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Chapter 1: Introduction

1.1 Overview

Code coverage has gained high importance in the past few decades. “Code coverage

is a measure/metric used in software testing that describes the degree to which the

source code of a program has been tested and helps in knowing when to stop testing.”

[2] Coverage is basically divided into structural coverage, data flow coverage and logic

coverage. Block, branch, path coverage fall under structural coverage while def-use,

c-use, p-use falls under data flow coverage. Predicate coverage is a good example of

logic coverage. These coverage criteria are explained in detail in the section that follows.

Most commonly used coverage criteria in the industry by testers in general are block and

branch coverage which are the very basic forms of coverage. Achieving a high percentage

of coverage using these criteria is much simpler and more feasible than with other forms

of coverage.

Code coverage has been proposed as an indicator of testing effectiveness and com-

pleteness by researchers before. The relationship between three important properties of

test suites: size , structural coverage and fault finding effectiveness has been studied by

many researchers under different circumstances be it under minimization or empirical

studies in general. One such early empirical study by Frankl et al. [7] on test effectiveness

indicated that the likelihood of detecting a fault increased sharply as very high coverage

levels were reached but the magnitude of the increase seemed inconsistent. Was this

increase just because of the increase in the size of the test suite? Namin and Andrews

[11] used four coverage techniques: p-use, c-use, block , decision coverage and proposed

that though both size and coverage together are both good predictors of test effective-

ness; and that if size is kept constant coverage is correlated with effectiveness. They [7]

also indicated that the testing based on coverage was more effective than random testing

with no adequacy criteria meaning that coverage was definitely an important factor in

determining the effectiveness of the test suite. Similar studies were performed by Wong

et al. [20] and Frankl and Weiss [8] showing that that the correlation between test ef-
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fectiveness and block coverage is high and so is the case with def-use and branch. Some

other researchers went further to explore how this code coverage differs under different

testing profiles and the benefit of coverage in real world for developers. Xia Cai and Lyu

[6] proposed that the estimation of code coverage on testing effectiveness varies under

different testing profiles and is not standard across every testing profile. [5] Experiments

indicated that the coverage rate seemed to not go beyond 70 or 80 percent. One reason

was reported to be that the developers were sufficiently confident about the quality of

their tests and that they could not think of anything else to test and another reason

being that getting higher rates often turned out to be very expensive because the sys-

tems architecture. It was also noted that even given a system with a reasonably testable

architecture, the coverage of the tests would stall at a similar level, unless a code cov-

erage analysis and visualization tool was used. Code coverage tools and the knowledge

of code coverage hence is extremely essential to develop good test suites. Apart from

these empirical studies that were directly related to coverage and its effectiveness, an-

other literature that studied this in a different perspective was test suite minimization.

Test suite minimization is achieved by identifying redundant test cases and removing

them in order to minimize the size of the test suite. One measure of the suite quality

after reduction is its fault detection capability. Empirical studies have shown that test

suite minimizations reduces the effectiveness of fault detection [18] [21] [17]. In fact, a

potential drawback observed in test suite reduction studies is that removal of test cases

from a test suite may highly decrease the fault detection effectiveness of the remaining

suite. Thus, the tradeoff between the time required to execute and manage test suites

and their fault detection effectiveness should be considered when applying test suite re-

duction techniques. Therefore it is necessary to strike a balance between these trade offs

and benefits. Knowing a good way to minimize test suites without effecting the quality

is required.

Therefore to summarize the previous work in this field, we can state that there is suf-

ficient empirical evidence that shows that there is a strong correlation between the code

coverage and the ability to expose faults of test suites proving that coverage is definitely

a good indicator of test effectiveness. This knowledge leads to some interesting research

questions. Does having a test suite covering A mean that another test case covering A

is less likely to add further mutant detection? Under which coverage measures/coverage

profiles are correlations in mutant detection ability of test cases high and under which
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low? If test cases A and B get the same coverage by criteria X, what’s the correlation on

criteria Y? Hence an important relation remains yet to be explored: relationship between

different kinds of coverage and mutant kill rates as measured by the pairwise prediction

of fault detection based on coverage. What does x percent of coverage c1 say about the

test suite and its mutant detection capability in comparison with another coverage c2?

Let’s take the following scenario: A researcher investigating automated testing meth-

ods applies methods A, B, and C to a large set of programs, giving each method 5 hours

to generate tests. Examining the results, she hopes to announce which method is, on av-

erage, best - or at least to determine which method, for each different class of programs

(simple tree structures, heap structures, file systems, array-based structures, numeric

programs...) tends to be best. Unfortunately, she has a number of ways to evaluate

each test suite. For some programs, method A may produce the best predicate coverage,

method B the best path coverage, and method C the best shape coverage. She can-

not simply average the rate of maximum coverage over programs, if she is considering

predicate and path coverage, as the upper bound of reachable coverage is unknown.

An answer to a question like this would have important consequences on how we

perform testing experiments. This thesis supports the work in the paper by Namin and

Andrews [11] and attempts to report results that would be useful to both professional

testers or practitioners as well as researchers. While professionals might be mostly

interested in the experimental results and their implications for choosing a coverage

criteria to develop better suites or in better minimization, researchers may find this

experiment interesting in terms of its design and the potential future work that lies to

be unfolded in this area. This thesis does not make any claim that the collection of

the subject programs/languages represents all real world programs/software. But these

results are definitely a step forward. The results are sound and hold a good value. It

will definitely be interesting to see if the results are consistent across other languages in

future work in this area.

The rest of the thesis is divided in sections as below: Section 3 does a literature

review and describes some techniques and tools as background material. The section

3 that follows describes the experimental set up along with some other concepts and

techniques used. The research questions are also listed in section 4. SGLIB [19] and

YAFFS2 [15] are the two subject programs used. These are seen in detail in section

5 and 6 which explains data collection for both of these experiments and the analysis
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of the data collection. After that in section 7 we combine the findings from the two

experiments to come up with results to our research questions. We then describe the

threats to validity and future work in the sections that follow.
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Chapter 2: Background

Testingis the process of identifying defects, where a defect is any variance between actual

and expected results. Test case is one execution of the program that may expose a bug.

Test suite on the other hand is made up of test cases and is a set of executions of a

program grouped together. A test suite or test case can be stated as effective when it is

successful in detecting the faults in a program.

