantities f and fi form a spatial spectrum.
vp.m. vp.,m

In order to predict the field t) at some time in the future,



a time series analysis is done on the {Z(t)} processes and some

sort of prediction scheme applied.

Suppose (P,t,(,)) is a realization of the process. Then

where

(P, t, =

V= mt--0

22

Z' (t, ) cos mX + Z" (t, co) sin mX )P &jos 0')
vm v

Z1
vm

(t, = J (X., 0', (4) cos mXPm (cos 0') sin e'de'dX

Z"vm (t, (0) = (X, 0', (0) sin mXP (cos 0 sin 01dErdX.

Thus using a sequence of maps, {g(P, t,(4)}, the sequences

{Z' (t, co)} and {Z" (t, w)} can be found. Then, using some pre-
vm vm

diction scheme, these time series can be estimated for future values

and the predicted field constructed.

Jones achieved good predictions for periods as long as five

days using these techniques. As will be demonstrated, this is prob-

ably due to use of the spherical harmonic representation which is

closely related to a simple, but meaningful, dynamic forecase model.

Dynamics of Random Fields

Dynamic forecasting depends on the basic hydrodynamic and
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thermodynamic equations describing atmospheric processes. These

equations are assumed to exactly model the processes without error

or residual. The simplest such model is the non-divergent barotropic

model. This will be developed in this section both for illustrative

purposes and because it will form the basis of the dynamic-statistical

models of Chapter IV.

There are two types of derivatives used in hydrodynamics. The

usual partial derivative a/at denotes the rate of change at a fixed

point with respect to some frame of reference. The Eulerian or in-

dividual time derivative D/Dt, on the other hand, denotes the rate

of change at some point embedded in and moving with the fluid. Thus

the Eulerian operator is

D a
Dt = at +vt - grad

where VT is the fluid velocity, grad is the gradient operator and

is the inner product operation. This may be applied to vector or

scalar fields (Eliassen. and Kleinschmidt, 1957).

Using the individual time derivative, the equations of motion of

a particle of air (unit mass) with respect to a reference system fixed

in the earth and rotating with it are

DV'
g

1-rt2sz X vl - grad p + divg.
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This equation says that the velocity of the particle is changed by the

force of gravity g, the earths rotation effects 20 X V' where S.2

is earths constant angular velocity, the pressure gradient effect

1 grad p, where p is pressure and p is density and by friction

effect, where g is frictional stress. This equation is derived

from Newtonls second law..

In studying large scale motions in the atmosphere, i. e., those

with horizontal dimensions of the order of 300 miles or more, it is

customary to make several approximations. These approximations

and their justification are discussed by Eliassen and Kleinschmidt

(1957, p. 21-22). First, the vertical acceleration is ignored in the

equations of motion. Second, the horizontal component of c2 is ig-

nored in the expression for the Coriolis force. In addition to these

major approximations, two small mathematical approximations are

made. The resulting equations, called the quasi static equations, are

derived using the following individual time derivative

D a
Dt v gradh w --8

az

-11.

where V is the horizontal velocity, the subscript h refers to

horizontal components, z is the height or vertical direction, and

w is vertical velocity. Without the friction term the equations of

motion are
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DV
Dt

1=-
p
gradh p-fkXV

for horizontal motion. K is the vertical unit ve 'ctor.

Because of certain simplifications, meteorologists have tra-

ditionally converted the vertical coordinate from simple height to

pressure, which of course varies monotonically with height.

In the pressure coordinate system the vertical "velocity" com-

ponent is formally

Dp
= Dt

(i) is positive downward. The horizontal velocity components are

DXu = r cos u Dt

DOv = r 15T

positive toward the east and pole, respectively. The constant r is

the earth's radius. In terms of these velocity components the relation

between the two kinds of time derivative for a spherical earth is

D a 1 a l a a
Dt at + u r cos 0 ax + v 7. ae + w ap

The terms involving space derivatives and velocity components are

referred to as the "advection terms". They are also known as
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convective terms.

Using the vector notation once more, the Eulerian operator be-

comes

D a

Dt at + V- grad + a
P ap

The suffix p in the vector operators (and usually omitted in partial

differentiations) indicates that p is to be held constant in the ap-

propriate differentiations. If h is the height of an isobaric surface,

then let

B = gh

where g is the gravitational constant. B is called the geopoten-

tial.

The equations of motion are

DV" 1

g 2-6 X V!.-. grad p
Dt

- -).
where g is the effect of gravity; 2E2 X V' is the earth's rotations

effect, S2 being the constant earth's angular velocity; p is den-

sity and p is pressure so that 1 grad p is the pressure gradient
p

forces

The horizontal components of this motion are described by

DV grad B f 17X V
Dt

(2. 3)



where k is the vertical unit vector. The vertical component is

as 1

ap p

Following a similar derivation, in pressure coordinates the

equation of continuity is

awaav V = - ap
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The fundamental physical quantity used in dynamic forecasting

is the vertical component of vorticity

av au
= 4 curl. V = -

p ax ay
(2. 4)

The equation describing vertical vorticity is found, as indicated in the

equation above, by applying the curl operator to the horizontal equa-

tions of motion. When this is done, the following vorticity equation

is obtained

TD-T +f)
+f) div +(gyp +f) p ap

grad u, (2. 5)

The above equation states that total or absolute vertical vorticity of a

particle changes due to the factors on the right hand side, which in-

clude divergence (the first term) and a "vortex tube" term (the second

term). Both of these terms on occasion contribute significantly to the
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change in vorticity.

In addition to the vorticity equation, a second fundamental equa-

tion is the divergence equation, which is obtained by applying the hori-

zontal divergence operator to the equations of motion. This yields

D divp V +

1 2f(
P

-
f
-v

P
B)

av 2 av of
(

"u 2 au av ] + grad ayaX aY(ax) +2

where v
2 is the Laplacian operator in pressure coordinates.

(2. 6)

From this equation, the balance equation and the geostrophic approxi-

mation equation may be obtained.

From the vorticity and divergence equations, model forecast

equations are derived using various simplifying assumptions which

allow integration of the equations by numerical techniques. The sim-

plest dynamic forecasting model, called the "barotropic n.ondivergent

model" simply treats large scale motion as horizontal (or isobaric,

which is about the same) and nondivergent. With these assumptions

the vorticity equation becomes, neglecting vortex tube terms

a(70' .
g
rad

P
)(

P
+ 1) =

and the continuity equation becomes

(2. 7)
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div V= 0.
p

Applied to the 500 mb level, where nondivergence is a reasonable

physical assumption, this forms the basis of simple numerical fore-

casting techniques.

It is important to look at the left side of Equation (2. 7). The

equation has the time derivative at a point and the advection terms,

mentioned before. Thus, the equation states that vorticity at a point

can change only through advection, a space-velocity process.

Practically, use of the vorticity equation requires a knowledge

of the horizontal velocity field, V. There are many possible wind

laws (Ellsasser, 1968). Most of these laws can be derived by means

of an approximation to the divergence equation known as the balance

equation. In the divergence equation (2. 6) set the Eulerian derivative

term and the term involving co equal to zero. Then the divergence

equation simplifies to

Ou 2 au
ax

av 2 2
- [( + + 7-y) -Pu = vpB

p ax pg ax

a fwhere = and B = gh, as defined before.
ay

Now decompose the actual velocity field V into a nondivergent

part and an irrotational part (Helmholtz Theorem)



where

= k X grad

17X = grad x
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and x is the velocity potenti 1 function and 4 is the stream func-

tion. Assume now that V = 0, that is, the velocity field is ap-
X

proximated by its nondivergent part. Then,

and

In this case the balance

fv 2 + 2
p

a 2B

(2. 8)

(2. 9)

(2. 10)

(2.11)

u = _ ay

V = ax

2= v Lk.

equation becomes

°
Z

qj 8'4' a
2

'4'

ax 2 ay2
a xa y)

=
ay P

This form of the balance equation relates the geopotential B (and,

thus, height) to the velocity field determined by Ili. It is unfortu-

nately difficult to handle even numerically (Ellsaesser, 1968).

Certain further simplifications result in a useful equation. If

the nonlinear terms and the term involving i3 are neglected, the



relative vorticity may be related simply to height

= v
P
2h

P f
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(2. 12)

(which was the example used in the discussion of the spatial filtering

of random scalar fields). The velocity field corresponding to this

approximation is the geostrophic velocity field.

=k x -&grad h.

The extent of the approximate nature of this relation can be seen by

returning to the divergence equation. Because of this, the balance

equation is usually used rather than the last approximation.

