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Abstract. We consider uncertainty quantification in the kinematic magnetohydrodynamic frame-
work. We first demonstrate well-posedness of the uncertain forward problem, and then describe the
application of stochastic collocation in detail. We perform an error analysis of the method, describ-
ing the necessary assumptions and regularity properties of the parameters to guarantee convergence
of the method.

1 Introduction

Magnetohydrodynamics (MHD) is the study of an electrically-conductive medium flowing through
a magnetic field [12]. It concerns the development and interactions of fluid-flow, magnetic fields,
and electric fields and currents. There are various environments in which the physics of MHD
govern the behavior of a system. These different applications operate under separate conditions,
and thus various assumptions can be made to simplify the numerical burden.

We focus on the power-generation capabilities of MHD, which involves applying a large magnetic
field to an electrically conductive plasma, artificially creating an electric field [12]. This allows us
to neglect the development of the induced field, as the applied field will have far greater magnitude.
As well, to further simplify the computations, we prescribe the fluid-flow based on other models [8]
[7]. This greatly simplifies the computational load, while still being a sufficient representation of
an MHD generator.

Using an artificial MHD system to generate power has been studied previously [14]. As MHD
power is proportional to the strength of the magnetic field squared, it was not until recently that
the production of strong enough magnetic fields made MHD generators a viable power source. This
has led to renewed interest in MHD generators for many applications. Of great interest is what
power can be expected from such generators, and thus optimization of operating conditions is of
concern. Using the validated deterministic model from [11], we use COMSOL [1] and MATLAB
[?] to investigate the propagation of uncertainty within the system.

By changing the angle of electrodes and altering the load placed on the channel, real-time opti-
mization of an operating MHD generator is feasible. The optimal angle and load are based on



the operating conditions of the generator [12]. However, these values are not directly measur-
able, and thus must be estimated to determine these optimal optimization parameters. Therefore,
the optimization of the generator must consider uncertainty, where each random parameter has
an associated probability distribution. We thus propose the following work, where we establish
well-posedness of the forward problem, building on work seen in [11]. We then go onto develop a
numerical method to deal with the aleatoric uncertainty associated with estimating the parameters’
distributions.

Many different uncertainty quantification techniques exist, and are used in a variety of applica-
tions. One simple approach is the Monte Carlo method. This involves sampling the distribution,
and averaging the deterministic solutions to give an expected value and standard deviation [13].
Although robust, with a convergence rate on the order of N−1/2, where N is the number of samples,
it is quite slow [9]. The method we implement dramatically increases the convergence rate through
the stochastic-grid we use, as well as the method of averaging the deterministic solutions. In the
following, we implement an approximation method called stochastic collocation (SC) [13]. Utilizing
a sparse grid, we show that the ‘curse of dimensionality’ which often afflcits uncertainty quantifica-
tion, can be reduced while maintaining a high degree of accuracy [4]. This will allow for the model
to be used in both the parameter estimation and optimization problems under uncertainty.

We begin by stating the well-posedness of the system under uncertainty. Then, we go into detail
regarding the SC method and choice of grid. Finally, we conclude with an error analysis of the SC
method, showing that the random error diminishes sub-exponentially. Numerical demonstration of
the method can be seen in [10].

2 Well-Posedness

First, note a notational choice made for this paper. Any mathematical object, function, parameter,
etc., is a vector in R3 or a mapping to R3 if it is bolded. All other mappings will be defined as
the paper proceeds.

Let the spatial domain for our system be given by D ⊂ R3, open with compact closure and denote
the boundary as ∂D. We denote the stochastic probability space (Ω,H, p), where Ω is the set of
outcomes, H is a given sigma algebra of events, and p is some continuous probability measure. We
work with the kinematic MHD system, where the fluid-flow, u, is given. We further assume that
the induced magnetic field is negligible compared to the applied magnetic field [3], B, which we
also assign. For power-generation purposes, we also give the conductivity, σ, electron-mobility, µe,
and ion-mobility, µi. Physically, we require that µe, µi > 0 on their domains. We use the standard
definition of the hall parameter and ion-slip parameter [12], e.g. for x ∈ D, ω ∈ Ω

βe(x, ω) = µe(x, ω)||B(x)||l2 , and βi(x, ω) = µe(x, ω)µi(x, ω)||B(x)||2l2 .

We also utilize the conductivity tensor given in [11], but adjusted to include the stochastic domain.
This is given by

σ(x, ω) = σ(x, ω)

(
I − βe(x, ω)

||B||l2
[B]× −

βi(x, ω)

||B||2
l2

[B]2×

)−1

,

where I denotes the identity matrix in R3×3 and [B]× is the matrix form of the cross-product.
Invertibility of this matrix can be shown by the physical restriction µe, µi > 0. Under these



definitions, the random MHD kinematic system is given by: find the induced current density,
Ji : D × Γ→ R3, and electric potential, V : D × Ω→ R that satisfy

σ−1Ji(x, ω)−∇V(x, ω) = 0 ∀x ∈ D, p.a.e. ω ∈ Ω, (1a)

−∇ · Ji(x, ω) = ∇ ·
(
σ(x, σ)(u(x, σ)×B(x))

)
∀x ∈ D, p.a.e. ω ∈ Ω, (1b)

with boundary conditions

Ji · n = −
(
σ(u×B)

)
· n and tr(V) = 0 on ∂D, p.a.e. ω ∈ Ω,

where n is a unit-vector normal to the boundary of D. We denote the system (1) the random
strong form of the kinematic MHD governing equations. We establish well-posedness by following
a similar approach to what was seen in [11], converting (1) into a weak form, then subsequently an
operator form, and finally applying the Babuska-Brezzi-Kovalevskaya (BBK) theorem [5] for exis-
tence and uniqueness of solutions. Continuous dependence on the parameters follows immediately
from continuity of integration, the dependence shown in [11], and the continuity of the composure
of two continuous functions.

