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The importance of data visualization is becoming increasingly more substantial

to the field of optimization and engineering design where a carefully designed visu-

alization of the data on decision parameters (i.e Decision Space) and performance

functions (i.e Objective Space) is critical to the success of the decision making

process.

One of the main goals of data visualization is to unveil the different patterns,

trends and relationships that the data encapsulates. However, this aforementioned

goal becomes challenging when visualizing multidimensional decision and objective

space data both qualitatively and quantitatively. In fact, in order to discover

the patterns and inter-variable relationships that the data encapsulates, a holistic

visualization approach, where all the variables are simultaneously represented, is



required. However, holistically mapping multidimensional data in a single 2D

visual is a challenging task that could result in a cognitively overwhelming output.

Consequently, we aim to reach a balance between the desired holistic view that

facilitates pattern discovery, and a clear user friendly visualization.

In this thesis, we present a novel holistic visualization model for pattern discov-

ery in multidimensional decision and objective space data structures and demon-

strate its usage in a watershed conservation plan context. We use a coincident

nodes and multi-edge network map visualization to represent users’ decisions in

terms of watershed conservation plan practices and goals without losing the ge-

ographical knowledge provided by a map. In reality the decision and objective

space are highly related. This simultaneous combination of the geographical in-

formation, decision space and objective space yields to an efficient identification

of existing patterns that are further validated using a set of predefined statistical

methods.
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Chapter 1: Introduction

In today’s data driven society, data exploration and understanding are more preva-

lent than ever. With the rising awareness of the importance of data and its poten-

tial applications, data collection has grown extensively across different sectors of

society. In addition, a lot of effort and resources have been put into understanding

and unveiling meaningful insights from data sets.

One of the main approaches to presenting and exploring data sets is data visu-

alization. Data visualization is a subfield of computer science that aims to uncover

visual patterns about a particular data set. More specifically data visualization

enables its users to make, explore and validate hypothesis from their data [11]. For

all these reasons, a lot of attention has been surrounding data visualization across

many disciplinary fields [13][27]. However, data visualization in general constitutes

a challenging task and simultaneous multivariate data visualization in particular

can be both tedious and confusing [6]. In fact, encoding multidimensional data in

a single 2D representation while keeping the cognitive load in a manageable range

can be an arduous task. In addition, data visualization is critical when it come to

optimization and decision making. In fact carefully designed visualization of the

data on decision parameters (i.e Decision Space) and performance functions (i.e

Objective Space) is very important to the success of the decision making process.

Moreover, representing data that sits into two different spaces (decision and objec-
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tive space) linked by a clear semantic relationship, requires a lot of effort to be put

into assigning the right graphical representation to each end every nominal vari-

able [12]. Additionally, visualizing that multidimensional data both qualitatively

and quantitatively, while keeping in mind the limitations of the human perception

adds considerably to the complexity of the problem. A holistic, complete view

of all the variables is usually more efficient and accurate than the aggregation of

distinct visuals when it comes to uncovering meaningful patterns and insights but

it can become cognitively challenging to understand [27]. For this reason, in order

for the visualization to be successful, a balance between the desired holistic view

and the usability and clarity of the representation must be reached.

Because of the identified challenges surrounding simultaneous multivariate de-

cision and objective space visualization, we study different visualization method-

ologies as well as different theoretical foundations of information visualization to

examine their guidelines and limitations in order to contribute with a novel vi-

sualization model that holistically visualizes a multivariate decision and objective

space data set. The upcoming chapters provide a walk through the design choices

and trade offs that were used in our novel visualization model as well as a demon-

stration and assessment of this visual technique in a watershed conservation plan

context.
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Chapter 2: Literature Review

Data visualization has been used in different fields in order to better understand

and investigate a data set. It aims to efficiently communicate patterns, trends and

relations present in the data set [36].

Different visualization like histograms, scatter plots, box plots and bar charts

are effective in terms of outliers and gaps detection in low dimensionality scenarios

[31]. Even though box plots provides statistical insight about a visualized data set,

this method is only suitable for quantitative data and can only visualize a single

attribute at a time. Similarly, even though histograms provide clear distribution

visualization, they are limited to a single variable visualization. On the other hand,

scatter plot could result in a cluttered visualization caused by the potential data

overlap which is common when studying big data sets [23]. Additionally, scatter

plots are limited to a maximum number of three attributes per visualization which

make them unsuitable for multidimensional data set visualization [31]. Heat map

is another visualization model that is limited in terms of the number of attributes

displayed. In fact, heat maps are colored matrix representing a total of two vari-

ables at a time. Hot spot maps, However, are specifically targeted toward data

that has geographical information as one of its dimensions. Even though hot spot

maps are efficient for visualizing quantitative data with the added geographical

context, this visualization model is only suitable for visualizing one variable at a
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time.

Small multiples of any of these visualizations could cover all the dimensions of

a multivariable data set, however, it would be challenging for the human brain to

mentally link the visuals and discover meaningful and non misleading insight.

The three objective projection glyph [18] and the parallel coordinate plots [15]

[37] are commonly used for decision and objective space representation.

Figure 2.1: Example from [18] of a decision and objective space representation
using the three objective projection glyphs.

[Figure 2.1] and [Figure 2.2] have been used in [18] for a visual analysis and

comparison of four water supply strategies in the Lower Rio Grande Valley in

Texas.
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Figure 2.2: Example of the visualization of objective space variables[18].

These two visualization methods also used in [14] and [40] have the advantage

of being multivariable visualizations that perform better than other visulization

methods like box plots and scatter plots when it comes to displaying multiple

variables at a time. Projection glyphs visualizations [Figure 2.1] have the advan-

tage of representing up to three variables in both the decision and objective space.