The nondivergent barotropic model can be used with any number

of wind laws. However, the most common, are the geostrophic ap-

proximation law above and the wind field determined by the nonlinear

balance equation. In the first case, the forecast equation will contain

the geopotential directly, while in the latter, it will contain the stream

functions and, as a second equation in a system of two forecast equa-

tions, the balance equation.

In a study of various wind laws for hemispheric forecasting us-

ing the barotropic model, Ellsasser (1968) found a linearized form of

the balance equations to be "optimum. " In general, the nonlinear bal-

ance equation uses an order of magnitude more of computer time and
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yields, according to Ellsasser, almost no improvement in mean

height and standard error of height forecasts. The geostrophic ap-

proximation is only slightly inferior to the linearized balanced equa-

tion in these two measures. In subsequent sections of this study, the

geostrophic approximation will therefore be used exclusively.

Using the geostrophic wind, the geostrophic vorticity is defined

as

= curl V .
P g

A geostrophic vorticity equation at the nondivergent level can then be

derived as

ag

atg + Vg grad
P g

+f) = (2. 14)

Here the variation of f with latitude has been neglected in the last

term.

Using the relation between the vorticity field and the height

field, the basic prognostic equation of the nondivergent barotropic

model for the nondivergent level is

a 2
-61- V ph + Vg grad (v 2h) 4. ,L=0

P P r 8x

The nondivergent barotropic model above applies to an

(2. 15)
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atmosphere which is very idealized. It therefore is primarily useful

conceptually. The basic form of the prognostic equations is retained

if a more realistic equivalent barotropic atmosphere is considered.

In the equivalent barotropic model the wind vectors at all alti-

tudes are assumed to have the same direction, but the magnitude of

the wind vector may vary. In equation form, this assumption may be

written as

(x, y, p, t) = A(p) V (x, y, t)

The "bar" is an averaging or mean value operation taken over the

height variable p which is usually taken to vary from p = 0 (in

space) up to po = 1000 mb (at the lowest level considered). The

actual form of the function A(p) is usually found from climatologi-

cal data and normalized so that X = 1.

Applying the mean value or averaging operator to the geostroph-

ic vorticity equation gives

"Tr
a

+ V
g

grad
P g

+ f) = divt

Frequently used boundary conditions are,

= 0 at p = 0 and at p = po

although the latter condition is not strictly correct. Application of the



averaging operator to the equation of continuity give.

where

(A)

div V =
p Po

and po are surface values; from the above boundary

conditions, div V = 0; hence, the geostrophic vorticity equation

becomes

thus

Moreover,

at
Vg grad

P g
+f) = 0;at

=
grad7.: V grad

at P g

g + (Aat
gradp tg+f) = 0

p)
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which is valid at any isobaric level. In particular, the above equation

reduces to the vorticity equation for the geostrophic form of the baro-

tropic nondivergent model at the level p* defined by

A(p*) = A

which is therefore called the nondivergent level of this model. There-

fore, at p usually assumed to be 500 nab, the vorticity equation is

at
+ V grad

P
(t

g
+f) = 0at
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From this equation it is clear that the nondivergent barotropic

model and the equivalent barotropic model are essentially equivalent.

In the meteorological literature, the equivalent barotropic model is

most often used.

The steps necessary to obtain a numerical production using this

model are:

(1) Analyze the height field of the 500 mb surface and interpo-

late the height at each point in a mathematically convenient

grid.

(2) Calculate the Laplacian of the height using finite differences.

(3) Obtain the absolute vorticity by multiplying v 2h by g/f

and adding f to the result at each grid point.

(4) Advect the absolute vorticity values with the initial geo-

strophic wind for whatever small At has been chosen as

the basic time increment.

(5) Subtract the old vorticity field from this new one to get

A (f+t) (same as At).

(6) Multiply by f/g to convert to changes in v2h (same as

v
2

).

2
(7) Integrate v [ ©I] by relaxation or other methods, assum-

ing Ph = 0 on the boundary. This gives oh every-

where.

(8) Add ph to the initial h field to get a new h field at
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time pt later.

(9) Repeat the whole process until a forecast for whatever de-

sired future time is reached. Discard the results just in-

side the boundary.

The various fields and equations of dynamic forecasting are

simply related. However, the relationships are not always clear to

the nonmeteorologist. As an aid in progressing through these equa-

tions, the diagram of Figure 2 is presented.

There are four basic fields: the height field, the stream func-

tion, the velocity field, and the vorticity field. Observations on the

height of the 500 mb surface are taken every 12 hours. These obser-

vations are taken by means of upper air soundings at the various

weather stations throughout the world (at a common time). These are

then interpolated to a grid covering the earth and a continuous height

field drawn in terms of contour lines. Thus the height surface is the

basic quantity "observed. "

The three other fields are not observed directly. By means of

the balance equation, the height field is related to the stream function

field. The stream function field is related to the velocity field and

vorticity field. To make these relations valid, it is necessary to as-

sume that the solenoidal part of the actual wind field dominates, an

assumption which is valid for the large scale motion being studied.

These last three fields are of prime importance because their
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Figure 2. Fields and dynamics of fields with equation
numbers referring to text.



38

dynamic equations can be found, beginning with Newton's second law

as given. The equations relating the fields and their corresponding

dynamics are given in parentheses in Figure 2.

If the geostrophic wind assumption is made the height field can

be directly related to the vorticity field. The dynamics of the vortic-

ity field then determine the dynamics of the height field which, under

the geostrophic assumption, is almost the same (except for a constant

multiplier) as the stream function field. This situation will be as-

sumed in this study. Thus, the four "peripheral" fields of Figure 2

and their equations will be used in the following chapters.
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III. HUERISTICS AND DIAGNOSTICS

In the last chapter, the dynamic or numerical methods based on

the vorticity equation for the nondivergent level were discussed. It

was pointed out that these may be used to achieve reasonably good

short term forecasts.. Also discussed was the statistical method

based on the prediction of spectral coefficients in a spherical harmon-

ic expansion. In this chapter, a simplified dynamic and a simplified

statistical model are studied. The objectives are to discover the ad-

vantages of each and the proper means of constructing a combined

statistical-dynamic model.

A Simplified Dynamic Model

The equation of the equivalent barotropic model states that geo-

strophic vorticity at a point P can change only through advection by

the geostrophic wind field. In effect this says that we can find the

vorticity of the particle of air at point P at time t + At by mov-

ing back along the geostrophic stream lines (or equivalently the con-

tour of the height field) a distance which a particle would travel in

time o t and observing the vorticity at that point at time t. Thus

for the advection operation

t+1) = AVP, t) = (P+6,P, t)
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where PP is determined by the numerical process, applied N

times, i. e. , Not is the forecast period.

Recall that the vorticity field over the sphere has the following

natural representation

(P, t) = Z (t )9v (P).

When the advection operation is applied to the vorticity field,

expanded in terms of spherical harmonics, the predicted field is

(P,t +l) = A[t(P,t)]

Z
v

(t)cp
v
(P)]

V

= Z
v

(t)q)
v

(P+aPv).

Thus application of the dynamics may be heuristically thought Of as

operating on the second factor of each term of the expansion of the

field.

Recalling the relation between the height and vorticity field

(using the geostrophic wind law) an expression for the predicted height

field is



h(P, t+1) = K (v )Z v(t)(pv(P+A Pv)
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where K(v) is the response function of the linear space filter (the

Laplacian operator) relating height and vorticity.

To examine this explicitly for a dynamic prediction model, con-

sider the model of Charney and Eliassen (1949). In this model, the

motion at the equivalent barotropic level (500 mb) is considered as

consisting of small perturbations superimposed on a constant zonal

current U. The height perturbation is considered independent of

the latitude, but depends on longitude. Under these assumptions, the

vorticity equation (2. 14), written in terms of height, becomes

a 8 82h a h
( 7 + u 67c ) aTc °

8x

which reduced by means of a single integration (Thompson, 1953,

p. 60) to an equation for deviations from an average height:

a
2h

a
2

at
h

+ 13h = 0ax ax 2

where i3 has been defined before as

a f
=

(3.1)



A fundamental set of wave solutions to this equation is given by

(Thompson, 1953)

h(x, t) = a cos a (x-ct+

42

where c = U - pa" 2. and is a phase angle. Since both the am-

plitude function a and the phase angle 6 are arbitrary, functions

of this type form a complete set of solutions.

