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Abstract: Information on current forest condition is essential to assess and characterize resources and to support
resource management and policy decisions. The 1998 Farm Bill mandates the US Forest Service to conduct
annual inventories to provide annual updates of each state's forest. In annual inventories, the sample size of I
year (panel) is only a portion of the full sample and therefore the precision of the estimations for any given year
is low. To achieve higher precision, the Forest Inventory and Analysis program uses a moving average (MA),
which combines the data of multiple panels, as default estimator. The MA can result in biased estimates of
current conditions and alternative methods are sought. Alternatives to MA have not yet been explored in the
Pacific Northwest. Data from Oregon and Washington national forests were used to examine a weighted moving
average (WMA) and three imputation approaches: most similar neighbor, gradient nearest neighbor, and
randomForest (RF). Using the most recent measurements of the variables of interest as ancillary variables, RF
provided almost unbiased estimates that were comparable to those of the MA and WMA estimators in terms of
root mean square error. FOR. SCI. 55(1 ):64-71.
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INITIATED BY THE Agricultural Research, Extension,
and Education Reform Act of 1998 (PL 105-185), the
Forest Inventory and Analysis (FIA) program of the US

Forest Service has switched from periodic inventories that
varied from state to state to a consistent nationwide annual
inventory. A portion of the inventory of the nation's forests
is now conducted annually within each state. The fraction of
the plots measured annually is 10% in the western United
States and 20% in the eastern United States.

The precision of the estimates of current status and
changes in the forest resources using only data from the
panel of plots measured in the current year has been found
to be unacceptable because of the small annual sample size
(Mckoberts and Hansen 1999). There have been efforts to
combine data of multiple panels to achieve a higher preci-
sion. The current FIA default estimator is a moving average
(MA), which is operationally convenient and requires few
assumptions (Gartner and Reams 2001). The MA approach
can improve the precision of the estimates by using data
from the panels measured in the most recent years. How-
ever, MA reflects an average of conditions over the past 10
years rather than current forest conditions, resulting in a bias
of the current year's population parameter (McRoberts
2000, Johnson et al. 2003). The MA estimates can be
improved with a weighted moving average (WMA), which
weighs panels that were measured more recently more
heavily than those measured earlier (Roesch and Reams
1999). Other approaches to combine data from all panels
include updating unmeasured panel data to the current year

using growth models (Lessard et al. 2001, McRoberts
2001), time series models (Johnson et al. 2003) or mixed
estimation (Van Deusen 1996, 1999, 2002, Scott et al.
1999); filling in missing panel data using tree- and plot-
level imputation techniques (Gartner and Reams 2001,
2002, McRoberts 2001); or modifying the annual inventory
of interpenetrating, nonoverlapping panels to an inventory
system with balanced annual partial remeasurements so that
estimators based on sampling with partial replacement can
be used (Scott et al. 1999, Arner et al. 2(04).

There is a need to develop new methods that will be
included in the annual inventory system according to their
performance (Reams et al. 1999). Because spatial, temporal,
and forest characteristics differ within and among regions. it
is unclear whether any single technique will work for all
regions (Patterson and Reams 2005), and it is necessary to
evaluate different methods in all regions. Studies comparing
different alternatives to the MA approach for estimating
current forest attributes in the Pacific Northwest (PNW) are
still lacking, whereas a variety of methods have been tested
in the other regions of the United States (Van Deusen 1996,
1997, 1999, 2002, Lessard et al. 2001, McRoberts 2001,
Arner et al. 2004).

The imputation and modeling approaches examined by
McRoberts (2001) asserted that model development re-
quires a greater resource investment than development of an
imputation procedure. As the difference in the estimation
results was negligible, it is reasonable to focus on investi-
gating and improving the imputation techniques. McRoberts
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(2001) pointed out that development of models might be
facilitated as soon as the annual inventory is established for
several years and provides calibration data from fixed-ra-
dius FIA plots at 5- or 10-year intervals. Unlike modeling
approaches, imputation techniques require reference data at
the application phase. An advantage, however, is that they
update themselves when data are added or removed from
the database (Sironen et al. 2003), and the reference data
will increase every year after establishment of the annual
inventory.