However, although the representation in the objective space provides easily distin-

guishable results, augmenting the cardinality of the decision space can diminish

readability. In fact, when considering the legend in [Figure 2.1] the decision at-

tributes represented by the size and direction of the arrows are hardly visible when

using the ”big picture” without zooming in. Moreover, the absolute maximum of

a three variables representation in both the decision and objective space presents

a limitation especially when a study is taking more than three objective variables

into consideration which is very common in practice. One way that has been used
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to face that limitation is to pair the projection glyphs visualization with a parallel

coordinate visualization [18]. However, mentally linking two different visulizations

could be both challenging and misleading. The parallel coordinate visualization

is a multi-objective variable representation that is particularly suitable for the

detection of conflicts and correlation between objective variables. However, this

previously mentioned visualization method is limited to the visualization of one

decision variable at a time [18] with makes it unsuitable in terms of simultaneously

visualizing the decision and objective space.

When representing structured data with all its inherent relations [13] graph

drawing visualizations are a suitable solution. Since simultaneously visualizing the

decision and the objective space could be considered as a structured data represen-

tation problem, it would be more suitable to consider graph related representations.

2.0.0.1 Graph Drawing and Flow Maps

Graph drawing or network visualization diagrams are interdisciplinary information

visualization methods that have been used in different applications such as social

network analysis, bioinformatics, linguistics, economics, chemistry and computer

network diagrams. Network diagram are two dimensional representations com-

posed of a set of nodes and edges displayed using a specific layout [39]. Different

design options of the same network diagram fulfill different aesthetic and usability

criteria.

There are different ways of visualizing graphs. The tree layout [35] [29] is a
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layout where each pair of nodes is connected by only one edge in a hierarchical

ordering. Radial map [9] is a way of representing a tree graph while expanding

outwards on the periphery of concentric circles. Balloon tree layout [13], represents

the children of each node on the circular surrounding of that node. These afore-

mentioned layouts fall into the simple graph category where each pair of nodes

is linked by means of only one edge. On the other hand, multiple edge graphs

or multigraphs allow the presence of loops around a pair of nodes. The presence

of multiple edges between nodes allows information gain in terms of visualization

especially when representing complex relationships that cannot be contained in a

simple graph.

Flow map visualization models are mainly used in cartography [38]. They are

obtained by the superposition of maps and flow charts. The main goal of a flow

map is to represent a certain movement between regions [16] [17]. It is common

for a flow map visualization to assimilate the importance of a movement with the

thickness of the edge between two geographical regions.

Even though multiple edge graph drawing gives some flexibility in terms of

the number of variables visualized, that multi-variable visualization is restricted

to qualitative visualization. Moreover, using edges for visualizing certain variables

implies that those variables represent a semantic connection between two nodes.

When aiming for a simultaneous qualitative and quantitative visualization of

both the decision and objective space of a data set, we should think about eas-

ily distinguishable shapes [12] and also a way of visualizing the quantity of each

variable.



8

In the next sections of this thesis, we propose a novel coincident nodes, multi-

edge network visualization for both decision and objective spaces.

Since our proposed method shares some of its characteristics with graph draw-

ing and flow maps, we follow some of the graph drawing and flow maps aesthetic

criteria that have been proven to be efficient for usability purposes and relevant

for our specific representation model.
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Chapter 3: Methodology

Visualizing multidimensional data with two distinct qualitative spaces, imposes sig-

nificant challenges. On the other hand, separately visualizing variables in different

graphs and trying to mentally link the different variables together can constitute a

big cognitive load for the user and can end up being misleading. Simultaneously vi-

sualizing both qualitative and quantitative multidimensional data, can easily result

in a cluttered representation, thus decreasing its usability. Even though [Section

2.0.0.1] presents interesting representations that could encapsulate the connection

between two different spaces of variables, these visualizations are not the best

candidates for a multidimensional data representation.

Because of the absence of a general framework for information visulization, it

is hard to predict in advance the outcome as well as the success and validity of

a certain visulization. In order to compensate this theoretical lack, the authors

of [27] have drawn some frameworks from associated fields to provide guidelines

for information visualization. From assimilating the understanding of a visual

representation to the understanding of a language authors of [27] develop three

information visualization theories based on the analogy with the linguistic model

and communication theory.

Considering the specific visualization goal that we want to achieve, we choose

to focus on the first visualization theory presented in [27]. Predictive data centered
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theory is going to help guide the construction of our visualization model.

3.1 Predictive Data Centered Theory

Predictive Data Centered Theory [27] focuses on the data itself in order to facilitate

its exploration and understanding. This theory is based on the abstraction of

characteristic features in order to enable pattern discovery. It is important to take

into consideration the type, structure, properties of the data in order to have a

preliminary idea about the type of pattern to target.

A data set could be thought of as a set of values within a particular context

that is characterized by [27]:

• Attributes which constitute a list of the observed properties.

• Referrer is a data element that encapsulates an aspect of the context that

the data is reflecting. In our case the decision and objective spaces could be

referrers.

The goal of visualizing a data set is to discover some meaningful patterns that

lead to a better understanding of the phenomena it is presenting. Authors of [10]

define a pattern as an ”expression E in some language L describing facts in a

subset FE of a set of facts F”.

Since we are visualizing numerical attribute values that are ordered and both

the decision and objective space that have a sementic ordering between them, the
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patterns that we are looking to observe are mainly ”increase, decrease, peaks and

low points”[27].

Using characteristics that best align with the aforementioned theory, we intro-

duce our Coincident Nodes Multi-Edges for Simultaneous Decision and Objective

Space Visulization in its general form.

Let the graph G = (V,E) be composed of two types of sets, each set represents

a different space where:

• V =
⋃n

i=1 vi is the set of nodes representative of the the first referrer: the

decision space.

• E =
⋃m

i=1 ei is the set of edges representative of the second referrer: the

objective space.

The decision space corresponds to the set of variables that are modifiable and

the objective space represents the set of variables that result from the decision

space.

Since the decision space variables of each node influence all the objective space

variables, the linkage between each pair of nodes simultaneously represents all the

objective space variables.