For a fixed latitude 0, solutions of interest are those whose

wave lengths are submultiples of

L = 2Trr cos 0,

the length of a latitude circle at latitude 0. Thus a complete solu-

tion may be written as

h(x, t) = / a
v

cos ITV (x-cv t-
L

v = 1

00

v=1

CO

Tr V ,by cos (x -c t + b'v
ITVsin (x- cvt).

oo

- dv(t) cos -Y--/T x

v =1

where

v =1

I/ =1

Tr vd'v(t) sin x

(3.2)

(3. 3)

(3. 4)
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Trvct Trvcvt
d (t) = by cos v - by sin ------

Trvc t Trvcvt
d'v(t) = b' cos - + b' sin

The phase speeds cv are uniquely determined as

L2
c U P

Tr v

If the constant b
v

and b'v are determined using the initial condi-

tions, forecasts for a given latitude can be made.

Using the phase speeds, the effect of the advection operation is

P = c At.
v

A Simplified Statistical Model

Recall that a successful statistical model (Jones, 1963b) made

use of the same orthogonal expansion as used in the previous section,

h(P, t) = K(v )Z (t)gov (13).

In this technique, the coefficients Z v(t)
K(v) were statistically pre-

dicted. Thus the predicted field was



h(P, t+1) = K(v)Z.v(t+1)yov(P).

Reducing this model to the fixed latitude case as was done for the

simplified dynamic model, the expansion 1 becomes

h(x, t) =

and the prediction is

A
t+1) =

00

v=1

00

v=1

d
v

(t) cos 1222

CO

v=1

vxdv(t) sin ---L

00

A
d (t +1) cos

A
L

d'v(t+1) sin 121rV IT

v=1
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(3.5)

(3. 6)

Thus, the statistical prediction does not involve spatial considerations.

A comparison of the simple statistical forecast model with the

dynamic model of the last section is revealing in two ways. First,

the use of spectral expansions (3. 5) in the forecast technique is natur-

al in light of the solutions (3. 4) to the dynamic model. Second, Jones

(1963a) remarks that when using simple straight line extrapolations

as a prediction scheme for the spectral coefficients, his results are

significantly better when using the phase-amplitude representation

)According to Sommerfeld (1964, p. 294), for a fixed t, ex-
pansion of dv(t) and d'v(t) in terms of the argument cos 0, re-
sults in an overall expansion of h(P, t) in terms of the spherical
harmonic expansion used by Jones (1963b).



h(x, t) =

co

v=1
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(t) cos Iflir (xi-Ev(t)) (3. 7)

rather than the form (3. 5). A comparison with the dynamic model

(3. 2) shows that phase is linear, i. e.,

ov(t) cyt +

Thus a partial answer to better results with an equation of the form

(3, 7) is the linearity of the phase suggested by the dynamic model.

Conversely, using (3. 6), results in straight lin.e extrapolation of

oscillatory functions, which would be good only over short intervals.

To see how actual data for 500 mb height looks, the empirical

study of Eliasen (1958) is valuable. Eliasen has done a Fourier analy-

sis of the height for various fixed latitudes. Examples of his results

are shown in Figures 3, 4, 5, and 6 for latitude 50°N. Using the

form (3. 7) the evolution of cv(t) and 5 (t) may be examined for

certain wave numbers.

From the data, two ideas emerge. First, if a straight line is

fit to the phase data, the resulting phase speeds differ significantly

from those prdicted by the dynamic model. In fact, for low wave

numbers, the waves appear stationary, contrary to the dynamic

model. More will be said about this later. Second, both phase and
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amplitude appear to have random variations in addition to the system-

atic trends predicted dynamically. Because of this, the concept of

introducing a random term into the hydrodynamic equations is quite

reasonable.

Random Forcing Functions

Randomness can enter the differential equations for the dynam-

ics of meterological fields in three ways (Syski, 1965):

(1) Random initial conditions

(2) Random forcing functions

(3) Random differential operators (e. g. random coefficients

in linear differential equations).

To construct an adequate differential equation model, it is worthwhile

considering the natural way in which randomness should enter the

barotropic model. The simple linear models of the last two sections

yield some insight into this problem.

An appealing and simple approach to a dynamic statistical mod-

el is to combine both of the above operations as follows. First apply

the dynamic advection operator to arrive at the dynamically predicted

field at time t + 1

(d)(P, t+1) = Zy(t)cp (P+ AP ).



This field can itself now be expanded as

(d)(P, t+1) =
(d)

(t+1 )cpv (P ).
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Now apply a statistical correction to the Z(d) (t+1) to arrive at the

estimated Z v(t+1), i. e. , nowi

where

(P, t+1) = Z
v(t+1

)9 (P),

Z (t+1 ) = Z (d )(t+
1 ) + E (t+1 ) and E (t+1 )

V V

is the statistical correction.

To arrive at the estimates e(t+1), a time series analysis is

done on the process

( )(t ) - Z(t) = E(t),

the difference between the dynamically predicted field and the

observed field. Estimates are then constructed for several time per-

iods and applied to the dynamically predicted field for each period.

In the purely statistical prodiction scheme, both dynamic and

random variations were absorbed in the process {Z(t) }. A consider-

able amount of the variation is removed by the dynamic operator in

the proposed scheme. Hopefully, variance is significantly reduced,
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the process is stationary, and the forecasts can be extended corres-

pondingly.

To determine the form of the operator t, t+1), recall that

coefficients of the spectral expansion are

Z (t El) = CP, t+1)9 (P)dP,

where dP refers to the element of integration on surface.

Now using the representation for t+1), write

Z
v
(t+i) =s

i=1

i=1

1=1

(F')Zi(t+1) 9 (P)dP

Z. (t)+ e . (0'9 . a)) cp (P)dP,

Z. (t'kp.(P+AP) 9 (P)dP +
i=1

n

1
.(09.(P)9v

(P)dP
.1 .

Z (t)S9.(P+PP )9 (Pi)dP + ei(t)S9v(P)9i(P)dP
1=11=1

n

i=1

s.ivZ. (t) + ev(t),



where

Js. = (pi(P+AP.)cp (P)dP.
iv v
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The evolution of the random field is completely determined by

the evolution of the random vector Y(t) = [Z 1(t), Z 2(4 . . Actu-

ally, the field can be adequately represented by a finite number of

components. This :finite vector representation will be used. Thus,

calling these the state variables of the process, it is convenient to

consider their evolution as follows:

where

= sz(t, t +l)Z(t) +7(t)

E (t) =
1

(0, E
? n

(t)] I and SZ (t' t+1)

is a transition operator representing the effect of the dynamics.

The matrix_form of the operator
SZ

is

Sz (t,' t+1 ) = [s ..(t)]

Continuing formally, suppose that the error field is sufficiently

smooth that the vector E (t) may be written as an integral of an in-

tegrable process U(s) as follows

t
E (t-I-At) = 17(s )ds

t
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for any time increment At, Then

t+At
nt+A t) = sz (t, t+At)Z (t) + U(s)ds.

t

Subtracting Z(t) from both sides

,t+At
1(t-FAt) - 2(t) = S (t, t+pt)1(t) - 70) +J U( )dx.

t

Assuming Sz(t, t+(t) is differentiable, which is reasonable for the

hydrodynamic processes of interest in meteorology, expand

S (t, t+At) in a Taylor series about t

Sz (t, t+At) =S (t, t) t,t)at

where the remainder term, which goes to zero asAt goes to zero,

has been neglected.

Substituting this into the last expression and dividing by At

[Sz(t, t)+Sz(t, t)A t 11(0 U(s)dst+At1(t+At)-7(t)
At At At At

Recall that sij = S yoi(P+A P. )cp (P )dP . Now AP1. ---.- 0 as At -; 0

13 3 9) n.and thus s . -4- 5.1 --. as At 0 since
{

or orthonormal func-

tions. Hence S
Z

(t, t) = I, the identity matrix. Also, formally using

the mean value theorem on the integral term
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rt+A t t+A t
-14i(s )ds = 711(s *) J ds

where t as Ot 0. With these things in mind,

ffrZ(t+A t)-1(t)
S (t, t)Z(t) + r(s*)

Taking the mean square limit on both sides

or

d
dt Z (t) = S (t, 0)Z(0 +

atZ(t) - Sz(t, t)-Z(t) = Ti(t)

where U(t) is the random forcing function.

Thus the form of a reasonable statistical-dynamic prediction

scheme suggests that the randomness should be introduced into the

underlying stochastic model by means of a random forcing function.

