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Chapter 1: Introduction

Location awareness has received a great deal of interest in many wireless sys-

tems such as cellular networks, wireless local area networks, and wireless sensor.

Geometric localization methods include time of arrival (TOA), time difference of

arrival (TDOA), received signal strength (RSS) and angle of arrival (AOA). TOA

has drawn great interest among these methods since it has a high potential to

achieve high-precision [1]. Threshold-based estimator, one of TOA estimators, is

the most popular TOA estimator due to its simple implementation [2].

The estimation process of the threshold-based method includes three major

parts: ranging, positioning, and tracking [1]. The ranging part is the first step

for TOA estimation [1], so the accuracy of ranging directly affects the accuracy of

TOA estimation.

Timing detection is the major part of the ranging process, and a proper thresh-

old selection has significant effect on the precise of timing detection [3]. Thresh-

old selection has been investigated extensively in the literature. However, some

open issues remain unresolved. The threshold value should depend on the received

signal-to-noise ratio (SNR). One of the main challenges is selecting a proper thresh-

old according to the SNR at the receiver. Previous literature has applied the fixed

threshold and the normalized adaptive threshold methods [4, 5]. None of these

methods take into consideration of the SNR value at the receiver.
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This thesis develops a threshold selection method that takes the received SNR

value into consideration. Also, the process of theory development of this method,

and the performance of this method will be introduced in this thesis.

The background knowledge of localization system is in Chapter 2, which in-

cludes the basic localization methods, the basic TOA approaches, the common

threshold selection methods, and the channel model. Chapter 3 introduces the

theory part of relating the threshold selection to the SNR value at the receiver

side, including the motivation of this thesis, the theory developing process, and

the theory of the proposed threshold selection method. In Chapter 4, the sim-

ulation setting, process and the simulation result are presented. It includes the

error analysis of the proposed threshold selection method via simulation results.

Also, comparison result between the proposed threshold selection method and the

normalized adaptive threshold methods is presented at the end of this chapter.

The last chapter conclude the work of this thesis, and discusses potential future

development of the SNR related threshold-based method.
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Chapter 2: Background Review

2.1 Basic Localization Method

Indoor location-based applications have received significant interests recently. Such

services include location based advertisement, location based social networking,

and E911 emergency services. Take the E911 emergency services for example, the

user will be able to make emergency calls that allow local authorities to pinpoint

the user’s position in indoor scenarios.

Figure 2.1: General architecture of localization systems.

In common cases, a localization system consists of moving terminals to be
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tracked, anchors serving as reference points (RPs), and a central processing sta-

tion that implements the positioning algorithm and keeps track of all the terminals.

Figure 2.1 shows such a localization system. Different methods (i.e., TOA/TDOA,

RSS, AOA) could be used for positioning.

Localization may be realized in two common ways [1]:

1. Geometric methods (trilateration, triangulation, hyperbolic methods)

2. Fingerprinting methods (signal mapping)

Geometric methods can locate devices based on the estimated signal properties.

TOA/TDOA, RSS and AOA are examples of geometric measurement techniques.

2.1.1 Received signal strength

RSS ranging is based on the principle that the greater the distance between the

fixed terminals (FTs) and the moving terminal (MTs), the weaker their relative

received signals [6]. The ranging distance is measured based on the attenuation

from FTs to MTs. Since the relationship between the distance and the attenuation

depends on channel behavior, an accurate propagation model is required for reliable

distance estimation.

A commonly used model to estimate the RSS is expressed as [6]

P (d) = P0 − 10γ log10 d+ S (2.1)
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where P (d) is the received power, related to the distance between the FT and the

MT d, with unit dBm; P0 is the received power (the unit is dBm) at the reference

distance, which is a function of the signal wavelength, and the radio charactieris-

tics [6]; γ is known as the path-loss exponent, and the value of γ is typically in the

range of 2 to 6 [6]; S(dB) is the large-scale fading variable (i.e., shadowing).

The main advantage is the simplicity of its implementation [7]. However, the

practical propagation environments cause the attenuation of the signal to poorly

correlate with distance, resulting in inaccurate distance estimates [7].

This technique is commonly used in low-cost systems such as wireless sensor

networks (WSNs) because hardware requirements and costs can be more favorable

compared to time-based techniques [6]. However, RSS based methods are easy to

implement but in general inaccurate [8].

2.1.2 Angle of arrival

AOA forms a radial line from the reference node to the target node to be posi-

tioned [7]. For two-dimensional (2-D) positioning, AOA estimates the target po-

sition by finding out the intersection of two directional lines of bearing [6,7,9,10],

as illustrated in Figure 2.2.
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Figure 2.2: AOA measurement.

The two black dots in Figure 2.2 are the reference nodes (RNs), the gray point

is the target node (TN), and α1, α2 are the AOAs. The two RNs measure the

angles between themselves and the TN, α1 and α2.

Antenna arrays are commonly used to implement the AOA method. The main

idea for this measurement is that the difference of the arrival times at different

antenna elements contains the angle (phase) information for a known geometry

[6, 7, 9, 10].

However, the AOA method requires a different hardware between the antenna

elements to get the unique phase information for large bandwidth signal, which

results in additional costs [6, 7, 10]. Additionally, AOA is highly sensitive to the

multipath environment, and array precision [7].

2.1.3 Time of arrival

TOA technique is in general more complex than RSS and AOA methods, but they

can potentially provide a much higher localization accuracy [11,12].