This representation can visualize a maximum of two spaces each space contain-

ing n and m variables respectively. The number of variables in the different spaces

could be but is not necessarily the same.

The differentiation between the two spaces or referrers is based on the shape

(e.g nodes, edges) that characterizes each space. Additionally, the link between the
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two spaces is representative of the actual link present in the data set. Moreover, our

proposed visualization aims to represent both quantitative and qualitative data.

The quantitative data is represented by the diameter of the node and the width

of the edge. This representation is meant to help discover pattern of ”increase,

decrease, peaks and low points” [27] as described in section 3.1.

On the other hand, the qualitative data is represented using the color coding

guidelines presented in the following section [Section 3.2].

3.2 Qualitative Color Coding

Even though color choices can be highly subjective, the color palette selection in

data visualization is not solely based on aesthetic criteria [32][7]. In color theory,

the use of color to encode information depends on the type of data itself. There

are three types of data:

• Sequential data: Data that goes from a minimum low value to a maximum

high value. This type of data is better visualized using a gradient scale with

the darkest hue corresponding to the maximum value and the lightest hue

corresponding to the minimal value [32][30][7].

• Divergent data: Data values that sit on opposite sides of a spectrum with

a neutral value in the middle. This type of data requires the usage of two

different colors that decrease in intensity toward the middle of the scale

[32][7][30].
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• Qualitative data: Qualitative data is nominal [5] rather then numerical. This

type of data requires the usage of as many distinct hues as the distinct

variables present.

In our visualization case, we are using colors to encode qualitative data. How-

ever, multi-dimensional data can pose certain difficulties when selecting a color

palette [5]. In fact, when mapping colors to a qualitative set of data, the colors

have to be distinguishable and contrasted. In addition to that, the usage of color

coding should not exceed seven colors [5] in order for the human brain to be able to

discriminate information easily [20]. Kelly the author of [19] came up with a list of

the twenty two most contrasted colors that help distinguish the different variables

they represent. We based the color selection of this visualization on Kelly’s list of

color as well as our own experimentation with different color palettes.

Additionally, in order to obtain an easily readable visualization, we follow some

aesthetic guidelines that are presented in the following section [Section 3.3]

3.3 Aesthetic Criteria

Even thought there is no consensus on the effectiveness of curved edges over straight

edges in graph drawing [17], some research [28] show that curved edges with a

minimal number of bends improves the usability of a visualization. In addition,

we notice a wide use of curved lines in flow map representation [Section 2.0.0.1].

Authors of [17] have conducted a user study that proves that curved lines in

flow maps minimizes the error rate compared to straight lines. According to these



14

previous research findings and to the specificities of our visualization model that

represents multiple edges between two nodes, straight edges are not a suitable

option. Thus, we choose to use symmetrically curved edges while minimizing the

number of bends.

Moreover, findings in graph drawing, show that minimizing the number of edge

crossing facilitates graph readability by reducing the error rate [17].

Even though in flow maps arrow heads are the most common design option

for indicating direction, graph drawing has different ways of indicating direction

such as tapered flow width or using convention that eliminate the necessity of

the direction indication. In our case, knowing that we are displaying multiple

variables at a time and knowing that the edge width is going to be used to represent

quantitative data, we choose to follow a top down direction convention [17].

To summarize, different design principles have been used in our model in or-

der to increase readability and minimize visual clutter. Some of these methods

were inspired from efficient aesthetic criteria used in graph drawing and flow map

diagrams [17] and others were proper to the characteristics of our multi-variable

visualization method:

• Symmetric curved edge.

• Higher curve for longer edges.

• Radial representation of edges around nodes.

• Minimal edge on edge and edge on node crossing.
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• Minimal edge overlapping.

• No arrow heads for direction.

• Coincident nodes with different opacity.
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Chapter 4: Context and Case Study

A watershed [Figure 4.1] is an area of land between different water flowing streams

that separates rivers, sub-basins, aquifer or even the ocean [33].

Figure 4.1: Watershed example [33].

The data we are working with is the results of an interactive optimization

method embeded in the web-based WESTORE tool [4]. The WESTORE tool [4] is

based on interactive genetic algorithms [3] which are evolved optimization methods

that adapt their search according to the users’ feedback. Because of the fact that

watershed sub-basins stakeholders are in the center of the WESTORE [4] tool,

this process takes into account both the quantifiable goals and the unquantifiable

subjective preferences.
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4.1 Eagle Creek Watershed

The proposed visualization model is demonstrated for the Eagle Creek Watershed

(ECW) [Figure 4.2] [2] [24]. Located in central Indiana, USA , this watershed is

one of the water supplies of the city of Indianapolis. It is mainly composed of

agricultural lands used for growing corn and soybean [26]. The major concerns of

this watershed and similar watersheds located in the Midwest region are related to

the water quality and the frequent flood episodes [Figure 4.4] in the last few years

[26]. Now, multiple efforts haves been put into increasing the implementation of

best management practices and numerous stakeholders are interested in studying

conservation plan practices and their impact. The Eagle Creek Watershed, is

divided into 130 [Figure 4.3] sub-basins. Out of the total number of sub-basins,

ECW contains 108 rural sub-basins where conservation plans can be applied and

22 remaining urban sub-basins that are not considered for conservation practices.

Figure 4.2: Eagle Creek
outline [1].

Figure 4.3: Eagle Creek
sub-basins [1].

Figure 4.4: Eagle Creek
stream [1].
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4.2 Users Involved

A previous study [26] recorded the WESTORE interaction of 20 participants. Out

of these 20 participants and for data consistency reasons we used the data of 7 sur-

rogate volunteers (four females and three males) from both Indiana University and

Oregon State University. these students have been trained to act like sub-basins

stakeholders and thus constitute a representative sample of the desired population.

Moreover, each user has been assigned a different sub-basins group from the seven

sub-basins groups in Figure 4.5. Six out of the seven sub-basins groups were a ran-

domly chosen set of neighboring sub-basins that represent different local regions

of the watershed [26]. The seventh group, on the other hand, included the entire

watershed. Only after being assigned their sub-basins of interest, do the users

start evaluating watershed conservation plan based on both quantitative goals and

subjective preferences relative to their sub-basins of interest.