2.1 Coverage Criteria

Code coverage describes the degree to which the source code of a program has been

tested. The last section clearly described the importance of coverage in the field of

testing. It provides a bench mark or acts like an adequacy criteria in developing test

suites. Having high coverage means better fault detection. In the experiment, four

popular coverage techniques have been used: block, branch, path and predicate. Block

and branch are popular coverage techniques used not just by researchers but also by

software professions/practioners. These coverage techniques in particular are more basic

forms of coverage and are more feasible when compared to other forms of coverage like

path and predicate. Path and predicate coverage though not as commonly used as branch

and block are still popular coverage techniques. The difference between the two being

that path is structural coverage while predicate is logic coverage. They both do not

subsume each other meaning that they are both independent, while path does subsume

branch and block. The reverse does not hold true. Branch or block do not subsume path.

Each of the coverage techniques are explained with diagrams for better understanding

Block/statement Coverage: Block coverage/statement coverage/ line coverage de-

scribes whether a block of code defined as not having any branch point within (the path

of execution enters from the beginning and exits at the end) is executed or not. See

images [1]

Branch Coverage: This coverage ensures that each possible branch from each decision

point is executed at least once, thus ensuring that all reachable code is executed. (E.g,
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an “if” statement) [1]

Path Coverage: Path coverage is a unique sequence of branches that the test case

takes from entry to exit. This kind of coverage hence has the advantage of requiring

very thorough testing. We use intra-procedural path meaning we consider path inside a

function and eventually add up all path numbers in all functions [1] as path coverage.

Predicate Coverage: Predicate coverage is the most basic logical coverage criterion.

It attempts to cover all values for all predicates in conditional expressions. It is to note

that path does not subsume predicate or predicate does not subsume path so they are

not in any subsumption relation [1]

2.2 Instrumentation

Instrumentation basically adds program code that does not change functional behavior

but collects information. In order to be able to measure the coverage of a program, we

need to instrument the program. We have used a tool called CIL [13] in our case to

instrument the two subject programs.
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Figure 2.1: Block and Branch Coverage

Block/statement coverage: Block coverage/statement coverage/ line coverage describes whether a
block of code defined as not having any branch point within (the path of execution enters from the
beginning and exits at the end) is executed or not.

Branch coverage: This kind of coverage aims to ensure that each possible branch from each decision
point is executed at least once, thus ensuring that all reachable code is executed. (E.g, "if" statement)

Block/statement coverage: Block coverage/statement coverage/ line coverage describes whether a
block of code defined as not having any branch point within (the path of execution enters from the
beginning and exits at the end) is executed or not.

Branch coverage: This kind of coverage aims to ensure that each possible branch from each decision
point is executed at least once, thus ensuring that all reachable code is executed. (E.g, "if" statement)

Block/statement coverage: Block coverage/statement coverage/ line coverage describes whether a
block of code defined as not having any branch point within (the path of execution enters from the
beginning and exits at the end) is executed or not.

Branch coverage: This kind of coverage aims to ensure that each possible branch from each decision
point is executed at least once, thus ensuring that all reachable code is executed. (E.g, "if" statement)
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Figure 2.2: Path and Predicate Coverage

Path coverage: Path coverage is a unique sequence of branches that the test case takes from entry to
exit. This kind of coverage hence has the advantage of requiring very thorough testing. Test cases might
cover the same nodes but through different paths.

Path coverage: Path coverage is a unique sequence of branches that the test case takes from entry to
exit. This kind of coverage hence has the advantage of requiring very thorough testing. Test cases might
cover the same nodes but through different paths.

Path coverage: Path coverage is a unique sequence of branches that the test case takes from entry to
exit. This kind of coverage hence has the advantage of requiring very thorough testing. Test cases might
cover the same nodes but through different paths.
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Chapter 3: Literature Review

We divide our related work section into categories to better understand how researchers

have studied coverage in the past. This section also explains how we have arrived at

some of our research questions and how they prove to be useful.

• General empirical studies on coverage and its influence on test suite effectiveness

• Comparison of coverage techniques

• Test suite minimization and its effect test suite effectiveness

3.1 General empirical studies on coverage and its comparison with

size and effectiveness:

Wong et al. [20] in the early 1990’s explored the relationship between size and fault-

detection effectiveness. Their results showed that coverage was more correlated than size

with fault detection effectiveness. They basically studied two relationships:

• Fault detection effectiveness with coverage

• Fault detection effectiveness with the size.

For this study block coverage was used as the coverage technique. Results did indi-

cate that coverage and in this case block coverage was correlated with fault detection

effectiveness. In fact it was a better indicator than size for the effectiveness. The study

used quasi random testing for generating test sets, and they used manually seeded faults

to determine the effectiveness.

Namin and Andrews [11] also studied the relationship between size, coverage and

effectiveness of test set like in the Wong study. They used siemens suite (c language)

and two other subject programs for the experiment and used four coverage techniques

for evaluation: p-use, c-use, block , decision coverage and proposed that though both

size and coverage together are good predictors of test effectiveness; and that if size is
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kept constant coverage is correlated with effectiveness. This study did pick random tests

but from a test pool of existing test cases and hence different from Wong et al. in that

sense. Mainly, it did indicate that with size being kept constant coverage is an important

factor in determining the test set effectiveness.

3.2 Comparison of coverage techniques:

Xia Cai and Lyu [6] proposed that the effects of code coverage in different testing profiles.

They used random testing and functional testing to make a comparison between the two.

They used four important coverage criteria: p-use, c-use, decision and block coverage in

their experiment. They explored the following:

• The relationship revealed in normal operational testing versus exceptional testing:

code coverage was found to be a better indicator in exceptional testing meaning that

increasing code coverage would benefit such exceptional fault detection capability.

• The relationship revealed in functional testing versus random testing: Random

testing was found to be a necessary complement to functional testing and also that

code coverage worked well for both kinds of testing

• The relationship revealed in different combinations for various coverage metric:

This one being particularly more of our interest. In general they did not report

any significant difference between block/c-use and coverage/p-use under normal

testing.

Though they have studied correlation of these coverage to some extent here, the study is

very different from ours in the sense that it focuses more on the correlation of these cov-

erage techniques with the different testing profiles begin random, functional, exceptional

, normal and a comparison of how they differ under each of these circumstances. It fo-

cuses less on the correlation of these coverage techniques with effectiveness but more on

their relation with these factors. This paper does not compare the coverage techniques

in terms of the effectiveness of each coverage technique.