When the direct path (DP) is detectable, the arrival time of the DP is the TOA.
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When a DP is not available or undetectable, other components in a multipath

environment may be used for ranging. The distance between the terminal and RP

equals the TOA value time the speed of the light. This is written as:

d = cτ (2.2)

where τ is the time of arrival of the first peak or the direct path, c is the speed of

light. The basic principle of TOA in 2-D can be shown in Figure 2.3.

Figure 2.3: A 2-D TOA measurement.

In Figure 2.3, Rx1 to Rx3 are FTs, Tx is the MT, and d1 to d3 are measured

distances between Tx and each of Rx. d1 to d3 can be evaluated by getting the

estimated time. Circles could be drawn by knowing the value of d1 to d3, then the

intersection of three circles is the position of MT.

TOA includes one-way TOA and two-way TOA. For one-way TOA: at a ran-

dom time ta, terminal A transmits to receiving terminal B a packet that contains
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the time-pin ta at which As packet was sent. Terminal B receives the packet at

time tb. Under ideal conditions, that is, when terminals’ clocks are perfectly syn-

chronized to a common time reference, it is clear that time difference tf can be

determined at terminal B as tf = tb − ta, from which the distance can be estimat-

ed [6]. Synchronization error could significantly affect ranging accuracy [6].

For two-way TOA: the system estimates the signal round-trip time (RTT) tRT

without a common time reference. Terminal A transmits a packet to terminal B,

which corresponds by transmitting an agreement packet to terminal A after a re-

sponse delay td. The RTT at terminal A is determined by tRT = 2tf +td, where the

distance can be estimated (with the assumption that td is known). However, the

propagation delay in indoor applications is typically in the range of nanoseconds,

while the td can be few microseconds because of the bit synchronization and chan-

nel estimation delays [6]. Therefore, the error accumulation over td would cause a

large error in tf for even a small clock offset [6].

Many types of radio frequency (RF) signals have been used for indoor rang-

ing and positioning. For example, pulsed ultra-wideband (UWB) signal has been

used for high-precise positioning because of its large bandwidth, which can resolve

dense multi-path components (MPCs) [2, 13, 14]. Another widely used RF signal

for indoor localization is WiFi signal.
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2.1.4 Time difference of arrival

The TDOA method estimates the difference of the arrival times of the transmitted

signal to any two of the RNs [6]. For example, let t1, t2 denotes TOA for two RNs.

Since there is no synchronization between the target node and the reference nodes,

the transmission time of signal from the TN is unknown. Let d1 and d2 denote the

distance between the two RNs and the TN. The distance difference between the

TN and two RNs can be modeled as:

d2,1 = d2 − d1 = c(t2 − t1) (2.3)

Figure 2.4: Hyperbola theory of TDOA measurement.

The location TN can be determined via the hyperbolas location theory [6,15],

as illustrated in Figure 2.4. The axes x and y in Figure 2.3 is used to form the
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grid, with no unit. The hyperbola is a set of points at a constant range-differences

from two RNs. In 2-D, TDOA needs at least three RNs to locate the TN. Two

hyperbolas can be formed with three RNs, and the intersection of these two hy-

perbolas is the TN that needs to be estimated. However, TDOA measurement

requires precise synchronization between RNs.

2.2 Multipath Channel Model

Multipath propagation is commonly encountered for radio communication. The

result is that the transmitted radio signal arrives at the receiving antenna via two

or more paths. Multipath can be modeled by using the impulse response of the

channel. Consider the ideal case when the transmitted signal is a Dirac delta

function, expressed as:

x(t) = δ(t) (2.4)

The received signal through a multipath channel can be modeled as [1, 16]:

h(t) =

Lp∑
l=1

hlδ(t− τl) (2.5)

where hl and τl are the complex amplitude and the time delay of the lth path,

respectively, and Lp denotes the total number of paths. The complex amplitude

hl can be further expressed as:

hl = αle
jφl (2.6)
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where αl is the magnitude of the lth path, and φl is the phase of the lth path.

Thus, the received signal can be further expressed as [16]:

h(t) =

Lp∑
l=1

αle
jφlδ(t− τl) (2.7)

In the presence of time variation of the geometrical reflection conditions, the

impulse response is also time varying, for which the related quantities should be

written as:

αl = αl(t)

φl = φl(t)

τl = τl(t)

(2.8)

Moreover, Eq. (2.7) can be used to model both LOS and NLOS channels.

The common model of the UWB propagation channel is based on the IEEE

802.15.3a standard model. The IEEE 802.15.3a channel model is developed from

h(t) =

Lp∑
l=1

hlδ(t− τl) (2.9)

which can be further expressed as [17]:

h(t) = X

L∑
l=0

K∑
k=0

αl,kδ (t− Tl − τl,k) (2.10)

where αl,k denotes the multipath gain coefficient of the kth path in the lth cluster,

Tl represents the delay of the lth cluster, τl,k is the delay of the kth path in the lth



12

cluster, and X models the log-normal shadowing effects [17]. The IEEE802.15.3a

channel has four sub-models:

1. CM1: Based on LOS (0-4m) channel measurements;

2. CM2: Based on NLOS (0-4m) channel measurements;

3. CM3: Based on NLOS (4-10m) channel measurements;

4. CM4: A model that is generated to fit a 25 ns root mean-square (RMS)

delay spread to represent an extreme NLOS case;

This thesis will use CM4 model for high-precision and reliable simulation result.

2.3 Time of Arrival Estimators

According to the previous discussion, an accurate ranging result is the foundation

of TOA localization. There are several existing methods for TOA estimation. For

example, maximum likelihood (ML) and threshold-based methods [13,18,19].

2.3.1 Maximum likelihood estimator

The ML estimator aims to find out the propagation delay value τ which maximizes

the correlation between the received signal and transmitted signal [20]. The ML

estimator can be implemented by using a matched filter (MF) as shown in Figure

2.5.
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Figure 2.5: The classic MF scheme.

