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Abstract Body 

The research objective is to assess the performance of the SPN transport method, with 

a traditional finite volume spatial discretization in Cartesian geometry, on source 

detector problems relevant to urban detonation of an improvised nuclear device. In 

particular, we observe the character of the solution as a function of the number of 

angular moments. To perform this investigation, we develop a computer code that 

calculates the solution of the linear system of equations of the SPN method with finite 

volume spatial differencing given information about the radiation source, SPN order, 

nuclear data, spatial mesh and boundary conditions. Matlab is used as the 

programming platform. The software is verified via comparison with analytic results and 

independent numerical results in slab geometry. Upon completion of the comparison we 

investigate the quality of the solution of complicated 3D problems and the effect of 

angular expansion order on the quality of results using the industry standard Monte 

Carlo code MCNP5 results but it is found that the quality of solution improves with 

increasing expansion order, but errors arising out of poor spatial resolution cannot be 

reduced with increasing expansion order.  
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Assessing the Quality of Three Dimensional Simplified Spherical Harmonic (SPN) 

Radiation Transport Solution to Source Detector Problems 

 

INTRODUCTION and BACKGROUND 

The threat of nuclear terrorism is fairly widely known and the possibility of such an 

attack cannot be ignored. It therefore becomes essential that a tool be developed that 

would effectively help us predict the damage from these events. The best way to 

combat such events is of course to prevent them from occurring but in the event of a 

radiological dispersal device or an improvised nuclear device detonation in an urban 

setting, we must assess the damage and mitigate its ill effects.  

The ability to predict the dispersal of relevant radioactive material through air and the 

transport of radiation from that material in the environment is a necessary component of 

this emergency response. This simulation tool involves a three stage development 

process: 

1. Develop a 3-D radiation transport code and assess its performance 

2. Develop an aerial particle/particulate dispersal code and assess its 

performance 

3. Unify the transport and dispersal codes to generate the radiological dispersal 

code and assess its performance 

The prediction of the radiological dispersal gives an estimate of the relevant radiation 

source distribution. 
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This thesis describes an attempt at the execution of the first step of the previously 

stated strategy - generation and verification of a three dimensional transport code 

written for idealized system assuming energy and time independence along with 

isotropic scattering. 

All such transport codes require application of the transport theory. The next section will 

talk about the transport theory.  

 

1.1 Transport Theory 

Predicting the distribution of radiation in different systems, begins with general 

mathematical formulation of the problem. Transport theory provides the relevant 

mathematical framework for the radiation distribution. The transport equation was 

derived by the Ludwig Boltzmann more than a century ago. The equation was used to 

describe the kinetic behavior of gases, and is still used for that purpose. The same 

equation can be used describe the transport of neutral particles: photons and neutrons.  

This integro-differential equation is an accounting of the number of particles entering, 

number of particles leaving, the number of particles created, and the number of particles 

extinguished (absorbed) in the phase space of interest. Analytic solution of the transport 

equation is impossible in most realistic situations - numerical simulation is most often 

required. This can take significant computational power and mathematical skill as 

solution can be a complex function of seven independent variables – space (3), 

direction (2), time (1) and energy (1). 
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There are two broad categories of methods used to solve transport problems:  

1. Monte Carlo or stochastic methods   

2. Deterministic methods  

Many deterministic methods have been developed throughout the past sixty years. 

These methods begin with the general transport equation with dependence on energy, 

space, time and angular position and involve discretizing the equation in all the 

independent variables to yield a linear system of equations.  

In this research, we assume steady state, isotropic scattering and energy 

independence. The steady state and energy independence assumptions render the 

complex transport equation in the following form:  

Ω� ������� 	 
���������� � 
������ 	

��������� ���� � ������ ��������
�  

Where, 

Ω = particle direction vector; Φ = scalar flux; σt = macroscopic total cross section;  � = 
angular flux; Q = Source 

Note: See appendix B for the derivation of this equation 

 

1.2 Discretization Methods 

There is a vast literature base on computational methods for radiation transport 

problems. Methods of discretizing the angular variable of the transport equation fall 

into categories: 

1. Discrete Ordinates 
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2. Functional Expansion 

The discrete ordinates method represents the unknown angular flux by its values at a 

discrete set of angles. In other words, the angular domain is discretized into a mesh of 

discrete points. Angular integrals are performed by numerical quadrature.  

The functional expansion method involves an expression of the angular dependence 

of the flux in a finite number of known functions. These functions are polynomials (in 

one dimension) or spherical harmonics (on the unit sphere). The property of 

orthogonality is very important while using this method. (Duderstadt and Hamilton, 

1976). The method involves solving a set of equations for the coefficients in the 

expansion.  

In the ‘Simplified PN’ (SPN) technique, the angular variable is expanded in Legendre 

polynomials (1D spherical harmonic functions) transforming the integro- differential 

Boltzmann equation into a coupled set of elliptic partial differential equations.  

Other function expansion methods use the spherical harmonic functions and\or Fourier 

series expansion. 

Discretizations of the  spatial variable are categorized as: 

1. Characteristic methods   

2. Finite Element methods 

3. Finite Volume methods 
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Characteristic methods use the method of characteristics to analytically invert the 

streaming plus collision operator in the discrete ordinates equation. It uses exact 

equation, given an assumed form of an incident flux and the source. (Palmer, 2011) 

Finite Element methods restrict the spatial variation of the transport solution to a fixed 

(user defined) functional space. (Palmer, 2011) 

The Finite Volume methods involve integration of the transport equation over user 

defined volumes - usually cells of the discretization mesh - to obtain a conservation 

equation over that volume. The "balance equations" are exact but involve cell average 

and cell-surface unknowns. Closure approximations, relating cell-surface to cell-average 

quantities, are used to generate a linear system of equations for the cell-average 

unknowns.  (Palmer, 2011) 

A finite volume spatial discretization is used in this thesis. The choice of spatial and 

angular discretizations dictate the accuracy of the numerical transport solution.  

1.3 Approach 

The basic approach is to develop a computer code that calculates the solution of the 

linear system of equations of the SPN method with finite volume spatial differencing 

given information about the radiation source distribution, SPN order, nuclear cross 

section data and boundary conditions. The software is verified using comparisons with 

exact solutions, symmetry, and comparisons with independent numerical results in slab 

geometry. The effect of angular expansion order on the quality of results for source 



6 
 

detector problems is investigated and comparisons with an industry standard Monte 

Carlo code MCNP5 are made.   
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2 Software Production 

The following four step procedure is used for the production of the SPn-FVM transport 

code: 

1. Discretize the relevant transport equation form with respect to angle 

2. Discretize the relevant transport equation form with respect to space 

3. Derive relevant equations for vacuum and reflecting boundary conditions 

4. Put the discretized equation set in a matrix equation form and solve the system 

to get the desired scalar flux distribution  

Relevant transport equation (as stated in Section 1.1):  


�� ������� 	 ����������� � 
������ 	
���������� ���� � ��������������
�

 

 

2.1 Angular Discretization 

Upon using the spherical harmonic expansion in plane geometry, and carrying out all 

the calculations one obtains the following SP2n-1 equations:  

� 	 !
" 	 !#�$%&'(��� 	 � 

" 	 !#�$%&)(��� 	 ��*�$%&��� � +,���-&, 

� 	 �
" 	 .#�$%&'%��� 	 � 	 !

" 	 .#� $%&��� 	 ����$%&'(�*� � / 

where 2n-1 represents the moment of flux and -&,
 represents the Kronecker delta 

function.  

Note: For derivation see Appendix C 
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 Now, eliminate the odd moments to obtain the only even moments form of the SP2n-1 

equations. Follow the following steps to get there: Find Φ%&'(�*�  and Φ%&)(�*�from the 

above equations  and substitute them in the first equation of the SP2n-1 equations. Upon 

doing that, the following general equation is obtained: 

#� � 0!��*� #$%&)%���� � 
� 	 !

� 
" 	 ! 	 #� � 0!��*� #$%&����� � 

� 	 !
� 

" 	 ! 	
� 	 !
" 	 !

� 	 !
" 	 .�

	 #� � 0!��*� #$%&'%���� � 	 !
" 	 !