Hutchins et al.[10] conducted a study using du and edge coverage. They used random

testing for generating test cases, used moderate size programs and seeded mutants into

the programs for the study. Their study showed some interesting results. It indicated
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that rather than having coverage as an adequacy criteria it servers better as an indicator

of test inadequacy. Meaning that low coverage is a good reason to continue the testing

efforts while a 80, 90 or 100% coverage does not really mean that all mutants are detected

and we can stop testing. But it of course means that we have a good coverage of a lot

of mutants. This study also showed that at the range of 90% to 100% coverage there

seemed to be a rapid rise in the fault detection ratio. This paper though did not see

a significant difference in the behavior of du vs edge coverage. This was also the case

with Frankl et al.[7] . Frankl et al.[7] presented the results of the effectiveness of all use

and decision or branch testing to random testing with no adequacy criteria. Their study

was similar to Hutchins et al.[10], though they used a larger base/subject program code

base. And in contrast to the earlier result, in this case the difference between the two

coverage criteria wasn’t very consistent. Hutchins et al.[10] though did find that there

were differences in the way the coverage techniques behaved in the sense that during the

90% to 100% coverage range for each of these criteria, du seemed to have a dramatic

increase in fault detection compared to edge, indicating that say 95% of du might not

mean that the same number of mutants as 95% of edge. The coverage techniques do

behave differently even at the same coverage level and studying this is definitely useful

in knowing that achieving x% of which coverage criteria serves better.

Frankl and Weiss [8] performed an experiment comparing the effectiveness of all-uses

and all-edges coverage criteria. They explored the answer for three research questions in

their paper

• Are those test sets that satisfy x% the requirements induced by coverage c1 more

likely to detect an error than those that satisfy y% of c2?

• For a fixed test size is c1 more likely to detect an error than c2?

• comparison of size vs coverage.

They generated a large number of tests using random testing. Their results indicated

that all-uses proved to be significantly more effective than all-edges in most of the cases.

Our experiments are similar in the sense that we are also comparing coverage criteria

here. The difference being a) we use four coverage criteria instead of two for the compar-

ison b) we also use reasonably much bigger subject programs in our study c) They use

subject programs that had naturally occurring errors while we generate mutants using
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an algorithm for our subject programs d) We explore additional research questions apart

from 2 and 3 above with the coverage criteria.

3.3 Test suite minimization literature

Test suite minimization is a way of reducing the costs of saving and reusing test cases

by eliminating redundant test cases from test suites. But how does this effect the fault

detection capability of a reduced test suite?

This was studied in detail in some of the papers [17] [18] [21].

The early studies by Wong et al.[21] conclude from their experiments that if size of

a test set is reduced by just removing test cases that are redundant in all-uses coverage

then there is little or no reduction in the effectiveness of the reduced test test sets. They

used randomly selected test cases from a pool of test cases for their experiment. They

also manually seeded faults/mutants to measure effectiveness. But in general, reductions

in fault detection is compromised to some extent.

A similar study by Rothermel et al.[18] indicate results similar to Wong study except

that in this case they have used all-edge instead of all-uses and in this case removing test

cases that are redundant in terms of all edge test cases does not still hold the effectiveness

of the test suite. Effectiveness of the test suite is compromised even then. Though they

used similar way of inducing mutants as in the Wong study, the difference was in the

coverage criteria and the subject program used.

Hence, it is important to find a way of reducing test suites without reducing the

effectiveness of the test suite and holding that as is. Both these used two different

coverage techniques. Though we are not directly proving anything in terms of test suite

minimization, we do believe that our results might prove to be useful to this field of

researchers for some further study.

As seen above in the three categories, the relationship between coverage and ef-

fectiveness has been an important research topic and have been supported by a lot of

researchers. Based on this background of the related work we go ahead and define our

open research questions in the next section.
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Chapter 4: Experimental Design

4.1 Research Questions

A look at our set of research questions would give an insight into what we are exploring

in this paper and what makes this a worthwhile study and how answering this would

help in better designing test suites.

• Under which coverage measures/coverage profiles are correlations in mutant detec-

tion ability high?

• Under which coverage measures/coverage profiles are correlations in mutant detec-

tion ability low?

• If test suites A and B get the same coverage by criteria X, what’s the correlation

on criteria Y?

• Would two test cases A and B with the same coverage (branch, block, path, pred-

icate) detect the same number of mutants?

4.2 Experimental Setup

Our experiments uses two subject programs: SGLIB [19] and YAFFS2 [15]. Both of these

are fairly large sized C programs. SGLIB has around 2k LOC and YAFFS2 around 14k

on the other hand. For each of the two subject programs SGLIB [19]and YAFFS2 [15]

we generate numerous test suites using random testing method which is explained in

detail in section 4.3. The algorithm used in generating the random tests for them are

explained in 5 and 6 respectively. At the same time, we create faulty versions of these

subject programs by seeding mutants using mutation operators as explained in section

4.4. We call these as the faulty versions of the program and the untouched version is

called the oracle version which is the program without any seeded mutants. The total

number of mutants used for each program is mentioned in the table below as well:
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Table 4.1: Subject Programs: SGLIB
SubjectProgram LOC TotalMutants Block Branch

SGLIB 2000
a) List 88 87 72

b) SList 55 95 82
c) DLList 83 188 200
d) Rbtree 468 350 378

YAFFS 14000 1000 3518 4189

Now, we have the oracle and faulty versions of the program and also have a way of

generating tests for these programs. In order to compute coverage of these tests, we have

to instrument the program. So we use CIL [13] tool to instrument the program. This

instrumentation helps in computation of coverage: branch, block, path and predicate

coverage in our case. We have the overall number of branches, blocks and predicates

mentioned in the table above.

After this, the tests are run on the subject programs, and the number of faults

detected are determined by making a comparison of the oracle and the faulty version of

the programs , therefore collecting the coverage information and the mutant information

to perform correlation analysis.

4.3 Random Testing

Random testing [9] is performed by generating program inputs at random, drawn from

some possibly changing probability distribution. We are using random testing to build

a large test suite in our experiment. Since the test cases are randomly generated, each

test case need not have a different coverage. Some of them might have the same path

coverage, while some might cover the same nodes and some might be completely different.

