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The experimental and theoretical bases of transient electric birefringence (TEB) and
its application in a variety of nanomaterials, including Na-montmorillonite, cellulose
nanocrystals (CNXL), and CdSe quantum dots (QDs) will be presented. TEB is a
phenomenon attributed to the alignment of particles in response to an applied electric
field and has been used for the determination of particle sizes, optical anisotropies,
polarizability anisotropies Aa, and permanent dipole moments . In this thesis, T will
present the relations between the physical parameters just mentioned and the
experimental measurements of the rise, saturation, and decay of particle alignment.
Detailed experimental setup and data analysis procedures will also be discussed. In
the case of Na-montmorillonite, our findings imply a wide size and shape distribution
and that the shape of the material is best modeled somewhere between a rod and a
disk. The alignment mechanism was dominated by an induced-dipole, with some of
the data suggesting the presence of a small permanent dipole; however, the later

findings were inconclusive. CNXL, on the other hand, is shown to be polydisperse



only in size and is modeled well as a rigid rod. At intermediate field strength, the
dlignment response was governed by both an induced (~95%) and permanent moment
(~5%). CNXL was also shown to produce very large birefringence, owing to its
equally large optical anisotropy. CdSe QDs are nearly monodisperse in both size and
shape, and are an ideal representation of a rigid rod. Their alignment mechanism
contained a large permanent dipole contribution (~88%), which is attributed to their
wurtzite crystalline structure. In the last chapter, preliminary results on
nanocomposites containing carbon nanotubes (CNTs) and QDs are presented. Results
for the nanoparticles in polylaurylmethacrylate are promising. TEM images of both
composites showed a net alignment of particles in the field direction. However,
aggregation of the CNTs in the polymer was a problem and further work is needed to
keep them adequately exfoliated during the curing process. Aggregation of the QDs

was not observed.
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The Transient Electric Birefringence of Nanomaterials: Alignment Mechanism,

Characterization, and its Application Towards Aligned Polymer Nanocomposites

1. Overview
1.1. Literature Review
Optical anisotropy was discovered at the end of the nineteenth and beginning of the
twentieth century. In the 1870s Maxwell observed the flow birefringence of Canada
balsam, and the technique played a prominent role in the study of artificially induced
birefringence for several years.[l] Studies of the magnetic birefringence effect,
discovered by Kerr (1901), were extended by Cotton and Mouton (1907) on colloidal
solutions of ferric hydroxide.*”! However, there has been limited advancement in the
field past the work of Mekshenkov (1965).[6'8] The electric birefringence effect was
first observed in 1875 by Kerr who further established the proportionality of the
birefringence to the square of the field strength.[9] For the next several decades, the
study of electric birefringence was restricted to pure liquids and colloidal solutions
using high DC voltages and sinusoidal fields. Limited by their conductivity,
biological macromolecules in aqueous solutions were studied only after pulsed
techniques had been developed.

The invention of the oscilloscope further accelerated the development of
pulsed techniques further, and in 1947 Kaye and Devaney described a generator
producing sequeéntial rectangular pulses.[lo] Tolstoi and Feofilov also developed the

use of this technique for colloidal solutions and drew attention to its potential for use



in the study of relaxation processes.[”]

Because of its large size and strong
birefringence, tobacco mosaic virus (TMV) was the first biological macromolecule to
be investigated. In the 1950s, Benoit investigated aqueous solutions of TMV, DNA,
and vanadium pentoxide using a mechanical switch for pulse generation.[lz’ Bl He also
derived the basic theory of the transient phenomena for the build-up and decay of the
birefringence.

A series of articles devoted to the study of the transient electric birefringence
(TEB) of macromolecules was published by the O’Konski group at Berkeley." The
use of a single pulse to orient the particles, in place of a train of pulses, strongly
reduced electrolysis and heating effects which were particularly critical in the study of
aqueous solutions. Shortly after O’Konski’s work, several reviews concerning the
Kerr effect in liquids, polymers, and proteins, were published.[ls'w]

In more recent years, TEB has become the standard form of measurement for
many solutions which show promise in the electronic display industry.“”'] The
reason for this is that the technique provides a simple method for the determination of
a solution’s Kerr constant. The Kerr constant is defined as K = An/iE’ and is an
important physical parameter of a solution; as a higher value for the Kerr constant
allows for more complete transmission of light to be achieved with a smaller applied
electric field (a phenomenon that will be addressed in detail in a later section).

The fundamental theoretical framework on TEB was established by Langevin
(1908)*! and Born (1918),[23] and later developed in more detail by Peterlin and

Stuart (1939).[24'29] The basic assumption of the theory is orientation of the particles



under the influence of the external electric field through their permanent and/or
induced-dipole moments. Further extensions of the basic theory, including saturation
behavior at high fields, were addressed by O’Konski, Yoshioka, and Orttung

(1959).50-331
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2. Propagation of Light

Propagation of an electromagnetic wave through a vacuum or a dielectric material is
described using Maxwell's equations. The following section follows the discussion by
Fowles and highlights the basic theory behind the interaction of light with anisotropic

systems.[l]

2.1. Propagation of Light in an Isotropic Medium

In an isotropic, nonconducting medium, the electrons are bound to the atoms with no
preferential direction or orientation. Thus, if the electrons are displaced some distance
r from their equilibrium position by a static field E, the resulting polarization of the

medium is given by:

E @.1)

where N is the number of electrons, and K is the force constant that equals —eE/r. If

the field varies with time, the following differential equation of motion results:

2
4t oy Kr=—eE 2.2)
dt dt

m

where my is a proportionality constant which accounts for the frictional damping force
experienced by the electrons. Assuming that the field affecting the electrons varies

harmonically as e, Eq. (2.2) becomes:



(- me? —iomy+ K} = —eE 2.3)
and the polarization represented by (2.1) is given by:

2
J QR L E 2.4
—mo” —iomy+ K

When o = 0, Eq. (2.4) reduces to the static field scenario represented by Eq. (2.1). A
more physically important representation of Eq. (2.4) can be established by

introducing the resonant frequency ®, of the bound electrons:

2
p= . Ne 2/m E (2.5)
w, —0° +iwy

where o, =~NK/m 2.6)

The resonance frequency is intrinsic to the dielectric material and corresponds to the
frequency of strong absorption.
The polarization of a non-conducting medium constitutes the source in the

general wave equation:

1 ’E o’ P
2

Vx(VxE)+c P =—U, o

Q2.7

Substituting Eq. (2.5) for the polarization, the right side of Eq. (2.7) becomes:

— p,Ne? 1 0’E
T - (2.8)
m o, -0 +-ioy ) Ot



A general solution to Eq. (2.7) is a planar harmonic wave:
E - Eoei(Kz—a)r) (2.9)

with a wave number 7expressed as:

2 2
K2=“’_(1+Ne. — J (2.10)
me, o, -0° —iyo

The real and complex parts of .7Can be represented as:
K =k+ia 2.11)

By substituting the right side of Eq. (2.11) into the plane wave expressed by Eq. (2.9),

the general solution can now be re-written as:
E=E e“e' ™™ (2.12)

The factor ¢® indicates that the amplitude decreases exponentially with distance.

Thus, as the wave moves through the medium, its energy is absorbed. Given that the

energy is proportional to IE 2, 2a is termed the coefficient of absorption of the

i(kz-wt)

medium. The phase factor e indicates that the phase velocity v is:

[0 (&
v="252 2.13
P (2.13)

Eq. (2.13) represents the relation between the refractive index n, the wave vector £,

and the speed of light c. The refractive index . #is defined as the ratio of the speed of
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light in vacuum to its speed in a medium (n = ¢/v), and it can be expressed in a similar

fashion to the complex wave vector .7 Where:

N =n+ix (2.14)
)

and that: K =—N 2.15)
@

Thus the imaginary portion of the complex index of refraction .#7s termed the
extinction coefficient x and is related to a. From Eq. (2.10) and Eq. (2.15), we can

obtain:

=ty | Bem@ 2.16)
2me, (w0, —@")" +y @
2 2.2
- Ne“w 5 yj a: = 2.17)
2me, \ (0, —@") +y ®°

Finally, if the frictional damping constant is sufficiently small, the term y’w’ can be

neglected and Eq. (2.16) simplifies to:

2
14— ( 12J 2.18)

2
87’ me, \ v, —v

where the denominator has been multiplied by 47* in changing from angular frequency

to normal frequency.



11

2.2. Propagation of Light in an Anisotropic Medium
Many crystalline substances in nature are optically anisotropic. If a crystal’s lattice is
not completely symmetric then the binding forces on the electrons are not equal in all
directions. A crystal which displays anisotropy in the electronic binding force is
termed birefringent.  Birefringent crystals belonging to the hexagonal, tetragonal,
and trigonal groups are termed “uniaxial,” having their atoms arranged in such a way
that there is a single optical axis which corresponds to a direction about which the
atoms are arranged symmetrically. There also exist biaxial crystals, having two
optical axes and three refractive indices. Although interesting, the discussion of
biaxial crystals will be avoided, as they have little relevance to the current study.
Cubic crystals like sodium chloride display no birefringence, owing to their relatively
simple and highly symmetric structure. Their lattice contains four 3-fold symmetry
axes so light emanating from a point source within the structure will propagate
uniformly in all directions. Such a material will have a single index of refraction and
be optically isotropic.

An illustration of the anisotropic polarizability of a crystal is shown in
Figure 2.1, where an electron is pictured as being attached to fictitious springs. The
springs are of varying stiffness as they extend in different directions, representing the

varying forces exerted on the electron as it is displaced from its equilibrium position.
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Figure 2.1: Model of the anisotropic binding of an electron in a
crystal.

A consequence of the anisotropic binding is that the polarization produced in the
crystal by a given field is not just along the direction of the field. Instead, it can vary
in a manner that depends on the direction of the applied field with regard to the crystal

lattice. Thus, the dependence of P on E is expressible as a tensor relation in the form:

Ra

Xu X Yo || E.
P l=¢Xn Xn X»|E, (2.19)
Xa Xn XullE.

WO

This is typically abbreviated as:

P=¢g yE (2.20)
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where y is the susceptibility tensor:

Au X2 X
A= Xa X Xxn (2.21)
An An Xn

For ordinary nonabsorbing crystals the y tensor is symmetric so there always exists a
set of coordinate axes, called the principal axes, such that it assumes the diagonal

form:

A 0 0
0 x» O 2.22)
0 0 X

The three ys are known as the principal susceptibilities. Given Eq. (2.18), the general

wave equation(Eq. (2.7)) can be written as follows:

10°E 1 0E
Vx{VxE)+— =—— 2.23
( ) ¢’ o’ AP (525}
It can then be shown that the crystal can sustain waves of the form e “" ™" provided

the propagation vector k satisfies the equation:

2 2

kex(ex E)+ 2o E=-2_4E (2.24)
C C
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Eq. (2.24) can be written out in terms of components as follows:

2 2
(— k2 k% + Q—JEX +k kB, +kKkE, = ~&  1uE,
C

2
c

In the case where a wave is propagating along the x axis, k. = k, k, = k; = 0, and the

three equations reduce to:

) @
c—zEx = C—QZuEx
»* »*
2
(—k +c—2}Ey = —c—zzzzEy (2.26)
2 2
(— kz +—c_2_]Ez . _w_2Z33Ez

The first equation suggests that E, = 0, because neither @ or y;; is zero. This means
that the E field is parallel to the x axis. If then E, # 0 and E, # 0, the second and third

equations become:

a
k=14 7 @2.27)
and k=2 1+ 4, (2.28)
C
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Thus, given that w/k is the phase velocity, there are two possible phase velocities for a
wave along the x-axis. Using the relation expressed in Eq. (2.13), the refractive index

along each propagation direction can then be written as:

n =1+ 2

n, =1+ 1 (2.29)

ny =1+ 13

Thus the speed of propagation of a light wave in a crystal is a function of the direction
of the wave’s propagation and its polarization.

Birefringent crystals are classified according to the diagonal values of y. An
isotropic crystal has all three diagonal elements identical, and a biaxial crystal has all
three elements different. A uniaxial crystal contains two identical diagonal elements
(for example, y;; = x22), and the corresponding index of refraction of these elements is
called the ordinary index n, and the other index, corresponding to y3;, is called the
extraordinary index n.. If n, < n,, the crystal is said to be positively birefringent;
otherwise the crystal is negatively birefringent. Table 2.1 gives the parameters for an
isotropic and uniaxial crystal.

To understand how the anisotropy of a crystal affects the propagation of
optical waves, we can first consider a point light source emanating from the center of a
uniaxial crystal. A light wave of arbitrary polarization can always be resolved into
two orthogonally polarized waves. Thus, when a spherical wave moves out from a

point source, it can be considered to consist of two independent spheres that are
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polarized orthogonally and traveling at different phase velocities. Because the indices
along two of the directions in the crystal are equal, the nature of the surface for each
sphere is such that they touch at a certain point. This point defines the direction in
which the velocities of the waves are equal and so defines an “optical” axis of the

crystal.