In this figure, r(t) is the received signal, u(t) is the output of the matched

filter whose impulse response is denoted by p(t). The square law device is used to

maximize the peak value of u(t). The output of the square law device is denoted

as v(t).

The main idea of the ML estimator is to use the correlation function to find out

the time delay value. Two basic coefficients of ML estimator are the path arrival

times τ̂ and their respective amplitudes α̂. Let us assume the number of paths L

is known. The amplitude and the arrival time vector can be denoted respectively

as [20]

α̂ = [α1, α2, ..., αL]T (2.11a)

τ̂ = [τ1, τ2, ..., τL]T (2.11b)

The ML estimates of τ̂ and α̂ can be expressed as [6]

τ̂ = arg max
τ

χT (τ)R−1(τ)χ(τ) (2.12a)

α̂ = R−1(τ)χ(τ) (2.12b)
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where R(τ) is the autocorrelation matrix of p(t) with elements Ri,j = (τi − τj),

χ(τ) is the correlation between the received signal and differently delayed replicas

of the transmitted pulse, given by [6]

χ(τ) =

∫ T

0

r(t)[p(t− τ1)...p(t− τL)]Tdt (2.13)

where T is the observation time interval.

ML estimators are known to be asymptotically efficient, that is, they can

achieve the Cramer Rao Lower Bounds (CRLB) in the high-SNR region because

it can fully recover the transmitted signal after the matched filter. However, it

requires the implementation at the Nyquist sampling rate or higher [20]. It leads

to a high computational complexity, which limits its applications.

2.3.2 Energy detector based estimator

An energy detector (ED) is easier to implement than the ML estimator since

it requires a lower sampling rate than the ML estimator. Although its overall

accuracy is not as good as that of the ML estimator, it is easier than the ML

estimator to detect the first arrival peak [6]. With the ED, the received signal is

illustrated in Figure 2.6.
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Figure 2.6: The received signal with an energy detector.

In Figure 2.6, Tf is the time duration of a whole frame, Tc is the time duration

of each subinterval (i.e., chip interval), NT is the total number of subintervals, thus

Tf = NTTC . A commonly used ED-based TOA estimator is shown in Figure 2.7.

Figure 2.7: The commonly used ED-based estimator.

The received signal is first passed through a bandpass zonal filter (BPZF) with

center frequency f0 and bandwidth W . It is used to eliminate the out-of-band

noise. The output of the BPZF can be written as [6]

r(t) = s(t) + i(t) + n(t) (2.14)

where i(t) is the interfering term depending on the nature of the interference [6],
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s(t) can be modeled as [6]

s(t) =
Nt−1∑
n=0

ω (t− cnTc − nTf ) (2.15)

where Nt is the total number of sub-intervals of the received signal, Tc is the chip

duration, Tf is the frame duration [6], cn is a time-hopping coefficient, and the

ω(t) is modeled as [6]

ω(t) =

√
Es
Nt

L∑
l=1

αlp(t− τl) (2.16)

where L is the number of paths, αl, l = 1, ..., L, is the path gains, τl, l = 1, ..., L,

is the path delay, Es is the received energy per symbol, Nt is the total number of

received sub-intervals, and p(t) is the Dirac Delta function.

Let νn,k be the noise component after energy detection, which is an Nt × K

matrix, where K is the number of samples. The elements of νn,k can be expressed

as [6]

νn,k =

∫ (k+1)Tint

kTint

|rn(t)|2dt, n = 0, ..., Nt − 1, k = 0, ..., K − 1. (2.17)

where rn(t) is the portion of the signal after the BPZF.

T [·], shown in Figure 2.7, is a linear or nonlinear transformation, outputting a

signal z[n], which is used to detect the first path [6]. z[n] is modeled as:

z[n] = T [νn,k] , k = 0, ..., K − 1. (2.18)
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The TOA can be determined by finding out the first arrival subintervals (i.e.,

the exact number n in Figure 2.6, n = 1, ..., NT ). The ED-based estimator will be

the focus of this research because of its simplicity. The goal is to find the arrival

time slot of the first peak by setting a proper threshold value related to the SNR

at the receiver.
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Chapter 3: Threshold Selection Based on SNR

3.1 Motivation

Current techniques have not established the relationship for the threshold selection

and the SNR. An adaptive threshold for channels with varying noise levels and

signal levels will improve TOA estimate accuracy. There are extensive literature

studying how to improve the accuracy of timing detection in the TOA measurement

through an adaptive threshold selection [4,5,21,22]. However, most of them either

assume SNR value is known or neglect the SNR value. A fixed threshold value is set

by observing a large set of collected received data in [4]. An adaptive normalized

threshold method is proposed in [5], which takes into consideration of the minimum

and the maximum values in the received signal. Both of these two threshold

selection methods did not consider SNR.

The SNR at the receiver will affect received signal characteristics. SNR is a

measure used to compare the level of a desired signal to the level of background

noise. The definition of SNR is expressed as:

SNR =
σ2
Signal

σ2
Noise

(3.1)

where σNoise and σSignal are the standard deviations of noise signal and transmitted

signal, respectively.
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According to [23], the expression for the threshold can be expressed as:

ξ = σn ·Q−1(Pfa) + µn, (3.2)

where σn represents the noise variance, Q−1(·) represents the inverse Q-function,

Pfa denotes the false alarm probability, and µn is the mean value of the noise

signal.