Random testing [9] [22] in our case is a much better approach than generating test suites

with particular algorithms since that could be biased to constructing test suite that is

weighing more towards one coverage technique rather than the other. In other terms,

the results could be biased and hence less general. Also while generating very large test

suites, random testing is a preferable method. Randomness means potentially a lot of

test cases to examine, and thousands of variations of the same error and this works in

our advantage as the perfect setting for our experiment. Along with random testing we
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use the concept of feedback i,e., feedback directed random test generation for YAFFS

since the parameter space is huge [16]. This therefore builds inputs incrementally by

randomly selecting a method call to apply and finding arguments from among previously

constructed inputs. The result determines if the input is illegal, redundant or useful based

on which further inputs are generated. Therefore even though it is random testing this

is still done systemically to some extent without still creating a bias towards one kind of

coverage. It is also to note we are not randomly picking test cases from a test pool as in

Namin and Andrews [11] paper that is the basis of this study but actually generating a

random test suite meaning less bias towards a certain coverage criteria. The algorithm

we used for generating test cases is in the section that follows.

4.4 Mutant Detection

Mutation Analysis injects/seeds artificial defects (mutants) into a program and checks

whether the test suite is effective in finding the mutants. Andrews et al. [3] [4] showed

that, despite the relative simplicity of the faults introduced by mutation operators, mu-

tants behaved almost like real world faults and hence acts as a replacement for real world

errors. In some of the empirical studies before, like [8] researchers manually seeded faults

in subject software and measured the effectiveness. Frankl and Iakounenko on the other

hand [7] used programs for which real faults had been identified during testing and these

were seeded again to create the mutant version of the program. Performing large con-

trolled experiments with real faults is much harder due to the difficulty of collecting a

good number of faulty versions of the program. Some other researchers used mutation

operators to seed faults in their experiments [11] [14] [3] [4]. To perform mutation anal-

ysis on a subject program, mutation operators are applied to the source code generating

the mutant versions of the code. Each mutant represents a possibly faulty variant of the

original program. So, we have multiple mutant versions of our subject programs. The

advantage of using mutation operators over seeding faults manually or over using real

faults is that it requires decreased effort and at the same time generates greater numbers

of potentially faulty versions hence leading to better statistically significant results.

For our two subject programs, we created mutants using the tool implemented by

Andrews et al. [3], which produces mutants based on a set of operators that have been

shown to work well as fault proxies. For SGLIB all mutants were used but for YAFFS2
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we sampled the mutants and randomly picked the mutants since the generated mutants

was too large to finish our experiments in a reasonable amount of time. Hence we had

to sample a random selection of mutants. Recent work shows that random selection of

mutants can provide results comparable to selective mutation [22].
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Chapter 5: SGLIB Program: Subject Software, Data Collection and

Analysis

5.1 Subject Software

SGLIB [19] is a popular, open-source C library for data structures. It consists of a single

C header file, sglib.h, with about 2000 lines of code consisting only of C macros. This

file provides generic implementation of most common algorithms for arrays, lists, sorted

lists, doubly linked lists, and red-black trees. We chose SGLIB as a subject program

since its a widely used C library. The libraries that we have used for testing are

1) linked lists 2) sorted linked lists 3) double linked lists 4) red-black trees

A basic set of functions and macros are provided for each data structure like insertion,

deletion, search, iterator traversal of elements, concatenation, reverse or sort. The list

of these functions are established in the table below

The tables below shows some functionalities for SGLIB and YAFFS:

5.2 Data Collection

We began by generating, for each subject program in SGLIB: list, slist, dllist, rbtree -

test suites of varying size till a stagnant pattern was seen. The sizes were varied starting

from 10 test cases to until 10000 cases. All of the test suites were generated using random

as in the algorithm below. It was not chosen randomly from a pool of test cases, but

generated using random testing in itself to keep it more realistic and to remove any bias

that maybe created when generating a test suite using an algorithm.

We chose the upper bound for the experiment because we observed that test suites

of this size usually achieved very high coverage for our subject programs. For each test

suite, the block, branch, path and predicate coverage were measured along with even

coverage for individual test cases. This was done using CIL to instrument the program

and then the coverage percentage was calculated.
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Table 5.1: SGLIB: API Table
Functions/Macros List slist dllist Rbtree

add() x x x x
add-if-not-member() x x x x

concat() x - x -
delete() x x x x

delete-if-member() x x x x
is-member() x x x x

find-member() x x x x
len() x x x x

map-on-elements() x x x x
reverse() x - x -

sort() x - x -
find-member-or-place() - x - -

add-before() - - x -
add-after() - - x -

add-before-if-not-member() - - x -
add-after-if-not-member() - - x -

get-first() - - x -
get-last() - - x -
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Table 5.2: YAFFS2: API Table
Functions/Macros YAFFS2

chmod x
close x

closedir x
fchmod x

freespace x
fstat x
link x

lseek x
lstat x

mkdir x
open x

opendir x
read x

write x
readdir x

readlink x
rename x

rewinddir x
rmdir x

stat x
symlink x
truncate x

unlink x
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Table 5.3: SLIST: Data Table
TestLen TestCase Block Branch Path Predicate Mutants TL*TC

5 5 25 18 12 141 26 25
5 10 25 20 13 141 20 50

10 10 35 29 34 188 41 100
5 50 35 29 24 188 40 250

10 50 35 30 49 188 43 500
10 100 35 30 51 188 43 1000

100 100 35 30 185 188 44 10000
100 500 35 30 215 188 44 50000
100 1000 35 30 227 188 44 100000

SGLIB DATA: Doubly linked list

Table 5.4: DLLIST: Data Table
TestLen TestCase Block Branch Path Predicate Mutants TL*TC

5 5 61 52 14 617 35 25
5 10 75 67 20 698 44 50

10 10 96 98 32 987 56 100
5 50 89 88 28 962 54 250

10 50 108 115 60 1133 65 500
10 100 113 124 78 1187 68 1000

100 100 115 126 972 1206 72 10000
100 500 115 126 2168 1206 72 50000
100 1000 115 126 3312 1206 72 100000

For each of the subject program in SGLIB we used a mutant generation program

first used by Andrews et al. [3] to generate mutants for code written in C. To generate

mutants from a source file, each line of code was considered in sequence and each of

four classes of mutation operators were applied. The first step was to generate and

compile the mutants, and to run mutants and faulty versions on the entire test pool. We

considered all the mutants. We ran all mutants on all test cases, and recorded which

test cases detected which mutants, in the sense of forcing the mutant to give different

output from the oracle version. For each of the test suites we generated, we computed

the mutation detection number and this was also calculated for the overall test suite to

see how many mutants each test suite detected.



