

AN ABSTRACT OF THE THESIS OF

Michael A. Castillo for the degree of Master of Science in Nuclear Engineering
presented on December 6, 2023.

Title: Classification Modeling of Nuclear Power Plant Outage Severities with
Complement Naïve Bayes and Bidirectional Encoder Representations from
Transformers.

Abstract approved:

__

Andrew C. Klein

Low-level nuclear power plant outages in the United States can lead to unanticipated

costs, potentially compromising the expected operation lifetime of the plant. Nuclear

power plants are complex systems of interfacing components and highly regulated

processes. This inherent complexity makes predicting outages from system

dependencies very challenging. When outages do occur, natural language is used to

explain the cause, effect, and solution of the outage.

The purpose of this study is to construct a classification model capable of accurately

predicting the severity of an unseen nuclear power plant outage using historical

natural language and machine learning algorithms. The construction of a

classification model leveraging historical light water reactor text data can provide

experts better insight into outages of varying severity. The performance of a Naïve

Bayes algorithm is compared to that of the state-of-the-art Bidirectional Encoding

Representations from Transformers (BERT) model. To improve the performance of

the BERT model, external fast reactor text data is applied to the training

methodology.

©Copyright by Michael A. Castillo
December 6, 2023

All Rights Reserved

Classification Modeling of Nuclear Power Plant Outage Severities with Complement
Naïve Bayes and Bidirectional Encoder Representations from Transformers

by

Michael A. Castillo

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 6, 2023
Commencement June 2024

Master of Science thesis of Michael A. Castillo presented on December 6, 2023

APPROVED:

Major Professor, representing Nuclear Engineering

Head of the School of Nuclear Science and Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Michael A. Castillo, Author

ACKNOWLEDGEMENTS

I would first like to express my deepest appreciation to my advisor, Dr. Andrew

Klein, for the guidance these past few years. Never did I imagine that the opportunity

you have given me would teach me so much more than just science. I would also like

to thank Dr. Curtis Smith at Idaho National Laboratory for providing access to the

MORP data and his early guidance in this effort.

To my parents Stephanie and George, and my brother, Kuya CJ. Challenges are easier

to overcome when the support given is as selfless, and continuous as what you have

given me. I love you all and thank you for everything.

Lastly, to my wife, Fatima. There are not enough words to express my gratitude for

the wisdom, patience, and understanding you provided me since the very beginning.

Every obstacle I’ve faced you’ve resolutely treated as your own, and I could not have

done it without you.

TABLE OF CONTENTS

Page

1 Introduction ..1

1.1 Data Source ...2

1.2 Objective ...3

1.3 Structure of the Document ..5

2 Background ..6

2.1 Introduction to Artificial Intelligence ...6

2.2 Fundamental approaches to Learning ...6

2.2.1 Supervised Learning ..6

2.2.2 Unsupervised Learning ..7

2.3 Artificial Intelligence in Natural Language Processing7

3 Approaches to Natural Language Processing ..9

3.1 Rule Based Systems ..9

3.2 Machine Learning ...11

3.3 Deep Learning with Bidirectional Encoder Representations from

Transformers ...14

4 Natural Language Processing in Nuclear Power ...17

5 Monthly Operating Report Database ...19

5.1 Data Exploration ...19

5.2 Dataset Attributes ...20

5.2.1 Summary Column ..20

5.2.2 Outage Hours Data ...21

TABLE OF CONTENTS (Continued)

Page

5.3 Limitations and Modeling Approach ..21

6 Theory ..22

6.1 Vector Representation: Complement Naïve Bayes22

6.2 Complement Naïve Bayes...24

6.3 Bidirectional Encoder Representations from Transformers26

6.4 Encoders ..28

6.4.1 Embedding Layer ...29

6.4.2 Transformer Encoder ...30

6.4.3 Self-Attention ...31

6.4.2 Feed Forward Neural Network ..32

6.5 Training Objectives ...32

6.6 Transfer Learning..33

7 Methodology ..34

7.1 Data Preparation..35

7.1.1 Cleaning ...35

7.1.2 Labeling ...38

7.2 BERT Models ...42

7.3 Further Training BERT Models ..42

7.4 BERT Training..43

7.4.1 Cleaning Vs. Uncleaned ...44

TABLE OF CONTENTS (Continued)

7.4.2 Base Models Vs. Further Trained ..44

7.4.3 Batch Size and Max Sequence Length ...44

7.4.4 Epochs ..45

7.4.5 Weighting ...46

7.4.6 Learning Rate Decay ..46

7.5 Naïve Bayes Data Preparation ..47

7.6 Naïve Bayes Models ...47

7.7 Metrics ..47

7.8 Training Computational Environment ..49

8 Results ..50

8.1 Top Precision Scores...50

8.2 Top Recall Scores ...58

8.3 F1 Scores by Hour ..66

9 Discussion ..74

10 Conclusion ...76

11 Future Work ...78

Bibliography ..80

Appendices ...85

LIST OF FIGURES

Figure Page

Figure 5-1: Outage Hour Distribution... 19

Figure 5-2: Outage Hours by Docket .. 20

Figure 6-1: Transformer Architecture (Ashish Vaswani, 2017) 27

Figure 6-2: Encoder and Decoder Components of Transformer 28

Figure 6-3: Encoder Component (Ashish Vaswani, 2017) ... 29

Figure 6-4: Input Representation (Jacob Devlin, 2018) .. 30

Figure 6-5: Encoder Stack .. 31

Figure 6-6: Encoder Sublayers.. 32

Figure 7-1: Outage Occurrences ... 34

Figure 7-2: Relevant Outage Reason Occurrences ... 35

Figure 7-3: Class Distributions for Defined Severity Limits 40

Figure 7-4: Stratification of 744 Hour Limit Dataset ... 41

Figure 7-5: Stratification of 250 Hour Limit Dataset ... 41

Figure 7-6: Example of MLM (Reimers, 2022).. 43

Figure 8-1: 744+ Hour Limit Precision Scores, All Models 51

Figure 8-2: 500+ Hour Limit Precision Scores, All Models 52

Figure 8-3: 400+ Hour Limit Precision Scores, All Models 53

Figure 8-4: 350+ Hour Limit Precision Scores, All Models 54

Figure 8-5: 300+ Hour Limit Precision Scores, All Models 55

Figure 8-6: 250+ Hour Limit Precision Scores, All Models 56

Figure 8-7: 744 Hour Limit Recall Scores, All Models.. 59

Figure 8-8: 500+ Hour Limit Recall Scores, All Models ... 60

Figure 8-9: 400 Hour Limit Recall Scores, All Models.. 61

LIST OF FIGURES (Continued)

Figure Page

Figure 8-10: 350 Hour Limit Recall Scores, All Models.. 62

Figure 8-11: 300 Hour Limit Recall Scores, All Models.. 63

Figure 8-12: 250 Hour Limit Recall Scores, All Models.. 64

Figure 8-13: 744 Hour Limit F1 Scores, All Models ... 67

Figure 8-14: 500 Hour Limit F1 Scores, All Models ... 68

Figure 8-15: 400 Hour Limit F1 Scores, All Models ... 69

Figure 8-16: 350 Hour Limit F1 Scores, All Models ... 70

Figure 8-17: 300 Hour Limit F1 Scores, All Models ... 71

Figure 8-18: 250 Hour Limit F1 Scores, All Models ... 72

LIST OF TABLES

Table Page

Table 1-1: Description of MORP Data Fields .. 4

Table 6-1: Input Sentences .. 22

Table 6-2: Resulting Vector Representations ... 23

Table 6-3: TFIDF Vector Representations ... 24

Table 7-1: Categorical Definitions for Outage Method .. 39

Table 7-2: Summary of Dataset Class Distributions... 41

Table 7-3: BERT Large Configurations ... 45

Table 7-4: DistilBert Base Configurations ... 45

Table 7-5: Early Stopping Parameters .. 46

Table 7-6: Learning Rate Scheduler Parameters .. 47

Table 7-7: Confusion Matrix .. 48

Table 8-1: Top Precision Score by Hour .. 57

Table 8-2: Confusion Matrix of 500+ Hour Limit, Max Precision Model 58

Table 8-3: Top Recall Score by Hour ... 65

Table 8-4: Confusion Matrix of 300 Hour Limit, Max Recall Model 66

Table 8-5: Top F1 Score by Hour ... 73

LIST OF APPENDICES

Appendix Page

A. Python Code ..85

B. masterExpansions.txt ..153

C. hyphensInVocab.txt ..160

D. unknown.txt ..168

E. reformat.txt ...169

F. unknownWordNumbers.txt...177

1

1 Introduction

As the United States nuclear power industry works toward deploying advanced reactor designs,

existing light water reactors face financial strains as they struggle to maintain themselves as economic

options in the energy market. With the rise of cheap natural gas, the aging fleet of nuclear reactors

must reduce costs to compete as an energy option. Some of the largest expenses that are difficult to

mitigate are low-level accidents that lead to extended unplanned shutdowns and events that are

extremely challenging to identify and predict. Most of these accidents are extremely small compared to

the large scope of overall operations, but they can develop into costly consequences that may lead to

premature retirement of the plants.

As an example, on June 7th, 2011, an electrical switchgear that distributes power to vital systems and

components needed for the safe shutdown of the Fort Calhoun Station (FCS) caught fire (Special NRC

Oversight at Fort Calhoun Station, 2022). According to the reports, the fire started in a replacement

circuit breaker that was modified to fit inside the existing electrical switchgear. Poor alignment

between the electrical components and lack of cleaning of the connections increased the electrical

resistance at the junction causing a fire and complete loss of spent fuel pool cooling for 90 minutes.

Upon inspection, there were also several other degradations found which forced the Nuclear

Regulatory Commission (NRC) to place Fort Calhoun Station under its Multiple/Repetitive Degraded

Cornerstone categorization, which requires the fixing of multiple adverse conditions within the power

plant. The outage cost the district $341 M with an additional $195 M for startup (Murphy P. V., 2015),

(Robertson, 2016), costing a total of $536 M. In 2016, after extensive financial analysis, Omaha Public

Power District chose to shut down the reactor due to an estimated loss of approximately $900 M over

the next 20 years (World Nuclear News, 2016). These low-level accidents caused an unexpected loss

of $536 M, which in hindsight may have provided Fort Calhoun nuclear station more financial options

to offset losses from future economic challenges.

Of course, in hindsight, there are many simple things that could have been done to stop the fire from

occurring altogether. The simplest task would be executing routine cleaning of the conductors to

reduce electrical resistance. Nonetheless, this was a task that was not seen as a priority and simply flew

under the radar for concern. In fact, the replacement breaker was operating for nearly 18 months before

the fire occurred without any indications of concern. This low-level, but severe, accident is

tremendously difficult to identify, let alone predict. With most U.S. Nuclear Power Plants (NPP)

nearing 50 years of operation, more work is needed to mitigate and reduce these types of low-level,

“needle in a haystack”, severe outages that lead to premature shutdowns.

2

To the researcher’s knowledge, there is no existing body of literature for predicting these types of

accidents. The complex nature of the problem requires the ability to predict with such extreme initial

conditions and unknowns, any solution may be too restrictive to be generalized across all power plant

systems. Therefore, instead of devising a solution to predict an outage occurrence, this research aims to

develop a tool that can provide an estimated duration of an outage post hoc.

In the last decade, developments in the field of predictive maintenance have begun to shape the

methodology for understanding problems surrounding systems and processes. Advancements in

Machine Learning (ML), Deep Learning (DL) and statistical analysis have been the cornerstone in

these developments due to the ability to derive knowledge from incredibly complex and large amounts

of data. Using ML and modern sensors, real time data from system components can be analyzed to

provide useful insight for lifetime longevity and operational decisions. However, with an aging fleet of

nuclear reactors, retrofitting a solution for assessing system wide relationships is expensive and time

consuming. Furthermore, unless an entire digital twin model of an existing Nuclear Power Plant (NPP)

is developed, predictive maintenance of only specific components of a NPP may not be sufficient in

describing systemic relationship. To minimize severe cost, NPP licensees require a tool that can

quickly assess the severity of present and future outages that account for system wide dependencies.

Unlike much of the current work in predictive maintenance where numerical data is utilized, this

research focuses on leveraging historically recorded natural language and Natural Language Processing

(NLP) techniques to develop such a tool.

NLP is a field within Artificial Intelligence (AI) that focuses on getting computers to understand

human language by using text data. NLP has been successfully deployed across many industries

particularly in topic modeling, language translations, chat bots and many human-computer interfaces.

NLP methods contain ML and DL techniques that derive patterns from large amounts of text data. The

authoritative nature of the Nuclear Regulatory Commission (NRC) has led to a rich recorded history of

NPP operations and experience, filled with extensively formatted documentation, records, and reports.

The text within these sources is of great value for developing NLP solutions, yet there has been

minimal work conducted in this area. Part of this research aims to expand on this technology and

identify the scope in which NLP is applicable to the nuclear industry.

1.1 Data Source

The nuclear power industry has an unprecedented reputation of being a heavily regulated entity that

cannot afford mistakes. By bestowing regulative and authoritative guidance, the NRC helps ensure that

nuclear power remains a safe energy producer. One way the NRC can guarantee safety and successful

operation is by monitoring and documenting the performance of NPP’s through standardized reporting

procedures for licensees that manage commercial NPP’s in the U.S. Over the long history of the

3

nuclear power industry, these documented reports have led to the development of numerous structured

and unstructured databases that encompass a vast number of measurable quantities to describe the

operation of NPP’s.

The database used in this research contains documented monthly operating reports for all NPP’s in the

U.S. Together, the NRC and Idaho National Laboratory worked to develop this structured database

containing all monthly outages between January 1997 and March 2016. The Monthly Operating Report

Database (MORP) was designed to collect data that reflects operating statistics and shutdown

experience for assisting NRC management in identifying poor and/or declining safety performance, as

well as good and/or improving performance (Marcel R. Harper, 1997). Within MORP is a section

dedicated to unit shutdowns, where details for describing every shutdown a NPP unit has experienced

is documented. Highly structured and organized, the information in the unit shutdowns section is

provided in a spreadsheet of data columns that reflect the name of the NPP unit, start date of each

shutdown, type of shutdown, duration, reason for each shutdown, the method of shutdown and a

written summary of the shutdown. To instill standardization, some data fields are only allowed specific

categorical parameters to be entered. For example, “type of shutdown” only allows for letter entries of

“F” (forced) or “S” (scheduled). “Reason for each shutdown” accepts categorical entries represented

as a range of letters, where each letting indicates a general reason, for instance, “A” represents

equipment failure, “B” means maintenance or testing and so forth. Each of these columns provides a

general expression for the outage experienced by the individual NPP. However, for a more explicit

description of why the NPP was shutdown, one would refer to the “summaries” (SUM) column. In the

SUM column, the operator provides textual information specific to the observed event during the

outage. Based on the reporting requirements set by the NRC, each summary consists of written free

text that explains the reasons for each shutdown, and if available, provides the corrective action taken.

This text data is rich with information that cannot be expressed with traditional integers or numerical

values. The text provides context, cause and the effects, system components, system relationships and

physical phenomenon responsible for the outage. Unlike Licensee Event Reports (LER), this

combination of rich text data and metadata existing as a structured dataset makes MORP unique in

NLP tasks.

1.2 Objectives

The MORP database is made of two datasets containing power plant generation data and power plant
outage data. This research focuses on the outage data, which contain data fields requested by the NRC
to document events where the generator is offline regardless of the reactor status. A description of each
data field is provided in Table 1-1.

4

Table 1-1: Description of MORP Data Fields

Field Description

DOCKET Last three digits of plant docket number

RPT_PERIOD Applicable report period (YYYYMM)

DESCRIP Outage description

OUTG_DATE Start date of outage

OUTG_HRS Outage duration (hours)

OUTG_LER Licensee Event Report number as applicable

OUTG_METH Method of shutting down the reactor:

1 - Manual (normal reactor shutdown or

generator offline with reactor critical)

2 - Manual Scram

3 - Auto Scram

4 - Continued (from previous month)

5 - Reduced Load (only captured through

August 1997)

9 - Other (outages that transition within the

month to another outage)

OUTG_REASN Outage reason:

A - Equipment Failure

B - Maintenance or Test

C - Refueling

D - Regulatory Restriction

E - Operator Training and License Examination

F - Administrative

G - Operational Error

H - Other

OUTG_SEQ Sequential number assigned to each outage by

the licensee

OUTG_TYPE Outage type: forced (F) or scheduled (S). A

forced outage is one required to be initiated no

later than the weekend following discovery of an

off normal condition). All other outages are

scheduled outages.

OUTG_COMP Component codes*

5

OUTG_SYSTM System codes*

Refuel Cycle The number of the refuel cycle

Outage_Date_time Start date/time of outage

* Fields no longer requested/discontinued by NRC Generic Letter 97-02

MORP offers 20 years of data that captures various perspectives of a power plant outage, including

documented summaries within the ‘DESCRIP’ column of the database. Using both text data from the

reported summaries and the outage duration of the generator is offline for provided in ‘OUTG_HRS’,

this research aims to train a classification model using machine learning (ML) techniques to predict the

severity of future unseen NPP outages. Text features provided in outage summaries contain essential

information, outlining interfaces within a complex system. A classification model can provide an

approximated off-line time based on historical recorded data to assist Light Water Reactor (LWR)

operations and economic forecasting. Researchers can also utilize the model to better characterize

outages and further understand the complex relationships between systems at a higher level. It is

hypothesized that MORPs inherent structured nature and relevant data pertaining to NPP outages, a

text classification model can be fine-tuned with the state-of-the-art language framework, Bidirectional

Encoder Representations from Transformers (BERT). BERT has been shown to perform exceptionally

well across various NLP tasks including text classification (Jacob Devlin, 2018). Most NLP tasks

solved with BERT are not applied with text data relevant to the power industry, thus there exists very

little peer reviewed literature on the fine-tuning performance of base BERT for the nuclear power

domain. This research aims to close this gap by assessing its classification performance on relevant

NPP outage data. This objective is accomplished by performing the following:

• Obtain relevant information regarding previous work in NLP,

• Identify successful text classification methods using MORP data,

• Perform text classification,

• Compare results of different methods.

1.3 Structure of the Document

This thesis is outlined in the following manner. Section 2.0 covers an introduction to the field of ML,

its relation to NLP, current trends and a review of literature addressing past research inside and outside

the nuclear power industry. Section 3.0 will discuss the theory that drives state-of-the-art tools in NLP.

Section 4.0 contains the methodology, and the last section covers the results, conclusion, and future

work of this study

6

2 Background

As computational hardware and refined software methods improve, so does the field of NLP. This

section will introduce ML, DL, and their relation to NLP, and will extend into current trends and a

review of literature that covers the use of NLP inside and out of the nuclear industry.

2.1 Introduction to Artificial Intelligence

In effort to reduce ambiguity, it is necessary to define the clear distinction between AI, NLP and their

constituent responsibilities. Both ML and DL have distinct meanings and exist as sub-fields within the

domain of AI. The main objective for both is to leverage existing data that characterizes the real word

to enable problem solving in machines. In general, ML – or “Classical” ML – uses algorithms and real-

world features chosen by a human to make decisions that appear subjective. The algorithms require a

human to define the correct input features tailored to a specific task, such as fitting of data, pattern

detection or classification.

Similarly, DL is a subset of ML that utilizes artificial neural networks (ANN) and characteristically

larger datasets to automate the extraction of features within data to make conclusive decisions without

the need of human intervention. At its core, the ANN’s within DL models emulate the human brain

through a set of algorithms. At a high level, ANN’s “learn” by self-adjusting weights and biases using

mathematical techniques that quantify errors to improve future performance on tasks relating to

classification, object recognition and object descriptions. A successful outcome from both ML and DL

is to construct a general function representative to real world phenomenon in which the function can

make predictions on unseen data with a certain accuracy. The primary difference between both

methods resides in how each learns, and the amount of data required to establish a general function.

2.2 Fundamental Approaches to Learning

There is a constant growth of different algorithms being created, researched, and applied throughout

ML and DL literature. However, majority of all these algorithms are built upon on two learning

approaches: Unsupervised and Supervised learning. Reinforcement Learning would be considered

another learning approach but will not be discussed here. Generally, the learning approach to be

implemented is selected based on the type of problem being solved.

2.2.1 Supervised Learning

The objective of Supervised Learning is to learn a mapping from inputs to outputs, given a set of input-

output pairs (Murphy K. P., 2012). From a high level, the machine “learns” by providing it features,

7

and “Supervising” the machine on what is correct or incorrect. A feature could be something as simple

as a height or weight of a person, or as complex as an image or in the case of NLP, a sentence or

number of words. In general, Supervised Learning approaches are used for classification or regression

tasks. One of the biggest challenges and most important aspects to successfully train a model with

Supervised Learning is obtaining enough data in a structured format for training the machine.

Gathering quality data with relevant features applicable to the task then processing it in a structured

format is time consuming and costly.

2.2.2 Unsupervised Learning

Unlike the necessity for structured data, Unsupervised Learning leverages unstructured – or

“Unlabeled” – data for learning. Unsupervised Learning algorithms are used for discovering patterns,

relationships, or groupings in data without human intervention. Due to the nature of this approach,

Unsupervised Learning in many clustering tasks. Although the need for human intervention and

structured data is appealing, the complexity associated with high volumes of unstructured training data

can lead to extensive computational costs.

2.3 Artificial Intelligence in Natural Language Processing

Fundamentally, the basis of NLP is to digitally analyze text using computers and theories pertaining to

both fields of computer science and linguistics. Many people in the NLP field agree that the Weaver

memorandum (Weaver, 1949) was the initial spark to coupling computers and text. The memorandum

outlined the initial methods for a developing a solution for translating between languages before the

capabilities of a computer were known. This task (commonly known as machine translation) structured

the desire and importance of utilizing computers for linguistic tasks, even when computational

resources were not readily available. In 1954, a joint project between IBM and Georgetown University

demonstrated the successful translation of 60 Russian sentences into English using a total of 250 words

and six ‘grammar’ rules (Hutchins, 2004). This work inspired optimistic promise, resulting in a great

push in NLP research between the late 1940’s and mid 1960’s. During this time many challenges were

identified, particularly when dealing with the syntactic and semantic attributes associated with

language. Due to the lack of computational resources, most NLP projects at that time came to a stop.

However, between the late 1960’s and early 1990’s there was a significant boom in the accessibility

and advancements in computers which advanced the framework and for how NLP tasks are

approached today. In addition to better and more accessible technology, development of theoretical

work allowed for an improved understanding in the types of challenges associate with language

understanding using computers. For example, the theory of Case Grammar showed that the syntactic

structure can be predicted by semantic entities (Fillmore, 1968), (Ye, 2015) and the Conceptual

Dependency Theory worked to take a step back from highly specific applications of NLP (i.e., machine

8

translation) and instead worked to construct a general theory for human natural language

understanding (Schank, 1972). As the theory of NLP began to expand, so did the solutions and

strategies for interfacing human language with computers. Conceptual Ontologies worked to structure

real-world information into a framework a computer could understand (Cullingford, 1977) and

symbolic approaches built the foundation for fundamentals still applied today (e.g., tokenization)

(Jonathan J. Webster, 1992). One of the more revolutionary aspects of NLP to come out of

advancement in computational power in the 1980s-1990s was the investigation of statistical models

(Liberman, 1991). Up until this point many of the systems to solve NLP tasks required extensive

handwritten, laborious rules that attempted to cover many scenarios of human language. Instead,

solutions began shifting to statistical models and ML approaches to leverage mathematical probability

for making informed decisions on NLP tasks (Tanaka, 1996). Less than ten years later, Yoshua Bengio

would introduce an approach that expressed the joint probability function of word sequences in terms

of “feature vectors” to alleviate complications from high-dimensional spaces commonly found when

modeling words in a sentence (Yoshua Bengio, 2003). “Feature vectors” -- or more commonly referred

to as “word embeddings” -- are numerical vector representations of a word and are developed as a

method to extract features out of text so computers and ML algorithms can work with them. By

representing individual words in a sentence as vectors, they can be the subject of mathematical

operations and lend themselves useful to ML strategies (Almeida, 2019). These word embeddings are

central to many present applications of NLP. Much of the research in the last decade was on

developing sophisticated techniques that can develop word embeddings to better capture context and

general understanding of language. Models such as Word2Vec (Mikolov, 2013) and GloVe (Global

Vectors for Word Representation) (Manning J. P., 2014) were at the forefront of NLP technology, until

2017 when the concept of attention-based Transformer methods (Ashish Vaswani, 2017) ushered in the

framework for recent models such as BERT (Jacob Devlin, 2018) and GPT-3 (Brown, 2020).

9

3 Approaches to Natural Language Processing

The field of NLP is a continually evolving and heavily researched area, making identifying clear

methodologies challenging for nuclear power domain experts without a background in NLP. This is

mainly due to the many approaches one can take to successfully perform NLP tasks. It is essential that

a well-defined hypothesis or tightly bounded scope, is constructed to help guide the research.

Fundamentally, the most important elements to solving an NLP task is the available text data, the pre-

processing methodology and the analytical tools chosen for the task. For example, when using a ML

models, the quality and quantity of the data is important to have the model learn effectively

(ML_Classifier_data_rews). Additionally, the pre-processing methods for converting text to machine-

readable vectors can vary depending on the specified goals. Or if data is lacking, a rule-based system

may be more beneficial for extracting information. Overall, even if a well-defined hypothesis is

established, NLP tasks are all unique and require iterations and tuning to improve performance (Carola

A. Gregorich, 2020). Thankfully, there are many Python libraries developed to automate many phases

of a NLP pipeline. These libraries leverage both traditional and ML algorithms, including DL

transformer-based models. It is important to note that many of these ML and DL models are trained

using generic datasets, therefore their performance can be limited to the energy industry. Furthermore,

much of the NLP literature pertaining to the nuclear power domain is very limited, especially with the

use of state-of-the-art language models like BERT for classification. Therefore, a comprehensive

literature review is provided below to address the current state and gaps of NLP in the nuclear industry.

3.1 Rules Based Systems

Before sophisticated language models and ML algorithms, many NLP applications were driven by

rule-based systems (RBS). RBS utilize rules, facts, and manual labeling to derive knowledge from text

data (Goldberg, 2017). This made NLP tasks challenging because many applications required domain

experts that understood the content of the text, while also needing a linguist to derive rules from

semantics and sentence dependencies. Typical RBS are algorithms based on “if-then” conditions that

use the defined rules to drive the outcome of the model. Without modern tools, constructing rules

required significant time, labor, and intellectual resources. Now, Python libraries such as SpaCy

(spaCy, n.d.) and NLTK (nltk) make understanding unstructured text data much easier, allowing for

automated parsing, identifying, and labeling of linguistic components.

Although open-sourced software libraries such as SpaCy and NLTK have indeed lowered the

requirement for an expert linguist, they still require knowledge or referenceable data to be useful. More

explicitly, these tools only have accessibility to generic, referenceable data. This can make

development of NLP applications for specific domains challenging as the Python libraries may not be

able to recognize words unique to that subject. Many industries have worked to bridge this gap by

constructing comprehensive datasets comprised of unique vocabulary, phrases and even parts-of-

10

speech (POS). These datasets provide the knowledge to construct useful NLP applications, serving as

the foundation of knowledge to reference. For example, researchers Valenzuela and Escarcega built a

RBS to perform event extraction tasks for use in Bioinformatics (Valenzuela-Escárcega, 2015). Part of

their methods included the ability to automatically identify specific keywords typically only found in

bioinformatics, such as “TopBP1”, “cyclin-D1” and “ATR”. This process was possible because they

referenced data from an extensive corpus constructed by Tomoko and Ohta (Tomoko Ohta, 2013).

Tomoko and Ohta used large scale repositories and documents from the biomedical domain to

construct a referenceable database to build from. Many industries have followed suit by constructing

their own general datasets, but the nuclear power domain is lagging in structured referenceable

material.

Without commonly known vernacular in the nuclear power industry to reference, modern tools like

SpaCy will incorrectly process common keywords. For example, components like “steam generator”

will be broken up into two words “steam” and “generator”, losing all relevance to a complex system.

Because of this, many researchers using NLP in the nuclear power industry find themselves

constructing their own datasets tailored to their needs. For example, Carola Gregorich and researchers

at the Electrical Power Research Institute (EPRI) used internal and publicly available documents from

the NRC to build a comprehensive dataset for supporting NLP applications in the nuclear power

industry. Methods were not discussed, but many of these documents originated in various forms,

requiring a sophisticated approach for pre-processing. Documents such as incident reports, operating

experience, corrective action reports and evaluation reports were examined to construct a raw corpus of

1.3 million elements, including words, numbers, and punctuation. Using a subset of this data,

researchers could use NLP tools to extract knowledge from existing documentation regarding leaks at

NPPs. Driven by questions such as, “What is the concentration of radionuclides when there is a spill or

leak?”, “What systems, structures, and components contribute to spills and leaks?” and “What work

practices might be associated with spills and leaks?”, the researchers use the text data, unstructured

documentation, and NLP techniques to gather knowledge about leaks. The result of this knowledge led

to identifying total counts of systems, structures and components contributing to leaks. It was

discovered that several cases of spills and leaks shared common causes associated with vent structures

which was not a recognized common occurrence. This newfound knowledge helped assist and guide

proactive measures in power plant systems.

When referenceable datasets don’t exist, other more linguistically driven methods may be applied to

investigate unstructured data. Instead of relying on a referenceable dataset, researchers Yunfei Zhao et

al. constructed a RBS by identifying keywords that are used when describing cause and effect

relationships. A total of 11 keywords such as “caused” and “due to” were used for identifying causal

events in LER’s. When a keyword was identified, the POS for each word were tagged using the

11

Stanford CoreNLP software package (C. Manning, 2014). The Stanford CoreNLP tools were then used

to analyze the dependencies between the keywords and surrounding context in the sentence. Using the

identified dependency and tagged POS, 184 rules were constructed to automatically extract the causal

and consequent event documented in LER’s. To further increase the performance of this tool,

researchers express the necessity of developing a full complete set of rules. Without a full complete set

of rules, the current state of the tool is limited in its capacity to examine certain sentences. It was found

that some sentences did not contain matches for the combinations of part of speech and dependencies,

requiring manual examination or other methods for rule development.

The clever approach to extracting causal relationships was driven by the ability to evaluate the

relationships shared between a set of keywords. However, it is unclear if the researchers ran into

domain related complications using the Stanford CoreNLP API. This toolset hosts deep learning and

rule-based NLP tools with limited access to the data it is trained on. In other words, the performance

on POS tagging may suffer if the tools implemented lack knowledge on nuclear power domain

language.

The success of RBS systems are reliant on many factors. First, a tightly defined research goal is

required to guide data collection, pre-processing techniques, and rule development. Secondly, existing

NLP tools may not have the capability to comprehend nuclear domain language. Lastly, depending on

the method, referenceable text data may be challenging to gather and construct. For the nuclear power

domain, these challenges are not trivial as there is no common consolidated database of structured

referenceable text, and useful documentation may not be available to the public. Furthermore, the

construction of RBS are tedious and require a bit of explicit instruction, even with modern tools.

3.2 Machine Learning

NLP applications requiring rules require tightly defined research questions and available data.

Although modern NLP tools have reduced the burden of linguistical expertise, due to knowledge

restriction of nuclear domain data, there is still a massive reliance subject matter expert, and manual

labor to characterize the problem being solved. Within the last 10 years, however, recent advancements

in ML have lowered the requirements for NLP applications by adopting statistical and probabilistic

models that depend on less stringent instructions. In some aspect, dependency on subject matter

expertise has softened in replacement for data, and many of the complex linguistics have been

supplanted with statistical modeling. This is accomplished by using ML techniques that allow for

computers to make decisions from the input it has been given. Depending on the chosen learning

algorithm, the computer will use a collection of statistics and probability to learn from the data, such

that it can make informed decisions on future unseen data.

12

Using ML for NLP, begins by representing human language as numerical vectors. There are few ways

to do this, all with varying levels of complexity and sophistication. The simplest way is by one-hot

encoding the categorical text data into numerical form, constructing what is called an embedding. One-

hot encoding is one of the simplest approaches for representing text in numerical form. However, a

level of consideration is warranted as the chosen method to convert text data to numerical vectors can

lead to extremely large, sparse matrices unsuitable for training. Also known as the “curse of

dimensionality”, too many training features lead to large number dimensions, causing noise and

reduction in performance when training the model. Therefore, prior to any training, much attention is

placed on feature extraction, where the objective is to extract the most useful features from the text.

Useful features are those that capture important components of the text data features and are of enough

quantity that the model can learn from.

There are many methods to feature extraction in NLP. Arguably the simplest, is the bag-of-words

(BOW) representation. BOW is a vector containing counts of every word in a sentence. This type of

approach is extremely simple in that important features are considered to have high frequencies. In

practice however, this may lead to obscure features since stop words like “the”, “it”, “to”, etc. can

overpopulate the vector space. More common approaches are Term Frequency (TF) and Term

Frequency-Inverse Document Frequency (TF-IDF). These approaches also calculate frequencies but

undergo weighting schemes for better representation. TF calculates the frequency of the word in the

document, then divides by the total number of words in said document. TF-IDF takes the logarithm of

the ratio between total number of documents and the number of documents that contain the word. The

latter has shown to be most popular for classification tasks since it quantifies the importance of a word

in the entire collection of documents, thus extracting most relevant features from the text for training.

With extracted features, a machine learning algorithm is chosen for training the classifier. There are

many models that can be used for text classification. Arguably the simplest and most common is the

family of Naïve Bayes (NB) algorithms. NB is a common class of ML algorithms that excels on text

classification tasks by implementing Bayes Theorem. It calculates the conditional probabilities of two

events based on the probabilities of occurrence of each individual event. The NB algorithm is

considered “naïve” because it operates under the assumptions that all features are unrelated, and each

feature contributes equally to the target outcome. This assumption makes NB a favored text

classification algorithm as it can operate quickly on both large and small datasets and its performance

is mainly dependent on the features extracted from the unstructured text. However, a caveat to the

simplicity and speed is loss of all context and semantics of the text input. Even with this, NB is

regarded as a basic but powerful classifier for text data and according to Kamran Kowsari et al., serves

as the baseline of many papers regarding classification (Kamran Kowsari, 2019).

