
1

2

AN ABSTRACT OF THE THESIS OF

Darren J. Forrest for the degree of Master of Science in Computer Science

presented on June 10, 2013.

Title: Corporate Involvement in FOSS Projects: An In-depth Look at Corporate

Contributions and Implications for Project Governance

Abstract approved:

 Carlos Jensen

 Free / Open Source Software developers come from a myriad of different

backgrounds. While some contribute for personal reasons, many become

involved because they receive compensation from corporations or foundations.

The motivation for participating in a project can have dramatic impacts on how

and what contribution an individual makes. These decisions may align with the

needs of the community, the needs of the organization funding the individual, or

both. Understanding this dynamic is pivotal to fostering a healthy community.

Using socio-technical artifacts of two major FOSS projects we analyze the

contributions of corporations and the implications of their involvement. We find

evidence that some corporations focus on their own needs with the needs of the

greater community an afterthought.

3

©Copyright by Darren J. Forrest

June 10, 2013

All Rights Reserved

4

Corporate Involvement in FOSS Projects: An In-depth Look at Corporate

Contributions and Implications for Project Governance

by

Darren J. Forrest

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master Science

Presented June 10, 2013

Commencement June 2013

5

Master of Science thesis of Darren J. Forrest presented on June 10, 2013.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

thesis to any reader upon request.

 Darren J. Forrest, Author

6

ACKNOWLEDGMENTS

 This thesis would not be possible without the immense help of many

individuals. All of the numerous conversations, challenges to my thinking and

even emotional support have helped shape myself and this document into what

it is today. At the top of the list is my major advisor Dr. Carlos Jensen. Without

his constant push to get me to do more and better quality work, what you read

today would be a very different experience. His support through hiring me as a

TA, encouraging me to travel half way around the world to attend a conference,

just to get feedback on my ideas, and occasionally a firm, but kind kick in the

pants has been invaluable. The Oregon State University HCI group has provided

numerous laughs at the right moment, a sounding board for ideas and a listening

ear for frustrations. I am indebted to all of you.

 Above all I would like to thank my wife, Launa. Somehow in the heat of

deadlines, in the frustration of mistakes she knows how to be the perfect comfort.

With kind words, encouragement and support she has helped me more than I

could express in the space allowed. Thank you Hon. I love you.

7

CONTRIBUTION OF AUTHORS

 Darren Forrest is the primary author and Dr. Carlos Jensen is the second

author of all manuscripts within this thesis. All writing was the work of Darren

Forrest.

 Data collection for bug repositories was performed by Nitin Mohan and

Jennifer Davidsen. Data collection for code repositories and mailing list archives

was performed by Darren Forrest. Amir Azarbahkt, Chad Cooper, and Iftekhar

Ahmed classified code commits for the Linux kernel.

8

TABLE OF CONTENTS

Page

Chapter 1. Introduction ..1

Chapter 2. Exploring the role of outside organizations in Free / Open Source

Software projects...2

Chapter 3. Corporate Influence in the Linux Kernel ... 28

Chapter 5. General Conclusion .. 57

9

LIST OF FIGURES

Figure Page

Figure 1 Categories of participation for GCC and Linux Kernel. Logarithmic scale

 .. 13

Figure 2 Distribution of contributors between bug, code and mailing list

repositories. ... 41

Figure 3 Contribution type by company. ... 42

10

LIST OF TABLES

Table Page

Table 1 GCC code contribution and bug reporting (top 20 domains) 15

Table 2 Linux Kernel code contribution and bug reporting (top 20 domains) 16

Table 3 GCC contributions ordered by coder/bug reporter ratio 17

Table 4 Linux Kernel code commits to bug reporting ratio 19

Table 5 Contributors and contributions by company .. 41

Table 6. Ratio of code contributors to bug contributors .. 42

Chapter 1. Introduction

 This thesis contains two conference publications centering on the

involvement of corporations in major FOSS projects. The first document was an

exploratory study to determine if corporations and other outside organizations

were contributing to projects in fundamentally different ways than volunteer

contributors. Our hypothesis was that some corporations were contributing in

ways focused on their own needs to the detriment of the community. Our

findings showed that many corporations were contributing in manners that

suggested a self-focused development philosophy, but more work was necessary

to resolve some unanswered concerns.

The second publication came out of a desire to answer the remaining

concerns from the first study. While the first study showed evidence of

corporations contributing in self-serving ways, it did not look for direct evidence

of these practices. Additionally, it left out one of the major sources of community

involvement. These pieces were considered important to creating a more

nuanced picture of how corporations contribute to these FOSS projects and what

that would mean for the project’s governance. As this second paper is still under

review by the conference, references to the first paper are presented in a manner

appropriate for double blind review.

2

Chapter 2. Exploring the role of outside organizations in

Free / Open Source Software projects

Darren Forrest, Carlos Jensen, Nitin Mohan, and Jennifer Davidson

Proceedings of the 8th IFIP WG 2.13 International Conference, OSS 2012

Hammamet, Tunisia, September 10-13, 2012

Series vol. 378, no. 1 pp. 201-215.

3

2.1 Abstract

Free/Open Source Software (FOSS) projects have a reputation for being

grass-roots efforts driven by individual contributors volunteering their time and

effort. While this may be true for a majority of smaller projects, it is not always

the case for large projects. As projects grow in size, importance and complexity,

many come to depend on corporations, universities, nongovernmental

organizations and governments, for support and contributions, either financially

or through seconded staff. As outside organizations get involved in projects, how

does this affect their governance, transparency and direction? To study this

question we gathered bug reports and commit logs for GCC and the Linux

Kernel. We found that outside organizations contribute a majority of code but

rarely participate in bug triaging. Therefore their code does not necessarily

address the needs of others and may distort governance and direction. We

conclude that projects should examine their dependence on outside

organizations.

2.2 Introduction

 Free/Open Source Software (FOSS) development is a key part of our

modern IT infrastructure, responsible for the running of core Internet and server

infrastructure. The governance and management of FOSS projects is therefore an

essential concern for the continued growth and evolution of the Internet.

FOSS development differs from “traditional” closed-source software in a

number of fundamental aspects. One important aspect is that it is not only

possible for anyone to view and use FOSS code, but that projects depend on an

open participation model where anyone can contribute, and where the best ideas

4

win. This FOSS development ideology is a key strength, as it enables a large and

diverse group of developers to pool resources to develop software benefiting

everyone.

The culture surrounding FOSS projects can differ substantially, and

studies have been done documenting these cultures [16]. In general FOSS

projects are seen as meritocracies, where an individual contributors’ worth and

influence is based upon the quantity and quality of their past contributions to the

community. Because of this, despite the fact that FOSS participation is driven by

altruism and collaboration [3], there is inherent tension and competition within

projects. “Because Apache is a meritocracy, even though all mailing list

subscribers can express an opinion by voting, their action may be ignored unless

they are recognized as serious contributors” [14].

This inherent competition may be part of the reason why many of FOSS

projects are seen as hostile to those trying to join. In a meritocracy, increasing the

number of participants means increased competition for resources, or in this case

attention and influence. It may therefore be in contributors’ interest to erect

barriers to ensure fewer people join. Even if one adopts a more benign view of

humanity, developers in a meritocracy that primarily rewards code contributions

(as is the case with most FOSS projects) are unlikely to “waste” their time writing

documentation or mentoring newcomers, as these activities are not rewarded.

These factors may in part account for the perceived elitism of some long time

FOSS contributors, which can manifest itself in hostility and flaming of

newcomers [2, 10].

Another common perception is that FOSS projects are predominantly

driven by volunteer efforts. While this was true in the early days, and is still

5

likely true for many smaller projects, studies have shown that a growing number

of FOSS developers receive some form of compensation for participation [8]. This

compensation can take a number of forms, including release time from other

work or monetary or resource donations to fund the work of core project

members. This is especially common in larger and more important projects [11].

To a certain extent, compensation is a necessary response to the increased

needs of large and important projects. While smaller projects can afford to adopt

a more ad-hoc work and leadership model, larger and more crucial projects

require more oversight and leadership, something that is difficult to provide

with volunteer effort. The fact that an increasing number of FOSS developers are

making a living through these projects is a sign of a healthy eco-system. These

economic incentives can change the dynamics of FOSS projects. Regardless of

whether paid developers are in a leadership position initially, they will tend to

drift toward such position because of the meritocracy system. They will be able

to dedicate more time to the project, and thus gain more influence.

The distributed organization of FOSS projects and ability for anyone to

modify the source code is at the core of what makes FOSS successful. This

freedom has to be balanced against the needs of the community, which

necessitates cooperation and coordination. The responsibility for managing FOSS

projects is in the hands of project maintainers. These individuals manage the

code; they are responsible for choosing which contributions to incorporate into a

release, and who has the ability to submit code. Because of these powers, they

have a measure of control over the direction and participation of the project

above and beyond any planning or leadership activities [19, 24].

6

Control of the code, and thus the direction of a FOSS project, is important.

A project may end up alienating, or neglecting the needs of a subset of their users

if these are not represented in the project. This is a very real problem. The code-

base of the Linux Kernel for instance has ballooned [25] as hardware

manufacturers add support for high-performance hardware. While the rapid

growth of the code-base may be of only minor concern to those running large

data-centers, it can be a serious concern for those wishing to run Linux on

minimal hardware.

Despite the importance of code, this is not the only way to contribute to

projects. People contribute through bug reporting, documentation, mailing list

discussions, mentorship, or governance. It is therefore important to track and

understand how participation in these different activities contributes to the

health of projects, and the influence different organizations exert through these

activities. However, most FOSS projects and researchers focus on only one

participation metric. This may lead to a distorted view of what is taking place

within their community.