Table 2.1: Susceptibility tensors for isotropic and uniaxial crystals.

a 00
Isotropic =10 a O In=Xn=Xn=4a
0 0 a
(a 0 0] X=X =@ X =b
Uniaxial ¥=(0 a O n,=~1+a
10 0 b] n,=~1+b

The wave with its polarization perpendicular to the optical axis is termed the ordinary
wave (o-wave) with a refractive index n,. The ordinary wave will encounter equal
indices in all directions as it expands, thus the wave front is a true sphere. The wave
with its polarization parallel to the optical axis is termed the extraordinary wave
(e-wave). The extraordinary wave encounters equal indices along two directions but
also an unequal index n, along the third direction. The resulting wave front forms an
ellipse. Figure 2.2 shows the e-wave’s elliptical form and indicates the presence of
different velocities along different directions in a negative crystal. The upper- and

lower-limit velocities define the long and short axes of the ellipse. The long axis
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corresponds to the direction in which the wavefront reaches its greatest velocity
through the crystal and is termed the fast-axis. Correspondingly, the short axis is in
the direction of the smallest velocity and is termed the slow-axis. The double headed
arrows indicate the polarization of the o-wave and the circled x’s indicate the
polarization of the e-wave. The large arrow heads are pointed along the direction of

the optical axis.

Figure 2.2: Waves expanding from a point source in a positive uniaxial
crystal. In this case the o- and e-waves expand at equal velocity along the
short axis of the ellipse. If the crystal was negatively birefringent, the
spherical o-wave would be outside of the elliptical e-wave and the phase
fronts would match along the long axis of the ellipse.

The propagation of a polarized light wave in a uniaxial crystal is thus determined by
its two polarization component, the o-wave and the e-wave. They travel at different
speeds and will have different phase shifts after traversing a certain distance. The

magnitude of birefringence is defined by:

An=n,—n, (2.30)
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Table 2.2 shows a list of indices of refraction and birefringences for some common

substances.

Table 2.2: Refractive indices of some uniaxial birefringent crystals (A = 589 nm).

Material n, ne An

Calcite (CaCOs3) 1.685 1.486 -0.172
Ice (H,0) 1.309 1.313 +0.004
Quartz (Si0,) 1.544 1.554 +0.009
Ruby (Al,0,) 1.770 1.762 -0.008
Rutile (TiO;) 2.616 2.903 +0.287
Sapphire (Al,O3) 1.768 1.760 -0.008

If the direction of the optical axis is arranged such that it is perpendicular to the
parallel surfaces of a birefringent crystal and the E-field of an incident wave is
oriented such that it has components parallel and perpendicular to the optical axis,
then they will each propagate through at different speeds (Figure 2.3). After
traversing a crystal of thickness d, the resulting wave will have a phase difference o,

defined as:
5= 27”d(ne ~n,) (2.31)

where A is the wavelength of the incident wave. This is the underlying principle of
wave plates. A wave plate is an optical component that is designed to induce a
predetermined phase shift between the two polarization components of an incident

light beam. Wave plates that induce a relative phase shift of 6 = #/2 are known as
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quarter-wave plates; one such device is used in this research and will be addressed in

detail later.

Figure 2.3: Linearly polarized light entering a birefringent crystal. The
component of the wave parallel to the crystal’s optical axis moves slower than the
perpendicular one. The phase shift in the two components results in a new
polarization state of the wave at the far side of the crystal.

2.3. Birefringence in Liquids

Birefringence is not limited to crystals and can be expressed in a countless number of
pure liquids and solutions as well. John Kerr (1824-1907) was the first to report the
electro-optic effect of liquids in 1875. He found that a transparent, isotropic substance
would become birefringent when placed in an electric field. The liquid takes on the

characteristics of a uniaxial crystal with its optical axis oriented in the direction of the
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applied field. The refractive indices associated with the two orientations parallel and

perpendicular to the field are represented by n, and n, respectively and their

difference An is given by:

An = AKE* (2.32)

where K is the Kerr constant. The field strength E has units of V/m and K has units of
m/V?, leaving An unitless. Table 2.3 lists the Kerr constants for some common
liquids.

Table 2.3: Kerr constants for some common liquids (A = 633 nm).

Liquid K (mV?)
Water 3.00x10™
Nitrobenzene 2.25x107"2
Toluene 8.00x10°"

The electro-optic response of a liquid or solution in an external field is due to
orientation or alignment of molecules in the field. Such behavior is the result of the
permanent dipole and/or the induced dipole of the molecules. This interaction
produces a torque which aligns the symmetry axis of the molecules either parallel or
perpendicular to the field (Figure 2.4). Once aligned, the bulk solution interacts with
polarized light in the samé manner as a solid crystal. If the alignment is achieved
. through the application of an electric field the process is known as Transient Electric
Birefringence (TEB). However, particle alignment is also achievable through the

application of high intensity optical fields, in which case it’s known as the Optical
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Kerr Effect (OKE). Alignment through OKE is different from TEB because it relies
solely on the particle’s polarizability and is completely independent of any dipole

moment.

+4++++++++ A
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Field off
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Figure 2.4: General orientation of anisotropic molecules in the absence and presence
of an externally applied electric field.
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2. Propagation of Light

Propagation of an electromagnetic wave through a vacuum or a dielectric material is
described using Maxwell's equations. The following section follows the discussion by
Fowles and highlights the basic theory behind the interaction of light with anisotropic

systems.[l]

2.1. Propagation of Light in an Isotropic Medium

In an isotropic, nonconducting medium, the electrons are bound to the atoms with no
preferential direction or orientation. Thus, if the electrons are displaced some distance
r from their equilibrium position by a static field E, the resulting polarization of the
medium is given by:

Ne?
K

P="CF @.1)

where N is the number of electrons, and X is the force constant that equals —eE/r. If

the field varies with time, the following differential equation of motion results:

2
& my I Ky = —E 2.2)
dt dt

where my is a proportionality constant which accounts for the frictional damping force
experienced by the clectrons. Assuming that the field affecting the electrons varies

harmonically as ¢™’, Eq. (2.2) becomes:



(- mo>? —iomy + K ) = —E 2.3)
and the polarization represented by (2.1) is given by:

2
P= . Ne E 2.4)
—-mo° —iomy+K

When w = 0, Eq. (2.4) reduces to the static field scenario represented by Eq. (2.1). A
more physically important representation of Eq. (2.4) can be established by

introducing the resonant frequency o, of the bound electrons:

p=— e/’ _p @5)
(00 —-@" + 1wy

where o, =vK/m (2.6)

The resonance frequency is intrinsic to the dielectric material and corresponds to the
frequency of strong absorption.
The polarization of a non-conducting medium constitutes the source in the

general wave equation:

ot . Hea

1 0°E 0P
2

Vx(VxE)+ 2.7
C

Substituting Eq. (2.5) for the polarization, the right side of Eq. (2.7) becomes:

— p,Ne? 1 O°E
— ; 2.8)
m o, -0 +—ioy ) Ot



A general solution to Eq. (2.7) is a planar harmonic wave:

E=E (2.9)
with a wave number .Zexpressed as: y
2 2
1
K2=“’_2{1+Ne —_ J (2.10)
c me, ;-0 —iyw

The real and complex parts of ./#Can be represented as:
K =k+ia 2.11)

By substituting the right side of Eq. (2.11) into the plane wave expressed by Eq. (2.9),

the general solution can now be re-written as:
E=E e“e™ (2.12)

The factor €™ indicates that the amplitude decreases exponentially with distance.

Thus, as the wave moves through the medium, its energy is absorbed. Given that the

2, 20 is termed the coefficient of absorption of the

energy is proportional to ‘E

itkz-owt)

medium. The phase factor e indicates that the phase velocity v is:

()
v="= 2.13
P 2.13)

n
Eq. (2.13) represents the relation between the refractive index n, the wave vector &,

and the speed of light ¢. The refractive index . 7is defined as the ratio of the speed of
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light in vacuum to its speed in a medium (n = ¢/), and it can be expressed in a similar

fashion to the complex wave vector ./%Wwhere:

N =n+ix (2.14)
@

and that: K =—N (2.15)
c

Thus the imaginary portion of the complex index of refraction . /s termed the
extinction coefficient x and is related to a. From Eq. (2.10) and Eq. (2.15), we can

obtain:

2 2 2
n=1+2Ne (( 2 w"z)f’ . 2) (2.16)
me, (0} —0°) +y’o
Ne*w 2w?
= ome ((a)z—ai}z)z+y2a)zj @17)

Finally, if the frictional damping constant is sufficiently small, the term yza)z can be

neglected and Eq. (2.16) simplifies to:

2
n=1s_ € (Vzlvzj (2.18)

where the denominator has been multiplied by 47* in changing from angular frequency

to normal frequency.
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2.2. Propagation of Light in an Anisotropic Medium
Many crystalline substances in nature are optically anisotropic. If a crystal’s lattice is
not completely symmetric then the binding forces on the electrons are not equal in all
directions. A crystal which displays anisotropy in the electronic binding force is
termed birefringent.  Birefringent crystals belonging to the hexagonal, tetragonal,
and trigonal groups are termed “uniaxial,” having their atoms arranged in such a way
that there is a single optical axis which corresponds to a direction about which the
atoms are arranged symmetrically. There also exist biaxial crystals, having two
optical axes and three refractive indices. Although interesting, the discussion of
biaxial crystals will be avoided, as they have little relevance to the current study.
Cubic crystals like sodium chloride display no birefringence, owing to their relatively
simple and highly symmetric structure. Their lattice contains four 3-fold symmetry
axes so light emanating from a point source within the structure will propagate
uniformly in all directions. Such a material will have a single index of refraction and
be optically isotropic.

An illustration of the anisotropic polarizability of a crystal is shown in
Figure 2.1, where an electron is pictured as being attached to fictitious springs. The
springs are of varying stiffness as they extend in different directions, representing the

varying forces exerted on the electron as it is displaced from its equilibrium position.
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Figure 2.1: Model of the anisotropic binding of an electron in a
crystal.

A consequence of the anisotropic binding is that the polarization produced in the
crystal by a given field is not just along the direction of the field. Instead, it can vary
in a manner that depends on the direction of the applied field with regard to the crystal

lattice. Thus, the dependence of P on E is expressible as a tensor relation in the form:

Xn Yo Xo || E:
P l=¢€,|Xu Xn Xu|E (2.19)
Xu Xn Xun | E.

Nav

WO

This is typically abbreviated as:

P=¢g, yE (2.20)
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where y is the susceptibility tensor:

Aun X X
X=|Xn Xn Xn (2.21)
Aun Xn Xn

For ordinary nonabsorbing crystals the y tensor is symmetric so there always exists a
set of coordinate axes, called the principal axes, such that it assumes the diagonal

form:

Xu O 0
0 x» O 2.22)
0 0 2

The three ys are known as the principal susceptibilities. Given Eq. (2.18), the general
wave equation(Eq. (2.7)) can be written as follows:
O’E 1 9E

1
Vx(VxE)+— =—— 2.23
( ) c? ot czﬂ(at2 (2:23)

i(k-r—wt)

It can then be shown that the crystal can sustain waves of the form e provided

the propagation vector k satisfies the equation:

2 2
w

kex(kx E)+ 2 E=-2_ yE (2.24)
C C
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Eq. (2.24) can be written out in terms of components as follows:

9 2
(_ k2 —k? +[::—2JE +kk,E, +kkE, = —%ZuEx

N o’
bk E 4|~k ~kl 425 |B 4k, E, == rn,  (229)

2 2
2 2 (0} _ (4]
k.k.E. + kzkyEy + (— k; — ky + c—sz’ = —C—,z;‘(ﬂlz?z

In the case where a wave is propagating along the x axis, kx = k, k, = k; = 0, and the

three equations reduce to:
E, = —?—ZZZE}; (2.26)

The first equation suggests that E, = 0, because neither w or y;; is zero. This means
that the E field is parallel to the x axis. If then £, # 0 and E; # 0, the second and third

equations become:

k=2 s 2 @.27)

c

and k=2 1+ 1, (2.28)
C
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Thus, given that o/k is the phase velocity, there are two possible phase velocities for a
wave along the x-axis. Using the relation expressed in Eq. (2.13), the refractive index

along each propagation direction can then be written as:

n =1+ 7

1, =1+ 7 (2.29)

ny =1+ 13

Thus the speed of propagation of a light wave in a crystal is a function of the direction
of the wave’s propagation and its polarization.

Birefringent crystals are classified according to the diagonal values of . An
isotropic crystal has all three diagonal elements identical, and a biaxial crystal has all
three elements different. A uniaxial crystal contains two identical diagonal elements
(for example, y;; = x22), and the corresponding index of refraction of these elements is
called the ordinary index n, and the other index, corresponding to xs3, is called the
extraordinary index n.. If n, < n,, the crystal is said to be positively birefringent;
otherwise the crystal is negatively birefringent. Table 2.1 gives the parameters for an
isotropic and uniaxial crystal.