13

There are many variations of NB classifiers, each utilized for different types of features. For example,

Gaussian NB is used when features are discreet, Bernoulli NB uses features that are of Boolean type,

Multinomial NB is popular for features that follow a multinomial distribution and Complement NB is

popular with imbalanced datasets. Multinomial and Bernoulli variations are frequently used in many

text classification tasks but significantly differ in their approaches. Gurinder Singh showed that

Multinomial variations are highly dependent on the frequencies of a term in a document, where

Bernoulli models rely on knowing if a term is present in the considered document or not (Gurinder

Singh, 2019). Moreover, Charu Aggarwal explains that Bernoulli performs well when working with

short documents and non-sparse representations with respect to a small lexicon (Aggarwal, 2018). In

instances where target classes are imbalanced, that is, there is an uneven distribution of outcomes,

Jason Rennie demonstrated that Complement NB models outperform Multinomial models (Rennie,

2003).

Due to the speed and versatility of NB, their utility have been used extensively across various

industries and applications for classification tasks. For instance, Lizhong Xiao utilized the TF-IDF

extraction method and a NB classifier to classify patent texts into 4 security domain related categories

(L. Xiao, 2018). Using 12,000 security patent documents for training and testing, the final

classification model evaluated accuracy, recall, and F1-Score at 93.9%, 93.6%, and 93.7%,

respectively. Priyanka Harjule et al. showed that multiple classifiers including NB performed well

when classifying highly informal Twitter data (P. Harjule, 2020). Trained on over 1.6 million tweets,

the performance of NB was like those observed in other classification models like support vector

machines and recurrent neural networks. Furthermore, it is known that tweets are highly unstructured,

as many tweets do not follow grammar rules and can have misspellings. In RBS, many rules would

need to be applied to process this type of data, where the NB classifier bypasses the need for explicit

instruction.

Recognized for its speed and simplicity and regarded as the baseline model, NB serves as an

exceptional candidate for classifying MORP text data. The probabilistic nature of NB, along with

feature extraction methods like TF-IDF make it a great machine learning tool for classifying NPP

outages reported in MORP. Like tweets, the reported outages in MORP are short and occasionally

contain misspellings. TF-IDF feature extraction can provide a focus on important systems and

components while lowering the priority for irrelevant terms. Furthermore, MORP is a heavily

imbalanced dataset, with more low-level outages documented than severe, the Complement NB

classifier is best suited for classifying the outages appropriately.

As common as NB is for text classification, there are some caveats to its implementation, particularly

in the feature extraction process. Popular Python ML libraries like Scikit-learn provide built-in TF-IDF

extractors called tokenizers. These tokenizers are trained with generic text data, so they can

14

automatically recognize and break up input text sentences into small components for training a

classifier. Like the problems recognized in RBS, the generic tokenizer may not have the capability to

recognize NPP components like “steam generator”. Instead, it will be broken up into “steam” and

“generator”, slightly altering the accounting of keyword frequencies. For example, “turbine generator”

and “steam generator” will yield two counts for “generator”. Addressing this issue is outside the scope

of this research as it will require training a custom TF-IDF tokenizer. Lastly, NB classifiers do not

retain semantics or context of text inputs. TF-IDF embeddings lose all sense of context due to the

statistics of a text input.

3.3 Deep Learning with Bidirectional Encoder Representations
from Transformers

With sufficient data, machine learning and deep learning architectures have bypassed the requirements

for explicit rules when constructing NLP applications. However, as discussed in Section 0, traditional

ML classifiers like NB are highly dependent on quality word embeddings for good performance on

classification tasks. Even if the features are of high quality, semantics of the text content are

completely lost in the process. Jacob Devlin and researchers at Google were able to close this gap and

significantly advance the field of NLP by designing the DL transformer-based model, BERT (Jacob

Devlin, 2018).

BERT is the encoder stack of a transformer model. It is constructed from various neural network

architectures, all working to develop sophisticated, advanced contextual embeddings. Unlike previous

NLP models and methods, BERT leverages an attention mechanism to process text sequence

bilaterally. By processing information bilaterally, BERT learns context across the entire sequence,

allowing it to store positions of the input while utilizing parallelization. In contrast to word

embeddings, BERT closes the gap in semantics by generating multiple vector representations for the

same word based on the context surrounding the word. By doing so, BERT generates embeddings that

capture the words across varying contexts, retaining the knowledge of the entire sentence. These

advanced embeddings are called Contextual Embeddings, which contain sequence-level semantics

allowing for encoded knowledge to capture polysemous ambiguation. For example, the use of the word

“Bank” can be used in context of a financial institution or to describe the side of a river. This is

challenging to address in traditional ML methods.

Most real-world applications of NLP utilize a state-of-the-art Transformer based language model and

Transfer Learning for NLP tasks. Language models like BERT require an immense amount of data to

train. BERT itself was pretrained on a 3.3 billion word text corpus consisting of data from

BookCorpus, text corpus and Wikipedia (Jacob Devlin, 2018), requiring a 4 day training process with

15

an energy consumption of 1,500 kWh (Strubell, 2019). Obviously, it is highly impractical to continue

retraining these language models for different applications. To address this crucial issue, Transfer

Learning is a method applied to use what has been learned in one setting as an exploit to improve

generalization in another setting (Ian Goodfellow, 2016). This method allows BERT to be continually

reused as a “starting point” for different models on various tasks.

Explicitly, the “starting point” is an abstract term commonly used for referring to a pre-trained

language model that can be deployed for downstream NLP tasks. At a high level, BERT viewed as an

off-the-shelf tool for performing NLP tasks. Pre-training is the act of training a transformer-based

model with specific tasks for it to learn optimal weights throughout the deep layered architecture.

Depending on the tasks for training, the end of the training phase results in pre-trained weights that

serve as the basis of learned knowledge. For example, BERT was pre-trained by assigning it to

perform two unsupervised learning tasks with unlabeled data: Masked Language Modeling (MLM) and

Next Sentence Prediction (NSP) (Anna Rogers, 2020; Jacob Devlin, 2018). With these tasks, in

addition to the large amount of quality training data provided in the 3.3 billion word text corpus, BERT

can be trained so its weights can be adjusted to incredibly vast scenarios and examples in which the

English language was used. In summary, when enough pre-training has been performed, the resulting

weights of the model will have extensive experiences of the English language, thus reflecting syntactic,

semantic and world knowledge.

The weights representing off-the-shelf BERT are representing learned patterns from the corpus it was

trained on. Weights from pre-trained BERT can be utilized immediately for many NLP tasks, including

text classification, but like other NLP approaches, may be limited for specific domains However,

unlike ML and RBS methods, BERT can be “fine-tuned” with specific domain content, allowing

BERT to gain insight into the domain being worked with. Fine-tuning is a required step in the training

phase of BERT to adapt the parameters in BERT to the specified domain for the classification task.

More explicitly, a single additional layer is added on the final layer of pre-trained BERT neural

network. When BERT has been fine-tuned, a final layer is added to the encoder model which is

responsible for adapting parameters for classification. Researcher Anna Rogers explains that final

layers added to BERT are mostly task-specific, where the bulk of learning general linguistic patterns

occurs in early layers (Anna Rogers, 2020). BERT has truly been revolutionary in NLP applications as

it solved many issues capturing semantics by learning from contextual representations. Contextual

embeddings have greatly reduced the dependency on investing significant time and tedious methods

used in traditional pre-processing practices.

Transformer models like BERT and other large language models are considered the current standard

for NLP applications, but it does come with a new set of complications. Just like any DL approach,

16

BERT is a complex tool with simultaneous calculations occurring at once, making traceability of the

numerous neural networks in operation difficult. Secondly, the high dependency of pre-processing and

feature extraction is traded for the need of domain-specific text data and computational hardware. This

work will limit this scope of work by utilizing documented outages in MORP for fine-tuning, as

opposed to using external sources.

17

4 Natural Language Processing in Nuclear Power

Past research in NLP and text mining within the nuclear power domain has been relatively bare

compared to the long operational history of the NPP industry. However, in the last two decades there

have been significant strides in the use of natural language for extracting insight and gaining deeper

knowledge. For example, Yanhua Zou used event reports for identifying causal factors of human errors

for a correlation analysis that included clustering and association rule mining (Zou, 2018). Jooyoung

Park identified and extracted the relative importance of performance shaping factors from investigation

reports of NPPs (Park, 2017). In 2015, Justin Pence and researchers at University of Illinois Urbana-

Champaign, built a big data theoretic approach for the quantification of organizational failure

mechanisms (Pence, 2015). Written documents and text served as the sources of data providing a more

realistic and plant-specific estimation of human error. These research efforts made advancements to

gain insight in various reported events, however they do not explicitly define a framework that utilizes

past outage data for characterizing future outages.

In more recent years, researchers have begun leveraging the abundance of relevant text data with

newer NLP techniques. For example, Yongqing Guan (Yongqing, 2016) identified that certain nuclear

quality assurance management activities could be constructed into NLP tasks. Quality assurance

activities involving event investigations, knowledge management and workflow control, require work

that that can be automated by NLP tasks. It is important to note that the methods employed in this

research applied traditional ML practices and did not rely on a large language model such as BERT.

Nevertheless, the researchers developed two models to perform an event classification task. One

model, known as Label-Latent Dirichlet Allocation to perform supervised learning tasks and the

second model is a common ML algorithm used for classification know as Support Vector Machine

(SVM). The origination of the input text data came from State Nuclear Power Engineering Co.

(SNPEC). It was not discussed in detail, but the SNPEC organized and maintains a database

responsible for tracking equipment and their related issues for quality assurance purposes. The models

were given documented events such as “The threaded pipe end of injection hole of motor trailing edge

was broken” and would classify the event into one of twelve categories. Each category was a “topic”

the document was associated with. Both models are trained on manually labeled datasets and tested on

a “held out” test dataset. This Is a very common procedure known throughout the industry as “cross-

validation”. Both models demonstrated the applicability to generalize with reported precisions above

75%, where the SVM reports a 87% precision. Unlike a fine-tuned BERT model, both SVM and

Label-LDA do not take semantics of the input into consideration. In other words, these traditional

models relied strictly on statistical techniques to demonstrate the development of a model generalized

18

for quality assurance tasks in the nuclear domain. This implies that in the case of text data within the

nuclear domain, semantics of a sentence and word use may not be a required feature for text

classification. It can be hypothesized that the highly technical nature and safety standards implemented

by the nuclear industry results in unambiguous text data and communication. Another important

element of this research is the extensive rigor required to develop their structured dataset. Researchers

reported manually labeling every document instance of both the training and test set, resulting in over

1000 labeled datapoints.

In more recent research, there has been a steady increase in identifying ways to incorporate modern

NLP techniques in the nuclear industry. Within the past decade, the opportunities with both abundance

of digital text data and modern NLP methodologies have opened doors to new solutions and

improvements that vary across different sectors. For example, Electric Power Research Institute

(EPRI) explored a variety of NLP based projects (Mirzazad, 2019). These projects ranged from

assisting customers by managing their demand during periods with high Time-of-use rates (Clarin,

2019) to better classifying jargon filled text reports from field workers into correct IEEE 1782 outage

codes (IEEE, 2014) in efforts to reduce labor hours (Lewis, 2019). Until recently, many national

laboratories have been making efforts to capitalize on text data in the nuclear domain. Researcher Sai

Zhang at INL provided a presentation demonstrating the preliminary progress on a large framework

that analyzes free-text reports from NPP operating experience data for estimating risk model

parameters. Technical documentation discussing the methodologies of this research could not be

found, possibly due to the early stages of its progress. However, at a high level, the presented research

aims to develop a “causal network” which represents event initiation and propagation. This network

will be driven by free-text event reports (i.e., Licensee Event Reports) and leveraging NLP techniques

that can automatically identify causal relationships. This initial research appears to be a tool or

precursor to the overall vision of the end project, where the end project looks to be a massive

collection of truly representative data, encompassing all past NPP operation and maintenance

activities. The clear use of traditional NLP methods is demonstrated in the causal relationship

identification task, where keywords are identified, and relationships are extracted. One interesting

component of this presentation is the use of synthetic data as a contributor to the massive, envisioned

database. Synthetic data is a technique typically deployed for training a ML model to learn rare

scenarios or to adapt to specific domains (Nikolenko, 2021). It is hypothesized that the use of synthetic

data in this research may imply a low abundance of data that reflect very rare events. Synthetic data

shown to be representative of real plausible scenarios can supplement this missing knowledge.

19

5 Monthly Operating Report Database

Fundamentally, text classification is a supervised learning task that involves assigning predefined

categories or labels to a piece of text, based on its content. Assignment of text inputs is managed with a

chosen algorithm, defining how the model will learn and make predictions on new unseen text data.

The algorithm for text classification is chosen based on the available data, attributes, and its

limitations. This section will introduce the limitations and challenges associated with the MORP

database and will illustrate the methodology for selecting training features and choosing an appropriate

training model.

5.1 Data Exploration

Between 1996-2016, the nuclear industry experienced a total of 2093242.92 outage hours, not

including the hours spent in refueling. Of these outages, roughly 317240 hours resulted from forced

outages caused by Equipment Failure and Maintenance or Testing. The distribution of non-refueling

outages recorded in MORP are shown in Figure 5-1 and the outages per docket is provided in Figure

5-2.

Figure 5-1: Outage Hour Distribution

20

Figure 5-2: Outage Hours by Docket

5.2 Dataset Attributes

The following subsections outline the attributes of the MORP dataset and the origin of the features

used for classification. These attributes generally describe the nature of the data and reflect nuclear

power domain characteristics.

5.2.1 Summary Column

MORP contains raw text data of summarized outage reports located in the DESCRIP column. These

reports are very short and only provide high level information about related components, systems and

if applicable, reason and solution for the outage. This can be beneficial for training speed and

simplicity, but because of such small reports, it is important to identify the possible ways context can

be expanded on and noise can be reduced.

5.2.1.1 Acronym and Operator Codes

Majority of the reports contain acronyms that are not explicitly defined. However, in many of the

reports with ill-defined acronyms, there is sufficient detail where one can manually deduce the

expanded form. Similarly, many of the systems, components, and operations are referred to as codes

that are not easily identifiable unless significant research is done through parsing of LER’s or other

publicly available documentation. Due to the short reports throughout MORP, these are items that

represent valuable context that cannot be neglected.

5.2.1.2 Duplicated Reports

Some outages exceeded the maximum time allowed of 745 hours, for the OUTG_HOURS data field.

When this occurs, the same text input was repeated in a new entry, but the reported OUTG_HOURS

21

may differ from the original outage. This could lead to poor classification performance since the model

would learn from text inputs associated with serious outages but classified into less severe class labels.

5.2.1.3 Refueling Outages

Reported refueling outages makeup 61.7% of the MORP dataset. These outages do not contribute any

important knowledge to the training process and must be removed from the training data.

5.2.1.4 Vernacular and Taxonomy

The nuclear industry domain has many unique names for system components that should be retained

throughout the text data. For example, “Steam Generator” must be retained as a single representative

token, instead of being mistakenly recognized as “Steam” and “Generator”.

5.2.2 Outage Hours Data

Unlike the text data, the class labels that the model will be supervised with, is the reported outage

hours shown in OUTG_HRS column. Because the values of this column span anywhere between 1 and

744 hours, classifying documents into these exact values would lead to poor learning since the model

would not have enough training data to learn all the class labels. Therefore, the OUTG_HRS column

requires binning into appropriate levels of severity.

5.3 Limitations and Modeling Approach

To our knowledge, no other classification on NPP outage severity has been found in current existing

literature. Due to the vast challenges and obstacles, one may investigate, this NLP task is subjected to

significant scope creep, therefore this research will adhere to fundamentals and data applicability.

More concretely, the ML models chosen to perform the classification task will be based on the

limitations of the MORP dataset.

Since MORP is a small dataset consisting of roughly 4000 relevant short documents, this research will

aim to develop a baseline comparison of two models known for successful performance with such

limitations: Naïve Bayes (NB) and BERT.

NB has been identified as a basic, initial learning algorithm for text class classification, and shown to

thrive with limited data. Although it does not retain semantics, there are different variations of NB

learning algorithms, with even more pre-processing techniques and feature representations that can be

22

leveraged for improved accuracy. The classifier variation to be explored is the Complement NB

algorithm, as it leverages a weighting calculation beneficial to imbalanced datasets. The Complement

NB will use traditional one-hot encoding methods TF-IDF and BOW

Since the NB method cannot retain semantics or word positions, fine-tuning BERT on MORPs raw and

partially cleaned data will also be explored.

6 Theory

Naïve Bayes differs significantly from transformer-based models like BERT. Fundamentally, Naïve

Bayes operates on probabilities without any dependence on surrounding context, making it easy to

implement. Contrary to Naïve Bayes, BERT is capable of capturing context but requires many

complex subprocesses in its architecture. The performance of Naïve Bayes models is highly dependent

on the quality of input features, where BERT models are limited by the quality and availability of data

it was trained on for a specific domain and task. This section documents the theory behind text

classification using both Naïve Bayes and BERT.

6.1 Vector Representation: Complement Naïve Bayes

Prior to diving into the theory of the Complement Naïve Bayes algorithm, it is important to address

how natural language is inputted into a computer. As discussed in Section 0, traditional ML methods

achieved more versatility than RBS methods by representing text data as a numerical representation.

There are many practices and methods used for representing text data as numerical vectors, where

some work to capture more meaning of the natural language than others. In this research, both BOW

and TF-IDF are explored for training the Complement Naïve Bayes classifier.

BOW is a commonly used method to represent text input as a vector containing a binary value of

words existing in a document. This is accomplished by first identifying all important words (feature) in

all documents. Then stepping through each document and constructing a matrix of whether an

important word is present in a document. This results in a large table of 1’s and 0’s, which will be used

to represent the text input. For example, given input sentences like those in Table 6-1, a matrix of

training vectors can be built. An example of the resulting matrix is shown in Table 6-2.

Table 6-1: Input Sentences

Doc

ID

Input Sentence

23

Doc1 Small shrimp

Doc2 Weak shrimp

Doc3 You are a bay shrimp

Doc4 I am a tiger prawn

Doc5 Water sucks, Gatorade is better

Doc6 Gatorade sucks, water is better

Table 6-2: Resulting Vector Representations

bay better gatorade prawn shrimp small sucks tiger water weak

Doc1 0 0 0 0 1 1 0 0 0 0

Doc2 0 0 0 0 1 0 0 0 0 1

Doc3 1 0 0 0 1 0 0 0 0 0

Doc4 0 0 0 1 0 0 0 1 0 0

Doc5 0 1 1 0 0 0 1 0 1 0

Doc6 0 1 1 0 0 0 1 0 1 0

Since BOW vectors are represented in binary, there exists no way to discern the importance of the

word. To get around this, a common method to apply is the TF-IDF approach, which evaluates how

relevant a word is to a document in a collection of documents. Python library Sklearn calculates this

weighting strategy with the following presented below.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼

Where,

𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐼𝐼𝐼𝐼𝐼𝐼 = ln �
𝑛𝑛

𝑑𝑑𝑑𝑑(𝑡𝑡)
� + 1

Where,

𝑛𝑛 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

For example, the TFIDF value for “prawn” in Doc4 would be calculated by the following,

24

𝑇𝑇𝑇𝑇 = 1

IDF = ln(6) + 1

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 = 2.79

Applying this for every term in each document results in a matrix of representative vectors used for

training. Table 6-3 shows the TFIDF representations calculated from the initial example. By applying

TFIDF, the vectors are transformed to have a weighting strategy, assigning more importance to

different features within the input text. Although the TFIDF highlights important words, it still vastly

limited in the ability to retain context. For example, Doc5 and Doc6 are clear opinions about Gatorade

and water. Since semantics are lost, it is not clear which document has a preference on Gatorade or

water. Thus, these documents will appear similar when trained with Naïve Bayes models.

Table 6-3: TFIDF Vector Representations

bay better gatorade prawn shrimp small sucks tiger water weak

Doc1 0.00 0.00 0.00 0.00 1.69 2.79 0.00 0.00 0.00 0.00

Doc2 0.00 0.00 0.00 0.00 1.69 0.00 0.00 0.00 0.00 2.79

Doc3 2.79 0.00 0.00 0.00 1.69 0.00 0.00 0.00 0.00 0.00

Doc4 0.00 0.00 0.00 2.79 0.00 0.00 0.00 2.79 0.00 0.00

Doc5 0.00 2.10 2.10 0.00 0.00 0.00 2.10 0.00 2.10 0.00

Doc6 0.00 2.10 2.10 0.00 0.00 0.00 2.10 0.00 2.10 0.00

6.2 Complement Naïve Bayes

The Complement NB classifier is based on Bayes Theorem, and the assumption that the presence of a

particular feature (i.e., words) in a class is unrelated to the presence of any other feature. It is one

variation of the NB classifiers, and an adaption of the common Multinomial NB algorithm. However,

unlike the Multinomial NB classifier, the Complement NB classifier is better suited for imbalanced

datasets as it uses statistics from the complement of each class to calculate the models weights (Jason

Rennie, 2003).

The Complement NB classifier computes a probability that a document belongs to a specific target

class using Bayes rule shown below.

Pr(𝑐𝑐|𝑡𝑡𝑖𝑖) =
Pr(𝑐𝑐) ∗ Pr (𝑡𝑡𝑖𝑖|𝑐𝑐)

Pr(𝑡𝑡𝑖𝑖)
, 𝑐𝑐 ∈ 𝐶𝐶

25

Where the classifier will classify test document 𝑡𝑡𝑖𝑖 to class 𝑐𝑐 based on the highest computed probability

Pr(𝑐𝑐|𝑡𝑡𝑖𝑖). The class prior Pr(𝑐𝑐), is estimated by dividing the number of documents that belong to the

class, by the total number of documents.

The normalization factor Pr(𝑡𝑡𝑖𝑖), is calculated as,

Pr(𝑡𝑡𝑖𝑖) = � Pr(𝑘𝑘) Pr(𝑡𝑡𝑖𝑖|𝑘𝑘)
|𝐶𝐶|

𝑘𝑘=1

Lastly, Pr(𝑡𝑡𝑖𝑖|𝑐𝑐) is the probability of obtaining a test document 𝑡𝑡𝑖𝑖 in class 𝑐𝑐 and is shown to be

calculated as,

𝑃𝑃𝑃𝑃(𝑡𝑡𝑖𝑖|𝑐𝑐) = 𝛼𝛼 �Pr(𝑤𝑤𝑛𝑛|𝑐𝑐)𝑓𝑓𝑛𝑛𝑛𝑛
𝑛𝑛

= 𝛼𝛼 �𝜃𝜃𝑐𝑐𝑐𝑐�
𝑓𝑓𝑛𝑛𝑛𝑛

𝑛𝑛

Where the count of the word 𝑛𝑛 in the test document is given as 𝑓𝑓𝑛𝑛𝑛𝑛. Where Complement NB differs

from that of other variants, is how the parameters 𝜃𝜃𝑐𝑐𝑐𝑐 or, probability of the word given the class

Pr(𝑤𝑤𝑛𝑛|𝑐𝑐) is approximated using the training data. Complement NB calculates parameters based on the

following,

𝑃𝑃𝑃𝑃�(𝑤𝑤𝑛𝑛|𝑐𝑐) = 𝜃𝜃𝑐𝑐𝑐𝑐� =
𝛼𝛼𝑛𝑛 + ∑ 𝑑𝑑𝑛𝑛𝑛𝑛𝑗𝑗:𝑦𝑦𝑗𝑗≠𝑐𝑐

𝛼𝛼 + ∑ ∑ 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗:𝑦𝑦𝑗𝑗≠𝑐𝑐

Where the summations are over all documents 𝑗𝑗 not in class 𝑐𝑐, 𝑑𝑑𝑛𝑛𝑛𝑛 is the count frequency or TF-IDF

value of word 𝑛𝑛 in document 𝑗𝑗 and 𝛼𝛼 is the smoothing hyperparameter used to avoid the zero-

frequency problem (Andrew McCallum, 1998) and calculated as 𝛼𝛼 = ∑ 𝛼𝛼𝑛𝑛𝑛𝑛 .

The weights for the decision boundary are then calculated by,

𝑤𝑤𝑐𝑐𝑐𝑐 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜃𝜃𝑐𝑐𝑐𝑐�

𝑤𝑤𝑐𝑐𝑐𝑐� =
𝑤𝑤𝑐𝑐𝑐𝑐

∑ |𝑤𝑤𝑐𝑐𝑐𝑐|𝑗𝑗

Then used in the classification rule by assigning the document to the class with the lower complement

match with the following,

26

𝑐̂𝑐 = arg min
𝑐𝑐
�𝑓𝑓𝑛𝑛𝑤𝑤𝑐𝑐𝑐𝑐
𝑛𝑛

Where 𝑓𝑓𝑛𝑛 is the count of word 𝑛𝑛.

Assuming conditional independence allows for this model to be fast and work well with small datasets.

However, assuming conditional independence is what makes NB naïve as it comes at the cost of losing

contextual relationships. For example, given the following input, “manual trip of reactor

and turbine due to trip of "b" circulating water pump.”

All word order is lost, and capturing the relationship shared between the reactor/turbine with

circulating water pump is lost.

6.3 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is a state-of-the-art NLP model

introduced by Google in 2018. Transformer models have addressed many recurring challenges faced in

NLP. In (Ashish Vaswani, 2017), the transformer architecture has been shown to solve issues such as

capturing long-range dependency problems, efficiency through parallelism, transfer learning, and

contextual understanding. At the root of most of these issues is the implementation of an attention

mechanism, which is a component in BERT that permits the model to capture contextual dependencies

between words in a sentence. This mechanism, along with the bidirectional processing, allows

sequences to be examined in both directions, while providing quantified attention scores to individual

words and their relationship to surrounding words in a sequence.

At a high level, a transformer is a complex type of DL architecture containing many layers responsible

for processing and transforming inputs provided by a previous layer. The primary objective of the

transformer is to effectively model and understand sequential data. A detailed image of the full

transformer architecture is provided in Figure 6-1.

27

Figure 6-1: Transformer Architecture (Ashish Vaswani, 2017)

It is often easier to view the architecture as two main components: Encoder and Decoder. Figure 6-2

provides a high-level flow chart of the main components that make up the transformer architecture.

28

Figure 6-2: Encoder and Decoder Components of Transformer

Depending on the application, the entire architecture is not always required. For example, decoder-only

models use the decoder component of the transformer architecture for tasks such as text generation, or

summarization, where encoder-decoder models are typically used for language translation tasks.

Encoder models can be used by themselves for natural language understanding, information extracting

and sequence classification tasks. BERT is constructed from an encoder, which have demonstrated

great utility at extracting vectors containing useful information about an inputted sequence. These

context-rich vectors can be used “downstream” by adding additional task specific-layers (or neurons)

to compute them for a desired outcome. In the context of BERT, (Jacob Devlin, 2018) describes how

an initial multi-layer bidirectional Transformer encoder is trained on two unsupervised learning tasks

using over 3,000 million words from Wikipedia and BooksCorpus. Since BERT is the model intended

for this research, the theory will be reduced to only the encoder of the transformer model.

6.4 Encoders

The purpose of BERTs encoder is to create meaningful contextualized embeddings of an input

sequence. Figure 6-3 breaks up the encoder component into two main subcomponents, where the

29

Transformer encoder lies in the orange box and the required Embedding Layer is shown in the green.

This section describes the theory behind the encoder and the architecture for pre-training BERT.

Figure 6-3: Encoder Component (Ashish Vaswani, 2017)

6.4.1 Embedding Layer

Three inputs are required for the Transformer encoder: tokens, position embeddings and segment

embeddings. These inputs are created in the Embedding Layer box highlighted in Figure 6-3. Tokens

are generated using the WordPiece tokenizer algorithm which uses methods outlined in (Yonghui Wu,

2016) to tokenize words in a sentence. The maximum allowed input length is 512 tokens. If a word

exists in BERT’s vocabulary, it will be tokenized as a complete word. If a word does not exist in

BERTs vocabulary, it will be broken up into subtokens represented as a root word and the residual

subwords. The objective of WordPiece is to improve model understanding by reducing the vocabulary

size. It can achieve this by leveraging the meaning between previously seen root tokens and subtokens.

BERT leverages these words and subwords to easily identify related words that share similar input

tokens. This strategy also allows BERT to gain some understanding of unknown words, by using

known and previously seen subwords to construct it. Generally, if a word does not exist in BERTs

vocabulary, WordPiece will break up the word into subwords prefixed with ‘##’ symbols. If a word

does exist in BERTs vocabulary it will not be divided and will be represented as a single token.

In addition to token embeddings, position and segment embeddings are also constructed. Position

embeddings are vectors of integers representing the position a token exists in a sequence. This is

30

important because it will provide BERT positional context to a token such that repeated words are

distinguishable. For example, positional information on the nominative singular pronoun – “I” in “I eat

chicken therefore I am a carnivore” would be retained. The last requirement created in the embedding

layer is the segment embeddings. This vector contains values of 0 and 1, indicating the sentence the

token exists in when given two pairs of sentences. This is useful when performing certain training

tasks. After these three vectors are constructed, they are summed elementwise to a single input

embedding matrix with dimensions (1,𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 , 768) for every sequence, which is fed into the initial

encoder layer. In other words, each token is a is represented as a vector with a length of 768. An

example of the input tokens, segment embeddings and position embedding are show Figure 6-4.

Figure 6-4: Input Representation (Jacob Devlin, 2018)

6.4.2 Transformer Encoder

The Transformer Encoder (or Transformer Block) is a stack made up of 𝑁𝑁 identical encoding layers.

Each layer has two sub-layers. The first is a multi-head self-attention layer containing a self-attention

mechanism, and the second is a position-wise fully connected feed-forward network (Ashish Vaswani,

2017). Each layer undergoes a summation and normalization used for treating the vanishing gradient

problem (Hochreiter, 1998). Figure 6-5 shows the encoder stack with 6 encoding layers, where the

bottom encoding layer feeds its output to the next encoding layers.

31

Figure 6-5: Encoder Stack

Each input embedding is sent into the first encoder layer located at the bottom of Figure 6-5. The input

embedding is processed through two sublayers, Multi-Head Attention and Feedforward Neural

Networks.

6.4.3 Self-Attention

Prior to diving into the Multi-Head Attention, it is useful to discuss the self-attention mechanism that

has given Transformers the ability to achieve state of the art performance. Self-attention is a

mechanism addressed in (Ashish Vaswani, 2017). The primary objective of self-attention is to

understand contextual relationships between words in a sentence. This is achieved by creating a vector

with an attention-based score that can be used to quantify how relevant each word is for a given input

sentence with respect to itself and other words. Word embeddings are improved by performing an

attention calculation with surrounding words in a sentence. The attention function is described as

mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output

are all vectors (Ashish Vaswani, 2017). The attention function used in training BERT, is referred to as

Scaled Dot-Product Attention function and is applied on a set of queries simultaneously packed in to a

matrix 𝑄𝑄, using matrices keys 𝐾𝐾 and values 𝑉𝑉 and the dimension of the key vectors �𝑑𝑑𝑘𝑘. The

calculated attention score is applied for each input word 𝑥𝑥𝑖𝑖 and used to compute a weighted sum of the

tokens indicated as vector 𝐽𝐽𝑖𝑖 shown in Figure 6-6.

32

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑘𝑘
� ∗ 𝑉𝑉

The Multi-Head Attention is a layer that runs 8 self-attention calculations in parallel is shown in Figure

6-6.

Figure 6-6: Encoder Sublayers

6.4.4 Feed Forward Neural Network

The Feed Forward Neural Network (FFNN) layer takes the self-attention vectors as input and is

propagated forward through the network. At each hidden layer, the weighted sum of the inputs is

calculated and passed through an activation function, which introduces non-linearity into the model.

6.5 Training Objectives

Using the encoder architecture, BERT was constructed by being trained on two unsupervised learning

tasks: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, BERT

randomly masks 15% of the tokens in the input sequence and attempts to predict the original masked

tokens. The model receives the masked input sequence and generates representations for each token.

The goal of this task is to correctly predict the original tokens based on the context of the surrounding

tokens, to gain better insight into the relationships between each word. The objective in NSP, is to have

33

BERT take pairs of sentences as input and learns to predict whether the second sentence follows the

first sentence in the original text. Training requires BERT to randomly select sentence pairs from a

large corpus and inserts them into training examples. Some of these pairs are consecutive sentences

from the original text collection, while others are randomly paired sentences. The model is then tasked

to classify whether the second sentence is a genuine consecutive sentence or a random one. Unlike

MLM where the goal is understanding word relationships, NSP aims to provide insight into sentence

relationships as a broader focus. It was shown in (Jacob Devlin, 2018) that by training on both tasks,

BERT showed an overall higher improvement in performance as to only training with MLM. Once a

prediction is made for each task, the error is calculated. The error is called a “loss function” which is a

difference between the predicted output and the actual output. This error is then propagated back

through the network, and the weights used to within the neural networks are adjusted to minimize the

error for the next iteration. This process of adjusting weights is called “back propagation”, which is the

main concept used for learning. Back propagation is typically done using a gradient descent

optimization algorithm.

6.6 Transfer Learning

After sufficient training, the current state of BERT contains knowledge from its previous tasks to be

used for many NLP techniques. This state of BERT is referred to as a pre-trained language model

where its weights represent knowledge obtained from the dataset used for MLM and NSP tasks. Using

transfer learning, these weights can be loaded into any BERT model and used as an “off-the-shelf”

language model for performing many tasks like text classification and sentiment analysis.