This knowledge is not just important to the projects themselves, but to

potential FOSS adopters or developers. Understanding who is supporting and

influencing the project is crucial to making better decisions about whether this is

a project worth investing in. Having broad support is important; an indicator of

the potential and sustainability of a project. The recent and highly public fork of

the OpenOffice project should serve as an example of the risks that can be

manifest if the direction of a project differs from the desires of the community.

The Linux Foundation recognizes the importance of such information in risk

analysis and issues a yearly report on its contributor base [15]. Our research may

7

enhance the risk analysis that businesses and other organizations must do by

examining the importance of complimentary metrics.

In this exploratory work, we perform a preliminary analysis comparing

different metrics tracking participation and influence in projects, whether

businesses and other organizations are biased in their participation. To this end

we focused on two research questions:

RQ1: Does bug reporting correlate with code contributions for large

organizations?

RQ2: Is there evidence of participation bias, and if so in what direction do

organizations tend to lean?

It is important to note that the purpose of our study is not to malign the

sponsorship or participation of corporations or governments in FOSS, but to

show how these may skew the dynamics of a FOSS project. This influence may

not be negative; having professional developers on-board can make a project

more successful. However, it is important to be aware of what impact

sponsorship can have, and manage the influence that these may have.

In the next section of this paper we review related work. We then discuss

our methodology and follow with our key findings, and describe their

implications for the future study of FOSS communities and their governance.

Given that this is an exploratory study, we follow up with a discussion of the

limitations of the study, and important future work. Finally, we wrap up with

our conclusions.

8

2.2 Related Work

 There is a growing body of work examining the development practices

and governance of FOSS projects [4, 11, 12, 24]. One finding is that FOSS

community structure is incredibly diverse. Where one organization might have a

well-defined structure of who is doing what, others may operate on a much more

ad-hoc fashion.

A number of studies of FOSS communities have relied on bug reporting

and code commit records. Ko and Chilana used bug reports to look at how

power users impacted the bug reporting process. This can be an especially

powerful approach when combined with linguistic analysis of bug reports [12,

13]. Sandusky and Gasser studied bug reports from the Mozilla project to

investigate negotiations between reporters and developers [23]. Gall et al studied

the evolution of FOSS projects using concurrent versions system (CVS) data for

the PACS project [6]. German also used CVS data to study software evolution,

but focused on visualization of the development process [7].

To the best of our knowledge no one has used an exhaustive set of project

metrics to study FOSS participation. Bug reports, code commits and mailing lists

have been used together to explore feature tracking [5], knowledge reuse [17],

and the development process [20]. Antoniol et al. sought to connect bug reports

with code repository information to allow for easier searching [1]. Each of these

combined data from different sources, but did not examine the affiliations of the

participants.

Nearest to our work is a series of surveys of FOSS developers and projects

(although somewhat dated) [8, 9, 18, 22]. These surveys covered a myriad of

topics from demographics to ideology, methodology, and motivations of

9

contributors. Most telling from these studies and further verified by [11] was the

employment status of FOSS developers. According to [8], more than 50 percent

of contributors are somehow compensated for FOSS development. Jensen found

this to be especially true of core developers [11]. Nguyen et al. found that

whether bug reporters are paid or voluntary has an effect on the time taken to

resolve an issue for some projects [21]. They also found that developers paid to

work on FOSS projects were able to resolve more issues because of the increased

amount of time those developers had for work on the project.

Most developers work on more than one FOSS project and development is

dominated by a few core developers. More than 60% of FOSS participants work

on two or more projects [9]. The Orbiten Free Software Survey covered 12,706

developers in 3,149 projects and found that the top 10% of respondents

contributed more than 70% of the code. The top ten authors alone contributed

almost 20% of all code [8]. This distribution coupled with the meritocracy model

suggests that a small number of contributors have very heavy influence over the

direction of projects.

According to Bonaccorsi and Rossi, individuals and firms have different

motivations for participating in FOSS projects [3]. Firms’ motivations for

contributing centered on the economic and technological, while individuals were

driven by social and personal reasons. Ye and Kishida found that a desire to

learn is one of the core motivations for individuals seeking to become involved in

FOSS [26]. They also found that community membership and reputation is

important to developers.

Joining FOSS projects is not without costs or hurdles [16]. Prospective

contributors must familiarize themselves with the constantly changing software

10

as well as any design decisions made or tools used. Von Krogh goes on to say

that “the alleged hobbyist culture of open source may not apply at all” [17].

2.3 Methodology

 In order to examine our two research questions, even in an exploratory

fashion, we needed to carefully narrow our scope. The selection of projects was

some concern to the design of the research. We found that many small and

medium projects simply did not have enough contributors or sponsors to

explore these issues. We therefore restricted our investigation to the Linux

Kernel 2.6 and GCC.

We chose these projects because they use complete e-mail addresses in

bugzilla and code repositories, data we needed to track contributors. These

projects included a diverse enough population that we had a reasonable chance

to find and study interesting behaviors. Finally these projects had open and

widely available mailing list archives, for future exploration.

To gather data on participation in bug triaging (either as a reporter or as a

debugger), we collected the complete bug report and revision history database

for each project. We collected and analyzed more than 95% of the bug reports.

The remaining bug reports were unavailable due to insufficient permissions,

database errors or malformed content.

From these records we extracted the email addresses of anyone who

contributed to bug reports. We took the domain from the email addresses and

used the publicsuffix 1.0.2 python module1 to consolidate domains. The crowd-

sourced public suffix effort by Mozilla helped us effectively collapse

1 http://pypi.python.org/pypi/publicsuffix

11

subdomains such as us.ibm.com and ca.ibm.com to ibm.com. For the purposes

of this study we chose not to differentiate between different types of

contributors to bug reports. While it is true that those reporting bugs have a

different level of influence than those working to fix bugs, they all participate in

the public debate about the improvement of the project.

Because we are interested in investigating the influence organizations

have on projects, we chose to lump all contributors from an organization

together. An organization with a very small number of very active contributors

could have more influence than one having a large number of occasional

contributors. In order to manage the long tail of occasional contributors, we

capped our data such that each domain had to have at least five unique

contributors to be included. While it is possible that this could lead to the

exclusion of high-volume contributors, it is unlikely that this would affect our

understanding of influence and sponsorship.

To make the analysis more meaningful, we grouped organizations

together by type: email provider, corporate domain, FOSS project, FOSS

umbrella organization, educational institution, government agency, technical

association, and unknown. If an email account was provided through some paid

relationship or free signup with no other membership requirement, the domain

was categorized as an email provider. The same approach applied to domains

that were clearly maintained by an individual. FOSS project domains received

their own classification while domains that were specifically related to FOSS

projects (or FOSS in general), but were not the project itself we categorized

separately as a FOSS umbrella organization. Examples of this would be

12

linux.com and gnu.org. Technical associations such as ieee.org and acm.org

were categorized separately as well.

For code submissions we gathered the complete commit logs from the

projects’ code repository. From these we performed the same email parsing and

categorization as we did for the bug repository. One central list of domains was

used to reduce the risk of incorrect categorization between the two data sources.

Data from bug reports and code repository logs for the Linux Kernel 2.6

was collected from November 6th 2002, through July 29th, 2010. Data for GCC

was collected from August 3rd, 1999 through July 30th, 2010.

2.4 Results

If we look at the number of contributors by affiliation, those associated

with email provider domains dominate bug reporting (Figure 1), with as many

contributors in this category as there are in all the others combined. While the

numbers are surprising, it is not an entirely unexpected result, as the barriers to

submitting a bug report are generally low, and thus we expected broad

participation. Second, a number of paid programmers are likely to not want to

disclose their affiliation when reporting bugs in order to protect their

employers, deflating the numbers for the other categories.

When we look at code contributions, we see a different trend.

Contributors from email provider domains were eclipsed by those from

corporate domains. This is also not surprising, since end-users are willing or

able to contribute code. Furthermore, contributing code requires a greater time

investment; therefore, we expect to see more dedicated, professional

13

programmers. This matches the findings of the Linux Foundation’s report that

corporations are very active in the coding of the Linux Kernel [15].

Figure 1 Categories of participation for GCC and Linux Kernel. Logarithmic

scale

356 266
397

102

1330

3302

92
158 209

149
86

6

36

15

1

10

100

1000

10000

GCC Linux Kernel

Unique Bug Reporters

495

5627

23

330
163

4279

44

855

121

318

16

7

31

1

10

100

1000

10000

GCC Linux Kernel

Unique Code Contributors

Corporate Domain Educational Institution
Email Provider FOSS Project
FOSS Umbrella Organization Government Agency
Technical Association

14

When we compare bug reporting and code contribution for the Kernel, it

is clear that there is a shift in participation, with corporations and other

organizations being more involved in coding rather than identifying problems

or addressing the complaints of users. Keep in mind that diagrams in Figure 1

are on a logarithmic scale, so seemingly small differences can be very

significant.

Another interesting finding is that in the Kernel project there are more

unique code contributors from each of the different domain categories than bug

reporters. This is somewhat distorted by our filtering of data, but it is still

amazing how big the difference there is. Furthermore, because we are only

tracking successful code submissions, the number of people trying to contribute

code could be even larger. We do not see the same pattern for the GCC project,

except for corporate contributors.

So what is going on here? Assuming that bug reporters are not reporting

massive numbers of bugs each while code contributors only ever submit one or

a handful of code patches, it appears that the Kernel project is driven by a self-

centered development philosophy rather than by community needs. By this we

mean that people are contributing code because they think the features or

improvements will be useful rather than because someone has requested such

features or fixes. The discussion about the evolution of the project is not

occurring in a public forum.

This analysis however, only scratches the surface. In order to see what

goes on, we need to look at individual organizations, and their participation in

bug reporting and coding. Again, in order to more clearly see patterns we

exclude email providers.