� 	 !
" 	 . 	 ��*�$%&��� � +,���-&, 

This equation in turn can then be written as the general condensed equation: 

#� � !
��*� #�12�� 0 ���� 	 � � / 

which is a tri-diagonal matrix where, 

2 � 3$,
�*�
$%�*�
� � � � $%&)%���4T 

� � 
 3+,���

/
� � � � � /4T 

(Coilini et. al., 2002) 

The differential operator in the condensed equation can be diagonalized by representing 

F as a linear combination of eigenvectors Wb of matrix C as 

2 � 5 $676869( �  

(Coilini et. al., 2002) 
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From the properties of Legendre polynomials, eigenvalues of A can be related to zeros 

of P2n(µ) as eigen values = :;2 . Also, according to the properties of biorthogonal basis 

(Ua) formed by eigenvectors of the adjoint matrix of A and the eigenvectors of A, the first 

component of the basis is chosen to be 1 and eigenvectors are normalized such that 

Ua.Wb=the Kronecker delta function, the first component of Wa turns out to be the weight 

wa of the Gauss Legendre integration scheme. Thus by substituting the flux expansion 

term in the general condensed equation, and taking scalar product with Ua, one 

observes that 

$, �
<$6=6
8

69(
 

(Coilini et. al., 2002) 

and that the general equation takes the following form 

#� � :;%��*� #$;���� 0 ����$; 	 +,��� � 
/







=>?*?
�@ � !��� � � � A� 

where,  

+,��� � �B���5 $6=6869( 	 C���  
(Coilini et. al., 2002) 

The above equation set is used in the code and represents an SPN angular 
discretization on the relevant form of the Boltzmann transport equation. 
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2.2 Spatial Discretization 

Upon observing the SPN - angle discretized transport equation, it is clear that the only 

complicated term in the equation is the streaming term. We use the traditional Finite 

Volume method to discretize the gradient term and using the assumption that the slope 

on both sides of the node is same, we formulate the following general equation:  

DE)F
0GHE)FHIJEKLIKMJ
HIJEKNE)F 	 HE)FKNE 	DE'F

0GHE'FHIJEKLIKMJ
HIJEKNE'F 	 HE'FKNE 	DJ)F

0GHJ)FHIJEKLIKNE
HIJEKMJ)F 	 HJ)FKMJ

	DJ'F
0GHJ'FHIJEKLIKNE

HIJEKMJ'F 	 HJ'FKMJ	
DI)F
0GHI)FHIJEKMJKNE
HIJEKLI)F 	 HI)FKLI	
DI'F

0GHI'FHIJEKMJKNE
HIJEKLI'F 	 HI'FKLI0
DIJE O 0GHI'FHIJEKMJKNE

HIJEKLI'F 	 HI'FKLI
	 0GHI)FHIJEKMJKNE
HIJEKLI)F 	 HI)FKLI 	

0GHJ'FHIJEKLIKNE
HIJEKMJ'F 	 HJ'FKMJ 	

0GHJ)FHIJEKLIKNE
HIJEKMJ)F 	 HJ)FKMJ 	

0GHE'FHIJEKLIKMJ
HIJEKNE'F 	 HE'FKNE 	

0GHE)FHIJEKLIKMJ
HIJEKNE)F 	 HE)FKNE

	 
IJEKLIKMJKNEP � 
Q���<DRSR
T

R9F
	 U��� 

where, 

V � :;%��*� 

Note: See Appendix D for derivation. 

The above equation represents general discretized SPN-FVM difference equation and is 

extensively used in the transport code.  

2.3 Boundary Conditions 

The only calculation required before an algorithm can be written is that of the boundary 

conditions. Two boundary conditions have been considered here - vacuum & reflecting. 
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Reflected boundary: The coefficient of the term on which the reflecting boundary is 

placed becomes zero. At the same time the term associated with that boundary term in 

the summation of 
ΦWXY also goes to zero. For example, if the k-1th  term in the general 

discretized SPN-FVM difference equation has a reflected boundary, then that equation 

becomes: 

DE)F
0GHE)FHIJEKLIKMJ
HIJEKNE)F 	 HE)FKNE 	DE'F

0GHE'FHIJEKLIKMJ
HIJEKNE'F 	HE'FKNE

	DJ'F
0GHJ'FHIJEKLIKNE

HIJEKMJ'F 	 HJ'FKMJ	
DI)F
0GHI)FHIJEKMJKNE
HIJEKLI)F 	 HI)FKLI	
DI'F

0GHI'FHIJEKMJKNE
HIJEKLI'F 	 HI'FKLI	
DIJE O GHI'FHIJEKMJKNE

HIJEKLI'F 	 HI'FKLI
	 GHI)FHIJEKMJKNE
HIJEKLI)F 	 HI)FKLI 	

GHJ'FHIJEKLIKNE
HIJEKMJ'F 	 HJ'FKMJ 	

GHE'FHIJEKLIKMJ
HIJEKNE'F 	 HE'FKNE 	

GHE)FHIJEKLIKMJ
HIJEKNE)F 	HE)FKNE 	 
IJEKLIKMJKNEP

� 
Q���<DRSR
T

R9F
	 U��� 

Similarly if the j-1th term has a reflected boundary, that equation changes. 

Vacuum boundary: The coefficient of the term on which vacuum boundary is placed 

becomes zero (the term vanishes from the equation and hence from the matrix). The 

term associated with that boundary in the summation term of 
ΦWXY changes to %Z[\
]^_^'%Z[ 

where �`
represents the cell-average total cross section, a`
represents the cell 

dimension normal to the boundary and :; is the Gauss Legendre ordinate for specific 

moment.  

For example, the j-1th term in general discretized SPN-FVM difference equation has a 

vacuum boundary, the equation becomes: 
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DE)F
0GHE)FHIJEKLIKMJ
HIJEKNE)F 	 HE)FKNE 	DE'F

0GHE'FHIJEKLIKMJ
HIJEKNE'F 	 HE'FKNE 	DJ)F

0GHJ)FHIJEKLIKNE
HIJEKMJ)F 	 HJ)FKMJ

	DJ'F
0GHJ'FHIJEKLIKNE

HIJEKMJ'F 	 HJ'FKMJ	
DI'F
0GHI'FHIJEKMJKNE
HIJEKLI'F 	 HI'FKLI0
DIJE O 0GHI'FHIJEKMJKNE

HIJEKLI'F 	 HI'FKLI
	
GbcGKMJKNE
dLd 	 Gbc 	

0GHJ'FHIJEKLIKNE
HIJEKMJ'F 	 HJ'FKMJ 	

0GHJ)FHIJEKLIKNE
HIJEKMJ)F 	 HJ)FKMJ 	

0GHE'FHIJEKLIKMJ
HIJEKNE'F 	 HE'FKNE

	 0GHE)FHIJEKLIKMJ
HIJEKNE)F 	 HE)FKNE 	 
IJEKLIKMJKNEP � 
Q���<DRSR

T

R9F
	 U��� 

Note: For derivation of boundary conditions see Appendix E. 

 

2.4 Algorithm 

The following algorithm is used to generate the SPN-FVM transport code: 

1. Create the spatial and angular discretization matrix 

• Ask for user input of angular discretization order, total number of cells in x 

direction, total number of cells in y direction, total number of cells in z 

direction, cell-wise dimensions in x, y and z directions, cell averaged total 

cross-sections, cell averaged scattering cross sections, boundary conditions, 

weights of Gauss quadrature set for specified order, ordinates of the Gauss 

quadrature set for specified order 

• Generate vectors that specify the indices of cells that are on the boundaries: 

first create the vector that contains indices of cells on the left boundary by 

creating a vector starting from 1 and going to i*j*k (total number of cells in 

mesh) with a spacing of i between each element; then generate a vector that 

contains indices of cells on the right boundary similarly but with the vector 
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starting from i instead of 1. Then generate the vector containing indices of 

cells on the northern boundary and southern boundary by creating for loops 

as shown in the code (in Appendix H); Then after create vector having indices 

on top and bottom of the cubical/cuboidal system by creating a vector from 1 

to i*j to represent cells on the top boundary and a vector from i*j*k-i*j+1 to i*j*k 

to represent cells on the bottom boundary. Spacing in both cases must be 1. 

• Upon doing that, start a general for loop going from 1 to order of angular 

discretization 

• Define an empty matrix that takes the form of the coefficient matrix after 

necessary loops are executed 

• Initiate an if loop which according to the iteration number of the greater for 

loop generates a vector containing cell wise cell averaged diffusion 

coefficients  

• Under the if statement, start a new for loop from 1 to i*j*k that would go on to 

generate the coefficient matrix using to equations 5, 6 and 7. Under the local 

for loop, create a zero row vector containing i*j*k elements. Generate entries 

in the row vector that correspond to the coefficients of flux elements along z, x 

and y directions. To make entries in the row vector for the z direction, start an 

if statement and test for non existence of iteration number of local for loop in 

vectors containing upper and lower boundary cell numbers. Upon validation 

make entries in the (iteration number - i*j)th term (iteration number + i*j)th term 

and (iteration number)th term using equation 5. If that condition does not hold, 

test if the cell is on upper boundary using the vector containing numbers cell 
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indices on the upper boundary. If the test succeeds,  then there is no entry 

required for the (iteration number - i*j)th term and enter the (iteration number + 

i*j)th  term in the row vector. Next test for the boundary condition using 

boundary condition input vector and enter the (iteration number)th term in the 

row vector according to equation 6 or 7. If the iteration number does not 

correspond to any number in the vector containing indices for the upper 

boundary, it means that the cell exists on the bottom boundary. The (iteration 

number - i*j)th entry is made in the row vector while the (iteration number + 

i*j)th term is not entered since it cell is on the bottom boundary of the mesh. 