34

7 Methodology

Many outages within MORP are irrelevant to the scope of this research problem, therefore many are

removed before any text pre-processing. All outage reasons and number of their occurrences are

reported in MORP are shown in Figure 7-1.

Figure 7-1: Outage Occurrences

Outage reasons that do not provide relevant information about power plant systems or components are

removed and not include in the training process. For example, refueling outages, regulatory

restrictions, operator training and license examination and administrative outages were removed from

the dataset. Therefore, the final training set only contains the following outage reason occurrences

shown in Figure 7-2.

35

Figure 7-2: Relevant Outage Reason Occurrences

After removing the irrelevant report summaries, the final dataset contains a total of 4,211 summaries

which will be split for training and testing.

7.1 Data Preparation

Training NB and BERT for text classification requires two separate approaches for data preparation.

Since NB is reliant on purely statistical methods, preserving excessive irrelevant features results in

high-dimensionality, overfitting, unwanted noise, and poor performance. Therefore, NB requires

training data to contain quality features and the removal of irrelevant ones. In contrast, BERT performs

better by utilizing the context and semantic relationships, therefore much less pre-processing of text is

required.

All data preparation for both methods is completed using a combination of both manual cleanup and

Python modules and functions. Python modules for data preparation can be found in in Appendix A.

7.1.1 Cleaning

MORP naturally consists of raw text data detailing the outage of a NPP. The current state of the raw

data itself poses many challenges for training any text classifier. Data preparation for both NB and

BERT will require the need to preserve features relevant to a NPP outage, relevant features would be

those that best describe the outage. This includes abbreviations, acronyms, plant specific labels,

procedural codes, and specific equipment identification numbers. These features communicate system

components and equipment beneficial for the algorithm to learn and generalize future outages on.

36

Preserving and properly representing these features is not a trivial task and requires manual labor to

represent them correctly in the training data. For example, representing the contraction “SG” as “Steam

Generator” during the training process was preferred, since “Steam Generator” could be tokenized

better than “SG”. The following subsections provides and overview of the existing challenges in data

preparation.

Since NB do not retain semantics or context, punctuation and stop words such as “the”, “to”, etc. are

completely removed from the text input, but retained in the BERT methodologies.

7.1.1.1 Acronym Expansions

Acronyms are heavily used throughout the documented outage reports in MORP. Majority of these

acronyms describe system components and power plant equipment that serve as valuable, domain

specific features for training the classifier. To extract and expand the acronyms, an iterative approach

requiring both automated and manual verification was implemented. This methodology operates on the

assumption that acronyms without being explicitly defined are commonly used throughout the

industry. For example, “SG” is an acronym not explicitly defined in most document outages but is

commonly known to represent “Steam Generator”.

When an acronym was correctly identified, it was appended to the text file “masterExpansions.txt”

where the contracted acronym and its expanded form are stored and used in the pre-processing phase to

clean MORP. The text file “masterExpansions.txt” can be found in Appendix B.

Some acronyms were explicitly written in their full form prior to contraction. In most cases, the

contractions were initially presented within parenthesis, then used freely throughout the remainder of

the outage document. For example,“minor maintenance and surveillance testing.

reactor shutdown automatically due to low electrohydraulic control

(ehc) pressure while paralleling ehc pumps.”

These acronyms were first extracted using Regular Expressions (Regex) for entities enclosed in

parenthesis then manually verified in the document of origin. In many instances, some acronyms were

not readily known and not explicitly defined in the report summary. For example,“shutdown to

repair a crdm canopy weld leak, which was the root cause of a

dropped control rod.

Using Python code, these acronyms were first cross-referenced with defined acronyms listed in (NRC,

Nuclear Regulatory Commission, NUREG-0544, Rev. 4, "NRC: Collection of Abbreviations", 1998).

However, in some cases (NRC, Nuclear Regulatory Commission, NUREG-0544, Rev. 4, "NRC:

37

Collection of Abbreviations", 1998) would list more than one definition for an acronym, requiring

manual assessment of the acronym used in context of the summary and engineering judgment to

choose the best expansion.

If an acronym could not be verified in (NRC, Nuclear Regulatory Commission, NUREG-0544, Rev. 4,

"NRC: Collection of Abbreviations", 1998), they were identified in publicly available NRC

documentation by manually searching through event reports, emails, or other technical documentation.

Once majority of the acronyms were identified, Python code was used to replace the acronyms with

their expansions and Regex was used to find and extract all existing 2-4 letter words from each report

summary. The same approach was conducted multiple iterations until majority of the 2-4 letter

acronyms were identified. The acronyms that could not be identified were recorded in the text file

“unknown.txt” shown in Appendix D.

7.1.1.2 Hyphenated Plant Specific Entities and Procedures

Report summaries frequently contained hyphenated plant specific labels and codes, existing as

combinations of both acronyms and numerical entities. For example, “manually shutdown the

unit due to a socket weld leak on the rcs pressure boundary upstream

of valve sia-v056.”

These objects were extracted using Regex rules that matched any objects with hyphens and

alphanumeric combinations. Hyphenated instances like sia-v056 in the above example are searched

across publicly available information. If there was a match, the hyphenated object, expansion, and

reference was recorded in text file “reformat.txt”, provided in Appendix E. Additionally, the text

component of the hyphenated entity was recorded in “hyphensInVocab.txt” located in Appendix C for

downstream utility. If there was not a successful match in publicly available documentation, the

hyphenated object and its context was manually examined in the MORP report summary and compared

against pre-existing acronyms in the “masterExpansions.txt”. An engineering judgment was then made

to expand the hyphenation into the best representation. One example of this is in the following report

summary, “planned outage for 2rcs-p-1b seal replacement.”

In this example, “2rcs-p-1b” is represented as “reactor coolant system pump”, since

“rcs” was previously seen and recorded in “masterExpansions.txt”, furthermore, it was common to

for seal replacements to exist in context with pump in previous report summaries.

38

Finally, there were some instances in which hyphenated objects represent compound words or

expressions. For example, “unit 1 due to a failed no-load disconnect switch

on the main generator.”

These were matched based on Regex rules for only containing hyphens and non-numeric characters.

The treatment for these types of hyphens was switching them for the non-hyphenated representation,

such as “no load”.

7.1.1.3 Dates

Dates and datetime objects do not contribute any useful information for this application of text

classification. Therefore, Regex patterns were used to remove them from all report summaries.

7.1.1.4 Backslashes

All instances of backslashes are removed while splitting the left and right components. For example, in
“edg d5 and d6 not operable per tech specs, due to lube oil/fuel oil

problem.” “oil/fuel” is split to “oil fuel”.

7.1.1.5 Unknown Combinations

There were many instances in which the combinations of letters, numbers, and/or plant entities were

not captured with Regex patterns or too challenging to manually identify. These entities were recorded

in “unknownWordNumbers.txt” and removed from the corpus.

7.1.2 Labeling

To perform classification, outage hours in MORP need to be mapped from continuous values to

binned, discretized representations. This section outlines the challenges and strategies associated with

performing this mapping.

7.1.2.1 Class Imbalance

Training the classifier requires the input data to be labeled for its target class, in this case, the target

class being outage hours (OUTG_HRS). In its raw form, the reported outage hours in MORP exist as a

continuous range of values between 0 and 744 hours. These hours are binned into two groups which

correspond to “mild” and “spicy” outages. By splitting the target class into two bins, the classification

problem is reduced to a binary classification task, which is suitable for the small dataset with class

imbalances.

39

As discussed in previous sections, class imbalances can result in learning only the majority class, and

not capable accurately identifying the minority class. Previous data preparation steps result in pruning

over half of MORP to a total amount of 4,211 relevant summaries. Depending on the defined outage

hour limit, the resulting dataset could be significantly impacted by class imbalance. For example,

defining the hour limit to be 744 hours, results in a dataset where only 8.9% of reported summaries are

744 or more hours.

To obtain the best model, multiple datasets are constructed from a range of hour limits to investigate

model performance. The hour limits investigated are [744, 500, 400, 350, 300, 250].

7.1.2.2 Binning Scheme

The maximum outage reported per report summary is 744 hours. However, this does not indicate

whether it was a single outage or a continuation from a previous outage. To improve the binning of

outage hours, Python code was used to group outages by docket numbers (DOCKET) and sort the

outages based on the report period (RPT_PERIOD). After grouping and sorting, outage hours are

grouped on whether the outage was a continued outage or not. After grouping accordingly, the total

sum was calculated and if the sum exceeded the hour limit, it was given a label of “1” to indicate a

“spicy” outage, else it was given a value of “0” for “mild”. Information regarding the outage method is

provided in the outage method column (OUTG_METH). Definitions for the categorical values

reported in the outage method column are taken from (MORP2 Definitions, 2016) and shown in

Table 7-1: Categorical Definitions for Outage Method

Code Description

1 Manual (normal reactor shutdown or generator offline with reactor critical)

2 Manual Scram

3 Auto Scram

4 Continued (from previous month)

5 Reduced Load (only captured through August 1997)

9 Other (outages that transition within the month to another outage)

Finally, after cleaning and binning outages based on the defined hour limits, datasets are constructed.

Figure 7-3 shows the variation of class distributions across changes in severity limits.

40

Figure 7-3: Class Distributions for Defined Severity Limits

7.1.2.3 Splitting Scheme

The holdout method is used to evaluate the performance of the trained classifier. This technique

involves splitting the cleaned, labeled dataset into three separate datasets which are responsible for

training, validating, and testing. 15% of the dataset is “held out” of the training process and used to test

the classifier. To ensure unbiased validation of the trained model, the validation dataset was designed

to have no overlap or shared report summaries in the training dataset. Similarly, the test dataset was

assembled without any overlapping data from both validation and training datasets.

Constructing the test and validation datasets required temporary removal of all duplicate text inputs

from the initial dataset, resulting in a dataset with original report summaries. 15% of this dataset is

randomly sampled while retaining constant class proportions for both validation and testing datasets.

This method of equally partitioning the class distributions is known as “stratifying” and is used to

reduce bias in the validation and testing of the trained model. Figure 7-4 shows the resulting class

distribution when stratified across training, validation, and testing datasets for defined ‘744’ hour

severities. Similarly, Figure 7-5 demonstrates the class distributions after stratifying the ‘250’ hour

limit dataset. A summary of class distributions across all datasets is provided in Table 7-2.

Note, during the pre-processing stages, a datapoint from two large BERT datasets were mistakenly not

removed and included in the test set.

41

Figure 7-4: Stratification of 744 Hour Limit Dataset

Figure 7-5: Stratification of 250 Hour Limit Dataset

Table 7-2: Summary of Dataset Class Distributions

Hour Limit

Class Counts

Training Testing Validation

Mild Spicy Mild Spicy Mild Spicy

250 2566 752 420 63 357 53

300 2673 645 434 49 369 41

350 2742 576 443 40* 376 34

400 2809 509 452 31 383 27

500 2897 421 462 21* 392 18

744 2997 321 471 12 400 10

* +1 Additional Spicy Outage for the BERT classification tasks – Additional data point from non-removal of

Unicode string.

42

7.2 BERT Models

Two pre-trained BERT models investigated for fine-tuning MORP are BERT large and DistilBERT

base. Each pre-trained model was fine-tuned using different batch sizes and max length sequences. The

models are fine-tuned separately on the cleaned datasets outlined in Section 0 and unclean datasets,

where methods from Section 0 are omitted.

BERT large consists of 24-layers of the transformer architecture, 1024 hidden dimensions, 16 self-

attention heads per transformer block and 336M parameters. It was trained on masked language

modeling and next sentence prediction tasks on BookCorpus which is a dataset consisting of 11,038

unpublished books and English Wikipedia.

With 336M parameters, BERT large can capture complex patterns, allowing better performance across

large diverse datasets. However, the large number of parameters may lead to overfitting when fine-

tuning with small imbalanced datasets. The second pre-trained model DistilBERT is used to assess the

challenges of small imbalanced datasets. DistilBERT is a smaller, faster version of BERT, with 40%

fewer parameters while still retaining 97% of language understanding capabilities by utilizing

knowledge distillation in the pre-training phase (Victor Sanh, 2020). Like BERT large, it was also

trained on masked language modeling and next sentence prediction using the same datasets.

7.3 Further Training BERT Models

BookCorpus and Wikipedia provide both pre-trained models with data on language used across broad

categories. This allows the pre-trained models to have a general understanding of natural language and

knowledge used in lots of examples. However, BookCorpus and Wikipedia may not have enough data

about the nuclear power domain to effectively learn the language and knowledge associated with

nuclear power plants. This domain-specific problem can typically be overcome with fine-tuning when

enough data exists in the training dataset. However, after cleaning and splitting the MORP dataset, the

resulting 3318 short report summaries may not be sufficient for the pre-trained model to learn and

classify on

To address the lack of nuclear power domain data, two additional models are created by further

training BERT large and DistilBERT on custom dataset Ntext. Ntext is the “Nuclear Textual” dataset

containing textual data related to nuclear domain constructed by (Ayush Jain, 2020). The Ntext dataset

was constructed from 7000 internal reports, thesis and research papers in PDF format from the Indira

Gandhi Centre for Atomic Research (IGCAR). The sizes of the reports ranged from a couple of pages

to a few thousand pages. Much of the unlabeled text data consisted of very old reports, some of which

were stored as scanned copies. The reports primarily dealt with the nuclear domain, many of them

43

explicitly dealing with Fast Breeder Reactors (FBR). Ntext was designed to provide further context to

numerous language modelling tasks in the nuclear power domain.

The models were further trained on the original MLM and NSP tasks. MLM involves randomly

masking a percentage of input tokens and training the model to predict the original masked tokens. The

purpose of this objective is for BERT to learn the contextual representations of words within Ntext.

Figure 7-6: Example of MLM (Reimers, 2022)

Additionally, NSP involves training the models to predict whether two input sentences are consecutive

or not, allowing for the model to learn relationships between sentences in Ntext.

By further training, these models have exposure to both BookCorpus and Wikipedia, and now

scientific literature on fast breeder reactors.

7.4 BERT Training

16 models were trained to examine performance of cleaning MORP and continued training of BERT

large and DistilBERT. Hyperparameter tuning is the method of adjusting parameters until the best

model performance is achieved. However, the purpose of this research is to establish a base classifier

for MORP, thus hyperparameter is outside the scope of this research. The following subsections

provides the overview for the configuration of the fine-tuned models.

44

7.4.1 Cleaned Vs. Uncleaned

To examine the impact of text cleaning, each configured model was fine-tuned on the MORP datasets

with and without cleaned text inputs. This was to assess the performance on raw text inputs as opposed

to any required cleaning.

7.4.2 Base Models Vs. Further Trained

To evaluate the effects of further training using Ntext for MLM and NSP, a base model and its further

trained counterpart were fine-tuned and compared.

7.4.3 Batch Size and Max Sequence Length

The batch size and max sequence length are the only two hyperparameters that are varied across

models. The choice of these values are dependent on the available hardware and memory for training

in the computational environment, therefore a balance between max sequence length and batch size is

necessary to ensure there are no issues with memory.

Batch size refers to the number of training examples that are processed during each iteration of the

training phase. More explicitly, it is the number of samples that are simultaneously fed into the model

for computation. Each batch is used to calculate the gradients and update model parameters. Large

batch sizes are preferred since it reduces the noise in gradient estimations and allows for faster

convergence. However, BERT large requires more memory to store the model parameters, therefore a

large batch size might not be possible.

Max sequence length represents the maximum number of tokens allowed in a sequence. Both BERT

large and DistilBERT base can take a maximum amount of 512 tokens which is approximately 400

words. However, like batch size, larger sequence lengths require more memory. If an input sequence

exceeds the max sequence length, the input sequence is truncated.

Many combinations of batch sizes and max sequence lengths were investigated for the less parameter

dense model, DistilBERT base. The average length of text inputs in the cleaned MORP dataset is 108

words, with a maximum of 383, therefore max sequence lengths of 128 and 512 were used. Due to the

memory requirements, BERT large did not vary in batch and max sequence. A summary of each

trained model, including the batch size and max sequence lengths for BERT large and DistilBERT is

shown in Table 7-3 and Table 7-4, respectively.

45

Table 7-3: BERT Large Configurations

Model Name Model Batch Size Max Sequence Length

bert-large-uncased BERT large 32 128

morpFinalTrain Further trained BERT

Large

32 128

Table 7-4: DistilBERT Base Configurations

Model Name Model Batch Size Max Sequence Length

DistilBERT-base-

uncased

DistilBERT base 32 512

 32 128

 16 128

DistilBERT-morp Further trained

DistilBERT base

32 512

 32 128

 16 128

7.4.4 Epochs

An epoch is a hyperparameter that determines the number of times the model will see the training

dataset. During the training phase, an epoch refers to a complete pass through the entire training

dataset. During the epoch, the model iterates over all the training dataset, calculates loss, and updates

the parameters based on the gradients from the backpropagation algorithm. An epoch consists of a

number of steps the model takes until the epoch is completed. The number of iterations is defined

below.

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
= 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ

BERT has been shown to fine-tune well with 2-4 epochs and is typically common practice. However,

(Tianyi Zhang, 2021) shows that increasing the number of epochs could help stabilize the fine-tuning

process when using small datasets. Therefore, it was chosen to use an early stopping technique to

prevent overfitting and improve model performance.

46

Early stopping involves monitoring the model’s performance on the validation dataset and stopping the

training early if the performance degrades. During model training the model will typically reach a

point where it begins to overfit the training data and fails to generalize unseen examples. This is

measured by seeing a drop in performance on validation loss after a given number of epochs has been

trained. In other words, the goal of training is to minimize validation loss, after a specified number of

epochs, if the validation loss has not improved, the weights from when the validation loss was the

lowest is returned.

The early stopping parameters used in this research are shown below in Table 7-5,

Table 7-5: Early Stopping Parameters

Parameter Value Description

Monitor Validation Loss The monitored value that

determines early stopping

Patience 10 The number of epochs

7.4.5 Weighting

When considering class imbalance, raw accuracy of a classifier could be misleading because it is

possible the classifier performed well at predicting only the majority class. Since all datasets used in

this class are imbalanced, the classes are weighted heavily to the minority class, in this case the “spicy”

outages. Weights for each class are calculated using the following equations,

1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
∗
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

2
= 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
∗
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

2
= 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

7.4.6 Learning Rate Decay

The learning rate decay is a method used during training to gradually reduce the learning rate over

time. The learning rate controls the speed at which the model learns. Gradually reducing the learning

rate provides smaller updates to the model’s parameters, helping the model converge effectively and

improving performance.

47

All models utilize a learning rate scheduler which adjusts the learning rate based on the number of

training steps. The training steps vary for each model, and are calculated as the following,

�
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
� ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

The parameters for the learning rate scheduler are shown below in Table 7-6,

Table 7-6: Learning Rate Scheduler Parameters

Parameter Value

Initial Learning Rate 5e-05

End Learning Rate 1e-05

Power 1.0

7.5 Naïve Bayes Data Preparation

When training a Naïve Bayes classifier, context is not important since there is no way to retain or

understand semantic relationships. By pruning as many unnecessary features as possible from the

training and testing text inputs, noise from irrelevant features is reduced leading to improved

performance. Therefore, all NB models utilize the cleaned datasets develop in Section 0 but with

additional cleaning steps. These steps include the removal of all special characters, punctuation and

stop words.

7.6 Naïve Bayes Models

Two Complement NB models using tokenizers TF-IDF and BOW were trained with the further

cleaned MORP data. The models were trained across a sweep of smoothing parameters 𝛼𝛼 to assess

model performance. This sweep contains values of 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0.

7.7 Metrics

Since MORP is heavily imbalanced across all dataset creations, the choice of metrics to evaluate the

trained model by are the F1 score, Recall and Precision scores that are calculated from the trained

model’s performance on the test dataset. The model performance is evaluated by a confusion matrix,

which is a table summarizing the prediction results. For the binary classification task, the confusion

matrix is constructed by comparing how many actual results match the predicted results. Table 7-7

48

provides an example of the confusion matrix used to calculate the performance metrics evaluated in

this section.

Table 7-7: Confusion Matrix

True Labels

 Mild Spicy

Mild True Negative False Positive

Spicy False Negative True Positive

 Predicted Labels

These metrics describe the performance on the ability to identify a truly severe outage. For example,

Precision is calculated as,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Precision can be interpreted as, out of everything that has been predicted as ‘spicy’, precision counts

the percentage that is correct. This means that a model with high precision may not find all the ‘spicy’

outages, but the ones that were classified as ‘spicy’ are most likely to be correct.

Similarly, recall is interpreted as, every outage that is truly considered ‘spicy’, recall describes how

many the model successfully found. A model with high recall demonstrates that is can successfully

identify all the ‘spicy’ cases, but in the process, misclassify ‘mild’ cases as ‘spicy’. Recall is calculated

as the following,

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

Since there is a trade-off between precision and recall, the F1 score combines the precision and recall

into a single metric represented as the harmonic mean and commonly used as the standard metric using

imbalanced datasets. F1 is calculated by the following,

𝐹𝐹1 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

A high F1 score reflects high scores in both recall and precision. In other words, a high F1 score

reflects the ability to capture majority of ‘spicy’ cases with a high likelihood that it is a truly ‘spicy’

outage.

49

7.8 Training Computational Environment

All models were trained using the A1000 GPU on Google Colab. The Python programming language

was used throughout the entire analysis and pre-trained models; BERT large uncased, DistilBERT base

uncased are obtained, further trained, and fine-tuned using the HuggingFace transformers library

(HuggingFace, n.d.).

50

8 Results

Top performing classifiers on Precision, Recall and F1 for each outage hour data split are provided in

the following subsections. Due to the imbalanced dataset splits, there are fewer number of available

testing points as the hour limit binning increases. For example, Table 7-2 shows that models binned at

the 744+ hour limit only have 12 “Spicy” outages to test on. Likewise, the 500+ hour binned outages

only have 21 data points to test against. It should be noted that a small test sample size does not fully

represent all real-world scenarios, especially in complex systems within nuclear power plants.

To quantify the uncertainty in metrics, the Wilson Score Interval is used to construct confidence

intervals with 95% confidence. The Wilson Score Interval is used to approximate the confidence

interval for a sample proportion in a binomial distribution. Moreover, it provides a range of values with

95% confidence that it will likely contain the true metric. As a rule of thumb, the Wilson Score Interval

becomes less reliable when proportions are less than 30 samples. Therefore, metrics from outage hour

splits of 400+ should be regarded as preliminary as further treatment in their evaluation is required.

The equation for calculating the Wilson Score Interval is shown below.

𝑝̂𝑝 + 𝑧𝑧2
2𝑛𝑛 ± 𝑧𝑧�𝑝̂𝑝(1 − 𝑝̂𝑝) + 𝑧𝑧2

4𝑛𝑛2

1 + 𝑧𝑧2
𝑛𝑛

= 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,

𝑝̂𝑝 is the observed metric

𝑛𝑛 is the test sample size

𝑧𝑧 is the Z-score corresponding to the desired confidence level

In addition to the Wilson Score Interval, the width and mean of the interval is reported, along with the

total average and standard deviations of all model performances. These figures of merit are considered

when recommending the best model for specific metrics.

8.1 Top Precision Scores

Precision scores for every model in each outage severity split are provided in Figure 8-1 through

Figure 8-6. The top Precision metrics are observed in transformer-based models for each hour limit

split. As the outage severity limit is softened, NB with TF-IDF feature extraction tends to get more

competitive, outperforming some transformer-based models and BOW feature extraction techniques.

51

Figure 8-1: 744+ Hour Limit Precision Scores, All Models

52

Figure 8-2: 500+ Hour Limit Precision Scores, All Models

53

Figure 8-3: 400+ Hour Limit Precision Scores, All Models

54

Figure 8-4: 350+ Hour Limit Precision Scores, All Models

55

Figure 8-5: 300+ Hour Limit Precision Scores, All Models

56

Figure 8-6: 250+ Hour Limit Precision Scores, All Models

Table 8-1 shows the results for models that reported the best Precision score per hour outage split. The

precision score demonstrates the model’s ability to determine whether a classified severe outage was

an actual severe outage. This metric is used when the cost of a false positive is high. In other words, a

model chosen for precision will be used when the user cannot afford to mistakenly classify a “Mild”

outage as “Severe”.

57

Table 8-1: Top Precision Score by Hour

Hour Model Precision 95% Confidence

Interval

Width Midpoint

250 bert-large-uncased-

BertTokenizer-32-128-

cleanDatasets

0.5614 43 – 68% 24 0.53

300 DistilBERT-base-uncased-

DistilBERTTokenizer-32-512-

cleanDatasets

0.5652 43 – 70% 27 0.54

350 batch16_maxLength128_distill

Bert-DistilBERTTokenizer-16-

128-cleanDatasets

0.6388 48 – 77% 29 0.60

400 batch32_maxLength512_distill

Bert-DistilBERTTokenizer-32-

512-cleanDatasets

0.6667 50 – 81% 32 0.49

500 batch32_maxLength128_distill

Bert-DistilBERTTokenizer-32-

128-cleanDatasets

0.8333 63 – 94% 31 0.72

744 DistilBERT-base-uncased-

DistilBERTTokenizer-16-128-

uncleanDatasets

0.75 47 – 91% 44 0.72

Total Average and Standard Deviation 0.6692 ±

0.11

 31.20 ±

6.91

0.6 ± 0.01

The DistilBERT models made up majority of the reported Precision results, where the highest

Precision score observed was 83.33% from model `batch32_maxLength128_distillBert-

DistilBERTTokenizer-32-128-cleanDatasets` of hour outage limit 500+. The average confidence

interval width of this model is below the total average, indicating better generalization on the data split

than other models. However, further evaluation of the model performance is required. The confusion

matrix for this model is provided in Table 8-2.

58

Table 8-2: Confusion Matrix of 500+ Hour Limit, Max Precision Model

batch32_maxLength128_distillBert-

DistilBERTTokenizer-32-128-

cleanDatasets

Predicted Negative

(Mild)

Predicted Positive

(Spicy)

Actual Negative (Mild) 460 2

Actual Positive (Spicy) 11 10

Surprisingly, all but one model in the top Precision metric used the clean datasets. Model `DistilBERT-

base-uncased-DistilBERTTokenizer-16-128-uncleanDatasets` for the 744+ hour limit was the only

model reporting the use of raw datasets. Although the Precision for this model is above the total

average, this does not necessarily mean the model had good generalization across the dataset. With the

largest confidence interval width of 44, the above average Precision score is likely due to the lack of

severe outage data points in the test sample pool.

The use of cleaned datasets across all other models indicates that cleaning and expanding the unique

features in a text document led to better performance in the Precision metric when using the further

trained and base DistilBERT models. However, as the outage severity limit is dropped to 350+ and

lower, the Complement NB models with the TF-IDF feature extraction method becomes more

competitive. This is surprising, since the transformer-based models are expected to improve in

performance since there are more severe outages seen in the training process.

In summary, rigorous investigation of the transformer-based models with MORP is required to assess

the utility in Precision. Due to the small sample pool of severe outages, synthetic data verified by a

subject matter expert could improve the ability to test the robustness of the model. Interestingly, all but

one of the transformer-based models reported using the cleaned datasets. This suggests that when

solely using MORP data, the Precision metric is influenced by the expansion and labeling of acronyms

and specific power plant components.

8.2 Top Recall Scores

Recall scores for every model in each outage severity split are provided in Figure 8-7 through Figure

8-12. The top Recall metrics are observed in transformer-based models for each hour limit split.

Contrary to the Precision metric, Complement NB classifiers using the BOW feature extraction method

is surprisingly competitive across all data splits.

59

Figure 8-7: 744 Hour Limit Recall Scores, All Models

60

Figure 8-8: 500+ Hour Limit Recall Scores, All Models

61

Figure 8-9: 400 Hour Limit Recall Scores, All Models

62

Figure 8-10: 350 Hour Limit Recall Scores, All Models

63

Figure 8-11: 300 Hour Limit Recall Scores, All Models

64

Figure 8-12: 250 Hour Limit Recall Scores, All Models

Table 8-3 provides the top Recall scores from all models per hour outage binning. The Recall score

measures how many of the actual severe outages were correctly predicted as “Spicy”. This is important

when the cost of a false negative is high. A user will choose a model for Recall when they want to

improve the ability to capture all potentially “Spicy” outages, even if that includes misclassifying

“Mild” outages.

65

Table 8-3: Top Recall Score by Hour

Hour Model Recall 95%

Confidence

Interval

Width Midpoint

250 batch32_maxLength128_distillBe

rt-DistilBERTTokenizer-32-128-

uncleanDatasets

0.6349 51 – 74% 23 0.63

300 morpy-32-128-unclean-bert 0.7347 60 – 84% 24 0.72

350 morpy-32-128-clean-bert 0.675 52 – 80% 28 0.66

400 DistilBERT-base-uncased-

DistilBERTTokenizer-32-512-

cleanDatasets

0.5161 35 – 68% 33 0.51

500 bert-large-uncased-

BertTokenizer-32-128-

uncleanDatasets

0.7727 56 – 90% 34 0.73

744 batch16_maxLength512_distillBe

rt-DistilBERTTokenizer-16-512-

uncleanDatasets

1.0 75 – 100% 24 0.88

Total Average and Standard Deviation 0.7222 ±

0.16

 27.67 ±

4.84

0.68 ±

0.12

The models with the highest Recall of 1.0 are reported from`batch16_maxLength512_distillBert-

DistilBERTTokenizer-16-512-uncleanDatasets` and `batch16_maxLength128_distillBert-

DistilBERTTokenizer-16-128-uncleanDatasets`. However, a perfect Recall of 1.0 is speculative and

representative of the lack of severe outages in the sample pool. Similarly, model `bert-large-uncased-

BertTokenizer-32-128-uncleanDatasets` for outage hour limit 500+ evaluated a Recall score of

77.27%. This model has a confidence interval higher than the total average, indicating a large

uncertainty associated with this model.

Surprisingly, model `morpy-32-128-unclean-bert` for outage hours 300+ performed slightly better than

the total average with a Recall score of 73.47%. It was also subjected to the second largest test

sampling pool of all the dataset splits, containing 49 severe test samples. Figure 8-11 shows Recall

scores for every model trained to classify 300+ hour limits. All other models from the 300+ hour limit

range reported significantly lower recall scores, indicating good generalization over other models. The

66

confusion matrix provided in Table 8-4, shows `morpy-32-128-unclean-bert` incorrectly classified

many “Mild” cases as “Spicy”, but captured majority of all “Spicy” cases.

Table 8-4: Confusion Matrix of 300 Hour Limit, Max Recall Model

morpy-32-128-unclean-bert Predicted Negative (Mild) Predicted Positive (Spicy)

Actual Negative (Mild) 296 139

Actual Positive (Spicy) 13 36

In summary, the top model demonstrating good generalization of the data and performance on Recall is

the further trained BERT model `morpy-32-128-unclean-bert` for outage hour limit 300+. This is most

like due to the larger number of parameters associated with the BERT model compared to the distilled

version. Another component to the performance of this model is the data split for the 300+ hour limit.

Relaxing the outage limit to 300+ allows for a better distribution of “Mild” and “Spicy” outages.

Additionally, the metric for Recall is less stringent on false positives, permitting a greater holistic

search for all potentially severe outages. A model with good recall performance will require more

manual work downstream, but less time is spent in pre-processing techniques associated with RBS

systems or traditional ML methods.

8.3 Top F1 Scores

F1 scores for every model in each outage severity split are provided in Figure 8-13 through Figure

8-18. The F1 score is the harmonic mean of precision and recall, evaluating the overall performance of

a model. Transformer-based models performed best in all data splits.

67

Figure 8-13: 744 Hour Limit F1 Scores, All Models

68

Figure 8-14: 500 Hour Limit F1 Scores, All Models

69

Figure 8-15: 400 Hour Limit F1 Scores, All Models

70

Figure 8-16: 350 Hour Limit F1 Scores, All Models

71

Figure 8-17: 300 Hour Limit F1 Scores, All Models

72

Figure 8-18: 250 Hour Limit F1 Scores, All Models

Table 8-5 shows the results for models that reported the best F1 score per hour outage. Models `morpy-

32-128-unclean-bert` and DistilBERT-base-uncased-DistilBERTTokenizer-32-512-uncleanDatasets`

were the only two models above the average performance in the top F1 scores. As seen from previous

results, this is due to the challenges most models had with the Precision metric.

73

Table 8-5: Top F1 Score by Hour

Hour Model F1 95%

Confidence

Interval

Width Midpoint

250 bert-large-uncased-BertTokenizer-

32-128-cleanDatasets

0.5333 41 – 65% 24 0.56

300 DistilBERT-base-uncased-

DistilBERTTokenizer-32-512-

cleanDatasets

0.5474 41 – 68% 27 0.56

350 batch16_maxLength128_distillBert-

DistilBERTTokenizer-16-128-

cleanDatasets

0.6043 45 – 75% 29 0.63

400 batch32_maxLength512_distillBert-

DistilBERTTokenizer-32-512-

cleanDatasets-runs

0.4898 32 – 66% 33 0.65

500 morpy-32-128-unclean-bert 0.7620 55 – 89% 34 0.78

744 DistilBERT-base-uncased-

DistilBERTTokenizer-32-512-

uncleanDatasets

0.7857 50 – 93% 43 0.69

Total Average and Standard Deviation 0.6204 ±

0.125

 31.67

± 6.68

0.65 ±

0.08

There is a clear discrepancy in F1 performance as data splits transitions to the 400+ hour limit. Models

at the 400+ and below report scores under the total average. This demonstrates a clear challenge

transformer-based models have in performing well in both Precision and Recall. From the figures,

Complement NB results tend to get closer with transformer models below the 400+ data splits,

demonstrating only a slightly better trade off in classifiers.