4.3 Data Acquisition Process

The users from whom we are acquiring the data for our study belong to the Modal

A Surrogate users. Modal A represents the original calibrated SWAT (Soil and

Water Assessment Tool) model [21] used for the Eagle Creek Watershed [24]. Af-

ter being familiarized with the WESTORE tool, the participants proceed to the

experiment. Once the user starts a new experiment with specific conservation

practices and watershed goals, each one of the conservation plan related variables
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Figure 4.5: Map of spacial distribution of sub-basins of interest (SBint) in the
watershed. Model A Surrogate represent the 7 surrogate users in this study and
the top right map represents the water stream in the 6 local sub-basins of interest
[26].

would correspond to a decision variable for each and every sub-basin and each

watershed goal variable would be mapped to an objective function for each and

every sub-basin [26].

In this particular study, each sub-basin’s decision space is composed of two

variables relatives to the chosen conservation plan practices:
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• Cover crops: Represented by a binary value corresponding to either the

presence or the absence of cover crops in every eligible sub-basin. Value

1 encodes a positive decision toward cover crop implementation and value 0

represents a negative decision toward the implementation of cover crops.

• Filter strips: Represented by a real number that corresponds to the width of

the filter strip applied on each eligible sub-basin.

As for the objective space resulting from each sub-basin’s conservation plan,

the WESTORE tool optimizes a total of four performance variables:

• Peak flow reduction: Reduction of the maximum water flow resulting from

the conservation plan applied to each eligible sub-basin.

• Cost reduction: Relative to reducing the cost of the decision implementation

in each eligible sub-basins.

• Nitrate reduction: Corresponds to the resulting nitrate reduction in each

eligible sub-basin after implementing a particular conservation plan.

• Sediment reduction: Corresponds to the resulting sediment reduction in each

eligible sub-basin after implementing a particular conservation plan.

In each experiment, the user goes through interactive sessions. In each session

the participant gets a set of twenty design alternatives with different decision and

objective values. The participant would then rate the design on a scale of one to

three (”I don’t like it”, ”Neutral” ,”I like it”) [26].

There are two different types of sessions for the user to interact with [26]:
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• Introspection sessions: These sessions originate either from a previous non-

interactive search or from the most highly rated designs resulting from the

previously completed human guided search sessions.

• Human guided search sessions: These sessions are the result of an interactive

genetic algorithm [4] where previous users ratings are used as one of the

objective functions to generate the next population of designs.

The data we are using is retrieved from two sets of introspection session and

two sets of human guided search sessions [Figure 4.6].

The first introspection session is the same for all the users. In fact in this

session the users interact with the same twenty initial designs. However, the second

introspection session depend on the most highly rated designs by each user in the

prior human guided search sessions.

Once the experiment is over, the WESTORE tool saves all the raw data relative

to the highly rated designs by each user in all the sessions. The data collected

during this experiment, is what we are going to use in this thesis in order to

demonstrate the results of our novel visualization methodology.

Figure 4.6: The sequence of the different sessions. HS stand for Human guided
search session[26].
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Chapter 5: Proposed Visualization Technique

5.1 Visualization Metrics

The metrics used to quantify the decision spaces alternatives depend on the type

of the decision variables:

• Binary variables are quantified by the probability of implementation of a

particular decision in each sub-basin (e.g cover crop attribute).

Probs,Ri,k =
Σlik

l=1ccimps,Ri,l,k

LRi,k

(5.1)

where:

– ccimps,Ri,l,k[25] is the binary decision in the sub-basin s of the design

l. This decision is relative to user k that attributed a rating Ri to the

design l.

– LRi,k [25] represent the total number of designs that got assigned the

rating Ri by user k

• Real variables (e.g filter strip attribute) are quantified by calculating the

mode. The mode is the most repeated value in a sub-basin. This method
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has been selected among other methods in order to identify the most liked

or disliked values relative to a particular practice.

Modes,Ri,k = argmax(count(FSWs,Ri,l,k)) (5.2)

where:

– FSWs,Ri,l,k [25] is a unique value of the filter strip width to be imple-

mented in the sub-basin s of the design l. Moreover Ri represents the

rating that user k assigned to the design alternative l.

The metric used to quantify the objective space variables is the average reduc-

tion:

AvrReducs,Ri,k =
Σlik

l=1Reducs,Ri,l,k

LRi,k

(5.3)

where Reducs,Ri,l,k [25] is the resulting reduction value in the sub-basin s of the

lth design. In addition, Ri represent the rating given by the user k to the design

alternative l.

5.2 Proposed Multi-Variables Network Map Visualization

Additionally to the aesthetic criteria presented in [Section 3.3], our visualization

method demonstrated for the watershed conservation plan is characterized by fixed

node positions. In fact, the position of the nodes corresponds to the map placement
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of the sub-basins thus keeping the additional referrer relative to the geographical

information present.

Knowing that commonly used watershed visualizations fail in representing all

the conservation plan variables, our goal with the proposed network map visual-

ization is to simultaneously represent both the decision space and the objective

space without loosing the geographical information provided by a map.

In this watershed conservation plan network structure, each node represents a

sub-basin and each edge represent a water stream connecting a pair of sub-basins.

(a) (b) (c)

Figure 5.1: Nodes and edge example: (a) a node representation of two sub-basins:
sub-basin 68 and sub-basin 69, (b) an example of a water stream edge representa-
tion connecting sub-basin 68 to sub-basins 69 and (c) the combination of the edge
and the two nodes.