Then after boundary condition test is carried out using an if statement and 

relevant entries are made to the (iteration number)th term of the row vector in 

accordance with equations 6 and 7.  

• A similar logic is used for entry of coefficient terms along x and y directions.  

The terms along the x direction are the (iteration number ± 1)th terms and 

boundary conditions tested are for the left and right boundary. The terms 

along the y direction are (iteration number ± i)th terms and the boundary 

conditions are tested for north and south boundaries. Once all seven terms 

corresponding to coefficients coming from streaming term are entered into the 

row vector, the coefficient corresponding to the reaction rate is added to the 

(iteration number)th term. The first cycle of this loop hence creates the row 

vector that corresponds to the first cell of the mesh. Once all i*j*k iterations 

are executed, a coefficient matrix is obtained and the local for loop is 

terminated. Upon its termination, a new matrix is generated which serves as 
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the first row block of the final discretization coefficient matrix. The formation of 

this new row block is shown in the code.  

• After the local if statement is ended, and the coefficient matrix is set to an 

empty matrix. 

•  The same exact code block is repeated with changing if statements and 

changing row block matrices. The if statement checks for the global for loop 

iteration number and accordingly creates the diffusion coefficient vector and 

uses it to create a new row vector representing that diffusion coefficient. The 

number of block rows increases and keeps on increasing till the complete 

matrix is formed as the global for loop iteration number becomes equal to the 

order specified by user.  

• Now the final and complete coefficient matrix representing the set of angularly 

and spatially discretized set transport equations has been generated.  

2. Upon creation of the spatially and angularly discretized matrix, perform 

source iteration to obtain flux moments 

• Ask the user to input the cell-averaged source along with tolerance 

• Generate the source vector by multiplying cell volume by the cell sources 

using a for loop 

• Generate the vector that contains cell wise product of cell averaged scattering 

cross section and cell volume using a for loop. Call it the scattering vector 
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• Now create the fixed source by repeating the source vector (expansion 

order/2) number of times and creating a greater column vector. This is the 

vector that goes into the matrix equation representing S(r). 

• Generate initial flux guess for the iteration term on the RHS of the equation. 

This is a zero vector with i*j*k*order elements 

• Set the error to 1 and then start a while loop that goes on until the error value 

is below the tolerance value entered by the user 

• Under the while loop start a new for loop that generates the vector that 

representing scattering and on which the iteration is carried out 

• Under this for loop, element-wise multiply the previously generated scattering 

vector, corresponding quadrature weight and intital flux guess. 

•  Sum the vectors obtained as a result of each iteration and create the new 

vector by repeating the summed vector (expansion order/2) number of times 

to create a vector that order number of times longer using a new for loop. 

Now add the new summed vector and the fixed source vector to obtain final 

source vector that is used in flux calculation. 

• Set old equal to the initial guess 

• Now generate new flux using the backslash operator to solve the matrix 

equation 

• Set new equal to newly obtained flux  

• Set initial guess equal to the initial source 

• Find maximum error using new and old vectors  

• The loop keeps repeating till that error goes below preset tolerance value 
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3. Generate the scalar flux 

• Use the equation Φ, �
5 Φ6=6869( 
to obtain the scalar flux. Divide the 

converged flux row vector obtained after execution of the while loop into order 

number of row vectors of length i*j*k.  

• Multiply relevant row vectors element wise with respective quadrature weights 

and the add these row vectors to get the scalar flux. Use a simple for loop to 

carry out this step.  

4. Plot the scalar flux with respect to spatial position 

• To plot the scalar flux with respect to position - varying x and y with fixed z, 

divide the flux vector into k number of row vectors of size  i*j. Choose k and 

hence extract the kth section of the scalar flux vector of size i*j 

• Reshape the vector into a i*j matrix using the reshape function 

• Using meshgrid function, create a mesh that corresponds to the recently 

created matrix cell wise - determines spatial position along mesh 

• Plot the flux using surfc function 

The required plot depicting the flux distribution in the system can now be obtained by 

creating a code along the lines of the above algorithm. 
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3 Software Verification 

Four methods are employed in this thesis for the verification of the software: 

1. Trend Test 

2. Symmetry Test 

3. Method of Exact Solutions 

4. Comparison Test 

Trend testing: For trend testing, a set of calculations are carried out using various input 

parameters and an attempt is made to discover an emerging trend. In order for the code 

to pass the trend test, the trend that emerges from the set of calculations performed 

using the code must match the expected trend. It is the lowest of bars for a code to pass 

and hence is used generally in the code development stage. 

Here, we will gradually increase the lengths of the cells in a source free pure absorber 

system with sources only on the left boundary of the system. There are reflecting 

boundaries on all boundaries except for the one on the right side which is a vacuum 

boundary. 

Test problem: 7 by 7 by 7 system with l=b=h=1cm, 5cm, and 7cm. The absorption 

cross section in the system is 0.5 and is equal to the total cross section as the system is 

a pure absorber and the source on left is 6 /cc/s. A pictorial representation of the system 

is given in figure 1. The red area indicates the source region and the blue area indicates 

the source free region of the system. The lighter face in the picture indicates vacuum 

boundary and the darker faces are reflecting boundaries.   
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                                   Figure 1        

Expected result: The peak on left boundary must approach the infinite medium solution 

magnitude, here 12. The following plots show the results of this test problem: 

 

Figure 2 

 

Figure 3 
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Figure 4 

Observe that the shape of flux is similar to that of an exponential curve which is the 

expected solution of the source free pure absorber problem.  

Figures 1, 2 and 3, show that as the length of the cells is increased, the effects of the 

boundary condition fade away and infinite medium solution is obtained. Here the infinite 

medium solution is 12 and is clearly approached as the length of the cells is increased. 

This was the expected trend and hence the code passes the trend test.  

 

Symmetry testing: This method of testing incorporates checking for solution symmetry 

which can be tested without prior knowledge of exact solution. We set up a problem 

which must have a symmetric solution and then execute the problem using our code. A 

symmetric solution reduces the probability of the code being flawed. This is the first and 

only case to be tested here. The two other cases generally used, that are not used here, 

are checking for coordinate invariance and performing a symmetric calculation using a 

3D code. (Knupp, 2000) 
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Test problem: Consider a 5 by 5 by 5 mesh for a system of with l=b=h=2cm for each 

cell. Let the cell averaged total cross section across the mesh be 0.5 /cm and the cell 

averaged scattering cross section be 0.2 /cm across the mesh. Let all boundaries be 

vacuum and the source in all cells be 6 /cc/s. The resultant plot must be symmetric to 

pass this test 

 

 

 A pictorial representation of the mesh can also 

be seen in the picture to the left.  

The plot below, for z=4.5, is symmetric. 

 

Figure 6 

All slices through the mesh display the symmetry expected in the solution.  
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Method of exact solutions:  Here, we solve simple problems for which exact solutions 

are available, and compare numerical and analytic solutions. In particular, we consider 

an infinite homogeneous medium We model infinite medium by placing reflecting 

boundaries around the system.  

Test problem: Consider a 5*5*5 mesh for a system of with l=b=h=2cm for each cell. Let 

the cell averaged total cross sections across the mesh be 0.5 /cm and the cell averaged 

scattering cross section be 0.2 /cm across the mesh. Let all boundaries be reflecting 

and the source in all cells be that of 6 /cc/s. The resultant plot must be flat to pass this 

test and the magnitude of flux must be 20.  

Figure 7 shows a plot of the solution at z=4.5cm.  

 

Figure 7 

This flat solution of flux = 19.9993 is true throughout the spatial domain. 

 

Comparison Test: Here, the solution obtained from the code being tested is compared 

with the solution of another existing transport code. The code is considered to have 

passed the test if the results are significantly close.  
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The comparison code used here is a slab geometry discrete ordinates-linear 

characteristic transport code. To compare with this 1D code, the length of the system in 

one of the three dimensions is made considerably longer than that the other two 

dimensions and the faces along both of those dimensions are made reflecting.  

 

Test problem:  3 material/region system 

1st region:  

• Cell averaged total macroscopic cross section = 1.5 /cm; cell averaged 

macroscopic scattering cross section = 0 /cm 

• 15 (by 3 by 3) system where l = b = h = 1 cm 

• There is a source of 20 /cc/s in all the cells  

 

2nd region 

• Cell averaged total macroscopic cross section = 0.0000001 /cm; cell averaged 

macroscopic scattering cross section = 0 /cm 

• 25 (by 3 by 3) system where l = b = h = 1 cm 

• There is a source of 0 /cc/s in all the cells. This is a void region  

 

3rd region: 

• Cell averaged total macroscopic cross section = 3 /cm; cell averaged 

macroscopic scattering cross section = 2 /cm 

• 10 (by 3 by 3) system where l = b = h = 1 cm 

• There is a source of 10 /cc/s on the right boundary cell/s. 
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The left and right boundaries are vacuum and all others are reflecting.  A pictorial 

representation of the system is as follows: 

 

Figure 8 

The red cells represent source containing cells. The dark blue cells and those between 

them are the cells for which the solution is plotted.  