74

9 Discussion

Due to the small test sample pool, metrics for models using dataset splits of 500+ or more are

questionable since the Wilson Score Interval degrades as the sample size gets incredibly small. Even

though the metrics appear to be great in these models, further assessment in their performance should

be considered. Improving the test sample pool requires more reports documenting outages over 500+

hours. Although it is great that the nuclear power plant industry is limited in this data, it removes the

capability to train and evaluate the robustness of text classifiers. Because of this limitation, metrics for

models trained and evaluated on data splits 400+ and below should be considered as the baseline

model from this research. As discussed in previous sections, transformer models utilize data to learn

from, alleviating the dependency on explicit rules and extensive pre-processing. Therefore, more

external data is required to improve all models. Considering the lack of severe outages, methods in

data augmentation can be used to construct synthetic data representative of “Spicy” outages.

Of the models within the 250+ and 400+ range, performance in metrics F1, Recall and Precision were

only considered. These models showed difficulty generalizing the MORP dataset for Precision,

showing an inability to correctly classify truly severe outages. This in turn lead to overall poor metrics

in the F1 score. Interestingly, all models showed the use of cleaned datasets, implying that the

Precision metric benefited from the expansion of acronyms and treatment of component names, dates,

etc. The top models in this data split range were the DistilBERT models further trained on nuclear

domain text data. Complement NB models using the TF-IDF feature extraction method became more

competitive for data splits at the 350+ hour limit and below.

Better performance in Recall was observed for all transformer-based models within the 250+ and 400+

range. Complement NB results tended to stay around the 40% range, but less deviation between the

TF-IDF and BOW feature extraction approaches. However, unlike NB models observed in Precision,

the best NB models reported using the BOW methodology. The best model was `morpy-32-128-

unclean-bert` which was trained on the 300+ hour data split and fine-tuned on the nuclear domain data.

Clearly observed in Figure 8-11, this model shows the best generalization on the MORP data. Unlike

the reliance on cleaned datasets seen in Precision, `morpy-32-128-unclean-bert` was trained and

evaluated on the raw text data. Since Recall sacrifices Precision to identify all potentially severe

outages, it is speculated that the expansion of acronym and labeling of plant specific components is

less important than the undisturbed semantics of the text.

The poor performance in Precision results in low F1 scores for models within the 250+ and 400+

range. Of these models, the best overall model is `batch16_maxLength128_distillBert-

DistilBERTTokenizer-16-128-cleanDatasets` trained and evaluated on the 350+ data split. This model

demonstrated the best balance between both Precision and Recall with an F1 score of 60.43%. Clearly,

75

more work is required to improve the Precision metric, however, `morpy-32-128-unclean-bert` showed

promising results in Recall and the ability to flag potentially concerning outages.

76

10 Conclusion

There is no doubt that transformer models are revolutionizing how people interface with large amounts

of data. Since the start of this research, many larger sophisticated transformer models have

demonstrated incredible abilities. Large language modes like ChatGPT (OpenAI, ChatGPT, 2023), are

opening doors to vast opportunities for technical advancement. These large models require an insane

amount of data and require expensive computational hardware to train. For example, ChatGPT has an

estimated 1.5 billion parameters, which is a staggering difference compared to BERTs 110 million.

However, even with these parameters, ChatGPT can still be limited by the type of text data it was

trained on. Like BERT, if it is not trained on data from the nuclear power domain, it will suffer in its

performance on NLP tasks related to nuclear power.

Often, disciplines involving nuclear technology have been considered niche industries that require

substantial regulation. Regulated niche environments like the nuclear power industry are required to

follow strict protocols and follow quality standards on documentation for safety and transparency.

These regulations and strict standards have arguably made the nuclear industry one the best areas for

natural language processing research as it is filled with an incredibly long track record of technical,

unambiguous language dating back to the early 1970’s.

As seen from this research, all models with the best metrics in the 250+ and 400+ range were

transformer-based models further trained on fast reactor text data. As shown from (Ayush Jain, 2020),

there is a clear gain in performance when pre-training BERT from scratch. Replacing the fast reactor

text data with LWR text data for pre-training and fine-tuning BERT with a larger database on LWR

content could greatly improve the performance of all models.

In addition to pre-training with U.S. LWR text content, further investigation into expanding the context

of MORP reports for fine-tuning may also improve overall performance. The average lengths of the

MORP inputs are short and may not capture enough complexity of components and related sub-

systems. Expanding the context could provide a language model more robust semantic knowledge

about an outage, potentially improving the capability to classify higher outage severities.

More specific nuclear domain training and context expansion may significantly improve the

performance of BERT, yet more research into the hyperparameter performance is required. This

research applied no hyperparameter investigation to the transformer models. Further work into

hyperparameter tuning would maximize their capabilities when performing classification tasks.

77

In conclusion, this research demonstrated the ability of transformer models to reasonably predict NPP

outages of 300+ hours, using raw text data. Fine-tuning on partially relevant fast reactor text data, the

encoder model, BERT could understand the semantics of short outage documents from MORP. With

pre-training on specific LWR data, expanded context for fine-tuning and hyperparameter optimization

language models like BERT would grant the nuclear power industry sophisticated AI tools to identify

and understand complex relationships in power plant systems. As seen from this research, a large

limitation for exploring language model utility is the lack of consolidated, organized, verified, and

validated text content on LWRs. Without data to train these models, the nuclear power plant industry

cannot take full advantage of these tools and will lack insight into economic challenges.

78

11 Future Work

Since the release of BERT, there have been many more large language models created and pre-trained

with incredible amounts of data, far exceeding the capabilities of BERT. However, to the researcher’s

knowledge, there are only two models that have specifically tailored knowledge on the nuclear power

domain. Researcher Ayush Jain pre-trained BERT from scratch, and the training of NukeLM from Lee

Burke and researchers at Pacific Northwest National Lab (Pacific Northwest National Laboratory,

2021), both of which are not publicly available. To this extent, using large language models and

leveraging their incredible ability to fine-tune for the nuclear power industry is challenging since there

is no known database of labeled, consolidated data of all LWR U.S. reactors. Using subject matter

expert knowledge, the construction, verification, and validation of datasets for NLP tasks tailored to

the nuclear power domain would open doors to various applications.

With new, better models being trained and deployed for the public, the only limiting factor for

applying language models in the nuclear power domain is consolidated data for both pre-training and

fine-tuning. As seen in this research, the task of classification on outage severity provides a new

perspective on NPP outages but are limited to data tailored for LWRs. Improving the quality and

quantity of LWR data to pre-train BERT from scratch would lead to a baseline language model to be

used for NLP tasks involving the U.S. LWR fleet. Data such as journal articles, textbooks, reports, etc.

can be used to construct a LWR focused text set for pre-training, like Ntext from (Ayush Jain, 2020).

Using LER’s and plant specific documentation, MORP reports can be expanded with detailed outage

context. This would require cross-referencing existing MORP outages with any documents accessible

in publicly available NRC databases like ADAMS (NRC, ADAMS, 2012). Longer context with more

features can better capture system complexities and relationships about an outage.

Additionally, synthetically increasing the small sample pool of ‘severe’ outages can be performed to

improve the evaluation of language model performance. This may be readily achieved by combining

nuclear power domain expertise and existing generated pre-trained models like ChatGPT to generate

synthetic text data that accurately represents expected outage lengths. This may be labor intensive, but

increasing the severe outage sample pool would balance the dataset and increase the fidelity of outage

predictions in the 500 and 744 range.

Due to the lack of available text data, this research combined language for both BWR and PWR

systems. One area of future work could look at constructing two datasets with BWR and PWR content,

then training two separate models. This would likely lead to better performance since each language

model will be constrained to only one system.

79

This research did not explore any optimization techniques for hyperparameters existing in large

language models. Language models are constructed with many layers all with their own complexity.

Future work with a specific model should undergo a thorough analysis for hyperparameter

optimization ensuring the model is performing its best.

With established datasets, nuclear research and industry can begin making use of qualitative data for

quantitative applications. With nuclear domain trained language models, applications may potentially

expand outside of reactor operations to specific use cases in licensing, requirement tracing or

document classification tasks.

By leveraging a long track record on quality documentation, the nuclear industry may arguably be

harboring one of the best sources of text data for natural language tasks. As models improve and

become more accessible, the only limitation for sophisticated language modeling is lacking

consolidated data availability. introducing a new path of AI in nuclear.

80

Bibliography
(n.d.). Retrieved from spacy: https://spacy.io/
Aggarwal, C. C. (2018). Machine Learning for Text. Yorktown Heights, NY: Springer.
Almeida, F. &. (2019, January 25). Word embeddings: A survey. Retrieved from arXiv.org:

https://arxiv.org/abs/1901.09069
Anandarajan, M. H. (2019). Text Preprocessing. In: Practical Text Analytics. In Advances in Analytics

and Data Science, vol 2. Springer. doi:https://doi.org/10.1007/978-3-319-95663-3_4
Andrew McCallum, K. N. (1998). A Comparison of Event Models for Naive Bayes Text

Classification. AAAI Conference on Artificial Intelligence.
Anna Rogers, O. K. (2020). A Primer in BERTology: What We Know About How BERT Works.

Transactions of the Association for Computational Linguistics, 8, 842–866.
doi:https://doi.org/10.1162/tacl_a_00349

Ashish Vaswani, e. a. (2017). Attention Is All You Need. arXiv. doi:10.48550/ARXIV.1706.03762
Ayush Jain, e. a. (2020). NukeBERT: A Pre-trained language model for Low Resource Nuclear

Domain. arxiv. Retrieved from https://arxiv.org/pdf/2003.13821.pdf
Brown, T. B. (2020). Language Models are Few-Shot Learners. doi:10.48550/ARXIV.2005.14165
C. Manning, M. S. (2014). The Stanford CoreNLP Natrual Language Processing Toolkit, in:

Association for Computational Linguistics., (pp. 55-60). doi:10.3115/v1/P14-5010
Carola A. Gregorich, P. (2020, September). Power Industry Dictionary for Text-Mining and Natural

Language Processing Application. (S. Ramirez, Ed.) EPRI: Electric Power Research
Institute: Quick Insight.

Charu C. Aggarwal, C. Z. (n.d.). Mining Text Data. Springer. doi:DOI 10.1007/978-1-4614-3223-4
Clarin, B. (2019). Customer Engagement with Voice Assistants. (EPRI, Ed.) Retrieved from EPRI:

Electric Power Research Institute:
https://download.epri.com/DownloadService/Attachment.svc/AttachmentId=59647

Collobert, R. W. (2011). Natural Language Processing (Almost) from Scratch., (pp. 2493-2537).
Cristianini, N. &.-T. (2000). An introduction to support vector machines and other kernel-based

learning methods. Cambridge university press.
Cullingford, R. (1977, Feb). SAM: A Program That Uses World Knowledge to Understand. SIGART

Bulletin, 53-54. doi:10.1145/1045283.1045324
Deepak R. Chandran, V. G. (2022). A Short Review of the Literature on Automatic. Journal of

Computer and Communications, 55-73.
Fillmore, C. J. (1968). The Cases for Case. In Form and Meaning of Language. Chicago: Chicago The

University of Chicago Press.
Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing. Morgan & Claypool.
González-Carvajal, S. a.-M. (2020). Comparing BERT against traditional machine learning text

classification. arXiv. doi:10.48550/ARXIV.2005.13012
Gurinder Singh, B. K. (2019). Comparison between Multinomial and Bernoulli Naïve Bayes for Text

Classification. 2019 International Conference on Automation, Computational and Technology
Management (ICACTM). doi:10.1109/ICACTM.2019.8776800

H. Drucker, C. C. (n.d.). Boosting and Other Ensemble Methods. Neural Computation, 6, 1289-1301.
doi: 10.1162/neco.1994.6.6.1289

Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent Neural Nets and
Problem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 107-116. doi:https://doi.org/10.1142/S0218488598000094

HuggingFace. (n.d.). Retrieved from https://huggingface.co/
Hutchins, W. (2004). Machine Translation: From Real Users to Research: The Georgetown-IBM

Experiment Demonstrated in January 1954. 6th Conference of the Association for Machine
Translation in the Americas (pp. 102-114). Washington, DC: Springer, Berlin, Heidelberg.

Ian Goodfellow, Y. B. (2016). Deep Learning. Massachusetts Institute of Technology.
IEEE. (2014). IEEE Guide for Collecting, Categorizing, and Utilizing Information Related to Electric

Power Distribution Interruption Events. Piscataway, New Jersey: IEEE. Retrieved from
https://standards.ieee.org/standard/1782-2014.html

Jacob Devlin, M.-W. C. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. arXiv. doi:10.48550/ARXIV.1810.04805

81

Jason Rennie, e. a. (2003). Tackling the Poor Assumptions of Naive Bayes Text Classifiers. Twentieth
International Conference on Machine Learning. Washington DC: Artificial Intelligence
Laboratory; Massachusetts Institute of Technology. Retrieved from
https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf

Jonathan J. Webster, C. K. (1992). Tokenization as the Initial Phase in NLP. COLING 1992 Volume 4:
The 14th International Conference on Computational Linguistics. Hong Kong.

Jonathan Webster, C. K. (1992). Tokenization as the Initial Phase in NLP. Proceedings of the 14th
conference on Computational linguistics, 4, pp. 1106-1110. doi:DOI: 10.3115/992424.992434

Jones, K. S. (1994). Natural Language Processing: A Historical Review*. In N. C. Antonio Zampolli,
Current issues in computational linguistics. Springer Dordrecht. Retrieved from
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.517.5263&rep=rep1&type=pdf:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.517.5263&rep=rep1&type=pdf

K. Omura, M. K. (2012). Weighted naïve Bayes classifier on categorical features. 12th International
Conference on Intelligent Systems Design and Applications (ISDA), (pp. 865-870).
doi:10.1109/ISDA.2012.6416651.

Kacker, P. a. (2022). ABB-BERT: A BERT model for disambiguating abbreviations and contractions.
Proceedings of the 18th International Conference on Natural Language Processing (pp. 289-
297). arXiv. doi:10.48550/ARXIV.2207.04008

Kamran Kowsari, e. a. (2019). Text Classification Algorithms: A Survey. Information.
Kelly, K. (2016). The Inevitable. Viking Press.
L. Xiao, G. W. (2018). Patent Text Classification Based on Naive Bayesian Method. 2018 11th

International Symposium on Computational Intelligence and Design, (pp. 57-60).
doi:10.1109/ISCID.2018.00020

Lewis, D. (2019). Distribution Reliability Analytics. Retrieved from EPRI: Electric Power Research
Institue:
https://download.epri.com/DownloadService/Attachment.svc/AttachmentId=61548?errorpage
=http://memberc

Liberman, M. Y. (1991). The trend towards statistical models in natural language processing. In
Natural Lanuage and Speech (pp. 1-7). Berlin: Springer, Berlin, Heidelberg.

Manning, C. S. (2014). The Stanford CoreNLP natural language processing toolkit. Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. doi: https://doi.org/10.3115/v1/p14-5010

Manning, J. P. (2014). GloVe: Global Vectors for Word Representation. In Empirical Methods in
Natural Language Processing (EMNLP) (pp. 1532-1543). Retrieved from
http://www.aclweb.org/anthology/D14-1162

Marcel R. Harper, J. W. (1997, May 15). Revised Contents of the Monthly Operating Report (Generic
Letter 97-02). Washington, DC. Retrieved from https://www.nrc.gov/reading-rm/doc-
collections/gen-comm/gen-letters/1997/gl97002.html.

Martin, D. J. (2009). Speech and Language Processing: An Introduction to Natural Language
Processing. Upper Saddle Rive, NJ: 2d Ed. Pearson Prentice Hall.

Mikolov, T. a. (2013). Efficient Estimation of Word Representations in Vector Space.
doi:10.48550/ARXIV.1301.3781

Miltiadis Alamaniotis, L. H. (2015). Preidcitve Based Monitoring of Nuclear Component Degradation
Using Support Vector Regression Approach. 9th International Conference on Nuclear Power
Plant Instrumentation, Control & Human-Machine Interface Technologies (pp. INL/CON-14-
32980). Idaho National Lab.

Mirzazad, S. (2019, 9 27). Technology Innovation. Retrieved from EPRI:
https://www.epri.com/research/products/000000003002017321

(2016). MORP2 Definitions. Idaho Falls: Idaho National Lab.
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Massachusetts Institute of

Technology.
Murphy, P. V. (2015). Omaha Public Power District. New York: Standard & Poor's Rating Services -

McGraw Hill Financial.
Nikolenko, S. I. (2021). Synthetic Data for Deep Learning. (S. N. 2021, Ed.) Springer Cham.

doi:https://doi.org/10.1007/978-3-030-75178-4

82

Ning, B. J. (2019). Spam message classification based on the Naïve Bayes classification algorithm.
IAENG International Journal of Computer Science 46, 46-53.

NRC. (1998). Nuclear Regulatory Commission, NUREG-0544, Rev. 4, "NRC: Collection of
Abbreviations".

NRC. (2012). ADAMS. NRC. Retrieved from https://www.nrc.gov/reading-rm/adams.html
OpenAI, ChatGPT. (2023). Retrieved from https://openai.com/
P. Harjule, A. G. (2020). Text Classification on Twitter Data. 2020 3rd International Conference on

Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things,
(pp. 160-164). doi:10.1109/ICETCE48199.2020.9091774

Pacific Northwest National Laboratory. (2021). NukeLM: Pre-Trained and Fine-Tuned Language
Models for the Nuclear and Energy Domains.

Park, J. K. (2017). Use of a big data mining technique to extract relative importance of performance
shaping factors from event investigation reports. Advances in Human Error, Reliability,
Resilience, and Performance, 230-238. doi:https://doi.org/10.1007/978-3-319-60645-3_23

Pence, J. (2015). Quantifying Organization Factors in Human Reliability Analysis Using the Big Data-
Theoretic Algorithm. International Topical Meeting on Probabilistic Safety Assessment and
Analysis PSA.

Ramage, D. &. (2009). Labeled LDA: A supervised topic model for credit attribution in multi-labeled
corpora. roc. of the Conf. on Empirical Methods in Natural Language Processing: Volume 1,
(pp. 248-256).

Reimers, N. (2022). Sentence Transformer Documentation: MLM. Retrieved from SBERT.net:
https://www.sbert.net/examples/unsupervised_learning/MLM/README.html

Rennie, J. D. (2003). Tackling the Poor Assumptions of Naive Bayes Text Classifiers. Proceedings of
the Twentieth International Conference on Machine Learning (ICML-2003) (pp. 616-623).
Washington DC: Artificial Intelligence Laboratory.

Robertson, R. (2016, May 16). Omaha's Public Radio Newsroom. Retrieved from KVNO News:
https://www.kvnonews.com/2016/05/oppd-will-absorb-many-possible-fort-calhoun-station-
closes/

Rush, A. (2018). The Annotated Transformer. Proceedings of Workshop for NLP Open Source
Software (NLP-OSS). doi:10.18653/v1/W18-2509

Sai Zhang, F. X. (2022). Natural Language Processing-Enhanced Nuclear. Idaho National Laboratory,
U.S. Department of Energy. Idaho Falls: Idaho National Laboratory. Retrieved from
https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_63110.pdf

Schank, R. C. (1972). Conceptual Dependency: A Theory of Natural Language Understanding. In R.
C. Schank, Cognitive Psychology 3 (pp. 552-631). Academic Press, Inc.

Sebastian Schelter, D. L. (2018, August). Automating large-scale data quality verification.
Proceedings of the VLDB Endowment, 1781-1794. doi:10.14778/3229863.3229867

Siddharth Suman, S. S. (2021). Artificial intelligence in nuclear industry: Chimera or solution? Journal
of cleaner production, 278.

Šimić, Z. Z. (2015). Development and first application of an operating EVENTS ranking tool. Nuclear
Engineering and Design, 36–43. doi:https://doi.org/10.1016/j.nucengdes.2014.11.035

spaCy. (n.d.). Retrieved from TRAINED PIPELINES: https://spacy.io/models/en
Special NRC Oversight at Fort Calhoun Station. (2022, February 23). Retrieved from U.S. NRC:

https://www.nrc.gov/info-finder/reactors/fcs/special-oversight.html#event
Strubell, E. a. (2019). Energy and Policy Considerations for Deep Learning in NLP. arXiv.

doi:10.48550/ARXIV.1906.02243
Sutskever, I. V. (2014). Sequence to Sequence Learning with Neural Networks. NIPS.
Tanaka, H. (1996). Decision tree learning algorithm with structured attributes: Application to verbal

case frame acquistion. . COLING 1996 Volume 2: The 16th International Conference on
Computational Linguistics.

Tianyi Zhang, e. a. (2021). REVISITING FEW-SAMPLE BERT FINE-TUNING. arxiv. Retrieved
from https://arxiv.org/pdf/2006.05987.pdf

Tomoko Ohta, S. P.-W.-J.-P. (2013). Overview of the Pathway Curation (PC) task of BioNLP Shared
Task. In Proceedings of the BioNLP Shared Task 2013 Workshop (pp. 67-75). Association for
Computational Linguistics.

83

V. Gudivada, A. A. (2017). Data Quality Considerations for Big Data and Machine Learning: Going
Beyond Data Cleaning and Transformations. International Journal on Advances of Software,
1-20.

Valenzuela-Escárcega, M. A.-P. (2015). A domain-independent rule-based framework for event
extraction. In Proceedings of ACL-IJCNLP 2015 System Demonstrations, (pp. 127-132).

Victor Sanh, e. a. (2020). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv.

Weaver, W. (1949). Weaver Memorandum. New York, New York, United States: The Rockefeller
Foundation.

World Nuclear News. (2016, October 25). Final Shutdown for Fort Calhoun. Retrieved from World
Nuclear News: https://www.world-nuclear-news.org/C-Final-shut-down-for-Fort-Calhoun-
2510164.html

Xiong, M. W. (2021). Digital twin–driven aero-engine intelligent predictive maintenance. The
International Journal of Advanced Manufacturing Technology, 114, 3751–3761.

Ye Wang, e. a. (2017). Comparisons and Selections of Features and. IOP Conference Series: Materials
Science and Engineering.

Ye, B.-b. (2015). Case Grammar and its Application in English Vocabulary Teaching. International
Conference on Applied Social Science Research (ICASSR 2015).

Yonghui Wu, e. (2016). Google’s Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation. ArXiv. Retrieved from https://arxiv.org/abs/1609.08144v2

Yongqing, G. e. (2016). Natural Language Process: A New Kind of Nuclear Quality Assurance
Management Tool. Energy Procedia 127, 201-219.

Yoshua Bengio, e. a. (2003). A Neural Probabilistic Language Model. Journal of Machine Learning
Research 3, 1137-1155.

Yunfei Zhao, X. D. (2019). Automated Identification of Causal Relationships in Nuclear Power Plant
Event Reports. Nuclear Technology, 205:8, 1021-1034. doi:10.1080/00295450.2019.1580967

ZHAO, X. D. (2018). Preliminary Study of Automated Analysis of Nuclear Power Plant Event Reports
Based on Natural Language Processing Techniques. Probabilistic Safety Assessment and
Management PSAM. Los Angeles.

Zou, Y. X. (2018). A data mining framework within the CHINESE NPPS operating experience
feedback system for IDENTIFYING INTRINSIC correlations among human factors. Annals
of Nuclear Energy. Annals of Nuclear Energy, 163-170.
doi:https://doi.org/10.1016/j.anucene.2018.02.038

84

85

Appendices
A. Python Code

Definitions.py

"""

Maintains variables for directories

"""

import os

ROOT_DIR = os.path.dirname(os.path.abspath(__file__))

LABELED_NO_REFUEL_MORP =

os.path.join(ROOT_DIR,'resources','MORP_2_Raw_labels.csv')

RAW_MORP = os.path.join(ROOT_DIR,'resources','MORP_2.csv')

PROFILE_PATH = os.path.join(ROOT_DIR,'outputs','profileReports')

PLOT_PATH = os.path.join(ROOT_DIR,'plots')

DATA_PATH = os.path.join(ROOT_DIR,'resources')

outputPaths = [

 PROFILE_PATH,

 PLOT_PATH,

]

HOUR_LIMIT = 350

def makeDirectories(outputPaths):

 for outputPath in outputPaths:

 if not os.path.exists(outputPath):

 os.makedirs(outputPath)

 else:

 pass

makeDirectories(outputPaths)

IO.py

"""

This module reads in the raw or labeled MORP datasets

86

"""

import os

import pandas as pd

from definitions import

LABELED_NO_REFUEL_MORP,RAW_MORP,PROFILE_PATH,PLOT_PATH

def getMorp(csvFile):

 """

 Gets morp dataset from ``resources`` directory

 """

 morpVersions = {

 'raw':RAW_MORP,

 'labeled':LABELED_NO_REFUEL_MORP,

 }

 assert csvFile in morpVersions.keys(), f'{csvFile} is not an

expected morp file. Acceptable labels and morp datasets {morpVersions}'

 df = pd.read_csv(morpVersions[csvFile],encoding='ISO-8859-1')

 return df

def write(df,path):

 df.to_csv(path)

 return f'Wrote DataFrame to {path}'

def profiler(df,title,path=PROFILE_PATH):

 profilePath = os.path.join(path,f'{title}.html')

 if os.path.exists(profilePath):

 raise FileExistsError('This file exists. Provide new title.')

 else:

 profile = ProfileReport(df, title="MORP Profile Report")

 profile.to_file(output_file=profilePath)

 return f'{title} written to {path}'

87

def savePlot(title):

 pngPath = os.path.join(PLOT_PATH,title)

 try:

 if not os.path.exists(pngPath):

 return True

 except FileExistsError:

 print(f'{pngPath} exists. Please provide different title name

or delete old plot')

 return False

docket.py

"""

data class used for managing Docket objects

"""

from definitions import HOUR_LIMIT

from dataclasses import dataclass, field

from datetime import datetime

@dataclass

class Docket:

 docket:int

 date: datetime

 hoursList: list

 label: int = field(init=False)

 def __post_init__(self):

 self.getLabel(self.hoursList)

 def __str__(self):

 return f'{self.docket}'

 def getLabel(self, hoursList):

 if sum(hoursList) >= HOUR_LIMIT:

 label = 1

88

 else:

 label = 0

 self.label = label

 return self.label

 def unpack(self):

 docket = self.docket

 date = self.date

 hoursList = self.hoursList

 label = self.label

 return docket, date, hoursList, label

cleanup.py

"""

This module is used for cleaning and editing the MORP pandas dataframe.

"""

import pandas as pd

import numpy as np

from datetime import datetime

from modules.processing.docket import Docket

def setDateTime(df):

 df['OUTG_DATE'] = df['OUTG_DATE'].apply(lambda x:

datetime.strptime(x, '%m/%d/%y %H:%M').date())

 return df

def outageReasons(df,reason="C"):

 r"""

 Remove all outages from OUTG_REASN of a specific type.

 reasons: list of reasons recognized as categorical value (see MORP2

Definitions)

 """

89

 print(df.columns)

 allOutageReasons = {

 "A": "Equipment Failure",

 "B": "Maintenance or Test",

 "C": "Refueling",

 "D": "Regulatory Restriction",

 "E": "Operator Training and License Examination",

 "F": "Administrative",

 "G": "Operational Error",

 "H": "Other",

 }

 assert reason in allOutageReasons.keys(), f"Reason {reason} is not

recognized in MORP {allOutageReasons}"

 df.query(f'OUTG_REASN != "%s"' % reason,inplace=True)

 return df

def lambdaSetLabel(dfCol,docketOutageHoursList):

 """

 Lambda function for applying severity labels to a new column

typically called ``labels``.

 Note: this function is conditionally dependent on columns,

therefore ``.apply`` should have `axis=1`

 Example: df['labels'] = df.apply(lambda x:

setLabel(x,docketOutageHoursList),axis=1)

 """

 for docketObject in docketOutageHoursList:

 docket, date,hoursList,label = docketObject.unpack()

 if (dfCol.DOCKET == docket) & (dfCol.OUTG_DATE == date):

 return label

90

def docketOutageHoursList(df):

 dockets = sorted(list(set(df['DOCKET'].tolist())))

 dfGroupBy = df.groupby(['DOCKET'])

 assert 'OUTG_DATE' in df.columns, 'OUTG_DATE not in DataFrame

Column'

 docketOutageHoursList = []

 for docket in dockets:

 OUTG_HOURS_SERIES =

dfGroupBy.get_group(docket).set_index('OUTG_DATE').groupby('OUTG_DATE')

['OUTG_HRS'].apply(list)

 for date,hoursList in OUTG_HOURS_SERIES.items():

 docketOutageHoursList.append(Docket(docket=docket,

date=date,hoursList=hoursList))

 return docketOutageHoursList

def dropNan(df):

 df = df[df['OUTG_HRS'].notna()]

 df = df[df['DESCRIP'].notna()]

 return df

def basicCleanUp(df):

 df = setDateTime(df)

 df = outageReasons(df)

 docketList = docketOutageHoursList(df)

 df['labels'] = df.apply(lambda col:

lambdaSetLabel(col,docketList),axis=1)

 df['DESCRIP'] = df['DESCRIP'].str.lower()

 df = df[df['OUTG_HRS'].notna()]

 return df

labeling.py

"""

This module was originally a jupyter workbook. It is used for labeling

and creating the MORP datasets by hour limits and

91

writing them as preLabels. These still need to undergo text processing

preparation.

"""

%%

import pandas as pd

import math

import numpy as np

from modules.processing import IO,cleanUp

import matplotlib.pyplot as plt

import seaborn as sns

from collections import defaultdict,OrderedDict

from dataclasses import dataclass, field

import warnings

from datetime import datetime

warnings.simplefilter(action='ignore', category=FutureWarning)

%%

def periodHours(outageHours):

 totalHours = sum([hrs for prd, hrs in outageHours])

 initialPeriod = [prd for prd,hrs in outageHours][0]

 return str(initialPeriod),totalHours

def checkNextSequence(docket_df_shift,idx,shift=True):

 if shift:

 seqShift = docket_df_shift['outageSequence'].iloc[idx]

 else:

 # shift = False if idx is in the second to last position of

docket_df

 # Last two reports

 # docket_df docket_df_shift

 # 0 True False

 # 1 False NaN

 # for example, this will return False

 seqShift = docket_df_shift['outageSequence'].iloc[idx-1]

 return seqShift

92

def reinit(outageRecord,outageHours,morpIndexRecord,seq):

 initialPeriod,totalHours = periodHours(outageHours=outageHours)

 if (initialPeriod in outageRecord.keys()) and (seq==False):

 initialPeriod = initialPeriod+f'-s{morpIndexRecord[0]}'

 outageRecord[initialPeriod] = (totalHours,morpIndexRecord)

 return outageRecord

Remove all outages except Equipment failure, Maintenance or test,

Opertional Error, Other

def removeOutages(dfRaw):

 C = cleanUp.outageReasons(dfRaw)

 DC = cleanUp.outageReasons(C,reason='D')

 EDC = cleanUp.outageReasons(DC,reason='E')

 FEDC = cleanUp.outageReasons(EDC,reason='F')

 df = FEDC

 df = cleanUp.dropNan(df)

 df['DESCRIP'] = df['DESCRIP'].str.lower()

 return df

def labelMultiOutage(outgMeth):

 # Pr

 if outgMeth == 4:

 return True

 else:

 return False

def update_df_labeled(df_labeled,outageRecord):

 for k,v in outageRecord.items():

 period = k

 totalHours, morpIndexList = v

 for morpIdx in morpIndexList:

 df_labeled.at[morpIdx,'combinedOutageHours'] = totalHours

93

 df_labeled.at[morpIdx,'RPT_PERIOD'] = period

 return df_labeled

def grouping(docket_df,docket_df_shift,outageRecord):

 morpIndexRecord = []

 outageHours = []

 docket_df_length = range(0,len(docket_df))

 firstIdx = docket_df_length[0]

 lastIdx = docket_df_length[-1]

 secondToLastIdx = docket_df_length[-2]

 for idx, row in docket_df.iterrows():

 hours = row['OUTG_HRS']

 morpIndex = docket_df['morpIndex'].iloc[idx]

 seq = row['outageSequence']

 period = row['RPT_PERIOD']

 morpIndexRecord.append(morpIndex)

 outageHours.append((period,hours))

 if (idx == lastIdx):

 outageRecord =

reinit(outageRecord,outageHours,morpIndexRecord,seq)

 continue

 if (idx == secondToLastIdx):

 # Last two reports

 if checkNextSequence(docket_df_shift,lastIdx,shift=False)

== False:

 # Update outage record, reinit lists

 outageRecord =

reinit(outageRecord,outageHours,morpIndexRecord,seq)

 outageHours = []

 morpIndexRecord = []

94

 continue

 if checkNextSequence(docket_df_shift,idx) == False:

 # Update outage record, reinit lists

 outageRecord =

reinit(outageRecord,outageHours,morpIndexRecord,seq)

 outageHours = []

 morpIndexRecord = []

 continue

 else:

 continue

 return outageRecord

def applyLabel(row,hourLimit):

 if row >= hourLimit:

 return 1

 else:

 return 0

%%

hourLimits = [744, 650,550,500,450,425,400,375,350,325,300, 275, 250]

%%

dfRaw = IO.getMorp('raw')

dfRaw['OUTG_REASN'].value_counts()

df = removeOutages(dfRaw)

#df.to_csv('resources/finalMorpRaw.csv') #This is the final meta

cleaned MORP. It should start as the starting point for any

manipulations

%% [markdown]

95

Outage Stats

%% [markdown]

Aggregate SUM and MEAN

%%

Get aggregate mean and sum of final dataset `OUTG_HRS``

data = df.set_index(['DOCKET','OUTG_HRS'])

docketMean =

df.groupby(['DOCKET'])['OUTG_HRS'].agg(np.mean).rename('Average Hour

per Outage')

docketSum =

df.groupby(['DOCKET'])['OUTG_HRS'].agg(np.sum).rename('Total Outage

Hours')

df_agg = pd.concat([docketSum,docketMean],axis=1)

df_agg.to_csv("resources/statistics/aggregate_OUTG_HRS.csv")

%% [markdown]

Outage Date Sequence Processing

This dumps out multiple data sets that are grouped and labeled by

outage severity. Where the outage severity limit is defined by

hourLimits = [744, 650,550,500,450,425,400,375,350,325,300, 275, 250]

%%

df_docket_period =

df.sort_values(['DOCKET','RPT_PERIOD'])#.reset_index(drop=True)

df_docket_period['outageSequence'] =

df_docket_period['OUTG_METH'].apply(lambda row: labelMultiOutage(row))

df_docket_period =

df_docket_period.sort_values(['DOCKET','RPT_PERIOD'])

df_docket_period['combinedOutage'] = ''

df_docket_period['combinedHours'] = np.nan

df_docket_period['labels'] = 0

96

%%

dfGroupBy = df_docket_period.groupby(['DOCKET'])

%%

df_labeled = df

df_labeled['combinedOutageHours'] = 0

df_labeled['labels'] = 0

df_labeled = df_labeled.sort_values(['DOCKET','RPT_PERIOD'])

%%

dockets = sorted(list(set(df_docket_period['DOCKET'].tolist())))

for hourLimit in hourLimits:

 df_labeled = df

 df_labeled['combinedOutageHours'] = 0

 df_labeled['labels'] = 0

 df_labeled = df_labeled.sort_values(['DOCKET','RPT_PERIOD'])

 outageRecord = defaultdict()

 for docket in dockets:

 df_rptPeriod =

dfGroupBy.get_group(docket).sort_values(['RPT_PERIOD'])#.set_index('RPT

_PERIOD')

 docket_df =

df_rptPeriod[['RPT_PERIOD','outageSequence','OUTG_HRS','labels']].reset

_index()

 docket = str(docket)

 docket_df.rename(columns={'index':'morpIndex'},inplace=True)

 docket_df['OUTG_HRS'] =

pd.to_numeric(docket_df['OUTG_HRS'],downcast='float')

 docket_df_shift = docket_df.shift(-1,axis=0)

 outageRecord = grouping(docket_df,docket_df_shift,outageRecord)

97

 df_labeled = update_df_labeled(df_labeled,outageRecord)

 df_labeled['labels'] =

df_labeled['combinedOutageHours'].apply(lambda row:

applyLabel(row,hourLimit))

 df_labeled.to_csv(f'resources/preLabelsByOutageHours_{hourLimit}.cs

v')

%%

df_labeled['labels'].value_counts()

%%

with pd.option_context('display.max_rows', None, 'display.max_columns',

None): # more options can be specified also

 print(docket_df)

df_labeled.to_csv(r'resources/preLabelsByOutageHours.csv')

textClean.py

"""

This module is used to clean and process the text data in MORP using

the reformatted features identified in the text corpus.