In order to describe the user’s decision in each sub-basin, we superpose two

nodes with different colors [19] and opacity:

• A blue opaque node represents the cover crop decision and its size is based
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on the probability of cover crop implementation Probs,Ri,k [Eq 5.1] [25]

• A green transparent node represents the filter strips decision and its diameter

is based on the normalized mode normalized(Modes,Ri,k) of all the design

alternatives in a particular sub-basin that have been assigned the same Ri

rating from participant k. For each one of the 108 implementable sub-basins,

the mode Modeg,Ri,k [Eq 5.2] [25] is computed. The normalized mode is

obtained by using the following scaling equation:

xnormalized =
x− xmin

xmax − xmin

(5.4)

Where xmin and xmax are respectively the minimal and maximal Modes,Ri,k

from the set of computed decision modes relative to user k for all the imple-

mentable sub-basins with the same rating Ri.

The resulting objective space is represented by four edges with distinct colors

[19], one for each objective variable:

• A blue edge represents the peak flow reduction.

• A red edge represents the cost reduction.

• A black edge represents the sediment reduction.

• An orange edges represents the nitrate reduction.
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The color choice is purely based on maximizing the contrast [19] between the

edges. Also, the curvature between the edges is a design decision chosen in order

to conform to an aesthetic criteria that has been proven to improve readability

[17].

Figure 5.3: An example of the possible edge visualizations: (a) peak flow re-
duction, (b) sediment reduction (c) nitrate reduction, (d) cost reduction and (e)
simultaneous visualization of all the objective space variables.

For each one of the objective space variables the width of the corresponding

edge is based on the normalized average of all the design alternatives reduction

values that have been assigned the same rating Ri from the same user k. The

average reduction value AvrReducs,Ri,k [25] of each one of the resulting objective

function (peak flow, cost, sediment and nitrate) is based on [Eq 5.3].

The normalization of an average reduction value at a particular sub-basin is

computed using [Eq 5.4].

Our proposed network visualization covers the totality of the variables from

both the decision and objective space without losing the geographical proximity
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(a) Two decision variables and one objec-
tive variable

(b) Two decision variables and two objec-
tive variables

(c) Two decision variables and three ob-
jective variables

(d) Two decision variables and four objec-
tive variables

Figure 5.2: An example of visualizing all the decision space and x number of objective
space variables. x being in the range of [1..4].
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Figure 5.4: A side by side comparison between the watershed map and the network
representation before adding the decision space and objective space variables. The
numbers that are underneath each sub-basins represent the sub-basins labels.
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Figure 5.5: An example of the simultaneous representation of the decision and
objective space in the ECW.
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(a) One decision variable and one objec-
tive variable.

(b) One decision variable and two objec-
tive variables.

(c) One decision variable and three objec-
tive variables.

(d) One decision variable and four objec-
tive variables.

Figure 5.6: An example of visualizing one decision space variable (cover crops) and x
number of objective space variables. x being in the range of [1..4].
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between the sub-basins. In fact, the positioning of the nodes is consistent with

the actual positions of the sub-basins on the map which minimizes the overlap and

adds a spatial context to the visualization [Figure 5.4][Figure 5.5]. On a broader

sense, the simultaneous combination of geographical information, decision space

and objective space [Figure 5.5] yields to the discovery and identification of existing

patterns presented in more details in the result chapter.

In addition, the proposed decision and objective space network visualization

implementation provides various levels of the visualization of the watershed as

shown in [Figure 5.2][Figure 5.6] [Figure 5.7][Figure 5.8]. This visualization offers

different granularity levels. The visualization can be customized from a global ”big

picture” visualization [Figure 5.5] of all the decision and objective space variables

to a more targeted version focusing on one or more chosen variables. Some of the

possible combinations are shown in [Figure 5.2][Figure 5.6] [Figure 5.7][Figure 5.8]

but the user has the possibility to choose any other combinations.

5.3 Analysis Methods

The strength of the relationship between the different variables is evaluated using

the correlation matrix [11]. The correlation metric is a way of analyzing how

different variables are related to each other.

In order to compute the correlation matrix between m different variables, we

first evaluate the variance - covariance matrix Σm∗m where the covariance between
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(a) Cover Crops. (b) Filter Strips.

(c) Cover Crops and Filter Strips.

Figure 5.7: An example of all the different levels of decision space visualization.
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(a) Peak Flow Reduction. (b) Cost Reduction.

(c) Sediment Reduction. (d) Nitrate Reduction.

Figure 5.8: An example of single variable decision space visualizations.
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a variable x and a variable y is defined by [Eq 5.5]:

σxy =
1

n
Σn

i=1(xi − x)(yi − y) (5.5)

where :

• xi is the observed variable relative to a particular sub-basin.

• x is the average of the observed variable for all the sub-basins.

• n is the total number of sub-basins.

The correlation matrix is then defined using [Eq 5.6]:

ρxy =
σxy
σxσy

(5.6)

Where σxy is the covariance between a variable x and a variable y and σx and

σy represent respectively the standard deviation of variable x and variable y.
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Chapter 6: Results and Discussions

In this section we present the visual and analytical results for our novel coincident

nodes multi-edge network map visualization demonstrated for the watershed con-

servation plan practices. The analysis part in general and the correlation analysis

in particular is used as an established statistical method [27] to validate the visual

patterns observed.

6.1 Patterns Prior to Human Guided Search

The ”I like it design” user preferences relative to the introspection 1 session are

summarized in [Figure 6.1] [Figure 6.2].

Simultaneously visualizing the decision and objective space, enables us to ex-

plore the quantitative and qualitative data in its entirety and thus uncover useful

insight about the data set.

From a visual perspective [Figure 6.1] [Figure 6.2], we notice some similari-

ties in the decision space preferences and almost an identical preference in terms

of the objective space variables at the watershed level. Moreover, we notice an

interesting salient pattern in the main watershed stream where the reductions in

peak flow, sediment and nitrate reach their maximum. In addition, we notice an-

other repeated pattern in the upper region of the network map where the cost and
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(a) Participant 1 (b) Participant 2

(c) Participant 3 (d) Participant 4

Figure 6.1: Decision and objective space coincident nodes multi-edge network map
visualization of participant 1 to 4 in Modal A surrogate for the ”I like it design” rating
relative to a non-Interactive Genetic Algorithm based session.
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Participant 5 (a) Participant 6

(b) Participant 7

Figure 6.2: Decision and objective space coincident nodes multi-edge network map
visualization of participant 5 to 7 in Modal A surrogate for the ”I like it design” rating
relative to a non-Interactive Genetic Algorithm based session.
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sediment reduction reach their maximum.