To understand how the anisotropy of a crystal affects the propagation of
optical waves, we can first consider a point light source emanating from the center of a
uniaxial crystal. A light wave of arbitrary polarization can always be resolved into
two orthogonally polarized waves. Thus, when a spherical wave moves out from a

point source, it can be considered to consist of two independent spheres that are
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polarized orthogonally and traveling at different phase velocities. Because the indices
along two of the directions in the crystal are equal, the nature of the surface for each
sphere is such that they touch at a certain point. This point defines the direction in
which the velocities of the waves are equal and so defines an “optical” axis of the

crystal.

Table 2.1: Susceptibility tensors for isotropic and uniaxial crystals.

a O
Isotropic x=|0 a An=Xn =X =4
0 0 a
a 0 0 Xu=Xn =0 Xn=b
Uniaxial ¥=(0 a O n,=+l+a
00 b n,=~1+b

The wave with its polarization perpendicular to the optical axis is termed the ordinary
wave (o-wave) with a refractive index n,. The ordinary wave will encounter equal
indices in all directions as it expands, thus the wave front is a true sphere. The wave
with its polarization parallel to the optical axis is termed the extraordinary wave
(e-wave). The extraordinary wave encounters equal indices along two directions but
also an unequal index 7, along the third direction. The resulting wave front forms an
ellipse. Figure 2.2 shows the e-wave’s elliptical form and indicates the presence of
different velocities along different directions in a negative crystal. The upper- and

lower-limit velocities define the long and short axes of the ellipse. The long axis
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corresponds to the direction in which the wavefront reaches its greatest velocity
through the crystal and is termed the fast-axis. Correspondingly, the short axis is in
the direction of the smallest velocity and is termed the slow-axis. The double headed
arrows indicate the polarization of the o-wave and the circled x’s indicate the
polarization of the e-wave. The large arrow heads are pointed along the direction of

the optical axis.

Figure 2.2: Waves expanding from a point source in a positive uniaxial
crystal. In this case the o- and e-waves expand at equal velocity along the
short axis of the ellipse. If the crystal was negatively birefringent, the
spherical o-wave would be outside of the elliptical e-wave and the phase
fronts would match along the long axis of the ellipse.

The propagation of a polarized light wave in a uniaxial crystal is thus determined by
its two polarization component, the o-wave and the e-wave. They travel at different
speeds and will have different phase shifts after traversing a certain distance. The

magnitude of birefringence is defined by:

An=n,—n, (2.30)
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Table 2.2 shows a list of indices of refraction and birefringences for some common

substances.

Table 2.2: Refractive indices of some uniaxial birefringent crystals (A = 589 nm).

Material n, n, An

Calcite (CaCOs) 1.685 1.486 -0.172
Ice (H,O) 1.309 1.313 +0.004
Quartz (Si0,) 1.544 1.554 +0.009
Ruby (Al,O,) 1.770 1.762 -0.008
Rutile (TiO») 2.616 2.903 +0.287
Sapphire (Al,03) 1.768 1.760 -0.008

If the direction of the optical axis is arranged such that it is perpendicular to the
parallel surfaces of a birefringent crystal and the E-field of an incident wave is
oriented such that it has components parallel and perpendicular to the optical axis,
then they will each propagate through at different speeds (Figure 2.3). After
traversing a crystal of thickness d, the resulting wave will have a phase difference 9,

defined as:

§=""d(n,-n,) (231)

where 2 is the wavelength of the incident wave. This is the underlying principle of
wave plates. A wave plate is an optical component that is designed to induce a
predetermined phase shift between the two polarization components of an incident

light beam. Wave plates that induce a relative phase shift of § = 772 are known as
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quarter-wave plates; one such device is used in this research and will be addressed in

detail later.

Optical axis

Figure 2.3: Linearly polarized light entering a birefringent crystal. The
component of the wave parallel to the crystal’s optical axis moves slower than the
perpendicular one. The phase shift in the two components results in a new
polarization state of the wave at the far side of the crystal.

2.3. Birefringence in Liquids

Birefringence is not limited to crystals and can be expressed in a countless number of
pure liquids and solutions as well. John Kerr (1824-1907) was the first to report the
electro-optic effect of liquids in 1875. He found that a transparent, isotropic substance
would become birefringent when placed in an electric field. The liquid takes on the

characteristics of a uniaxial crystal with its optical axis oriented in the direction of the
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applied field. The refractive indices associated with the two orientations parallel and

perpendicular to the field are represented by n, and n, respectively and their

difference An is given by:

An = AKE® (2.32)

where K is the Kerr constant. The field strength £ has units of V/m and K has units of
m/V?, leaving An unitless. Table 2.3 lists the Kerr constants for some common

liquids.

Table 2.3: Kerr constants for some common liquids (A = 633 nm).

Liquid K (mV?)
Water 3.00x10™
Nitrobenzene 2.25x10™"
Toluene 8.00x10™"

The electro-optic response of a liquid or solution in an external field is due to
orientation or alignment of molecules in the field. Such behavior is the result of the
permanent dipole and/or the induced dipole of the molecules. This interaction
produces a torque which aligns the symmetry axis of the molecules either parallel or
perpendicular to the field (Figure 2.4). Once aligned, the bulk solution interacts with
polarized light in the same manner as a solid crystal. If the alignment is achieved
through the application of an electric field the process is known as Transient Electric
Birefringence (TEB). However, particle alignment is also achievable through the

application of high intensity optical fields, in which case it’s known as the Optical
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Kerr Effect (OKE). Alignment through OKE is different from TEB because it relies

solely on the particle’s polarizability and is completely independent of any dipole

moment.

+++++++++++ R+
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Figure 2.4: General orientation of anisotropic molecules in the absence and presence
of an externally applied electric field.

2.4. References

1. Fowles, G.R., Introduction to Modern Optics. 2nd ed. 1989, Toronto: General

Publishing Company. 328.
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3. Transient Electric Birefringence (TEB)

3.1 Introduction

Transient electric-field induced birefringence is a method that has been used
extensively to study the rotational diffusion, size, shape, and polarization properties of

191 1 general, TEB measurements require a

objects with anisotropic geometries.
polarized probe beam and polarization analysis optics. The experimental setup
(Figure 3.1) contains an initial polarizer PI which defines the probe beam’s
polarization axis. An electric field is applied in a sample cell by two electrodes at 45°
to the polarization axis of the probe beam. An analyzing polarizer P2 oriented 90°
from the initial polarizer is placed downstream from the sample cell C and before the
detector. A quarter-wave plate /4 is sometimes inserted between the cell and the
analyzer and is generally oriented with its fast-axis parallel to the initial polarizer.
Typical experiments on dilute media use optical cells a few centimeters in length,

visible laser light, and are capable of measuring birefringence Az on the order of 107

to 107'°, correlating to phase shifts J in the range of 10" to 107 radians.

3.2. The Detection Scheme

Figure 3.2 shows the relevant axes in a standard TEB experiment. The polarization

direction E, of the HeNe beam is oriented 45° to that of the alignment direction of the

external field. Hence the probe beam has two orthogonal components, one parallel to

the alignment field E, and the other perpendicular to it £, . As the beam passes

through the sample cell its two components interact differently with the molecules
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aligned in the field. The result is a phase shift between the HeNe beam’s two

components and its subsequent change from linear to elliptically polarized light.

P1: Polarizer
C: Sample Cell PMT
M4: Y4 waveplate
P2: Analyzer

e B |
I | =i

Figure 3.1: Standard TEB setup using the minimal number of optics. Addition of
pinholes and filters is also common to aid in improving the signal to noise ratio.

An analyzer is placed downstream from the sample cell and oriented such that it
measures the component of the probe beam perpendicular to its incident polarization
direction. In the absence of any induced birefringence all of the probe beam’s

intensity is directed along its incident polarization direction E, leaving the measured
intensity along the E_ direction equal to zero. However, once an external field is
applied and birefingence is introduced into the system, the result is a measureable
intensity along E .

Adjustment of the optics is made as follows. With the probe beam, polarizer

P1, and PMT positioned, the analyzing prism P2 is introduced with its optical axis
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perpendicular to that of the polarizer P1 at 45° with respect to the alignment field. The
angle of the analyzer P2 is then adjusted to a truly “crossed” position by following a
DC signal of the HeNe on an oscilloscope and rotating the analyzer until the signal is
minimized. An optional quarter-wave plate A/4 can then be placed between the
sample cell C and analyzer P2, with its fast-axis parallel to that of the polatizer
direction P1. Its orientation is checked in the same manner as that of the analyzer P2;

i.e., it is rotated until a DC signal of the HeNe on the oscilloscope is minimized.
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Figure 3.2: Field orientations in the sample cell. The linearly polarized probe
beam has components parallel and perpendicular to the alignment field.

If one wishes to know the sign of the birefringence induced in a sample, an offset
analyzer angle in combination with a quarter-wave plate can be introduced in the

setup. In this case, the analyzer P2 is rotated through an angle a from the crossed
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position towards the direction of the alignment field. The light signal in the absence
of an alignment field and its change in the presence of an alignment field can now be
recorded. In the following, variations on the outlined scheme that aid in detection and

optimization of the birefringent signal will be discussed.

3.3. Fundamental Equations

The following treatment derives the phase shift J of a polarized probe beam after
passing through a birefringent sample. It starts by separating the probe beam into two
orthogonal components and showing how they are affected by the difference in
refractive index An along each axis. The two components are then brought back
together along the analyzer direction. With one component of the probe beam directed

parallel to the alignment field and the other perpendicular to it, we get:

—E,+E, (3.1)

N — _1_80ei(E2—wl) (3.2)
2

by

where E, =

After passing through the sample, the orthogonal components of the HeNe undergo a

phase shift, exiting as:

E-” _ Lgoeik,,dei(ki—wt) 3.3)

V2

' ik, d _i(k2-owt)
E, g,e e 34

.
2
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where d is the distance the beam travels in the sample cell, k, =(27/A)n,, and

k, =@l Mn,.

Because the birefringent signal is a function of the difference

between the two exiting waves, it is now convenient to disregard the common time

dependent term. Rewriting with respect to £, gives:

where 6 =(k, ~k )d =Q2nd/A)An and An=n, —n_ .

beam along E, and E, can then be written:

3.5)

(3.6)

The projection of the probe

3.7

(3.8)

Expanding the expressions with respect to Eq. (3.5) and Eq. (3.6) gives:

T 1 i l i85 ik d 1 ik(l'_
E =—|—¢g e'’e™ +_goe L
y \/__\/,_ 0 \/_ |
I 1 I 1 i6 ik, d 1 ikd_‘
Ex__— —goe et ——=&,€ t
\/—_2_\/5 \/_2 n

Rearrangement then yields:

(3.9)

(3.10)



27
E = %goe"‘ﬂ’ (e +1) G.11)
E = %g et (e —1) (3.12)

Expanding E, with respect to ¢ and rewriting using its trigonometric identity gives:

Ey = %goeikldei(%)[ei(%) + e_i(%)j| (3.13)
= goei(%md) cos(%) (3.14)

Following the same reasoning for Ey:
E = igoei(%+kld) sin(%) (3.15)

Finally, taking the square modulus of E, the expressions for the measured intensities of

the probe beam I, along each axis have the forms:

1,=1,c08(%4) (3.16)
. =1,sin*(%}) 3.17)

For small 6, the expression for I, along the direction of the analyzer can be reduced as

follows:

P
I=1, {izil or 0= Z[L} (3.18)
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Thus, a reasonable estimate of the phase difference J can be determined by first
measuring I, and then I. The primary benefit to this quadratic approximation is
amplification of the signal due to its dependence on the square of J. However,
because the signal response is quadratic, it fails to give the sign of the birefringence.
Furthermore, the measurement of two hugely different intensities can be problematic
because the dynamic range of any detection system is limited. To maintain the linear
range of the PMT, multiple filters are typically used, which introduces new concerns
as the reflective losses on the filters are tedious to keep track of. A better method
would be one in which a single optical adjustment can be made and no additional

optics are required in order to measure I,

3.3.1. Use of an Analyzer Offset Angle a
An improved method of measurement is to rotate the analyzer by a small angle and, in
so doing, solving the problem of detector saturation when recording the incident beam.

Figure 3.3 shows the two waves expressed by Eq. (3.14) and Eq. (3.15) and their

projections along E_ and E y at angle o. By adding the waves and taking their square

modulus as done previously we get:

I,=E}cos’a+E;sin’a

’ (3.19)
=1, [cosz(é'/2)cos2 a +sin’(5/2)sin’ a]

I.=Elsin’a+E; cos’

~ ) . . , 3.20)
=1 |cos*(8/2)sin” a +sin"(6/2)cos” &
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Figure 3.3: Field orientations with a non-zero offset analyzer angle a.

The reader is reminded that E\ is purely imaginary in Eq. (3.15); thereby eliminating

the interference term that would otherwise be present in Eq. (3.19) and Eq. (3.20).