21

SGLIB Test Generator Algorithm:

while( len < expected) {

randomly pick an api;

randomly generate parameters for it

add apicall(parameters) to test case

increase len;

}

The data table shows the data for sorted list, doubly linked list, list, and rbtree each

along with all the coverage and mutant information. The first column here indicating

the test case length (the number of function calls per test case is what this indicates), the

second column is the number of test cases that are in a test suite. This has been varied

to compute results at different sizes of the test suite and to obtain higher coverage. The

third column is the block coverage per test suite, then the branch, path and predicate

coverage per test suite. The final column indicates a multiple of the first two columns.
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Table 5.5: RBTREE: Data Table
TestLen TestCase Block Branch Path Predicate Mutants TL*TC

5 10 60 54 25 496 88 50
10 10 85 86 41 679 112 100
5 50 89 91 45 728 110 250

10 50 104 109 59 974 143 500
10 100 116 125 68 1135 146 1000

100 100 191 221 427 3194 197 10000
100 500 194 222 784 3353 202 50000
100 1000 200 224 1051 3410 202 100000
100 5000 202 230 2265 3554 202 500000

Table 5.6: LIST: Data Table
TestLen TestCase Block Branch Path Predicate Mutants TL*TC

5 5 25 15 10 158 18 25
5 10 47 39 18 387 34 50

10 10 47 42 20 528 44 100
5 50 55 49 25 566 54 250

10 50 56 52 48 619 70 500
10 100 56 52 49 621 70 1000

100 100 56 52 586 635 74 10000
100 500 56 52 674 635 73 50000
100 1000 56 52 980 635 73 100000

5.3 Analysis

For analyzing our experimental results we used the analysis framework similar to the

paper [11]. Experimental results were each first plotted on graphs as scatter plots to

provide visualizations. After this graphs were created to plot the correlation between

branch, block, predicate, path coverage with mutants. This was done in order to detect if

there is any drastic variation between one coverage to the other with the same data and

test set or if the results are more on a uniform pattern. Once these graphs were plotted,

to go into more depth for analyzing the Pearson correlation coefficient, p-value were

also calculated. This was done to indicate which coverage had a better correlation and

then after this various regression models were constructed in order to obtain r2 values
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for better understanding of the relationship. The regression equation that described the

relation between mutant and the particular coverage for each test program gave a good

insight of the correlation between these variables.

5.3.1 Visualization using graphs

To better conceptualize the data gathered as the result of the experiments they were

plotted as a scatter plot. The figure below shows the correlation between each of the

coverage criteria with mutant detection. The x axis indicating the test suite sizes and

the y axis showing the coverage and mutant detection. The graph below indicates how

each coverage relates to mutant detection. From the graph for SGLIB: list, rbtree, slist

and dllist it can be noted that though the base values are slightly different between each

subject program the curves are almost similar. It does appear from the four graphs that

:

• Branch, block seem to influence mutant detection proportionally. Though the

graph is not linear the curves and how the graph turns out looks similar.

• Even predicate coverage seems to be more correlated to mutant detection than

path.

• Amongst all these coverage criteria used, path seems to be the most unpredictable.

It does not seem to correlate very well with mutant detection and knowing the

path coverage of a program one might not be able to deduce its equivalent mutant

killing rate.

Apart from studying the behavior of coverage with mutant detection, if we look at

just coverage techniques themselves, it can be noted that:

• Branch , block , and predicate seem to correlate to each other. While path does

not seem to correlate with these three coverage techniques. With two test suites

of same branch coverage we can almost see that they would possibly have a very

close block and predicate coverage as well, but the same can definitely not be said

about path coverage.
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• Path seems to increase in a more linear fashion with growing test suite size than

the other coverage techniques.

To confirm these assumptions that we can draw from the graphs, we do further

analysis which is described in more detail in the sections that follow.

5.3.2 Correlation of coverage and fault detection

With the data that has been plotted in graph there appears to be a positive correlation

between coverage and mutant detection, Pearson correlation coefficients and p-values

were calculated to affirm this. For every coverage curve vs mutant curve , the p-values

and Pearson correlation coefficients were calculated. Below is the table for p-value and

Pearson correlation coefficients for each of our subject programs and for each of the

coverage vs mutant data. For Pearson coefficient correlation measure, the standard

Guilford scale was used for verbal description; this scale describes correlation of under

0.4 as low, 0.4 to 0.7 as moderate, 0.7 to 0.9 as high, and over 0.9 as very high.

• For sorted list as in the table below, it can be seen that there is a “very high”

correlation between block with mutant, predicate with mutant and branch with

mutant i.e., the Pearson coefficient values are above 0.9 for all of these. But the

path is “moderately” correlated with mutant detection.

• For doubly linked list, it can be seen that again there is a “very high” correla-

tion of mutant detection with these coverage techniques: branch , block and then

predicate. But here again the path is in the moderate range.

• Let us now see for rbtree: Branch, block and predicate seem to have a very high

correlation again with mutant detection than the path coverage. Path coverage

again falls under the moderate category.

• For linked list, Branch and predicate have a very high correlation and block has a

high correlation with mutant detection while path seems to still show a moderate

behavior. With each subject program in SGLIB , branch block and predicate

seemed to have a very high correlation with mutant detection. Path on the other

hand seemed to have a much lesser correlation in comparison.
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Now using a similar scale to compare the correlation between the coverage techniques

themselves. Block vs predicate, block vs branch, branch vs predicate : these have a

“Very high” correlation among themselves. While the correlation between path and

any of these techniques are not very high and fall in the moderate category and this

is consistent across all of the subject programs in SGLIB: list, dllist, slist, rbtree and

can be studied individually as above using the tables below for the coverage technique

correlation study.

Thus it is clear that the correlation among the coverage techniques is high with these

three coverage types for SGLIB program. In statistics, the p-value is the probability

of obtaining a test statistic at least as extreme as the one that was actually observed,

assuming that the null hypothesis is true. One often rejects the null hypothesis when

the p-value is less than the significance level a (Greek alpha), which is often 0.05 or 0.01.