"""

98

import pandas as pd

import math

import numpy as np

import os

from definitions import DATA_PATH

import re

supplementalDataPath = os.path.join(DATA_PATH,r'supplements')

REFORMAT = os.path.join(supplementalDataPath,r'reformat.txt')

EXPANSIONS = os.path.join(supplementalDataPath,r'masterExpansions.txt')

UNKNOWN_WORD_NUMBERS =

os.path.join(supplementalDataPath,r'unknownWordNumbers.txt')

TRAINING_DATA = os.path.join(DATA_PATH,'trainingDatasets')

def getMasterReformat():

 masterReformat = {}

 with open(REFORMAT,"r") as f:

 for idx, line in enumerate(f):

 if idx>=2 and '-----' not in line:

 if '#' in line:

 break

 k,v = line.split(':')[0],

line.split(':')[1].split('*')[0].strip()

 masterReformat[k] = v.upper()

 return masterReformat

def getMasterExpansions():

 masterExpansions = {}

 with open(EXPANSIONS,"r") as f:

 for idx, line in enumerate(f):

 if idx>=4 and '-' not in line:

 if '#' in line:

 break

99

 k,v = line.split(':')[0],

line.split(':')[1].split('*')[0].strip()

 masterExpansions[k] = v.upper()

 return masterExpansions

def getUnknownWordNumbers():

 masterUnknownWordNumbers = []

 with open(UNKNOWN_WORD_NUMBERS,"r") as f:

 for wordNumber in f:

 masterUnknownWordNumbers.append(wordNumber.strip())

 masterUnknownWordNumbers =

sorted(masterUnknownWordNumbers,reverse=True)

 return masterUnknownWordNumbers

def getHyphensInVocab():

 hyphenDict = {}

 with open(r'…\hyphensInVocab.txt','r') as f:

 for line in f:

 items = line.split(':::')[0]

 key = items.split(':')[0]

 value = items.split(':')[1]

 if key not in hyphenDict.keys():

 hyphenDict[key] = value.upper()

 return hyphenDict

expansions = getMasterExpansions()

reformat = getMasterReformat()

unknownNumbers = getUnknownWordNumbers()

hyphensInVocab = getHyphensInVocab()

def applyReformat(pandasString):

 rowsChanged = 0

 pandasString = pandasString.upper()

100

 masterReformat = getMasterReformat()

 for key, value in masterReformat.items():

 if key in pandasString:

 pandasString = pandasString.replace(key, value)

 rowsChanged += 1

 return pandasString.lower()

def applyRemoveDates(pandasString):

 pattern =

r'\b\d{1,2}/\d{1,2}/\d{2,4}\b|\b\d{1,2}/\d{2}/\d{2,4}\b|\b\d{1,2}/\d{1,

2}/\d{4}\b'

 return re.sub(pattern, '', pandasString)

def applySplitWords(pandasString):

 return ' '.join(pandasString.split('/'))

def applyRemoveParenthesis(pandasString):

 return re.sub(r'\([^)]*\)', '',pandasString)

def applySplitHyphens(pandasString):

 return ' '.join(pandasString.split('-'))

def applyExpandAll(pandasString):

 for key,value in expansions.items():

 if key in pandasString.upper():

 pattern = r'\b({})\b'.format(re.escape(key))

 pandasString = re.sub(pattern, value, pandasString.upper())

 for key,value in hyphensInVocab.items():

 if key in pandasString.upper():

 pattern = r'\b({})\b'.format(re.escape(key))

 pandasString = re.sub(pattern, value, pandasString.upper())

 return pandasString.lower()

hourLimits = [744, 650,550,500,450,425,400,375,350,325,300, 275, 250]

101

finalPath = os.path.join(TRAINING_DATA,'finalTrainingData')

for hourLimit in hourLimits:

 dataset = f'preLabelsByOutageHours_{hourLimit}.csv'

 data = os.path.join(TRAINING_DATA,dataset)

 df = pd.read_csv(data)

 df['cleaned'] = df['DESCRIP'].apply(lambda text:

applyReformat(text))

 df['cleaned'] = df['cleaned'].apply(lambda text:

applyRemoveDates(text))

 df['cleaned'] = df['cleaned'].apply(lambda text:

applySplitWords(text))

 df['cleaned'] = df['cleaned'].apply(lambda text:

applyRemoveParenthesis(text))

 df['cleaned'] = df['cleaned'].apply(lambda text:

applySplitHyphens(text))

 df['cleaned'] = df['cleaned'].apply(lambda text:

applyExpandAll(text))

 finalDataSet = f'preLabelsByOutageHours_{hourLimit}_cleaned.csv'

 finalPath = os.path.join(r'…\finalTrainingData',finalDataSet)

 df.to_csv(finalPath)

morpFurtherTraining.py

-*- coding: utf-8 -*-

"""

This module was originally a workbook on google collab.

It is used for mlm and nsp training of MORP with Ntext

“””

!pip install transformers

!pip install torch

!pip install torchsummary

from transformers import BertTokenizer, BertForPreTraining

102

import os

BertForPreTraining has both MLM head and NSP head

import torch

from google.colab import drive

drive.mount(‘/content/gdrive’)

model_save_name = ‘NuBert.pth’

finalPath = F”/content/gdrive/MyDrive/{model_save_name}”

tokenizer = BertTokenizer.from_pretrained(‘NukeTokenizer’)

model = BertForPreTraining.from_pretrained(‘bert-large-uncased’)

with open(“Ntext.txt”,”r”) as f:

 paragraphs = []

 currentParagraph = ‘’

 for line in f:

 if line.strip() == ‘’:

 if currentParagraph:

 paragraphs.append(currentParagraph)

 currentParagraph = ‘’

 else:

 currentParagraph += line.strip(‘\n’)

 if currentParagraph:

 paragraphs.append(currentParagraph)

with open(“Ntext.txt”,”r”) as f:

 text = f.readlines()

bag = [sentence for para in paragraphs for sentence in para.split(‘.’)

if sentence!=’’]

bag_size = len(bag)

import random

bag[4]

103

paragraphs[:3]

sentence_a = []

sentence_b = []

label = []

for paragraph in paragraphs:

 # Getting sentences in a paragraph

 sentences = [

 sentence for sentence in paragraph.split(‘.’) if sentence != ‘’

]

 num_sentences = len(sentences)

 # This condition checks if the number of sentences in one document

(paragraph) is greater than 1.

 # The reason being, is if we are going to perform next sentence

prediction, we need to concatenate 2 sentences for the

 # training data. Therefore pulling one sentence would not have the

“next sentence” for the model to train with

 if num_sentences > 1:

 # This is where we extract sentence A

 # The next line of code ensures that not matter what random

sentence we pick, sentence B will always come after

 start = random.randint(0,num_sentences-2)

 sentence_a.append(sentences[start])

 if random.random() > 0.5:

 sentence_b.append(sentences[start+1])

 label.append(0)

 else:

 sentence_b.append(bag[random.randint(0,bag_size-1)])

 label.append(1)

104

tokenizer = BertTokenizer.from_pretrained(‘NukeTokenizer’)

inputs =

tokenizer(sentence_a,sentence_b,return_tensors=’pt’,max_length=128,trun

cation=True,padding=’max_length’)

inputs.keys()

inputs[‘next_sentence_label’] = torch.LongTensor([label]).T

inputs[‘next_sentence_label’][:10

]

inputs[‘labels’] = inputs.input_ids.detach().clone()

inputs.keys()

rand = torch.rand(inputs.input_ids.shape)

mask_arr = (rand < 0.15) * (inputs.input_ids != 101) *

(inputs.input_ids != 102) * (inputs.input_ids != 0)

for I in range(inputs.input_ids.shape[0]):

 selection = torch.flatten(mask_arr[i].nonzero()).tolist()

 inputs.input_ids[I,selection] = 103

class NukeDataset(torch.utils.data.Dataset):

 def __init__(self,encodings):

 self.encodings = encodings

 def __getitem__(self,idx):

 return {key: torch.tensor(val[idx]) for key, val in

self.encodings.items()}

 def __len__(self):

 return len(self.encodings.input_ids)

105

dataset = NukeDataset(inputs)

loader = torch.utils.data.DataLoader(dataset,

batch_size=16,shuffle=True)

device = torch.device(‘cuda’) if torch.cuda.is_available() else

torch.device(‘cpu’)

model.to(device)

model.train()

from transformers import AdamW

optim = AdamW(model.parameters(),lr=5e-5)

model.config.vocab_size

model.resize_token_embeddings(len(tokenizer))

from tqdm import tqdm

for epoch in range(2):

 loop = tqdm(loader, leave=True)

 for batch in loop:

 optim.zero_grad()

 input_ids = batch[‘input_ids’].to(device)

 token_type_ids = batch[‘token_type_ids’].to(device)

 attention_mask = batch[‘attention_mask’].to(device)

 next_sentence_label = batch[‘next_sentence_label’].to(device)

 labels = batch[‘labels’].to(device)

 outputs = model(input_ids,

 token_type_ids=token_type_ids,

 attention_mask=attention_mask,

 next_sentence_label=next_sentence_label,

 labels=labels)

 loss = outputs.loss

 loss.backward()

106

 optim.step()

 loop.set_description(f’Epoch {epoch}’)

 loop.set_postfix(loss=loss.item())

torch.save(model.state_dict(),”checkpoint.pth”)

finalFineTune.py

-*- coding: utf-8 -*-

"""

This module was originally a workbook on google collab.

It is used for fine-tuning transformer based Bert models for binary

classification and writing results.

"""

!pip install tensorflow

!pip install transformers

!pip install -U imbalanced-learn

import tensorflow as tf

import numpy as np

from transformers import TFBertForSequenceClassification,

BertTokenizer,AdamW,

AutoTokenizer,AutoModelForSequenceClassification,TFAutoModelForSequence

Classification,

DistilBertTokenizerFast,TFDistilBertForSequenceClassification

from tqdm import tqdm

import os

import pandas as pd

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

107

from sklearn.metrics import classification_report, accuracy_score,

confusion_matrix,roc_curve,auc,recall_score, precision_score,

f1_score,cohen_kappa_score,matthews_corrcoef,log_loss

from scipy.special import softmax

from google.colab import drive

import random

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

from tensorflow.keras.optimizers.schedules import PolynomialDecay

from tensorflow.keras.optimizers import Adam

import json

from google.colab import files

Set the random seed for Hugging Face Transformers

random.seed(50)

np.random.seed(50)

tf.random.set_seed(50)

print("Num GPUs Available: ",

len(tf.config.list_physical_devices('GPU')))

print(tf.__version__)

print(tf.config.list_physical_devices('GPU'))

"""*Inputs*"""

drive.mount('/content/gdrive')

gDrivePath = r'/content/gdrive/MyDrive/'

checkpointName = r'checkpointMorpy.pth'

nukeTokenizer = r'nukeTokenizer'

morpyFinalTrain = r'morpyFinalTrain'

batch16_maxLength512 = r'batch16_maxLength512'

batch96_maxLength128 = r'batch96_maxLength128'

batch32_maxLength512_bertBase = f'batch32_maxLength512_bertBase'

batch96_maxLength128_distillBert = 'batch96_maxLength128_distillBert'

batch32_maxLength512_distillBert = 'batch32_maxLength512_distillBert'

108

batch16_maxLength512_distillBert = 'batch16_maxLength512_distillBert'

batch32_maxLength128_distillBert = 'batch32_maxLength128_distillBert'

batch16_maxLength128_distillBert = 'batch16_maxLength128_distillBert'

nukeTokenizerPath = os.path.join(gDrivePath,nukeTokenizer)

Morp Data

clean = os.path.join(gDrivePath,r'datasets',r'cleanDatasets')

unclean = os.path.join(gDrivePath,r'datasets',r'uncleanDatasets')

dataPaths = {

 'clean':clean,

 'unclean':unclean,

 }

Tokenizer

bertTokenizer = BertTokenizer.from_pretrained('bert-large-uncased')

nukeTokenizer = AutoTokenizer.from_pretrained(nukeTokenizerPath)

distilBertTokenizer =

DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')

Models

morpyFinalTrainPath = os.path.join(gDrivePath,morpyFinalTrain)

batch16_maxLength512Path =

os.path.join(gDrivePath,batch16_maxLength512)

batch32_maxLength512_bertBasePath =

os.path.join(gDrivePath,batch32_maxLength512_bertBase)

batch96_maxLength128Path =

os.path.join(gDrivePath,batch96_maxLength128)

batch96_maxLength128_distillBertPath =

os.path.join(gDrivePath,batch96_maxLength128_distillBert)

batch32_maxLength512_distillBertPath =

os.path.join(gDrivePath,batch32_maxLength512_distillBert)

batch16_maxLength512_distillBertPath =

os.path.join(gDrivePath,batch16_maxLength512_distillBert)

109

batch32_maxLength128_distillBertPath =

os.path.join(gDrivePath,batch32_maxLength128_distillBert)

batch16_maxLength128_distillBertPath =

os.path.join(gDrivePath,batch16_maxLength128_distillBert)

bertVanilla = 'bert-large-uncased'

distilBertVanilla = 'distilbert-base-uncased'

Models = {

 'batch16_maxLength512': batch16_maxLength512Path,

 'batch32_maxLength512_bertBase': batch32_maxLength512_bertBasePath,

 'batch96_maxLength128': batch96_maxLength128Path,

 'batch96_maxLength128_distillBert':

batch96_maxLength128_distillBertPath,

 'bertVanilla': bertVanilla,

 'batch32_maxLength512_distillBert_nuke':

batch32_maxLength512_distillBertPath,

 'batch16_maxLength512_distillBert_nuke':

batch16_maxLength512_distillBertPath,

 'batch32_maxLength128_distillBert_nuke':

batch32_maxLength128_distillBertPath,

 'batch16_maxLength128_distillBert_nuke':

batch16_maxLength128_distillBertPath,

 'distilBertVanilla': distilBertVanilla,

 }

tokenizerChoices = {

 'bert':bertTokenizer,

 'nuke':nukeTokenizer,

 'distil':distilBertTokenizer

 }

Data, Tokenizer & Model Choice

dataPath = dataPaths['clean']

modelWeights = Models['batch16_maxLength128_distillBert_nuke']

tokenizerChoice = tokenizerChoices['distil']

110

if dataPath == clean:

 morpLabels744 = r'preLabelsByOutageHours_744_cleaned.csv'

 morpLabels650 = r'preLabelsByOutageHours_650_cleaned.csv'

 morpLabels550 = r'preLabelsByOutageHours_550_cleaned.csv'

 morpLabels500 = r'preLabelsByOutageHours_500_cleaned.csv'

 morpLabels450 = r'preLabelsByOutageHours_450_cleaned.csv'

 morpLabels400 = r'preLabelsByOutageHours_400_cleaned.csv'

 morpLabels375 = r'preLabelsByOutageHours_375_cleaned.csv'

 morpLabels350 = r'preLabelsByOutageHours_350_cleaned.csv'

 morpLabels325 = r'preLabelsByOutageHours_325_cleaned.csv'

 morpLabels300 = r'preLabelsByOutageHours_300_cleaned.csv'

 morpLabels275 = r'preLabelsByOutageHours_275_cleaned.csv'

 morpLabels250 = r'preLabelsByOutageHours_250_cleaned.csv'

else:

 morpLabels744 = r'preLabelsByOutageHours_744.csv'

 morpLabels650 = r'preLabelsByOutageHours_650.csv'

 morpLabels550 = r'preLabelsByOutageHours_550.csv'

 morpLabels500 = r'preLabelsByOutageHours_500.csv'

 morpLabels450 = r'preLabelsByOutageHours_450.csv'

 morpLabels400 = r'preLabelsByOutageHours_400.csv'

 morpLabels375 = r'preLabelsByOutageHours_375.csv'

 morpLabels350 = r'preLabelsByOutageHours_350.csv'

 morpLabels325 = r'preLabelsByOutageHours_325.csv'

 morpLabels300 = r'preLabelsByOutageHours_300.csv'

 morpLabels275 = r'preLabelsByOutageHours_275.csv'

 morpLabels250 = r'preLabelsByOutageHours_250.csv'

morpLabels = {

 '744': morpLabels744,

 # morpLabels650,

 # morpLabels550,

 '500': morpLabels500,

 # morpLabels450,

 '400': morpLabels400,

111

 # morpLabels375,

 '350': morpLabels350,

 # morpLabels325,

 '300': morpLabels300,

 # morpLabels275,

 '250': morpLabels250,

 }

dataHourLimit = morpLabels['250'] # 744, 500, 400, 350, 300, 250

dataClasses = 'binary'

num_epochs = 20

num_labels = 2

batch_size = 16 # [16, 32, 48, 64] Control [16]

max_length = 128 # Control [128]

padding = True

truncation = True

return_tensors = 'tf'

epsilon = 1e-08

if tokenizerChoice == nukeTokenizer:

 tokenizerName = 'NukeTokenizer'

if tokenizerChoice == distilBertTokenizer:

 tokenizerName = 'DistilBertTokenizer'

else:

 tokenizerName = 'BertTokenizer'

tokenizer = tokenizerChoice

def underSampleMild(df,N):

 """

 Removes N random samples from data pool for mild cases.

 Pass in DataFrame from getDataWithoutRefueling()

 """

 underSampledDf = df.drop(df[df['labels'].eq(0)].sample(N).index)

112

 print('Initial dataframe target

labels:\n{}'.format(df['labels'].value_counts()))

 print('\n')

 print('Undersampled dataframe target

labels:\n{}'.format(underSampledDf['labels'].value_counts()))

 print('Average amount of words of "text input" in this under

sampled dataset is

{0:.0f}.'.format(np.mean(underSampledDf['DESCRIP'].apply(lambda x:

len(x.split())))))

 print('Max amount of words in "text input" in this under sampled

dataset is

{0:.0f}.'.format(np.max(underSampledDf['DESCRIP'].apply(lambda x:

len(x.split())))))

 print('Max character length of "text input" in this under sampled

dataset is

{0:.0f}.'.format(np.max(underSampledDf['DESCRIP'].apply(lambda x:

len(x)))))

 print('Average character length of "text input" in this under

sampled dataset is

{0:.0f}.'.format(np.mean(underSampledDf['DESCRIP'].apply(lambda x:

len(x)))))

 print('\n')

 underSampledDf.plot(kind='bar')

 return underSampledDf

morpData = os.path.join(gDrivePath,dataPath,dataHourLimit)

print(morpData)

df = pd.read_csv(morpData,encoding="ISO-8859-1")

if dataPath == unclean:

 df['DESCRIP'] = df['DESCRIP'].str.lower().astype(str)

else:

113

 df['cleaned'] = df['cleaned'].str.lower().astype(str)

rootFolder = os.path.join(f'{modelWeights}-{tokenizerName}-

{batch_size}-{max_length}-{dataPath.split("/")[-1].split(".")[0]}-

runs')

if not os.path.exists(rootFolder):

 os.mkdir(rootFolder)

rootFolder

if dataClasses == 'binary':

 loss = tf.keras.losses.BinaryCrossentropy(from_logits=True)

else:

 loss =

tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

def classWeights(colLabels):

 mild, spicy = np.bincount(colLabels)#bincount

 total = mild + spicy

 print('Examples:\n Total: {}\n Spicy: {} ({:.2f}% of

total)\n'.format(total, spicy, 100*spicy/total))

 weight0 = (1/mild)*(total/2.0)

 weight1 = (1/spicy)*(total/2.0)

 class_weight = {0:(weight0), 1:weight1} # + (weight1*.05)

 print('Weight for Mild: {:.2f}'.format(weight0))

 print('Weight for Spicy: {:.2f}'.format(weight1))

 return class_weight

def trainTestSplit(df):

 if dataPath == unclean:

 col = 'DESCRIP'

 else:

 col = 'cleaned'

114

 duplicated_rows = df[df.duplicated(subset=[f'{col}'],keep=False)] #

duplicates

 df_unique = df.drop_duplicates(subset=[f'{col}'], keep=False) #

originals

 train_df, test_df =

train_test_split(df_unique,test_size=0.15,stratify=df_unique['labels'],

random_state=42) # split into temporary train and test

 train_df, val_df = train_test_split(train_df,test_size=0.15,

stratify=train_df['labels'],random_state=42) # split into train and val

 print(f'Lengths')

 print(f'train_df {len(train_df)}')

 print(f'test_df {len(test_df)}')

 print(f'val_df {len(val_df)}')

 combined_train_df = pd.concat([train_df,duplicated_rows],

ignore_index=True) # combine duplicated instances with train set

 shuffled_combined_train_df =

combined_train_df.sample(frac=1,random_state=42) # Shuffle again

 shuffled_combined_train_df.reset_index(drop=True,inplace=True)

 train_texts = shuffled_combined_train_df[f'{col}']

 train_labels = shuffled_combined_train_df['labels']

 test_texts = test_df[f'{col}']

 test_labels = test_df['labels']

 val_texts = val_df[f'{col}']

 val_labels = val_df['labels']

 return train_texts, test_texts, val_texts, train_labels,

test_labels, val_labels

115

class_weight = classWeights(df['labels'])

train_texts, test_texts, val_texts, train_labels, test_labels,

val_labels = trainTestSplit(df)

train_text = train_texts.tolist()

train_inputs = tokenizer(train_text, padding=padding,

truncation=truncation, max_length=max_length,

return_tensors=return_tensors)

if dataClasses == 'binary':

 train_labels = np.array(train_labels,dtype=np.int64)

else:

 train_labels = np.array(train_labels,dtype=np.int64)

test_text = test_texts.tolist()

test_inputs = tokenizer(test_text, padding=padding,

truncation=truncation, max_length=max_length,

return_tensors=return_tensors)

if dataClasses == 'binary':

 test_labels = np.array(test_labels,dtype=np.int64)

else:

 test_labels = np.array(test_labels,dtype=np.int64)

val_text = val_texts.tolist()

val_inputs = tokenizer(val_text, padding=True, truncation=True,

max_length=128, return_tensors='tf')

if dataClasses == 'binary':

 val_labels = np.array(val_labels,dtype=np.int64)

else:

 val_labels = np.array(val_labels,dtype=np.int64)

train_inputs.keys()

116

#print(f'{train_text[190]}\n{train_inputs.input_ids[190]}\n{train_input

s.token_type_ids[190]}\n{train_inputs.attention_mask[190]}\n{train_labe

ls[190]}')

tokenizer.decode(train_inputs.input_ids[190])

#tokenizer.decode(train_inputs.token_type_ids[190])

tokenizer.decode(train_inputs.attention_mask[190])

steps_per_epoch = len(train_inputs['input_ids'])/batch_size

num_train_steps = steps_per_epoch * num_epochs

num_warmup_steps = int(0.1*num_train_steps)

optimizer = optimization.create_optimizer(init_lr=learning_rate,

num_train_steps=num_train_steps,

num_warmup_steps=num_warmup_step

s,

optimizer_type='adamw')

es = EarlyStopping(monitor='val_loss',

 verbose=1, # Prints outputs

 patience=10, # Waits 6 epochs for an improvement

 restore_best_weights=True) # Restores model back to

best epoch

num_train_steps = (train_texts.shape[0] // batch_size) * num_epochs

print(num_train_steps)

This is actually a linear decay from 5x10^-5 to 1x10^-5, not actually

polynomial!

if modelWeights == bertVanilla:

 initial_learning_rate = 3e-5

else:

 initial_learning_rate =5e-5

lr_scheduler = PolynomialDecay(

117

 initial_learning_rate=initial_learning_rate, # Start point

 end_learning_rate=1e-5, # End point

 decay_steps=num_train_steps

)

new_opt = Adam(learning_rate=lr_scheduler)

Load the BERT tokenizer and model

if tokenizerChoice == distilBertTokenizer:

 model =

TFDistilBertForSequenceClassification.from_pretrained(modelWeights,num_

labels=num_labels,from_pt=True)

else:

 model =

TFAutoModelForSequenceClassification.from_pretrained(modelWeights,num_l

abels=num_labels,from_pt=True)

optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate,

epsilon=epsilon)

metric = tf.keras.metrics.BinaryCrossentropy('accuracy')

metrics = tf.metrics.BinaryAccuracy()

model.compile(optimizer=new_opt,

metrics=[metrics],weighted_metrics=['accuracy'])

model.summary()

history = model.fit(dict(train_inputs), train_labels,

epochs=num_epochs,

batch_size=batch_size,validation_data=(dict(val_inputs),val_labels),cla

ss_weight=class_weight,callbacks=[es])

Define the class names

if num_labels == 2:

 class_names = ['Class 0', 'Class 1']

 target_names = ['class 0', 'class 1']

 ticks = [0,1]

118

else:

 class_names = ['Class 0', 'Class 1', 'Class 2']

 target_names = ['class 0', 'class 1', 'class 2']

 ticks = [0, 1, 2]

Plot the histograms

fig, axs = plt.subplots(1, 3, figsize=(15, 5))

fig.subplots_adjust(hspace=0.5, wspace=0.4)

colors = ['b','r','g']

axs = axs.ravel()

for i, labels in enumerate([train_labels, val_labels, test_labels]):

#val_labels,

 axs[i].hist(labels, bins=3, edgecolor='black',

align='mid',color=colors[i])

 axs[i].set_xticks(ticks)

 axs[i].set_xticklabels(class_names)

 axs[i].set_xlabel('Class')

 axs[i].set_ylabel('Frequency')

 axs[i].set_title('Distribution of Class Labels in ' +

['Training','Validation', 'Test'][i] + ' set')# 'Validation'

Add a legend

handles, labels = axs[0].get_legend_handles_labels()

fig.legend(handles, labels, loc='upper right')

Evaluate the model on the test set

test_scores = model.evaluate(dict(test_inputs), test_labels, verbose=0)

test_loss = test_scores[0]

test_accuracy = test_scores[1]

Print the evaluation metrics

print(f'Test loss: {test_loss:.4f}')

print(f'Test accuracy: {test_accuracy:.4f}')

119

%%

#test_pred_labels = np.argmax(model.predict(dict(test_inputs)), axis=1)

test_pred_probs = model.predict(dict(test_inputs))

logits = test_pred_probs.logits

%%

test_pred_labels = np.argmax(logits, axis=1)

print(classification_report(test_labels, test_pred_labels,

target_names=target_names))

%%

conf_mat = confusion_matrix(test_labels, test_pred_labels)

Plot the confusion matrix

plt.figure(figsize=(8,8))

plt.imshow(conf_mat, cmap=plt.cm.Blues)

plt.title('Confusion Matrix')

plt.colorbar()

plt.xlabel('Predicted Labels')

plt.ylabel('True Labels')

plt.xticks(ticks, target_names)

plt.yticks(ticks, target_names)

plt.show()

tn, fp, fn, tp = confusion_matrix(test_labels,

test_pred_labels).ravel()

"""SUMMARY"""

results = {

 "False Positive Rate: Probability that a false alarm will be

raised: that a positive result will be given when the true value is

negative":fp/(fp+tn),

 "False Negative Rate: Probability that a true positive will be

missed by the test":fn/(tp+fn),

120

 "True Positive Rate | Recall | Sensitivity: Probability that an

actual positive will test positive":

recall_score(test_labels,test_pred_labels),

 "True Negative Rate | Specificity: Probability that an actual

negative will test negative": tn/(tn+fp),

 "Negative Predictive Value: Likelihood that a mild outage is truly

a mild outage": tn/(tn+fn),

 "Positive Predictive Value: Likelihood that a spicy outage is truly

a spicy outage": precision_score(test_labels,test_pred_labels),

 "F1 Score: Harmonic mean between precision and recall":

f1_score(test_labels,test_pred_labels),

 "Cohen Kappa Score: How much better is your model over the random

classifier that predicts based on class frequencies":

cohen_kappa_score(test_labels,test_pred_labels),

 "Matthews Correlation Coefficient: Correlation between predicted

classes and ground

truth":matthews_corrcoef(test_labels,test_pred_labels),

 "Log Loss: The difference between ground truth and predicted score

for every observation and average those errors over all observations":

log_loss(test_labels, test_pred_labels),

}

def

summary(test_labels,test_pred_labels,morpData,modelWeights,tokenizerNam

e,save=True):

 morpData = os.path.basename(morpData).split('.')[0]

 modelWeights = os.path.basename(modelWeights).split('.')[0]

 reportDetails = '{model} {data}

{tokenizer}'.format(model=modelWeights,data=morpData,tokenizer=tokenize

rName)

 print('{:-^150}'.format('SUMMARY'))

 print('\n')

 print(f'Morp Data: {os.path.basename(morpData)}\n')

 print(f'Confusion Matrix: \n

{confusion_matrix(test_labels,test_pred_labels)}')

121

 print('\n')

 for test,score in results.items():

 string_format = '{}: \n{}'.format(test,score)

 print(string_format)

 print('\n')

 print('*'*45)

 print('{:-^145}'.format('END SUMMARY'))

 if save:

 if num_labels == 2:

 class_names = ['Class 0', 'Class 1']

 target_names = ['class 0', 'class 1']

 ticks = [0,1]

 #test_pred_labels = np.argmax(model.predict(dict(test_inputs)),

axis=1)

 test_pred_probs = model.predict(dict(test_inputs))

 logits = test_pred_probs.logits

 test_pred_labels = np.argmax(logits, axis=1)

 conf_mat = confusion_matrix(test_labels, test_pred_labels)

 plt.figure(figsize=(8,8))

 plt.imshow(conf_mat, cmap=plt.cm.Blues)

 plt.title('Confusion Matrix')

 plt.colorbar()

 plt.xlabel('Predicted Labels')

 plt.ylabel('True Labels')

 plt.xticks(ticks, target_names)

 plt.yticks(ticks, target_names)

 plt.savefig(os.path.join(rootFolder,f'Confusion Matrix:

{reportDetails}.png'))

 with open(os.path.join(rootFolder,f'Summary Report:

{reportDetails}.txt'),'w') as sum:

 sum.write('{:-^150}'.format('SUMMARY'))

 sum.write('\n')

 sum.write(f'Morp Data: {os.path.basename(morpData)}\n')

 sum.write(f'Tokenizer: {tokenizerName}\n')

 sum.write(f'Pre-Trained Weights: {modelWeights}\n')

122

 sum.write(f'Confusion Matrix: \n

{confusion_matrix(test_labels,test_pred_labels)}')

 sum.write('\n')

 for test,score in results.items():

 string_format = '{}: \n{}'.format(test,score)

 sum.write(string_format)

 sum.write('\n')

 sum.write('*'*10)

 sum.write('\n')

 sum.write('\n')

 sum.write('{:-^145}'.format('END SUMMARY'))

summary(test_labels,test_pred_labels,morpData,modelWeights,tokenizerNam

e)

history.history.keys()

history_dict = history.history

print(history_dict.keys())

reportDetails = '{model} {data}

{tokenizer}'.format(model=modelWeights,data=morpData,tokenizer=tokenize

rName)

acc = history_dict['binary_accuracy']

val_acc = history_dict['val_binary_accuracy']

loss = history_dict['loss']

val_loss = history_dict['val_loss']

epochs = range(1, len(acc) + 1)

fig = plt.figure(figsize=(10, 6))

fig.tight_layout()

plt.subplot(2, 1, 1)

r is for "solid red line"

plt.plot(epochs, loss, 'r', label='Training loss')

123

b is for "solid blue line"

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.subplot(2, 1, 2)

plt.plot(epochs, acc, 'r', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend(loc='lower right')

fileName = f'loss-curves-{tokenizerName}-{dataPath.split("/")[-

1].split(".")[0]}-{dataHourLimit.split(".")[0]}.png'

plt.savefig(os.path.join(rootFolder,fileName))

Get the dictionary containing each metric and the loss for each epoch

history_dict = history.history

Save it under the form of a json file

jsonPath = os.path.join(rootFolder,f'{modelWeights}-{tokenizerName}-

{dataPath.split("/")[-1].split(".")[0]}-

{dataHourLimit.split(".")[0]}.history')

json.dump(history_dict,open(jsonPath , 'w'))

import shutil

if dataHourLimit == morpLabels['250']:

 # !zip -r /content/{rootFolder} . -i /content/{rootFolder}.zip

 shutil.make_archive(rootFolder, 'zip', rootFolder)

finalNB.py

"""

124

This module was originally a jupyter notebook.