The SPN solution in the x, y, and z directions are shown with the LC solution in figure 9.  

 

 

Figure 9 
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Figure 10 

 

Figure 9 above is the regular solution plot and figure 10 is a semilog solution plot. The 

plots agree fairly well except in the void region. Note: See Appendix G for numerical 

solution values 

 

The results of these test problems suggest that the code is functioning properly. The 

next section will assess the behavior of SPN solution with increasing expansion order on 

complex 3D problems.  
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4 Software Solution Assessment - Methodology and Results 

The purpose of this thesis is to assess the SPN solution of 3D transport problems with 

increasing expansion order. We define a test problem mimicking a simplistic, 

miniaturized urban setting with suspended fixed aerial source. Figure 11 shows this 

geometry. 

 

 

Figure 11 

In this problem, l=b=h=1cm. For the extruded blue structures, σ = 0.55 /cm;  σs = 0.35 

/cm; for rest of  the system σ = 0.1 /cm; σs = 0.03 /cm. Source= 3000 /cc/s in the 

elevated red region. There are vacuum boundary conditions on all external faces, and 

the grid is 10 by 10 by 10. Each of these extruded structures has dimensions - 2 cm by 

2 cm by 8 cm and are located at a diagonal distance of 1.41 cm from the respective 

nearest corners on the bottom face of the system. The source, 1 cm by 1cm by 1cm 
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cell, is at a height of 7 cm from the system base and is at a distance of 4 cm from both 

left and front faces of the system.  

To obtain a benchmark flux distribution in the above system, the problem was simulated 

in MCNP5 to obtain flux distribution. See Appendix G for the MCNP deck. 

Figure 12 shows an SP14 flux profile for the slice at z = 9.5 cm of the test system with 

respect to x and y. The profile shows a peak at (4.5, 4.5, 9.5) directly above the source 

and reduces exponentially in the low cross section region (which for this slice is the 

entire slice domain) as expected. The average error in the solution for this slice with 

respect to MCNP solution about 4%.  

 

Figure 12 

 

The flux distribution for different slices is different. A complete set of flux distribution 

plots from the SP12 simulation has been provided in appendix J.  

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

10
0

50

100

150

200

250

300

 

 

F
lu

x 

50

100

150

200

250



28 
 

The average relative error obtained for various slices of the system (z = 0.5, 1.5, 2.5, 

3.5, 4.5, 5.5, 6.5, 7.5, 8.5, and 9.5 cm) is plotted in figure 13. 

 

Figure 13 

Note: See Appendix I for numerical data. 

The following plot represents average error through the system as a function of 

expansion order. 

 

Figure 14 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

Re
la

ti
ve

 E
rr

or

z

SP6 Average error

SP 8 Average error

SP10 Average error

SP12 Average error

SP16 Average error 

SP18 Average error

SP20 Average Error

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

0 5 10 15 20 25

Re
la

ti
ve

 E
rr

or

Expansion Order

Average system error



29 
 

The plots presented in this section indicate that as the expansion order is increased, the 

accuracy of the solution increases.  

A few discrepancies are, however, seen in the data set.  

• The average error for the first slice is ~22% and does not decrease significantly 

with increasing expansion order.  

• The average error in the eighth slice containing slice containing the source 

remains high with increasing expansion order.  

• The error stops decreasing with increasing expansion after SP14. 

The magnitude of average error in the z = 0.5 cm and z =7.5 cm slices have a common 

underlying trend - they are relatively well behaved everywhere except when the cells 

are on and around the corners of the system. This may be a result of sudden cross 

section change as particles go from relatively thicker (of extruded structures) to thinner 

air material in the system. There is likely not enough spatial resolution to capture these 

gradients in the solution. A refinement of the mesh is necessary but due to 

computational constraints, an extensive study of mesh refinement and resulting 

improvement in the quality of solutions cannot be presented here.  

Note: SP12 errors for the slice at z = 0.5 cm has been tabulated and plotted in Appendix 

J. 

An analysis of the data shows that the error for the 10 by 10 by 10 mesh, stops 

changing rapidly once the expansion order hits 14 . This indicates that the solutions of 

the given system are starting to converge in the angular variable. Figure 13 shows that 

the errors converge to 0.3% as the expansion order goes from 16 to 18.  
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Conclusion 

 

We have developed a capability for solving the energy independent, steady state 

transport equation using an SPN-FVM discretization transport code which was tested 

using various methods. We tested the software on a variety of problems and compared 

the solution of a complicated three dimensional problem against a  benchmark solution 

from an MCNP5 simulation. 

Solution quality improved drastically with increasing angular expansion order. The error 

of the solution relative to the MCNP solution did not decrease for the cells on and 

around the corners of the given system. This is attributed to material interfaces around 

the corners and poor spatial resolution. Mesh refinement is required but due to lack of 

computational resources (wasteful coding, actually), a finer mesh was not possible.    

Solutions from the SPN method compare well with solution from an industry standard 

code - MCNP5, for most parts of the system since the system-average error is under 

10% for all expansion orders above 10 in spite of large errors in some of the cells. The 

error, as expected, decreased with incremental expansion order. Increasing the 

expansion order has no significant impact on the errors introduced by the coarseness of 

the spatial mesh.   
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Appendix A - Gauss Legendre Quadrature Sets 

 

Order Weights (±) Abscissa (±) 
 

2 
 

1 
 

 
0.5773502691 

 
4 

 
0.6521451549 
0.3478548451 

 

 
0.3399810435 
0.8611363115 

 
 

6 

 
0.4679139346 
0.3607615730 
0.1713244924 

 

 
0.2386191860 
0.6612093864 
0.9324695142 

 
 

8 

 
0.3626837834 
0.3137066459 
0.2223810344 
0.1012285363 

 

 
0.1834346424 
0.5255324099 
0.7966664774 
0.9602898564 

 
 
 

10 

 
0.2955242247 
0.2692667193 
0.2190863625 
0.1494513492 
0.0666713443 

 

 
0.1488743389 
0.4333953941 
0.6794095682 
0.8650633663 
0.9739065285 

 
 
 

12 

 
0.2491470458 
0.2334925365 
0.2031674267 
0.1600783286 
0.1069393260 
0.0471753364 

 

 
0.1252334085 
0.3678314989 
0.5873179542 
0.7699026741 
0.9041172563 
0.9815606342 

 
 
 

14 

 
0.2152638534632 
0.2051984637213 
0.1855383974779 
0.1572031671582 
0.1215185706879 

0.08015808715976  
0.03511946033175 

 
0.1080549487073 
0.3191123689279 
0.5152486363582 
0.6872929048117 
0.8272013150698 
0.9284348836636  
0.9862838086968 
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Weights (±) Abscissa (±) 
 
 
 
 

16 

 
 

0.1894506104551 
0.1826034150449 
0.1691565193950 
0.1495959888166 
0.1246289712555 

0.09515851168249 
0.06225352393865 
0.02715245941175 

 
 

 0.09501250983764 
0.2816035507793 
0.4580167776572 
0.6178762444026 
0.7554044083550 
0.8656312023878 
0.9445750230732 
0.9894009349916 

 
 
 
 
 
 

18 

 
0.1691423829631 
0.1642764837458 
0.1546846751263 
0.1406429146707 
0.1225552067115 
0.1009420441063 

0.07642573025489 
0.04971454889497 
0.02161601352648 

 

 
0.08477501304174 
0.2518862256915 
0.4117511614628 
0.5597708310739 
0.6916870430604 
0.8037049589725 
0.8926024664976 
0.9558239495714 
0.9915651684209 

 
 
 
 
 

20 

 
0.1527533871307 
0.1491729864726 
0.1420961093184 
0.1316886384492 
0.1181945319615 
0.1019301198172 

0.08327674157670 
0.06267204833411 
0.04060142980039 
0.01761400713915 

 

 
0.07652652113350 
0.2277858511416 
0.3737060887154 
0.5108670019508 
0.6360536807265 
0.7463319064602 
0.8391169718222 
0.9122344282513 
0.9639719272779 
0.9931285991851 
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Appendix B - Derivation of the Steady State, Mono-Energetic Transport Equation 

Particle conservation in phase space dictates that, the rate of change = production rate - 

loss rate. Under steady state, production rate - loss rate = 0. 