Aside from the above formal argument, there are several other

more pragmatic arguments for using random forcing functions. The

simple dynamic model above has been used to make predictions of the

500 mb surface. As mentioned before Elliasen (1958) observed that

the low wave numbers (v = 1, 2, 3, 4) are stationary while the waves

for numbers v > 5 are traveling. On the other hand, the simple



56

dynamic model predicts traveling waves for low wave numbers. This

discrepancy results in large errors. This phenomena is not restrict-

ed to the linear model but also occurred in the case of the nonlinear

barotropic model.

To correct this problem, considerable meteorological research

took place from 1956 through 1958 on the nonlinear barotropic model.

Williams (1958) was the first to attempt a correction in a purely em-

pirical manner. By computing the difference between the forecast

and observed field of 500 mb height he constructed an error field.

He then averaged the error field over several days. This average

24 hour error field was then subtracted after each 24 hour period of

forecast before integration of the barotropic equations for the next

forecast. Thus in a sense, Williams did the first "time series analy-

sis" combined with dynamic forecasting in the manner suggested

above. While his prediction of the error field was simply a numerical

average, it can be thought of as a particular type of autoregression

prediction. His results were excellent. The success demonstrated

suggests the use of a random forcing function in the combined statis-

tical dynamic prediction will be successful.

Wolff (1958) correctly diagnosed the trouble in forecasts by ob-

serving that the barotropic model yielded waves which progressed

rapidly westward in 24 hours for low wave numbers contrary to the

behavior observed for the actual waves as noted above in the
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linearized model.. To correct this, he devised and applied an empiri-

cal correction which stabilized waves number 1, 2 and 3. The effect

of this correction was quite good.

Cressman (1958), following Rossbyls suggestion, that a "diver-

gence term" to be added to the barotropic prognostic equation, de-

rived the following equation:

where

8 2,
797 vpn + V gradp v .i2)h + =g(h)

g(h) = k ahat

and k is a constant empirically determined. Thus Cressman phy-

sically derived a forcing function dependent on the state variable h.

Again the results were highly significant (Shuman, 1966) and resulted

in much better forecasts. However, subsequent research has shown

k not to be constant but to take on many values (Deland, 1967) which

suggests it could be a random function of time. Thus, in all three

cases of correction of the nonlinear barotropic model, forcing func-

tions were used and in all three cases, the improvement was signifi-

cant.

A final reason for using random forcing function is the form of

the vorticity equation (2. 5). To arrive at the barotropic nondivergent

model, all the terms on the right side of the equation were assumed
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negligible. In actual atmospheric processes it is quite probable that

these terms do contribute from time to time. These contributions

are naturally accounted for by a random forcing function.

Summary

In summary, the hueristics and diagnostics of this chapter have

motivated

(1) Use of the spectral expansion as naturally related to the

dynamics of the 500 mb surface

(2) Use of the random forcing function technique as a natural

introduction of randomness into the models.
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IV. DYNAMIC STATISTICAL MODELS

The basic notion that a combined dynamic and statistical fore-

cast model would be very useful is not new. Meteorologists have

made attempts to motivate such a model (Gleeson, 1968) and some

actual predictions have been made using the barotropic model com-

bined with empirical orthogonal functions (Sellars, 1957). In these

approaches, randomness has entered only through initial conditions or

only through use of principle components of sample covariance func-

tions. Suggestions on combining the dynamics and statistics have

been given by Frieburger and Grenander (1965) in an excellent general

paper.

Based upon the motivation of the last chapter, this study departs

from the prior approaches and uses the concept of a random forcing

function in the dynamic equations. Statistical analysis discussed in

Chapter V enters through estimation problems associated with the

forcing functions, the form of which is not assumed known a priori.

The various possible forms of the dynamic equations and the forcing

functions define the three models considered.

This chapter has the following outline. First, based on the

spherical harmonic expansion of the random field, the random spec-

tral vorticity equation is derived. Sufficient conditions for the exist-

ence of a solution to this equation are then given. Next, mean value
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and covariance solutions are found for various forms of the dynamics

(linear and nonlinear) and the forcing function (dependent on the time

parameter and dependent on the time and state variables) in the spec-

tral vorticity equation.

Spectral Form of the Vorticity Equation

The vorticity equation has the following form

aa + grad
P P ap+f) = -(f+p) divp + kx 7. grad

at p
(4. 1)

where the symbols are the same as in Equation (2. 5) of Chapter II.

Replacing the terms on the right side with a random forcing function

n(t), the equation takes the form

+ gradp ( p+f) = n(t). (4. 2)

In this form, the vorticity equation is a random partial differential

equation. Since V = Vg,
P g

= in this model.

The forcing function process n(t) accounts for terms neg-

lected in the vorticity equation, for physical effects unaccounted for

in the fluid dynamic model (because of assumptions made to simplify

the mathematical derivations), and randomness in the atmospheric

process. Hence, the function is not known analytically and its effects

must therefore be statistically estimated (Chapter V).
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The theory of partial differential equations with random forcing

functions is not well developed. More is known about ordinary dif-

ferential equations with random forcing functions. For this reason,

the vorticity equation will be transformed into the spectral form be-

fore seeking a solution in terms of the mean and variance.

Recall that the 500 mb level was chosen as a field for predic-

tion because it is a level of nondivergence. This allowed the intro-

duction of stream functions (and consequently height through the bal-

ance equation). A similar assumption is made here about the forcing

function, that is, there exists a stream function q such that

n(t) = v 2 i(t).

Physically, this means that the small part of the velocity field arising

from the velocity forcing function corresponding to the vorticity forc-

ing function is also nondivergent.

The following derivation of the random spectral vorticity equa-

tion is patterned after Silberman's (1954) derivation of the determin-

istic spectral vorticity equations. The deterministic form of the vor-

ticity equation is well known and has been rederived by other authors

(Platzman, 1960; Merilees, 1968).

Consider an isotropic random field, (P). As mentioned

before the vorticity field (P) has the representation
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oo n

g (P)
n=0 m=-n

Z Y (P)mn n

yx:(P) = Pm (sin 13) eirxiX
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and Pm is the associated (normalized) Legendre function, 0 is

the colatitude and X. is longitude. Introducing time parameter

(4. 2)

zmn n
(t)Y(P).m

Proceeding now to derive a spectral vorticity equation, write

ag
1

at r a
n +2 I cos + n

sin O' ax p
(4. 3)

Now setting =
2

4i, n = v 2
, the above tendency equation be

comes

al.p 1 2
( _ 2)(v 2L11-1-2117/1 cos 0')+ rl

r 2sin 0'p at ax aei ae'ax P
(4. 4)

Now expand the stream functions in terms of spherical harmonics:

Lii(t) = r2Ir2 I / Kn m(t)Ymn
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Ti(t) r Zm(t)Ymn n

At this point it will be convenient to truncate the expansion at a

finite number of terms (possibly different for the separate expansions).

Eliasen and Machenha.uer (1965) have done an extensive an sis

of the spectral distribution of kinetic energy for the large planetary

flow patterns represented by the stream function. As would be ex-

pected, their data (Eliasen and Machenhaur, 1965, p. 225) clearly in-

dicates almost no energy is contained in the larger wave number part

of the spectrum. Because of these energy considerations, it is phy-

sically reasonable to truncate the spectral expansions. Thus, rewrite

the expression as

= r

= r

m' nl
KmYm

n n
m=-m' n=im'

m = -m'" n= I rnm

KmYmn n

To derive the ordinary differential equations from the partial

differential equation, it is necessary to do the following: First, derive

each of the terms in the equation using the spherical harmonic expan-

sion. For example, the first term is derived by differentiating as



aLP rat

64

m" n"

m=-m" n=imi
(-(=-1-Km(t))Y(P).dt n n

m

Observing that Yn are eigenfunctions of the LaPlacian operator
2

VP' i.e.,

it is easy to see that

2
Vp Yn

m = -n(n+1)Yn

m" n"

V
2 r2ISt ( dt Kmn rn(t))(-n[n+1])Y(P) .

m=-m" n= I m

Second, having derived all of the needed expressions in terms

to their spherical harmonic expansion, substitute them into the ex-

pression (4. 4). To extract from the resulting expression the equa-

tions for the evolution of the coefficients, multiply the resulting ex-

pressions by Yn
-m sin 0' and integrate 0' from 0 to Tr and

X. from 0 to 2Tr. By making use of the orthogonality of the spher-

ical harmonics the coefficient equations are found to be the following

form for each m and n:

d m 20-21
K (t) -

Ott n n(n+1) Kn
m

+ 2i 10 zm

m' n' m' n'

+
i Kj Krajmr

2 k s kns
r =m' s= I ri j=m k= lj I

(4. 5)



jmrwhere Hkns is zero unless j + r = m, in which case

jmr s (s+1)-h(k+1) .S".FT m jdr d jr
Hkns Pn x (jP P -r P P )d0.

n(n+1) k d.0 s d0 k s
0

The quantities
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Hkns are called the interaction coefficients. Rules

for evaluating these interaction coefficients are found in numerous

papers (Silberman, 1954; Ellsaesser, 1966; Platzman, 1960; Bear

and Platzman, 1961; Merilees, 1968).