We now define a random function space. We only seek solutions that are square-integrable with
respect to the random domain. Notationally, this space is given by

L2,p(Ω) :=
{
f : Ω→ R

∣∣∣ ∫
Ω
f2(ω)p(ω) dω <∞

}
with norm

||f ||L2,p = E[f ] =

(∫
Ω
|f |2(ω)p(ω) dω

)1/2

We also define the deterministic solution spaces for Ji and V respectively, i.e.

V (D) :=
{
f ∈ (L2(D))3 : f·n = −

(
σ(u×B)

)
·n
}
, W (D) := W 1,2

0 (D) =
{
f ∈ H1(D) : T (f) = 0

}
.

where n is a vector normal to the surface of D, and T (f) is the trace of f on D.

Taking the tensor product between these two, we define the random solution space for Ji as

V := V (D)× L2,p(Ω) = {f : D × Ω→ R3
∣∣∣ f(·, y) ∈

(
L2,p(Ω)

)3
, f(x, ·) ∈ V }.

Similarly, define W := W (D) × L2,p(Ω) as the random solution space for V. We define the norm
on V as the averaging norm, i.e.

||F||V =
(
E
[
||F||2V

])1/2

and similarly define the norm on W to be the averaging norm using || · ||W . Given that V,W are
both Hilbert spaces, as showin in [11], it follows that V ,W are also Hilbert spaces. Multiplying (1)
by appropriate test functions and integrating, the spatially-weak form of the system is given by:
find Ji ∈ V ,V ∈W that satisfy

E

[∫
D
σ−1J · φ

]
− E

[∫
D
∇V · φ

]
= 0 ∀φ ∈ Ṽ , (2a)



− E

[∫
D
Ji · ∇ψ

]
= E

[∫
D

(
σ(u×B)

)
· ∇ψ

]
∀ψ ∈ W̃ . (2b)

We denote (2) the random weak form. Defining the bilinear operator A : V × V → R as

A(F)(G) = E

[∫
D
σ−1F ·G

]
.

Similarly, we define B : V ×W → R as

B(F)(g) = −E

[∫
D
F · ∇g

]
.

Finally, define

G(ψ) = E

[∫
D

(
σ(u×B)

)
· ∇ψ

]
.

Using these, the random operator form is given: find Ji ∈ V ,V ∈W that satisfy

A(Ji) + B′(V) = 0 ∈ V ′, (3a)

B(Ji) = G ∈W ′. (3b)

With this operator form defined, we now present a theorem stating that the system (3) is well-posed.

Theorem: 1. Given u,B ∈ L2,p(Ω) × (L2(D))3, bounded, and σ, βe, βi ∈ L2,p(Ω) × L∞+ (D), i.e.
for each ω ∈ Ω, assume σ, βe, and βi are positive and bounded. Then there exist unique solutions,
Ji,V, to

A(Ji) + B′(V) = F1 ∈ V
′
, (4a)

B(Ji) = F2 ∈W
′
, (4b)

which obey the following a priori estimates:

||Ji||V ≤ ||F1||V ′ +
1

b

(
||A||L(V ,V

′
)

+ 1
)
||F2||W ′ , (5)

||V||W ≤
1

b

(
||F1||V ′ + ||A||L(V ,V

′
)
||F2||V ′

)
, (6)

where b is the bounding constant for B, i.e., b = (1 + Cp.f.)
1/2.

The proof of this theorem follows immediately from [11], with appropriate extensions to the ar-
guments regarding the coercivity and bounding constants of the operators, and the fact that, as
V,W are Hilbert spaces [11], V ,W must be as well. Note now that letting F1 = 0, F2 = G implies
well-posedness of our system. The bounds on the solutions will prove vital in the error analysis of
our numerical method.



3 Stochastic Collocation

We now turn to a practical approach of solving (2). We seek a numerical approximation to Ji,V in
some finite-dimensional approximation of the solution spaces. We do so by implementing stochastic
collocation, a numerical method used to approximate solutions to random PDEs.

As a method, stochastic collocation is similar to Monte Carlo. Both are non-intrusive and involve
sampling the random space. Each uses these sampled values of random parameters to solve the
deterministic form of (2), and approximate the desired moments by averaging the sampled solutions
appropriately [13]. However, the choice of sampling of the random inputs is not done arbitrarily
for stochastic collocation. Rather, we specifically choose to sample at the zeros of orthogonal
polynomials of the random-space, and thus greatly reduce the number of samples for the same
accuracy comparatively to Monte Carlo [6]. As well, stochastic collocation uses a weighted average
over a numerical average, with weights corresponding from the choice of approximation to the
random space, and subsequently the basis chosen to represent it. Under appropriate assumptions
on the regularity of the system, this will result in sub-exponential convergence in the random
direction, as seen in the error analysis of the method. With this in mind, we now describe in detail
the collocation method, but first make a necessary assumption to apply the method.