So if the null hypothesis was that each of the coverage have no correlation with mutant

detection, one can safely reject the null hypothesis in the case of branch , block and

predicate coverage because of the lesser than significance p-value, therefore indicating

the strong correlation between these coverage techniques and mutant detection. Though

this null hypothesis is true in the case of path coverage for SGLIB since the p-value is

not low.

Table 5.7: SLIST: Coverage Mutant Correlation
Pearson Coeff P-value R2 value

Block 0.973 0 94.8%
Branch 0.96 0 92.1%

Path 0.579 0.102 33.60%
Predicate 0.973 0 94.8%
TC-num 0.401 0.285 16.10%

5.3.3 Regression Analysis

Our correlation analysis showed us some interesting observations and a very standard

behavior across the subject programs in SGLIB [19]. In statistics, the coefficient of

determination r2 is used in the context of statistical models whose main purpose is

the prediction of future outcomes on the basis of other related information. It is the
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Table 5.8: SLIST: Coverage Techniques Correlation
Pearson Coeff P-value R2 value

Block vs branch 0.991 0 98.10%
Block vs Path 0.483 0.188

Block vs Predicate 1 100%
Branch vs Path 0.527 0.145

Branch vs Predicate 0.991 0 98.10%
Path vs Predicate 0.483 0.188

Table 5.9: DLLIST: Coverage Mutant Correlation
Pearson Coeff P-value R2 value

Block 0.996 0 99.10%
Branch 0.995 0 99.10%

Path 0.606 0.084 36.70%
Predicate 0.99 0 98%
TC-num 0.552 0.123 30.50%

Table 5.10: DLLIST: Coverage Techniques Correlation
Pearson Coeff P-value R2 value

Block vs branch 0.999 0 99.80%
Block vs Path 0.553 0.122

Block vs Predicate 0.993 0 98.50%
Branch vs Path 0.562 0.116

Branch vs Predicate 0.994 0 98.80%
Path vs Predicate 0.54 0.133

Table 5.11: RBTREE: Coverage Mutant Correlation
Pearson Coeff P-value R2 value

Block 0.989 0 97.80%
Branch 0.99 0 97.90%

Path 0.68 0.03 46.30%
Predicate 0.968 0 93.80%
TC-num 0.503 0.139 25.30%
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Table 5.12: RBTREE: Coverage Techniques Correlation
Pearson Coeff P-value R2 value

Block vs branch 1 0 99.90%
Block vs Path 0.733 0.016

Block vs Predicate 0.992 0 98.30%
Branch vs Path 0.725 0.018

Branch vs Predicate 0.991 0 98.10%
Path vs Predicate 0.754 0.012

Table 5.13: LIST: Coverage Mutant Correlation
Pearson Coeff P-value R2 value

Block 0.9 0.001 81%
Branch 0.923 0 85.20%

Path 0.609 0.082 37%
Predicate 0.949 0 90%
TC-num 0.499 0.171 24.90%

Table 5.14: LIST: Coverage Techniques Correlation
Pearson Coeff P-value R2 value

Block vs branch 0.997 0 99.40%
Block vs Path 0.413 0.269

Block vs Predicate 0.968 0 93.60%
Branch vs Path 0.435 0.242

Branch vs Predicate 0.984 0 96.80%
Path vs Predicate 0.485 0.186
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proportion of variability in a data set that is accounted for by the statistical model. It

provides a measure of how well future outcomes are likely to be predicted by the model.

An r2 of 1.0 indicates that the regression line perfectly fits the data. Using r2s regression

feature, various models were created for both the coverage relation with mutant and the

correlation among coverage techniques. The third column in the tables below indicates

the r2 percentage. The regression line fits the data almost perfectly or very well in case

of block , branch and predicate coverage. The values all above 90 or above 0.9 in decimal

value. Even the regression line for the block vs predicate, block vs branch and branch

vs block are almost perfectly fitting the regression line.



29

Scatter plot for SLLIST: Correlation of coverage with mutants
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Scatter plot for DLLIST : Coverage vs mutants
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Figure 5.1: SGLIB coverage vs mutant graph - slist and dllist
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Scatter plot for LIST: coverage vs mutants
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Scatter plot for rbtree: coverage vs mutants
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Chapter 6: YAFFS2: Subject Software, Data collection and

Analysis

6.1 Subject Software

YAFFS2 [15]stands for “yet another flash file system”. It is designed specifically for use

with NAND flash. It is used widely as an open-source flash file system for embedded use

that serves as the default image format for Android. Its an open source project. This

was our second subject program in hand.

6.2 Data collection

We began by generating, for each subject program, test suites of varying size till a

stagnant pattern was seen. We varied sizes from 10 test cases to up to 100000 cases.

All of the test suites were generated using random testing. It was not chosen randomly

from a pool of test cases, but generated using random testing in itself to keep it more

realistic and to remove any bias that maybe created when generating a test suite using

an algorithm. Also feedback directed random testing was used for YAFFS2 since the

parameter space is huge.

YAFFS2 test case generator algorithm: feedback-directed method

while(len < expected) {

randomly pick an api;

randomly generate parameters for it.

call this api with parameters and see if it succeed

if succeed

add api+ parameters to current test case

increase len;

}
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For each test suite, we measured the block, branch, path and predicate coverage of

the test suites and even coverage for individual test cases. This was done using CIL

[13] to instrument the program and then the coverage percentage was calculated. For

each subject program, we used a mutant generation program first used by Andrews et

al. [3] to generate mutants for code written in C. To generate mutants from a source

file, each line of code was considered in sequence and each of four classes of mutation

operators were applied. The first step was to generate and compile the mutants, and

to run mutants and faulty versions on the entire test pool. 1000 mutants were chosen

randomly. We ran all mutants on all test cases, and recorded which test cases detected

which mutants, in the sense of forcing the mutant to give different output from the oracle

version. For each of the test suites we generated, we computed the mutation detection

number and this was also calculated for the overall test suite to see how many mutants

each test suite detected.