As a simplification notationally, this may be written as

ddt n
Km(t) = F(Km(t), Zm(t), t).

Written in vector form this system of equation is

cfiZ = F(K, Z, t).dt
(4. 6)

By letting the subscript y correspond to m, n (Platzman,

1962) the expressions may be notationally simplified. A further sim-

plification results by converting the equations to real differential

equations

dtC y 1
Sy+k

d
dt y

a p

(C aS
P

+S aC
13

)HaPr + k 2 yS *

=k1 C y
+k

3
//(C aC

13
+S aS

13
)H Pra +k

2,
C* (4. 7)

yLa

13
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Where Cy and Sy are the real spectral coefficients and S

and C* are corresponding random forcing function real coefficients

and kl, k2, and k
3

are constants. In this form, the problem

has been transformed into a system of ordinary quadratic differential

equations with random forcing functions.

A final simplification of notation is desirable. The above sys-

tem of equations will be rewritten as

dA

dt fr(t'Ar A2, Ah, R1,
R2'

Rh) (4. 8)

where r corresponds to (m, n), A corresponds to the spectral

coefficients and R corresponds to the random forcing functions.

For the remainder of this study the general form of the vor-

ticity equation represented by equation (4. 8) will be used. Merilees

(1968) has shown that a quite general set of dynamic equations can be

transformed explicitly into spectral form and given tables of functions

to accomplish this transformation. This general set includes not only

the vorticity equation but the divergence equation, continuity equation,

the adiabatic thermodynamic equation and the hydrostatic equation.

With this set of equations, more general baroclinic models may be

placed in spectral form. In each case, the resulting ordinary differ_

ential equations for the spectral coefficients of the various fields have

the same general form as the general form of the vorticity equation.
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Therefore, statistical dynamic models based on the general form (4.8)

of the spectral vorticity equation will have application to more general

spectral baroclinic forecast systems as they are developed.

Existence

The existence and uniqueness theorem for random differential

equations is of essentially the same form as the existence theorem

(involving Lipshitz conditions) for ordinary differential equations.

An explicit statement is given in Syski (1965). Writing Equation (4.8)

as

dX
= f(t,-.K) + rt.dt

where R is the random forcing function, sufficient conditions on f

and r may be summarized as

(1) f is continuous and satisfies the conditions, for M a

constant,

f(t,r, ) f(t,c2)II < m i1 c1 -c211

uniformly for t e T = [a, bl, the interval of interest and

for all --(1,-C2 e H, the space H = L
2
(&), (d 4).

21/2
(2) II f(CC)11 < F(1 + 110 ) for F a constant and e H.

(3) R is m. s. differentiable.

For the spectral vorticity equation, the function f is
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quadratically nonlinear but is continuous and differentiable (for all

orders of derivatives). It will therefore satisfy the conditions above

and over a finite interval T = [a,b].

In the derivation of the spectral vorticity equation, it was tac-

itly assumed that the random differential equation could be found from

the corresponding equation for the sample functions. This procedure

is followed in most physical derivations of random differential equa-

tions. It turns out that the space H = L2(0,6, p.) has properties

necessary to insure that this is valid (Syski, 1965, p. 441). In suc-

ceeding sections, the same procedure will be used without specific

reference to the fact.

Finally, in the following sections, it will be necessary to inter-

change the expectation operator with an integration over time. Again,

according to Syski (1965, p. 442) this interchange is valid for the pro-

cesses being studied.

Random Forcing Function Models

The solution of a random differential equation is itself a random

function. The description of the random function is usually in terms

of its distribution function structure. In the case that the solution is

a Markov proce ss the Fokker-Planck and Kolmogorov equations des cribe

the evolution of the distribution function. When the random differential

equation is linear and the random forcing function is a second order
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process, the evolution of the distribution function can be found through

equations for the evolution of the cumulant generating function (Syski,

1965, p. 389). Unfortunately, neither of these cases are general

enough for the nonlinear random differential equations describing the

500 mb surface dynamics. It is therefore necessary to select some

function which is representative of the distribution functions. The

ones chosen are the mean and covariance functions.

To find differential equations for an estimate of the mean value

function and covariance matrix of the vector random process, various

techniques are available; linearization of the spectral vorticity equa-

tion itself by means of meteorological principles, use of the truncated

Taylor Series expansion, use of the generalized Karhunen-Loeve ex-

pans ion.

Each of these methods will be used in subsequent sections to

determine the "solution" of the random spectral vorticity equations.

Each method constitutes a different stochastic model.

Model 1, Linearization Based upon Meteorological Principles

A principle often used by meteorologists to linearize equations

involving hemispheric flow patterns assumes the stream function i
may be written as

+ 4J1

where



n'
o o

LP_ r
2

121 KnPn
n=0

is the stream function Mr the zonal flow and is a small per-

turbation on the zonal flow, represented as

nit

m = -m'

= r IS-2 KmYm m 00
n n

The values of Kn are associated with 4, the constant zonal 'flow

and, thus, do not vary with time, This representation is similar to

the one used in Chapter III to derive the simple dynamic model.

The values of IKnI
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for m # 0 are now very small in com-

parison with the values of K°. Thus, every term on the right side

of the spectral vorticity equation (4. 5) which does not contain the co-

efficient of a zonal harmonic as one of its factors may be neglected.

Thus, the equation becomes

where

d mKdt n
=

n'

KmGm
s ns

s=lrni

+ 2i 161 Zm

m 2mons o ommGns - n KkHkns
(n+1)

k=1

(4. 8)
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has been defined before. The system of equations result-

ing is a linear, system with random forcing function represente&by the

vector of Z's.

As before, this may be converted to real valued differential

equations,

dtd
TAA + R

After changing this system of equations to its real form the as-

sumption that the random forcing function is an "ideal white" noise,

allows application of Jones' techniques of using Kalman (1960) tech-

niques for achieving predictions (Jones, 1965). Thus, this particular

model when combined with Jones' work is a first step in the combining

of Kalman techniques with meteorological forecasting.

According to the theory of linear differential equations, there

corresponds to TA a transition matrix SA(to, ts) such that the

solution of the equation is

where

A(t) = S
A

(t, t
o

)1(t
o

) + tS A
(t, s )it(s )ds

to

SA(to, to) = I

dt " (t, to) TA A t' to)

(4.9)
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To determine the mean value solution, it will be necessary to

apply the expectation operator to Equation (4. 9). As remarked in the

last section, the interchange of the expectation operation with the in-

tegral is valid in the processes being studied. When the expectation

operation is applied (4. 9) the equations for the mean values be-

come

or

t
m (t) = S

A
(t' to)m (to) + J S

A
(t, s)m (s)ds

to

.Adm .A
+ mR- T Amdt

where mA and mR are the expected values of A and R,

This solution is well defined in terms of the deterministic mean value

functions, provided the value m (s) is known.

If the initial conditions are known exactly, i. e., A(to) is ob-

served, then mA (to) = A(to) in the above equation. However, in

actual observations, the initial conditions are random variables also,

due to the uncertainty in observation of the height of the 500 mb sur-

face. This uncertainty will therefore contribute to the general co-

variance structure derived in the following paragraphs.

To determine the solution in terms of the covariance function,
woit is convenient to make use of the random variables A° and R
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which are centered at the expectations of X. and rt, found

from the above mean solution. A and X have the same covari-

ance structure which is also :true for

By definition

and R.

Coy (-A-(t)). E(-A7(t)--inA(t))(-A-'(t)--r-'-A(t))')

= E(X.°(t)X. (t))

where A is a random vector centered at its mean value r-n ,

that is
---oA (t) = A(t) - m (t).