It is used for Naive bayes classification.

"""

import pandas as pd

import nltk

import re

root = r'…\resources\trainingDataSets\finalTrainingData\clean\data'

from nltk.corpus import stopwords

nltk.download('stopwords')

from nltk.tokenize import word_tokenize

from collections import Counter

def trainTestSplit(df,nb=False):

 if nb:

 col = 'cleaned'

 # if dataPath == unclean:

 # col = 'DESCRIP'

 # else:

 # col = 'cleaned'

 duplicated_rows = df[df.duplicated(subset=[f'{col}'],keep=False)] #

duplicates

 df_unique = df.drop_duplicates(subset=[f'{col}'], keep=False) #

originals

 train_df, test_df =

train_test_split(df_unique,test_size=0.15,stratify=df_unique['labels'],

random_state=42) # split into temporary train and test

 train_df, val_df = train_test_split(train_df,test_size=0.15,

stratify=train_df['labels'],random_state=42) # split into train and val

 print(f'Lengths')

 print(f'train_df {len(train_df)}')

 print(f'test_df {len(test_df)}')

125

 print(f'val_df {len(val_df)}')

 combined_train_df = pd.concat([train_df,duplicated_rows],

ignore_index=True) # combine duplicated instances with train set

 shuffled_combined_train_df =

combined_train_df.sample(frac=1,random_state=42) # Shuffle again

 shuffled_combined_train_df.reset_index(drop=True,inplace=True)

 train_texts = shuffled_combined_train_df[f'{col}']

 train_labels = shuffled_combined_train_df['labels']

 test_texts = test_df[f'{col}']

 test_labels = test_df['labels']

 val_texts = val_df[f'{col}']

 val_labels = val_df['labels']

 if nb:

 stop_words = stopwords.words('english')

 stopwordsDict = Counter(stop_words)

 final_train_texts = []

 final_test_texts = []

 combined_test_df = pd.concat([test_df,val_df], ignore_index=True)

combine duplicated instances with train set

 shuffled_combined_test_df =

combined_test_df.sample(frac=1,random_state=42) # Shuffle again

 shuffled_combined_test_df.reset_index(drop=True,inplace=True)

 test_texts = shuffled_combined_test_df[f'{col}']

 test_labels = shuffled_combined_test_df['labels']

 print(f'Initial Lengths of train_texts {len(train_texts)}')

 print(f'Initial Lengths of test_texts {len(test_texts)}')

126

 for text in train_texts:

 texts = []

 for word in text.split():

 if word not in stopwordsDict:

 texts.append(word)

 texts = ' '.join(texts)

 texts = re.sub(" \d+",'',texts)

 texts = re.sub(r"[^a-zA-Z0-9]+",' ',texts)

 texts = re.sub(r"[^\w\s]",' ',texts)

 texts = re.sub(r"[1-9]",' ',texts)

 final_train_texts.append(texts)

 for text in test_texts:

 texts = []

 for word in text.split():

 if word not in stopwordsDict:

 texts.append(word)

 texts = ' '.join(texts)

 texts = re.sub(" \d+",'',texts)

 texts = re.sub(r"[^a-zA-Z0-9]+",' ',texts)

 texts = re.sub(r"[^\w\s]",' ',texts)

 texts = re.sub(r"[1-9]",' ',texts)

 final_test_texts.append(texts)

 print(f'Final Lengths of train_texts {len(final_train_texts)}')

 print(f'Final Lengths of test_texts {len(final_test_texts)}')

 return final_train_texts, final_test_texts,

train_labels,test_labels

 else:

 return train_texts, test_texts, val_texts, train_labels,

test_labels, val_labels

127

%%

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer,

CountVectorizer

import pandas as pd

import os

from sklearn.metrics import classification_report, accuracy_score,

confusion_matrix,roc_curve,auc,recall_score, precision_score,

f1_score,cohen_kappa_score,matthews_corrcoef,log_loss

from sklearn.naive_bayes import BernoulliNB, MultinomialNB,

ComplementNB

from sklearn.metrics import confusion_matrix,

ConfusionMatrixDisplay,accuracy_score, classification_report,

balanced_accuracy_score

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import cross_val_score

import numpy as np

Build basic model

nbResults = r'…\resources\results\naiveBayes'

morpLabels744 = r'preLabelsByOutageHours_744_cleaned.csv'

morpLabels650 = r'preLabelsByOutageHours_650_cleaned.csv'

morpLabels550 = r'preLabelsByOutageHours_550_cleaned.csv'

morpLabels500 = r'preLabelsByOutageHours_500_cleaned.csv'

morpLabels450 = r'preLabelsByOutageHours_450_cleaned.csv'

morpLabels400 = r'preLabelsByOutageHours_400_cleaned.csv'

morpLabels375 = r'preLabelsByOutageHours_375_cleaned.csv'

morpLabels350 = r'preLabelsByOutageHours_350_cleaned.csv'

morpLabels325 = r'preLabelsByOutageHours_325_cleaned.csv'

morpLabels300 = r'preLabelsByOutageHours_300_cleaned.csv'

morpLabels275 = r'preLabelsByOutageHours_275_cleaned.csv'

128

morpLabels250 = r'preLabelsByOutageHours_250_cleaned.csv'

morpLabels = {

 '744': morpLabels744,

 # morpLabels650,

 # morpLabels550,

 '500': morpLabels500,

 # morpLabels450,

 '400': morpLabels400,

 # morpLabels375,

 '350': morpLabels350,

 # morpLabels325,

 '300': morpLabels300,

 # morpLabels275,

 '250': morpLabels250,

 }

dataHourLimit = morpLabels['744'] # 744, 500, 400, 350, 300, 250

def

buildModel(X_train,y_train,X_test,y_test,alpha=1.0,model=None,hourLimit

=False,vect=False):

 if model == 'bernoulli':

 vect = 'countVectorizer'

 if vect == 'tfidfVectorizer':

 bow = TfidfVectorizer()

 if vect == 'countVectorizer':

 bow = CountVectorizer(binary=True)

 X_train = bow.fit_transform(X_train) # 90% slit

 X_test = bow.transform(X_test) # 10% split

 bnb = BernoulliNB(alpha = 1.4295)

 scores = cross_val_score(bnb,X_train,y_train)

 print(f"Scores from Cross-Validation {scores}. Average scores

is {np.mean(scores)}")

129

 BNB = BernoulliNB(alpha = 1.4295)

 BNB.fit(X_train,y_train)

 y_pred = BNB.predict(X_test)

 y_pred_train = BNB.predict(X_train)

 print("\n")

 print('Model accuracy score: {0:0.4f}'.

format(accuracy_score(y_test, y_pred)))

 print('Training-set accuracy score: {0:0.4f}'.

format(accuracy_score(y_train, y_pred_train)))

 print("\n")

 print('Training set score: {:.4f}'.format(BNB.score(X_train,

y_train)))

 print('Test set score: {:.4f}'.format(BNB.score(X_test,

y_test)))

 print('Balance Accuracy:

{:.4f}'.format(balanced_accuracy_score(y_test, y_pred)))

 resultPath = os.path.join(nbResults+'-bernoulli')

 if not os.path.exists(resultPath):

 os.makedirs(resultPath)

 report = classification_report(y_test, y_pred)

 with open(os.path.join(resultPath,f'classificationReport-

{model}-{hourLimit}-{vect}.txt'),'w') as f:

 for line in report:

 f.write(f'{line}')

 reportd = classification_report(y_test,

y_pred,output_dict=True)

 print(report)

 report = pd.DataFrame(reportd).transpose()

 report.to_csv(os.path.join(resultPath,f'{model}-

{hourLimit}.csv'))

 tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

 results = {

130

 "False Positive Rate: Probability that a false alarm will be

raised: that a positive result will be given when the true value is

negative":fp/(fp+tn),

 "False Negative Rate: Probability that a true positive will be

missed by the test":fn/(tp+fn),

 "True Positive Rate | Recall | Sensitivity: Probability that an

actual positive will test positive": recall_score(y_test,y_pred),

 "True Negative Rate | Specificity: Probability that an actual

negative will test negative": tn/(tn+fp),

 "Negative Predictive Value: Likelihood that a mild outage is truly

a mild outage": tn/(tn+fn),

 "Positive Predictive Value: Likelihood that a spicy outage is truly

a spicy outage": precision_score(y_test,y_pred),

 "F1 Score: Harmonic mean between precision and recall":

f1_score(y_test,y_pred),

 "Cohen Kappa Score: How much better is your model over the random

classifier that predicts based on class frequencies":

cohen_kappa_score(y_test,y_pred),

 "Matthews Correlation Coefficient: Correlation between predicted

classes and ground truth":matthews_corrcoef(y_test,y_pred),

 "Log Loss: The difference between ground truth and predicted score

for every observation and average those errors over all observations":

log_loss(y_test,y_pred),

 "Balanced Accuracy":balanced_accuracy_score(y_test, y_pred),

}

 with open(os.path.join(resultPath,f'metrics-{model}-

{hourLimit}-CountVectorizer.txt'),'w') as sum:

 sum.write('{:-^150}'.format('SUMMARY'))

 sum.write(f'Confusion Matrix: \n

{confusion_matrix(y_test,y_pred)}')

 sum.write('\n')

 for test,score in results.items():

 string_format = '{}: \n{}'.format(test,score)

 sum.write(string_format)

131

 sum.write('\n')

 sum.write(f'Cross-validation scores {scores}. Average

Score is {np.mean(scores)}')

 sum.write('\n')

 sum.write('*'*10)

 sum.write('\n')

 sum.write('\n')

 sum.write('{:-^145}'.format('END SUMMARY'))

 for k,v in results.items():print(k,v)

 reportDepth = pd.DataFrame.from_dict(results, orient='index')

 reportDepth.to_csv(os.path.join(resultPath,f'{model}-

{hourLimit}-reportDepth.csv'))

 target_names = ['Mild', 'Spicy']

 ticks = [0,1]

 # test_pred_labels = np.argmax(MNM.predict(dict(X_test)),

axis=1)

 # test_pred_probs = MNM.predict(dict(X_test))

 # logits = test_pred_probs.logits

 # test_pred_labels = np.argmax(logits, axis=1)

 conf_mat = confusion_matrix(y_test, y_pred)

 plt.figure(figsize=(8,8))

 plt.imshow(conf_mat, cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix: {model} {hourLimit} Hours')

 plt.colorbar()

 plt.xlabel('Predicted Labels')

 plt.ylabel('True Labels')

 plt.xticks(ticks, target_names)

 plt.yticks(ticks, target_names)

 plt.savefig(os.path.join(resultPath,f'Confusion

Matrix_{model}_{hourLimit}_Hours.png'))

 plt.show()

 return BNB

 if model == 'multinomial':

 v = TfidfVectorizer()

 # v = CountVectorizer()

132

 X_train = v.fit_transform(X_train) # 90% slit

 X_test = v.transform(X_test)

 mnm = MultinomialNB(alpha = 1.4295)

 scores = cross_val_score(mnm,X_train,y_train)

 print(f"Scores from Cross-Validation {scores}. Average scores

is {np.mean(scores)}")

 MNM = MultinomialNB(alpha = 1.4295)

 MNM.fit(X_train,y_train)

 y_pred = MNM.predict(X_test)

 y_pred_train = MNM.predict(X_train)

 print("\n")

 print('Model accuracy score: {0:0.4f}'.

format(accuracy_score(y_test, y_pred)))

 print('Training-set accuracy score: {0:0.4f}'.

format(accuracy_score(y_train, y_pred_train)))

 print("\n")

 print('Training set score: {:.4f}'.format(MNM.score(X_train,

y_train)))

 print('Test set score: {:.4f}'.format(MNM.score(X_test,

y_test)))

 print('Balance Accuracy:

{:.4f}'.format(balanced_accuracy_score(y_test, y_pred)))

 resultPath = os.path.join(nbResults+'-multinomial-

tfidfVectorizer')

 if not os.path.exists(resultPath):

 os.makedirs(resultPath)

 report = classification_report(y_test, y_pred)

 with open(os.path.join(resultPath,f'classificationReport-

{model}-{hourLimit}-tfidfVectorizer.txt'),'w') as f:

 for line in report:

 f.write(f'{line}')

 tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

 results = {

133

 "False Positive Rate: Probability that a false alarm will be

raised: that a positive result will be given when the true value is

negative":fp/(fp+tn),

 "False Negative Rate: Probability that a true positive will be

missed by the test":fn/(tp+fn),

 "True Positive Rate | Recall | Sensitivity: Probability that an

actual positive will test positive": recall_score(y_test,y_pred),

 "True Negative Rate | Specificity: Probability that an actual

negative will test negative": tn/(tn+fp),

 "Negative Predictive Value: Likelihood that a mild outage is truly

a mild outage": tn/(tn+fn),

 "Positive Predictive Value: Likelihood that a spicy outage is truly

a spicy outage": precision_score(y_test,y_pred),

 "F1 Score: Harmonic mean between precision and recall":

f1_score(y_test,y_pred),

 "Cohen Kappa Score: How much better is your model over the random

classifier that predicts based on class frequencies":

cohen_kappa_score(y_test,y_pred),

 "Matthews Correlation Coefficient: Correlation between predicted

classes and ground truth":matthews_corrcoef(y_test,y_pred),

 "Log Loss: The difference between ground truth and predicted score

for every observation and average those errors over all observations":

log_loss(y_test,y_pred),

 "Balanced Accuracy":balanced_accuracy_score(y_test, y_pred),

}

 with open(os.path.join(resultPath,f'metrics-{model}-

{hourLimit}-tfidfVectorizer.txt'),'w') as sum:

 sum.write('{:-^150}'.format('SUMMARY'))

 sum.write(f'Confusion Matrix: \n

{confusion_matrix(y_test,y_pred)}')

 sum.write('\n')

 for test,score in results.items():

 string_format = '{}: \n{}'.format(test,score)

 sum.write(string_format)

 sum.write('\n')

134

 sum.write(f'Cross-validation scores {scores}. Average

Score is {np.mean(scores)}')

 sum.write('\n')

 sum.write('*'*10)

 sum.write('\n')

 sum.write('\n')

 sum.write('{:-^145}'.format('END SUMMARY'))

 reportd = classification_report(y_test,

y_pred,output_dict=True)

 print(report)

 report = pd.DataFrame(reportd).transpose()

 report.to_csv(os.path.join(resultPath,f'{model}-

{hourLimit}.csv'))

 target_names = ['Mild', 'Spicy']

 ticks = [0,1]

 # test_pred_labels = np.argmax(MNM.predict(dict(X_test)),

axis=1)

 # test_pred_probs = MNM.predict(dict(X_test))

 # logits = test_pred_probs.logits

 # test_pred_labels = np.argmax(logits, axis=1)

 conf_mat = confusion_matrix(y_test, y_pred)

 plt.figure(figsize=(8,8))

 plt.imshow(conf_mat, cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix: {model} {hourLimit} Hours')

 plt.colorbar()

 plt.xlabel('Predicted Labels')

 plt.ylabel('True Labels')

 plt.xticks(ticks, target_names)

 plt.yticks(ticks, target_names)

 plt.savefig(os.path.join(resultPath,f'Confusion

Matrix_{model}_{hourLimit}_Hours.png'))

 plt.show()

 return MNM

 if model == 'complement':

135

 alpha = alpha

 vect = vect

 if vect == 'bow':

 v = CountVectorizer()

 if vect == 'tfidf':

 v = TfidfVectorizer()

 X_train = v.fit_transform(X_train) # 90% split

 X_test = v.transform(X_test)

 cnb = ComplementNB(alpha = alpha)

 scores = cross_val_score(cnb,X_train,y_train)

 print(f"Scores from Cross-Validation {scores}. Average

scores is {np.mean(scores)}")

 CNB = ComplementNB(alpha = alpha)

 CNB.fit(X_train,y_train)

 y_pred = CNB.predict(X_test)

 y_pred_train = CNB.predict(X_train)

 print("\n")

 print('Model accuracy score: {0:0.4f}'.

format(accuracy_score(y_test, y_pred)))

 print('Training-set accuracy score: {0:0.4f}'.

format(accuracy_score(y_train, y_pred_train)))

 print("\n")

 print('Training set score:

{:.4f}'.format(CNB.score(X_train, y_train)))

 print('Test set score: {:.4f}'.format(CNB.score(X_test,

y_test)))

 print('Balance Accuracy:

{:.4f}'.format(balanced_accuracy_score(y_test, y_pred)))

 resultPath = os.path.join(nbResults+f'-complement-{alpha}-

{hourLimit}-{vect}')

 if not os.path.exists(resultPath):

 os.makedirs(resultPath)

 report = classification_report(y_test, y_pred)

136

 with open(os.path.join(resultPath,f'classificationReport-

{model}-{alpha}-{hourLimit}-{vect}.txt'),'w') as f:

 for line in report:

 f.write(f'{line}')

 tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

 results = {

 "False Positive Rate: Probability that a false alarm will be

raised: that a positive result will be given when the true value is

negative":fp/(fp+tn),

 "False Negative Rate: Probability that a true positive will be

missed by the test":fn/(tp+fn),

 "True Positive Rate | Recall | Sensitivity: Probability that an

actual positive will test positive": recall_score(y_test,y_pred),

 "True Negative Rate | Specificity: Probability that an actual

negative will test negative": tn/(tn+fp),

 "Negative Predictive Value: Likelihood that a mild outage is

truly a mild outage": tn/(tn+fn),

 "Positive Predictive Value: Likelihood that a spicy outage is

truly a spicy outage": precision_score(y_test,y_pred),

 "F1 Score: Harmonic mean between precision and recall":

f1_score(y_test,y_pred),

 "Cohen Kappa Score: How much better is your model over the

random classifier that predicts based on class frequencies":

cohen_kappa_score(y_test,y_pred),

 "Matthews Correlation Coefficient: Correlation between

predicted classes and ground truth":matthews_corrcoef(y_test,y_pred),

 "Log Loss: The difference between ground truth and predicted

score for every observation and average those errors over all

observations": log_loss(y_test,y_pred),

 "Balanced Accuracy":balanced_accuracy_score(y_test, y_pred),

 }

 with open(os.path.join(resultPath,f'SummaryReport-{model}-

{alpha}-{hourLimit}-{vect}.txt'),'w') as sum:

 sum.write('{:-^150}\n'.format('SUMMARY'))

137

 sum.write(f'Confusion Matrix: \n

{confusion_matrix(y_test,y_pred)}')

 sum.write('\n')

 for test,score in results.items():

 string_format = '{}: \n{}'.format(test,score)

 sum.write(string_format)

 sum.write('\n')

 sum.write(f'Cross-validation scores {scores}.

Average Score is {np.mean(scores)}')

 sum.write('\n')

 sum.write('*'*10)

 sum.write('\n')

 sum.write('\n')

 sum.write('{:-^145}'.format('END SUMMARY'))

 reportd = classification_report(y_test,

y_pred,output_dict=True)

 print(report)

 report = pd.DataFrame(reportd).transpose()

 report.to_csv(os.path.join(resultPath,f'{model}-

{hourLimit}.csv'))

 target_names = ['Mild', 'Spicy']

 ticks = [0,1]

 # test_pred_labels = np.argmax(MNM.predict(dict(X_test)),

axis=1)

 # test_pred_probs = MNM.predict(dict(X_test))

 # logits = test_pred_probs.logits

 # test_pred_labels = np.argmax(logits, axis=1)

 conf_mat = confusion_matrix(y_test, y_pred)

 plt.figure(figsize=(8,8))

 plt.imshow(conf_mat, cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix: {model} {hourLimit} Hours')

 plt.colorbar()

 plt.xlabel('Predicted Labels')

 plt.ylabel('True Labels')

138

 plt.xticks(ticks, target_names)

 plt.yticks(ticks, target_names)

 plt.savefig(os.path.join(resultPath,f'Confusion

Matrix_{model}_{alpha}_{hourLimit}_Hours.png'))

 plt.show()

 return CNB

%%

hourLimits = ['744','500','400','350','300','250']

alphaValues = [1.0,1.2,1.4,1.6,1.8,2.0]

for num in hourLimits:

 dfPath =

os.path.join(root,f'preLabelsByOutageHours_{num}_cleaned.csv')

 df = pd.read_csv(dfPath)

 train_texts, test_texts, train_labels, test_labels =

trainTestSplit(df,nb=True)

 for _alpha in alphaValues:

 buildModel(train_texts,train_labels,test_texts,test_labels,mode

l='complement',alpha=_alpha,vect='bow',hourLimit=num)

 buildModel(train_texts,train_labels,test_texts,test_labels,mode

l='complement',alpha=_alpha,vect='tfidf',hourLimit=num)

 #

buildModel(train_texts,train_labels,test_texts,test_labels,model='berno

ulli',hourLimit=num)

postProcessing.py

"""

This module was originally a google collab workbook.

It was used for post processing both naive bayes and BERT results

"""

import matplotlib.pyplot as plt

139

import os

from definitions import DATA_PATH, PLOT_PATH

from collections import defaultdict

%%

def getModelName(modelPath):

 elements = modelPath.split("\\")[-1]

 elements = elements.replace('-','_').split('_')

 if 'naiveBayes' == elements[0]:

 model = elements[1] + 'NB'

 tokenizer = elements[-1]

 alpha = elements[-3]

 data = 'cleaned'+ elements[-2]

 name = f'{model}-NA-NA-{data}-{tokenizer}-{alpha}'

 return name

 if 'batch' in elements[0]:

 batch = elements[0][-2:]

 maxLength = elements[1][-3:]

 model = elements[2]

 tokenizer = elements[3]

 data = elements[6].split('Datasets')[0]

 else:

 batch = 32

 maxLength = 128

 model = elements[0]

 tokenizer = 'bert'

 if model == 'bert':

 data = elements[-1].split('Datasets')[0]

 else:

 data = elements[-2].split('Datasets')[0]

140

 if model == 'distillBert':

 model = 'distil'

 tokenizer = 'disTok'

 if model == 'morpyFinalTrain':

 model = 'morpy'

 if elements[0] == 'distilbert':

 batch = elements[4]

 maxLength = elements[5]

 data = elements[6].split('Datasets')[0]

 tokenizer = 'disTok'

 model = 'distilUncased'

 name = f'{model}-{batch}-{maxLength}-{data}-{tokenizer}'

 return name

%%

def f1(report):

 rpt_id = report[0]

 score = report[1]._f1Score

 return rpt_id,score

def precision(report):

 rpt_id = report[0]

 score = report[1]._positivePredictiveValue

 return rpt_id,score

def recall(report):

 rpt_id = report[0]

 score = report[1]._truePositiveRate

 return rpt_id,score

def specificity(report):

 rpt_id = report[0]

 score = report[1]._trueNegativeRate

 return rpt_id,score

def maxValue(dictionary):

 if not dictionary:

141

 return None

 maxValueKey = max(dictionary, key=dictionary.get)

 maxValue = max(dictionary.values())

 return maxValueKey,maxValue

%%

class SummariesOutput:

 def __init__(self, outputFilePath):

 self.outputFilePath = outputFilePath

 for attr in [

 "_morpData",

 "_tokenizer",

 "_preTrainedWeights",

 "_confusionMatrix",

 "_falsePositiveRate",

 "_falseNegativeRate",

 "_truePositiveRate",

 "_trueNegativeRate",

 "_negativePredictiveValue",

 "_positivePredictiveValue",

 "_f1Score",

 "_cohenKappaScore",

 "_matthewsCorrelationCoeff",

 "_logLoss",

 "_averageCrossValidationScore",

 "_balancedAccuracy",

]:

 setattr(self, attr, None)

 self._populateEverything()

 self.id = f'{self._morpData}-{self._tokenizer}-

{self._preTrainedWeights}'

 def _populateEverything(self):

 with open(self.outputFilePath, "r") as f:

 l = f.readlines()

142

 for i in range(0, len(l)):

 line = l[i]

 if "Morp Data" in line:

 self._morpData = line.split(':')[1].split()[0]

 else:

 self._morpData = self.outputFilePath.split('-')[-2]

 if "Tokenizer" in line:

 self._tokenizer = line.split(':')[1].split()[0]

 else:

 self._tokenizer = self.outputFilePath.split('-')[-

1]

 if "Pre-Trained Weights" in line:

 self._preTrainedWeights =

line.split(':')[1].split()[0]

 if "Confusion Matrix" in line:

 tn = l[i+1].split('[')[2].split(']')[0].split('

')[0]

 fp = l[i+1].split('[')[2].split(']')[0].split('

')[-1]

 fn = l[i+2].split('[')[-

1].split(']')[0].split(' ')[-2]

 tp = l[i+2].split('[')[1].split(']')[0].split('

')[-1]

 self._confusionMatrix = [tn,fp,fn,tp]

 if 'Cross-validation scores' in line:

 self._averageCrossValidationScore = line.split('].

')[-1]

 else:

 self._averageCrossValidationScore = None

 if "False Positive Rate" in line:

 self._falsePositiveRate = l[i+1].split()[0]

 if "False Negative Rate" in line:

 self._falseNegativeRate = l[i+1].split()[0]

143

 if "True Positive Rate" in line:

 self._truePositiveRate = l[i+1].split()[0]

 if "True Negative Rate" in line:

 self._trueNegativeRate = l[i+1].split()[0]

 if "Negative Predictive Value" in line:

 self._negativePredictiveValue = l[i+1].split()[0]

 if "Positive Predictive Value" in line:

 self._positivePredictiveValue = l[i+1].split()[0]

 if "F1 Score" in line:

 self._f1Score = l[i+1].split()[0]

 if "Cohen Kappa Score" in line:

 self._cohenKappaScore = l[i+1].split()[0]

 if "Matthews Correlation Coefficient" in line:

 self._matthewsCorrelationCoeff = l[i+1].split()[0]

 if "Log Loss" in line:

 self._logLoss = l[i+1].split()[0]

 if 'Balanced Accuracy' in line:

 self._balancedAccuracy = l[i+1].split()[0]

%%

results = os.path.join('resources','results')

modelPaths = []

summariesByModel = defaultdict()

textFiles = []

for _, dirs, files in os.walk(results):

 for dir in dirs:

 root = os.path.join('resources','results',dir)

 modelPaths.append(root)

for modelPath in modelPaths:

 summaries = []

 modelName = getModelName(modelPath)

 for file in os.listdir(modelPath):

144

 if 'metrics' in file:

 textFiles.append(os.path.join(modelPath,file))

 summaries.append(os.path.join(modelPath,file))

 if ('metrics' not in file) and ('classificationReport' not in

file) and file.endswith('.txt'):

 textFiles.append(os.path.join(modelPath,file))

 summaries.append(os.path.join(modelPath,file))

 summariesByModel[modelName] = summaries

%%

f1Scores = defaultdict()

precisionScores = defaultdict()

recallScores = defaultdict()

specificityScores = defaultdict()

confusionMatrix = defaultdict()

reportSummary = defaultdict()

reports = []

for report in textFiles:

 rpt = SummariesOutput(report)

 rpt_id = rpt.outputFilePath

 reports.append((rpt_id, rpt))

for report in reports:

 rpt_id = report[0]

 score = report[1]

 f1Scores[rpt_id] = score._f1Score

 precisionScores[rpt_id] = score._positivePredictiveValue

 recallScores[rpt_id] = score._truePositiveRate

 specificityScores[rpt_id] = score._trueNegativeRate

 confusionMatrix[rpt_id] = score._confusionMatrix

145

%%

%%

topScores = {

 'f1':maxValue(f1Scores),

 'precision': maxValue(precisionScores),

 'recall':maxValue(recallScores),

 'specificity':maxValue(specificityScores)

}

%%

hourLimits = ['744','500','400','350','300','250']

limits = defaultdict(list)

for model,summaries in summariesByModel.items():

 for summary in summaries:

 for limit in hourLimits:

 if limit in summary:

 limits[limit].append((model,summary))

%%

def getPlotHours(limitsDictionary,scoreType=False):

 hourDict = defaultdict(list)

 for limit, summaries in limitsDictionary.items():

 modelScores = []

 for model,summary in summaries:

 report = SummariesOutput(summary)

 if scoreType == 'f1':

 score = report._f1Score

 if scoreType == 'precision':

 score = report._positivePredictiveValue

146

 if scoreType == 'recall':

 score = report._truePositiveRate

 if scoreType == 'specificity':

 score = report._trueNegativeRate

 if scoreType == 'cohen':

 score = report._cohenKappaScore

 score = float(score)

 modelScore = (model,score)

 modelScores.append(modelScore)

 hourDict[limit] = modelScores

 return hourDict

def getPlotHoursByModelType(limitsDictionary,scoreType=False):

 NBHourDict = defaultdict(list)

 BERTHourDict = defaultdict(list)

 for limit, summaries in limitsDictionary.items():

 NBmodelScores = []

 bertmodelScores = []

 for model,summary in summaries:

 report = SummariesOutput(summary)

 if scoreType == 'f1':

 score = report._f1Score

 if scoreType == 'precision':

 score = report._positivePredictiveValue

 if scoreType == 'recall':

 score = report._truePositiveRate

 if scoreType == 'specificity':

 score = report._trueNegativeRate

 if scoreType == 'cohen':

 score = report._cohenKappaScore

 score = float(score)

 modelScore = (model,score)

147

 if 'complementNB-NA-NA' in model:

 NBmodelScores.append(modelScore)

 if 'complementNB-NA-NA' not in model:

 bertmodelScores.append(modelScore)

 NBHourDict[limit] = NBmodelScores

 BERTHourDict[limit] = bertmodelScores

 return NBHourDict,BERTHourDict

%%

def plotHourLimit(hoursDict,scoreType,limit):

 colors = []

 xValues, yValues = zip(*hoursDict[f'{limit}'])

 maxMetric = max(yValues)

 for value in yValues:

 if value == maxMetric:

 colors.append('r')

 else:

 colors.append('b')

 plt.bar(xValues,yValues,color=colors)

 plt.xticks(rotation=88)

 plt.xlabel('Model')

 plt.ylabel(f'{scoreType}')

 plt.title(f'{scoreType} - Outage Severity: {limit}')

 plotPath = os.path.join(PLOT_PATH,f'{limit}',f'{scoreType}')

 if not os.path.exists(plotPath):

 os.makedirs(plotPath)

 plt.savefig(os.path.join(plotPath,f'{scoreType}-

{limit}.jpeg'),dpi=300, bbox_inches = "tight")

 plt.show()

148

%%

def

plotHourLimitByModelType(dictByModelType,scoreType,limit,modelType):

 colors = []

 xValues, yValues = zip(*dictByModelType[f'{limit}'])

 maxMetric = max(yValues)

 for value in yValues:

 if value == maxMetric:

 colors.append('r')

 else:

 colors.append('b')

 plt.bar(xValues,yValues,color=colors)

 plt.xticks(rotation=88)

 plt.xlabel('Model')

 plt.ylabel(f'{scoreType}')

 plt.title(f'{scoreType} - Outage Severity: {limit}')

 plotPath = os.path.join(PLOT_PATH,f'{limit}',f'{scoreType}')

 if not os.path.exists(plotPath):

 os.makedirs(plotPath)

 plt.savefig(os.path.join(plotPath,f'{modelType}-{scoreType}-

{limit}.jpeg'),dpi=300, bbox_inches = "tight")

 plt.show()

def createCM(confusionMatrixValues):

 print(confusionMatrixValues)

 if len(confusionMatrixValues) != 4:

 raise ValueError("Values must contain 4 elements")

 tn, fp, fn, tp = confusionMatrixValues

 table = f"""\

| {'':<25}| {'Predicted Negative (Mild)':<23} | {'Predicted Positive

(Spicy)':<23} |

| {'-'*25}|{'-'* 27}|{'-'* 28}|

| {'Actual Negative (Mild)':^24} | {tn:^17} | {fp:^20} |

149

| {'Actual Negative (Spicy':^24} | {fn:^17} | {tp:^20} |

"""

 return table

%%

outageHourDict = defaultdict(list)

for report in textFiles:

 rpt = SummariesOutput(report)

 name = getModelName(report)

 if 'Report-bert-large-uncased' in name:

 hour = name.split('_')[-1].split('BertTokenizer.txt')[0]

 if 'morpyFinalTrain' in name:

 hour = name.split('_')[-1]

 if 'preLabelsByOutageHours-bert' in name:

 fileName = rpt.outputFilePath.split("\\")[-1]

 hour = fileName.replace(' ','')

 hour = hour.split('_')[-1][:3]

 else:

 hour = name.split('-')[-2]

 outageHourDict[hour].append(rpt)

f1ScoreByHour = defaultdict(list)

precisionByHour = defaultdict(list)

recallByHour = defaultdict(list)

CMByHour = defaultdict(list)

f1ScoreByHourFinal = defaultdict()

precisionByHourFinal = defaultdict()

recallByHourFinal = defaultdict()

for hour in outageHourDict.keys():

 f1Max = max([report._f1Score for report in outageHourDict[hour]])

 precisionMax = max([report._positivePredictiveValue for report in

outageHourDict[hour]])

150

 recallMax = max([report._truePositiveRate for report in

outageHourDict[hour]])

 f1ScoreByHour[hour] = f1Max

 precisionByHour[hour] = precisionMax

 recallByHour[hour] = recallMax

 #CMByHour[hour] = report._confusionMatrix

for hour in outageHourDict.keys():

 reports = outageHourDict[hour]

 f1Max = f1ScoreByHour[hour]

 precisionMax = precisionByHour[hour]

 recallMax = recallByHour[hour]

 for report in reports:

 if report._f1Score == f1Max:

 rptScore =

(report.outputFilePath,report._f1Score,createCM(report._confusionMatrix

))

 f1ScoreByHourFinal[hour] = rptScore

 if report._positivePredictiveValue == precisionMax:

 rptScore =

(report.outputFilePath,report._positivePredictiveValue,createCM(report.