The data table below indicates the number of blocks, branches, paths and predicates

covered over varying test suite sizes. The total number of LOC for YAFFS is 14k , the

number of branches: 4189 , the total number of blocks is 3518. A length of 200 was

chosen since a length lower than that was not showing a significant difference in result,

considering the fact that for YAFFS we do have a larger code base , number of mutants

than with SGLIB. And a length higher than 200 would not take a reasonable amount of

time to finish the experiments. So by keeping the length at that rate we varied the test

suite size to make some observations. For each of these test suites, we made a note of

the number of mutants detected to make a correlation analysis.

Table 6.1: YAFFS2: Data Table
TestLen(TL) TestCase(TC) Block Branch Path Predicate Mutants TL*TC

200 10 1376 1505 1027 32326 60 2000
200 50 1397 1535 2379 33104 64 10000
200 100 1397 1536 3457 33111 65 20000
200 500 1401 1540 9724 33270 68 100000
200 1000 1424 1570 16037 33855 75 200000
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6.3 Analysis

For analyzing our experiment results we used the analysis framework similar to the paper

by Namin et al. [11], since this made sense to our experiments as well. We were looking to

find the correlation between these coverage and its effectiveness. Finding the correlation

coefficient made sense and also finding the r2 value to indicate its behavior in further

depth. Experimental results were each first plotted on graphs as scatter plots to provide

visualizations. After this graphs were created to plot the correlation between branch,

block, predicate, path coverage with mutants. This was done in order to detect if there

is any drastic variation between one coverage to the other with the same data and test

set or if the results are more on a uniform pattern. Once these graphs were plotted, to

go into more depth for analyzing the Pearson correlation coefficient, p-value were also

calculated. This was done to indicate which coverage had a better correlation and then

after this various regression models were constructed in order to obtain r2 values for

better understanding of the relationship. The regression equation that described the

relation between mutant and the particular coverage for each test program gave a good

insight of the correlation between these variables.

6.3.1 Visualization using graphs

To better conceptualize the data gathered as the result of the experiments they were

plotted as a scatter plot. The figure below shows the correlation between each of the

coverage criteria with mutant detection. The x axis indicating the test suite sizes and

the y axis showing the coverage and mutant detection. The graph below indicates how

each coverage relates to mutant detection. From the graph for YAFFS2 it can be noted

that:

• Branch, block seem to influence mutant detection proportionally. Though the

graph is not linear the curves and how the graph turns out looks similar. Path

seems to have a higher correlation than predicate for YAFFS2.

• Apart from studying the behavior of coverage with mutant detection, if we look

at just coverage techniques themselves, it can be noted that:Branch , block seem

to correlate to each other. While to find the relation between path and predicate
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Figure 6.1: YAFFS2: Graph
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with each other and with each of branch and block we look more closely at the

p-values.

To confirm these assumptions that we can draw from the graphs, we do further analysis

which is described in more detail in the sections that follow.

6.3.2 Correlation of coverage and fault detection

With the data that has been plotted in graph there appears to be a positive correlation

between coverage and mutant detection, Pearson correlation coefficients and p-values

were calculated to affirm this. For every coverage curve vs mutant curve , the p-values

and Pearson correlation coefficients were calculated. Below is the table for p-value and

Pearson correlation coefficients for each of our subject programs and for each of the

coverage vs mutant data. For Pearson coefficient correlation measure, the standard

Guilford scale was used for verbal description; this scale describes correlation of under

0.4 as “low”, 0.4 to 0.7 as “moderate”, 0.7 to 0.9 as “high”, and over 0.9 as “very high”.

• Branch, block, path and predicate have a very high correlation with mutant detec-

tion since all of the values are above the 0.9 range.

• Strangely : Block vs predicate, block vs branch, branch vs predicate : these have

a “Very high” correlation among themselves. While the correlation between path

and any of these techniques are not very high even for the YAFFS2 data below.

Thus it is clear that the correlation among the coverage techniques is high with

these three coverage types. Though there is a correlation with path and these

coverage techniques it is not as high as the others.

Table 6.2: YAFFS2: Coverage Mutant Correlation
Pearson Coeff P-value R2 value

Block 0.976 0.004 95.30%
Branch 0.968 0.007 93.70%

Path 0.971 0.006 94.30%
Predicate 0.957 0.011 91.60%
TC-num 0.962 0.009 92.5%
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Table 6.3: YAFFS2: Coverage Techniques Correlation
Pearson Coeff P-value R2 value

Block vs branch 0.999 0 99.80%
Block vs Path 0.898 0.038 80.7%

Block vs Predicate 0.992 0.001 98.40%
Branch vs Path 0.882 0.048 77.9%

Branch vs Predicate 0.996 0 99.10%
Path vs Predicate 0.87 0.055 75.8%

6.3.3 Regression Models

Our correlation analysis showed us some interesting observations. In statistics, the coeffi-

cient of determination r2 is used in the context of statistical models whose main purpose

is the prediction of future outcomes on the basis of other related information. It is the

proportion of variability in a data set that is accounted for by the statistical model. It

provides a measure of how well future outcomes are likely to be predicted by the model.

An r2 of 1.0 indicates that the regression line perfectly fits the data. Using r2s regression

feature, various models were created for both the coverage relation with mutant and the

correlation among coverage techniques. The third column in the tables below indicates

the r2 percentage. The regression line fits the data almost perfectly or very well in case

of block , branch as with SGLIB as well. Though here path seems to perform slightly

better than predicate. The values all above 90 or above 0.9 in decimal value. In regard

to correlation between coverage techniques, the regression line for the block vs predicate,

block vs branch and branch vs block are almost perfectly fitting the regression line.
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Chapter 7: Discussion

The two subject programs were analyzed each as discussed below and this section com-

bines the findings of each experiment in order to answer our initial research questions.