3.1 Finite-Dimensional Noise

To use the stochastic collocation method, one must show that there are a finite number of random
variables describing the noise [2]. One such way is to truncate a KL expansion of each random
parameter. To this end, we assume that the only random variables in the system are real-valued
random parameters describing the electron mobility, µe, ion-mobility, µi, conductivity, σ, and
fluid-flow, u, and furthermore, that each are described by a finite number of independent random
variables. For notational simplicity, let the set of random variables be denoted {mk, k = 1, . . . ,M}.
With a change of variables, one can transform all of the random variables into uniform random
variables, and therefore we make the final assumption that ∀k, mk ∼ U(0, 1).

Now, let Γk := mk(Ω), or the image of the events under the real-valued random variable, and define
Γ := ΠM

k=1Γk, the tensor product of each Γk. Let ρ be the joint independent probability distribution
for the random variables [m1, . . . ,mM ], ρ : Γ → R+, ρ ∈ L∞(Γ). Thus, by the Doob-Dynkin’s
Lemma, [9], we have that the solutions Ji,V can be described by a finite number of random variables
as well, e.g.

Ji(x, ω) = Ji(x,m1(ω), . . . ,mM (ω))

and similarly for V. Applying this idea to the above problem, we attempt to find Ji ∈ V ×
L2,ρ(Γ), V ∈W × L2,ρ(Γ) that satisfy∫

D
σ−1Ji(x, y) · φ(x, y) dx −

∫
D
∇V(x, y) · φ(x, y) dx = 0 ∀φ ∈ V, for ρ.a.e. y ∈ Γ (7a)

−
∫
D
Ji(x, y) · ∇ψ(x, y) dx =

∫
D
σ(x, y)

(
u(x, y)×B(x)

)
· ∇ψ(x, y) dx ∀ψ ∈W, for ρ.a.e. y ∈ Γ

(7b)



For notational convenience, we now define Ṽ := V × L2,ρ(Γ) and W̃ := W × L2,ρ(Γ) as the new
random solution spaces for which we seek a numerical approximation. Note now that this is
equivalent to (2), only with the alternative probability space (Γ, H, ρ).

We can now define the finite-dimensional (FD) random solution subspaces in which we search for
our approximate solutions. We begin with the spatial dimension. Define Vh ⊂ V to be the standard
finite element approximation to V, with quadratic polynomials, on some Delauney triangular prism
mesh th with max side length h. Similarly define Wh ⊂W on the same mesh th. The meshes used
for this problem have been described extensively in [11], and thus are not discussed further here.
We now turn to the FD approximation to the random function space, L2

ρ(Γ). We do so iteratively,
for each subspace Γk. For k = 1, . . . ,M , define PNk(Γk) ⊂ L2,ρ(Γk) as the span of all polynomials
on Γk of degree up to Nk, for Nk ∈ N. In each direction Γk, we choose a basis of orthogonal
Legendre polynomials {rjk}

Nk−1
j=0 [13] that satisfy∫

Γ
rjkr

l
kρ(y) dy = δjl

where δjl is the Dirac delta function. Note that Legendre polynomials have well-documented zeroes
and allows for the nesting of the zeroes at subsequent levels [4]. Define N = [N1, . . . , NM ], as a set
of orders for each dimension of Γ. Then we approximate our random L2(Γ) space with a tensor
product of these polynomial spaces, i.e.

PN (Γ) =
M∏
k=1

PNk(Γk).

Note that the dimension of PN is
M∏
k=1

Nk < ∞. The FD approximation to the random solution

spaces are thus given by:

Ṽh,N := Vh ⊗ Pρ(Γ) and W̃h,N := Wh ⊗ PN (Γ).

With these spaces defined, we can apply the stochastic collocation method. It is worth noting that
the FD noise assumption is a crucial step in turning the stochastic system of equations into a de-
terministic one, and subsequently allowing the use of finite-element and finite-difference techniques
in approximating the solutions [2]. It follows that this system is well-posed, by the continuity of
the measure ρ, and the well-posedness of the equivalent form, as seen in Section 2.

3.2 Method

The SC method solves the deterministic system numerous times, whose solutions are then used to
build an interpolate approximation to the solutions of (7). The deterministic system is given by:
for fixed y′ ∈ Γ, find Jhi ∈ Vh,Vh ∈Wh such that∫

D
σ−1(x, y′)Jhi (x, y′) · φ(x, y∗) dx−

∫
D
∇Vh(x, y′) · φ(x, y′) dx = 0 ∀φ ∈ Vh, (8a)

−
∫
D
Jhi (x, y′) · ∇ψ(x, y′) dx =

∫
D
σ(x, y′)

(
u(x, y′)×B(x)

)
· ∇ψ(x, y′) dx ∀ψ ∈Wh. (8b)



We now perform the collocation, i.e. the collecting of solutions sampled at the zeros {ymk,l}, l =
1, . . . ,m of each polynomial rmk in each direction Γk and building a polynomial chaos interpolant.
By using the Legendre polynomials, we are able to use the Clenshaw-Curtis (CC) or Fejér method
of numerical quadrature, which guarantees nesting of the zeros in each random direction [13].
Furthermore, we reduce the number of points by constructing a Smolyak sparse grid [4]. Although
there is not a closed-form method of giving the number of nodes required in each domain [6], we
let Ñk denote the total number of points in the Γk direction. A more detailed discussion of the
construction of such grids can be seen in [4] or [6]. A representation of the difference between full
and sparse CC or Fejér grids can be seen in [10].