15

When we examine these tables we find that many top contributors in one

column fail to appear in the other (matching pairs highlighted in blue). Only

55% of the organizations with the most code contributors are also in the top 20

in terms of bug reporters/fixers. For the Linux Kernel this drops to 30%.

Unique code contributors Unique bug reporters

redhat.com 150 gnu.org 174

gnu.org 104 redhat.com 61

ibm.com 70 ibm.com 55

adacore.com 55 debian.org 46

codesourcery.com 47 sourceforge.net 35

google.com 38 mit.edu 27

apple.com 30 acm.org 26

suse.com 29 intel.com 24

gnat.com 23 hp.com 19

intel.com 17 mpg.de 17

amd.com 14 cmu.edu 16

arm.com 14 berkeley.edu 16

sourceforge.net 12 apple.com 15

debian.org 10 nasa.gov 15

inria.fr 9 utexas.edu 14

ispras.ru 9 cern.ch 14

st.com 8 stanford.edu 13

acm.org 7 suse.com 13

hp.com 7 gentoo.org 13

kpitcummins.com 6 kth.se 12

Table 1 GCC code contribution and bug reporting (top 20 domains)

So what does this mean, and why does it matter? We believe this data

shows that some organizations are strategic in how they invest their efforts,

choosing to either leverage their strengths (for instance hardware manufacturers

like AMD, ARM and TI who have special insight into their own products) or

addressing their needs without necessarily contributing to the overall needs of

the project (as expressed in the bugs being reported), exemplified here by

Google and Novell, among others.

Other organizations choose a different approach, working much closer

with the community, regardless of whether they are a hardware provider or

16

services companies. Exemplars here are IBM, Intel, and Redhat, among others,

who despite having a vested interest in supporting their own needs balance

coding with community engagement. The next step is to see whether participant

numbers translate to actual activity, as some organizations can have few people

contributing a lot, or a lot of people contributing very little.

Unique code contributors Unique bug reporters

ibm.com 721 ibm.com 115

intel.com 571 osdl.org 112

fujitsu.com 478 intel.com 47

redhat.com 409 gentoo.org 36

kernel.org 367 redhat.com 32

google.com 228 sourceforge.net 30

ti.com 209 debian.org 26

sgi.com 203 suse.com 22

linutronix.de 187 hp.com 18

novell.com 145 kernel.org 13

suse.com 132 bigfoot.com 12

amd.com 130 linux.com 12

freescale.com 125 mit.edu 11

nokia.com 104 hut.fi 10

hp.com 96 ubuntu.com 9

atheros.com 89 amd.com 9

samsung.com 88 fujitsu.com 9

infradead.org 83 cornell.edu 8

mvista.com 81 ieee.org 8

oracle.com 78 tudelft.nl 7

Table 2 Linux Kernel code contribution and bug reporting (top 20 domains)

Table 3 shows us that for the GCC project at least, the number of

organizations that have more people working on the code rather than

contributing and addressing bugs is small, only 8 total. However, if we look at

the average number of contributions, we see another source of distortion. Except

for the organizations highlighted, the average number of bug contributions per

bug reporter is much smaller than the average code contributions per coder.

Most organizations may therefore be even more biased toward code

contributions than initially thought.

17

When we turn our attention to the Linux Kernel project we see an even

more biased situation. If we rank organizations by the ratio of code contributors

to bug reporters/fixers, we find 33 organizations with a code bias, and then a

very sharp drop-off. More importantly, the contributions of these code and bug

contributors is even more lopsided than in the GCC case, with only the

Kernel.org team having bug reporters who are more active than their code

contributors.

Domain
Unique Contributors Contributions per contributor

Code Bug Ratio Code Bugs Ratio

google.com 38 6 6.333 34.184 2.333 14.652

codesourcery.com 47 8 5.875 43.766 43.875 0.998

redhat.com 150 61 2.459 52.620 15.000 3.508

suse.com 29 13 2.231 221.103 9.077 24.359

apple.com 30 15 2.000 69.300 12.733 5.443

arm.com 14 7 2.000 14.000 1.571 8.912

ibm.com 70 55 1.273 21.314 4.945 4.310

columbia.edu 5 5 1.000 17.200 1.400 12.286

inria.fr 9 11 0.818 4.444 5.273 0.843

st.com 8 10 0.800 12.500 1.900 6.579

intel.com 17 24 0.708 138.765 1.958 70.871

kpitcummins.com 6 10 0.600 1.167 2.200 0.530

gnu.org 104 174 0.598 70.356 145.414 0.484

gentoo.org 5 13 0.385 2.800 3.538 0.791

hp.com 7 19 0.368 25.571 3.947 6.479

sourceforge.net 12 35 0.343 14.500 3.743 3.874

acm.org 7 26 0.269 16.286 2.423 6.721

debian.org 10 46 0.217 19.700 10.478 1.880

Table 3 GCC contributions ordered by coder/bug reporter ratio

Again, what does this mean? It is important to emphasize that there is

nothing wrong with organizations contributing large amounts of code; these are

very significant contributions. The concern however is that unless these

organizations are otherwise engaged in the greater discussion about direction

and governance, the contributions may not align with the needs of the project in

question. Said another way, if organizations do not get involved in the

18

community discussion (via bug reporting, in this case), they may be effectively

ignoring the community.

One very likely situation is that these organizations are responding to

bugs reported by their customers directly, or from internal users, circumventing

the official bug reporting channels. While this might be understandable from a

corporate perspective, this can make it harder to optimally allocate resources,

prevent duplication of efforts and make debugging of complex problems

difficult for the project overall.

That said, we believe we see clear evidence of corporate strategies with

regard to participation on FOSS emerging from our data. For instance, compare

the participation of Google and IBM employees across both projects. While IBM

does favor code contributions, they still actively participate in bug tracking. We

could say that IBM seems to have a balanced approach to participation as the

pattern is consistent across the two projects. Google on the other hand seems to

consistently follow a very different policy, with very few people reporting bugs,

and the bulk of employees focusing exclusively on code. While this could be a

coincidence, the pattern seems clear, and it would be surprising to learn that

there wasn’t some corporate or incentive policy reinforcing this. Whether that is

in the interest of the FOSS projects affected is an open question and one we

don’t attempt to answer, but it would likely be in the projects’ interest to be

aware of these patterns.

It is entirely possible that some of these organizations have designated

email addresses for reporting bugs, or employees dedicated to reporting such

issues, thereby skewing our data. This is not entirely far-fetched. Submitting a

bug report in the name of a development groups’ email distribution list would

19

ensure that the whole team is notified when someone comments or addresses

the issue, as opposed to only the developer who reported the issue. Initial

investigations suggest this is not the case, but this is an issue that should be

explored in future studies.

Domain
Unique Contributors Contributions per contributor

Code Bug Ratio Code Bugs Ratio

fujitsu.com 478 9 53.111 18.866 1.333 14.153

google.com 228 5 45.6 18.741 1.400 13.386

sgi.com 203 7 29 42.291 12.857 3.289

kernel.org 367 13 28.231 41.507 70.692 0.587

amd.com 130 9 14.444 35.400 4.111 8.611

infradead.org 83 6 13.833 140.759 42.333 3.325

oracle.com 78 6 13 184.423 5.833 31.617

redhat.com 409 32 12.781 132.770 5.438 24.415

intel.com 571 47 12.149 79.783 29.319 2.721

vmware.com 43 6 7.167 23.442 2.333 10.048

ibm.com 721 115 6.270 43.431 7.530 5.768

suse.com 132 22 6 391.856 22.500 17.416

hp.com 96 18 5.333 54.448 3.778 14.412

mit.edu 45 11 4.091 44.800 4.455 10.056

linux.org.uk 20 5 4 723.850 87.600 8.263

cam.ac.uk 21 6 3.5 52.476 2.667 19.676

mandriva.com 21 7 3 57.857 1.286 44.990

ubuntu.com 25 9 2.778 16.160 2.222 7.273

acm.org 19 7 2.714 24.053 1.714 14.033

debian.org 67 26 2.577 9.299 3.192 2.913

gnu.org 17 7 2.429 36.588 1.571 23.290

helsinki.fi 13 7 1.857 159.154 1.857 85.705

sourceforge.net 54 30 1.8 21.857 1.000 21.857

cmu.edu 11 7 1.571 10.636 1.571 6.770

ieee.org 12 8 1.5 4.583 1.875 2.444

linux.com 17 12 1.417 90.588 6.750 13.420

gentoo.org 44 36 1.222 63.068 2.722 23.170

berkeley.edu 6 5 1.2 4.333 1.400 3.095

ethz.ch 6 5 1.2 3.833 3.800 1.009

cvut.cz 8 7 1.143 22.500 3.000 7.500

hut.fi 11 10 1.1 14.545 4.800 3.030

uio.no 6 6 1 39.000 28.500 1.368

altlinux.org 6 6 1 9.500 3.333 2.850

tudelft.nl 6 7 0.857 6.167 1.714 3.598

cern.ch 5 6 0.833 2.800 1.333 2.101

osdl.org 27 112 0.241 1193.074 43.795 27.242

Table 4 Linux Kernel code commits to bug reporting ratio

20

2.5 Limitations

One of the problems we faced in this study was the categorization of

contributors by organization type by looking at email domains. This may have

led us to misclassify domains, something that would affect the data presented

here. While this may have happened, we believe it to be an infrequent occurrence

as our categories were relatively well defined.

One place where this may be an issue is in the case of ISPs, where it may

be difficult to distinguish the emails of employees from customers. In most cases,

additional investigation revealed business rules that dictated which addresses

were available to customers and which were available only to employees.

Second, participants may be contributing under a generic email address, even if

their contribution is part of their work commitment. While we know this occurs,

the scope should be limited as most organizations see being involved in FOSS

projects as good publicity, or that their name adds extra credibility to their

contributions.