Particle production: Particles are provided from the following sources 

• Fixed source 

• In volume creation - fission, thermal emission etc. (not taken into account here, 

since target problem set doesn't include such events) 

• Streaming in 

• In-leakage in momentum space (not considered here due to assumption of 

mono-energetic source) 

• Out scatter    

Particle Loss: 

• Out leakage 

• Absorption in the background medium 

• Out leakage in momentum space (not taken into account due to assumption of 

mono-energetic source) 

• Decay (not taken into account due to the assumption of steady state) 

• Out scatter   

Consider neutral particles located in an incremental volume dV located at r travelling 

along the direction dΩ about direction Ω  as indicated in the figure below. Here dV = 

dxdydz 



The polar angle is represented by θ and the azimuthal angle by φ, then 

= the solid angle around θ and φ. Also if 

Suppose N(r, Ω) is the number of neutrons at 

flux, we integrate N(r, Ω) over all possible angles and multiply 

That is, Φ(r) = v over 4π.

flux, Ψ.  The current vector, J 

Now, if n  is the normal to the relevant surface, then 

number of neutrons crossing the surface in positive direction per second per cm

To derive the transport equation, employ a cylindrical volume (replacing the cubic 

volume) in the above figure. 

would be parallel to Ω, the direction of travel. Let the height be ∆u and cross sectional

area be ∆A. The volume therefore is

traveling in the Ω direction is: 

 

 (Bell and Glasstone, 1970) 

he polar angle is represented by θ and the azimuthal angle by φ, then d
= the solid angle around θ and φ. Also if μ
�
cosθ�
d����
�
dφ
dμ
�
sinθ
dθ
dφ�

is the number of neutrons at r travelling in the direction 

over all possible angles and multiply by the neutron speed v.  

over 4π. If the quantity is not integrated, it is the angular 

 = v . 

is the normal to the relevant surface, then nnnn�J�r�J�r�J�r�J�r� = v

number of neutrons crossing the surface in positive direction per second per cm

To derive the transport equation, employ a cylindrical volume (replacing the cubic 

volume) in the above figure. The base of such an element would be at 

, the direction of travel. Let the height be ∆u and cross sectional

The volume therefore is ΔV
�
ΔuΔA. The balance equation for neutrons 
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d����
�
sinθ
dθ
dφ

�
dφ
dμ
�
sinθ
dθ
dφ�  

travelling in the direction Ω. To find the 

by the neutron speed v.    

If the quantity is not integrated, it is the angular 

is the net 

number of neutrons crossing the surface in positive direction per second per cm2 .  

To derive the transport equation, employ a cylindrical volume (replacing the cubic 

The base of such an element would be at r and its axis 

, the direction of travel. Let the height be ∆u and cross sectional 

ce equation for neutrons 
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Number of neutrons leaving from right - number of neutrons leaving from the left = 

number of neutrons scattering in the direction Ω in volume ∆V + total number of 

neutrons emitted in the phase space volume - number of collisions in ∆V per unit time 

(that remove the particles from given phase space) 

Number of neutrons leaving from the right per second: If v = velocity, N�rrrr	Δu�
����� is 

the neutron density at right face of cylindrical volume. If Ω is the direction of travel and   

∆A is the cross sectional area,  

then the number of neutrons through the face = vN�rrrr	Δu�
�����
ΔA
 
Similarly, number of neutrons leaving from the left = vN�rrrr�
�����
ΔA
 
Number of collisions  in the phase space volume: flux at r in direction Ω times the 

probability of collision times the volume of the imaginary cylinder = σt�rrrr�
 vN�rrrr�
 �����
ΔV� 
where σt(r) is the macroscopic total cross section.  

Total in scatter into the phase space: Assuming isotropic scattering, the total number 

of neutrons in any direction per unit time = ΔV
 c�r�σt�rrrr�
 Φ�rrrr�/
 "π�
Where c(r) is the 

number of neutrons produced (scattered into phase space) by collision at r.  

Total number neutrons generated in the phase space volume = ΔV
Q�rrrr�
�
�
�
�� 
Now substitute the equations in balance equation and simplify it  to obtain the following 

form: 

vN�| 	 Δu� �� 
0 
vN�|� ��
Δu � Q�|��� 	 c�r�σ}�|�Φ�|�"π 0 σ}�|�
vN�|� ��
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As limit Δu → 0, the balance equation becomes: 

~vN�|� ��
~� � 
Q�|� �� 	 c�r�σ}�|�Φ�|�"π 0 σ}�|�
vN�|� ��

 

But we know that, 

~
~� � 
 ��a

~a
~� 	

�
��

~�
~� 	

�
��

~�
~� 

which is equal to ����� ��
�
�
�
The equation may be written as follows: 

����� �vN�|� �� 	 σ}�|�vN�|� �� � 
Q�|� �� 	 �������|���|�
��  

The above equation may be rewritten as follows (eliminating the isotropic scatter 

assumption): 

�� �vN�r� �� 	 ���*�vN�r� �� � 
Q�r� �� 	
σ}�*�c�r� � ���� � ��vN�r� ���d����
,  

Where c�r����� � �� is the function representing the angular distribution of neutrons 

emerging from collisions at r. The function ���� � �� is normalized to unity - 

����� � ��d� � ! 

(Bell and Glasstone, 1970) 

and c(r) is the mean number of neutrons emerging from collisions at r. (Bell and 

Glasstone, 1970) 

Now substitute Ψ�|� ��, the angular flux for vN�|� �� in the above equation to obtain 

desired form of the transport equation. 



37 
 

The equation is: 

Ω� � ������� 	 ���*������� � 
���� �� 	
���*���*� � ���� � ���������~����
,  

(Bell and Glasstone, 1970) 
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Appendix C - Derivation of SPN equations 

The following information has been taken from the book Nuclear Reactor theory by Bell 

and Glasstone. 

The final equation derived in Appendix C may be written as follows for plane geometry: 

μ ����� μ��� 	 σ}������� μ� � 
Q��� μ� 	 ��a�σ}���� ~��%�
,


� ���� � ������ μ��dμ�(
)(

 

where x is the mean free path. 

Here the function ���� � �) is expanded using the Legendre polynomials, i.e.  

���� � �� � ��μ �� � 
<�� 	 !
"π

�

�9,
�����μ,� 

By orthogonality of these polynomials,  

�� = 2π� ��μ,����μ,�(
)( dμ, 

with normalization condition  

�/
�
�π � ��μ,�(
)( dμ,
�
!


Now according to the addition theorem of Legendre polynomials,  

��
�μ,�
�
��
�μ����μ��
	
�5 ��)���
��'�����9( ���
�μ�
���
�μ'�cosm�φ 0 φ��


Here, ���
�μ�
are the associated Legendre polynomials.  



39 
 

Now substitute the above relation into the equation for ���� � �� and then substitute the 

resultant relation into the transport equation to obtain the following form of the transport 

equation: 

: ���a� :��a 	 ��a� :� � 
��a� :� 	 �
�<��� 	 !�

�

Y9,
�Y�Y�:�
� ��a� :���Y�:��~:�

(
)(

 

The source and the angular flux can now be expanded in Legendre polynomials to 

obtain the following equations: 

��L� :� �<�� 	 !
"π

�

�9,
Φ�������μ� 

and  

��L� :� �<�� 	 !
"π

�

�9,
Q�������μ� 

Now, according to orthogonality of Legendre polynomials,  

Φ���� � ���a� :����μ�d� � 
�π� ��L� :����μ�d
(
)(

μ
 

Similarly,  

��L� :� � �π� ��L� :����μ�d
(
)(

μ
 

Now, upon using the recurrence relation of Legendre polynomials after substitute the 

above two expansions into the latest form of the transport equation, one obtains the 

following form of the transport equation: 
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<3dΦ���d�
�

�9,
��m 	 !���'(
�μ� 	 
m��)(�μ�  	
��m 	 !�Φ�������μ�4

� c<��� 	 !�
�

Y9,
ΦY�Y�Y�:� 	
<��¡ 	 !�Q�

�

�9,
���:� 

Now, multiply both sides by /�¢ £ �� 	 !�
� �:� and integrate over : from -1 to 1 to 

obtain the following equation using orthogonality of Legendre polynomials:  

�n 	 !� dΦ¤'(���d� 	 �n� dΦ¤)(���d� 	 ��n 	 !��! 0 c�¤�Φ¤��� � ��n 	 !�Q¤��� 

where n = 0, 1, 2 , 3... (Bell and Glasstone, 1970). 

Now divide the equation by 2n+1 and assume isotropic scatter to eliminate  the cfn term 

in the above equation. Also, substitute a spatial variable, z,  for mean free path, x, in the 

above equation, ( ¥¥¦ � ���� ¥
¥_�. Carrying out these steps returns the following form of the 

transport equation: 

 	 !
� 	 !

~
~�Φ&'(��� 	  

� 	 !
~
~�Φ&)(��� 	 ��§�Φ&��� � �&��� 

Now let n=2n to obtain the following form of the transport equation: 

� 	 !
" 	 !

~
~�Φ%&'(��� 	 � 

" 	 !
~
~�Φ%&)(��� 	 ��r�Φ%&��� � +,���-&, 

For n = n+1,  

� 	 �
" 	 .

~
~�Φ%&'%��� 	 � 	 !

" 	 .
~
~�Φ%&��� 	 ��r�Φ%&'(��� � / 
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Now obtain the 3D SPn equations by replacing ¨
¨© by spatial gradient for even flux 

moments and divergence for odd flux moments. Also, replace the spatial dimension z 

with position r to obtain the SPN angular discretization equations: 

� 	 !
" 	 !��Φ%&'(��� 	 � 

" 	 !��Φ%&)(��� 	 ��r�Φ%&��� � +,���-&, 

� 	 �
" 	 .��Φ%&'%��� 	 � 	 !