With this in mind, we let ymkk for mk = 1, . . . , Ñk, k = 1, . . . , N be the mth unique zero in the
direction Γk. To ease the notation, define m = [m1, . . . ,mM ] as an array of indices, and define
ym = [ym1

1 , . . . , ymMM ] as a collection of zeroes in each random direction. Lastly, define the product
of the polynomials of a given order in each direction as

rm(y) =

M∏
j=1

r
mj
j (yj).

Thus, the polynomial chaos expansion of Ji is given by

Jh,Ni (x, y) =

Ñ1∑
m1=1

. . .

ÑM∑
mM=1

Ji(x, ym)rm(y) (9)

and for V,

Vh,N (x, y) =

Ñ1∑
m1=1

. . .

ÑM∑
mM=1

V(x, ym)rm(y) (10)

Let C0(Γ) denote the set of continuous functions on Γ and we can define an interpolation operator,
INV : C0(Γ)× V (D)→ PN (Γ)× V (D) as, for f ∈ C0(Γ)× V (D)

INV (f) :=

Ñ1∑
m1=1

. . .

ÑM∑
mM=1

f(x, yk)rm(y). (11)

This implies immediately that Jh,Ni = INV (Ji), under appropriate assumptions. We similarly define
INW (g) : C0(Γ)×W (D)→ PN (Γ)×W (D) as, for g ∈ C0(Γ)×W (D)

INW (g) :=

Ñ1∑
m1=1

. . .

ÑM∑
mM=1

g(x, yk)rm(y). (12)

and we have that Vh,N = INW (V), under appropriate assumptions. For both Ji and V, these assump-
tions are discussed in the Section 3.3. Using the interpolation, we arrive at a deterministic form of
estimating the expected values of the true solutions. Using Gaussian quadrature to approximate
the integral yields

E
[
Jh,Ni

]
=

Ñ1∑
m1=1

. . .

ÑM∑
mM=1

wmJi(x, yk), and E
[
Vh,N

]
=

Ñ1∑
m1=1

. . .

ÑM∑
mM=1

wmV(x, yk)



where wm :=
M∏
j=1

w
mj
j and w

mj
j :=

∫
Γj

(
r
mj
j (yj)

)2
ρ(y

mj
j ) dyj , e.g. the weights of the polynomial in

each direction.

3.3 Regularity Assumptions

Before going through the error analysis of the stochastic collocation method, we must first establish
some regularity properties of the solutions. We do so through assumptions about the random
parameters, and then show the implications on Ji,V. These results will prove necessary to guarantee
convergence of the collocation method. For simplicity of discussing these assumptions, we define

g(x, y) := σ(x, y)
(
u(x, y)×B(x)

)
.

We begin with a lemma that will be used to show that the continuity of the random parameters
with respect to y can be directly transferred to Ji,V, under suitable conditions.

Lemma 1. Under the assumption that g ∈ C0(Γ)×W , Ji ∈ C0(Γ)× V and V ∈ C0(Γ)×W .

The proof of this lemma follows immediately from the bounds given in Theorem 1. We thus turn to
the more complex task of bounding the derivatives of Ji,V in each random direction. For notational
simplicity, let

∂kn :=
∂k

∂ykn

We now make another major assumption regarding the implementation of the SC method. We
require that for the remainder of this paper, Γk is bounded for each k. 1 For the power-generation
application, this assumption is rooted in the physical limitations of what the expected parameters
values can take, and how regular their distributions are.

To bound the derivatives of the solutions, we will make use of the bounds in Theorem 1, and begin
by taking the derivative of (8) with respect to one of the random directions. We also consider
the deterministic form of (2), i.e. for fixed y, and let A,B represent the deterministic equivalent
operators of Ã, B̃ respectively. Through an iterative application of the product rule and solving for
the desired operators on the left-hand side of the system, the differentiated solutions to (7) satisfy

A(∂knJi) + B′(∂knV) = F k ∈ V ′, (13a)

B(∂knJi) = Gk ∈W ′. (13b)

Here,

F k(φ) := −
∫
D

( k−1∑
j=0

(
k
j

)
∂k−jn (σ−1) ∂jn(Ji)

)
· φ, and Gk(ψ) :=

∫
D
∂kng · ∇ψ. (14)

Note that it is obvious by their definition that F k ∈ V ′ and Gk ∈W ′ for all k ∈ N, by construction.
Through an application of Theorem 1, we have that the solutions ∂knJi, ∂

k
nV exist, are unique, and

obey the following bounds:
||∂knJi||V ≤ ||F k||V ′ + C||Gk||W ′ , (15)

1Should this be stated more obviously? Should we make the assumptions a bit more obvious?



||∂knV||W ≤
1

b

(
||F k||V ′ + ||A||L(V,V ′)||Gk||V ′

)
, (16)

where C = 1
ab

(
||A||L(V,V ′) + a

)
. Using this system, we now place bounds on the derivatives of

Ji,V in the random direction that will guarantee the convergence of the SC method. We will need
restrictive assumptions regarding the decay of the derivatives of σ−1,g. These restrictions may
differ in each random direction by the values of the constants only. Thus, for the purposes of the
rest of this section, fix n ∈ {1, . . . ,M}, and thus fix our direction Γn. Dependence of a parameter on
the direction is denoted through the subscript n. We now state the following regularity assumptions
and the resulting regularity properties of Ji,V.

Lemma 2. Assume that

||∂knσ−1||V ′ ≤ α1,k
k!

γkn
, ||∂kng||W ≤ α2,k

k!

γkn
∀k ∈ N

where γn > 0, and the other constants satisfy the inequality

α2,k

||g||W
+
(
α1,k +

k−1∑
j=1

α1,k−j

)
≤ 1.