A second potential limitation is our decision to exclude any domains with

fewer than 5 contributors from the dataset. We did this because of the sheer

number of domains we needed to categorize. By applying this filter we were left

with some 500 domains from over 13,000 original domains. While we may have

lost some high-impact contributors, our goal was to determine the impact of

organizational, rather than individual, participation in FOSS projects. Given that

these were very large projects, we feel that an entity dedicating so few resources

out of the project total is unlikely to have that much influence. There will always

be exceptions, but we believe the overall impact of this decision is negligible.

21

The projects included varying information in the CVS data. For example,

the Linux Kernel has a very structured format for their code commits. Each code

commit has an author as well as a list of additional individuals who sign-off,

review, or are otherwise included in the commit log. GCC does not follow as

rigorous of a process. This difference in practices could have had an effect on our

results, with contributors being over or undercounted.

Finally, our analysis of contributions, both to the debate as well as to the

code base was very simplistic; a simple count. We acknowledge the fact that not

all code contributions or bug report interactions are created equal, some of these

will be more important than others. A simple count gives a distorted view.

However, without a rating or review system for contributions, we have no

objective way of evaluating the impact of individual contributions.

2.6 Conclusions

 We found that for these large projects, corporate developers dominate in

terms of code contributions. This has important implications for project

governance and our understanding of FOSS demographics. Large projects may

not be accurately portrayed as grass-roots volunteer efforts.

The data suggests there exist two distinct communities within projects.

While these communities may interact with each other through other means

(e.g. mailing lists), there is a community of coders and a community of bug

reporters. While this is not unexpected, it is unexpected to see that the most

prolific code contributors seem not to interact with the bug reporters—we

tracked any participation in bug reporting, not just the reporting of new bugs.

22

This disconnect can in the long-term lead to alienation and declining

participation of non-technical contributors.

We also found that many projects do not currently track this kind of data,

or at least they do not make it publicly available. While there may be privacy

concerns with posting email addresses or calling out individual developers or

companies, this has to be balanced against users and other contributors’ need to

know. Without this information, FOSS users and possible contributors lack the

necessary information to understand whether a project is well governed and

healthy.

2.7 Future Work

In the future we plan to expand our scope both in terms of projects

examined and metrics used. For instance, we hope to look at projects that range

in size. Prior research has shown that projects studied are anomalies rather than

the norm in the FOSS ecosystem. Examining how smaller projects are affected

would give us a better picture and help their maintainers make better growth

decisions.

Our research primarily used publicly available data. While this is

important for evaluating the transparency and inclusiveness of decision-making,

we know we are missing part of the picture, including any private deliberations

between maintainers. We hope to get the direct cooperation of projects to

determine if understanding participation in FOSS projects differs with an inside

view.

The involvement of government agencies warrants further investigation,

as we believe that these agencies have much to offer the FOSS community. We

23

wish to explore how these organizations contribute, and how to get them more

involved.

Recent events in the OpenOffice/LibreOffice project have brought the

issue of forking and the role of corporations in FOSS to the forefront. We plan to

investigate these projects as well as others that have forked over governance

issues to determine if our metrics are meaningful. Retrospective analysis, before

and after the split, could give key insights and early warning signs to enable

corrective actions if desired.

Bug reports and code commits are not the only means by which

individuals are involved in FOSS development. In the future we plan to look at

mailing lists, project governance, project documentation, and conduct developer

interviews. These will give us a broader picture of FOSS development work. This

may help in answering more difficult questions relating to measuring project

health and success. We hope to better understand healthy participation.

2.8 Acknowledgments

 We would like to thank Andy Ko for his assistance with scripts to extract

bug repository information from Bugzilla databases. We would also like to thank

the Oregon State University HCI group for their input and feedback on the

research.

2.9 References

[1] Antoniol, G., Gall, H., Di Penta, M., & Pinzger, M. (n.d.). Mozilla: Closing the

Circle. Retrieved from

http://scholar.googleusercontent.com/scholar?q=cache:neQwzT9UfPwJ:schola

r.google.com/&hl=en&as_sdt=0,38

24

[2] Bergquist, M., & Ljungberg, J. (2001). The power of gifts: organizing social

relationships in open source communities. Information Systems Journal, 11(4),

305–320.

[3] Bonaccorsi, A., & Rossi, C. (2003). Why Open Source software can succeed.

Research Policy, 32(7), 1243-1258. doi:10.1016/S0048-7333(03)00051-9

[4] Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Effective work

practices for software engineering: free/libre open source software

development. Proceedings of the 2004 ACM workshop on Interdisciplinary software

engineering research, WISER ’04 (pp. 18–26). New York, NY, USA: ACM.

doi:10.1145/1029997.1030003

[5] Fischer, M., Pinzger, M., & Gall, H. (2003). Analyzing and Relating Bug

Report Data for Feature Tracking. Reverse Engineering, Working Conference on

(p. 90). Los Alamitos, CA, USA: IEEE Computer Society.

doi:http://doi.ieeecomputersociety.org/10.1109/WCRE.2003.1287240

[6] Gall, H., Jazayeri, M., & Krajewski, J. (2003). CVS release history data for

detecting logical couplings. Sixth International Workshop on Principles of

Software Evolution, 2003. Proceedings (pp. 13- 23). Presented at the Sixth

International Workshop on Principles of Software Evolution, 2003.

Proceedings, IEEE. doi:10.1109/IWPSE.2003.1231205

[7] German, D. M. (2006). An empirical study of fine-grained software

modifications. Empirical Software Engineering, 11, 369-393. doi:10.1007/s10664-

006-9004-6

[8] Ghosh, R.A., & Prakash, V.V. The Orbiten Free Software Survey. First

Monday, 5(7), July 2000, http://www.firstmonday.org/issues/issue5_7/ghosh

25

[9] Hars, A., & Ou, S. (2001). Working for Free? - Motivations of Participating in

Open Source Projects. Hawaii International Conference on System Sciences (Vol.

7, p. 7014). Los Alamitos, CA, USA: IEEE Computer Society.

doi:http://doi.ieeecomputersociety.org/10.1109/HICSS.2001.927045

[10] Jensen, C., King, S., Kuechler, V. (2011). Joining Free/Open Source Software

Communities: An Analysis of Newbies’ First Interactions on Project Mailing

Lists. 44th Hawaii International Conference on System Sciences

[11] Jensen, C., & Scacchi, W. (2007). Role Migration and Advancement Processes

in OSSD Projects: A Comparative Case Study. 29th International Conference on

Software Engineering, 2007. ICSE 2007 (pp. 364-374). Presented at the 29th

International Conference on Software Engineering, 2007. ICSE 2007, IEEE.

doi:10.1109/ICSE.2007.74

[12] Ko, A. J., & Chilana, P. K. (2010). How power users help and hinder open bug

reporting. Proceedings of the 28th international conference on Human factors in

computing systems, CHI ’10 (pp. 1665–1674). New York, NY, USA: ACM.

doi:10.1145/1753326.1753576

[13] Ko, A. J., Myers, B. A., & Duen Horng Chau. (2006). A Linguistic Analysis of

How People Describe Software Problems. IEEE Symposium on Visual

Languages and Human-Centric Computing, 2006. VL/HCC 2006 (pp. 127-134).

IEEE. doi:10.1109/VLHCC.2006.3

[14] Kogut, B., & Metiu, A. (2001). Open‐Source Software Development and

Distributed Innovation. Oxford Review of Economic Policy, 17(2), 248 -264.

doi:10.1093/oxrep/17.2.248

26

[15] Kroah-Hartman, G., Corbet, J., & McPherson, A. (2008). Linux kernel

development: How fast it is going, who is doing it, what they are doing, and

who is sponsoring it. The Linux Foundation Publication http://www.

linuxfoundation. org/publications/linuxkerneldevelopment. php.

[16] Krogh, G. von, Spaeth, S., & Lakhani, K. R. Community, joining, and

specialization in open source software innovation: a case study. Research

Policy (Vol. 32, 7). Open Source Software Development Jul 2003, pp. 1217-

1241.

[17] Krogh, G. von, Spaeth, S., & Haefliger, S. (2005). Knowledge Reuse in Open

Source Software: An Exploratory Study of 15 Open Source Projects. Hawaii

International Conference on System Sciences (Vol. 7, p. 198b). Los Alamitos, CA,

USA: IEEE Computer Society.

doi:http://doi.ieeecomputersociety.org/10.1109/HICSS.2005.378

[18] Lakhani, K., & Wolf, R. G. (2003). Why Hackers Do What They Do:

Understanding Motivation and Effort in Free/Open Source Software Projects.

SSRN eLibrary. Retrieved from

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=443040

[19] Lessig, L. (1999). CODE and other laws of cyberspace. Basic Books.

[20] Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open

source software development: Apache and Mozilla. ACM Trans. Softw. Eng.

Methodol., 11(3), 309–346. doi:10.1145/567793.567795.

[21] A. Nguyen Duc, D. S. Cruzes, C. Ayala, and R. Conradi, “Impact of

Stakeholder Type and Collaboration on Issue Resolution Time in OSS

Projects,” in Open Source Systems: Grounding Research, vol. 365, S. A. Hissam,

27

B. Russo, M. G. Mendonça Neto, and F. Kon, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 1-16.

[22] P. David, A. Watermann and S. Arora, "FLOSS-US: The Free/Libre/Open

Source Software Survey for 2003." Technical Report. Stanford Institute for

Economic and Policy Research, Stanford, USA, 2003.

http://www.stanford.edu/group/floss-us/

[23] Sandusky, R. J., & Gasser, L. (2005). Negotiation and the coordination of

information and activity in distributed software problem management.