" 	 .��Φ%&��� 	 ��r�Φ%&'(��� � / 
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Appendix D - Derivation of Finite Volume Spatial discretization 

The final version of the SPN equations (in section 2.1) like the diffusion equation. 

Here, we derive a spatial discretization of the 

diffusion equation and then substitute the derived     

results into the SPN equation.  

Diffusion equation: )¨¨_ �V ¨ª
¨_� 	 �;« � C                                            


 

Source: � ~aCW �
CWΔaW_¬­®/\_¬¯®/\  for the jth cell 

Absorption term: �W � ~a«W � �;W«WΔaW_¬­®/\_¬¯®/\  

Leakage term: � )¨
¨_ V ¨ª

¨_ 
 � 
0V ¨ª
¨_ at �j	!/�
	 V ¨ª

¨_ at �j-!/� 

Assume 0V ¨ª
¨_ at �j	!/� = 0VW ª¬­®/\)ª¬

²_¬/\  = 0VW'( ª¬­®)ª¬­®/\
²_¬­®/\  

Solution of the above equation results in the following equation: 

0V ¨ª
¨_ at �j	!/� = 0�VWVW'( ª¬­®)ª¬

³¬­®²_¬
'³¬´µ¬­® 

Similarly, an equation can also be obtained for 0V ¨ª
¨_ at �j-!/�. Once the gradient values 

are known, a discrete equation set called the difference equation set can be formulated 

to yields a linear system of equations that can be solved using digital computers.  

The 3D case:  

Equation: 0��V�*��Φ 	
�;« � C  

ΦW)(%












ΦW'(% 



ΦW)( ΦW ΦW'( 
 

The mesh used here 
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Source: �; �_^­®\_^¯®\
�¶¬­®\¶¬¯®\

� ~a~�~�·`WX©¸­®\©¸¯®\
 = C`WXKaK�K� 

Absorption term: �; �_^­®\_^¯®\
�¶¬­®\¶¬¯®\

� ~a~�~�Φ`WX
©¸­®\©¸¯®\

= �;Φ`WXKaK�K� 

Leakage term: -�� V�*��Φ = -�� V�*��¥ª¥_ ¹L 	 ¥ª
¥¶ ¹M 	 ¥ª

¥© ¹M�  

= - ¥¥_ �V�*� ¥ª¥_� 	 ¥
¥¶ �V�*� ¥ª¥¶� 	 ¥

¥©V�*� ¥ª¥©� 

Upon integration, �_^­®\_^¯®\
�¶¬­®\¶¬¯®\

� 0� ¥¥_ �V�*� ¥ª¥_� 	 ¥
¥¶ �V�*� ¥ª¥¶� 	 ¥

¥©V�*� ¥ª¥©�
~a~�~�
©¸­®\©¸¯®\

 

= 30V ¨ª
¨_ at �i	!/� + V ¨ª

¨_  at �i-!/� ]
K�K� + [0V ¨ª
¨¶ at yj	!/� + V ¨ª

¨¶ at �j-!/�]
KaK� + 

[0V ¨ª
¨©  at §j	!/� + V ¨ª

¨©  at §j-!/�]
K�Ka 

The above equation is discretized piecewise in the exact same manner the equation for 

1D case. Such a discretization followed by substitution in the final SPN renders the 

transport equation in the following form: 

DE)F
0GHE)FHIJEKLIKMJ
HIJEKNE)F 	HE)FKNE 	DE'F

0GHE'FHIJEKLIKMJ
HIJEKNE'F 	 HE'FKNE 	DJ)F

0GHJ)FHIJEKLIKNE
HIJEKMJ)F 	HJ)FKMJ

	DJ'F
0GHJ'FHIJEKLIKNE

HIJEKMJ'F 	HJ'FKMJ	
DI)F
0GHI)FHIJEKMJKNE
HIJEKLI)F 	HI)FKLI	
DI'F

0GHI'FHIJEKMJKNE
HIJEKLI'F 	HI'FKLI0
DIJE O 0GHI'FHIJEKMJKNE

HIJEKLI'F 	 HI'FKLI
	 0GHI)FHIJEKMJKNE
HIJEKLI)F 	 HI)FKLI 	

0GHJ'FHIJEKLIKNE
HIJEKMJ'F 	HJ'FKMJ 	

0GHJ)FHIJEKLIKNE
HIJEKMJ)F 	HJ)FKMJ 	

0GHE'FHIJEKLIKMJ
HIJEKNE'F 	HE'FKNE 	

0GHE)FHIJEKLIKMJ
HIJEKNE)F 	 HE)FKNE

	 
IJEKLIKMJKNEP � 
Q���<DRSR
T

R9F
	 U��� 

Where, j, k and l represent x, y and z directions respectively. 

The above equation represents flux definition in cells with interior boundaries/interfaces. 
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 Generic short hands used in the above equation: 

$Y)( �
$W�X�Y)( 

$X)( �
$Y�W�X)( 

$W)( �
$X�Y�W)( 

and so on.  
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Appendix E - Derivation of Boundary conditions 

Reflecting Boundary: 

In the case of reflecting boundary, there is zero net flow through the boundary with 

reflecting condition. Hence 0V ¨ª
¨_ at xj»0.5  = 0. Therefore, Φ` �
Φ`»! 

This means that the coefficient term corresponding to the cell on which the reflecting 

boundary is placed gets extinguished in the respective flux term. The term associated 

with that boundary gets extinguished in the central flux �Φ`WX� coefficient term as well.  

The same holds for fluxes in all directions with reflecting boundary 

An example of the equation form with a reflecting boundary on one of the faces has 

been given in section 2.2 

Vacuum Boundary: 

Left boundary 

We know that, ¼½ � 0 Z¾\
]

¥ª
¥_. Upon discretization, the equation takes the following form: 

¼½�(/% � 0:½%�(
«½�( 0 «½�(/%Δa(/�  

Now, at the boundary, 

«½ �
0 Z¾
]

¥ª
¥_ . 
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Upon multiplying the above equation by :½ and moving the negative sign to the other 

side, it is observed that                        ¼½�(/% � 0:½«½�(/% 

Substituting this relation into the discretized equation to derive an equation for  ¼½�(/%  

yields: 

¼½�`/% �
 0�:½%«½�`Δa` 	 �:½ 

The balance equation in cell 1 is:  

¼¿% 0
¼(% 	
�;(Δa(«( � �Δa( 

Where ¼½�^\ from the equation above is substituted for ¼®
\
 (here, the boundary current 

because vacuum boundary is on the left face) in the above equation. ¼À
\

is an on an 

interior boundary in this case and its behavior is dictated by the equations obtained for 

interior boundary in Appendix E. 

For the right boundary, one derives the equation for ¼À
\

which is the vacuum boundary 

current while ¼®
\
 , here, falls on the interior side of the cell. The exact same procedure is 

followed as in the case of left boundary. One finds that ¼À
\
�
 )%Z¾\ª¾

]^²_^'%Z¾ here as well.  

The  currents along all three directions at the boundary with vacuum boundary condition 

are given by the same equation. An example of the vacuum boundary condition 

equation has been given in Section 2.3 along with an explanation of how the discretized 

transport equation changes as vacuum boundaries are applied. 
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Appendix F - Solution File for Comparison Test 

x/y/z SN-LC SPNx SPNy SPNz 
0.5 11.26178 11.91042 11.91042 11.91042 

1.5 13.12915 13.11404 13.11404 13.11404 

2.5 13.29949 13.29331 13.29331 13.29331 

3.5 13.32743 13.32544 13.32544 13.32544 

4.5 13.3323 13.3317 13.3317 13.3317 

5.5 13.33315 13.33298 13.33298 13.33298 

6.5 13.3333 13.33325 13.33325 13.33325 

7.5 13.33332 13.33331 13.33331 13.33331 

8.5 13.33331 13.33328 13.33328 13.33328 

9.5 13.33319 13.3331 13.3331 13.3331 

10.5 13.33251 13.33226 13.33226 13.33226 

11.5 13.32863 13.32819 13.32819 13.32819 

12.5 13.30639 13.30765 13.30765 13.30765 

13.5 13.17134 13.19608 13.19608 13.19608 

14.5 11.73551 12.49134 12.49134 12.49134 

15.5 8.256153 8.778136 8.778136 8.778136 

16.5 8.256152 8.778136 8.778136 8.778136 

17.5 8.256151 8.778135 8.778135 8.778135 

18.5 8.25615 8.778135 8.778135 8.778135 

19.5 8.256149 8.778134 8.778134 8.778134 

20.5 8.256147 8.778134 8.778134 8.778134 

21.5 8.256146 8.778133 8.778133 8.778133 

22.5 8.256145 8.778133 8.778133 8.778133 

23.5 8.256144 8.778132 8.778132 8.778132 

24.5 8.256143 8.778132 8.778132 8.778132 

25.5 8.256142 8.778131 8.778131 8.778131 

26.5 8.25614 8.778131 8.778131 8.778131 

27.5 8.256139 8.77813 8.77813 8.77813 

28.5 8.256138 8.77813 8.77813 8.77813 

29.5 8.256137 8.778129 8.778129 8.778129 

30.5 8.256136 8.778129 8.778129 8.778129 

31.5 8.256135 8.778128 8.778128 8.778128 

32.5 8.256133 8.778128 8.778128 8.778128 

33.5 8.256132 8.778127 8.778127 8.778127 

34.5 8.256131 8.778127 8.778127 8.778127 

35.5 8.25613 8.778126 8.778126 8.778126 

36.5 8.256129 8.778126 8.778126 8.778126 

37.5 8.256128 8.778125 8.778125 8.778125 
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38.5 8.256126 8.778125 8.778125 8.778125 