_confusionMatrix))

 precisionByHourFinal[hour] = rptScore

 if report._truePositiveRate == recallMax:

 rptScore =

(report.outputFilePath,report._truePositiveRate,createCM(report._confus

ionMatrix))

 recallByHourFinal[hour] = rptScore

%%

with open(os.path.join(PLOT_PATH,'recallByHour.txt'),'w') as f:

 for model, score, cm in recallByHourFinal.values():

 f.write(f'|{model}|')

 f.write('\n')

 f.write(f'|{score}|')

151

 f.write('\n')

 f.write(cm)

 f.write('\n')

%%

metrics = ['f1','precision','recall','specificity']

f1ModelPath = topScores['f1'][0]

precisionModelPath = topScores['precision'][0]

recallModelPath = topScores['recall'][0]

specificityModelPath = topScores['specificity'][0]

with open(os.path.join(PLOT_PATH,'Max_Scores.txt'),'w') as f:

 for metric in metrics:

 modelPath = topScores[metric][0]

 CM_values= confusionMatrix[modelPath]

 score = topScores[metric][1]

 CM = createCM(CM_values)

 header = f'Max {metric} Score: {score} - Model {modelPath}'

 f.write(f'|{modelPath}|')

 f.write('\n')

 f.write('\n')

 f.write(f'|{header}|')

 f.write('\n')

 f.write(CM)

 f.write('\n')

 f.write('\n')

%%

topScores

%%

152

%%

recallByHourFinal

%%

metrics = ['f1','precision','recall','specificity']

for hourLimit, summaries in limits.items():

 with open(os.path.join(PLOT_PATH,hourLimit,f'CM-

{hourLimit}.txt'),'w') as f:

 for summary in summaries:

 header = '\n'

 name = summary[0]

 report = SummariesOutput(summary[1])

 for metric in metrics:

 id = topScores[metric][0]

 score = topScores[metric][1]

 if id == report.outputFilePath:

 header = f'Max {metric}: {score} - Confusion Matrix

for {name}\n'

 print(hourLimit)

 print(name)

 table = createCM(report._confusionMatrix)

 f.write(name)

 f.write('\n')

 f.write(header)

 f.write(table)

 f.write('\n')

%%

metrics = ['precision','f1','recall','specificity','cohen']

for limit in hourLimits:

153

 for metric in metrics:

 hourDict = getPlotHours(limits,scoreType=metric)

 NBHourDict,BERTHourDict =

getPlotHoursByModelType(limits,scoreType=metric)

 print(NBHourDict)

 plotHourLimit(hourDict,scoreType=metric,limit=limit)

 plotHourLimitByModelType(NBHourDict,scoreType=metric,limit=limi

t,modelType='CNB')

 plotHourLimitByModelType(BERTHourDict,scoreType=metric,limit=li

mit,modelType='BERT')

B. masterExpansions.txt
HRS:HOURS

RAD:RADIATION

CCW:COMPONENT COOLING WATER

SIRW:Safety Injection Refueling Water

MSDT:MOISTURE SEPARATOR DRAIN TANK

PLCEA:PART LENGTH CONTROL ELEMENT ASSEMBLY

CEA:CONTROL ELEMENT ASSEMBLY

SAT:SYSTEM AUXILIARY TRANSFORMER

RHR:RESIDUAL HEAT REMOVAL

OOS:out of sequence

MSTV:main steam trip valve

HCU:hydraulic control unit

PMG:PERMANENT MAGNET GENERATOR

FCV:flow control valve

RCP:reactor coolant pump

SJAE:STEAM JET AIR EJECTOR

CWIP:CIRCULATING WATER INTAKE PUMP

TSV:turbine stop valve

RCPS:reactor coolant pumps

ETSV:ELECTRICAL TRIP SOLENOID VALVE

RVDT:RECIRCULATION FLOW CONTROL VALVE POSITIONER

SIRW:safety injection and refueling water

EHC:electrohydraulic control

154

CST:condensate storage tank

OTDT:Over temperature Delta Temperature

MSIV:Main steam isolation valve

MFPT:MAIN FEEDWATER PUMP TURBINE

HPCI:High pressure coolant injection

CEA:control element assembly calculator

SSPS:SOLID STATE PROTECTION SYSTEM

AE:Architect engineer

PORV:power operated relief valves

AVR:AUTOMATIC VOLTAGE REGULATOR

MSR:material status report

RPIS:ROD POSITION INDICATORS

AR:action request

MOD:motor operated disconnect

TS:technical specification

SRVS:safety relief valves

SRV:safety relief valve

RHR:Reactor heat removal

APRM:Average Power Range Monitor

DEH:digital electrohydraulic

CVCS:CHEMICAL AND VOLUME CONTROL SYSTEM

RBCCW:reactor building closed cooling water

RRP:reactor recirculation pump

EDG:Emergency Diesel generators

MPR:MECHANICAL PRESSURE REGULATOR

FCU:FAN COOLER UNIT

CFCU:CONTAINMENT FAN COIL UNIT

SST:STATION SERVICE TRANSFORMER

SWC:STATOR WATER COOLING

TV:THROTTLE VALVE

PCB:PRINTED CIRCUIT BOARD

F:FAHRENHEIT

TSE:TURBINE STRESS EVALUATOR

CBA:CONTROL BUILDING AIR

MPT:MAIN POWER TRANSFORMER

CPC:CORE PROTECTION CALCULATOR

CCP:CAPACITANCE COUPLED VOLTAGE

155

AE:ARCHITECT AND ENGINEERING

LCO:LIMITING CONDITION FOR OPERATION

RCC:REACTOR CLOSED COOLING

TT:TURBINE TRIP

MG:REACTOR RECIRCULATION GENERATOR

ERV:ELECTROMATIC RELIEF VALVE

RPS:REACTOR PROTECTION SYSTEM

TCV:TURBINE CONTROL VALVES

MFP:MAIN FEEDWATER PUMP

LS:LEVEL SWITCH

CIV:COMBINED INTERCEPT VALVE

S/G:STEAM GENERATOR

RX:REACTOR

ICS:INTEGRATED CONTROL SYSTEM

RCS:REACTOR COOLANT SYSTEM

FW:FEEDWATER

RR:REACTOR RECIRCULATING PUMP

MO:MOTOR OPERATED

PZR:PRESSURIZER

LP:LOW PRESSURE

LHSI:LOW HEAD SAFETY INJECTION

MVAR:MEGA VOLT AMP REACTIVE

RPV:REACTOR PRESSURE VESSEL

ATWOS:ANTICIPATED TRANSIENT WITHOUT SCRAM

MWTH:MEGAWATT THERMAL

MWT:MEGAWATT THERMAL

CRD:CONTROL ROD DRIVE

CW:COOLING WATER PUMP

CWS:COOLING WATER SEAL

DP:DIFFERENTIAL PRESSURE

HC:HYDRAULIC CONTROL SYSTEM

EHCS:ELECTROHYDRAULIC CONTROL SYSTEM

MSU:MAIN STEP UP TRANSFORMER

BPV:BYPASS VALVE

RFP:REACTOR FEEDWATER PUMP

RRCS:REDUNDANT REACTIVITY CONTROL SYSTEM

FWRV:FEEDWATER REGULATING VALVE

156

TDRFP:TURBINE DRIVEN REACTOR FEEDWATER PUMP

RFPT:REACTOR FEEDWATER PUMP TURBINE

CT:CURRENT TRANSFORMER

AMSAC:ANTICIPATED TRANSIENTS WITHOUT SCRAM MITIGATING SYSTEM

ACTUATION CIRCUITRY

MS:MAIN STEAM

AFW:AUXILLARY FEEDWATER

GEN:GENERATOR

MW:MEGAWATT

U1:UNIT

BYV: BYPASS VALVE

GGN:GRAND GULF NUCLEAR

BFD:BOILER FEEDWATER DISCHARGE VALVE

*https://www.nrc.gov/docs/ML1613/ML16133A035.pdf

MV:MAIN FEEDWATER PUMP DISCHARGE VALVE

*https://www.nrc.gov/docs/ML0037/ML003775084.pdf

RTP:RATED THERMAL POWER

OPRM:OSCILLATION POWER RANGE MONITOR

EPRM:ELECTROMATIC RELIEF VALVE

UAT:UNIT AUXILLARY TRANSFORMER

EOP:EMERGENCY OPERATING PROCEDURE

OCB:OIL CIRCUIT BREAKER

RFW:REACTOR FEEDWATER

FWH:FEEDWATER HEATER

FWP:FEEDWATER PUMP

FWCV:FEEDWATER CONTROL VALVE

FWIV:FEEDWATER ISOLATION VALVE

ATWS:ANTICIPATED TRANSIENT WITHOUT SCRAM

FWR:FEEDWATER INJECTION

EH:ELECTROHYDRAULIC

AOV:AIR OPERATED VALVE

MBFP:MAIN BOILER FEEDWATER PUMP

DNBR:DEPARTURE FROM NUCLEATE BOILING RATIO

ASD:ADJUSTABLE SPEED DRIVE

*https://www.nrc.gov/docs/ML2022/ML20223A258.pdf

EPR:ELECTRONIC PRESSURE REGULATOR

*https://www.nrc.gov/docs/ML1705/ML17056B865.pdf

157

MPR:MECHANICAL PRESSURE REGULATOR

*https://www.nrc.gov/docs/ML1705/ML17056B865.pdf

VAC:VACUUM

SRMS:SOURCE RANGE MONITORS

ACB:AIR CIRCUIT BREAKER

RMS:RADIATION MONITORING SYSTEM

*https://www.nrc.gov/docs/ML1809/ML18095A744.pdf

DC:DIRECT CURRENT

LOCA:LOSS OF COOLANT ACCIDENT

CRDM:CONTROL ROD DRIVE MECHANISM

XFMR:AUXILIARY TRANSFORMER

CTP:CORE THERMAL POWER

EPU:EXTENDED POWER UPRATE

CEDM:CONTROL ELEMENT DRIVE MECHANISM

*https://www.nrc.gov/docs/ML2128/ML21285A326.pdf

HDDT:HEATER DRAINS DEAERATOR TANK

*https://www.nrc.gov/docs/ML1025/ML102560189.pdf

AOT:ALLOWED OUTAGE TIME

PORC:PLANT OPERATIONS REVIEW COMMITTEE

GV:GOVERNOR VALVE

RWCU:REACTOR WATER CLEANUP SYSTEM

*https://www.nrc.gov/docs/ML1125/ML11258A313.pdf

TACH:TACHOMETER GENERATOR

PWR:PRESSURE WATER REACTOR

MSL:MAIN STEAM LINES

HPSI:HIGH PRESSURE SAFETY INJECTION

LCS:LEAKAGE CONTROL SYSTEM *https://www.nrc.gov/reading-rm/doc-

collections/gen-comm/gen-letters/1986/gl86017.html

FME:FOREIGN MATERIAL EXCLUSION

*https://www.nrc.gov/docs/ML0519/ML051920220.pdf

VDC:VOLTAGE DIRECT CURRENT

RCFC:REACTOR CONTAINMENT FAN COOLER

*https://www.nrc.gov/docs/ML1821/ML18212A092.pdf

MFIV:MAIN FEEDWATER ISOLATION VALVE

*https://www.nrc.gov/docs/ML0515/ML051540080.pdf

MFRV:MAIN FEEDWATER REGULATING VALVE

*https://www.nrc.gov/docs/ML0515/ML051540080.pdf

158

MFRVBV:MAIN FEEDWATER REGULATING BYPASS VALVE

*https://www.nrc.gov/docs/ML0515/ML051540080.pdf

SDV:SCRAM DISCHARGE VALVE

*https://www.nrc.gov/docs/ML0417/ML041760484.pdf

MSLI:MAIN STEAM LINE ISOLATION

*https://www.nrc.gov/docs/ML0311/ML031190607.pdf

LPCI:LOW PRESSURE COOLANT INJECTION

*https://www.nrc.gov/docs/ML1414/ML14140A178.pdf

RCDT:REACTOR COOLANT DRAIN TANK

*https://www.nrc.gov/docs/ML1122/ML11223A213.pdf

PRT:PRESSURIZER RELIEF TANK

*https://adamswebsearch2.nrc.gov/webSearch2/view?AccessionNumber=ML15127A218

FIV:FLOW INDUCED VIBRATION

HEPA:HIGH EFFICIENCY PARTICULATE AIR FILTER

RRC:REACTOR RECIRCULATION SYSTEM

*https://www.nrc.gov/docs/ML0506/ML050610021.pdf

GPM:GALLONS PER MINUTE

DFG:DIODE FUNCTION GENERATOR

SG:STEAM GENERATOR

PCIG:PRIMARY CONTAINMENT INSTRUMENT GAS

*https://www.nrc.gov/docs/ML0407/ML040790363.pdf

PCS:PASSIVE CONTAINMENT COOLING SYSTEM

*https://adamswebsearch2.nrc.gov/webSearch2/view?AccessionNumber=ML20350B435

DG:DIESEL GENERATOR

RN:NUCLEAR SERVICE WATER *https://www.nrc.gov/docs/ML1110/ML111020305.pdf

MTG:MAIN TURBINE GENERATOR

LVDT:LINEAR VOLTAGE DIFFERENTIAL TRANSFORMER

*https://www.nrc.gov/docs/ML2007/ML20078B942.pdf

ESW:ESSENTIAL SERVICE WATER

*https://www.nrc.gov/sr0933/Section%203.%20New%20Generic%20Issues/153r2.html

CV:CONTROL VALVE

EDDY:EDDY CURRENT

ECCS:EMERGENCY CORE COOLING SYSTEM

NRC:NUCLEAR REGULATORY COMMISSION

INLEAKAGE:INLEAKAGE

LOAD LETDOWN:LOAD LETDOWN

LOAD ACTUAL:LOAD ACTUAL

159

AC:ALTERNATING CURRENT

AF:AUXILIARY FEEDWATER *https://www.nrc.gov/docs/ML1917/ML19171A178.pdf

TG:TURBINE GENERATOR

AUXILIARY SPRAY VALVE:AUXILIARY SPRAY VALVE

AUXILIARY FEEDWATER SYSTEM:AUXILIARY FEEDWATER SYSTEM

AUXILIARY FEEDWATER STEAM SUPPLY VALVE:AUXILIARY FEEDWATER

STEAM SUPPLY VALVE

GDC:GENERAL DESIGN CRITERIA

SIT:SAFETY INJECTION TANK *https://www.nrc.gov/docs/ML0037/ML003756995.pdf

PCIS:PRIMARY CONTAINMENT ISOLATION SIGNAL *https://www.nrc.gov/reading-

rm/doc-collections/event-status/event/2022/20220518en.html

SW:SERVICE WATER

IRM:INTERMEDIATE RANGE MONITOR

PRC:PROGRAMMABLE LOGIC CONTROLLER

HDT:HEATER DRAIN TANK

HDT:HEATER DRAIN TANK *https://www.nrc.gov/docs/ML2003/ML20038A107.pdf

HP:HIGH PRESSURE

RWS:RAW WATER SYSTEM *https://www.nrc.gov/docs/ML0935/ML093560442.pdf

SI:SAFETY INJECTION

RTD:RESISTANCE TEMPERATURE DETECTOR

*https://www.nrc.gov/docs/ML2005/ML20052H284.pdf

SUMP:SUMP

MCB:MAIN CONTROL BOARD *https://www.nrc.gov/docs/ML1416/ML14167A296.pdf

CTMT:CONTAINMENT

SUT:STARTUP TRANSFORMER *https://www.nrc.gov/docs/ML0733/ML073320172.pdf

59GG:GENERATOR GROUND RELAY

CCP:CENTRIFUGAL CHARGING PUMP

*https://www.nrc.gov/docs/ML1122/ML11223A220.pdf

ORING:ORING

DEMINERALIZER:DEMINERLIZER

DRYWELL:DRYWELL

RECOMBINER:RECOMBINER

RAMPDOWN:RAMPDOWN

OVERVOLTAGE:OVERVOLTAGE

MIDCYCLE:MIDCYCLE

DOWNPOWER:DOWNPOWER

POSITIONER:POSITIONER

160

DEMINERALIZER:DEMINERALIZER

ISOPHASE:ISOPHASE

NONCONDENSIBLE:NONCONDENSIBLE

NONISOLABLE:NONISOLABLE

SETPOINT:SETPOINT

FOREBAY:FOREBAY

LER:LER

UNDERVOLTAGE:UNDERVOLTAGE

HOTWELL:HOTWELL

WATERBOX:WATERBOX

BASKWASHING:BASKWASHING

ANTIMOTORING:ANTIMOTORING

BACKPRESSURE:BACKPRESSURE

INTERCONDENSER:INTERCONDENSER

REBOILER:REBOILER

WEEPAGE:WEEPAGE

DOWNPOWERED:DOWNPOWERED

UNISOLATE:UNISOLATE

SWITCHYARD:SWITCHYARD

WALKDOWN:WALKDOWN

ANTIREVERSE:ANTIREVERSE

HANDSWITCH:HANDSWITCH

CLAMICIDE:CLAMICIDE

MONOBLOCK:MONOBLOCK

SUBLOOP:SUBLOOP

UNDERFREQUENCY:UNDERFREQUENCY

OVERFREQUENCY:OVERFREQUENCY

DEFUELED:DEFUELED

UNLANDED:UNLANDED

EXCERCISER:EXCERCISER

C. hyphensInVocab.txt
LTD:letdown::: Turbine trip/reactor scram from 100% at 14:32 on 7/30/12. The scram

occurred shortly after the Turbine Stress Evaluator (TSE) was turned on. LOAD-LTD and

LOAD-ACTUAL dropped, and the turbine tripped.

BYV:Bypass Valve::: UNIT WAS MANUALLY SHUTDOWN TO REPLACE A

PRESSURIZER SPRAY BYPASS VALVE (1-BYV-68-555).

161

MO:motor operator::: REMOVED FROM SERVICE TO INVESTIGATE AND REPAIR

LEAKAGE FROM MO-7071 AND/OR VPI-303 ON THE POST INCIDENT SYSTEM.

AFTER THE UNIT WAS REMOVED FROM SERVICE, THE REACTOR WAS

MANUALLY SCRAMMED TO FULLY INSERT THE REMAINING WITHDRAWN

CONTROL ROD DRIVES.

EDG:Emergency Diesel generators::: TROUBLESHOOTING AND REPAIR EFFORTS

FOR THE EDG-2 VOLTAGE REGULATION SYSTEM FAILED TO RESTORE EDG-2

TO OPERABLE CONDITION AND IN ACCORDANCE WITH TECHNICAL

SPECIFICATION 3.8.1.F THE PLANT WAS SHUTDOWN (LER98-14).

MD:management directive::: POWER REDUCTION FOR ROD IMPROVEMENT AND

LEAK REPAIR TO 2-MD-LV-2SRDCV-H-1.

LV:leaky valve::: POWER REDUCTION FOR ROD IMPROVEMENT AND LEAK

REPAIR TO 2-MD-LV-2SRDCV-H-1.

MS:main steam::: UNIT WAS SHUTDOWN TO ENTER CONTAINMENT AND REPAIR

LEAKING SG SECONDARY SIDE TUBE SHEET DRAIN VALVE LEAK, 1MS-0664.

NON:notice of nonconformance::: AN EQUIPMENT FAULT CAUSED THE LOSS OF

ALL NON-1E 13.8 SWITHCHGEAR DUE TO INCORRECT TAP SETTINGS FOR THE

INSTANEOUS OVERCURRENT RELAY FOR BREAKER 2NAB03. THIS CAUSED A

TURBINE TRIP/REACTOR TRIP WHEN THE MAIN GENERATOR OUTPUT

BREAKERS OPENED.

MS:main steam::: UNIT TAKEN OFFLINE TO REPAIR VALVE 1 MS-0063.

COND:Condensate Pump::: AUTOMATIC SCRAM DUE TO LOSS OF FEED. WHILE

SHIFTING OIL FILTERS ON COND-P-2B, A MOTOR TRIP OF CONP-P-2B WAS

RECEIVED, FOLLOWED BY A TRIP OF BOTH FEED TURBINES.

MO:motor operator::: MO-10

SS:stainless steel::: REACTOR SHUTDOWN TO REPAIR PIN HOLE LEAK AND SMALL

CRACK UPSTREAM OF 1-SS-217 "C" STEAM GENERATOR SURFACE SAMPLE LINE

MANUAL ISOLATION VALVE.

SIA:Safety injection::: RX WAS MANUALLY TRIPPED TO REPAIR VIBRATIONS ON

SIA-UV-651.

UV:Reactor Coolant Valves::: RX WAS MANUALLY TRIPPED TO REPAIR

VIBRATIONS ON SIA-UV-651.

TM:technical manual::: POWER REDUCTION FOR 2-OSP-TM-001.

FW:feedwater::: UNIT 1 WAS REMOVED FROM SERVICE TO REPAIR 1-FW-E-4B.

MD:management directive::: Generator removed from service due to failure of valve 2-MD-

V14 resulting in internal flooding.

162

FW:feedwater::: REPAIRED LEAKING FEEDWATER VENT VALVE 2-FW-261B ON

THE MAIN FEEDWATER LINE TO #2 STEAM GENERATOR.

FW:feedwater::: POWER REDUCTION DUE TO CRACKED WELD ON MAIN

FEEDWATER PUMP 2B CASING VENT VALVE 2FW-0011.

RC:reactor cavity::: UNIT SHUTDOWN TO REPLACE RCP MOTOR (1-RC-P-1B) THAT

HAD HIGH VIBRATIONS.

TR: TRANSFORMER LINKS::: REDUCED RX POWER TO 15%. REMOVED MAIN

TURBINE AND GENERATOR FROM SERVICE TO FIX E-TR-M1 TRANSFORMER

LINKS(i.e. THERMOGRAPHY IDENTIFIED HOT SPOTS IN THE LINK BOLTED

CONNECTIONS).

RE:radiation equipment::: THE LOOP 4 MAIN STEAM ISOLATION VALVE DRIFTED

CLOSED AND COULD NOT BE RE-OPENED. THE REACTOR OPERATOR

MANUALLY TRIPPED THE REACTOR. THE VALVE WENT CLOSED DUE TO A

BLOWN FUSE.

RHV:Residual Heat Removal System Valve::: THE PLANT SHUT DOWN TO REPAIR AN

EHC FLUID LEAK ON RHV-5.

MS:main steam::: TURBINE SHUTDOWN TO REPAIR A LEAKING WELD AT MS-1607.

(CR-IP2-2004-06527).

RRC:radiation recorder controller::: POWER REDUCTION, RRC-ASD-1A2 TRIPPED.

PLANT ENTERED SINGLE LOOP OPERATION.

ASD:adjustable speed drive::: POWER REDUCTION, RRC-ASD-1A2 TRIPPED. PLANT

ENTERED SINGLE LOOP OPERATION.

BVPS:Beaver Valley Power Station::: BVPS-2 was shutdown on 2/3/16 at 1626 hours for

repair of high end turn vibrations on the Main Unit Generator. Upon completion of repairs,

the Unit was synchronized to the electrical grid at 0506 hours on 2/12/16 and returned to

100% power.

UV:undervoltage::: POWER REDUCTION FOR HEAT TREAT, AND PERFORMED

MAINTENANCE ON HP GOVERNOR VALVE 3UV-2200G.

AOV:air operated valve::: FEEDWATER REGULATOR VALVE ACTUATOR REPAIR

AOV-4269.

FW:feedwater::: Manual Reactor Trip due to FW Transient (spurious closure of 2-FW-MOV-

250C)

MOV:metal oxide varister::: Manual Reactor Trip due to FW Transient (spurious closure of 2-

FW-MOV-250C)

QF:quality factor::: Q2F60-OCCURRED DURING TURBINE THRUST BEARING WEAR

DETECTOR SURVEILLANCE.

163

UNIT:United Illuminating Co::: DUAL-UNIT SHUTDOWN TO REPLACE 87 DP RELAYS

ON ALL EDGS.

FW:feedwater::: POWER REDUCTION TO PERFORM MAINTENANCE ON 2-FW-P-1A

AND 2-FW-P-1B.

CF:column feed::: POWER REDUCTION TO EVALUATE PACKING LEAK ON

FEEDWATER VALVE 2CF-28.

LER:licensee event report::: LER-1999-004, MANUAL SCRAM

MS:main steam::: THE UNIT HAD TO BE SHUT DOWN TO CORRECT A PROBLEM

WITH 1-MS-BPV-3.

WMO:World Meteorological Organization::: UNIT 2 WAS SHUTDOWN AFTER THE #23

CW PUMP DISCHARGE VALVE 2-WMO-23 FAILED CLOSED.

FW:feedwater::: FAILURE OF 2-FW-FCY-2498 (FUSE) DRIVER CARD FOR 2-FW-FCV-

2498.

FCY:Fuse driver card::: FAILURE OF 2-FW-FCY-2498 (FUSE) DRIVER CARD FOR 2-

FW-FCV-2498.

FCV:flow control valve::: MANUAL TURBINE TRIP INITIATED DUE TO WELD

FAILURE ON 1-FCV-1-104.

LOP:loss of offsite power::: OVERSPEED TRIP TESTING IAW LOP-TG-02

RCP:reactor coolant pump::: DEGRADED REACTOR COOLANT PUMP (RCP) SEAL ON

RCP-3A. REPLACED SEAL.

FCV:flow control valve::: UNIT TAKEN OFFLINE TO REPAIR A PACKING LEAK ON

THE 24 SG MAIN FWRV (FCV-447). REACTOR REMAINED CRITICAL.

PT:penetrant test::: REACTOR TRIP DURING THE PERFORMANCE OF

SURVEILLANCE TEST 3PT-Q94M PRESSURIZER LEVEL ANALOG FUNCTIONAL,

DUE TO A DEGRADED RELAY IN THE REACTOR PROTECTION LOGIC MATRIX.

RELAY WAS REPLACED.

CF:column feed::: POWER REDUCTION DUE TO FEEDWATER VALVE 2CF-30

FAILED TO CLOSE IN THE REQUIRED TIME WHILE PERF VALVE STROKE

TIMING TEST.

RC:reactor cavity::: UNIT SHUTDOWN TO REPAIR 2-RC-HSS-116

BVPS:Beaver Valley Power Station::: BVPS-1 manually tripped the reactor following a

turbine trip while at approximately 46% power during startup from the 1R22 refueling outage

due to a cable failue on 11/05/2013 at 17:48. Power generation resumed on 11/08/2013 at

18:07.

FW:feedwater::: UNIT MANUALLY SHUT DOWN DUE TO A STEAM LEAK FOUND

ON FEEDWATER CHECK VALVE 2-FW-118-2.

164

PT:penetrant test::: MANUALLY SECURED THE TURBINE TO FACILITATE THE

PERFORMANCE OF SURVEILLANCE TEST 3PT-V21, TURBINE GENERATOR

OVERSPEED TRIP TEST.

MFP:main feed power::: AN AUTOMATIC TRIP RESULTED FROM A LOSS OF

SUCTION ON THE A-MFP, TURBINE RUNBACK, AND SUBSEQUENT LOW STEAM

GENERATOR LEVEL DURING THE RESTORATION OF A CONDENSATE PUMP

FROM MAINTENANCE.

LER:licensee event report::: 2M29 SAFETY RELIEF VALVE MAINTENANCE OUTAGE

RESULTED IN FORCED AND SCHEDULED LOSSES BECAUSE SRV

INADVERTENTLY LIFTED WHILE POWERING DOWN. REQUIRED RESPONSE WAS

REACTOR MANUAL SCRAM. REF LER-2-01-001.

MO:motor operator::: A PLANNED MANUAL SCRAM WAS INSERTED DUE TO A

RISING TREND IN UNIDENTIFIED DRYWELL LEAKAGE. VALVE PACKING ON

RWCU INLET VALVE MO-1201-85 WAS LEAKING. PACKING REPAIRED.

MO:motor operator::: REACTOR SHUTDOWN FOR MO-09.

RRC:radiation recorder controller::: PLANT DOWN TO REPAIR A SEAL ON RRC-P-1A.

PT:penetrant test::: AUTOMATIC REACTOR SCRAM WHILE PERFORMING

SURVEILLANCE TEST 3PT-Q95,PRESSURIZER PRESSURE ANALOG FUNCTIONAL

TEST.

SOV:solenoid operated valve::: REACTOR TRIP ON MSIV CLOSURE. REWORKED

GRAY BOOT CONNECTORS FOR SOV-01-03D AND SOV-01-04D. REPLACED RLY-

12K74.

CA:Charge amplifier::: REPAIR FEEDWATER VALVE (2CA-42).

RC:reactor cavity::: AUTOMATIC REACTOR TRIP DUE TO LOSS OF COOLANT

FLOW >30% POWER FOLLOWING LOSS OF 2-RC-P-1B MOTOR.

HCV:hand control valve ::: CYCLE 17 REFUELING OUTAGE. Early shutdown of BFN2

on 3/14/13 due to RCIC turbine exhaust hand control valve (2-HCV-71-14). Entered U2R17

RFO 03/16/2013 at 12:00AM.

CW:case work::: Manual reactor trip 0900 on 1/9/14 due to TS 2.0.1(1) entry. All Raw Water

pumps were declared inoperable at 0315 on 1/9/14 due to CW-14C, Traveling Screen Sluice

Gate, being unable to close due to ice build up and stem damage.

UNIT:United Illuminating Co::: UNIT-1 AUTOMATIC REACTOR TRIP DUE TO A

FAILURE IN THE TURBINE DIGITAL ELECTRO-HYDRAULIC CONTROL SYSTEM.

PT:penetrant test::: MANUAL REACTOR SCRAM DUE TO FAILURE OF PT-408B

POWER SUPPLY, MAIN BOILER FEED PUMP SUCTION PRESSURE TRANSMITTER.

(CR-IP2-2007-1046)

165

NON:notice of nonconformance::: Replaced a non-safety related 120 VAC regulating

transformer which services the digital feedwater control logic. The transformer was showing

signs of degradation beginning on August 30, 2013.

RE:radiation equipment::: MAIN GENERATOR WAS REMOVED FROM THE GRID TO

REPAIR A LEAK ON A FILTER IN THE STATOR COOLING WATER SYSTEM. THE

LEAK WAS REPAIRED AND THE MAIN GENERATOR WAS RE-TIED TO THE GRID.

HV:hand valve::: THE UNIT WAS SHUTDOWN TO: 1) REPAIR A HYDRAULIC LEAK

IN THE ACTUATIOR FOR FEEDWATER BLOCK VALVE 3HV-4501 AND 2) REPLACE

SECTION OF THE STEAM BYPASS LINE PIPING. NEITHER CONDITION

PREVENTED CONTINUED PLANT OPERATION

FCV:flow control valve::: MANUAL REACTOR TRIP DUE TO 22 FEEDWATER (FW)

FLOW OSCILLATIONS ATTRIBUTED TO FW CONTROL VALVE FCV-427 (LER-

2004-001).

UV:undervoltage::: UNIT SHUTDOWN BY PROCEDURE DUE TO RETESTS FOR AUX

FEEDWATER STEAM SUPPLY VALVE SGA-UV-138A.

HCV:hand control valve ::: PSL 2 experienced a manual reactor/turbine trip from full power

on 11/12/2014 due to a malfunction with Main Feedwater Isolation Valve, HCV-09-2B.

FCV:flow control valve::: IT WAS DETERMINED THAT THE DIAPHRAGM HAD

FAILED ON CONTROL VALVE 2-FCV-62-69. THE VALVE WAS REPAIRED AND

THE SYSTEM WAS RETURNED TO SERVICE.

FT:fault tree::: On 09/28/15 at 20:46 the Hope Creek reactor scrammed. During performance

of HC.IC-FT.SA-0003 (RRCS-Div 1 Channel B ATWS Recirc Pump Trip), RRCS

automatically actuated on a high reactor pressure (>1071 PSIG) on both A and B Channel

logic.

BD:blowdown::: LOSS OF STEAM GENERATOR BLOWDOWN FLOW FROM B SG

CAUSED BY FAILURE OF 1BD-20. REPAIRS MADE.

PT:penetrant test::: UNIT SHUTDOWN DUE TO INADEQUATE TECHNICAL

SPECIFICATION REQUIRED LEAK RATE TESTING OF CONTAINMENT ISOLATION

VALVES (CIV). INADEQUATE TESTING OF CIVs WAS DUE TO INADEQUATE

REFUELING TEST PROCEDURES (3PT-R25,3PT-R35).

RC:reactor cavity::: 2-RC-MOV-2591 DISC SEPARATED FROM STEM.

MOV:metal oxide varister::: 2-RC-MOV-2591 DISC SEPARATED FROM STEM.

FCV:flow control valve::: U2C14 MAINTENANCE OUTAGE TO REPAIR LEAKING

MSRV'S AND THE 2-FCV-003-0077 VALVE.