Proceedings of the 2005 international ACM SIGGROUP conference on Supporting

group work, GROUP ’05 (pp. 187–196). New York, NY, USA: ACM.

doi:10.1145/1099203.1099238

[24] Scacchi, W. (2004). Free and open source development practices in the game

community. IEEE Software, 21(1), 59- 66. doi:10.1109/MS.2004.1259221

[25] System Size - eLinux.org. (n.d.). Retrieved October 8, 2011, from

http://elinux.org/System_Size

[26] Ye, Y., & Kishida, K. (2003). Toward an understanding of the motivation of

open source software developers (pp. 419-429). IEEE.

doi:10.1109/ICSE.2003.1201220

28

Chapter 3. Corporate Influence in the Linux Kernel

Darren Forrest and Carlos Jensen

Submitted to CSCW 2014

29

3.1 Abstract

Free / Open Source Software developers come from a myriad of different

backgrounds. While some contribute for personal reasons, many become

involved because they receive compensation from corporations or foundations.

The motivation for participating in a project can have dramatic impacts on how

and what contribution an individual makes. These decisions may align with the

needs of the community, the needs of the organization funding the individual, or

both. Understanding this dynamic is pivotal to fostering a healthy community.

We build upon the work of Forrest et al. in this multiple case study of

corporations contributing to the Linux Kernel. We find evidence that some

corporations focus on their own needs with the needs of the greater community

an afterthought.

3.2 Introduction

Free/Open Source Software (FOSS) is a key component of our current

computing ecosystem. FOSS projects are foundational in multiple arenas of the

Internet as well as internal systems used by corporations around the world. FOSS

is even commonly found on personal computers. The success and growth of

FOSS projects is important to the overall future of computing. Therefore, the

study of what makes FOSS projects successful deserves a prominent place in

research.

The development of FOSS is different from traditional software

development in corporations. In traditional software development, access to the

source code is limited to the development team, whereas in FOSS access is freely

available to all. In addition, most projects encourage open participation. This

30

means that anyone with the desire and expertise necessary to contribute can get

involved with and contribute to the project. These fluid boundaries, and what

they mean for team management, makes the community structure and process of

FOSS significantly different than that of traditional software teams.

With free access to the source and open participation, some control must

be exerted to prevent chaos. Central to most FOSS projects is the meritocratic

system, where contributions and contributors are judged by what they contribute

to the project. Project maintainers hold power by deciding which submissions are

included and which are rejected [9]. “Because Apache is a meritocracy, even

though all mailing list subscribers can express an opinion by voting, their action

may be ignored unless they are recognized as serious contributors” [25]. This

process is successful in most circumstances, but as De Souza points out in regard

to code submissions, FOSS rhetoric focuses on openness and access, but FOSS in

practice focuses on regulation and control [9].

In spite of this control structure, FOSS development is often considered a

grassroots movement. Developers are said to contribute because of altruistic

motives [5]. While this may be true of some developers, recent studies have

shown this perception is not always accurate [18]. Compensation is fairly

common among developers of FOSS, at least for the larger projects [21]. Some

developers are paid directly by sponsors for their work on FOSS, while others

receive funding through a foundation or other non-profit organization [16]. Still

others receive compensation in the form of equipment or time off work for FOSS

development. All of these forms of compensation make FOSS development a

complicated economy.

31

The concept of a grassroots organization is also inherently in conflict with

the meritocratic model. Grassroots organizations thrive on an influx of new and

willing members. Within a meritocracy, individuals are in a constant struggle for

the attention of decision makers or for resources that will help them in their

work. In this way it can be to an individual’s best interest to prevent the

inclusion of other members who would also compete for those resources or

attention. This may be one of the reasons for the flaming and elitist tendencies

the Linux Kernel has become known for [2, 22].

Large projects, by necessity, have more formalized processes. As a result,

one would expect to see more compensated developers in core roles as the

demands of the task requires more effort and consistency than what can be

supported through volunteer labor. However, mixing volunteer labor with paid

labor may change the dynamics of these projects. It is not much of a stretch to

assume paid developers could be biased to pay extra attention to the needs of the

organization they represent, to the detriment of the needs of the rest of the

community. Additionally, because of the meritocratic system and the additional

time paid developers are able to devote to the project, they and their

contributions will likely be valued more highly. Because of this, it is important to

determine if individuals who are compensated for their work on FOSS projects

have disproportionate influence over a project than volunteers.

We therefore, seek to understand the prevalence of individuals aligned

with corporations and how this might affect the social dynamics of FOSS

projects, and the projects’ evolution. Forrest et.al began this investigation by

looking at the Linux Kernel and GCC projects [14]. They surveyed bug and code

repositories to determine the affiliations of contributors. That exploratory work

32

provides some interesting trends but raises additional questions that need

investigation. Our work seeks to answer some of those unanswered questions.

Forrest et al. found that corporations had substantially larger numbers of

developers making contributions to the code repositories than were working in

the bug repository. In other words, they found it likely that corporations were

more likely to sponsor new code rather than engage in community-driven

initiatives. From this they drew the conclusion that corporations had a more self-

focused development philosophy rather than one centered on the needs of the

community. This analysis looked at the number of developers and contributions

in the two repositories without taking into account the mailing list as a forum for

discussing community needs or a qualitative analysis of the contributions.

To expand on the work of Forrest et al. and provide a more nuanced view

of the manner that corporations involve themselves in FOSS projects we put

forth the following research questions:

RQ1: Does mailing list activity show a lack of corporate participation in

community discussion?

RQ2: Do code contributions show corporations are contributing more new

features or fixing bugs?

It is important to note here that the purpose of this work is not to malign

or downplay the good that corporations do for FOSS projects. FOSS projects

depend on the contributions of all their participants and firms are an integral

part of that process. Instead our goal is to determine how firms are participating

33

and how that participation impacts the project as a whole. This knowledge will

allow project maintainers to better understand the dynamics of sponsorship, how

to maintain direction and how to foster teamwork in the complex environment.

The outline of this paper is as follows. We discuss related work in the FOSS space

and the techniques used. After that we describe our research methods, followed

by the results and discussion. Finally we provide conclusions and outline future

work.

3.3 Related Work

FOSS projects have been well studied over the past decade. During that

time researchers have advanced many theories about community development

[6], software development processes [34], and even the quality of the software

itself [17].

FOSS community structures have been studied and several models have

been proposed. Perhaps the best known is the onion model [7, 10, 11, 19, 21, 27,

28, 33, 37, 38]. The onion model describes a set of roles and role transitions seen

within FOSS, with the more specialized and greater authority roles being

occupied by more senior or capable members of the community. Individuals

progress through these roles from the outer, less important roles to the inner,

more important ones.

Jergensen et al. expanded on this work by looking at how developers

migrate between groups and proposed the idea of an onion patch [23]. In this

model experienced developers are able to move more quickly through the ranks

of developers or skip levels entirely because of their experience and reputation

with other FOSS projects. Herraiz et al found that developers who are paid to

34

contribute to FOSS have a “sudden integration” process, effectively skipping

levels, in contrast to volunteer developers who more closely follow the onion

model [19]. Still others have suggested that the onion model is only accurate for a

handful of projects and should not be considered true of FOSS in general [7].

Joining a FOSS project is not without cost. Krogh et al. found that joining a

project requires a significant investment of time and effort as well as expertise

[37]. A high cost of contributing may lead to higher developer turnover. Methods

of measuring developer turnover was studied by Robles [31]. Retention of

developers has also been studied in the hopes of determining factors that will

contribute to the success of FOSS [35].

FOSS work often takes place in a distributed environment, through

mainly text-based communication. The artifacts of this communication have been

used in numerous studies of FOSS development. Some of the major sources of

this communication are bug reports, code repositories, and mailing lists.

Bug reports are vital to any FOSS project. The need for open bug reporting

and many users reporting bugs is well recognized by Linus’ law, which states

that “many eyes make all bugs shallow” [30]. Bettenburg found the quality of

bug reports important enough to study the features of good reports and provide

tools to help users provide better reports [4]. Bug reports are one of the ways end

users interact with the development team [32]. Bug reporting is even used by

some developers to prioritize development work based on the number of

duplicate bug reports [3]. While bug reports are almost always considered a

positive feature of FOSS development, Ko and Chilana found that power users

reporting bugs can have a negative impact on the project [24].

35

Concurrent Versions Systems (CVS) are where projects control and

manage the code that is accepted. German focused on ways to visualize code

changes [15]. Analyzing source code data has even been used to study things like

developer turnover and role identification within projects [31]. De Souza et al

found that the structure of the code mimicked the structure of the development

team [9]. More importantly for our work, they found that control over the code

was managed through the CVS, and that core development teams used this to

uphold their decisions within the project and community.

Mailing lists are the forum used by most FOSS projects to make

community decisions [28]. Mailing lists are used to broadcast messages to all the

members who have subscribed. In a similar manner to the CVS, the mailing list

can be a forum of controlling the behavior of participants [9]. Conflict and

confrontations in mailing lists have been studied by Jensen et al [22] and

Bergquist and Ljungberg [2]. For the Linux kernel, the Linux Kernel Mailing List

(LKML) is seen as the primary forum of discussion and decision making [20].

Several surveys of FOSS developers have been undertaken in the last ten

years [8, 16, 18, 26]. While we have some concerns over the distribution of the

respondents, these surveys are the best information available at this time. The

survey topics included questions concerning demographics, development

methodology, motivations and ideology. Most important in this work were

questions regarding compensation and employment status of the developers.

While the findings on compensation rates varied widely, Hars and Ou claim 16%

FOSS developers are directly paid for FOSS work with an additional 34%

considering FOSS development part of their job expectations [18]. Core

36

developers had higher rates of compensation according to Jensen and Scacchi

[21].