39.5 8.256125 8.778124 8.778124 8.778124 

40.5 2.567566 1.352136 1.352136 1.352136 

41.5 0.111722 0.146231 0.146231 0.146231 

42.5 0.008769 0.016596 0.016596 0.016596 

43.5 0.000581 0.001928 0.001928 0.001928 

44.5 6.28E-05 0.000334 0.000334 0.000334 

45.5 0.000334 0.00098 0.00098 0.00098 

46.5 0.005018 0.008273 0.008273 0.008273 

47.5 0.063488 0.072902 0.072902 0.072902 

48.5 1.487716 0.674555 0.674555 0.674555 

49.5 6.517739 8.095034 8.095034 8.095034 
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Appendix G - MCNP Input Deck 

 

c     Created on: Thursday, May 26, 2011 at 10:15 
1     2  1.0  4 -5 14 -15 27 -28  imp:n=1 $Source 
2     1  1.0  1 -3 11 -13 33 -28  imp:n=1 
3     1  1.0  7 -9 11 -13 33 -28  imp:n=1 
4     1  1.0  1 -3 17 -19 33 -28  imp:n=1 
5     1  1.0  7 -9 17 -19 33 -28  imp:n=1 
6     2  1.0  31 -10 32 -20 33 -30 #1 #2 #3 #4 #5 imp:n=1 
7     0       10:20:30:-31:-32:-33  imp:n=0 

1     px 1  
c 2     px 2  
3     px 3  
4     px 4  
5     px 5  
c 6     px 6  
7     px 7  
c 8     px 8  
9     px 9  
10    px 10  
11    py 1  
c 12    py 2  
13    py 3  
14    py 4  
15    py 5  
c 16    py 6  
17    py 7  
c 18    py 8  
19    py 9  
20    py 10  
c 21    pz 1  
c 22    pz 2  
c 23    pz 3  
c 24    pz 4  
c 25    pz 5  
c 26    pz 6  
27    pz 7  
28    pz 8  
c 29    pz 9  



50 
 

30    pz 10  
31    px 0.001  
32    py 0.001  
33    pz 0.001  

c     Material Cards 
xs1   92250.12m 1.0 concrete 0 1 1 11 0 0 0.0 
m1    92250.12m 1.0 
xs2   92250.23m 1.0 dair 0 1 1 11 0 0 0.0 
m2    92250.23m 1.0 
mgopt f 1 
c     Source 
sdef   x=d1 y=d2 z=d3 
si1    4.0001 4.9999 
sp1    0 1 
si2    4.0001 4.9999 
sp2    0 1 
si3    7.0001 7.9999 
sp3    0 1 
c     Tally cards 
FMESH4:n geom=xyz imesh=10 iints=10 jmesh=10 jints=10 kmesh=10 kints=10 
         out=ij origin=0.001 0.001 0.001 
nps    400000 
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Appendix H - Generic Code Block Used in the SPN-FVM Code  

The following piece of code is the engine of the SPN-FVM transport code used in this 
thesis.  It is the building block that gets repeated at each step of execution: 

for ordct=1:ord 
    if ordct==1 
        D=(X.^-1).*(Wa(ordct)*Wa(ordct));  %%diffusion coefficient - 
destroyed and recreated with every iteration of the greater for loop 
for count=1:i*j*k 
    row=zeros(1,i*j*k); 
    if any(count==U)==0 && any(count==Do)==0 %%entry in row vector along z 
        row(count-i*j)= -D(count)*D(count-
i*j)*x(count)*y(count)*2/((D(count)*z(count-i*j))+(D(count-i*j)*z(count))); 
        row(count+i*j)= -
D(count)*D(count+i*j)*x(count)*y(count)*2/((D(count+i*j)*z(count))+(D(count)*
z(count+i*j))); 
        row(count)= (D(count)*D(count-
i*j)*x(count)*y(count)*2/((D(count)*z(count-i*j))+(D(count-
i*j)*z(count))))+(D(count)*D(count+i*j)*x(count)*y(count)*2/((D(count+i*j)*z(
count))+(D(count)*z(count+i*j)))); 
    elseif any(count==U)==1 
        row(count+i*j)= -
D(count)*D(count+i*j)*x(count)*y(count)*2/((D(count+i*j)*z(count))+(D(count)*
z(count+i*j))); 
        if BC(5)==0 %%reflected top boundary                    
            row(count)= 
D(count)*D(count+i*j)*x(count)*y(count)*2/((D(count+i*j)*z(count))+(D(count)*
z(count+i*j))); 
        else %%vacuum top boundary 
            row(count)= 
((2*Wa(ordct)*Wa(ordct)*x(count)*y(count))/((X(count)*z(count))+(2*Wa(ordct))
))+(D(count)*D(count+i*j)*x(count)*y(count)*2/((D(count+i*j)*z(count))+(D(cou
nt)*z(count+i*j)))); 
        end 
    else  
        row(count-i*j)= -D(count)*D(count-
i*j)*x(count)*y(count)*2/((D(count)*z(count-i*j))+(D(count-i*j)*z(count))); 
        if BC(6)==0 %%reflected bottom boundary   
            row(count)= D(count)*D(count-
i*j)*x(count)*y(count)*2/((D(count)*z(count-i*j))+(D(count-i*j)*z(count))); 
        else %%vacuum bottom boundary 
            row(count)= 
((2*Wa(ordct)*Wa(ordct)*x(count)*y(count))/((X(count)*z(count))+(2*Wa(ordct))
))+(D(count)*D(count-i*j)*x(count)*y(count)*2/((D(count)*z(count-
i*j))+(D(count-i*j)*z(count)))); 
        end 
    end 
    if any(count==E)==0 && any(count==W)==0 %%entry along x direction 
        row(count-1)= -D(count-
1)*D(count)*y(count)*z(count)*2/((D(count)*x(count-1))+(D(count-
1)*x(count))); 
        row(count+1)= -
D(count)*D(count+1)*y(count)*z(count)*2/((D(count+1)*x(count))+(D(count)*x(co
unt+1))); 
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        row(count)= row(count)+(D(count-
1)*D(count)*y(count)*z(count)*2/((D(count)*x(count-1))+(D(count-
1)*x(count))))+(D(count)*D(count+1)*y(count)*z(count)*2/((D(count+1)*x(count)
)+(D(count)*x(count+1)))); 
    elseif any(count==E)==1 
        row(count+1)= -
D(count)*D(count+1)*y(count)*z(count)*2/((D(count+1)*x(count))+(D(count)*x(co
unt+1))); 
        if BC(1)==0 %%reflected east boundary 
            
row(count)=row(count)+(D(count)*D(count+1)*y(count)*z(count)*2/((D(count+1)*x
(count))+(D(count)*x(count+1)))); 
        else %%vacuum east boundary 
            
row(count)=row(count)+((2*Wa(ordct)*Wa(ordct)*z(count)*y(count))/((X(count)*x
(count))+(2*Wa(ordct))))+(D(count)*D(count+1)*y(count)*z(count)*2/((D(count+1
)*x(count))+(D(count)*x(count+1)))); 
        end 
    else 
         row(count-1)= -D(count-
1)*D(count)*y(count)*z(count)*2/((D(count)*x(count-1))+(D(count-
1)*x(count))); 
         if BC(2)==0 %%reflected west boundary 
             row(count)=row(count)+(D(count-
1)*D(count)*y(count)*z(count)*2/((D(count)*x(count-1))+(D(count-
1)*x(count)))); 
         else %%vacuum west boundary 
             