Depending on the intended use, tree- and plot-level im-
putation techniques differ in their predictive abilities and
suitability (Gartner and Reams 2002). If diameter distribu-
tions by species are required, tree-level imputation will be
necessary. Therefore, tree-level imputation may be more
suitable for complex uneven-aged multispecies stands, for
which detailed information in the form of tree lists is needed
to describe the stand structure. Only tree-level imputation
techniques allow determination of the distribution of indi-
vidual tree growth and mortality, individual tree size
change. and change by species and tree size classes. In a
separate study. we are comparing the performance of tree-
level and plot-level imputation.

The objectives of this study were to use paneled data
from the PNW to estimate current forest attributes with the
FIA default method and compare the MA results with
estimates based only on the data from the current panel and
to examine three different plot-level imputation methods to
fill in values for the missing panels as well as a WMA and
assess their performance against MA.

Methods
Data

The data used in this study consist of 618 plots from six
national forests and were collected as part of the PNW
region Current Vegetation Survey (CVS) of the US Forest
Service. The plots were installed between 1993 and 1997
and remeasured in 2000. The particular national forests
sampled were the Colville (28 plots), Mount Hood (Ill
plots), Ochoco (82 plots), Rogue River (70 plots), Wallowa-
Whitman (199 plots), and Winema (128 plots) (Table 1).

Panel data are a special case of inventory data with
measurements taken at different times. To mimic a panel
system with the available data the plots were assigned to the
following panels: panel 1 (P1) were those measured in 1993
and 1994; panel 2 (P2) were those measured in 1995; panel
3 (P3) were those measured in 1996 and 1997; and panel 4
(P4) were a part of those measured in 2000. All plots were

measured in the year 2000, but for the simulations 25% of
the plots were randomly assigned to P4 and the remaining
75% of the plots belong to P1, P2, and P3 on the basis of
their year of installation. This randomization resulted in P1,
P2, and P3 having different sizes in each iteration. P1, P2,
and P3 lack data for the national forests Rogue River,
Coleville, and Winema, respectively, because no data were
collected in those forests in the corresponding years
(Table 1).

The basic CVS sampling unit is 1 ha in size. Five plots
are installed in each sampling unit with each plot consisting
of three permanent circular, nested subplots of different
sizes. Which trees are measured in each of the three nested
subplots depends on their diameter at breast height in cm
(dbh). Max et al. (1996) provided a detailed description of
the inventory. In this study only live trees with dbh of 12.7
em or larger were used. Missing heights in m (HT) were
filled using height models developed in Barrett (2006).
Volume and biomass equations from the US Forest Service
were used to calculate gross cubic-meter volume and total
gross oven-dry weight biomass (US Department of Agricul-
ture 2000). For each plot, basal area in m2/ha (BAl, stems
per ha (SPH), volume in m3/ha (VOL), and biomass in tons
per ha (BIOT) were calculated and summarized (Table 2).

A total of 33 species were present on the plots (Table 3).
The most frequently encountered species were Douglas-fir
(Pseudotsuga menziesii [Mirb.] Franco), ponderosa pine
(Pinus ponderosa C. Lawson), grand fir (Abies grandis
[Douglas ex D. Don] Lindl.), lodgepole pine (Pinus con-
torta Douglas ex Louden), white fir (Abies concolor [Gord.
& Glend.] Lindl. ex Hildebr.), and western hemlock (Tsuga
heterophylla [Raf.] Sarg.), in decreasing order.

Thematic Mapper (TM) images from 2000 were ex-
tracted from the National Land Cover Database 2001
(Homer et al. 2004) and were used as ancillary data. The
raw imagery bands 1-5 and band 7 (TM I, TM2, TM3,
TM4, TM5, and TM7) as well as the Tasseled Cap (TC)
transformations of the six axes (TC 1-TC6) were used. The
normalized difference vegetation index and three commonly
used band ratios (band 4 to band 3 [R43], band 5 to band 4
[R54], and band 5 to band 7 [R57]) were calculated. Tree
canopy cover was extracted from the National Land Cover
Database 2001 (Homer et al. 2004).

Climate and topography variables were used as another
source of ancillary data. Elevation in m (EL) was recorded
as part of the CVS inventory. Annual precipitation (AN-
NPRE) and mean annual temperature (ANNTMP) (Table 2)
were extracted from DAYMET Daily Surface Weather Data
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and Climatological Summaries (Thornton et al. 1997,
Thornton and Running 1999). Slope (%) and aspect (de-
grees) were derived from a 30-m digital elevation model
using Arc Workstation GRID surface functions and com-
mands (Environmental Systems Research Institute 1991).