Using the trigonometric relations sin’@ =

Eq. (3.19) and Eq. (3.20) become:

IO
I, = ?(l+ cos 20 cosd)

X

I
I.=1; =?"(l—cos2acos5)

1-cos?268

1+ cos28
2

and cos’@=

b

(3.21)

(3.22)

Where I,- = I; represents the birefringent intensity when the analyzer is offset by an

angle a. If there is no net sample alignment then Eq. (3.22) reduces to:
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a

I
I, = 7"(1 —cos2a)=1,sin’ (3.23)

where the symbol I, is essentially the background at an analyzer angle a without any
birefringence from the sample. The change of the light intensity due to sample

birefringence is thus given by:

I
Aly, =1;-1 =—21(1—cos5)cos2a (3.29)

=1, sin’(5/2)cos2cx 3.25)

Eq. (3.25) indicates that the maximum signal is observed when a = 0, i. e., the
background free condition without the offset angle a shown in Figure 3.3 is the most
sensitive at low levels of birefringence. The introduction of an analyzer offset angle o
knowingly introduces a background, and this background serves as a representation of
the intensity of the incident beam. Two steps of measurements are typically required
to take advantage of this approach. The first is to set the analyzer angle a = 0 in order
to obtain the birefringent signal I; and then, without the alignment field, rotate the
analyzer to a known angle a for the measurement of Z,. The ratio of the two intensities
is then:

1 _sin2(5/2)

1_5 T sinfa (3:26)

1/2
I
thus, S =2asin™ [1—5} (3.27)

o
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Of course it is also possible to take measurements of the background together with the
birefringent signal, i.c., to obtain A/; and I,. This approach eliminates the need of
rotating the polarizer during the experiment. However, the mathematical relation of
the resulting intensities is somewhat cumbersome, and the sensitivity suffers as well.
The greatest benefit of Eq. (3.27) is the replacement of I, with Z,. This means
that the measurement of the incident beam I, is no longer necessary; rather one should
measure the intensity transmitted by the analyzer , at a small angle ¢ in the absence
of any induced birefringence. This procedure does have two disadvantages however.
The first is that the analyzer angle a must be known precisely, and the second is that
the optics need to be rotated during the measurement. Both issues affect the precision

and reproducibility of the experimental results.

3.3.2. Use of a Quarter-Wave Plate

The presence of a quarter-wave plate between the sample and analyzer will enable the
distinction between positive and negative birefringence values, in addition to
increasing the sensitivity of the measurement. With the fast-axis of the wave plate
directed along E, and the analyzer angle set to zero, the fields along each direction are
represented by Eq. (3.14) and Eq. (3.15). With the reintroduction of the complex term
to account for the interaction of the waves with the different axes of the wave-plate we

have:

E, =g, cos(8/2)e" (3.28)
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E_=ig,sin(5/2)e’ "™ e "

, 3.29)
=g, sin(5/2)e" ™
Leaving the probe beam linearly polarized at an angle 4 given by:
tang = 30072 _ (5 12) (3.30)
cos(6/2)
or 0=25/2 3.31)

If the analyzer is placed at an angle o from the crossed position then the transmitted

field E, is given by a superposition of equations Eq. (3.28) and Eq. (3.29) as:

E, =¢&,[cos(5/2)sina +sin(8/2) cosar "

. (3.32)

=g, sin(a +6/2)e"

The light intensity I; transmitted by the analyzer is then:

I, =1,sin*(a+6/2) (3.33)

and the relative change with respect to 7, is:

. 2 2 /Y _ i
Alg _ [sm (a + () f’_) sin a] (3.34)

I, sin” &

o

If2
thus, 8= 2sin"ﬁ%+ IJ sina}—?,a (3.35)
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The steps involved in taking a birefringence measurement and calculating J for the
optical arrangements with and without the quarter-wave plate are very similar. The
primary difference between the two methods is in how the measurement of I, is
approached both experimentally and mathematically. For the arrangement involving
the presence of the wave plate, the offset angle o is imposed on the system first and
then measurements of /s and I, are carried out at the same analyzer angle. Different
from the previous section where the offset angle o introduces a background signal
which decreases the detection sensitivity for I, in this case, the gain in signal response
outweighs the increase in background; assuming that o is kept relatively small.

A simpler experimental approach involving the use of the wave-plate is to DC
couple the oscilloscope so that I; can be taken as the maximum achieved output
voltage and I, can be taken as the baseline voltage prior to the application of the
alignment field. In a DC coupled mode the oscilloscope measures the constant
background I, as well as the additional transient birefringent signal. Careful attention
must be paid to the output voltage of the PMT, as its linear response range can be
easily exceeded if the DC bias imposed on the system due to the analyzer offset is too
large. Thus, in most cases, it’s necessary to use a neutral density filter for the probe
beam. In contrast, experiments using an analyzer angle of zero are best conducted
with the oscilloscope in an AC coupled mode. In this case the scope only measures
the net change synchronized with the pulsed electric field. The observed intensity

change is equal to I; - I, from Eq. (3.24) and , is taken from a separate reading.
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3.3.3. A Practical Example

In the following example the birefringence of an aqueous CNXL sample was
calculated using its TEB signals (Figure 3.4) with and without a quarter-wave plate.
The birefringent response obtained without the use of the quarter-wave plate has been

amplified by a factor of ten for easy comparison.

12
——no N4
10 ——— with A/4

i e T e o O A R e P St £ =T L'-—— |
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Figure 3.4: Two different TEB signals for a 5.0x10° wt% CNXL
sample in water, taken with and without the use of a quarter-wave
plate. The signal obtained without the wave plate has been magnified
by 10x. Field = 1.7 kV/cm, applied for 500 ps at 2 Hz. The baseline of
the “with 4/4” signal rests at 5.28V.
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No quarter-wave plate

With quarter-wave plate

With the sample cell absent, optical adjustments were made as stated previously so
that the constant background was minimized; indicating that the polarizer and

analyzer were crossed and a2 = 0.

1. The sample cell was put into position
and a 5.0 kV/cm pulse was applied for
500 ps at 2 Hz.

2. The AC coupled PMT signal was
followed on an oscilloscope and its
peak value Iy = .62V was recorded
once a sufficient number of averages
was achieved (usually 64 to 128).

3. The sample was removed, the
analyzer was rotated by eight degrees
and the DC signal from the PMT was
recorded as I, = 5.44V.

12
S =2asin™ s
I

o

12
=16sin™ {%} =145.5°

Ap e SA  (£5.5)(633x107)
360! (360)(.01)
An=19.7x107"7

The A/4 plate was put into position and the
constant background was minimized a
second time.

The sample cell was put into position and
a 5.0 kV/cm pulse was applied for 500 us
at 2 Hz.

The analyzer was rotated eight degrees
toward the alignment direction without
Vimax > 10V (PMT’s linear range).

The DC coupled PMT signal was followed
on an oscilloscope and the values Al; =
4.24V and I, = 5.28V were recorded.

1/2
v .
S =2sin"" (AT&H) sing |- 2a

112
=2sin“]i(%+l} sin8]—16 =6.3°

_ S (6.3)(633%x107°)
3600 (360)(.01)

An=1.1x10"°
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An advantage of the optical setup with the quarter-wave plate is its superior
sensitivity. As an example, the percent change of light intensity as a function of ¢ is
plotted for an analyzer angle of o = 5 in Figure 3.5. The 7/2 phase shift imparted by
the wave plate has moved the steepest portion of the response curve to the origin. A
phase shift of § = 2° would yield a 4% change in Af without the wave plate and a 44%

change with it; as emphasized by the dashed lines.

10 5 /0 5 10

—— no quarter-wave plate

P : —— with quarter-wave plate

Al
—4% [x100
SR

Figure 3.5: Relative change in light intensity as a function of 6 (a = 5°). Both
the increases sensitivity and the ability of the arrangement containing the
quarter-wave plate to distinguish between positive and negative birefringence
is observed.
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In addition, Figure 3.5 also displays another benefit of the quarter-wave plate, i. e., the
ability to determine the sign of §. This is due to the pseudo-linear response with the
addition of the wave plate. This point is clearly observable by doing a series
expansion on Eq. (3.25) and Eq. (3.33) at 6 = 0. For the response of the birefringence

without the quarter-wave plate, Eq. (3.26) gives:

1 1
I, =sin’(6/2)= -8 -—¢6"* 3.36
5 sin”( ) 4 3 ( )

It can be seen from the fist two terms of the series that an even order response with
regard to the phase shift d is observed. Thus, only absolute values can be determined
for 6. For the response of the birefringence with the quarter-wave plate, Eq. (3.33)

gives:
Al =sin*(a+8/2)-sin’

= cosad + %(cos2 a —sin® a)d? —%cosa’é‘3 + 2}8—(0052 a-sina)d*  (3.37)

However, now both even and odd order terms contribute, and the determination of the
sign of J is possible. Looking at the first term in the series, it is also clear why the
arrangement with the quarter-wave plate is more sensitive and displays a linear
response. It should be noted that a first order dependence on cosa also leaves the
intensity change sensitive to the direction in which the analyzer is turned with respect

to the alignment field, a situation that will be discussed in detail later.
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Each arrangement has its own combination of advantages and limitations. Therefore,
careful thought should always be given as to whether the addition of a quarter-wave
plate is appropriate. For this reason it is always wise to run preliminary trials on a
sample so that parameters such as field strength and solution concentration can be
appropriately adjusted. The operator also needs to have a clear understanding of the
sources of error involved with each arrangement and how inaccurate settings can

affect the outcome of results.

3.3.4. Corrections for Stray Light and Residual Birefringence
Up to this point all discussions have assumed that the light fields are absent of any
residual light or residual birefringence. However, in every optical setup some residual
light is always present. There are two principle sources of residual light in a TEB
setup. The first is from imperfections in the optics which degrade the purity of the
polarized HeNe beam. The second is from strain on the optical components and, in
particular, the cell windows. Fortunately, the use of an AC coupled setting on the
oscilloscope simplifies the problem by cutting out the time independent residual light.
This does not, however, resolve the issue for measurements of I, taken in a DC
coupled mode. Therefore, in birefringence calculations, any residual light has to be
subtracted from the total light intensity.

The presence of a stray phase is usually an issue only when unknowingly
introduced by an inaccurate setting of the analyzer or quarter-wave plate angles. If, on

the other hand, it’s due to optical strain (most commonly present in the cell window) it
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can be easily dealt with as the effect results in an additional phase shift dg, which is
added to the final expressions. The reader can refer to the complete treatment for the
residual light in Appendix A; the results of which give the following modification to
Eq. (3.26), for the arrangement without a quarter-wave plate:

Al;  2sin(5/2)sin(6, +06/2)
I 1-cos2acosd,

[#4

(3.38)

If the arrangement includes a quarter-wave plate then the same treatment results in a
modification to Eq. (3.34) giving:

Al; sin*(@+8/2+6,/2)
I sin®(cr + 6, /2)

24

(3.39)

It’s clear from Eq. (3.38) and Eq. (3.39) that if several substances become birefringent
in the sample, then the effect is cumulative. One such example is when the solvent
contributes to the total signal. In this work, water has been used as the solvent in all
cases. Fortunately, water has a very weak birefringent response, owing to its small
Kerr constant of 3.1x10™** m?V2, determined using the current setup and verified with
the literature value.'! Thus, its effect on the results should be negligible.

Stray phases can also influence the calculation of decay times, particle
dimensions, and polarizability anisotropies. Detailed discussions on these properties

will be addressed in the relevant sections.
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3.4. Experimental Considerations

The system described has the advantage of providing accurate, quantitative
measurements of birefringence, rise times, and relaxation times of very dilute
solutions in any non-conducting solvent. It is also very versatile since it allows
studies at field strengths ranging from .02 to 5.0 kV/cm. However, as is the case with
any sensitive device, the system is ultimately constrained by the physical properties
and limitations of its components. Because of the straight forward nature of the TEB
setup, it is rare for inaccurate instrument settings or component limitations to render
the system inoperable. Instead they often result in false data which can be very
difficult to decipher from true values. The following section breaks down the system
piecewise, and addresses concerns surrounding each component. The section will be
concluded with a control study on nitrobenzene, for which the Kerr constant is

calculated and compared to the accepted value, as a test to the system’s reliability.

3.4.1. Light Source

The HeNe laser used in this experiment was purchased from Thorlabs and produces a
constant 5.0 mW beam with a >500:1 polarization ratio at a wavelength of 632.8 nm.
The beam has a Gaussian mode structure >99%, with an initial 1/€* diameter of .88

mm and a divergence of 1.00 mrad.
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3.4.2. Detection System

The use of a photomultiplier tube (PMT) is advantageous because of its high
sensitivity to light intensity changes. However, careful attention must be paid to the
voltage output of the PMT to make sure it does not exceed its linear range. Figure 3.6
shows the response of the detection circuit by plotting the output voltage read on the
oscilloscope against the relative laser intensity of the probe beam. This was
accomplished by by crossing two polarizers and measuring the intensity change using
Malus’ law (I = I, cos’0). It can be seen that output voltages between 0 and 10 volts

exhibit the desired response.