Furthermore, the false alarm probability can be expressed as [24]:

Pfa = np ·
log 2

nfa
(3.3)

where np is the number of integrated pulses, which represents the number of puls-

es in one detected symbol, nfa is false alarm number, defined as the number of

pinpoints exceeding the threshold value in the received signal.

The research in [22, 24] substitutes the false alarm probability Pfa into the

original threshold expression. It turns out that the threshold expression can be

expressed as:

ξ = σnoise ·Q−1
(

log 2

nfa

)
+ µnoise (3.4)

Eq. (3.1) and Eq. (3.4) show that the SNR has a significant impact on the

threshold value selection. Thus, a new comprehensive threshold-selection method

based on the SNR is needed.
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3.2 Theory Development

The threshold based estimation can be done via three common algorithms: maxi-

mum energy selection (MES), maximum energy selection with search-back (MES-

SB), and threshold comparison (TC).

3.2.1 Maximum energy selection

MES is the simplest way to estimate TOA among these three algorithms [4, 6]. It

mainly detects the strongest energy block from the beginning of the time frame,

which can be evaluated as [4]:

τ̂ =

[
arg max

1≤n≤Nb

z[n]

]
Tb

= nmaxTc

(3.5)

where nmax represents the block having the largest energy, Tb is the time duration

of a block, and Nb is the total number of block per frame. It means that the TOA

is the largest energy block’s corresponding time bin, as shown in Figure 3.1.
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Figure 3.1: Algorithms for threshold-based TOA estimation.

However, this method cannot give an accurate estimate since the largest ener-

gy block in many cases may not be the leading energy block [4]. Additionally, its

performance decreases as Nb increases because as Nb increases the probability that

a noise block become the maximum-energy block increases.

3.2.2 Maximum energy selection with search-back

The MES-SB is an improved version of the MES [4]. The MES-SB is based on the

detection of the largest sample and a search-back procedure. The search begins

from the largest sample in the signal z[n], with index nmax. z[n] is the signal after

a linear or nonlinear transformation (as shown in Figure 2.7). The search proceeds

element by element backward in a window of length Wsb until the sample under

test goes below the threshold ξ. The size of Wsb is based on the channel statistics.
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The TOA estimate is given as:

τ̂MES−SB = [minn|z̃[n] < ξ + nmax −Wsb − 1]Tb (3.6)

where z̃[n] = [z[nmax −Wsb]z[nmax −Wsb + 1]...z[nmax]].

An open issue of this method is to decide of the size of Wsb. A proper size

depends primarily on the accuracy of channel estimator [6].

3.2.3 Threshold comparison

The TC criterion is based on the timing detection of the first arrival peak, and

hence the estimated TOA, through comparing each element of z[n] within the

observation interval Tf to a threshold. The threshold can be found by using the

existing fixed threshold value method or the adaptive threshold selection method.

The time of the first block that exceeds the threshold is the estimated TOA, which

is expressed as:

τ̂TC = min{n|z[n] > ξ} · Tb. (3.7)

where ξ is the threshold.

A proper threshold value should be designed depending on the received signal

characteristics, the operating condition, and the channel characteristics. The fixed

threshold method is designed based on the evaluation of the probability of early
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detection Ped, which is modeled as [4, 6]

Ped = 1 +
(1− q0)ntoa − 1

ntoaq0
(3.8)

where ntoa is the actual first arrival peak (shown in Figure 3.1). q0 is a variable

built according to the characteristic of the centralized chi-square distribution with

M degree of freedom, which is given as [6]

q0 = exp(−TNR)

M/2−1∑
i=0

TNRi

i!
(3.9)

where TNR = ξ/N0, N0 denotes the noise power; M = 2NbTfW , Nb is the total

number of subintervals, Tf is the time duration of a frame, and W is the bandwidth

of the transmitted signal [6].

Eqs. (3.8) and (3.9) show that the threshold ξ can be determined through

TNR, corresponding to a target value of Ped. However, this design of the threshold

value depends neither on the received signal characteristic nor on the channel

characteristics.

Based on the fixed threshold selection method, the work in [4] proposes to

use the normalized adaptive threshold, where the threshold value ξ is based on

the received signal statistics. The normalized adaptive threshold value can be

evaluated by using the minimum and maximum energy sample values, which is

expressed as:

ξnorm =
ξ −min{z[n]}

max{z[n]} −min{z[n]}
(3.10)
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where ξnorm is the normalized adaptive threshold value.

The criterion of the normalized adaptive threshold selection method can be

illustrated through Figure 3.2. However, this method does not consider the channel

characteristics or the SNR value at the receiver.

Figure 3.2: Illustration of the adaptive normalized threshold selection method.

3.3 Adaptive TOA Threshold Selection Method Based on Channel

SNR

In this section, an adaptive threshold selection method is proposed. The proposed

method is based on two assumptions:

• There is a channel estimator which can estimate the relatively accurate SNR

value at the receiver.

• The transmitter and receiver are synchronized.

According to the sampling criterion of the ED-based estimator, the received signal

after sampling is shown in Figure 3.3. NT is the total number of subintervals,

which is the sample index as well; ntoa is the index of the true first arrival peak; Tf

is the frame duration; Tc is the time duration of a subinterval. The frame duration
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Tf is determined by the transmitted signal structure. The frame starting point

is decided by observing the figures of the transmitted and received signals. The

total number of received pulses will be set as Np, which is the size of the receiv-

ing windowWs, that is, the number of pulses that the receiver can store per process.

Figure 3.3: Received signal after sampling.