Plot-Level Imputation Techniques

The available 618 plots were randomly split without
replacement into 154 plots (25%) constituting P4 and 464
plots (75%) that, on the basis of the year of their first
measurement, belong to P1, P2, and P3.

Using the data from P4, the mean values of the variables
of interest (Y) for the year 2000 (SAMPLE25 estimator)
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were calculated as

where Yt,i is the observed Y value of the ith plot at time t,

which is the year 2000, and n4 is the number of plots in P4.
The MA estimator, the FIA default method, was also

used to calculate the current mean values for the variables of
interest:

where Yt_ 3,i , Yt_2,i Yt_1,i, and Yt,i are the mean values of the
variables of interest of P1, P2, P3, and P4, respectively. This



MA(4) estimator will be referred to as MA in the following.
The MA takes into account the fact that the panels include
different numbers of plots. The following WMA takes the
varying number of plots per panel into account and allows
allocation of weights declining with time lapsed since the
most recent measurement:

where Wt-3, Wt-2, Wt-1, and Wt are the weights of P1, P2,
P3, and P4, respectively. Larger weights were chosen for P3

and P4 (Wt-1 = Wt = 0.3) than for P1 and P2 (wt-3 = Wt-2

= 0.2). WMA(4) will be referred to as WMA.
Nearest neighbor (NN) imputation methods are donor-

based methods in which the imputed value is either a value
that was actually observed for another plot or the average of
values for more than one plot. Forest attributes that are
measured on all plots are referred to as ancillary variables.
Variables of interest are those forest attributes that are only
measured on a subset of plots. Plots with measured ancillary
variables and variables of interest are called reference plots,
and target plots are those that only have ancillary variables
measured. In this study, the target plots were assumed to be
nonsampled plots lacking inventory data (panels 1-3). The
reference plots constituted the pool of potential plots with
ground and ancillary data (P4), which could be selected to
impute the inventory data for the target plots.

The most similar neighbor (MSN) method (Moeur and
Stage 1995) has been shown to provide reasonable imputa-
tion results for forest attributes (Moeur and Stage 1995,
LeMay and Temesgen 2005). The gradient nearest neighbor
(GNN) method (Ohmann and Gregory 2002) has been used
successfully to map forest composition and structure (Ohm-
ann and Gregory 2002, Ohmann et al. 2007). The random-
Forest (RF) method (Crookston and Finley 2008) has been
found to provide a flexible and robust alternative to tradi-
tional NN imputation methods such as MSN and GNN for
estimating forest attributes such as BA and SPH (Hudak et
al. 2008). MSN, GNN, and RF were examined using the
yalmpute R package version 1.0-6 (Crookston and Finley
2008). For MSN and GNN, the similarity between reference
and target plots is defined using a weighted Euclidean
distance:

where W is the weight matrix, Xi is a vector of standardized
values of the ancillary variables for the ith target plot, and
Xj is a vector of standardized values of ancillary variables
for the jth reference plot. The ancillary variables for both
target and reference plots were standardized using the mean
and variance of the ancillary variables of the reference plots.

For MSN, the weight used is W =ΓΛ2 Γ'  whereΓ is the
matrix of standardized canonical coefficients for the ancil-
lary variables and Λ 2 is the diagonal matrix of squared
canonical correlations between ancillary attributes and
ground variables (Moeur and Stage 1995). The "most sim-
ilar" reference plot is hence selected on the basis of simi-
larity of the ancillary data, weighted by the correlations to

the ground data. The ground data of the reference plot with
the smallest distance is then imputed to the target plot. The
GNN uses a projected ordination of the ancillary data based
on canonical correspondence analysis (CCA) to assign the
weights (Ohmann and Gregory 2002).

The RF method is a classification and regression tree
method (Breiman 2001). The data and variables are ran-
domly and iteratively sampled to generate a large group, or
forest, of classification and regression trees. For RF two
observations are considered similar if they tend to end up in
the same terminal nodes in a forest of classification and
regression trees. The distance measure is 1 minus the pro-
portion of trees where a target observation is in the same
terminal node as a reference observation (Crookston and
Finley 2008, Hudak et al. 2008).

Instead of filling in the missing values for panels 1 to 3
with their previous measurements, as was done in the MA
calculation, MSN, GNN, and RF were explored to impute
the missing values and then estimate the overall mean of the
variables of interest for the year 2000:

where IMP refers to the NN imputation method used and
Yimp,i is the imputed Y value for the ith plot.