The main watershed stream is representative of the sub-basins where the peak

flow reduction [Eq 5.3] is greater or equal to 50%. The yellow boundary [Figure

6.1] [Figure 6.2] around certain sub-basins represents the sub-basins of interest of

each particular participant.

Solely from a visual assessment [Figure 6.1] [Figure 6.2], we can already see

how, even though, the decision space presents some differences between users in

the whole watershed scale, the objective space holds the same patterns and presents

extremely similar objective variable values [Figure 6.3].
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Figure 6.3: The objective space skeletons of all the individuals of group A surrogate
taking into consideration only the ”I like it design” rating generated by the non-
Interactive Genetic Algorithm.

These visual results enable us to make a preliminary hypothesis about the po-
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tential agreement between the individuals of group A surrogate for the ”I like it

design” rating using a non-Interactive Genetic Algorithm. This potential agree-

ment is going to be further be emphasized in the remaining of this section.

6.1.1 Variables Correlation Patterns

The correlation metric is known to be the natural choice when measuring similarity

[22]. In fact it gives us an idea about the covariation in a particular data set. Using

the correlation metric [Eq 5.6] at the whole watershed level between all the decision

and objective space variables of each participant one at a time, we notice a low

positive correlation of 0.55 between cover crops and filter strips for all individuals.

Moreover, Peak flow and nitrate reduction appear to be very highly correlated.

This high correlation of 0.972 between peak flow and nitrate reduction implies

that the increase of one variables is followed by the increase of the other variable.

The later observation is noticeable visually in [Figure 5.8d][Figure 5.8a]. In fact,

the nitrate and peak flow skeleton follow the same visual patterns, having minimal

values at the whole watershed level except in the main stream area where both

reductions reach their maximum. In addition, even though, the peak flow and

sediment reduction seem to be highly correlated in the main watershed stream

[Figure 5.8a] [Figure 5.8c], they don’t present a high positive correlation on the

whole watershed level. This analytical finding is further emphasized visually by

the fact that contrary to the peak flow reduction, the sediment reduction reaches

also its maximum values in the upper region of the map [Figure 5.8c].
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At the main watershed stream level, the correlation analysis for all the partici-

pant one at a time, confirms the visual hypothesis [Figure 6.1] [Figure 6.2]. In fact,

the peak flow, sediment and nitrate reduction [Figure 5.8a] [Figure 5.8c] [Figure

5.8d] are very highly positively correlated with a value of 0.91 for all individuals.

This pattern is justifiable by the fact that the water flow is usually proportional to

the presence of sediment and nitrate. Moreover, we notice a slight increase in the

correlation between the cover crops and filter strips reaching at its highest 0.71 for

individual 2 and at its lowest 0.57 for individual 7.

6.1.2 User Preferences Correlation Patterns

Objective Space: The correlation analysis between all the individuals and con-

sidering the whole watershed, emphasizes the visual agreement hypothesis relative

to the conservation plan goals between participants [Figures 6.3]. In fact, these

high correlation values fluctuate between a minimum of 0.989 and a maximum of

1 for the objective space.

Decision Space: The correlation analysis between participants at the level of

the whole watershed, shows that the cover crop correlation values are in the range

[0.856,0.984] which indicates that when the cover crop implementation increases

for a particular individual, it follows that same trend for the other individuals.

Moreover, the filter strips is the only variable where the inter-participant cor-

relation reaches a minimum as low as 0.678. This value is relative to individual 7,
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Figure 6.4: Average separation in the decision space between individual 2 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

who seems to show the least amount of positive correlation with the other users in

terms of filter strip width. On the other hand, the set of filter strip inter-individuals

correlation reaches a maximum of 0.961 with the majority of the values ranging in

the interval [0.813, 0.898].
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Figure 6.5: Average separation in the decision space between individual 3 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

Whether it is from a visual or analytical perspective, we notice some differences

in the decision preferences at the level of the whole watershed scale. Moreover, in

order for a conservation plan to be successful, we need to be able to detect and

take into consideration the potential disagreement between stakeholders in their

respective sub-basins of interest. Since each participant has only a particular group

of sub-basins of interest, we choose to further investigate the average separation

between the decision space variables relative to individual j sub-basins of interest

and the values of the decision space variables that the rest of the individuals have
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chosen for the sub-basins of interest of individual j.

Figure 6.6: Average separation in the decision space between individual 4 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

[Figure 6.4 to 6.9] represents the separation in decision space preferences be-

tween the values chosen by a particular individual j for his sub-basins of interest

and the values chosen by the rest of the participants for the same group of sub-

basins.
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Figure 6.7: Average separation in the decision space between individual 5 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

In this analysis, we omit the separation relative to individual 1 sub-basins of

interest since it consists of the whole watershed.

The least amount of filter strip separation is relative to individual 2 sub-basins

of interest [Figure 6.4] with four out of six separation values being zero and with

an overall separtion percentage of 0.857%. As for cover crops, the highest amount

of agreement is found in the sub-basin group of individual 3 [Figure 6.5]. In fact,

the values of cover crop separation are in the range [0, 0.056] with the average

overall percentage being equal to 2.41%.
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Figure 6.8: Average separation in the decision space between individual 6 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

In addition, considering all the separation values [Figure 6.4 to 6.9], we notice

that the minimum separation value is 0% for both the variables of the decision

space. On the other hand, the maximum separation value reaches 25% for the

cover crop decision variable and 44% for the filter strip decision space variable.