Consider the equations for the evolution of the centered random vari-

ables A °:

A (t) = SA(t, t
o o) i SA(t, s )R(s)ds

t
0

- SA(t, t
o

)in - J S
A

(t' s)m (s)ds
0

= SA
(t, to )-X° (to ) + S

A
(t, s )1.'0(s )ds

to

Thus, in this case, the centered random variables have the same

transition matrices as the noncentered random variables. Substitut-

ing the last equation into the definition of the covariance functions,
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C ov (X° ) = E (X° A° t)

= E[s (t, t to S
A

(t, s)rl.°(s)ds]
tO

X [A (to A)S' (t, to) R (s)S1A
(t, s)ds)

0

= E[SA(t, to )A (to )A (to )SA(t, to)]

E[s sA(t, to )A(to )R (s )S 'A (t, s)ds]

0

+ E[ J SA(t,s )1-To(s A
t S' (t, t

o
)ds]

to

E[ sA(t, sAT.0(s)ds R- (r)S'A(t,r)dr]

0 0

Now, by moving the expected value operation inside the integral the

last expression for the covariance matrix of solutions becomes

Cov [A(t)] = SA
ft, t

o
)ELA (to )A (t0)1SA (t, to)

t A o A
0

s (t )E R o(s)A (t ) (t, to)ds
tO

CtS
A

(t s )Erg°(s 11S 'A
(t ' r)drds.jto
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Thus, the evolution of the covariance matrix involves the covariances

and cross covariances of A and R
o

. In particular the following

are needed:

(1) The covariance of A(to), the initial state of the spectral

coefficients.

(2) The covariance of the initial state A(to) and the random

forcing functions g(t) for values of t > to.

(3) Covariance function of the random forcing function R(s)

for values t < s < t.o
Observe that the initial conditions occur in the first three

terms of the covariance equation. If it is assumed that the

initial field is observed with no uncertainty, the first, second and

third terms drop out since A (to) = 0 in this case. The total un-

certainty then is due to the random forcing function alone.

The equations above describe the evolution of continuous time

of the mean spectral coefficients and the covariances. Knowing these,

the evolution of the mean field over the sphere may be determined as

well as an "uncertainty" field or variance field. The solution above is

not really complete because:

(1) For the mean vector, it is necessary to know the evolution

of the mean of the random forming functions. This is not

known a priori from the hydrodynamic model and must be

statistically estimated.
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(2) A similar situation holds in the case of the covariance func-

tions, statistical estimation being necessary also.

(3) To construct a prediction algorithm it is necessary to re-

write the model in terms of a discrete time model since

observations of the 500 mb surface occurs only at discrete

times. Thus the statistical estimation should be in terms

of the discrete time. This is the subject of Chapter V.

Model 2, Use of Taylor Series Expansions

Model 1 made use of linearized differential equations. The re-

sulting combined statistical dynamic model was linear. Model 2 de-

parts from linearity for the dynamic prediction of the mean field and

makes use of nonlinear differential equations. Linear evolution of the

covariance field is assumed, however.

Recall the basic spectral vorticity equation (4. 8) is

dAr
=dt fr(t, A . Ah, R . . Rh), r = 1, 2, ...,h

Suppose now that R = R (t), i. e. , that the random forcing func-
s s

tions are functions of time only and independent of the variables A.

Following Rao (1965, p. 321) expand fr in a Taylor series about

the expectations of A and R,
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A R
mh'n11'mh)

af afr or R
+ Br

amA
A° +

p am
P=1 p p =l p

where A° = (A -mA) and 11° = (R -mR ) are random variables
P p p p p p

centered at their expectations, and

of of afr

amA
aA A =mAp

p pp

of of afr

am R aR R =mR
p

p
P p

The remainder B is

and

Br = 6
_mA)2+ _mR)211/2

P P P P
p=1 P=1

6r 0 as A m mR .

Substituting the above expansion in the original equations and neglect-

ing the remainder B , the following results:

of of
d A o A AR R r

A.°+ R °(m ... Adt r +A r ) =f r (t
'
m

1
mh 'm 1

m p R p
p=1

am am
p=.1. p p=i p



To find approximate equations for the expectations of the ran-

dom variable Ar, apply the expectation operator to the above ap-

proximate differential equations. Thes results in

Adm r A A Rf (t, m m m mdt r 1 n. 1 h
r = 1, 2, ...,h,
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since the expectation of the centered random variables is zero. Thus,

the approximate equations for mean values retain the nonlinearity of

the original numerical equation.

To determine the variance field, consider the linear approxi-

mate differential equations for the centered random functions A°

in terms of R °:

Setting

These become

dA °r
dt

afr af
r

A m R
°; p

am
p=1 p

ofr
arp(t) - Tx A

P lAp=mp

af
b

r(t) _
rp aR

p IR = m
R
P

P

dA ° h
dtr = / a rp(t)Ap

o
+ b rp (t)R

p

P=1 13=1



Written in matrix form, the equations become

where
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Since is not known in any functional form and must even-

tually be statistically estimated, it is convenient to replace the ran-

dom variable with

R = T (t)K .

The equation for the centered random vectors becomes identical to

that for the last model except for the variation of TA with time in

a known manner dependent on the mean solution

dA
o

dt - T
A

(t)A + R

To summarize, the mean values evolve according to the approx-

imate nonlinear differential equations. If the mean of the random

forcing function is known, solutions to these equations can be evalu-

ated. Once these are known the partial derivatives a (t) andrp

b (t) may be determined. Hence the transformation matrixrp TA(t)

is determined. This time varying transformation determines a tran-

sition matrix for the centered random variables. Thus the methods
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applied to Model 1, which were not restricted to time invariant tran-

sition matrices, can be applied to find the covariance field for the

centered random variables. This covariance field is the same as the

covariance field of the noncentered random variables.

Model 3, Solution using the Karhunen-Loeve Expansion

The solutions for mean values and covariances in the last sec-

tion were based upon the assumption that the forcing functions were

dependent on the time variable but independent of the state vector A.

Recalling the vorticity equation, it is evident that a different but

realistic assumption is that the forcing function R is dependent not

only time but also on the state variables themselves. In this section,

this assumption is made and the mean value solutions found.

Again, write the basic vorticity equation as

Now as sume

dAk
(t,A A ...A ,R ...R )

dk k 12 h h

= 1, 2, . . . , h.

that is, the forcing function depends on the state vector A. The

generalized Karhunen-Love Theorem allows an expansion of the forc-

ing function
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and

The functions
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R = m +
s s

mR = mR(t,
s s

Vv vs

. . . Ah)

(t, A . . A
vs vs 1

vs
will be referred to as coordinate functions. Re-

call that the random variables V are uncorrelated and have zero
v

means. Substituting the expansion form of Rs in the vorticity

equation makes the right side depend on t, A1... A
h

and the random

variables V. Integration of the differential equations, now results

in expressions for A , , A
h

in terms of

parameters

as

1 h

and the random

Denote the results of such an integration

Ak = Ak(t, V V . )

which represents the state variables as functions of the V
v

's and t.

Now expand the functions A
k

in a Taylor series as was done

in the last section and disregard the remainder term. In this case,

as before, the expansion is made around the mean of the uncorrelated

random variables V . A critical assumption here is that the ap-

proximation made by disregarding the remainder term is valid; that

is, that the deviations of the random variables VI, are sufficiently
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borhood of the means.

Since
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is adequate in the neigh-

E(Vv ) = 0 for all v and

E(Ak) = A (mkV ' mh
V

)

an approximate Karhunen-Loe've expansion for Ak, based on the

Taylor expansion, is

Ak A (mV...my) +h

ank
avv V= 0

v

Ak(t) E[Ak(0] + Vv avk(t)

A (t) m (t) + V
v

a
vk

In terms of the centered random variables,

A(t) = Ak(t) - m(t) V
v

a
vk

(t).

v=1

The last equation says that once the mean value functions are

evaluated, the centered random variables evolve according to a time

varying linear system. Thus to determine the evolution of the
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variance - covariance functions it will be necessary to determine the

evolution of the functions avk(t) as well as the mean value function.

To determine the equations for the evolution of the means, sub-

stitute the Karhunen-Loe've expansions in the basic spectral vorticity

equation

Ak(t)
A (t) + / V

v
a

vk
(t)

Rk(t) = mk (t) +/ V
v vs

(t)

d(m
k

(t) +/ V
v
akv (t))

dt f
k ml(t)ml(t) +/V

v
a

kv
(t)" rnA(t)+/V a

n v hv '

Rm
1

(t) + h(t)+/Vv ahv)

This holds uniformly for all values of the expansion parameters Vv,

in particular for V = 0 for all v . Therefore, the equations re-
v

duce in this case to

dmA
(t)

dt = fk[t, m1
1

A(t). rnh
A(t), mR(t),

. , mh (t)]

mR(t) = mR (t, mY Y1

l' ' mh
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Based upon the values of the mean of the state variables, the

mean of the forcing function is determined by statistical regression

techniques and the above tendencies evaluated.

The determination of the variance field is considerably more

complicated and has not yet been done.