BA, SPH, VOL, and BlOT were used as variables of
interest, and SAMPLE25, MA, WMA, and the three impu-
tation methods were compared on the basis of the overall
means of the variables of interest in the year 2000 (see
Equations 1-3 and 5).

Two sets of ancillary variables were tested for the im-
putation methods. The first set included climate, topogra-
phy, and satellite data and the second set consisted of the
previous measurements of the variables of interest that were
taken at measurement occasion 1 in the years 1993 to 1997
(BAoccl, SPHoccl, VOLocc1, and BIOToccl).

The methods were compared by randomly splitting the
available data of 618 plots into 154 reference and 464 target
plots, applying each method, determining mean estimates
for the variables of interest in the year 2000 (see Equations
1-3 and 5), and comparing the estimates to the observed
mean values of the variables of interest in the year 2000:

where Yt,i is the observed Y value of the ith plot at time t,
which is the year 2000.

The basis of evaluation was accuracy, as expressed by
the root mean square error (RMSE), and bias, calculated as
the mean difference between the estimates and the observed
mean values (Equation 6) from 500 iterations of randomly
splitting the data. Five hundred iterations were considered
sufficient because other studies have found RMSE and bias
to stabilize at approximately 200 iterations (e.g., Arner et al.
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2004). Both RMSE and bias were expressed as a percentage
of the observed mean for each variable of interest:

where I1l = 500.

Results
For BA and SPH, the RMSE values of MA were about

half the size of those observed for SAMPLE25. For VOL
and BIOT, the RMSE values for MA were about one-third
of those observed for SAMPLE25. SAMPLE25 results were
virtually unbiased with absolute values of O.13% and less.
Bias for the MA results ranged from -2.63% for SPH to
- 1.98% for BIOT. MA estimates were very precise, and the
bias contributed most to the RMSE. The opposite was true
for the virtually unbiased SAMPLE25 estimates, for which
the variance contributed most to the RMSE (Table 4).
WMA reduced the bias and with that the RMSE for SPH
even further. For BA, VOL, and BIOT, the bias became
positive and the RMSE values increased for VOL and BIOT
compared with those of the MA (Table 4).

When climate, topography, and satellite data were used
as ancillary variables, MSN provided better results than
SAMPLE25 in terms of RMSE for BA, VOL, and BlOT but
worse results than MA and WMA. MSN imputation resulted
in negligible bias with absolute values less than 0.3%,
hence, outperforming the MA and WMA results in terms of
bias. The variance contributed most to the RMSE values of
the MSN estimates (Table 4). With climate, topography,
and satellite data as ancillary variables, RF provided slightly
better results than MSN in terms of RMSE for all four
variables of interest. With values ranging from 0.26 to
0.89% bias was slightly larger than for MSN but stilI
negligible. As for SAMPLE25 and MSN, the variance con-
tributed most to the RMSE (Table 4). GNN imputation

results were by far the worst when climate, topography, and
satellite data were used as ancillary variables with RMSE
values of approximately 15% and positive bias of approxi-
mately 10% (Table 4).

When BAoccl, SPHocc1, VOLoccl, and BIOToccl
were used as ancillary variables, the MSN results had a
negative bias ranging between -2.90 and -4.56%. The
bias contributed most to the RMSE values, which were still
slightly better than those of SAMPLE25. However, MA and
WMA now outperformed MSN both in terms of bias and
RMSE (Table 5). RF results improved both in terms of bias
and RMSE when previous measurements were used as
ancillary variables and outperformed MA in terms of bias
and RMSE. RF also provided better results than WMA in
terms of bias for all four variables of interest and for VOL
and BlOT in terms of RMSE (Table 5). GNN estimates
were even worse with the second set of ancillary variables,
resulting in large positive bias exceeding 29% and large
RMSE values exceeding 36% (Table 5).

Discussion
The SAMPLE25 estimator should provide unbiased es-

timates. In this study the bias was not equal to zero but
reached values up to O.13%. If all possible subsamples of
size 154 were taken, SAMPLE25 should result in a bias of
zero. Because not all possible subsamples were taken, the
negligible bias observed for the method in this study was
probably due to the number of iterations that were
performed.