With the assumption of that the channel estimator is accurate, the SNR value

at the receiver can be evaluated. After evaluating the received power Es, which is

the sum of the received signal power and noise power, the power of the received

signal Ei, (i = 1, 2, ..., Np) can be calculated. The process can be expressed as:

Ei
N0

= SNR

Ei +N0 = Es

(3.11)

The peak values Ap(p = 1, 2, ..., Np) of each received pulse can be calculated

after knowing the value of Ei. Thus, the minimum and the maximum peak values

among the Np pulses can be obtained, respectively, denoted as Amin and Amax.

The work in [21] uses the fixed threshold method to find a threshold value ξ1
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by setting an acceptable Ped value. The threshold value ξ1 can be used to detect

the exact position of the first arrival peak in one received pulse, denoted as ntoa.

A mean absolute error (MAE) is applied to analyze the fixed threshold method

in [21], which can be modeled as [4]

eabs =

NT∑
n=1

PD(n)× |n− ntoa| (3.12)

where PD(n) is the probability of detecting an arbitrary block n, which can be

expressed as [4]

PD(n) =

[
NT−1∏
n=1

P (z[n] < ξ)

]
× P (z[n] > ξ) (3.13)

where z[n] has a central chi-square distribution for n = 1, 2, ..., ntoa − 1, and non-

central chi-square distribution for n = ntoa [4]. By applying the MAE algorithm

(Eqs. (3.12)-(3.13)) to this thesis, MAE could be calculated, denoted as ebias in

this thesis. The ntoa and ebias values are set as the reference parameters in this

proposed method.

The threshold selection loop can be named as area searching (AS). The average

value between Amin and Amax is set as the first threshold value TH11 for AS,

expressed as:

TH11 =
Amin + Amax

2
. (3.14)

The area between Amin and Amax has been separated into two areas by TH11.

Area 1 is from Amin to TH11, and the rest is area 2. The indexes for the first arrival
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peak can be found by using the threshold value TH11, which can be obtained by

an Np × 1 vector, denoted by ntoa11. A total of Np true ntoa values are used to

form the reference vector with the same dimension as ntoa11, named ntoa. The

vector ntoa11 will be compared with the reference vector ntoa. A bias vector eb

can be found by comparing these two vectors, expressed as:

eb = ntoa11 − ntoa. (3.15)

An average bias value eb1 can be found by calculating the mean value of the

absolute value of eb. If eb1 > ebias, then the threshold value TH11 will be compared

to the corresponding amplitude of ntoa, named A(ntoa), to decide which searching

area to conclude in. If A(ntoa) − TH11 < 0, it means the threshold value needs

to be decreased. Thus, the searching area concludes in area 1. The next re-set

threshold value TH12 will be the average value between Amin and TH11, expressed

as:

TH12 =
Amin + TH11

2

=
Amin + Amin+Amax

2

2
.

(3.16)

If A(ntoa)− TH11 > 0, it means the threshold value needs to be increased. Thus,

the searching area concludes in area 2. The next re-set threshold value TH12 will

be the average value between TH11 and Amax, expressed as:

TH12 =
TH11 + Amax

2

=
Amin+Amax

2
+ Amax

2
.

(3.17)
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The AS will be kept implementing till eb1 satisfies eb1 ≤ ebias. TH1i, i = 1, 2, ...

at the stopping time will be the final threshold value TH.

The process illustrated above is used to find a threshold value in one pulse.

The remaining Np − 1 pulses will have the same process as the first pulse. The

coefficients setting will be introduced in the simulation part. Also, the simulation

result for the proposed method will be introduced.
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Chapter 4: Simulation

4.1 Simulation Setting

The simulated time-of-arrival system can be separated into four major parts: the

transmitter, the channel, the receiver, and the estimator blocks, as shown in Figure

4.1.

Figure 4.1: System block diagram.

TX is the transmitter block; it generates and transmits a wideband signal (for

example, pulsed ultra wideband signal). CH is the channel block; it creates the

multipath transmission environment. RX is the receiver block; it receives the

transmitted signal. Also, the filters in the receiver are assumed to filter out the

interfering signals. The estimator block implements the sampling process and the

proposed algorithm. Also, the ADC in the estimator block is used to transform

the analog signal to digital signal.
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4.1.1 Transmission block

The detailed construction of the transmission block is shown in Figure 4.2, where

a pulsed ultra wideband (UWB) signal is used as an example. The UWB sequence

block in Figure 4.2, a connecting block between Simulink and Matlab, is used to

generate the ultra wideband signal by using the generated math function and the

corresponding data; the bernoulli binary generator is used to generate a random se-

quence; the product block is used to produce the on-off keying (OOK) modulation.

Figure 4.2: Construction of the transmitter.

The UWB sequence block is used because Simulink does not have an ultra

wideband signal generator. The information sent from Matlab to the UWB se-

quence block is the generated Gaussian-like pulse UWB signal. The Gaussian-like

pulse is expressed as:

G(τ) =

(
1− 4π × (

t

τ
)2
)
× exp

(
−2π × (

t

τ
)2
)
, (4.1)

where τ is the input for the Gaussian-like pulse, set as 0.35 in the simulation, which
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is used to define the magnitude of the pulse; t gives the pulse’s segment numbers

in the time domain, which is from -50 to 50, with a step size of 0.05.

Figure 4.3: A single Gaussian-like pulse.

Figure 4.4: Fourier transform of transmitted signal.

The section duration for Tf is 70ns. Figure 4.3 shows the zoomed-in part of
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the Gaussian-like pulse, and Figure 4.4 shows the frequency domain transmitted

signal, obtained by taking the Fourier transform of the time-domain signal, and is

expressed as:

F (f) =

∫ ∞
−∞

f(t)e−2πtfdt. (4.2)

where G(τ) in Eq. (4.1) is the transmitted signal f(t).