Then

||∂knJi||V ≤ C1,k
k!

γkn
, and ||∂knV||V ≤ C2,k

k!

γkn

where

C1,k ≤ C||g||W := C0, C2,k ≤
1

b
||g||W ∀k ∈ N

Proof. (By induction for Ji) First, let k = 1. Then by (15), we have

||∂Ji||V ≤ ||F 1||V ′ + C||G1||V ′ .

By definition of F 1, G1, we have

||∂nJi||V ≤ ||∂nσ−1||V ′ ||Ji||V + C||∂ng||V .

By the bounds given in Theorem 1, we have

||∂nJi||V ≤ ||∂nσ−1||V ′C||g||W + C||∂ng||V
≤ α1,1C||g||W + Cα2,1.

Letting C1,k = α1,1C||g||W + Cα2,1 yields the first desired inequality. To see that C1,k ≤ C0,
consider that as j = 1, the sum in (15) is 0. Then we have

1 ≥ α1,1 +
α2,1

||g||W
by assumption.

Multiplying each side by C0 gives

C0 = C||g||W ≥ Cα1,1||g||W + Cα2,1 = C1,k



and the second desired inequality, the bounding constant inequality, is satisfied.

Now, let k ∈ N, and assume that

||∂jJi||V ≤ C1,j
j!

αj

holds for some C1,j ≤ C0, j = 1, . . . , k − 1. Again, by (15), we have

||∂knJi||V ≤ C||Gk||W ′ + ||F k||V ′

≤ C||∂kng||W +

k−1∑
j=0

(
k
j

)
||∂k−jn σ−1||V ′ ||∂jJi||V

By the induction assumption, we have

||∂knJi||V ≤ Cα2,k
k!

γkn
+

(
α1,k

k!

γkn
C0 +

k−1∑
j=1

(
k
j

)
α1,k−j

(k − j)!
γk−jn

C1,j
j!

γjn

)

Here, we separated the j = 0 case from the rest, as these bounds stem from the deterministic

inequality, and not the lemma assumptions. As well, note that

(
a
b

)
= a!

b!(a−b)! . Thus, we have

||∂knJi||V ≤ Cα2,k
k!

γkn
+

(
α1,k

k!

γkn
C0 +

k−1∑
j=1

k!

j!(k − j)!
α1,k−j

(k − j)!
γk−jn

C1,j
j!

γjn

)

=
k!

γkn

Cα2,k +

(
α1,kC0 +

k−1∑
j=0

α1,k−jCj

)
︸ ︷︷ ︸

C1,k

which yields the first inequality. To see that C1,k < C0, consider that by assumption

1 ≥
α2,k

||g||W
+
(
α1,k +

k−1∑
j=1

α1,k−j

)
.

Multiplying each side by C0 yields

C0 ≥ Cα2,k +
(
C0α1,k +

k−1∑
j=1

C0α1,k−j

)
.

Using the induction assumption that C1,j ≤ C0 yields

C0 ≥ Cα2,k +

(
α1,kC0 +

k−1∑
j=0

α1,k−jC1,j

)
= C1,k

and the second inequality follows. A similar proof will achieve the same result for V and the
constants C2,k.



Note that the constants α1,k and α2,k may also depend on n, but that dependence is neglected for
notational sake. With these regularity assumptions, we can define an appropriate analytic extension
to each function of Ji and V.

Lemma 3. Under the assumptions of Lemma 2, Ji and V admit analytic extensions in the region
of the complex plane Σ(Γn, γn) := {z = yn + iy2 ∈ Γn × C : yn ∈ Γn and |y2| ≤ a}.

Proof. We show this for V only, as a similar approach will show the same in any spatial direction
xj for Ji,xj .

2 Here, we define y∗n = {yk}k 6=n as a set of values in Γk for k 6= N . Define the extension
of V on Σ(Γn, γn) with an analytic power-series,

V(z, y∗n, x) =
∞∑
k=0

(z − yn)k

k!

∣∣∣∣∣∣∂knV(yn, y∗n,x)∣∣∣∣∣∣
W
. (17)

We now seek to show that this series converges. To this end, consider

V(z, y∗n, x) =

∞∑
k=0

(z − yn)k

k!

∣∣∣∣∣∣∂knV(yn, y∗n,x)∣∣∣∣∣∣
W

≤
∞∑
k=0

(z − yn)k

k!
C2,k

k!

γkn
by Lemma 2

≤ 1

b
||g||W

∞∑
k=0

(z − yn)k

γkn
as C2,k <

1

b
||g||W ∀k.

This converges by a geometric series argument for (z − yn) < γn, implying that the region of
convergence for our series is given by the subspace Σ(Γn, γn), yielding the desired result.

Note that this implies for both Ji,V, the domain in which there exists an analytic extension is
directly related to the decay of the derivatives of g, σ−1 in the direction Γn, as this domain is given
by, for each Γn, Σ(Γn, γn). A faster decay of the derivatives results in a larger area in which the
analytic extension exists. We now move onto the error analysis section.

4 Error Analysis

Prior to proving the convergence of the SC method, we present two crucial lemmas necessary for
bounding the random approximation error. These are as given in Babuska [2], and pertain to
bounding 1-D random polynomial interpolation. They will be then adapted to bound the interpo-
lation error on the entire random-space Γ. To this end, similar to the notation seen in Section 3.3,
fix n ∈ {1, . . . ,M}, which in turn fixes our direction, Γn, and all other constants dependent upon
the direction Γn, such as the Γn interpolation order, Nn. Then we have a general interpolation
lemma on a 1-D random space.