As found in other studies (Van Deusen 2002, Arner et al.
2004), MA, the PIA default estimator, resulted in improve-
ments in terms of RMSE compared with use of only the
current panel as the basis of estimating current forest at-
tributes. However, MA resulted in negatively biased esti-
mates. This bias is commonly referred to as lag bias, which
arises because the MA estimator tends to underestimate
current forest conditions. In the given example, the 4-year
gap between P3 and P4 increased the lag bias, and it is
expected that the lag bias would have been smaller for a
regular four-panel inventory where panels are only a year
apart. Most studies on the MA performance have been done
in other regions where the inventory cycle is 5 years, and the
lag bias of the MA has been found to be more than com-
pensated for by a reduction in variance for a 5-year inven-
tory cycle by "borrowing" strength in terms of sample size
from previous years (Johnson et al. 2003).

MA provides unbiased estimates for the midpoint of the
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Table 5. Imputation results for using occasion 1 measurements of the variables of interest (BAoccl, SPHoccl, VOLocc1, and
BIOToccl) as ancillary data

period and is hence not valid as end of period estimator.
When used as an end of period estimator as done by FIA
and in this study, the MA has the tendency to mask temporal
trends (Roesch and Reams 1999) and provide biased esti-
mates for the end of the period. One approach to solving this
problem is to apply weights that give more weight to the
most recently measured panels. This was done for the
WMA, which provided improved estimates in terms of bias
and RMSE for BA and SPH but increased bias and RMSE
values for VOL and BIOT compared with MA. The selec-
tion of the weights poses a problem that is not yet solved.
Choosing appropriate weights requires knowledge of the
trend inherent in the data, which is hardly ever known.
Breidt (1999) presented models that can be used for select-
ing the weights somewhat objectively. Amer et al. (2004)
found an increase in RMSE for mean volume and mean
annual volume change with increasing larger weights for
recent years, and Johnson et al. (2003) have shown that
equal weights lead to the lowest RMSE in most situations.

P1, P2, and P3 lack data for the national forests Rogue
River, Coleville, and Winema, respectively (Table 1), which
suggests that the panels may not have accurately character-
ized the population of interest. This feature could have been
exacerbated by the random assignment of plots to P4. MA
assumes that each yearly sample covers the population of
interest (Johnson and Williams 2004). Hence, the MA re-
sults in this study may have been compromised by this data
feature. PIA plots are assigned to the panels in a systematic
manner, so that each PIA panel covers the population of
interest systematically, which ensures that the annual sam-
ple maintains its spatial properties. Hence, the performance
of the MA estimator using actual PIA data is expected to be
better than in the given example.

Longer inventory cycles will have negative effects on the
performance of the MA and WMA estimators in terms of
bias (Johnson et al. 2003). Hence, it is questionable whether
the MA estimator is optimal for the PNW region where the
inventory cycle length is 10 years. However, if the lag bias
could be corrected, the MA and WMA estimators could
provide RMSE values substantially lower than those of the
SAMPLE25 estimator.

Three plot-level imputation techniques were examined;
these performed differently in terms of bias and RMSE
compared with the SAMPLE25, MA, and WMA estimators.
Although MSN imputation using climate, topography, and
satellite data improved the results compared with the SAM-
PLE25 estimates in terms of RMSE for BA, VOL, and

BIOT, the improvements in RMSE seemed minor consid-
ering the computational expenses of applying imputation
techniques. Using imputation techniques is questionable if
the improvements are not substantial. MA and WMA esti-
mators outperformed MSN imputation in terms of RMSE
when climate, topography, and satellite data were used as
ancillary data and in both bias and RMSE when previous
measurements were used as ancillary data. Hence, the re-
sults of this study did not indicate any advantage of MSN
imputation over the MA and WMA estimators.

GNN results were not close to those obtained by SAM-
PLE25, MA, WMA, MSN, or RF, which may be due to the
fact that CCA requires the use of environmental factors for
the ordination. GNN has been developed for pixel imputa-
tion (Ohmann and Gregory 2002), and it is possible that
gradients in the environmental factors are not picked up
when plot-level data are being used in combination with the
available climate, topography, and satellite data. GNN
should not be used with previous measurements as ancillary
data because those do not provide any environmental factors
that are necessary for the CCA step in the GNN analysis.
This explains the bad results achieved by GNN with previ-
ous measurements as ancillary variables (see Table 5).

The results of this study support the findings of Hudak et
al. (2008) that RF represents a robust alternative to tradi-
tional imputation methods. In this study, RF was the only
imputation method that provided results that could compete
with the results of the MA and WMA estimators. When RF
was used with previous measurements as ancillary vari-
ables, it outperformed the WMA estimates not only in terms
of bias but also in terms of RMSE for two of the four
variables of interest. This finding suggests further explora-
tion of this method with different data sets.