20
LR =0.9999
"..' . ’ “
15 A ®
r’. .
."‘.
V10 - s
e
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relative laser intensity

Figure 3.6: PMT response as a function of laser intensity. Output
voltages between 0 and 10 V display the desired linearity.
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3.4.3. Kerr Cell

The Kerr cell used in Figure 3.7 is similar to that described by O’Konski and
Haltner." As discussed in an earlier section, it is of high importance that a Kerr cell
with a minimal birefringence is used in order to avoid the introduction of stray phases
to the system. The 1 cm path length quartz cuvette was chosen because its own optical

retardation J, is small (6 << 1°); calculated as follows:
Ii,=28mV. [,=(3.88/.024)V a=2°

/2
5= 2sin-1[(% +1J sin 2} ~2(2)=3.5x10"*

e A (3.5x107)(633x107)
360/ (360)(.01)
An=6.1x10"

For this particular measurement, the presence of dust on both the outside and inside of
the sample cell is a concern. Therefore, the cuvette was washed and allowed to air dry
before the measurement was made. The value of I5, was taken as the difference
between the baseline voltage on the oscilloscope, with and without the sample cell in
place. The same 2.4% neutral density filter used for testing the linearity of the PMT
was also used in the measurement of I, in order maintain the proper PMT response.

The subsequent voltage reading was then scaled up to its appropriate value. This
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technique was used multiple times in the course of this research and will be seen again
in following sections.

Teflon inserts of varying width (1 — 3mm) are used to space the stainless steel
electrodes based on the field strength desired for a particular trial. The cell holder is
also made of Teflon and is machined so that the cell fits snuggly but with minimal
strain applied to its sides. The filling of the cell must be made carefully so that the
electrodes are completely immersed and no air bubbles are present. The reader may
have noted earlier that the sensitivity of the birefringence measurements could be
enhanced by increasing the path-length of the Kerr cell per Eq. (2.31). However, it’s
appropriate to mention here that the limitations due to conductivity would be

correspondingly higher.

Figure 3.7: Varying angles showing the 1 cm path length Kerr cell and its parts.



44

3.4.4. Electronics

When applying pulsed fields and monitoring time dependent signals, it’s important to
confirm that the frequency responses of the electronic devices exceed that of the
system being studied. In this case, the primary concern is that the rise and decay times
of the power supplies are fast enough to produce adequately shaped square waves for
the application.

The fastest signals studied in the context of this research are the rise times of
quantum dot samples which are on the order of ~10 ps. Thus, a frequency response
greater than 100 kHz is required for each of the electrical components. The
specifications outlined in Table 3.1 show that the required frequency response is

mostly exceeded, although the bandpass of the amplifier is not ideal

Table 3.1: Performance specifications of electrical components.

Component Vertical | Rise/Fall Horizontal
P Bandwidth | Time Sample Rate
Tektcromx TDS2024B 200 MHz <92 1ns 5 GHz
Oscilloscope
Freguenc Rise/Fall Minimum
QUEneY | Time Pulse Width
S e G LGEHPIN 25MHz | <18ns 304
Function Generator
Princeton Applied Research
High Voltage Pulse | MHz <500 ns 2.5 us
Generator
Model 1211
Krohn-Hite DC Amplifier
Model 7500 1 MHz < 500 ns 5us
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The field strengths used in this study were achieved by combining the function

generator, pulsed voltage generator, and amplifier in one of the two configurations.

Figure 3.8 gives the first of the two, which was used to apply square waves and

pulsed AC fields ranging from 0.02 to 0.20 kV/cm. The function generator is used to

produce a 2 V square wave which is then run through the amplifier, allowing

amplification from 2 to 200 V. A separate TTL pulse is also sent out from the

function generator and used as a trigger for the oscilloscope. The form of the field

after amplification is then followed on the scope by connecting a scope probe directly

to the electrodes in the sample cell.

Oscilloscope

Amplifier

Desired Waveform

Sample
Cell

Function
Generator

Trigger

Figure 3.8: Electronics configuration used to apply low voltage, pulsed square and
AC fields. The green square wave is the pulse monitored from the function which is
also used to trigger the scope. The blue square wave is the pulse measured directly

at the sample cell.
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Although functional, this configuration is somewhat problematic because the signal is
small and interference from the amplifier can occasionally cause problems; owing to
its close proximity to the other electrical components. There is also an overshoot of
approximately 5% after the amplifier due to impedance mismatch. However, for this
study, an overshoot of such a small magnitude does not pose a significant problem.
The arrangement used to apply square waves from 0.5 to 5.0 kV/cm is shown
in Figure 3.9. In this case the function generator’s only purpose is to trigger the high
voltage pulse generator (HVPG) which then applies the alignment field across the
sample cell. The voltage across the cell is monitored internally by the HVPG and used

as a trigger for the oscilloscope.

r Oscilloscope \

Function /\/\/\/\/
Generator Sample
Cell
A
Trigger _ |High Voltage Monitor/Trigger

Pulse Generator

Figure 3.9: Electronics configuration used to apply high voltage, pulsed square
waves. The function generator triggers the HVPG which then applies the alignment
field across the sample cell, while monitoring the voltage and sending it as a trigger
to the scope.
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There have been many reports of TEB studies with high voltage pulsers achieving 6
kV/cm but limitations in current at high fields become important. Higher fields
generate higher currents in a fixed sample cell, easily overloading the power supply.
Thermal effects due to conductivity are also a concern as many of the physical
properties being studied are functions of temperature. For the current study, we have
limited the field strength to 5.0 kV/cm and repetition rates to 2 Hz. Under these
conditions, the temperature within the sample was maintained as was evident by the

stability of the signal over several minutes.

3.4.5. Control Experiment — Kerr Constant of Nitrobenzene

In order to test the functionality and accuracy of the system, the birefringent response
of nitrobenzene was measured and its Kerr constant was calculated for comparison
with its literature value. By plotting An/A as a function of E?, it is possible to
determine the Kerr constant K by simply fitting the data to a straight line based on the

following rearrangement of the Kerr Law:

An/A=KE*+b (3.40)

where b is the y-intercept and should be very close to zero. A total of ten
measurements were taken at field strengths ranging from 1.7 — 5.8 kV/cm.
Figures 3.10 & 3.11 show the results of the birefringent measurements and

calculation of K respectively. The result for the linear fit of the data gives a Kerr
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constant for nitrobenzene of K = 2.25x10™'2 m/V?, which is within 0.9% of its accepted

value of 2.23x10™2 m/V2.[#

0.16 4 kV/em
!
0.14 - 29 1x100 —17
W |4 —22
0.12 - \ 27
L\-_ N 2 AP ; . -~ =
ol NS v \.\;\_,-“‘ Jlr\n_f v \l"\._/' \'I,r"-»’”' \"j\'\_u\\r'-ﬂ“\/\" 3.1
! —36
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0 P ;
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Figure 3.10: Birefringent response of nitrobenzene upon
application of alignment fields of varying strength.
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Figure 3.11: Plot of the birefringence of nitrobenzene as a function
of the square of the field strength.
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4. Birefringence and the particle alignment parameter

4.1. Birefringence and polarizability anisotropy

The optical polarizability a° is frequently used in relationships involving the refractive
index of a material and will be introduced here. Its relation to the refractive index of a

pure material is given by the Lorentz-Loren equation as:!!

n’ -1 _Na’
n’+2 3¢

o

4.1)

which, when applied to a solution of anisotropic particles, takes on the value:

An, = N Ao’ “4.2)
2ne,

where An, is the saturation birefringence, » is the refractive index of the solution and
Ad’ is the difference in the polarizability between two axis in the particles. The above
expression for the saturation birefringence An; relates the birefringence of a solution to
the total number of solute particles. Another common approach is to relate An;, to the
volume fraction C, of the particles, in which case we consider the intrinsic anisotropy
factor g; along direction i For a solution of particles which are large compared to

the solvent molecules, the induced dipole is related to the light field E; through:

U =alE, =4ne vg E 4.3)

where v is the volume of a single particle. By combining Egs. (4.2) and (4.3) we get:

A,
An = 27NvAg

N

“44)

n
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where Ag = a, -« . In dilute solutions Vv is very small compared to N,v,, where N,

and v, are the number of solvent molecules per cm’ and the volume of each solvent

molecule respectively. The volume fraction of the solute can then be expressed as:

Nv Nv

(Gl = = Nv 4.5)
MN+Ny, Ny,
and Eq. (4.4) becomes:
2
i = 2 (4.6)
n

The expression for An; in Eq. (4.6) corresponds to the maximum achievable
birefringence when all the particles in the solution are aligned. In a more general
scenario when a particle has an orientation angle 6 with respect to the field direction,
the resulting birefringence is also affected by the angular distribution of the

birefringent material.

4.2. Birefringence and particle alignment
When an electric field is applied onto a material, it generates a polarization vector P,

such that:

[a +a, +2 ]E @.7)
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where o, and q; are the electronic and interfacial polarizabilities respectively, and p is
the permanent dipole moment of individual particles. In an optical field, the electronic
polarizability is the only component in P because the frequency is too high for the
other two terms to contribute; hence, o, is identical to the optical polarizability a’
discussed earlier. In insulating media, the interfacial polarizability term is nonexistent
and so the effective polarizability is equal to a. at optical frequencies and o, + y’/3kT
at lower frequencies. In electrolytic solutions, however, the interfacial term o; may
dominate; arising from the movement of counterions along the surface of the particle
under the influence of an external field.”! The permanent dipole is unaffected by the
ionic nature of the solution, constrained only by the frequency range of the applied
field.

Regardless of the contributing factors in the polarization vector, the interaction
of the electric field with the polarizability vector is to minimize the electrostatic
energy of the system, by aligning the polarizability anisotropy and/or the permanent
dipole of the system with the field. More specifically, the application of an electric
field can produce orientation through two main parameters:

1. The induced dipole, characterized by a nine element polarizability tensor,

with each element having possible contributions from the electronic and
interfacial polarizabilities a. + a;.
2. The permanent dipole of the particle, which has a fixed direction in the

molecular frame.
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In the following discussion, we will use the molecular frame that corresponds to the
diagonalized polarizability tensor to simplify the picture. In addition, we assume
cylindrical symmetry for the particle, with one component lying along the symmetry
axis and the other two equal and perpendicular to it, as shown in Figure 4.1. The
permanent dipole is also parallel to the symmetry axis of the particle. We will
consider the electrostatic energy due to the interaction of the field with the induced-
dipole E-aE, directed along the lab fixed Z direction. The energy due to the

permanent dipole 4 E will be added in the following section.

Figure 4.1: Orientation of the principle
polarizabilities of a cylindrical particle
with respect to its long axis Oz and an
applied electric field along OZ.
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We begin by assuming that the particles are oriented with their long axes z at an angle
@ with respect to the direction of an applied electric field Z. In addition, the particles
are free to rotate around Z so that they are uniformly distributed around the angle ¢.
Thus, because the electric field is applied along the Z direction only, the alignment of
the particle can be followed as a function of the single angle 6.

To calculate the potential energy of the particle in an electric field, the
polarizability and the electric field need to be expressed in the same reference frame.
The polarizability in the laboratory frame can be calculated using the rotation matrix

and its transpose:

~ [co o0 s0Ta, 0 0Tco 0 -56
aR=| 0 1 0[]0 « Of0 1 0 (4.8)
~86 0 CcOl 0 0 afS0 0 CO

T

where C = cos and S = sin. For a cylindrical particle along the lab fixed Z axis we
get:

o, =a,cos’ @ +a, sin’ 0 4.9)

Then, after some algebra, the energy of the particle in the field can be expressed as:

U, = (zau;cﬁ) E? 4+ 2(a”?:-aL)|:3008229—1}E2 (4.10)

where U, = E'a,"E. The term in the square brackets is the second order Legendre

polynomial, or alignment parameter P>(6). Eq. (4.6) represents the effective optical
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anisotropy for a system with all particles oriented at an angle 6, and it can be

combined with Eq. (4.10) to give the resulting birefringence as a function of 6-

2 —_—
3cos° & 1} @.11)

An, = Ans[ >

In a more general case, when an angular distribution function f{8) is used to express
the probability of finding the molecular axis at an angle between 0 and 6 + df), the

birefringence should be:

T 2 _
An=An, | f(e)gﬂszﬁzﬂ sin 646 4.12)
0

Eq. (4.12) shows that if all the particles are oriented parallel to the alignment field
with 8 = 0, then An = An,. In contrast, if all the particles are perpendicular to the
alignment field with 8 = 90°, then An = -Y4An,. The factor of ' is a consequence of

the fact that there are two directions in the plane perpendicular to the field. Finally,

the integrand of Eq. (4.12) is the average value of the alignment parameter (Pz (0)) ,

thus Eq. (4.11) can be rewritten as:

An = An(P,(0)) 4.13)
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4.3. Calculation of the alignment parameter P,(9)

To calculate P;(8) we need to consider the overall interaction of a particle with an
external field. To make the discussion general, we assume that the orientation field
can be either DC or AC. Thus, in addition to the electrostatic energy between the field
and the induced dipole U,, the overall static energy also includes a term due to the

permanent dipole U, , when the orientation field is DC or low frequency AC, given as:
U, =—pEcos0 4.14)

The angular distribution function f{#) follows the Boltzmann distribution formula:

f(0)=— exp(CU/ k1) 4.15)

2z Iexp(—U / kT)sinbd 6
0

Using Eq. (4.12) for f{8), the total alignment parameter <P2 (9)) has been solved and

designated (P2 (B, y)> , with the two terms f and y corresponding to the following:™

B= % (4.16)
2
Lo )b ;:;)E @.17)

where the 8 and y terms result from the interactions of the permanent and induced-

dipole moments with the applied field, respectively; each representing the ratio of the
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given moment with the thermal energy. The complete <I’2 (B, }/)} function is very

complicated, having the form:

3
(B(B.7)) =

oS54 +7{\/;<eﬂ +e—ﬂ)_(ﬂ/2\/; o _e—ﬂ)} g, .
E(p/2Jy +Jy)-EBr2dy -r) 2y

However, there are four specific cases when simplifications occur:

1) For a pure permanent moment orientation where § >> y, the integral yields:

3(coth P - lj
———’B— 4.19)

B(p)=1-
(B(B) 7

2) For a pure induced moment orientation where y >> f3 the integral does not have an

analytical solution giving:

3 1/2r”2 x 1
<I’2(7)>=Z[[e’/;/ Oje dx]—l/;/jl—a (4.20)

3) When the field strength approaches zero, f and y << 1 and <P2 (B, )/)> can be

expanded in the series:

2 1 4 4 2
P(B.y))=—y+—pB +—y +—pBy——p"*... 4.21
(B(B.7) 157 15ﬁ 3157 315ﬂ7 315ﬂ @.21)



where the limit is given by:

(B(B,Y) 1

lim =— 4.22
£ (§% +27) 15 4.22)
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4) At high field strengths where E — oo, the orientation tends to be complete, and the

function <1’5’2 (B, }/)) — 1. Then the birefringence attains its saturation value, which

allows for the calculation of the anisotropy factor Ag from Eq. (4.16).