Summary

In the last section, three models for the evolution of the 500 mb

constant pressure surface were given. Mean value solutions were de-

sired for all three and the covariance derived for the first two. In

each case, it was assumed that the forcing functions and covariance

functions were explicitly known. This is not the case. Further, the

fields are observed only periodically. To make use of the models it

will be necessary to convert them to discrete time models and to ap-

ply statistical estimation techniques. This will be done in Chapter V.
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V. STATISTICAL AND NUMERICAL TECHNIQUES

Introduction

In the last chapter probabilistic models for the evolution of the

500 mb surface were derived. These models assumed complete know-

ledge of the random forcing function process. Of course such know-

ledge is not available from physical considerations. It is therefore

necessary to statistically estimate the effect of the forcing functions.

In addition, the height field is observed only periodically. Hence, the

continuous models must be converted to discrete time models. These

factors are the considerations of this chapter.

Random Sequence Models

Model 1

Recall the linear model, based upon linearization of the mete-

orological equations had the general form

d-r
dt

= T
A

where TA is a time invariant matrix. The entries on the matrix

TA are determined by the zonal wind profile at the initial time. It

is quite likely that the zonal winds, and hence TA, can be consid-

ered invariant for short periods, say 24 hours. However, for longer
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periods, this assumption may not be good. Consequently, it will be

desirable to allow for TA to change from time to time. The period

over which it may be considered constant can be determined by nu-

merical experimentation. In the methods of this chapter, TA will

be allowed to vary thus making the form of the equation

dt = T
A

(t)A7 + rt

where for Model 1, TA(t) is assumed piecewise constant.

(5.1)

Corresponding to the matrix T
A

(t) is the transition matrix

SA(t, to) which allows the equivalent form of the above random dif-

ferential equation

(t) = SA(t, toa(to, +A- SA(t, s)R(s)ds.
to

The transition matrix satisfies the differential equation

dSA(t, to)
-dt TASA (t' to)

S
A

(t' t) = I.

(5. 2)

Since SA(t, t) will have to be evaluated numerically it is worthwhile

to examine briefly some characteristics of the transition matrix

SA(t, to). If SA(t, to) satisfies the last conditions, then a solution



of the form

A(t) = SA(t, to)x(t0)

satisfies the homogeneous differential equation

dt
= TA(t)A.
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(5. 3)

Using (5. 3) it is easy to see that

d-A7(t) = SA(t, to)dA(to) (5. 4)

In differential form, dAi(t) may be written as

tdA.( ) =

j=1

8A.(t)
dA (t ) i = 1, ,h (5.5)

8Ai(to)

Comparing these last two equations, it is clear that

In approximate form

aA.(t)
s..1-J (t to) _ 3 j = 1, 2, ... , h

aAi(to)

,A.(t)
S..(t, t0'

3

0 6A. (t )
1 o

which is useful numerically.

The 500 mb observations occur at 12 hour intervals. Consider
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the sequence of equally spaced observation times as . t
-1

,.t

Then from (5. 2) it can be seen that

Define

X(tk+1)
SA(tk+1, tk)A(t ) S

A(tk+1' s)R(s)ds.
tk

tk+1

U(k+1)' = S
A

(tk+
1

s )it(s )ds.
tk

Now make a simple change in notation

SA
(k) = S

A
(tk+1'

tk)

A(tk) = A(k) k = 0, ±1, ±2,

The following difference equation then results

A(k +l) = SA(k)A(k) + rj(k+1) (5. 6)

which is the basic discrete equation.

If the forcing sequence {U(k)} is known, then Equation (5. 6)

determines the spectral coefficients uniquely. Since this is not the

case, statistical estimation must be used. It is known that the least

squares estimate of U(k), k > 0 based on the realizations U(k),

k < 0 is given by the conditional expectation of U(k), k > 0, condi-

tioned on the realizations. Applying this conditional expectation op-

erator to Equation (5. 6) results in



EIA(k+1)11T(s), s <0) = SA(k)E(A(k)IU(s), s < 0)

+ E(U(k) I U(s), s < 0)

or, changing to a more convenient notation

m (k+1) = S
A

(k)m (k) + (k+1)

which describes the evolution of the conditional mean of the process

in discrete form. Notational ly, k < 0 are observation times.
A
-"4"

"
Using the discrete form above, if estimates m (k) can be

found, then

A A A n.
m m

u
(k+1) = S

A
(k)m (h) + (k+1)
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(5.7)

describes the evolution of the system. An excellent mehtod of esti-

mating mU has been developed by Jones (1964) for vector random

process in terms of an autoregressive model. Autoregression models

are natural in problems of estimating conditional expectations.

Given the evolution of the spectral coefficients A described

by the above equation and statistical estimates of the conditional mean

of the random forcing vectors, the estimates of the covariance matrix

may be found. Again considering the centered random variables

A (t), the equation for their evolution can be found:

TV(k+1) = SA (k)A Tr°(k) + (k+1) (5. 8)
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-0-where U 0
(k) has an analogous relation to U(k) in terms of the

centered random variables R (t). Now

C ov [A(k+1 )] = EFA'(k+1)-iiA(k+1)][X(k+1)-17riA(k+1)]'

= E[A (k+1)A (k+1)]

Using Equation (5. 8)

C ov [1(k+1)] = E[SA(k )1,.°(k) + ric)(k+1)][SA(k)A:°(k) + Tf(k+1 )1'

= E[SA(k)A0(k) + (k+1 )][10' (k)Sk(k) + 1.3.'(k+1)]

= S
A

(k)E[V(k)A-
A

(k)]S' (k) + S
A

(k)E[T0(k)7Cr'(k+1)]

E[r].°(k+l)Ank)]StA(k) + Ertl'O(k+1 (k+ 1 )] .

(5. 9)

In Chapter IV, it was assumed that the random forcing function

was not dependent on the state variable at any particular time point.

For this reason, the center terms in the above expansion are zero.

Replacing the expectations by covariances,

Coy [A7(k+1)] = S (k) Coy [1(k)]Sk(k) + Cov k+l)] (5. 10)

which describes the evolution of the covariance field for this model.

The actual covariance matrices are not known and must be es-

timated. In the process of fitting the autoregressive scheme to ob-

tain conditional means for Equation (5. 10)) using Jones '(1964)', esti-

mates of the k-step prediction covariance for {U(k)} are obtained.
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When these are substituted into the last equation, the covariance esti-

mates become

A A
Coy [A(k+1)] = SA(k) Coy rA7(k)1S1A(k) + Cov [U(k+1)]

A discussion of the steps necessary to obtain a forecast using

these expressions is given in the Forecasting section of this chapter.

Model 2

In Model 2, the equation for the evolution of the mean values is

nonlinear and thus a somewhat more complicated scheme is necessary

to evaluate the mean value field. Recalling the equation has the form

A
r A Afr(t, m

1
. . mh, ml mh )

where fr is a nonlinear expression. Assuming that the forcing

function means were known, a reasonable numerical integration

scheme for the nonlinear equations is

A
dmAr (t)

mr (t +tt) mr + At dt

dmA

where the tendencies dt

equations, so that

are found from the basic differential



mA(t-i-At) = mA
r (t) + Atfr 1

(m
A (t)... hA(t), (t). mh (t))
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where At is the integration increment, which is chosen small

enough to insure numerical stability.

Recall that the forcing function R is additive and the nonlin-

earity is confined to the quadratic terms of the tendency equation in-

volving the spectral coefficients A. Thus the last equation can be

written

A A A Amr 4+,6,0 mr (t) + At g r 1
..mh ) + mr (t)At (5.11)

Because of numerical integration problems, At must be not

more than three hours. On the other hand, observations are taken at

12 hour intervals. Because observations are taken at the longer in-

tervals, estimates of the forcing function are also given for 12 hour

intervals. Therefore, the above equation will be approximated by

m (k+1) N
A

(mA (k)) + k )

where NA is the nonlinear operator corresponding to the first two

terms and

t
k+1

mu(k+1) = mR(t)dt

tk



93

is the effect of the random forcing function. If m is estimated by

the autoregressive model, the estimation equation becomes

Am (k+1) = NA
(k)) + m (k+1)

which is the same as the estimation equation for the linear model ex-

cept for replacement of the linear transition matrix with a nonlinear

operator.

To determine the evolution of the variance field, it is necessary

to know the evolution of the mean field. Once this is known, the

transformation matrix T
A

(t) is known. Through solution of the

equation

d
t AS (t o' t) = T

A
(t)SA

(to' t)

SA(to' t) = I,

by numerical means, the transition matrix SA
becomes known for

the centered random variables of Model 2. The discrete equation for

evolution of the centered random vector is then

76:°(k+1) = SA(k)A °(k) + -ri°(k+1)

which is identical to that of Model 1 variance field evolution apply.