The size of the receiving window Ws, introduced in the proposed algorithm, is

Np = 20. Thus, 20 Gaussian like pulses (with the same expression as Eq. (4.1))

are put together having the same period and the same section time Tf . In terms

of modulation, OOK can be modeled as:

s(t) = A(t)g(t) (4.3)

where s(t) is the modulated signal; A(t) is the key for OOK modulation, whose

value is either 0 or 1; g(t) is the ultra wideband signal.

4.1.2 Channel block

The construction of the channel block is shown in Figure 4.5. The whole channel

block in Simulink can be shown in Figure 4.6, which is provided in [25]. It can sim-

ulate the multipath transmission environment. This channel block can create the

IEEE 802.15.3a line of sight (LOS) and the non-line of sight (NLOS) environments.

In order to increase the accuracy and the reliability of the simulation result, an ad-
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ditional Gaussian noise generator is applied. An example of the output of channel

block, including the Gaussian noise in the frequency domain is shown in Figure 4.7.

Figure 4.5: Construction of the channel block.

Figure 4.6: IEEE 802.15.3a channel block.
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Figure 4.7: Transmitted signal after channel.

Since the channel block has an additional Gaussian noise generator, it can

be used to control the SNR value by changing the noise variance in the noise

generator. In this simulation, the noise variance for the low SNR region is set to

[1.5 × 10−4, 15 × 10−4], which corresponds on SNR range of 14dB to 21dB. The

noise variance [1.5× 10−5, 15× 10−5] corresponds the high SNR region, from 23dB

to 32dB.
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4.1.3 Receiver block

The construction of the receiver block is shown in Figure 4.8. The signal first passes

through a band pass filter (BPF), which is used to eliminate the out band noise

signal. The bandwidth of the BPF is set to be 1GHz, from 0.9GHz to 1.9GHz.

The signal then arrives at the low noise amplifier (LNA), which is used to amplify

the signal. In general cases, it is required to have a 20dB bent, 10 times of gain.

The signal will then pass through a square function and an integrator after the

LNA. The square function is the square law device, which is used to amplify the

peak value of the signal for the algorithm in the estimator block. The integrator is

a low pass filter, which connects the square law device as an energy detector. The

stop frequency is set as 1.9GHz, and the pass frequency is set as 1GHz in the LPF.

The effects of each sub-block in the receiver block presented above are shown in

Figure 4.9.

Figure 4.8: Receiver blocks in Simulink.
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Figure 4.9: Signal waveform at various points of the receiver.
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4.1.4 Estimator block

The estimator block is used to sample the received signal, and to implement the

proposed algorithm after sampling. The sub-sampled signal is shown in Figure

4.10, where the upper figure is the whole sub-sampled received signal, and the lower

figure is one section of the sub-sampled received signal. The proposed algorithm

is implemented based on the sub-sampled received signal.

Figure 4.10: Sub-sampled received signal.
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4.2 Result and Analysis

This section analyzes the results of the proposed algorithm in two areas: one is the

relationship between the threshold value and the SNR; the second is the ranging

error performances with the proposed algorithm.

4.2.1 Relationship between the threshold value and the SNR value

at the receiver

Here we focus on assessing how SNR at the receiver affects the threshold value.

The SNR value at the receiver is divided into two regions in this simulation to

have a clearly observation, which are the low SNR value region (the SNR value

is from approximately 14dB to about 21dB), and the high SNR value region (the

SNR value between 23dB and 31dB).

The relationship between the threshold and the SNR in low SNR region is

shown in Figure 4.11. It can be seen that the threshold value increases as the SNR

value decreases. A decreasing SNR means that the noise power increases while the

power of the received signal remains the same. The threshold value is optimized

to minimize the false alarm probability, which has been introduced in Chapter 3.

Thus, the decrease of the SNR leads to an increase of the threshold value in the

low-SNR region. The relationship between the threshold and SNR in the high SNR

region is shown in Figure 4.12, which shows that the threshold value also increases

as the SNR value decreases.
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Figure 4.11: The threshold in the low-SNR region.

Figure 4.12: The threshold in the high-SNR region.
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From the above two figures, we arrive at the following conclusion: the relation-

ship between the threshold and the SNR value is that the threshold value would

increase as the SNR value decreases.

Next we describe the process of determining an approximate mathematical

expression to represent the above relationship. Specifically, we establish the rela-

tionship between the SNR value and the threshold value by using the expressions

of the probability of detection and the probability of the false alarm [26, 27]. The

probability of detection can be expressed as [26]

PD = 0.5× erfc(
√
− lnPfa −

√
SNR + 0.5) (4.4)

where erfc(·) is the complementary error function, Pfa is the false alarm proba-

bility. The complementary error function erfc(·) can be expressed as:

erfc(x) = 1− 2√
π

∫ x

0

e−v
2

dv. (4.5)

According to [27], the probability of false alarm, Pfa, can be expressed as:

Pfa = 1− Γ(
VT√
np
, np − 1) (4.6)

where VT is the threshold value, Γ(·) is the gamma function, and np is the total

integrated numbers of subintervals. The gamma function is expressed as [24]

Γ(s, x) =

∫ ∞
x

ts−1e−tdt (4.7)
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where s is VT√
np

in Eq. (4.6) and x is np − 1 in Eq. (4.6).