Further work by Nguyen found that compensation had an effect on work

efficiency in FOSS projects [29]. Nguyen studied bug report resolution time and

claim that developers who are paid for the FOSS work are able to resolve more

issues faster than their non-paid counterparts in some of the projects studied.

Naturally those developers were able to resolve a greater number of issues

because of the increased amount of time they were able to spend. This finding

combined with the meritocratic model of FOSS supports our assumption of

greater numbers of paid developers with core roles in a project.

Compensation is just one reason for participating in FOSS; research has

also been directed at other motivations for participating in FOSS [26]. At the

macro level, Bonaccorsi and Rossi surveyed corporate leaders and found that

firms and individuals had different motivations for participating in FOSS [5].

Corporations tended to focus on technical and economic reasons, while

individual respondents claimed social and personal reasons. Ye Kishida found

community membership, a desire to learn, and reputation were important to

individuals [38].

Conflict is a common part of any group work, especially when differing

motivations or values are involved. The distributed work style of FOSS projects

also presents its own set of challenges, which have also been studied [12]. Within

the realm of FOSS, mitigation of conflict has been the subject of some work. Elliot

and Scacchi found that the social ties within a development community are one

of the key ways to mitigate conflict [13]. Stewart and Gosain identified and

studied several core FOSS values and how they impacted the success of FOSS

37

projects [36]. They found that affective trust was one of the main drivers for

successful FOSS projects. While there are other ways of mitigating conflict and

supporting a project, making and maintaining the social ties and fostering trust

are wise actions for anyone seeking success in FOSS.

3.4 Methodology

Because we extend the work of Forrest et al [14], our methodology closely

mirrors theirs. We chose to look in more detail at the Linux kernel 2.6, the most

interesting project from their paper. While the work of Forrest et al. [14] was

based exclusively on data from bug and code repositories, we provide a more

nuanced and complete picture of corporate participation by looking at bug and

code repositories as well as mailing lists.

We used a multiple case study methodology looking at the eight most

prominent corporate participants, as measured by number of code contributors,

and their involvement in kernel development. Our selection includes both

hardware and software companies.

Hardware companies are naturally expected to be heavily involved in

coding, as they add drivers and support to their products, potentially at the

expense of other community participation. Because these features require

detailed working knowledge of the hardware, and possibly access to proprietary

information, it is natural to see them perform this work. We selected two

companies to study that were highly skewed toward code submission, Fujitsu

and Samsung, and two that have a more balanced approach, AMD and Intel. We

followed a similar selection process for software companies, selecting Oracle and

Google for code heavy participation and Redhat and IBM for the more balanced

38

approach. Many organizations use subdomains. To collapse these we used the

publicsuffix 1.0.22 python module.

To answer our research questions we used scripts to gather 95% of the bug

reports for the Linux kernel. The remaining reports were inaccessible either due

to insufficient permissions or other repository errors. Our data included the full

email address of each reporter, assignee, and commenter for a bug. We filtered to

focus on the corporations of interest.

Data for code submissions was similarly gathered. We downloaded the

Linux kernel source and used git log information to obtain author names, email

addresses and commits. We then filtered our data to focus on the corporations of

interest.

We gathered mailing list data from the University of Indiana LKML

mirror site3. We used this mirror because it allowed grouping of messages based

on authorship. Since LKML sites do not include the author’s email address,

drawing connections between code, bug, and mailing list contributors required

the matching of real names to the email addresses gathered from the bug and git

repositories. We successfully mapped 98% of email addresses involved in the

bug repository to a name used in the LKML.

With code submissions we had significantly less success even though we

used the “.mailmap” git log options to catch typos and multiple spellings

associated with a single address. With the code repository data we had to

account for several unusual characteristics. 40% of the email addresses were

obfuscated in some manner. Examples took the form of:

2 https://pypi.python.org/pypi/publicsuffix/
3 http://lkml.indiana.edu/hypermail/linux/kernel/index.html

39

CD45F355109A9B@domain.com, which appeared at first to be commit hashes.

Further investigation revealed these were reference addresses to specific LKML

messages related to the code submission. We chose to exclude these addresses

from our dataset because they would not be tied to any one individual. After

removing these addresses we were able to match 98.5% of email addresses with

real names. Based on real names, 115 individuals appeared to use multiple

addresses. These addresses were consolidated to single entities except when

changes involved multiple corporations.

We then analyzed the data from all three sources by looking at the

number of committers from each organization, the number of commits per

individual, and the overlap in committers between the three data sets.

To categorize code commits we considered the types of commits that

corporations may make to the kernel: bug fixes and improvements, or new

features or functionality. We labeled commits made in response to a specific or

implied bug report as bug fixes. Keywords included: Fix, Bug, and Resolves

along with their derivatives. Improvements were identified based on the

keywords: Cleanup, Optimize, and Simplify or their derivatives. Commits were

tagged as New Features by the keywords: Add, or Introduce. Also the number of

lines modified was compared with the lines added. Those commits with greater

numbers of lines added were considered more likely to be new features.

Anything that did not fit into this pattern we marked as unclassifiable. 10.3% of

the commits investigated fell into this latter category.

We randomly selected 50 commits from each of the 8 corporations and

categorized those as a representative set of the work the corporation contributed

to the Kernel. Two evaluators worked independently to classify the commits.

40

Their datasets had a 33% overlap, which we used to calculate the inter-rater

reliability, which gave us a Cohen’s Kappa of 0.49. Bakeman et al. highlight two

factors, which our dataset has, that make lower kappa values acceptable: few

codes and codes that are not equiprobable [1]. In simulations, assuming

equiprobable codes, raters with 85% agreement would have 0.49 and 0.60 kappa

values for code sets of size 2 and 3 respectively.

Data for the Linux kernel was gathered for dates beginning the 6th of

November 2002 and until the 29th of July 2010. This gave us nearly 8 years of

history to analyze.

3.5 Results

One of the concerns in the work of Forrest et al. is the use of the number of

contributors in place of the number of contributions [14]. We investigated this

concern and found that while the number of contributors may not be directly

interchangeable with the number of contributions, they do follow the same

trends of much greater numbers of code contributions than bug contributions for

each of the corporations studied (Table 5).

After tallying the data we see numbers similar to those of Forrest et al as

shown in Table 5. Our numbers are slightly lower than Forrest et al because of

removing obfuscated email addresses, but the same trends are still seen.

The data is also interesting from the perspective of who is participating in

more than one aspect of the Kernel community. We can see from figure 1 that

most of our corporate participants are contributing in the git repository. It is

important to note that since we only had access to the names given in the LKML,

we could not determine if an individual belonged to one of these eight

41

companies unless they were participating in the bug or code repository as well.

Because of this, we have not included a LKML only category.

Company
Code Bug LKML

Contributions Contributors Contributions Contributors Contributions Contributors

AMD 3360 43 37 9 3189 11

Fujitsu 6272 58 13 10 1086 16

Google 2316 83 7 5 13239 35

IBM 29567 346 866 112 22611 173

Intel 42854 256 1378 47 18570 61

Oracle 14942 35 35 6 11804 17

Redhat 48052 213 174 31 40285 116

Samsung 1200 34 1 1 56 3

Table 5 Contributors and contributions by company

Figure 2 Distribution of contributors between bug, code and mailing list

repositories.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Git, Bug & LKML

Git & LKML

Bug & LKML

Bug only

Git & Bug

Git only

42

Figure 3 Contribution type by company.

Company Forrest et al Our Data

amd.com 14.4 4. 8

fujitsu.com 53.1 5.8

google.com 45.6 16.6

ibm.com 6.3 3.1

intel.com 12.1 5.4

oracle.com 13 5.8

redhat.com 12.8 6. 9

samsung.com 88 34

Table 6. Ratio of code contributors to bug contributors

The goal of classifying code commits was to reveal a better picture of how

corporations are contributing code to the Linux kernel. In Figure 3 we can see

that a majority of corporate code commits are an improvement or bug fix of some

kind. There is a slight difference in the bug fix / improvement to new feature

ratio between software and hardware companies. Most striking is the focus on

new features by Samsung.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Other

New Feature

Bug Fix/
Improvement

43

3.6 Discussion

Looking at the data we do see many of the same trends identified by

Forrest et al. They found that many corporations seemed to be focused on

creating code and were not substantially active within the bug reporting

community. We see this same, but with a smaller, but still notable, disparity in

the contributor levels. This is most likely due to including the mailing list data

and removing the LKML reference email addresses from our data set.

Most telling in this data is that while there are a great number of people

involved in some aspect of development, relatively few individuals are active in

all three of the areas we studied. Less than 10% of individuals in any of the

companies participated in bug reporting, code development, and the community

discussion on the mailing list. This corroborates the finding of Forrest et al. that

there are very different pictures of participation depending upon the data source

used. Any future research into participation in FOSS should take this finding into

account.

One interesting point is that there were 15 individuals who changed

employers during the timeframe studied. Many of these individuals also

changed their activity level in one of the forums after their change in employer.

The reasons for this change in activity are unknown, but possibly due to changes

in job responsibilities or priorities with the new employer.

When addressing the first research question, we found an interesting split.

For the software companies studied, the number of contributors in the git

repository was nearly double the number participating in the LKML. This two to

one ratio was fairly consistent across all four companies studied as can be seen in

figure 2. With hardware companies there was not an apparent pattern, but all

44

had a smaller percentage of employees participating in the mailing list except for

Samsung. By adding in the LKML data we are including an additional source of

communication within the project. The figures show that while companies may

not be involving themselves in the bug repository, almost all have a presence

within the mailing list.

Forrest et al. argued that a preference for contributing code without being

involved in other communication forums makes code contributions a take it or

leave it proposition. They also argued that the data suggested self-focused

development practices were occurring in the Linux kernel. Forrest et al provided

code commit to bug report ratios greater than 10:1 for many of these companies.