In a 10-panel inventory system, using previous measure-
ments as ancillary variables is expected to result in over-
predictions of the variables of interest. The current panel is
used as reference data and its previous measurements are 10
years old. The previous measurements of the remaining nine
panels constituting the target data are 1-9 years old. Match-
ing on previous measurements will result in overpredicting
growth. Using an updated MA as introduced by Gartner and
Reams (2002), in which only the panels that have the most
outdated measurements are being updated, may avoid the
problem of overprediction when previous measurements are
being used as ancillary variables. In a 10-panel system, the
first 5 panels would be updated with imputation methods
based on previous measurements as ancillary variables for
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estimating the status of the variables of interest in year to.
Then an MA would be calculated based on the updated
values of panels 1 through 5 and the measurements obtained
for panels 6 through 10.

The efficiency of the imputation methods depends on the
strengths of relationships between the variables of interest
and the ancillary data. The data in this study showed only
weak association between forest inventory attributes and
ancillary variables from TM images, climate, and topogra-
phy data. The findings of this study do not provide any
incentive to prefer the use of NN imputation methods that
employ climate, topography, and satellite data as ancillary
variables over the use of MA and WMA estimators. Data of
higher quality than those derived from TM images could
have the potential to improve the NN imputation tech-
niques. Variables derived from light detection and ranging
(LiDAR) data are an example (e.g., Hudak et al. 2008).

Throughout all estimation methods, RMSE was larger
for VOL and BIOT than for BA. The poorer results for VOL
and BlOT may be due to the fact that these two variables are
transformations of both tree DBH and HT, and, therefore,
they are three-dimensional variables on the landscape. BA,
on the other hand, is a two-dimensional variable because it
is based only on the DBH measurements. Many of the
ancillary variables available in this study for imputation are
themselves only two-dimensional variables. Again, three-
dimensional LiDAR data have the potential to improve the
imputation techniques for VOL and BIOT.

The results of the imputation methods may have been
impaired by a combination of the number of plots used as
reference stands (P4, 154 plots) and the large number of
species and forest types in the six national forests that were
used in this study. The diversity in the data and the small
number of plots suggest that it was probably not easy to find
good matches in some of the cases. Because imputation
methods do not extrapolate and only interpolate when k >
1 (Crookston et al. 2002), it is important that the reference
data span the full range of the population in the space of the
ancillary variables without any large gaps. If this is not
given, the availability of similar reference observations may
be reduced and imputation error increases (Stage and
Crookston 2007). The random assignment of plots to P4
may have resulted in plot combinations for P4 that did not
represent the population well, which would have negatively
influenced the performance of the imputation methods. PIA
annual inventory data assure systematic coverage of the
population of interest for each panel so that it seems more
likely to find good matches, and an improvement of impu-
tation results could be expected.

Conclusions
Compared with the SAMPLE25 estimator, the MA esti-

mator improved the estimates in terms of RMSE and wors-
ened the estimates in terms of bias. The WMA estimator
improved the results for two of the variables of interest
compared with the MA. The performance of the MA and
WMA estimators should be explored using an actual
to-year inventory system to examine the increase in lag bias
for a long inventory cycle. Different weighting schemes in
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a lO-year inventory system need to be explored for the
WMA estimator.

With the available ancillary data, MSN and GNN could
not compete with any of the other estimation methods. RF
results were best when previous measurements of the vari-
ables of interest were used as ancillary variables and out-
performed the MA and WMA estimators in terms of bias
and were comparable in terms of RMSE. Using RF impu-
tation with previous measurements as ancillary variables
might provide an approximately unbiased alternative to the
biased MA and WMA estimators in the PNW. Because
overprediction of the variables of interest may occur, more
research on the behavior of this method in a 10-panel
system is warranted.

For the MA and WMA estimates, the variance was very
small and bias contributed most to the RMSE values. If the
lag bias could be .corrected, the RMSE values would be
reduced substantially, and the MA and WMA estimators
may outperform all other methods. Methods for correcting
the MA and WMA lag bias should be sought. If the lag bias
is not corrected for, users should be aware that they are
estimating a midpoint value rather than an end of period
value when they use the MA estimator.

Because of the data structure and the random assignment
of plots to P4, the panels did not always represent the
population well. This had impacts on the MA and WMA
estimates as well as on the NN imputation results. All
methods are expected to show improved results when actual
FIA data are used because FIA panels provide complete
coverage of the population with equal number of plots for
each year.
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