From Eqs. (4.4)-(4.7), we conjecture that the relationship between the thresh-

old value and the SNR could be approximated by using either the exponential func-

tion or the Gaussian function. Firstly, we make an attempt to fit the Threshold-

SNR curve using an exponential function. It turns out that a two-term exponential

function expressed as

f(x) = a · e(b·x) + c · e(d·x) (4.8)

fits the SNR-threshold results well. In Eq. (4.8), the curve coefficients a, b, c, d

could be could be determined by using the simulation results. Figure 4.13 shows

the fitting results: the upper figure is the curve for the low SNR value region, and

the lower figure is the curve for the high SNR value region.

Another attempt is to use the following three-term Gaussian function

f(x) = a1e
−( (x−b1)

c1
)2

+ a2e
−( (x−b2)

c2
)2

+ a3e
−( (x−b3)

c3
)2

(4.9)

to fit the SNR-threshold relationship. The curve coefficients ai, bi, ci, i = 1, 2, 3, a-

gain can be determined by using the threshold-SNR simulation results. Compared

to the Gaussian fitting, the exponential fitting results is a better match.
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Figure 4.13: Two-term exponential curve fitting result
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Figure 4.14: Three-term Gaussian curve fitting result

4.2.2 Ranging error performance

This section presents the ranging error performance for the proposed algorithm.

The performance is evaluated by calculating the mean absolute error (MAE), which

is the average difference between the estimated first arrival peak and true first



44

arrival peak. Ranging error is expressed as:

Ranging error = eM · Tc · c (4.10)

where eM is the MAE, Tc is the sub-interval duration, and c is the speed of light.

The method to find the true indexes of the first arrival peak is presented in

the proposed algorithm. After getting the true first arrival peak’s indexes, the

simulation takes 75 different SNR values ranging from 21dB to 31dB to record

the estimated indexes. The estimated indexes and true indexes can be used to

calculate the MAE. The following table shows the matrix of the mean values of

MAEs at 75 different SNR values, in which the first row are the pulse indexes and

the second row are the corresponding MAE values.

Pulse 1 3 4 6 7 8 12 13 15 16

MAE 1.107 0.467 0.873 0.433 0.460 0.413 0.420 0.433 0.927 0.433

Table 4.1: MAEs at 75 different SNR values

The following table shows the ranging error values, where the first row means

the index of the pulses, and the second row are the ranging error values (the unit

is meter).
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Pulse 1 3 4 6 7 8 12 13 15 16

Ranging error 0.92 0.39 0.73 0.36 0.38 0.35 0.35 0.36 0.77 0.36

Table 4.2: Ranging error values at 75 different SNR values

The mean value of MAEs is 0.597, which means the ranging error is about

0.50m. During the process of evaluating the MAE, there is a concern that the

proposed threshold algorithm might result in a relatively low-accuracy detection

of the first arrival peak when the SNR value is lower than a certain value. The

following table shows the estimated indexes (shown as ’Block No.’ in the table) of

the first arrival peak in low-SNR region, 13dB-21dB.

Pulse No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Block No. 17 0 17 17 24 19 18 18 0 0 0 16 17 0 17 20

Table 4.3: The estimated indexes of the first arrival peak in low-SNR region

The average difference between the estimated indexes and true indexes is 1.1.

The ranging error under 13dB-21dB is 0.924m, which is much larger than 0.50m

(the mean ranging error for 75 SNR values). Such result is expected though.
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Figure 4.15: Ranging error performance of the proposed algorithm.

Figure 4.16: Ranging error performance of the proposed algorithm.
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The relationship between the mean error and the SNR is presented in Figure

4.15. It shows that the mean error decreases as the SNR value increases. Also, it

shows that the threshold has a relatively stable value after 33dB. Figure 4.16 shows

the comparison of the mean error between using the normalized threshold method

and the proposed threshold method. Compared to the normalized threshold value,

the proposed threshold method gains a higher accuracy in the region 21dB to 29dB.

The normalized threshold method performs better in the range of 29dB to 32dB.
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Chapter 5: Conclusion and Future Work

5.1 Conclusion

This thesis focus on finding a new threshold selection method, which takes SNR

into consideration, to improve the accuracy of indoor positioning. Also, it focus

on modeling the relationship between the threshold and SNR. Setting a proper

threshold based on the received SNR is important for achieving highest positioning

accuracy possible. However, existing methods that use a fixed threshold or the

normalized threshold do not take SNR into consideration. We have developed an

adaptive threshold method that optimizes its value based on SNR. We evaluate the

performance of the proposed threshold method by calculating the MAE values, the

ranging error values at different SNR values, and compare its performance with

that of the normalized threshold method. It is observed that the proposed method

performs better than the normalized threshold method. We also developed a two-

term exponential function that establishes the relationship between the threshold

and SNR, allowing the relationship to be conveniently used in practical systems.

5.2 Future Work

Firstly, an adaptive threshold algorithm to improve the accuracy of the ToA esti-

mation result needs to be developed for operation in the low-SNR region. Secondly,
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the Gaussian range-error (noise) model is commonly used in the literature, but such

model has not been proven to be suitable for all practical cases. A comprehensive

noise model will be valuable. Thirdly, a model relates the SNR at the receiver and

the ToA estimation error will be very useful.



50

Bibliography

[1] C. Falsi, D. Dardari, L. Mucchi, and M. Win, “Time of arrival estimation
for uwb localizers in realistic environments,” EURASIP Journal on Applied
Signal Processing, vol. 2006, pp. 152–152, 2006.

[2] D. Dardari, C. Chong, and M. Win, “Analysis of threshold-based toa esti-
mators in uwb channels,” in Proceedings of 14th European Signal Processing
Conference (EUSIPCO06), 2006.

[3] I. Guvenc and Z. Sahinoglu, “Threshold selection for uwb toa estimation based
on kurtosis analysis,” Communications Letters, IEEE, vol. 9, no. 12, pp. 1025–
1027, Dec 2005.