Table 6 shows that after accounting for LKML reference addresses, these ratios

drop to the range of 3:1 to 6:1 with two exceptions. Not the dramatic difference

previously reported, but still a substantially greater number of people involved

in developing code than in communicating with the community.

Two of the companies that had greater numbers of bug reporters, Intel

and IBM, are interesting. These had the highest ratio of individuals participating

in the bug repository compared against the code repository. Of interest here is

that nearly 10% of these individuals only participate in the bug repository. Since

we chose to include all bug activity, including the reporting of bugs, it could

mean that these companies use open source software internally and have a

culture that encourages logging bugs in the official forms. Without more

evidence we cannot be sure, but it is a good area for future study.

Contrary to the findings of Forrest et al., we found the participation of

Fujitsu no longer heavily skewed towards code. Forrest et al found a ratio of over

50:1 for code developers to bug repository participants [14]. After accounting for

45

the obfuscated email addresses, we found a ratio of 5:1; much more in-line with

the rest of the corporations. Samsung on the other hand has a high ratio, 34:1, but

with only one contributor in the bug repository more information is needed

before coming to a conclusion.

Our analysis does lack any knowledge of the internal corporate

communication structure and patterns. It is possible that the individuals seen on

the LKML are linchpin developers coordinating the activities of large teams

behind the scenes at their respective corporations. While we do expect some level

of this, we also expect the people developing code to have good reason to

communicate via the LKML at some point in the development process.

Communicating through another person, a linchpin developer, can add

confusion and noise to an otherwise clear discussion. Because of this, we do not

expect many companies to hinder their employees’ effectiveness by forcing

communication through a few key individuals.

It is highly likely that the companies studied here make use of internal

bug repositories and may not use the official bug reporting channels. When

parsing the commit data we did uncover several messages that acknowledged a

bug found by a particular individual, but we could not find a corresponding bug

report in the official repository. This suggests that there are other repositories

that developers are grabbing bugs from. Fixing any bug in software is beneficial

at some level to the community, but doing so outside of the official channels

circumvents the work of the management team. This can make it harder to

prevent duplication of effort or distribute developer time effectively, both

negative outcomes for the project as a whole.

46

While the number of people involved along with the amount they are

contributing gives a high level picture of participation and investment, it does

not provide a complete picture, as it does not factor in what developers are

contributing. The commit classification data gives us a better understanding of

how corporations are focusing their efforts. All the companies are contributing

both bug fixes / improvements and new features, but the percentages do have

interesting features.

The first thing we see from the data in figure 3 is that Fujitsu is

committing more bug fixes or improvements than new features. This is much

more in line with the other companies studied. When we couple this data with

the bug, commit, and LKML involvement we see that Fujitsu has a much more

balanced approach than originally reported.

With one exception, the remainder of the companies have fairly consistent

submission ratios. 60%-70% of code contributions are bug fixes or improvements.

10-20% of their contributions were classified as new features. Because of the

consistency among these corporations we can consider this a base-line for major

corporations contributing to the Linux kernel. Given that the Linux kernel is a

mature project, these numbers do not seem unusual.

Samsung on the other hand has a much stronger focus on contributing

new features. Over half of all Samsung commits are related to implementing a

new feature with only 40% fixing a bug or improving code. While it is certainly

possible that Samsung may have less buggy code, we consider that explanation

to be unlikely. All of the corporations studied have dedicated software

development teams and highly successful products. A difference of the

47

magnitude seen here would be too great to attribute only to better development

practices.

While contributing new features can indicate a company’s focus on

moving a project forward, coupling this information with the activity in the

community gives a much broader picture. Samsung had one of the lowest

participation levels in the bug reporting forum and the lowest by far

participation in the LKML. Minimal involvement in the community discussion

and contributing mostly new features suggests that Samsung has taken a self-

focused development philosophy.

One can hardly fault a corporation for acting in its own best interest by

following a self-focused development philosophy. This may be good for the

corporation, but the benefit to the project may or may not be present. In a sense,

if a corporation forges ahead with a self-focused development plan and does not

work with the community to coordinate or prioritize, any contributions the make

essentially become “take-it or leave it” propositions. The benefit to the company

is clear, but any benefit to the project is an afterthought. The fact that Samsung’s

changes were accepted into the kernel shows that the project leadership

considers them to be beneficial.

3.7 Limitations

With any study of socio-technical artifacts there are limitations. In this

section we outline some of the prominent factors. The date range chosen for

study was quite large. In this nearly eight year period, the priorities of the

companies studied may have shifted. While this may have had an effect on the

results, we chose these companies in part because they are substantial and long

48

term contributors to the kernel. We also wished to obtain a sense of longer term

trends. In this way, we consider the benefits of the long timeframe to outweigh

the potential drawbacks in the data gathered.

Generic email addresses were removed from our data set. This included

any addresses from email providers such as gmail.com, hotmail.com, or

yandex.ru. While there is substantial anecdotal evidence of sponsored developers

using a generic email address, without deeply investigating each contributor,

connecting a generic email address to a specific individual would be nearly

impossible and fraught with problems. Therefore, removing them from the data

set was deemed appropriate.

It is also entirely possible that some members of the community may have

participated only in the LKML. In paper we were unable to connect these

individuals with a specific corporation and thus they were removed from our

data set. While this was not desired, due to the lack of data available we could

not provide a mapping. This is an unfortunate, but necessary limitation.

Additionally, if an individual is participating only within the confines of the

LKML, our arguments concerning alienation still stand as these individuals

would not be participating in the greater community.

Some individuals did change employers during the timeframe studied. In

these cases we found the corresponding code commits or bug repository

contributions that bounded the change in employer and assigned the average of

the two dates as the cut-over date. This may not be accurate, but without further

information of the employment of these individuals, it is a necessary limitation.

Since there were only 15 of these individuals in the data set, we do not expect

these to have a significant impact on our results.

49

The removal of obfuscated email addresses affected some corporations

more than others. While all corporations studied except Samsung had some

number of obfuscated email addresses in their data set, some saw up to 71%

reduction in the number of email addresses attributed to their company. While

this may have impacted the totals, it is important to note that all of these

addresses refer to a single commit with only one exception—two commits.

Additionally, these are not tied to any single individual, they are references to

LKML messages to assist in understanding the chain of decision-making. For this

reason, we felt our analysis would not be heavily impacted by removing them.

While we did take efforts to classify the commits of each corporation we

did not attempt to quantify the value of any commits or bug report contributions.

Our data is limited to just a number of commits and our classification. We have

also given the same weight to any individual who’s name appears on a commit

or bug. While this is overly simplistic, it does provide a starting point and

without a system for rating these commits and activities it would be difficult to

remain objective.

3.8 Conclusions

In following up on the work of Forrest et al. we found similar data, but

with the addition of new data sources we were able to resolve with some of the

concerns raised in that work [14]. The LKML is often considered the heart of the

Linux kernel project and it makes sense that involvement in this forum is

important to study when looking at participation as a whole.

We found that companies do have more individuals contributing code to

the Linux kernel than are involved in the other sections of the project combined.

50

This finding agrees with Forrest et al. However, after looking more closely at the

data and removing non-personal accounts we found that the disparity is not as

large as reported. When activity within the LKML is considered, most

corporations do have a presence in community discussions. However, this

presence is substantially smaller than the number of individuals contributing to

code development. Based on this we take a more cautious stance, but still affirm

that corporations are being strategic in where they assign their resources.

In studying the types of code contributions made by corporations we find

a baseline of 65% bug fixes or improvements and 25% new features for

corporations involved in the Linux kernel. There is evidence of corporations that

do not follow this distribution. In the case studied, the types of code contributed

coupled with the contribution counts in the other arenas of development suggest

this company has adopted a self-focused development philosophy.

Ultimately more study is needed to determine how corporate sponsorship

impacts FOSS communities. Understanding this dynamic is important to

maintaining openness and trust within the community, especially with non-

sponsored contributors.

3.9 Acknowledgements

We would like to thank Amir Azarbahkt, Chad Cooper, and Iftekhar Ahmed for

their tireless help in classifying code commits. We would also like to thank the

Oregon State University HCI group for their feedback and support of this work.

51

3.10 References

1.Bakeman, Roger et al. “Detecting Sequential Patterns and Determining Their

Reliability with Fallible Observers.” Psychological Methods 2.4 (1997): 357–370.

APA PsycNET. Web.

2.Bergquist, Magnus, and Jan Ljungberg. “The Power of Gifts: Organizing Social

Relationships in Open Source Communities.” Information Systems Journal 11.4

(2001): 305–320. Wiley Online Library. Web. 27 May 2013.

3.Bettenburg, Nicolas, R. Premraj, et al. “Duplicate Bug Reports Considered

Harmful #x2026; Really?” IEEE International Conference on Software Maintenance,

2008. ICSM 2008. 2008. 337–345. IEEE Xplore. Web.

4.Bettenburg, Nicolas, Sascha Just, et al. “What Makes a Good Bug Report?”

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. New York, NY, USA: ACM, 2008. 308–318. ACM Digital

Library. Web. 25 May 2013. SIGSOFT ’08/FSE-16.

5.Bonaccorsi, Andrea, and Cristina Rossi. “Why Open Source Software Can

Succeed.” Research Policy 32.7 (2003): 1243–1258. ScienceDirect. Web. 2 Nov. 2011.

6.Crowston, K., and B. Scozzi. “Open Source Software Projects as Virtual

Organisations: Competency Rallying for Software Development.” Software, IEE

Proceedings - 149.1 (2002): 3–17. IEEE Xplore. Web.

7.Crowston, Kevin, and James Howison. “The Social Structure of Open Source

Software Development Teams.” iSchool Faculty Scholarship (2003): n. pag.