4.4, Permanent vs. induced dipoles — intermediate field strength

If we divide both side of Eq. (4.13) by the square of the field E*, the result is:

An  An,
T ?<Pz (B.7)) (4.23)

The combination of Eq. (4.22) with Eq. (4.23) then yields:

An An,
], =l
E—0

e 15(P, (B,
so that %&Lb,; = < 22 B.1) 4.25)
AnlE” ) o (48 +27)

The relationship expressed in Eq. (4.24) is significant because it shows the relative

contributions of the permanent and the induced-dipoles in an electric field to the

alignment mechanism. An example of this analysis can be seen in Figure 4.2 where
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the right side of Eq. (4.25) is plotted as a function of log(ﬂ 24 27/). In the case of a
pure permanent dipole, the value of (P2 (,B))/ B’ was determined using Eq. (4.19).

The expression for (P2 (}/))/ 2y is not analytical, so the value was obtained using a

table supplied by O’Konski, Yoshioka, and Orttung.

R L Kerr Law  slope

— =0 1.15
(B (B.7) ="
B2 +2y ‘ —25%p .96
. —— 50/50 .82
: 5% B .69
: y=0 54
i
| |
‘ Low Field r Intermediate Field . High Field
ol I | B
[ v T T T 1
-1 0 1 2 3
log(B*+2y)

Figure 4.2: Variation of 15(B(8,))/ (,62 + 27/) vs 1og(,8 24 2}/) for orientations
ranging from a pure induced dipole (5 = 0) to a pure permanent dipole (y = 0).

In low fields where E* — 0, the birefringence follows the Kerr law and the function
retains a value close to unity. As the field strength increases the birefringence will
begin to deviate from unity in a manner that is influenced by the relative contributions
of the permanent and the induced-dipole. A purely permanent-dipole mechanism

results in a curve that starts at unity and immediately begins to decrease with



60

increasing field strength. In contrast, a purely induced-dipole mechanism results in a
curve that rises above unity first, and then begins to decrease after attaining a
maximum value of 1.11. At intermediate fields, the alignment due to the two

mechanisms decreases linearly as a function of log E’. Thus, by measuring the

dependence of (P2 (B, y)> as a function of £, one can obtain a quantitative description

of the alignment mechanism, which gives the relative contributions of permanent and
induced dipoles to the birefringence of a sample. We can further extend this idea by
relating the fractional contribution of the permanent and induced dipole to the slopes
in the linear region, as shown in Figure 4.3. The change in slope, as the fraction of Jix
and 2y changes, is also linear. Thus, plotting the change relative to the fractional

contribution of each component, yields:

y=1.67x+1.88 (4.26a)

and y=-1.67x—-.88 (4.26b)

where x is the range of the slope from -.53 to -1.13, and y is the fractional contribution
from S or 2y, respectively. At low fields the observed birefringence from the
permanent dipole contribution is linear to the field and the induced dipole contribution
is square to the field. However, we can still consider the relative contributions from
each at intermediate field because the alignment is saturated and so the ratio of each to
the squared field strength decreases linearly as a function of log E%. In addition, the
range of the slope is limited and so any value outside of the rage (-.54 to -1.15) would

be due to stray fields, as will be discussed in Section 4.7.
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Figure 4.3: The fractional contributions from the two moments as a
function of the slope of 15(P, (,B,;/)>/(,82 + 27) Vs log(ﬂ2 + 2}/).

4.5. Permanent vs. Induced Dipoles — Low Field Strength

The determination of the specific Kerr constant K, requires extrapolation to zero
fields so the measurements need to be conducted down to the region of low fields. In
this case the Kerr constant is obtained by inserting Eq. (4.6) into Eq. (4.24). The
resulting expression relates the birefringence in the low field limit to the optical

anisotropy:

lim{ A"} ~ag (P4 0) 4.27)
15n
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where P, the permanent dipole term, is P = BIE? = yIT and Q, the induced dipole

term is O = 2y/E’ = Aa/kT. Eq. (4.27) can then be rewritten as:
lim[éll} =K, C,n (4.28)

where Kj), is the specific Kerr constant defined as:

_27Ag
P 152

(P+Q) (4.29)

Thus, the values of x and Aa can be calculated for a pure permanent moment (Q = 0)
or for a pure induced moment (P = 0) directly, once K, and Ag are known. However,
as will be seen for CdSe quantum dots, situations will arise where the contribution
from each moment is significant. In these cases additional information is needed if the

values of P and Q are to be determined.

4.6. Separation of the Permanent and Induced Dipoles

To determine the values of the permanent dipole and polarizability anisotropy from
the saturation values of the refractive index, we need to rely on information from both
Section 4.4 and 4.5. In Section 4.4, it was shown that the linear region of the response
curve at intermediate fields could be used to determine the ratio of permanent 4 to
induced-dipole Aa. Then, in Section 4.5, the sum of P = F/E* and Q = 29/E* were
introduced with Eq. (4.37). Thus, in determining the ratio of [ to 2y, the ratio of P to

O was determined as well. To further determine the values of P and Q, we can take
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advantage of the relation in Eq. (4.34), Where the lateral displacement of the

experimental curve, to overlap with the theoretical result can be used:

log(B8> +27)=log(P+ Q)+ log E* (4.30)

An example of the process can be seen in Figure 4.4 where an experimental curve is
shown to require a shift of log(P + Q)= 0.5 in order to overlap with the theoretical
curve. The unit of P + Q will be the same as that of An/E?, and for this example, a
value of P+ O = 3.16 m’/V* is obtained from the horizontal shift. This value can then
be combined with their ratio (Eq. (4.26)) to solve for each unknown.

The steps necessary to determine the values of 1 and Aa from the birefringence

measurements can be summarized as follows:

1) The birefringence values at varying field strengths are normalized by

taking (An/ E? )/ (An /E* )E_,O and plotting it as a function of log E.

2) The slope of the plot in its linear region, at intermediate field strengths is
determined and Eq. (4.26) is used to calculate the relative contributions from

[/ and 2y and hence the ratio P/Q.

3) The experimental and theoretical curves are plotted together and the

experimental curve is shifted horizontally until the two overlap.

4) The sum P + Q determined from Eq. (4.30) is combined with the ratio P/Q

determined from Eq. (4.26) and the two can be determined.
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— Experimental

—— Theoretical

Log (P+ QN
3

0 +————+ ; — I ———

1 2
log(ﬂ2 + 2}/)= log(P+Q)+log E’
Figure 4.4: The horizontal shift imposed on an experimental curve so that it

matches its theoretical representation. In this case a shift of log (0.5) is needed
so that the two plots match; translating into a value of P+ 0 = 3.16.

4.7. Effects of Stray Phases on Signal Amplitudes

Stray phases in the expeﬁmental setup have a marked impact on the signal amplitude
An and hence on the values of the specific Kerr constant K, dipole moment x, and
polarizability anisotropy Ac. As an example, Figure 4.5 shows the field dependent
birefringence data for a Na-montmorillonite sample, plotted against the same data with
a stray phase added that results in a change in birefringence of An = +2.95x10"" (this
value is less than half of the intrinsic birefringence of the sample cell). The stray

phases contribute to a constant birefringence value in Eq. (4.25), hence the plots were
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generated by adding the stray phase to each of the interference free data points (green)
highlighted in the figure. At intermediate to high field strength this relatively small
stray phase has little effect on the curve, as it diminishes at the rate of E®. However, in
the low field limit where E —0, the contribution of the stray phase is no longer
negligible.

The impact of stray phases on the analysis of the experimental results is the
most se;/ere when plots of Figure 4.2 are generated, as shown in the inset of
Figure 4.5. This is because the experimental birefringence is normalized to the field
free extrapolate; which is essentially the stray phase! Thus, the addition of a positive
birefringence (blue curve) to the low field response will effectively push the curve
down once it is normalized to an artificially high value. The opposite is then true for
the addition of a negative residual phase, which can be seen to create a larger peak in
the pink curve. In this case, the discussion of Section 4.3 becomes erroneous, and the
rise of the blue plot above unity is no longer representative of an alignment process
driven primarily by an induced-dipole moment. Similarly, an erroneous conclusion of
a permanent-dipole moment driven process will be obtained when the stray phase is
positive and the curve is pushed below unity.

At intermediate fields, the effect of the stray field is more quantitative than
qualitative; i. e., it only affects the slope of the linear portion. Since the range of
slopes is limited to -.53 and -1.13, any slope outside this range would be a good

indicator of experimental artifacts.
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Figure 4.5: Influence of residual phases on a normalized plot of An/E’ as a
function of log E’.

4.8. Field Dependence of the Rise Time

When an electric field is applied to a solution containing anisotropic particles, the
permanent and induced-dipole will align in the direction of the field. In this section
the field dependence of the rise time for the alignment will be calculated. The
following treatment was derived by Dr. Evans using vector notations. The single

particle potential energy is given as follows:

U=—/¢-E—%E-0¢-E @31
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pu=ed, +eqd, 4.32)

E'a'E=(2a11+aJ_)E2+2(a”3_al)E2P2(e'Z) (4.33)
3cos’—1

Bez)="""— 4.34)

The unit vector e in the moleéular frame points along the unique axis of the particle
(rod or plate), with the unit vector ep being perpendicular to e. The electric field is
directed along the lab-fixed z axis and the angular distribution function f{e,?) is the
probability distribution function f{#) discussed earlier, expressed now in vector form

with the following property:

[fe,hde=1 | (4.35)
where de = 1 sin & 0d ¢
dr
and (B®) = [P(e-2)f(e,1)de (4.36)

If the particle exists with a dipole along its principal e axis, the inversion symmetry is
broken and both odd and even rank harmonics will contribute to f{e,z). This case will
be avoided and so only particles with a dipole orthogonal to e will be considered; the
consequence of which increases the alignment produced by the polarizability alone.