The average separation analysis, shows that the the cover crop separation average

is 9.23% and the filter strip separation average reaches 8.53%.

The separation analysis centered around the sub-basins of interests of each indi-

vidual, proves that the differences in the subjective decision space preference using
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a non interactive genetic algorithm session is less than 10% and thus emphasizes

that the stakeholders are rather converging toward an agreement.

Figure 6.9: Average separation in the decision space between individual 7 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

Analytically, the population studied has a relatively low average separation for

the decision space variables and a very high positive correlation for the objective

space variables. This highlights the general visual agreement between the par-

ticipants and also emphasizes the noticeable salient similarities in the objective

space.

Both the visual and analytical findings converge toward the same results. Fur-

thermore, the inter-participants decision space similarities and the conformity ob-
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jective space wise, gives important insight to the decision makers and thus greatly

increases the likelihood of a successfully chosen conservation plan.
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(a) Participant 1 (b) Participant 2

(c) Participant 3 (d) Participant 4

Figure 6.10: Decision and objective space coincident nodes multi-edge network map
visualization of participant 1 to 4 in Modal A surrogate for the ”I like it design” rating
relative to Interactive Genetic Algorithm sessions.
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Participant 5 (a) Participant 6

(b) Participant 7

Figure 6.11: Decision and objective space coincident nodes multi-edge network map
visualization of participant 5 to 7 in Modal A surrogate for the ”I like it design” rating
relative to Interactive Genetic Algorithm Sessions.
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6.2 Pattern Post Human Guided Search

Figure 6.12: The objective space skeleton of all the individuals of group A surrogate
taking into consideration the ”I like it” designs rating generated by the Interactive
Genetic Algorithm.

After analyzing the results relative to the non interactive session, we study the

results of the sessions resulting from the Interactive Genetic Algorithm. In this



52

session we study the same sample population of group A surrogate for the same

”I like it design” rating. Figure 6.10 and Figure 6.11 show the same patterns that

appeared previously in the non-interactive session. In fact, considering the same

river channel threshold presented in [section 6.1], we clearly notice the presence

of the same patterns relative to the high positive correlation between peak flow,

sediment and nitrate. Moreover, looking at the ”big picture” with both the decision

and objective space variables, we observe how the different users present the same

layout with patterns that are resemblant to the introspection 1 patterns.

Looking into the different network map visualizations [Figure 6.10 and Figure

6.11], the same visual insights as the insights relative to [Section 6.1] can be made.

Actually, even though there seems to be some difference between the participant

in the decision preferences, the objective space [Figure 6.12] is clearly holding the

same patterns between different users as well as between the different types of

sessions.

6.2.1 Variables Correlation Patterns

Similar to the session based on the non Interaction Genetic Algorithm, the correla-

tion between the cover crop and filter strips is represented by a rather low positive

value. The highest positive correlation is the one relative to the peak flow and

nitrate reduction.

Going from a non Interactive Genetic Algorithm to an Interactive one, no

change in the main river channel is noticed. In fact, the peak flow, sediment and
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nitrate reduction are still very highly positively correlated [Figure 6.12].

6.2.2 User Preferences Correlation Patterns

Figure 6.13: Average separation in the decision space between individual 2 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

Compared to the non Interactive Genetic Algorithm (IGA) based session, we notice

a slight decrease in the correlation between users relative to the cover crop decisions

that reaches values as low as 0.704 and as high as 0.930.
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Figure 6.14: Average separation in the decision space between individual 3 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

As for the objective space variables, the inter-user correlation is characterized

by a very high positive correlation of 0.99 that agrees with the visual conclusion

drawn earlier in this section and the conclusions drawn from the non IGA based

session. Compared to the previous discussion [Section 6.1], individual 7 still shows

the least amount of agreement with the rest of the group when it comes to filter

strip width.
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Figure 6.15: Average separation in the decision space between individual 4 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

In the upcoming paragraph, we run some separation analysis in the decision

space between the sub-basins of interest in order to identify the presence of po-

tential separation values that could be interpreted as disagreement in the decision

space. Similarly to the analysis performed in [Section 6.1], [Figure 6.13 to 6.18]

represent the average separation in the decision space relative to the sub-basins of

interest of each user.
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Figure 6.16: Average separation in the decision space between individual 5 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

Compared to the non IGA based session, there is a general increase in the

decision space separation [Figure 6.13 to Figure 6.18] relative to the respective

sub-basins of interest of each user. This separation increase is justifiable by the

fact that the IGA specifically tailors its designs to each individual according to his

or her previous preferences. This IGA characteristic is thus more likely to enhance

existing differences between the participants.
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Figure 6.17: Average separation in the decision space between individual 6 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

Similar to section 6.1 findings, the lowest separation is still relative to the filter

strip values of individual 2 sub-basins of interest [Figure 6.13] with and overall

filter strip average separation of 2.539%. On the other hand, the least amount of

cover crop separation is relative to individual 3 sub-basins of interest similarly to

the non IGA based session with an overall average cover crop separation percentage

of 9.349%.

Moreover, considering all the separation analysis [Figure 6.13 to Figure 6.18],

we notice that the average separation percentage of cover crop is 14.67%. In

addition, the average filter strip separation analysis all figures included [Figure

6.13 to Figure 6.18] is equal to 17.46%.
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The average disagreement between users decision space preferences relative to

design generated using IGA, is less than 18%. Even though this separation values

is almost two times higher than the one relative to the non IGA designs decisions,

it is still a relatively small disagreement linked to subjective preferences in terms

of decisions implementation.

Figure 6.18: Average separation in the decision space between individual 7 sub-
basins of interest and the ith individual decision space values for the same sub-
basins.

Moreover, although, the decision space separation percentage relative to IGA

design sessions is higher than the ones relative to the non IGA design session,

the objective space remains unchanged. That indicate that the GA algorithms

generates designs that are more user specific while searching for an optimal common

solution objective wise.