8.David, Paul A, Andrew Waterman, and Seema Arora. “FLOSS-US: The

Free/libre/open Source Software Survey for 2003.” (2003): n. pag. Print.

9.De Souza, Cleidson, Jon Froehlich, and Paul Dourish. “Seeking the Source:

Software Source Code as a Social and Technical Artifact.” Proceedings of the 2005

52

International ACM SIGGROUP Conference on Supporting Group Work. New York,

NY, USA: ACM, 2005. 197–206. ACM Digital Library. Web. 27 May 2013.

GROUP ’05.

10.Dinh-Trong, T.T., and J.M. Bieman. “The FreeBSD Project: a Replication Case

Study of Open Source Development.” IEEE Transactions on Software Engineering

31.6 (2005): 481–494. IEEE Xplore. Web.

11.Ducheneaut, Nicolas. “Socialization in an Open Source Software Community:

A Socio-Technical Analysis.” Computer Supported Cooperative Work (CSCW) 14.4

(2005): 323–368. link.springer.com. Web. 25 May 2013.

12.Easterbrook, Steve M et al. “A Survey of Empirical Studies of Conflict.”

CSCW: Cooperation or Conflict? Springer, 1993. 1–68. Print.

13.Elliott, Margaret S., and Walt Scacchi. “Free Software Developers as an

Occupational Community: Resolving Conflicts and Fostering Collaboration.”

Proceedings of the 2003 International ACM SIGGROUP Conference on Supporting

Group Work. New York, NY, USA: ACM, 2003. 21–30. ACM Digital Library. Web.

27 May 2013. GROUP ’03.

14.Forrest, Darren et al. “Exploring the Role of Outside Organizations in Free /

Open Source Software Projects.” Open Source Systems: Long-Term Sustainability.

Ed. Imed Hammouda et al. Springer Berlin Heidelberg, 2012. 201–215.

link.springer.com. Web. 27 May 2013. IFIP Advances in Information and

Communication Technology 378.

15.German, Daniel M. “An Empirical Study of Fine-grained Software

Modifications.” Empirical Software Engineering 11 (2006): 369–393. CrossRef. Web.

24 Oct. 2011.

53

16.Ghosh, Rishab A. et al. Free/Libre and Open Source Software: Survey and Study.

The Netherlands: International Institute of Infonomics University of Maastricht,

2002. Print.

17.Gyimothy, T., R. Ferenc, and I. Siket. “Empirical Validation of Object-oriented

Metrics on Open Source Software for Fault Prediction.” IEEE Transactions on

Software Engineering 31.10 (2005): 897–910. IEEE Xplore. Web.

18.Hars, A., and S. Ou. “Working for Free? - Motivations of Participating in Open

Source Projects.” Hawaii International Conference on System Sciences. Vol. 7. Los

Alamitos, CA, USA: IEEE Computer Society, 2001. 7014. IEEE Computer Society.

Web.

19.Herraiz, Israel et al. “The Processes of Joining in Global Distributed Software

Projects.” Proceedings of the 2006 International Workshop on Global Software

Development for the Practitioner. New York, NY, USA: ACM, 2006. 27–33. ACM

Digital Library. Web. 26 Mar. 2013. GSD ’06.

20.Hertel, Guido, Sven Niedner, and Stefanie Herrmann. “Motivation of

Software Developers in Open Source Projects: An Internet-based Survey of

Contributors to the Linux Kernel.” Research Policy 32.7 (2003): 1159–1177.

ScienceDirect. Web. 25 May 2013.

21.Jensen, C., and W. Scacchi. “Role Migration and Advancement Processes in

OSSD Projects: A Comparative Case Study.” 29th International Conference on

Software Engineering, 2007. ICSE 2007. IEEE, 2007. 364–374. IEEE Xplore. Web.

22.Jensen, Carlos, Scott King, and Victor Kuechler. “Joining Free/Open Source

Software Communities: An Analysis of Newbies’ First Interactions on Project

Mailing Lists.” Proceedings of the 2011 44th Hawaii International Conference on

54

System Sciences. Washington, DC, USA: IEEE Computer Society, 2011. 1–10.

ACM Digital Library. Web. 22 Mar. 2013. HICSS ’11.

23.Jergensen, Corey, Anita Sarma, and Patrick Wagstrom. “The Onion Patch:

Migration in Open Source Ecosystems.” Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of Software

Engineering. New York, NY, USA: ACM, 2011. 70–80. ACM Digital Library. Web.

22 Mar. 2013. ESEC/FSE ’11.

24.Ko, Andrew J., and Parmit K. Chilana. “How Power Users Help and Hinder

Open Bug Reporting.” Proceedings of the 28th International Conference on Human

Factors in Computing Systems. New York, NY, USA: ACM, 2010. 1665–1674. ACM

Digital Library. Web. 24 Oct. 2011. CHI ’10.

25.Kogut, Bruce, and Anca Metiu. “Open‐Source Software Development and

Distributed Innovation.” Oxford Review of Economic Policy 17.2 (2001): 248 –264.

Highwire 2.0. Web. 8 Nov. 2011.

26.Lakhani, Karim, and Robert G. Wolf. Why Hackers Do What They Do:

Understanding Motivation and Effort in Free/Open Source Software Projects.

Rochester, NY: Social Science Research Network, 2003. papers.ssrn.com. Web. 25

May 2013.

27.Mockus, Audris, Roy T. Fielding, and James Herbsleb. “A Case Study of Open

Source Software Development.” ACM Press, 2000. 263–272. CrossRef. Web. 6

Nov. 2011.

28.Mockus, Audris, Roy T. Fielding, and James D. Herbsleb. “Two Case Studies

of Open Source Software Development: Apache and Mozilla.” ACM Trans.

Softw. Eng. Methodol. 11.3 (2002): 309–346. ACM Digital Library. Web. 22 Mar.

2013.

55

29.Nguyen Duc, Anh et al. “Impact of Stakeholder Type and Collaboration on

Issue Resolution Time in OSS Projects.” Open Source Systems: Grounding

Research. Ed. Scott A. Hissam et al. Vol. 365. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011. 1–16. CrossRef. Web. 16 Mar. 2012.

30.Raymond, Eric S. The Cathedral and the Bazaar. 1st ed. Ed. Tim O’Reilly.

Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1999. Print.

31.Robles, Gregorio, and Jesus M. Gonzalez-Barahona. “Contributor Turnover in

Libre Software Projects.” Open Source Systems. Ed. Ernesto Damiani et al.

Springer US, 2006. 273–286. link.springer.com. Web. 27 May 2013. IFIP

International Federation for Information Processing 203.

32.Sandusky, Robert J., and Les Gasser. “Negotiation and the Coordination of

Information and Activity in Distributed Software Problem Management.”

Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting

Group Work. New York, NY, USA: ACM, 2005. 187–196. ACM Digital Library.

Web. 24 Oct. 2011. GROUP ’05.

33.Scacchi, W. “Free and Open Source Development Practices in the Game

Community.” IEEE Software 21.1 (2004): 59– 66. IEEE Xplore. Web.

34.Scacchi, W. “Understanding the Requirements for Developing Open Source

Software Systems.” Software, IEE Proceedings - 149.1 (2002): 24–39. IEEE Xplore.

Web.

35.Schilling, A., S. Laumer, and T. Weitzel. “Who Will Remain? An Evaluation of

Actual Person-Job and Person-Team Fit to Predict Developer Retention in

FLOSS Projects.” 2012 45th Hawaii International Conference on System Science

(HICSS). 2012. 3446–3455. IEEE Xplore. Web.

56

36.Stewart, Katherine J., and Sanjay Gosain. “The Impact of Ideology on

Effectiveness in Open Source Software Development Teams.” MIS Quarterly

30.2 (2006): 291–314. JSTOR. Web. 25 May 2013.

37.Von Krogh, Georg, Sebastian Spaeth, and Karim R Lakhani. “Community,

Joining, and Specialization in Open Source Software Innovation: a Case Study.”

Research Policy 32.7 (2003): 1217–1241. ScienceDirect. Web. 26 Oct. 2011.

38.Ye, Yunwen, and K. Kishida. “Toward an Understanding of the Motivation of

Open Source Software Developers.” 25th International Conference on Software

Engineering, 2003. Proceedings. 2003. 419–429. IEEE Xplore. Web.

57

Chapter 5. General Conclusion

 We found that for these large projects, corporate developers dominate in

terms of code contributions. This has important implications for project

governance and our understanding of FOSS demographics. This finding does not

appear as dramatic with the addition of mailing list participation data, but is still

well substantiated.

The data suggests there exist at least three distinct communities within projects.

While these communities may interact with each other through other means (e.g.

irc, direct email, or wiki pages), there is a community of coders, a community of

bug reporters, and a community of mailing list participants. While this is not

unexpected, it is unexpected to see that very few contributors participate in all

three forums and the proportion that participate in only one forum is quite large.

This disconnect can in the long-term lead to alienation and declining

participation of non-technical contributors.

Our second investigation method, which included the addition of mailing list

participation data and classification of code commits, provides a more nuanced

and likely more accurate picture of participation by corporations. In studying the

types of code contributions made by corporations we find a baseline of 65% bug

fixes or improvements and 25% new features for corporations involved in the

Linux kernel. There is evidence of corporations that do not follow this

distribution. In the case studied, the types of code contributed coupled with the

contribution counts in the other arenas of development suggest at least one

company has adopted a self-focused development philosophy.

We also found that many projects do not currently track this kind of data, or at

least they do not make it publicly available. While there may be privacy concerns

58

with posting email addresses or calling out individual developers or companies,

this has to be balanced against users and other contributors’ need to know.

Without this information, FOSS users and possible contributors lack the

necessary information to understand whether a project is well governed and

healthy.

59