The perpendicular component of x4 has the property that e,d, is independent of the

transformation 8§ — 7z — 6, as does the P, function. Thus, only alignment is treated and
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there is no dependence on particle orientation so that both e,d, and P, are even in

x = cos (8), which allows f{e,t) to be expressed as an even order Legendre expansion:

fle,) =1+ (4 +1)P, ()P, (e-2) 4.37)

Because the particle’s radius is much larger than that of the solvent, it also undergoes
Brownian motion which can be described by a diffusion/Smoluchowski approximation

as follows:
d f(e,ty=iJ D, -[iJ — fT]f(e-t) (4.38)

Where T is the torque experienced by the particle, Dy is the rotational diffusion

coefficient discussed earlier and, in the context of this discussion, is defined as:
D,=Dyee+D (1-ee)=D 1+(D, —D, )ee 4.39)

i/ =exV_ and is the classical rotation operator in the molecule-fixed frame

(a projection of the gradient operator in the spherical coordinate perpendicular to e),
and f = 1/(kgT). Once the particle is subjected to an externally applied field, it

experiences a torque which is represented by:
BT =—iJpU (4.40)
where pU =—j e,-z—0cP,(e-z) 4.41)

and j o =pdE, o= % Bla, —a, )E? 4.42)
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Multiplying the rotational diffusion equation by P,(e-z)and integrating by parts over

e several times then gives:
d (P, (1)) =-nln+1)D, (P, (9))+ D.S,(®) (4.43)

Where S () = DL [iP,(e-2)- Dy - BTf (e, )de (4.44)

The reader may notice the replacement of Dg with D, , which results from the rotation
around e not changing the orientation of the particle, thus the component of D along e
does not contribute to the streaming or source term. Using recurrence relations of the

Legendre polynomials:
S, (®) =30(a, (P,(e,0)) = b, (P, (e,)) + 4,(P,(e,1))) (4.45)

-JL Z(anl(n -2,m)—=b I(n+2,m)+c,I(n, m))<P w,t)>

m
m

where I(n,m)=(1/2) [P, ()P, (z)) /N1 2" dz’ (4.46)
and v nn+hn-1) 4.47)
! 4n® -1 |
_ I’l(l’l + 1)(n + 2) (4 48)
" 2n+1)(2n+3) )

3cr
A, =n(n+ 1)(1 - an—D(n+ 3)J (4.49)
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The growth of <Pn> is described by Eq. (4.44) and its coupling to a set of even order

Legendre moments is described by Eq. (4.45). The leading source term (n = 2) looks

as follows:

2 2 24
Sz(r)=3a[g+;<a>-g<a>)

3, (., 1 17 13 16
142 (pN— - - BH+... 4.50
16 (1+4< ) 128<P4> 512<R"> 16384< o ) (4-30)

and in the low field limit:

30 =«

d:<P2 (f)> = _6DJ_(1 ——+_—j¢ )<Pz (t)> +D¢(2(3O-) _Si.l

v J @4.51)

The ultimate goal is to be able to derive <P2 (t)> for arbitrary fields and times. In order

to simply the system of equations needed to accomplish this, a reduced time 7 =D, ¢

is introduced, so that:
d,(P,(2)) ==2,(P,(¥)) +a,(P,,(2)) = b,(P,,,(?)) (4.52)

The differential equation represented by Eq. (4.52) can be solved using the Laplace
time transform. This mathematical technique is commonly used to produce an easily

solvable algebraic equation from a differential equation using, in this case

o0

(P() =L (P())= [e P, (r)dr (4.53)

0
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Thus, solving for n = 2, subject to an isotropic initial condition, gives:

a,

Y Y (ETLIO) @
Then (P(s)/ B,(s)) = 94 (4.55)
s+ A, +b,(P,(s)/ B,(5))
Qg
B )= BOEG) (439
so that (B(5)) = % @.57)
s+A, +b,— %4 = -
S+ A, +b—— O ———
s+ A, + b, 134)
Fy(s)

Eventually, the difference between the ratios of order parameters in the non-
terminating, continued fraction expressed by Eq. (4.57) will become small enough that

the equation can be solved self consistently as such:

all
(P..,(s)/ P,(s)) = AT P GED) (4.58)

and in doing so:

p sz YOI+ oty ~(e+ )

n

P, (s)/ (4.59)

Thus, the continued fraction can represent the infinite time limit attained by a system

which is initially isotropic. The following section will address the solution for <1’2 (t))
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in the low field cases where E — 0. An overview of how the theory can be used to

analyze the rise curves and calculate the anisotropy in the polarizability will be given.

4.8.1. Alignment at Low Fields where E — 0

In this case, the differential equation represented by Eq. (4.43) will be solved by

neglecting the coupling of <1’2> to higher harmonics. Thus:
d,(B,(e,)) = -4, (B (e,1)) +a, (4.60)

Given an initial alignment of (P2 (e,t = 0)> , the solution is:

(P,(e,)) = 2—2(1 —e™ )+ e (Py(e,t = 0)) (4.61)

2

Where A, = 6(1 - %) and a, = ga 4.62)

In weak fields, for a fluid with no alignment:

(P, (1)) = a,D,t (4.63)

Thus, by determining the slope of (P2 (t)) in its low field limit where £ — 0, the

anisotropy in the polarizability Aa can be found (by way of a;), if the rotational
diffusion coefficient Dy is known. An example of how this is done graphically and

mathematically is given in Figure 4.6.
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Figure 4.6: The various physical parameters which can be derived from the rise
and decay of the birefringence curve.

In this particular case, the <P2 (t)> curve is created by dividing the acquired alignment

curve by the saturation value of the birefringence at infinite field as follows:

A0)
(P, (1)) = %

E—w

(4.64)

where V is the voltage reading from the oscilloscope. However, this method only

works if the value of Vg, is known. In the event that it is not, another fitting method

can be used which determines (P, (1)) based on the saturation value of the

birefringence curve. In this case, the ratio is taken as:
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(P0) =22 (4.65)

{—>o0

where the denominator is now based on the asymptotic behavior of the curve at
infinite time instead of infinite field. The subsequent curve is subject to the same
fitting procedure outlined in Figure 4.6; the difference being that the value a; is

replaced with 4, from Eq. (4.62).

,4.9. Field Free Relaxation

The birefringence of a solution will increase to a steady-state value upon application
of an external field due to particle alignment in the field. Here we consider the
response of the particles when the field is suddenly removed and the aligned particles
return to random orientation, causing the birefringence to fall asymptotically to zero.
Figure 4.7 shows the typical change of the birefringence upon application and
removal of an alignment field.

In this study, we will limit our discussion to rigid bodies that are much larger
than individual solvent molecules. Under this assumption, the theory of Brownian
motion applies. The three elements of theory needed to describe the variation in
birefringence of a suspension following removal of an orienting field are:

1. A theory which relates the observed birefringence to the orientational

distribution of the particle in a suspension.
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2. A theory of Brownian motion applicable to the shape class of the particle,
which relates the orientational relaxation to the macroscopic diffusion
constant.

3. An expression for the diffusion constant which relates to the shape and size

parameters of the particle.

Steady-state

Build-up Decay

0 0.25 0.5 0.75

Figure 4.7: Typical birefringent response curve observed from a TEB
experiment. Three distinct parts are observed; build-up, steady-state, and
decay. Molecular dimension can be determined directly from the decay.

The relaxation process is representative of the particle’s geometric parameters via the
rotational diffusion coefficient Di. In the following discussion we will again use
1(6)d0 to represent the number of particles per unit volume having their orientation

angle between 6 and 6 + df , where 6 is defined as the polar angle between the
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orientation field and the symmetry axis of the particle. During the decay process, the
number of particles with orientation angles passing between 8 and 6 + d0 is given by

J(@O):

()
J(0) = DR[—ae } (4.66)

where the rotational diffusion coefficient is related to the molecular parameters, the

viscosity of the solvent #, and the thermal energy kzT.

For revolution ellipsoids,™

k,T
D, = 3k 3 2ln(£) -1 (4.67)
167nL a
where a is the short axis, and L is the long axis of the molecule. For a long rod,®!
T
D, = ksl 1n(-2£j _ 3 (4.68)
8rnL a

where L is the length and a is the diameter. For a prolate ellipsoid (disk) with two radii
of a and one radius of c,m

k,T

D, =
# 8rna

asc/a— 0 (4.69)

3 2

The diffusion equation for the field free relaxation process has been established and

[8-10]

solved by Benoit. The change in birefringence is represented as a single

exponential decay function:
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An, = An e %% (4.70)

where An, is the birefringence at time ¢ after removal of the field, and An, is the
birefringence of the initial state. Knowing the temperature and viscosity, the curve
represented by Eq. (4.70) can be used to determine the size and shape of the particles.
Almost all studies on the transient birefringence of solutions have employed
the carefully elaborated treatment of Benoit for the rotational diffusion of a spheroid
possessing optical, electric, and geometric symmetry about a primary axis. Yet, in
many of the reports, the decay fittings were best accomplished using the following

biexponential function:

An
An

L (B]e—éD;El + Bze—GDEt) (4.71)

2}

where the coefficients B; and B; are unitless quantities. In each case, the observed
result was attributed to polydispersity in the sample. However, by definition,
polydispersity implies a “broad” range of sizes, shapes and mass characteristics.
Therefore, it would seem to be an oversimplification to attribute the fitting of two
distinct decay constants to polydispersity.

One possible explanation of the deviation from Benoit’s model might be
related to its assumption of symmetric spheroids. Thus asymmetric ellipsoids are
excluded, including those with three unique axes, those with permanent dipole
moments of non-axial orientation, and those with intrinsic biaxial birefringence. The

rotational symmetry about one of the axies of a spheroid particle dictates that no
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orientation mechanism can produce a distribution with a dependence on more than one
single angle 6.
Ridgeway expanded on Benoit’s theory and treated the case of particles

containing three unique axes.'" 12

In his treatment, Ridgeway defines a symmetric
diffusion tensor that may be diagonalized to define three orthogonal particle axes
corresponding to three principal diffusion constants. In the case of ellipsoids, these
axes coincide with the geometric axes. The resulting expression for the decrease in
birefringence of asymmetric ellipsoids becomes a biexponential function involving
two rotational diffusion coefficients Dg(fast) and Dg(slow), and the pre-exponential
coefficients are determined by the shape of the ellipsoid. Moreover, Ridgeway also
showed that one of the pre-exponential coefficients of the biexponential model
vanishes in the case of a spheroid or axi-symmetric particle.

Interestingly, even though Ridgeway’s treatment for the decay of particle
alignment is more general, it has seen very limited use. This will be evident later
when comparisons are made between the particle dimensions determined in the current
research and those from other groups. It should be mentioned that the oversight of
Ridgeway’s model does not appear to be intentional, nor does it stem from an apparent
problem with the theory. Instead, its limited application seems to arise from an
oversimplification on certain systems, which are assumed to be axisymmetric, in
which case Ridgeway’s model does not apply. However, outside the scope of rigid,

seemingly axisymmetric particles, the model has been used in the characterization of

protein hydrodynamics.m’ls] The present investigation will approach the analysis of
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birefringence decay using the model of the asymmetric ellipsoid, and it will be seen

that the model explains the results better than that of Benoit.

4.10. Frequency Dependence of the Birefringence

The response of birefringence to an oscillatory electric pulse offers another method for
the determination of relaxation time 7 and provides insight into the electric
birefringence. Moreover, it gives information concerning the induced and permanent

dipole contributions. For this treatment, the field can be written as:
E=E sinwt 4.72)

where E, is the maximum amplitude and w is the circular frequency of the field. We
will start by looking at the response of the induced dipole and assume that the
birefringence follows the Kerr law. In addition, we will also assume that the period of
the alternating field is large compared with the relaxation time of induced
birefringence. In the case of a pure induf_:ed dipole moment, the birefringence takes

the value:!'!

cos(2wt — )
An= Annv{l + (x4’ } 4.73)

where Ang,. is the average value of An. Eq. (4.73) shows that the birefringence

consists of two components, one which is constant with time (Ang,) and another
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which alternates with twice the frequency of the applied field and differs in phase with

the latter by the angle ¢. The extreme values of An are then given by:

An, =An_, [1 + (lelzrz)l/_z] 4.74)
Eq. (4.74) shows that at sufficiently high frequencies a steady birefringence is
obtained and the average value is equal to the birefringence which would be observed
if the sample was subjected to a DC field An,.
In the general case, with the presence of both the induced and permanent
dipoles, the variation of the birefringence with frequency involves the ratio of P/Q.

[17]

The relationship has been given by Thurston and Bowling,” " where the steady-state

component of the birefringence Angy, is written as:

an, =By, P12 4.75)
1+P/Q|  1+(0/2Dy)

From which we get:

lim A, = —
@ 1+P/Q

(4.75)

In this case, the value of Any, is representative of the birefringence observed upon
application of a DC field or low frequency AC field, if saturation is able to be
achieved in the later case. Eq. (4.75) shows that as the ratio P/Q approaches infinity,

the steady state value of Ang,. at high frequency approaches zero. In contrast, as the
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ratio approaches zero, Eq. (4.75) reduces to Eq. (4.74) and the steady states at low and
high frequency are lequal.

The above relations give a convenient, quantitative method for checking the
presence of the permanent dipole and polarizability anisotropy for a particle, provided
that a steady state in the birefringence can be reached. Unfortunately, the application
of constant AC resulted in current effects that heated the samples. This limited the
trials to pulsed AC fields with durations of no more than 500 ps. A consequence of
the limited pulse durations was the inability to reach a steady state in the birefringence
for all for all but the quantum dot samples. However, a qualitative assessment can and
will be applied to the clay and cellulose crystals, where we will look at the general

response of the samples as the frequency of the field is increased from 2 to 200 kHz.
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5. Na-Montmorillonite

5.1. Introduction

Clay particles have basic structural units consisting of silica tetrahedrons and alumina
octahedrons. The basic units then combine, forming different shapes including bars,

plates, and sheets. Figure 5.1 shows the basic units and a sheet structure:

b)

Figure 5.1: Basic units of clay minerals and the silica and alumina sheets which
they form.

A large number of electric charges remain unbalanced in these sheets alone, thus,
cations and water molecules are necessary to satisfy the unbalanced electric charges;
creating bonds and joining the sheets together. For this reason, clay minerals are
formed by the stacking of basic sheet structures with different forms of bonding

between the combined sheets. Such structures of the clay minerals are represented in
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Figure 5.2.! In solutions, the negative unbalanced electric charges on the outer edges
around the clay particles are solvated by water molecules and cations. The mobility of
the cations along the surface of the clay platelet contributes to the interfacial

polarizability o; discussed previously.