[4] I. Guvenc, “Low complexity toa estimation for impulse radio uwb systems,”
IEEE Journal on Selected Areas in communication, 2005.

[5] I. Guvenc and Z. Sahinoglu, “Threshold-based toa estimation for impulse radio
uwb systems,” in Ultra-Wideband, 2005. ICU 2005. 2005 IEEE International
Conference on, Sept 2005, pp. 420–425.

[6] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Win, “Ranging with
ultrawide bandwidth signals in multipath environments,” Proceedings of the
IEEE, vol. 97, no. 2, pp. 404–426, Feb 2009.

[7] I. Guvenc and C. Chong, “A survey on toa based wireless localization and nlos
mitigation techniques,” Communications Surveys Tutorials, IEEE, vol. 11,
no. 3, pp. 107–124, rd 2009.

[8] N. Alsindi, B. Alavi, and K. Pahlavan, “Empirical pathloss model for indoor
geolocation using uwb measurements,” Electronics Letters, vol. 43, no. 7, pp.
370–372, March 2007.

[9] R. Peng and M. Sichitiu, “Angle of arrival localization for wireless sensor net-
works,” in Sensor and Ad Hoc Communications and Networks, 2006. SECON
’06. 2006 3rd Annual IEEE Communications Society on, vol. 1, Sept 2006,
pp. 374–382.



51

[10] P. Brida, J. Machaj, J. Benikovsky, and J. Duha, “A new complex angle of
arrival location method for ad hoc networks,” in Positioning Navigation and
Communication (WPNC), 2010 7th Workshop on, March 2010, pp. 284–290.

[11] I. Guvenc, Z. Sahinoglu, and P. Orlik, “Toa estimation for ir-uwb systems
with different transceiver types,” Microwave Theory and Techniques, IEEE
Transactions on, vol. 54, no. 4, pp. 1876–1886, June 2006.

[12] T. Gigl, P. Meissner, J. Preishuber, and K. Witrisal, “Ultra-wideband system-
level simulator for positioning and tracking (u-spot),” in Indoor Positioning
and Indoor Navigation (IPIN), 2010 International Conference on, Sept 2010,
pp. 1–9.

[13] D. Dardari, C. Chong, and M. Win, “Threshold-based time-of-arrival estima-
tors in uwb dense multipath channels,” Communications, IEEE Transactions
on, vol. 56, no. 8, pp. 1366–1378, August 2008.

[14] I. Guvenc and Z. Sahinoglu, “Low complexity toa estimation for impulse radio
uwb systems,” Mitsubishi Electric Research Labs, 2005.

[15] H. Elkamchouchi and M. Mofeed, “Direction-of-arrival methods (doa) and
time difference of arrival (tdoa) position location technique,” in Radio Science
Conference, 2005. NRSC 2005. Proceedings of the Twenty-Second National,
March 2005, pp. 173–182.

[16] N. Alsindi, B. Alavi, and K. Pahlavan, “Measurement and modeling of ul-
trawideband toa-based ranging in indoor multipath environments,” Vehicular
Technology, IEEE Transactions on, vol. 58, no. 3, pp. 1046–1058, March 2009.

[17] G. Reddy, “Indoor uwb communication system model,” International Journal
Of ENGINEERING SCIENCES AND RESEARCH TECHNOLOGY, vol. 3,
no. 11, pp. 45–50, November 2014.

[18] I. Valera, B. T. Sieskul, and J. Mı́guez, “On the maximum likelihood estima-
tion of the toa under an imperfect path loss exponent,” EURASIP Journal on
Wireless Communications and Networking, vol. 2013, no. 1, pp. 1–21, 2013.

[19] W. Wang, T. Jost, C. Mensing, and A. Dammann, “Toa and tdoa error models
for nlos propagation based on outdoor to indoor channel measurement,” in
Wireless Communications and Networking Conference, 2009. WCNC 2009.
IEEE, April 2009, pp. 1–6.



52

[20] O. Bialer, D. Raphaeli, and A. Weiss, “Efficient time of arrival estimation
algorithm achieving maximum likelihood performance in dense multipath,”
Signal Processing, IEEE Transactions on, vol. 60, no. 3, pp. 1241–1252, March
2012.

[21] D. Dardari, C. Chong, and M. Win, “Threshold-based time-of-arrival estima-
tors in uwb dense multipath channels,” Communications, IEEE Transactions
on, vol. 56, no. 8, pp. 1366–1378, August 2008.

[22] W. Liu, H. Ding, X. Huang, and Z. Liu, “Toa estimation in ir uwb ranging
with energy detection receiver using received signal characteristics,” Commu-
nications Letters, IEEE, vol. 16, no. 5, pp. 738–741, May 2012.

[23] A. Maali, A. Mesloub, M. Djeddou, H. Mimoun, G. Baudoin, and A. Ouldali,
“Adaptive ca-cfar threshold for non-coherent ir-uwb energy detector receiver-
s,” Communications Letters, IEEE, vol. 13, no. 12, pp. 959–961, December
2009.

[24] G. Mao, B. Fidan, G. Mao, and B. Fidan, Localization Algorithms and S-
trategies for Wireless Sensor Networks. Hershey, PA: Information Science
Reference - Imprint of: IGI Publishing, 2009.

[25] T. Davis, MATLAB primer. CRC press, 2010.

[26] H. Meikle, Modern Radar Systems(2nd Edition). Artech House, 2008.

[27] B. Mahafza, Radar Systems Analysis and Design Using MATLAB, 1st ed.
Boca Raton, FL, USA: CRC Press, Inc., 2000.