The table below is divided into sections of coverage vs mutant and each row containing

the values for each of our subject programs. Let us look into this in more detail. For

the block coverage and mutant detection relation we can see a very consistent behavior

across all our subject programs. Their P-values indicate that they have a very high

correlation with mutant detection. This is with the four programs with SGLIB as well

as YAFFS2. With branch coverage and predicate coverage we can see a similar consis-

tent behavior. Another thing to note here is that Rbtree as we know contains recursive

functions while the other subject programs don’t. This does not still seem to change the

coverage mutant relation. On the other hand path coverage does not behave consistently

across our subject programs. It does not have a high correlation with mutant detection

in 4 (SGLIB) out of 5 subject programs.
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Table 7.1: Overall: Coverage vs Mutant
Subject Program Pearson Coefficient P-Value R2 percentage

Block vs mutant

List 0.9 0.001 81%
Dllist 0.996 0 99.1%
Slist 0.973 0 94.8%

Rbtree 0.989 0 97.80%
Yaffs2 0.976 0.004 95.30%

Branch vs mutant

List 0.923 0 85.20%
Dllist 0.995 0 99.10%
Slist 0.96 0 92.1%

Rbtree 0.99 0 97.90%
Yaffs2 0.968 0.007 93.70%

Path vs mutant

List 0.609 0.082 37%
Dllist 0.606 0.084 36.70%
Slist 0.579 0.102 33.60%

Rbtree 0.68 0.03 46.30%
Yaffs2 0.971 0.006 94.30%

Predicate vs mutant

List 0.949 0 90%
Dllist 0.99 0 98%
Slist 0.973 0 94.8%

Rbtree 0.968 0 93.8%
Yaffs2 0.957 0.011 91.60%

Numtc

list 0.499 0.171 24.90%
Dllist 0.552 0.123 30.50%

slist 0.401 0.285 16.10%
Rbtree 0.503 0.139 25.30%
Yaffs2 0.962 0.009 92.50%
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Two test cases in SGLIB with the same coverage were taken to see if they detect the

same number of mutants. Here two test cases with the same coverage were considered

(same branch , same block, predicate and path) and we saw the number of mutants it

detected. It is to note that we did not consider the exact same branches covered just the

overall coverage percentage to be the same between the two test cases and surprisingly

even without the same branches, blocks or paths covered two test cases still appeared to

determine almost same number of mutants on an average. The table indicates that. This

might be because of a small subject program that we considered or it might be the small

test case length itself. But we still found this behavior rather interesting and something

that we look forward to explore in more detail in the future to see if the behavior is

consistent with other programs.

Note the Pearson correlation coefficient for test cases with same coverage: Pearson

correlation of two test cases with same block coverage : 0.999 (Its corresponding r2

value is 99.8) Pearson correlation of two test cases with branch coverage: 0.999 (Its

corresponding r2 value is 99.8) Pearson correlation of two test cases with path coverage:

0.998 (Its corresponding r2 value is 99.6) Pearson correlation of two test cases with

predicate coverage: 0.998 (Its corresponding r2 value is 99.6)

These results indicate that two test cases with similar coverage have a very high

probability that they detect the same number of mutants.

Answering some of our original research questions after the analysis from both of our

experiments.

• Under which coverage measures/coverage profiles are correlations in mutant detec-

tion ability high? Based on r2 and p values, branch, predicate and block score well

in four out of five subject programs

• Under which coverage measures/coverage profiles are correlations in mutant detec-

tion ability low? Path scored lowest everywhere in 4 out of 5 subject programs.

Its rapid increase in coverage does not correlate with an equally rapid increase of

the number of mutants after a certain point.

• If test suites A and B get the same coverage by criteria X, what’s the correla-

tion on criteria Y? The correlation between block-branch, block-predicate, branch-

predicate is really high overall
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Figure 7.2: Same path and branch
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Figure 7.3: Same block and predicate
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• Would two test cases A and B with the same coverage (branch, block, path, pred-

icate) detect the same number of mutants? This did surprisingly prove to almost

do predict the same number of mutants in most of the cases as discussed above.

But this is more tougher to generalize since due to time constraints we could only

consider SGLIB results.
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Chapter 8: Threats to Validity

Threats to internal validity include the possibility of corrupted data or incorrect pro-

cedures; The most serious threats is to external validity. Our set of programs and test

suites, while fairly large and representative of the C real world programs. In particular,

we examined a large number of data structures. The results though might not extend to

other languages and object oriented languages might behave differently in this aspect.

We do plan to do future work in this aspect in order to extend our finds in this study.

Mutation analysis is a well known method used by a lot of researchers in replacing real

world faults. But this is sensitive to external threats caused by some influential fac-

tors including mutation operators, test suite size, and programming languages [12]. We

also worked with randomly generated test suites as a way of making a more broader

conclusions possible about the influence of various coverage techniques on effectiveness.

However, if we had restricted our attention to particular algorithms for building test

suites, our results may very well have been different, and while less general, may have

applied directly to real world methods of test suite construction. Construct validity is

primarily threatened by mistakes in our implementation of coverage info gathering; we

doubt that any of these were sufficient to radically change any results.
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Chapter 9: Conclusion and Future work

Our empirical study of coverage to answer our research questions did give some interest-

ing results. We performed controlled experiments aimed at understanding the influence

of different kinds of coverage on test suite effectiveness. Our results indicate that the

very popular branch, block correlate better with fault detection than path coverage in a

test suite with multiple test cases. Another interesting thing we noted in our experiment

is that predicate performed better than path coverage in 4 out of 5 subject programs

and almost did as well as the popular block and branch coverage. Hence designing a test

suite with a higher percentage of branch and block not only seem to be feasible but also

appear to correlate better with fault detection. We have used subject programs that

are moderately sized. Block and branch coverage also seemed to have a high correlation

among themselves, meaning that an x% of block coverage would in most cases ensure a

particular y% of branch coverage as well based on the regression analysis and a regression

equation and this also extended to predicate coverage. This was not true in the case of

path coverage. Therefore knowing that there is x% branch coverage in a program we can

to some extent predict the amount of block/predicate coverage that the program might

have with the knowledge of branch but this did not extend to path. The correlation

between path and the other coverage criteria did not show up as high.

For our future work, we would like to run similar experiments on programs from a

broader range of programming languages like Java. In our present study we focussed on

the four popular coverage techniques being branch, block, path and predicate. Another

interesting way to expand this further would be to add a broader coverage techniques as

well. This could very well be studied for def-use, prime-path, PCT for gathering more

interesting results. We could vary our form of testing. We used random testing with

feedback for our experiment with YAFFS2 and random testing for SGLIB but using

adaptive testing or some other testing method could also prove to be interesting. We

can see if the results remain consistent or vary from our present set up as we expand

our study. Further studies in this area would be helpful for future software testers in

optimizing the test suite creation or minimization. Another interesting thing that would
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be worth exploring in the future is in the related field of statistical debugging - finding

a way to predict when to use which coverage traces for statistical debugging.
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