59

To conclude, in both the non IGA and the IGA case, the users are not reaching

a 100% agreement when it comes to the decision space, the small separation in

their preferred conservation plan practices represents a tolerable difference that is

due to the subjective human preference. From both the visual and the analytical

observations, the participant are converging toward a rather similar conservation

plan with identical objective space values and relatively similar decision space

values.

6.3 Inter-Session Comparison

Comparing non IGA related designs and IGA related designs from both a visual

and analysis observation, the participants are maintaining similar patterns in these

two sessions.

In order to verify the hypothesis that the participants are maintaining similar

preferences when moving from one type of session to another, we compute the

correlation between the two different types of sessions for each individual and each

variable [Figure 6.19].
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Figure 6.19: Correlation between interactive and non interactive sessions for each
individual and each decision and objective space variable.

From [Figure 6.19] we first notice that the highest close to 1 correlation values

for each individual are relative to the objective space variables. This emphasizes

the fact that the participant are remaining consistent with their conservation plan

objective when moving from one session type to another. In addition, this very

high between sessions similarity in the objective space also highlights the already

noticed visual agreement between individuals objective space wise.

Moreover, analyzing the between session correlation in the decision variable

space, we notice that the lowest correlation values are the ones related to the filter
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strip variable with the lowest value reaching 0.7587 for individual 3. Even though,

both correlation relative to filter strips and cover crops reach values as low as

0.7587 and 0.8543, these values still indicate a positive high correlation between

the two types of sessions decision space wise.

Finally, [Figure 6.19] numerically justifies that the participant remained fairly

consistent with the decision and objective space choices when moving from a non

IGA based session to IGA based sessions. These findings agree with the visual

assessments and provide decision stakeholder with more confidence in the conser-

vation plan data collected.
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6.4 Hot Spot Map and Network Map Visualization

Figure 6.20: A side by side comparison between a single variable (cover crops) hot
spot map representation and our holistic network map visualization.

Figures 6.20 shows a side by side comparison between a hot spot map used for the

eagle creek watershed conservation plan visualization and our novel network map

visualization model.

The hop spot map is a single variable representation thus it only provides
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knowledge about one variable independently of its interaction and influence on

other variables. In fact, if we consider our data set as a set of records M and

dimensions N [28], the number of values used in the hot spot map visualization

is equal to 130 ∗ 1. On the other hand, our network map visualization is a multi-

dimension visualization that uses 130 ∗ 6 values to generate the representation.

There is more information encapsulated in the second network map visualization

than in the hot spot map. Moreover, visualizing multiple variables simultaneously

adds the information of the relationship between dimensions N∗(N−1)
2

[28], in our

case 15 pairwise relationships between the dimensions are represented in our visu-

alization not counting 3-ways, 4-ways or N-ways relationships between the different

dimensions.

Moreover, due to the small amount of information visualized, the hot spot map

visualization does not provide the user with a selective information-content [27].

Additionally, mentally linking a set of uni-variate hot spot maps in order to get

an understanding of the ”big picture” and the underlying patterns can become

cognitively challenging and could end up being misleading.

Since having a holistic complete visualization [8] plays a crucial role in pattern

discovery, the goal of our novel visualization methodology is to provide a holistic

view with carefully chosen graphical attributes that are both easy to discriminate

[12] and reflective of the connection between the two spaces of the data set. In fact,

our network map visualization model enabled the discovery of interesting pattern

in the pilot watershed conservation plan study. The discovered patterns that were

further analytically validated provide a global and local understanding to guide
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stakeholder in their posterior decision making process.
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Chapter 7: Conclusion

In this thesis, we presented our novel multidimensional decision and objective

space graph visualization and demonstrated its usage in a watershed conservation

plan context. The main goal of this visualization model is to provide the user

with a holistic view of all the variables in a single 2D visual in a way that favors

the discovery of meaningful insights and patterns. In fact, this holistic complete

view is important especially when visualizing decision and objective space related

variables that happen to carry a semantic relationship between the two spaces.

Preserving that inter-variable connection facilitates the pattern and trends dis-

covery. Moreover, along with the holistic view, our visualization also provides a

way of separately visualizing each dimension or a combination of dimensions. The

demonstrated simultaneous visualization in the watershed conservation plan con-

text facilitated the process of patterns discovery and resulted in an understanding

of inter-variable and inter-user relationship that is in accordance with the results

of data analysis. As demonstrated in the results section, this visualization enabled

us to gain interesting insight that would be helpful for posterior decision making

process.
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7.1 Limitations and Future Work

Simultaneously visualizing multivariate data with all its inter-variable connections

is a challenging task that can easily result in a cluttered, cognitively challenging

visualization. For this reason, one of the limitation of our visualization is the

limited number of attributes in the decision space. In fact, in the demonstrated

watershed conservation plan visualization, the number of decision space variables

is equal to two when the number of objective space variables visualized reaches four

variables. We limit the number of visulized decision space variables to a maximum

of three variables in order to not exceed seven variables simultaneously visualized

and avoid cognitive overload [20]. This seven simultaneously visualized variables

limit is relative to the usage of color coding that should not exceed seven colors [5]

in order for the user to be able to easily discriminate the different attributes[20].

Moreover, due to the high dimensionality of the data set visualized, we sacrifice

the ability to show finely grained quantitative details of each variable. In fact,

we can still visualize important high and low point patterns of each variables but

this visualization doesn’t provide a representation of the actual quantitative values

of each data point. In addition, in general the patterns and correlation between

the attributes of a data set are not already known by the user and the goal of

data visualization is to provide that knowledge gain by unveiling meaning insight

about the data. However, since we don’t have a preliminary knowledge about the

trends and patterns encapsulated by the data, we cannot confidently assess the

effectiveness of a particular visualization [34]. In thesis, we validated our data
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visualization to a certain degree by using data analysis in general and correlation

analysis in particular. However, reaching a complete confident validation would

require information visualization to be governed by a clearly defined theory or set

of theories [28] which is still an open area of research.
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