2Recall here that Ji = (Ji,x1 ,Ji,x2 ,Ji,x3)



Lemma 4. For any Banach function space, H, define the tensor product norm of H with L2
ρ(Γn)

as

||f ||L2
ρ(Γn)×H :=

∫
Γn

||f ||2H ρn(yn) dyn

Then the 1-D random interpolation INnH : C0(Γn)×H → L2
ρ(Γn)×H, defined for f ∈ C0(Γn)×H,

INnH (f) :=

Ñn∑
mn=1

f(yn,x) rmkn (yn)

is continuous under this norm. We define the tensor product norm of H with C0(Γn), as

||f ||C0(Γn)×H := max
yn∈Γn

||f(yn,x)||H

Then the interpolation error satisfies

||f − INnH (f)||L2
ρ(Γn)×H ≤ KH inf

w∈PNn (Γn)×H
||f(yn)− w(yk)||C0(Γn)×H (18)

with constant KH independent of the choice of Nn.

We also wish to bound the best-approximation error. Thus, we consider this next lemma.

Lemma 5. For some Banach function space, H, let v ∈ C0(Γn) × H. Assume v also admits an
analytic extension in the region of the complex plane Σ(Γn; τ) for some τ > 0. Then it holds:

min
w∈PNn (Γn)×H

||v(yn)− w(yn)||C0(Γ)×H ≤
2

Ψn − 1
exp

(
−Nn log(Ψn)

)
max

z∈Σ(Γn;τ)
||v(z)||H

where 1 < Ψn = 2τ
|Γn| +

√
1 + 4τ2

|Γn|2 .

As stated previously, proofs of both Lemma 4 and Lemma 5 can be found in [2]. With these
established, we now turn to bounding our complete Γ interpolation error. We do so iteratively. We
first break apart our function space, separating as

L2
ρ(Γ)× V ≡ L2

ρ(Γk)×
(
L2
ρ(Γk∗)× V

)
where Γk∗ are all random directions except Γk. Similarly define the product of the values of any
parameter in every direction but the kth as ◦k∗ :=

∏
j 6=k ◦j , with this being a real product, tensor

product, or set of values where appropriate. 3 We define the norm on the latter space as the
averaging norm, i.e. for f ∈ L2

ρ(Γk∗)× V ,

||f ||L2
ρ(Γk∗ )×V :=

∫
Γk∗
||f(yk∗ ,x)||2V ρk∗(yk∗) dyk∗ ,

3Wording is hard here.



which corresponds to the Hilbert tensor product construction. Of course, this also implies that it
is a Banach space, and thus Lemmas 4 and 5 both apply. Denote the product space of the analytic
extension region as

Σ(Γ, γ) :=
M∏
j=1

Σ(Γj , γj)

where γj is as defined in Lemma 3. Then we have the following interpolation bounds for our specific
operators.

Lemma 6. The interpolation operators, INV , INW are continuous, and obey the following interpola-
tion bounds. For f ∈ C0(Γ)×V and g ∈ C0(Γ)×W , with analytic extensions in the region Σ(Γ, γ),
we have

||f− INV (f)||L2
ρ(Γ)×V ≤ K1 max

z∈Σ(Γ,τ)
||f(z)||V

M∑
j=1

2

Ψj − 1
exp

(
−Nj log(Ψj)

)
(19a)

||g − INW (g)||L2
ρ(Γ)×W ≤ K2 max

z∈Σ(Γ,τ)
||g(z)||W

M∑
j=1

2

Ψj − 1
exp

(
−Nj log(Ψj)

)
(19b)

where Ψj :=
2γj
|Γj | +

√
1 +

4γ2j
|Γj |2 > 1, and K1,K2 are two constants independence of the choice of N .

Proof. We begin with continuity, and must prove this iteratively. As it will follow with similar
logic, we show these properties for the interpolation operator INV only. For notational convenience,
define

Vk∗ := L2
ρ(Γk∗)× V

We define the kth interpolation operator INkVK∗ : C0(Γk)× Vk∗ → L2
ρ(Γk)× Vk∗ as

INkVk∗ (f) :=

Ñk∑
mk=1

f(ymkk ,x) rmkk (yk) (20)

It follows that the interpolation operator satisfies

INV = IN1
V1∗
◦ . . . ◦ INMVM∗

Note now that Vk∗ is a Hilbert space for all k = 1, . . . ,M , as it is the finite tensor product of Hilbert
spaces. Therefore, Lemma 4 applies, and as the composure of continuous functions are continuous,
continuity holds. To see that the bounds hold, consider that

||f− INV (f)||L2
ρ(Γ)×V ≤

∣∣∣∣∣∣f− (IN1
V1∗
◦ . . . ◦ INMVM∗

)
(f)
∣∣∣∣∣∣
L2
ρ(Γ)×V

≤
∣∣∣∣∣∣(f− IN1

V1∗
f
)

+
(
IN1
V1∗

f− IN1
V1∗
◦ IN2

V2∗
f
)

+ . . .
∣∣∣∣∣∣
L2
ρ(Γ)×V

≤
∣∣∣∣∣∣f− IN1

V1∗
f
∣∣∣∣∣∣
L2
ρ(Γ)×V

+
∣∣∣∣∣∣IN1

V1∗
f− IN1

V1∗
◦ IN2

V2∗
f
∣∣∣∣∣∣
L2
ρ(Γ)×V

+ . . .