The equation above is approximate because the Taylor series

approximations (which makes linearity approximate) and because TA
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is known only from estimates of partial derivatives at times k > 0.

Following the arguments in Model 1 for the covariance function,

the covariance estimates are

and

Coy (-IL0(k)) = Cov (A(k))

Coy (T50(k)) = Coy (U(k))

A n A
Cov (A(k+1)) = SA(k) Cov (A(k))Sk(k) + Cov (13(k+1))

The covariance estimate of U(k) is the k-step prediction covariance

determined in the process of fiting the autoregressive scheme. As

with Model 1, the cross covariance of fi(k+1) and A(k) have been

assumed zero for each lc.

.Model 3

The method of solution for the conditional mean is identical to

that for Model 2. Since the equations for the underlying model of the

variance field were not derived, no discrete equation is given.

The estimation of U0 in this model is considerably simpler

than in Models 1 and 2. In this model, the forcing function is depen-

dent on the state variable A but not on the past values. But both

A and U are spectral coefficient vectors and hence the only non-

zero correlation is with like components. Thus U. = f.(A. ) is the
J J

regression equation, and simple regression estimation is used.



95

Forecasting

To achieve a forecast using the random forcing function models,

the processing is divided into two phases. The first phase is the pre-

processing necessary to set up the statistical autoregression model

for the effect of the forcing function. The second phase processing

makes the actual forecast. The steps necessary are outlined below.

Preprocessing

The preprocessing begins by selection of a period, say 30 days,

prior to forecast time. The 60 field observations during this time

are each converted to spectral form. The tendency equation for the

model being used is set up at each observation time and a pure dynam-

ic prediction made for the next 12 hours. A comparison is then made

between the dynamically predicted coefficients and the observed coef-

ficients. The difference between the predicted and observed coeffi-

cients, called the residual, is then stored and the process repeated

at each observation time.

When using Model 1 or Model 2, the autoregressive scheme is

then fitted to the residual coefficients. Jones' technique successively

fits higher order regressions until it is found that the coefficient

'r-natri5c for a:oi_,a,c1.di_tiorial 'term is effectively zero.

In addition, the technique generates unbiased
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estimates of the one step prediction covariance matrix. Based on

these, unbiased estimates of the 1K-step prediction covariance matrices

are generated.

When using Model 3, simple regressions are set up to predict

the residual based on the values of the corresponding spectral coeffi-

cient.

Prediction

For the first 12 hour forecast, a dynamic prediction of the spec-

tral coefficients is made using Model
,,1

or Model 2 based on observed

data at the time the forecasts matt Using the autoregression sta-

tistical model, a one step prediction of the residual is made. The

one step slictIPtat prediction is then added to the dynamic prediction

as a statistical correction. These coefficients are then used to gen-

erate a 12 hour predicted 500 mb height chart. The one step predic-

tion covariance matrix is used to generate a variance or standard

deviation chart. In this case, the first step, it is assumed that the

height field at forecast time is observed with no error. Having pro-

duced the 12 hour forecast, this forecast is used as initial conditions

for the next step. The above process is repeated. A dynamic fore-

case and a two step statistical prediction of the residual are made and

these are combined. The initial conditions for this second stage fore-

cast are the first stage combined forecast and thus are random. Hence
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the covariance of the second stage forecast, as noted, in each of the

covariance prediction equations is the sum of the two stage autore-

gression prediction covariance and the term accounting for the ran-

dom output of the first stage prediction. A variance field can be con-

structed and a chart made up. The process is then repeated for as

many stages as needed or until the uncertainty reflected in the vari-

ance field makes the forecast of doubtful use.

The prediction of the mean field for Model 3 is the same as for

Model 2 except that residuals are predicted by regression at individ-

ual times.
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VI. CONCLUSIONS AND FURTHER RESEARCH

Summary and Conclusions

In the preceding two chapters, the development of statistical

dynamic models for preodiction of the 500 mb pressure surface over

the northern hemisphere was carried out. The primary objective was

to demonstrate a reasonable approach to combined statistical-

dynamic techniques for forecasting such a pressure surface. An ex-

amination of the literature has shown that such techniques, when

properly implemented on a digital computer, will significantly improve

forecasts based on the nondivergent barotropic dynamic model. These

methods are adequately general to handle prediction of other fields as

well. Further, they suggest techniques for extended range forecast-

ing which may be a significant improvement over present methods.

Further Research

The material presented in Chapters III, IV and V has laid the

foundation and suggests avenues of further work. These may be out-

lined in two areas- -numerical experimentation and theoretical work

on further models.
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Theoretical Research

(1) The derivations of the nonlinear combined model are not com-

plete for Model 3. In this case, no equations for the evolution of

the variance field were derived. This should be completed and

the corresponding discrete time model derived.

(2) In the models developed, each observation was assumed perfect.

While this is done in current meteorological forecasting, it is un-

realistic. Kalman models have been developed to account for ob-

servation error but are still to restrictive to be directly applied

to the problems of this study. Research in Kalman models con-

tinues and should be closely followed for possible application to

forecasting problems.

(3) The techniques developed in this study were based on general

equations in order to allow application to baroclinic or multi-

level dynamic models. Probably the first research in this direc-

tion should be on two parameter or two level models. There are

many to choose from. The reasons for selecting one of these are

simplicity of the models and, second, the controversy associated

with them. A great deal of effort has been expended on perfecting

two level models (Shuman. and Hovermale, 1968) but without

much success. The barotropic models do better. The reasons

for the lack of success of these simple baroclinic models has
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never been adequately explained. To improve the two level pre-

diction by a combined statistical-dynamic model presents a defi-

nite challenge.

(4) There are several indications that the model based on lineariza-

tion of the meteorological equations (Model 1) has greater utility

than heretofore thought. These indications are:

(a) Haurwitz (1953) has derived a slightly more general model

than that of Chapter III by linearization of the equations of

motion and vorticity equation over the sphere. This corres-

ponds closely to the dynamics of Model 1 above. For the

same reasons recounted in Chapter III, combined statistical

dynamic models based on this equation are natural especially

in light of Jones' success in spherical harmonic prediction

by statistical methods.

(b) Blinova (1943) used such a model for short term prediction

by spherical harmonics with quite good results, thus indicat-

ing its short term utility.

(c) More important, perhaps, is comparison of the model with

the latter data on 500 mb height analyzed by Eliasen and

Machenhaur (1963). An example of the evolution of several

spectral coefficients is shown in Figure 7 (Deland and Lin

(1965) confirm their data). Of primary interest is the em-

pirical evidence that the coefficients evolve in an almost
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Figure 7. Values of phase angle for tendency fields for 500 mb
surface; three harmonic components (after Eliasen and
Machenhaur, 1963).
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linear manner for remarkably long times. This opens the

possibility of prediction of weekly means of 500 mb height

30 days in advance. Combined with prediction of thickness

and temperature by an advective model, the possibility of ex-

tended range precipitation predictions emerges. Such pre-

diction could be made by regression on the prediction mean

fields (Cohen and Jones, 1967).

(5) An area of strong contemporary research is in diffusion models.

Consider the stochastic differential equation

dxn(t) = m[xn(t), t]dt + o-fxn(t), tidyn(t)

where this equation means

xn(t) = xn(to) + m[xn(s), s]dx + J cr[xn(s), 4:1yn(s)
0 0

Under certain conditions xn(t) may be approximated in mean

square by a diffusion process x(t) (continuous Marhov process)

with x(t) defined by the equation

dx(t) = m[x(t), t]dt + 1 cr[x(t), ao-[x(t), dt + o-(x(t), t)dy(t)
2 ax(t)

where y(t) is a Brownian motion process (Wong and Zakai,

1965). A similar result holds for vector process (Clark, 1967).
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It is easy to see the utility of such a representation. First, by

similar techniques to those used in Chapter IV, the conditional

mean value could be found. It seems evident that the form of

the estimation problem for the mean value would be the same as

in the above models. The advantage of the diffusion process rep-

resentation is the existence of the Fokker-Plank andKolomogorov

equations which describe the evolution of the distribution function.

Numerical Research

(1) Each of the models suggested above should be programmed and

their prediction skill evaluated. The skill should be compared

with the corresponding model without statistical correction.

(2) Extended range forecasting with the linear model should be

checked. In addition, attempts to predict mean total precipita-

tion for one week, 30 days in advance, should be tried.
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