row(count)=row(count)+((2*Wa(ordct)*Wa(ordct)*z(count)*y(count))/((X(count)*x
(count))+(2*Wa(ordct))))+(D(count-
1)*D(count)*y(count)*z(count)*2/((D(count)*x(count-1))+(D(count-
1)*x(count)))); 
         end 
    end 
    if any(count==N)==0 && any(count==S)==0 %%entry along y direction 
        row(count-i)= -D(count)*D(count-
i)*x(count)*z(count)*2/((D(count)*y(count-i))+(D(count-i)*y(count))); 
        row(count+i)= -
D(count)*D(count+i)*x(count)*z(count)*2/((D(count+i)*y(count))+(D(count)*y(co
unt+i))); 
        row(count)=row(count)+(D(count)*D(count-
i)*x(count)*z(count)*2/((D(count)*y(count-i))+(D(count-
i)*y(count))))+(D(count)*D(count+i)*x(count)*z(count)*2/((D(count+i)*y(count)
)+(D(count)*y(count+i)))); 
    elseif any(count==N)==1 
        row(count+i)= -
D(count)*D(count+i)*x(count)*z(count)*2/((D(count+i)*y(count))+(D(count)*y(co
unt+i))); 
        if BC(3)==0 %%reflected boundary in north 
            
row(count)=row(count)+(D(count)*D(count+i)*x(count)*z(count)*2/((D(count+i)*y
(count))+(D(count)*y(count+i)))); 
        else %%vacuum boundary in north 
          
row(count)=row(count)+((2*Wa(ordct)*Wa(ordct)*x(count)*z(count))/((X(count)*y
(count))+(2*Wa(ordct))))+(D(count)*D(count+i)*x(count)*z(count)*2/((D(count+i
)*y(count))+(D(count)*y(count+i)))); 
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        end 
    else 
        row(count-i)= -D(count)*D(count-
i)*x(count)*z(count)*2/((D(count)*y(count-i))+(D(count-i)*y(count))); 
        if BC(4)==0 %%reflected boundary in south 
            row(count)=row(count)+(D(count)*D(count-
i)*x(count)*z(count)*2/((D(count)*y(count-i))+(D(count-i)*y(count)))); 
        else %%vacuum boundary in south 
            
row(count)=row(count)+((2*Wa(ordct)*Wa(ordct)*x(count)*z(count))/((X(count)*y
(count))+(2*Wa(ordct))))+(D(count)*D(count-
i)*x(count)*z(count)*2/((D(count)*y(count-i))+(D(count-i)*y(count)))); 
        end 
    end 
        row(count)=row(count)+(X(count)*x(count)*y(count)*z(count)); 
        count=count+1; 
        CM=[CM;row]; 
end 
 

 

Note: The above piece of code is not the complete code, it is just a part of the SPN-FVM 

code.  
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Appendix I - Error Tables 

 

Z SP6 Average error SP 8 Average error 
SP10 Average 

error 
SP12 Average 

error 

0.5 0.275225749 0.238378191 0.228244879 0.228855987 

1.5 0.198378427 0.154506316 0.135788728 0.130426116 

2.5 0.163711307 0.115610888 0.088894565 0.076695596 

3.5 0.147954753 0.101260245 0.069265767 0.050515631 

4.5 0.13447954 0.096165926 0.064146911 0.041529485 

5.5 0.126072025 0.100556759 0.073945239 0.051919759 

6.5 0.11494605 0.100941315 0.081988427 0.064278982 

7.5 0.152916472 0.145995822 0.133082483 0.120677126 

8.5 0.070468965 0.058088336 0.035101807 0.012968121 

9.5 0.105022132 0.07475521 0.041501755 0.014870856 

z 
SP14 Average 

error 
SP16  Average 

error 
SP18  Average 

error 
SP20 Average 

Error 

0.5 0.232652579 0.236522483 0.239495917 0.241492003 

1.5 0.131066304 0.133718937 0.136530429 0.138815693 

2.5 0.07285438 0.073111445 0.074957689 0.077106759 

3.5 0.041161623 0.037585269 0.037141544 0.038151652 

4.5 0.027261828 0.019185917 0.015224264 0.013768841 
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5.5 0.03558401 0.024338237 0.017062329 0.012642698 

6.5 0.04967287 0.038414889 0.030110376 0.024176214 

7.5 0.110358671 0.102252375 0.096050315 0.091360053 

8.5 -0.004850428 -0.018019237 -0.027268135 -0.033538236 

9.5 -0.004850428 -0.015841863 -0.023054543 -0.02702767 
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Appendix J - Sample (SP12) Flux and Error Profiles  

 

 

 

Figure 15 

Plots of figure 14 represent flux profiles in various slices of the system. Going left to 

right, the plots represent flux profiles in the first three slices (z = 0.5, 1.5 and 2.5 cm) the 

next picture represents that at z = 3.5, 4.5, and 5.5 cm. The third plot represents slices 

at z = 6.5, 7.5, and 8.5 cm. The last plot represents the top most slice. 
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Fluxes (x = 0.5 to 4.5 cm) - X - across; Y - down 

Slice 05 
    

1.486831855 1.70092835 2.08123917 2.62405 2.8279742 

1.700928345 1.83006742 2.37857071 3.2857416 3.42347384 

2.081239169 2.37857071 2.98317966 3.8326502 3.94748148 

2.62404998 3.2857416 3.83265017 4.1744385 4.3020845 

2.827974197 3.42347384 3.94748148 4.3020845 4.43246992 

2.787315505 3.36853462 3.86892064 4.194625 4.31211553 

2.518999111 3.15009314 3.63555373 3.8856195 3.98020728 

1.947120913 2.22899713 2.74442775 3.4151086 3.50329374 

1.543249547 1.64055811 2.0941518 2.8396293 2.95174984 

1.31200856 1.47163484 1.77818298 2.2349595 2.4053846 
 

Fluxes (x = 5.5 to 9.5 cm) 

2.787315505 2.518999111 1.947120913 1.54324955 1.3120086 

3.368534618 3.150093136 2.228997129 1.64055811 1.4716348 

3.868920636 3.635553733 2.744427755 2.0941518 1.778183 

4.194624989 3.885619471 3.415108556 2.83962934 2.2349595 

4.312115527 3.980207278 3.503293743 2.95174984 2.4053846 

4.197772947 3.886404355 3.439684519 2.90988342 2.3752498 

3.886404355 3.628566994 3.252537639 2.7347826 2.1559937 

3.439684519 3.252537639 2.532402499 1.97130923 1.6747186 

2.909883424 2.734782605 1.971309229 1.47941809 1.3455107 

2.375249775 2.155993677 1.674718591 1.34551068 1.1672262 
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Relative errors 

x = 0.5 to 4.5 cm 

1.502477269 1.2594541 0.16337352 -0.062599 -0.0175753 

1.092826931 1.44639179 0.5788584 0.0145781 0.0115931 

0.245789237 0.33098911 0.36973668 0.0276386 -0.0538587 

-0.004303732 0.04724164 -0.0086444 -0.073995 0.01328276 

-0.01916693 0.00110356 -0.0307625 -0.04356 0.00092131 

-0.040631554 -0.0375973 0.0280523 -0.032134 0.01171359 

-0.073301846 -0.022108 -0.0268991 -0.021873 0.03040235 

0.034701485 0.24680586 0.18186913 -0.050219 0.01323596 

0.514985969 0.99735818 0.49715304 -0.074204 0.00992833 

1.09330889 1.172081 0.37490005 -0.016377 -0.0967157 
 

x = 5.5 to 9.5 cm 

-0.054082087 -0.026033371 0.040203708 0.52112779 1.3950372 

0.043061127 -0.005030563 0.300413478 0.98764458 1.8364381 

-0.039581608 0.020016703 0.27663419 0.53424121 0.1817564 

0.051078984 -0.01182079 0.08645853 0.0171288 -0.083723 

-0.000450729 0.084138163 0.097502473 0.08020382 0.0078827 

0.001494198 -0.007151963 -0.023463299 -0.0247834 0.0151512 

0.034512372 0.02190126 -0.037705064 -0.029995 -0.065877 

0.01157671 0.037303469 0.188072977 0.29885884 0.1088259 

0.005277547 -0.020856658 0.233736897 1.0642083 0.9545705 

-0.051151052 0.028735824 0.083213572 0.79256585 1.4201048 
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Figure 16 

 

Figure 15 represents relative errors in the system slice at z = 0.5 cm. As stated in 

Section 4, the errors are very low almost all over the system slice but incredibly high at 

and around corners of the slice. 
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Appendix K- Future Work 

The shortcomings of the SPN-FVM code used in this thesis are.  

• The code consumes large amounts of memory, more memory than even a Monte 

Carlo code like MCNP. This makes it difficult to large problems and makes it very 

difficult to use finer meshes for such problems. 

• The code is very slow when it comes to generating the coefficient matrices.  

• The code does not take advantage of the easily parallelizable block diagonal 

coefficient matrix as it does not invert the individual blocks separately to cut 

computation costs and inverts one giant uneconomical matrix instead 

• The code does not have a cross section library and requires the user to specify 

cross sections. 

• The code has a very primitive user interface often making it difficult to define 

complicated problem geometries. 

• The code does not use an adaptive mesh and can only solve problems defined 

on Cartesian coordinates. 

• The code does not incorporate anisotropic scattering of particles. 

• The code assumes steady state  

• The code cannot handle multiple energy group calculations and is constrained to 

one energy group only. 

• The code is not yet ready to handle transient sources - dispersed radiation 

sources.  

All the above shortcomings will be addressed in future work. 
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