We now note that L2
ρ(Γ) × V = L2

ρ(Γk) × Vk∗ , and thus || · ||L2
ρ(Γ)×V = || · ||L2

ρ(Γk)×Vk∗ . It is also

immediate that f ∈ C0(Γ) implies that INkVk (f) ∈ C0(Γk). Finally, for notational convenience in the
purposes of this proof, we define Pk := PNk(Γk) × Vk∗ WIth this in mind, we apply the bounds
from Lemma 4, and have

||f− INV (f)||L2
ρ(Γ)×V ≤ KV1∗ inf

w1∈P1

||f− w1||C0(Γ1)×V1∗ +KV2∗ inf
w2∈P2

||IN1
V1∗

(f)− w2||C0(Γ2)×V2∗ + . . .

Choosing K1 := max
j∈{1,...,M}

KVj∗ yields

||f− INV (f)||L2
ρ(Γ)×V ≤ K1

(
inf

w1∈P1

||f− w1||C0(Γk)×V1∗ + inf
w2∈P2

||IN1
V1∗

(f)− w2||C0(Γ2)×V2∗ + . . .
)

Now, given that all of Vk∗ are Hilbert spaces, it follows that they are Banach spaces, and we can
apply Lemma 5, which yields

||f− INV (f)||L2
ρ(Γ)×V ≤ K1 max

z∈Σ(Γ,τ)
||f(z)||V

M∑
j=1

2

Ψj − 1
exp

(
−Nj log(Ψj)

)
with Ψj defined as in Lemma 5. The independence of K1 on N follows from the independence of
each constant KVj∗ on N . This is the exact approximation bound we claimed. With similar logic,

the continuity and approximation error bounds for INW also follow.

We have now established that the random polynomial chaos interpolation has error bounded by
the max value of the true solutions. However, we used the complete deterministic solution space,
V and W , only out of notational convenience. Both V and it’s finite-dimensional approximation,
Vh, and subsequently W,Wh, are assumed to have the same random-space regularity, and thus the
Lemma 6 also applies when considering the interpolation operators acting on Vh,Wh. Combining
this lemma with the regularity assumptions in Section 3.3 and the finite-dimensionality of Γ (see
Section 3.1), we now bound the approximation error in the SC method.

Theorem: 2. Under the assumptions of Lemma 1, Lemma 2, the finite-dimensional noise assump-
tion, and that the Γ is bounded, we have the following error bounds on the approximate solutions
resulting from the SC method. They satisfy

||Ji − Jh,Ni ||
Ṽ
≤ C||g − gh||

W̃
+K1 max

z∈Σ(Γ,τ)
||Ji(z)||V

M∑
j=1

2

Ψj − 1
exp

(
−Nj log(Ψj)

)
(21a)

||V − Vh,N ||
W̃
≤ 1

b
||g − gh||

W̃
+K2 max

z∈Σ(Γ,τ)
||V(z)||W

M∑
j=1

2

Ψj − 1
exp

(
−Nj log(Ψj)

)
(21b)

with Ψj < 1 defined as in Lemma 5, and gfh is the polynomial interpolation of g on th, of the same
degree as Jhi and Vh.

Proof. We will show that the bounds hold for Ji only, as similar logic will follow for V. We first
expand the approximations into the spatial discretization and random polynomial interpolations,
e.g.

||Ji − Jh,Ni ||
Ṽ
≤ ||Ji − Jhi ||Ṽ + ||Jhi − Jh,Ni ||

Ṽ



The first of the two terms stem from standard finite-element theory and polynomial interpolation of
Ji, and corresponds to the first term in the bound above. It is clear that the spatial approximation
of Jhi satisfies the system

Ã(Jhi ) + B̃′(Vh) = 0 ∈ Ṽ ′,

B̃(Jhi ) = Gh ∈ W̃ ′.

where Gh(ψ) := E
[∫
D gh · ∇ψ

]
, and gh is as stated in the theorem. Subtracting this system from

(2) and applying the bounds from Theorem 1, we have

||Ji − Jhi ||Ṽ ≤ C||g− gh||
W̃

We now turn to the second of the two terms, which stems from the random space polynomial chaos
expansion and subsequent approximation. It is clear from Lemma 6 that the interpolation operator
corresponding to V , when applied to Jhi satisfies

||Jhi − INV (Jhi )||L2
ρ(Γ)×V ≤ K1 max

z∈Σ(Γ,τ)
||Jhi (z)||V

M∑
j=1

2

Ψj − 1
exp

(
−Nj log(Ψj)

)
(23)

with the previously defined ψj , and K1. This yields the desired result for ||Ji − Jh,Ni ||
Ṽ

and a
similar argument argument holds for the bounds on the error of approximating V.

Note now that it is sufficient to bound the spatial approximation error by ||g − gh||
W̃

, as this
converges as h→∞ by standard polynomial interpolation arguments [5], and is thus not discussed
further here. We also can see that the random error, as desired, achieves the sub-exponential
convergence, as ψj > 1. Thus, the SC method will converge, as desired.