RC:reactor cavity::: RC-3A Reactor Coolant Pump Seal Leakage

MFP:main feed power::: TRIP DUE TO MFP-B SHAFT FAILURE IN CONJUNCTION

WITH STANDBY MFP OUT OF SERVICE FOR RECIRCULATION LINE REPAIRS

166

AND FOREIGN MATERIAL PARTIAL OBSTRUCTION AT THE NUMBER 4 STEAM

GENERATOR FEEDWATER INLET.

FCV:flow control valve::: MANUAL REACTOR TRIP DUE TO DECREASING 23 STEAM

GENERATOR LEVEL, ATTRIBUTED TO THE FAILURE OF FCV-437-SOV-E.

SOV:solenoid operated valve::: MANUAL REACTOR TRIP DUE TO DECREASING 23

STEAM GENERATOR LEVEL, ATTRIBUTED TO THE FAILURE OF FCV-437-SOV-E.

MSIV:Main steam isolation valve::: SCRAM AND SAFETY INJECTION SIGNAL DUE TO

MSIV FAILURE. MSIV-3516 SPONTANEOUSLY CLOSED. INSTALLATION OF A

NON-VENTED PIPE PLUG IN THE VALVE ACTUATOR CAUSED THE FAILURE.

REPLACEMENT ACTUATOR WITH PROPER VENTING PATH WAS INSTALLED ON

MSVIV-3516.

CF:column feed::: INVESTIGATE/INSPECTOR/REPAIR STEAM GENERATOR "A"

FEEDWATER REGULATOR VALVE 2CF-32.

RC:reactor cavity::: 2RC-1 REPAIR

LER:licensee event report::: SCRAM DUE TO TURBINE CONTROL VALVE FAILURE.

TURBINE CONTROL SYSTEM CIRCUIT CARD CONNECTION PIN PROBLEM

WHICH CAUSED THE CLOSURE OF THE TURBINE CONTROL VALVES WAS

REPAIRED. LER-2007-001 ISSUED MARCH 23, 2007, DOCUMENTS THE EVENT.

LER:licensee event report::: AUTOMATIC TRIP OCCURRED DUE TO A FAILURE OF 11

CEDM MOTOR GENERATOR LOCAL VOLTAGE ADJUST HANDSWITCH.

MO:motor operator::: MO-11 WAS TAKEN ON MAY 25, 2001 TO REPAIR STEAM

BYPASS AND PRESSURE REGULATION CIRCUITRY. THE PLANT RETURNED TO

100% ON 5/30/01 AT 0316.

SRV:safety relief valve::: 1/20/13 at 21:37 shutdown initiated due to leaking SRV. Offline

1/21/13 at 05:45. All rods in at 09:01. SRV-203-3B repaired. Rx S/U commenced 1/22/13 at

10:21. Rx critical at 15:28. Synched to grid 1/23/14 at 11:21. Full power on 1/24/13 at 03:12.

RE:radiation equipment::: MANAGEMENT RE-VIEWED THE CIRCUMSTANCES FOR

THE SHUTDOWN AND DETERMINED THAT THE OUTAGE WOULD BE

CLASSIFIED AS FORCED DUE TO REGULATORY CONCERNS.

RE:radiation equipment::: MANAGEMENT RE-REVIEWED THE CIRCUMSTANCES

FOR THE SHUTDOWN AND DETERMINED THAT THE OUTAGE WOULD BE

RECLASSIFIED AS FORCED DUE TO REGULATORY CONCERNS.

NON:notice of nonconformance::: FAILURE OF THE UNIT 2 SAT NON-SEGREGATED

BUS RESULTED IN THE LOSS OF OFFSITE POWER AND A UNIT 2 SHUTDOWN.

PT:penetrant test::: REACTOR TRIP DURING THE PERFORMANCE OF

SURVEILLANCE TEST 3PT-Q94M PRESSURIZER LEVEL ANALOG FUNCTIONAL,

167

DUE TO A DEGRADED RELAY IN THE REACTOR PROTECTION LOGIC MATRIX.

RELAY WAS REPLACED.

MS:main steam::: Unit shutdown to repair air leak on 1-MS-TV-101B

RC:reactor cavity::: Shutdown and cooldown to Mode 5 to replace seals on 2-RC-P-1A and

2-RC-P-1C

LO:lock open::: Reactor trip on SG lo-lo level. Caused by 24 SG FWR valve not responding

to demand signal. Suspected cause is dirt/debris in the valve positioner. Root cause

evaluation in progress.

LO:lock open::: Reactor trip on SG lo-lo level. Caused by 24 SG FWR valve not responding

to demand signal. Suspected cause is dirt/debris in the valve positioner. Root cause

evaluation in progress.

LT:leak testing::: OUTAGE DELAY DUE TO 1LT-5 "A" & "B" REACTOR VESSEL

LEVEL INSTRUMENTATION.

RC:reactor cavity::: PLANT SHUTDOWN DUE TO THROUGH WALL WEEPAGE IN A

SPOOL PIECE CONNECTING RELIEF VALVE RC-V89 TO A 12 INCH SUCTION LINE

FOR TRAIN B RESIDUAL HEAT REMOVAL PUMP. REMAINED SHUTDOWN DUE

TO BOTH TRAINS OF CONTROL BUILDING AIR(CBA) INOPERATIVE.

NON:notice of nonconformance::: The plant shutdown to repair a non-isolable steam leak

upstream of a drain valve for an Atmospheric Steam Dump Valve. This is ASME Class II

high energy piping that is required to be Operable per technical specifications.

EH:electrohydraulic::: UNIT WAS RAMPED DOWN TO APPROX. 8% POWER AND

MAIN GENERATOR WAS REMOVED FROM SERVICE TO REPAIR 1-EH-TV-100

(AUTO STOP OIL INTERFACE VALVE). REACTOR REMAINED CRITICAL.

FW:feedwater::: POWER REDUCTION TO PERFORM MAINTENANCE ON 2-FW-P-1A

AND 2-FW-P-1B.

MOD:motor operated disconnect::: TRANSFORMER T-MOD INSTALLATION.

REACTOR NOT SHUT DOWN.

EHC:electrohydraulic control::: AUTO TRIP-EHC MALFUNCTION RESULTING IN

TURBINE THROTTLE CONTROL VALVES DRIFTING CLOSED.

BI:background information::: THE UNIT EXPERIENCED AN AUTOMATIC REACTOR

TRIP FOLLOWING AN INADVERTENT TURBINE TRIP FROM 100% OUTPUT

DURING A SOLID STATE PROTECTION SYSTEM TRAIN B BI-MONTHLY TEST.

RE:radiation equipment::: LOSS OF LOAD DUE TO FAILURE OF A STATIC LINE

BETWEEN THE PLANT AND THE SWITCHYARD. MADE NECESSARY REPAIRS

AND WILL RE-EVALUATE PALISADES RESPONSE TO SOER 99-1, LOSS OF GRID,

RECOMMENDATION 3.

168

PT:penetrant test::: PLANT SHUTDOWN FOR AN INOPERABLE 480 VOLT BUS 6A

DUE TO A FAILURE OF THE 32 RESIDUAL HEAT REMOVAL (RHR) PUMP CIRCUIT

BREAKER TO OPEN FOLLOWING PERFORMANCE OF SURVEILLANCE TEST 3PT-

M18,"RHR PUMP FUNCTIONAL TEST." 480 BUS6A REMAINED ENERGIZED BUT

OPERABLE.

NON:notice of nonconformance::: MAIN STEAM FLOW MEASURED WAS NON-

CONSERVATELY HIGH DURING POWER ASCENSION WITH RELATION TO

SAFETY SYSTEM ACTION PARAMETERS. UNIT TAKEN OFFLINE.

LV:leaky valve::: POWER REDUCTION TO REPLACE POSITIONER ON FEEDWATER

HEATER NORMAL DRAIN LEVEL CONTROL VALVE 2-LV-2509.

MS:main steam::: SHUTDOWN IN ACCORDANCE WITH TECH SPEC 4.15.C.1 TO

REPAIR A PINHOLE LEAK ON TWO INCH MAIN STEAM PIPING. THE LINE GOES

TO 1-MS-TD-4 FROM THE "B" MAIN STEAM LINE.

TD:theoretical density ::: SHUTDOWN IN ACCORDANCE WITH TECH SPEC 4.15.C.1

TO REPAIR A PINHOLE LEAK ON TWO INCH MAIN STEAM PIPING. THE LINE

GOES TO 1-MS-TD-4 FROM THE "B" MAIN STEAM LINE.

AO:abnormal occurrence::: Reactor scrammed 8/22/15 at 16:27 due to the unplanned closure

of MSIV AO-203-1C. Reactor startup commenced 8/24/15 at 21:47. Reactor critical 8/25/15

at 00:47. Generator synched 8/25/15 at 17:54. Reached 100% power 8/25/15 at 06:37.

FW:feedwater::: U1 TAKEN OFFLINE FOR 1-FW-E-6B, FEEDWATER HREATER TUBE

REPAIR.

FW:feedwater::: REACTOR TRIP OCCURRED DUE TO FAILURE OF FW-7B, MAIN

FEEDWATER FLOW CONTROL VALVE.

VDC:ventilation duct chase::: FAILURE OF UNIT 2-15VDC TRAIN "A" POWER SUPPLY

IN MSIV/FWIV CONTROL CABINET RESULTED IN CLOSURE OF ALL MSIVS, RX

TRIPPED ON HIGH PRESSURIZER PRESSURE, AND SUBSEQUENT LOSS OF HEAT

SINK. UNIT RETURNED TO SERVICE ON 08/28/00 .

D. unknown.txt
TADOT

MILS

HU

RMSC

AB

STGE

OE

LUG

INPO

169

REC

ISM

PBTP

JIB

SP

EX

UIT

EDH

ESFSAS

BOP

EENT

OCBS

DFS

IRMS

AMAG

TSEO

GC

ICES

ODS

TBED

INOP

JUNO

OTBD

HR

SWAGR

PLP

MGMT

E. reformat.txt
ON-LINE:ONLINE

OFF-LINE:OFFLINE

MAIN-TURBINE:MAIN TURBINE

OFF-SITE:OFFSITE

MOTOR-GENERATOR:MOTOR GENERATOR

SHORT-CIRCUIT:SHORT CIRCUIT

IN-PROGRESS:IN PROGRESS

AIR-EJECTOR:AIR EJECTOR

170

TROUBLE-SHOOT:TROUBLESHOOT

CARRY-OVER:CARRYOVER

ELECTRO-HYDRAULIC:ELECTROHYDRAULIC

TURBINE-DRIVEN:TURBINE DRIVEN

IN-SERVICE:IN SERVICE

IN-LEAKAGE:INLEAKAGE

AIR-LEAKAGE:AIR LEAKAGE

MOTOR-DRIVEN:MOTOR DRIVEN

TURBINE-DRIVEN:TURBINE DRIVEN

TURBINE-GENERATOR:TURBINE GENERATOR

OUT-OF-SERVICE:OUT OF SERVICE

TURBINE-DRIVE:TURBINE DRIVE

POWER-LOAD-UNBALANCE:POWER LOAD UNBALANCE

SHUT-DOWN:SHUTDOWN

NON-SAFETY:NON SAFETY

SHORT-CIRCUIT:SHORT CIRCUIT

LEAK-OFF:LEAK OFF

LOW-VOLTAGE:LOW VOLTAGE

MAIN-TURBINE-:MAIN TURBINE

THERMALLY-INDUCED:THERMALLY INDUCED

NO-LOAD:NO LOAD

OFF-GAS:OFF GAS

PRE-PLANNED:PREPLANNED

NON-ISOLABLE:NONISOLABLE

ANTI-MOTORING:ANTIMOTORING

CUT-BACK:CUTBACK

TACHOMETER-GENERATOR:TACHOMETER GENERATOR

SEAL-IN:SEAL IN

POST-REFUEL:POST REFUEL

UNDER-FREQUENCY:UNDERFREQUENCY

TRIP-HIGH:TRIP HIGH

POWER-UP:POWERUP

DOWN-POWERING:DOWNPOWERING

RANGE-HIGH:RANGE HIGH

DUAL-UNIT:DUAL UNIT

CHAMBER-TO-DRYWELL:CHAMBER TO DRYWELL

LEAK-RATE:LEAK RATE

171

START-UP:START UP

OVER-SPEED:OVERSPEED

HIGH-FLUX:HIGH FLUX

FIFTH-POINT:FIFTH POINT

SUB-CRITICAL:SUBCRITICAL

MOTOR-OPERATED:MOTOR OPERATED

OFF-GRID:OFF GRID

ELECTRO-HYDRUALIC:ELECTROHYDRUALIC

HI-HI:HIGH HIGH

BI-MONTHLY:BIMONTHLY

SYSTEM-ELECTRICAL:SYSTEM ELECTRICAL

RUN-BACK:RUNBACK

BLIZZARD-INDUCED:BLIZZARD INDUCED

STEP-UP:STEPUP

TURBINE-PUMP:TURBINE PUMP

END-BELL:END BELL

IN-PLANT:IN PLANT

PHASE-TO-GROUND:PHASE TO GROUND

LOAD-LTD:LOAD LETDOWN

VOLTAGE-TO-GROUND:VOLTAGE TO GROUND

RE-REVIEWED:REVIEWED

AUTO-STOP:AUTO STOP

HOT-STANDBY:HOT STANDBY

LO-LO:LOW LOW

DE-ENERGIZED:DEENERGIZED

LOW-LOW:LOW LOW

INTER-SYSTEM:INTERSYSTEM

BREAK-IN:BREAK IN

ELCTRO-HYDRAULIC:ELECTROHYDRAULIC

RE-EVALUATE:REEVALUATE

BODY-TO-BONNET:BODY TO BONNET

NON-VENTED:NON VENTED

NON-SEGREGATED:NON SEGREGATED

LIKE-FOR-LIKE:LIKE FOR LIKE

RE-TIED:RETIED

LOCK-OUT:LOCKOUT

MID-POSITION:MIDDLE POSITION

172

WEATHER-RELATED:WEATHER RELATED

HIGH-HIGH:HIGH HIGH

RAMP-UP:RAMPUP

CONTROL-DUE:CONTROL DUE

QUAD-VOTER:QUAD VOTER

LOAD-ACTUAL:LOAD ACTUAL

UN-COUPLED:DECOUPLED

ISO-PHASE:ISOPHASE

ANTI-REVERSE:ANTIREVERSE

CROSS-TIED:CROSS TIED

UN-ISOLATABLE:UNISOLATABLE

OVER-FREQUENCY:OVER FREQUENCY

OFF-NORMAL:OFF NORMAL

IN-LEAKAGE-RX:IN LEAKAGE REACTOR

PRE-EVENT:PRE EVENT

RE-SYNCHED:RESYNCHED

MID-CYCLE:MIDCYCLE

SHELL-SIDE:SHELL SIDE

OVER-CURRENT:OVER CURRENT

BORG-WARNER:BORG WARNER

CHANGE-OUT:CHANGEOUT

SIX-INCH:SIX INCH

PART-LENGTH:PART LENGTH

END-SHIELD:END SHIELD

HOLD-DOWN:HOLD DOWN

CLEAN-UP:CLEANUP

SMALL-BORE:SMALL BORE

NON-ROUTINE:NON ROUTINE

FIRE-DAMAGED:FIRE DAMAGED

IS-OPERATED:IS OPERATED

SCRAM-CODE:SCRAM CODE

THIRD-PARTY:THIRD PARTY

MINI-FLOW:MINI FLOW

END-OF-CYCLE:END OF CYCLE

MINI-OUTAGE:MINI OUTAGE

SERVO-STRAINERS:SERVO STRAINERS

DOWN-POWER:DOWN POWER

173

AIR-BOUND:AIR BOUND

TORUS-TO-DRYWELL:TORUS TO DRYWELL

50-DH-350:AIR CIRCUIT BREAKER

RRCS-DIV:REDUNDANT REACTIVITY CONTROL SYSTEM

V-28-21:VENTILATION SYSTEM ISOLATION VALVE

*https://www.nrc.gov/docs/ML0037/ML003751413.pdf

LVC-1127B:HEATER DRAIN TANK LEVEL CONTROL

*https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML13126A379

SIA-V056:SAFETY INJECTION DRAIN VALVE

*https://www.nrc.gov/docs/ML0410/ML041040027.pdf

1-CH-TV-1204B:OUTSIDE CONTAINMENT ISOLATION VALVE

*https://www.nrc.gov/docs/ML0935/ML093560851.pdf

2-AOP-:ABNORMAL OPERATING PROCEDURE CODE

CR-XXX-:CONDITION REPORT CODE

1-CS-8364B:SEAL INJECTION DRAIN VALVE

*https://www.nrc.gov/docs/ML1331/ML13310C184.pdf

U-25000-11:TRANSFORMER *https://www.nrc.gov/docs/ML9932/ML993240318.pdf

GB-1-02:GENERATOR BREAKER *https://www.nrc.gov/docs/ML0101/ML010120458.pdf

RV-200:PRESSURIZER SAFETY RELIEF VALVE

*https://www.nrc.gov/docs/ML0703/ML070330649.pdf

U-25000-12:TRANSFORMER *https://www.nrc.gov/docs/ML2021/ML20212A349.pdf

MCC-3A1:MOTOR CONTROL CENTER *https://www.nrc.gov/reading-rm/doc-

collections/gen-comm/circulars/1977/cr77003.html

DB-50:REACTOR TRIP BREAKERS *https://www.nrc.gov/reading-rm/doc-collections/gen-

comm/bulletins/1983/bl83001.html

U1-OPS:UNIT OPERATIONS

HT-ACE:HIGH TIER APPARENT CAUSE EVALUATION

*https://www.nrc.gov/docs/ML1513/ML15133A264.pdf

RHR-1-RV-8708:RESIDUAL HEAT REMOVAL PUMP DISCHARGE HEADER TO

RELIEF VALVE *https://www.nrc.gov/docs/ML1616/ML16165A280.pdf

3-ISV-069-0500:ISOLATION VALVE

1P-029-T:TURBINE DRIVEN AUXILLARY FEEDWATER PUMP

*https://www.nrc.gov/docs/ML0037/ML003714618.pdf

CV-3-200B:CONTAINMENT ISOLATION VALVE *https://www.nrc.gov/reading-rm/doc-

collections/event-status/event/2003/20030429en.html

NAN-S01:BUSES *https://www.nrc.gov/docs/ML1928/ML19284D677.pdf

CV-31385:VALVE *https://www.nrc.gov/docs/ML0200/ML020090090.pdf

174

RV-4-551A:PRESSURIZER SAFETY VALVE

*https://www.nrc.gov/docs/ML1332/ML13329A125.pdf

PUMP-1A:PUMP MOTOR OIL

RV-2A: MOISTURE SEPARATOR REHEAT PILOT RELIEF VALVE

2RCS-P-1B:REACTOR COOLANT SYSTEM PUMP

VPI-303:CORE SPRAY SYSTEM *https://www.nrc.gov/docs/ML2024/ML20248B409.pdf

CV-1057:PRESSURIZER SPRAY CONTROL VALVE

*https://www.nrc.gov/docs/ML1604/ML16047A125.pdf

DHV-03:DECAY HEAT REMOVAL SYSTEM ISOLATION VALVE

*https://www.nrc.gov/docs/ML0124/ML012420074.pdf

NI-42:POWER RANGE NUCLEAR INSTRUMENT CHANNEL

*https://www.nrc.gov/docs/ML2021/ML20214F805.pdf

V-28-22:VENTILATION SYSTEM ISOLATION VALVE

*https://www.nrc.gov/docs/ML0037/ML003751413.pdf

2-MRV-220:STEAM STOP VALVE

*https://www.nrc.gov/reactors/operating/oversight/reports/cook_2002003.pdf

CK-ES-3332:SWING CHECK VALVE *https://www.nrc.gov/reading-rm/doc-

collections/gen-comm/info-notices/2000/in00021.html

IV-38-01:SHUTDOWN COOLING ISOLATION VALVE

*https://www.nrc.gov/docs/ML1212/ML12125A058.pdf

RV-19:RELIEF VALVE

*https://www.nrc.gov/reactors/operating/oversight/reports/wnp_2002006.pdf

CONP-P-2B:CONDENSATE PUMP

2VBB-UPS3B:UNINTERRUPTIBLE POWER SUPPLY

*https://www.nrc.gov/docs/ML1413/ML14135A187.pdf

2CA-42:ISOLATION VALVE *https://www.nrc.gov/docs/ML2005/ML20056C428.pdf

CR-IP3-2007-1834:CONDITON REPORT

CR-IP3-2007-2130:CONDITON REPORT

CR-1P2-2006-6658:CONDITON REPORT

CR-GGN-2013-00319:CONDITON REPORT

CR-IP2-2007-2208:CONDITON REPORT

CR-IP2-2006-1011:CONDITON REPORT

CR-IP3-2007-1775:CONDITON REPORT

CR-WF3-1999-1207:CONDITON REPORT

CR-1P3-2005-3054:CONDITON REPORT

CR-GGN-2014-3131:CONDITON REPORT

CR-PLP-2012-0078:CONDITON REPORT

175

CR-GGN-2013-00083:CONDITON REPORT

CR-JAF-2013-00864:CONDITON REPORT

CR-IP3-2006-2071:CONDITON REPORT

CR-IP3-2006-2255:CONDITON REPORT

MO-7071:MOTOR OPERATED VALVE

*https://www.nrc.gov/docs/ML0729/ML072970515.pdf

2-0305-101-18-27:SCRAM INSERT ISOLATION VALVE

*https://adamswebsearch2.nrc.gov/webSearch2/view?AccessionNumber=ML14225A200

2E-7B:FEEDWATER HEATER *https://www.nrc.gov/docs/ML0912/ML091260792.pdf

1H13P637-PS21:POWER SUPPLY *https://www.nrc.gov/docs/ML1412/ML14122A458.pdf

1X-04:TRANSFORMER

VPI-3-3:CHECK VALVE *https://www.nrc.gov/docs/ML2019/ML20196A452.pdf

MS-0063:STEAM GENERATOR ATMOSPHERIC RELIEF VALVE BLOCK

*https://www.nrc.gov/reactors/operating/oversight/reports/cp_2002005.pdf

71T-1B:TRANSFORMER

1-1301-17:REACTOR CORE ISOLATION COOLING VALVE

2P-15B:SAFETY INJECTION PUMP

11-BUS-007:LOAD CENTER

1-0303-3B:ELECTROMATIC RELIEF VALVE

2-CK-075:INJECTION CHECK VALVE

FCV-427:STEAM GENERATOR MAIN FEED REGULATING VALVE

*https://www.nrc.gov/docs/ML0430/ML043080311.pdf

CH-240:BACKPRESSURE CONTROL VALVE

MV-09-01:MAIN FEEDWATER PUMP ISOLATION VALVE

*https://www.nrc.gov/docs/ML1722/ML17229A585.pdf

MO-10:MOTOR OPERATED VALVE

MO-09:MOTOR OPERATED VALVE

PCB-341:SWITCHYARD BREAKER *https://www.nrc.gov/reading-rm/doc-

collections/event-status/part21/1997/1997333.html

2-FCV-075-0025:FLOW CONTROL VALVE

*https://www.nrc.gov/docs/ML0712/ML071210012.pdf

1-XA-55-22:REACTOR LOW WATER LEVEL

1XA-55-1-29:NEUTRON MONITOR SYSTEM

CRD-24:CONTROL ROD DRIVE

1P-1A&B:REACTOR COOLANT PUMPS

1&2P-2P-28A&B:MAIN FEEDWATER PUMPS

160-12-21:PRESSURE SWITCH

176

2-FR-240:FEEDWATER RELIEF VALVE POSITIONER

1HP-27:HIGH PRESSURE INJECTION VALVE

06-01:FUEL LEAK

252-2104:DISLODGED BREAKER

10-11:OIL CIRCUIT BRAKER

1-11:OIL CIRCUIT BREAKER

1F42-11:DISCONNECT SWITCH

C11-N654B:INSTRUMENT TUBING

2E11-F050B:INJECTION LINE CHECK VALVE

01-03:MAIN STEAM ISOLATION VALVE

1P-11A:COMPONENT COOLING WATER PUMP

P-32A:SERVICE PUMP

1X-01C:TRANSFORMER

O6-01:FAILED FUEL

2S32-R017:RECORDER

A0-203-1C:MAIN STEAM ISOLATION VALVES

2-0203-3D:ELECTROMATIC RELIEF VALVE

3HD-149:STEAM LEAK

26-27:DIRECTIONAL CONTROL VALVE

1P-1B:REACTOR COOLANT PUMP SEAL

A0-203-1B:MAIN STEAM ISOLATION VALVES

1-0303-3C:ELECTROMATIC RELIEF VALVE

1-0303-3E:ELECTROMATIC RELIEF VALVE

2B21-F013L:SAFETY RELIEF VALVES

30-48:LEVEL TRANSMITTER

552-1105:BREAKER

1P-25B:CONDENSATE PUMP

68-03:VACUUM BREAKER

2B21-F016:STEAM ISOLATION VALVE FOR VALVE PACKING LEAK

1HD-26:HEATER DRAIN VALVE

BFD-64-10:ISOLATION VALVE

BFD-64-10:ISOLATION VALVE

*https://www.nrc.gov/cdn/legacy/reactors/operating/oversight/2017q1/ip3_pi.pdf

1-LS-006-0206:MAIN FEEDWATER PUMP TURBINE CONDENSER DRAIN TANK

LEVEL SWITCH

2-CK-075:INJECTION CHECK VALVE

VPI-303:CHECK VALVE

177

BFD-1:MAIN BOILER FEED PUMP DISCHARGE CHECK VALVE

K-7B:TURBINE DRIVER

P-29C:MAIN SHAFT DRIVE LUBE OIL PUMP

P-50D:PRIMARY COOLANT PUMP

P-50C:PRIMARY COOLANT PUMP SEAL

2RC-1:PRIMARY COOLANT SYSTEM LOOP

*https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f43fb54e7bccc3c500fb19

12d686374763e4fb16

NS04A:MAIN STEAM ISOLATION VALVE

1A2:REACTOR COOLANT PUMP HIGH SEAL FLOW

1D1:HEATER DRAIN PUMP

1D2:HEATER DRAIN PUMP

1B:MAIN FEEDWATER PUMP MECHANICAL SPEED CONTROL

1A1:REACTOR COOLANT PUMP

1A:MAIN FEEDWATER PUMP

F. unknownWordNumbers.txt
116T

2B1

CR-JAF-2013-00864

2M32

A1

(CR-GGN-2013-00083)

2A

106T

CAP060656

3R14

1A2

1B

L2R10

L2R11

"1B'

CR-IP3-2006-2071

2R14

A 1

1E

178

1A

SP1036

120V

M1B

SGK05A

D50

GV-1

2'S

LI2F48

10CRF50 54(F)

G1

2P99

O1C25

1M36

K1

LI1F40

B33

U1C24

Q2P03

Q1F47

13BF19

1ES01OB

1-5A

SGK05A

SG#2

2ND

OCT 28 2003

1754H

2HV4052

4160V

2NAB03

32A

3B

32L

1ST

22BF19

1B2

179

C14

CR-1P2-2006-6658

6A

2HV6500

2M23

"1B"

ISM-7

AT17:07

59GG

1R22

3C

1F

CR-1P3-2005-3054

3A

T0

"1C"

CR-IP3-2007-2130

MODE2

D6

2FW009D

3F2

1S18819C

12BF19

86P

22A

2O

BOTHU1

1R15

2PS3

"3B"

LI1F54

B119M3

10CFR50 54(F)VALVES

1NCRD5850

B119R1

Q1P02

DG4

180

IP2

2F40

500KV

SF6

3RD

LINE-985

1R24

2EOC17

CR-IP3-2007-1775

OPENED:10/20/12

1D2

ISM-7

G9

G-1

Z1M06

CR-PLP-2012-0078

2SJ10

CRITICAL 3/24/14

2B53

3 5 2A

W97

1M27

1H

12-INCH

31/32B

"2D"

H-8

15V

7B

1'S

STATION-2

144D

2D

U2R11

2C1

1M16

4B

181

EN#50649

4-INCH

10CFR50 82(A)(1)(II)

"1A1"

Q2P01

1D

L1P02

2D3

Q1P01

C1M21

04:02AM

U2C14

5A

Y94

2H

U1C21

U2C17

50D

H-8

2M29

U-2

124A

W93

H2

AFFV58C

4 15 C 1

2RS

1D2

D-11-2

C1R09

AND12

15B

10CFR50 829(A)(1)(I)

3 8 1 F

1F12

ON10/05/00

10CFR50 54(F)

182

2 1O

CR-WF3-1999-1207

PB03

11A

Q2P01

B2F26

OR15

D2

2S

21ST

Q2P03

16-DAY

3E

CR-GGN-2014-3131

1M

U114

133U1

O-29-2

2M52

3DAY

ST11

SYSTEM 11/09/12

U3

XK1

1F24

1C

M1A

1F2903CS

2F

87DP

W93

K620

Q1F43

IR#1101855

71D

200MWE GENERATOR

2P98

183

NO 3

"3D1"

345KV

Q1M13

STATION-1

N42

B2F18

1AND3

"2A"

2A

Q2M17

XK3

3D

1F2902CS

IR#1101858

1J

L1P03

K-8

1POAC5

1A1

NO 5

4A

12B

1F23

LI2M51

2R

1C3

2B

D2M12

1-6A

1G06

UF113

D5

2C2

1D3

N-11

U-3

184

1F38

EL66'

T1R15

LI1F50

3RC4

CR01828253

1-II

2C

B2M05

1MT1

2CC

11Â

2-OUT-OF-3

MU021

H-12

O3VOC24

L2M17

"3D2"

U2

JULY4

480V

L2P01

B120F1

1F25

U1

2HV8701B

D2M11

"1C2"

ISM-1

RATE(3)REPAIR

L1R11

N-44

1SM7

1W

2F31

S01

(CR-GGN-2013-00319)

185

Q1R21

12W

1EOC16

C1

87T-2

10CFR50 54(F)

CRITICAL:10/20/12

12OV

2C

L2001

1RF09

SG#1

10CFR50 54(F)NRC

1B

UNIT-1

1-I

2KXB

D1

NO 7

CRITICAL 3/25/14

CRITICAL:11/06/12

CR-IP2-2006-1011

1NI1

2CS

F020

"3B'

G-6

T-1B

Q2P02

P1A

31C

CR-IP3-2006-2255

11RFO

C1R15

2B2

LI1F54

B217M1

186

CR-IP3-2007-1834

3006B

2-N51

130B

BREAKER 3/20/14

U2-

CR-IP2-2007-2208

2A2

G3300F120

30-INCH

Q1P01

1HP5

D3M19

12O

2B

R49

1B2

HOURS/43

3A2

A2F37

"2B"

1PS1

1M30

N43

15VDC

2M23

B220M2

U1-OPS

SP1003

133V

SA036D

2R23

125V

1650HR

1A2

1C

N42

187

3 8 1F

T S 3 2 2 ACTION

5C

1257P

Q1R19

(2)EVALUATION

E089

B220R1

74/HR

"3B2"

	1 Introduction
	1.1 Data Source
	1.2 Objectives
	1.3 Structure of the Document

	2 Background
	2.1 Introduction to Artificial Intelligence
	2.2 Fundamental Approaches to Learning
	2.2.1 Supervised Learning
	2.2.2 Unsupervised Learning

	2.3 Artificial Intelligence in Natural Language Processing

	3 Approaches to Natural Language Processing
	3.1 Rules Based Systems
	3.2 Machine Learning
	3.3 Deep Learning with Bidirectional Encoder Representations from Transformers

	4 Natural Language Processing in Nuclear Power
	5 Monthly Operating Report Database
	5.1 Data Exploration
	5.2 Dataset Attributes
	5.2.1 Summary Column
	5.2.1.1 Acronym and Operator Codes
	5.2.1.2 Duplicated Reports
	5.2.1.3 Refueling Outages
	5.2.1.4 Vernacular and Taxonomy

	5.2.2 Outage Hours Data

	5.3 Limitations and Modeling Approach

	6 Theory
	6.1 Vector Representation: Complement Naïve Bayes
	6.2 Complement Naïve Bayes
	6.3 Bidirectional Encoder Representations from Transformers
	6.4 Encoders
	6.4.1 Embedding Layer
	6.4.2 Transformer Encoder
	6.4.3 Self-Attention
	6.4.4 Feed Forward Neural Network

	6.5 Training Objectives
	6.6 Transfer Learning

	7 Methodology
	7.1 Data Preparation
	7.1.1 Cleaning
	7.1.1.1 Acronym Expansions
	7.1.1.2 Hyphenated Plant Specific Entities and Procedures
	7.1.1.3 Dates
	7.1.1.4 Backslashes
	7.1.1.5 Unknown Combinations

	7.1.2 Labeling
	7.1.2.1 Class Imbalance
	7.1.2.2 Binning Scheme
	7.1.2.3 Splitting Scheme

	7.2 BERT Models
	7.3 Further Training BERT Models
	7.4 BERT Training
	7.4.1 Cleaned Vs. Uncleaned
	7.4.2 Base Models Vs. Further Trained
	7.4.3 Batch Size and Max Sequence Length
	7.4.4 Epochs
	7.4.5 Weighting
	7.4.6 Learning Rate Decay

	7.5 Naïve Bayes Data Preparation
	7.6 Naïve Bayes Models
	7.7 Metrics
	7.8 Training Computational Environment

	8 Results
	8.1 Top Precision Scores
	8.2 Top Recall Scores
	8.3 Top F1 Scores

	9 Discussion
	10 Conclusion
	11 Future Work
	Bibliography
	Appendices
	A. Python Code
	B. masterExpansions.txt
	C. hyphensInVocab.txt
	D. unknown.txt
	E. reformat.txt
	F. unknownWordNumbers.txt