5 Conclusion

In this paper, we have explored the random-kinematic MHD equations. The system has wide-
ranging applications with vastly different assumptions regarding the system itself. To this end,
we focused on one in particular: power-generation. As with any generator, optimization of the
operation is desired. However, without being able to precisely assign the system parameters, the
optimization of the MHD generator must be done with uncertainty in mind. This is due to the
reliability of the parameter estimation problem being greatly impacted by noise [11]. To deal
with this, we proposed the stochastic collocation method. This method was shown to not only be
numerically efficient when combined with the anisotropic sparse grid, but also had sub-exponential
convergence. Numerical demonstrations of this method can be seen in [10]. The efficiency of the SC
method will allow for the inverse problem of optimization, as well as parameter estimation under
uncertainty, to be feasible. Future work will investigate this.
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6 Appendix: Notation

6.1 Well-Posedness

Note that all functions are assumed to map from Γ × D or D × Γ to R or R3 (if bolded), unless
otherwise explicitly stated.

Term Definition Usage or Notes

D Spatial domain

(Ω,H, p) Original probability space

u Fluid-flow

B Applied magnetic field

σ Conductivity

µe Electron Mobility

µi Ion Mobility

σ Conductivity Tensor

[B]× Cross-product matrix operator on B [B]×Ji = Ji ×B

n unit normal vector to surface.
V (D)/W (D)

Spatial solution space for Ji/V

V (D)/W (D) Random solution spaces V/W × L2
ρ(Γ), norm is the averaging

norm

A Bilinear operator Maps V × V → R

B Bilinear operator Maps V ×W → R

G RHS of operator form Used for bounds only. May be confusing
with g.

b Bounding constant for B



6.2 SC Section

6.2.1 FD Noise

Term Definition Usage or Notes

Random parameters σ, µe, µi,u

{mk} Collection of all random variables in the
system

Assume all uniform on [0, 1]

M Number of random directions

Γk mk(Ω)

Γ
∏
mk(Ω) Product of images of events under ran-

dom variables

ρ Joint probability density for Prob.
Space (Γ, H, ρ)

Ṽ /W̃ Random solution spaces for new proba-
bility space



6.2.2 Method

Term Definition Usage or Notes

Vh,Wh Spatial-FD representations of V/W The h dependence comes from the
mesh.

th Spatial mesh used in Spatial-FD reps

PNk Span of polynomials in direction Γk up
to order Nk

Approximation to the random function
space L2

ρ(Γk)

rjk Legendre polynomial of order j, acting
on Γk

N [N1, . . . , NM ] Index for order of FD rep of each direc-
tion or Γk

PN
∏
PNk(Γk) Representation of L2(Γ)

Ṽh,N/W̃h,N Vh × PN (Γ) Complete FD representation of solution
spaces

Jhi (yk),Vh(yk) Solutions to the deterministic system
for fixed yk

maps from Γ to V/W

ymkk mth
k zero in direction Γk

Ñk Number of grid points under CC or
Fejér sparse grid in direction Γk

m [m1, . . . ,mM ] Array of indices for zeros in j direction

ym A collection of zeros in each random di-
rection

rm(y) Product of Legendre polynomials of a
given order (mj , see m and rjk)

Jh,Ni (x, y),Vh,N (x, y)
∑
f(x, yk)rk(y) Random polynomial interpolate of solu-

tions

C0(Γ) Continuous functions on Γ.

IV,N/IW,N Interpolation operators, map from con-
tinuous functions on Γ× the app. sub-
space. (V or W )

w
mj
j Weights of polynomial of order mj on

γj



6.3 Regularity Assumptions

Term Definition Usage or Notes

g(x, y) σ(x, y)
(
u(x, y)×B(x)

)
∂kn

∂k

∂ykn
Notational convenience only

A/B Deterministic equivalent to Ã, B̃

F k(φ) −
∫
D

( k−1∑
j=0

k
j

 ∂k−jyn (σ−1) ∂jyn(Ji)
)
· φ

Gk(ψ)
∫
D ∂

k
yng · ∇ψ

C 1
ab

(
||A||L(V,V ′) + a

)
α1,k/α2,k/γn Constants used in Lemma 6 to ensure

convergence
k corresponds to the kth derivative of
g, σ−1, n dependence is on the direction
Γn

C1,k/C2,k Constants used for bounding derivatives
of Ji,V

C0 C||g||W Just for better notation really

Σ(Γk, γk) z = y1 + iy2 ∈ Σ(Γk, γk) ⇐⇒ y1 ∈
Γk, |y2| ≤ γk

Region of the complex plane, extending
from the subset of the R, Γk

y∗n Set of values for y in all directions but
yn

Ji(z, y
∗
n,x)/V(z, y∗n,x) Analytic extensions of Ji,V in the com-

plex region Σ(Γn, γn)



6.4 Error Analysis

Term Definition Usage or Notes

H Any general Banach function space

INnH Polynomial interpolation of order Nn,
using sparse grid, of a function contin-
uous on Γn and in the function space
H.

Γk∗ Tensor product space of all directions
except Γk

Consistent with Babuska notation

◦k∗ General format for everything but the
kth direction.

γ [γ1, . . . , γM ] Collection of the decay constants from
regularity section

Σ(Γ, γ)
∏M
j=1 Σ(Γj , γj) This is the tensor product of all the ar-

eas of the analytic extensions.

KVk∗ Constants from Lemma 5 used in Lemma 6

K1 max(Kj)

Some general norm stuff for this section:

||f ||2V :=

∫
D
|f |2

||g||2W :=

∫
D
|g|2 + |∇g|2

||f ||
H̃
≡ ||f ||L2(D)×V := E

[
||f ||H

]
For any Hilbert space H

||f ||C0(Γ)×V := max
y∈Γ
||f(y)||V

||f ||L2
ρ(Γk∗ )×V :=

∫
Γk∗
||f(yk∗ ,x)||2V ρk∗(yk∗) dyk∗
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