H bond
H bond
H bond

Ij

I

a)

Figure 5.2: Structure of the main clay minerals: (a) kaolinite, (b) illite and
(¢) montmorillonite, based on combined sheets.

5.2. Analysis Overview

A great deal of effort has been devoted to the study of clay solutions to elucidate the
ion-water atmosphere, i. e., the “double layer.” However, at the present time, the
properties of the double layer and its influences on the aggregation of clay particles
are only partially understood. In this work, we will investigate the electrical properties
of clay solutions and its alignment mechanism in an electric field. The analysis of the

clay samples will be separated into four parts. The following section outlines each
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analytical technique, the physical property it depends on, and how that property will

be used to characterize the sample:

1)

2)

Concentration dependence of the decay mechanism will be followed in
order to determine the sample’s percolation threshold. The definition of
percolation is the concentration at which finite connectivity between particles
begins. In this current context, however, we loosely define it to be the
concentration that exhibits observable interparticle interactions. It has been
generally accepted that inter-particle interactions at concentrations above the
percolation threshold can lead to unusual birefringence behaviors. In the case
of aqueous clay samples, inter-particle interactions can lead to aggregation of
the platelets, which can then lead to large changes in the permanent and
induced-dipole of the sample. Thus, for the purpose of this research, results
were obtained only for dilute solutions so to minimize the inter-particle
interactions. Once a suitable concentration range has been established, the
rotational diffusion coefficient Dy will be calculated from the decay constants
and used to determine particle dimensions.

Saturation of the birefringent response Arn will be studied by plotting its
value against varying functions of E? and using features such as the slope, local
maximum, and y-intercept to determine the following:

¢ Optical anisotropy Ag

¢ Specific Kerr constant K,
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¢ Orientation mechanism i.e. the ratio of permanent to induced-dipole
moment

¢ Single particle polarizability anisotropy Aa

3) Field dependence of the rise time will be followed to elucidate the orientation
mechanism (induced-dipole and/or permanent-dipole). The rise times in the
low field limit will also be used (along with the rotational diffusion coefficient
from section 1) to calculate single particle polarizability anisotropies. The
results will then be compared with the values obtained from the analysis of
section 2.

4) Pulsed AC trials will be conducted as a supplemental study to further confirm

the alignment mechanism.

5.3. Experimental

Sodium salt modified natural montmorillonite (Cloisite® NA™ Nanoclay) was used as
supplied by Southern Clay Products; the specifics of which are outlined in Table 5.1.
Approximately 100.0 mg of Cloisite® NA" Nanoclay was added to 500.0 ml of
deionized water and ultrasonicated for ten minutes in order to adequately separate the
platelets. The suspension was left to stand for 24 hours and then filtered through a 2
um ceramic filter. The concentration of the subsequent stock solution was determined
to be 41 pg/ml by evaporation of a known volume of solution to dry weight. Sample
solutions were prepared from the stock solution by the direct addition of Millipore

deionized water.
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Table 5.1: Specific physical properties of the Na-Montmorillonite sample supplied
by Southern Clay Products.

Specific gravity Bulk density (g/cm3 ) Particle size (um)
1.77 .199 loose <2.00 um 10%

.335 packed <6.00 pm 50%

<13.00 pm 90%

5.4. Concentration Dependence of Dg

As was stated previously, the purpose of the concentration trials is to determine the
percolation threshold. With increasing concentration, the inter-particle distance will
get smaller and interactions will occur due to the limited space. With increasing field
strength the packing or arrangement order within the system will also increase. Thus,
its response upon removal of the applied field becomes sensitive to the local fields of
the particles as surface-to-surface interactions are maximized:

A simple method for determining a threshold concentration is to follow the
diffusion as a function of the alignment field and concentration. If inter-particle
interactions are present, both factors will have an observable effect on Dr. The
measurements taken in this research were restricted to field strengths between .02 and
3.7 kV/em due to equipment limitations and thermal effects of the sample. Field
strength trials were run on clay samples ranging from 20 pg/ml down to 1.25 ug/ml.
In each case the decay curves were fit using the double exponential expression

represented by Eq. (4.71). The results for a fast and slow rotational diffusion



89

coefficient Dy as a function of field strength can be seen in Figures 5.3 & 5.4
respectively.

The two values for the rotational diffusion coefficient are separated by one
order of magnitude with ulnitless amplitudes of .65 and .35 for Dy(fast) and Dg(slow),
respectively. The observation of two coefficients is consistent with literature reports
of bi-exponential decay,””™ which has been attributed to polydispersity by previous
groups. In this study, the existence of two distinct rotational diffusion coefficients is
considered to be a result of the particles having three unique axies; best modeled as
asymmetric ellipsoids. As such, their decays are best fit to a biexponential function,
which accounts for the two unique axies orthogonal to the symmetry axis of the
particles. This approach was covered in detail in Section 4.9 on field free decay of the
birefringence.

The variations in Figures 5.3 & 5.4 for both the fast and slow rotational
diffusion coefficients are similar. In both cases a steady increase in the value of Dp
occurs for the concentration of 10 pg/ml and above; whereas at lower concentrations,
it is essentially constant. This suggests that any concentration at or below 5 ug/ml

should be free of inter-particle interactions.
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With a percolation threshold determined, the rotational diffusion coefficient and shape
parameters can now be calculated. At present, there is no theoretical formula to treat a
rectangular sheet while the formulas for ellipsoids, rods and disks are given by
Egs. (4.67), (4.68) and (4.69) respectively. Table 5.2 gives the results for the disk and
rod models, assuming a thickness of 1 nm for disks and a length to diameter ratio of
L/a = 10° for rods. These assumptions are generally accepted for montmorillonite

platelets based on conversations with Dr. Lerner, the resident expert on nanoclays at

OSU.

Table 5.2: Values for the rotational diffusion Dy coefficient and diameter for
Cloisite 20A® platelets at varying fields and concentrations below the percolation

Concentration Dy (s'l) disk diameter (nm) rod length (nm)
(ng/mL) fast l slow fast I slow fast | slow
5.00 904 + 61 54+3 95+2 242+ 5 3107 794 + 15
2.50 899 + 78 4143 95+3 266 + 7 311+9 871+£23
1.25 870 + 28 38+4 96+ 1 272+ 8 314+3 893 +27
891 + 57 448 95+2 260 £ 15 312+7 852 +49

Although the two models seem to be unrelated to each other at first glance, it is not too
difficult to imagine that, as the length to width ratio of the sheet changes, the model
which best represents the shape of the platelet rests somewhere between a disk and a

rod. This would suggest that a more appropriate modeling of the system would result
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from a combination of the two theories; one which accounts for the polydispersity in
both size and shape. Figure 5.5 shows just how polydisperse the clay sample really is,
with both particle shapes observable in each of the three TEM images. The larger
image on the left is comprised mostly of sheets and disks, while the two images on the
right show particles which closely resemble rods. The significance of the two models,
and how they are represented by the birefringent response of the sample, will be

addressed in Section 5.6.

Figure 5.5: TEM images from the 41 pg/ml stock solution of Na-
montmorillonite. All three images show the polydisperse nature of the
sample and the existence of particles which resemble sheets, plates, and
rods.
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Another factor that influences the particle size is the ionic atmosphere of the solution.
For example, Yariv et al reported large size variations for aqueous Na-
Montmorillonite where diameters ranged from 0.8 to 10.5 um. More importantly, the
particle sizes were shown to increase as particle concentration decreased.””’ The
presence of large Na-montmorillonite particles was attributed to the extensive swelling
in aqueous suspensions by osmotic water adsorption. In contrast, Furukawa et al
reported a wide range of particle sizes but attributed it to counter ion concentration.”!
Figure 5.6 shows their results for the average hydrodynamic diameters (dH) of
montmorillonite suspensions (8 pg/ml) in constantly stirred solutions containing
varying concentrations of artificial seawater (ASW). The results show a particle size
of dH = 200 nm in the zero salinity suspension. On the other hand, at elevated salinity
values (.18 — .72%), the particles were believed to aggregate during the initial ~15
minutes following ASW mixing, reaching diameters between dH ~ 600 and 1100 nm.
The above two mechanisms imply that a larger particle size can be expected in
solutions where clay platelet concentrations are low and/or counter ion concentrations
are high, due to water adsorption and/or aggregation. Consequently, smaller particle
sizes should be obtained from solutions of higher clay concentrations and/or low
counter ion concentrations. Thus, the particle length range of 260 to 852 nm from the
current work, which is in agreement with the results obtained by Furukawa (100 to
1300 nm), is reasonable. Here we need to take into consideration that the ionic
atmosphere in our experiment was minimized by the use of Millipore water. In so

doing, we have limited the electrical conductivity of the solution; and in the meantime,
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we have limited the likelihood of aggregation. Furthermore, the solution was filtered
down to 2 um, effectively removing any particles that may have swelled to larger sizes

due to water adsorption.

1400 4 dH(nm)
hydrodynamic diameter e o
1200 | TYéroaynamic aia 12%
e
1000 - A I
® A ° 36%
800 - D
= 18%
600 - @ i a o = | |
400 - m.-n
200 &— * o * * v
' ® ® L4
0 T T T T T T
0 10 20 30 40 50 60
time (min)

Figure 5.6: Average hydrodynamic diameters (dH) of montmorillonite-
only suspensions (8 pg/ml), measured as a function of time after mixing
with artificial seawater using dynamic light spectroscopy.
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5.5. Saturation of the Birefringent Response at High Fields

The birefringent response of a 5 ug/ml clay sample at varying field strengths can be
seen in Figure 5.7. The oscilloscope traces were recorded after averaging over 128
pulses at 2 Hz, with a pulse width of 500 ps. The change in birefringence An at each
field strength can be calculated according to Eq. (3.35) for an optical arrangement with
a quarter-wave plate. An example of one such calculation, for a trial run at 1.4 kV/cm,

goes as follows:

@=0)=1.62V I (@=2°=155V

2 e A (.021)(633x107")
8= 2sin—‘[(11‘—§52- + 1] sin 2} -2(2)=.021° 360/ (360)(.01)
An=3.62x10"°

In order to analyze the saturation data, it is necessary to plot the birefringence An as a
function of the squared field strength E? in varying manners. For review, Appendix B
gives a list of parameters and their descriptions. The analysis will start with a look at
the intermediate to high field region and the direct calculation of the optical anisotropy
factor Ag. Plots of the birefringent data will then be used to determine the ratio of
permanent to induced-dipole. We will then move to the low field region with the
calculation of the specific Kerr constant K,,. The final step will be to bring the
analysis from the two regions together with the calculation of the anisotropy in the

polarizability.
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Figure 5.7: Birefringent response of a 5 pg/ml clay sample at
varying field strengths along with the calculation for An for a trial run
at 1.4 kV/cm.

The first step in calculating the optical anisotropy is the determination of the saturation
value of the birefringence An,. This is best achieved by the extrapolation of An to
infinite field strength as seen in Figure 5.8. The resulting value of An, = 3.71x10°
can then be inserted into equation Eq. (4.6), along with the calculated value of

C, =2.3x107 for the volume fraction, yielding:

_Ann (3.71x107°)(1.33)

= —— =5.27x10"
22C,  27(2.30x107°)

Ag
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Figure 5.8: Determination of the saturation birefringence for a 5 pg/ml clay
samples by extrapolation to infinite field strength

The next step is to determine the alignment mechanism, i. e., the ratio of permanent to

induced dipoles at medium to high field strengths. For this purpose, a linear plot of
An/E? vs. logE’, normalized to its low field limit (An/ E io), is obtained at

intermediate field strengths, as represented in Figure 5.9. The slope of such a plot
should fall in the range of -.53 and -1.15, depending on the ratio of the permanent and
induced-dipole contributing to the alignment mechanism. The current clay sample
yielded a slope of -1.14, thus based on Eq. (4.26), the relative contributions are
[.O1B% + .99(2y)], i.e., the permanent dipole amounts to 1% while the induced dipole

contributes to 99% in achieving the overall alignment of the clay platelets. For
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comparison, a theoretical curve was constructed and plotted against the experimental
result. The peak value of 1.11 for the clay’s response matches that obtained from

theory; lending further support to the ratio of [.01 B% +.99(2y)] for the clay platelets.
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Figure 5.9: Normalized plot of An/E” vs. logE” for a clay sample laid over
the theoretical curve for an alignment mechanism represented by the ratio

[.115% + .89(2y)].

5.6. Saturation of the Birefringent Response at Low Fields

In the low field region, a plot of the field dependent data can be used to determine the
specific Kerr constant K;,. Figure 5.10 shows the results of plotting An/E? vs. E? for
the same data set. Because the plot is a function of E? and not logF’, the linear region
at intermediate field strengths is lost. However, the new plot can now be extrapolated

to field free conditions for an intercept of An/E”.
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Figure 5.10: Plot of An/E* vs. E? for a 5 pg/ml clay sample. A linear fit
on the low field data yields an estimated value of An/E? = 3.66x10°

cm’kV? at E2=0.

2

In this case (An/E%)p—o = 3.66x10”° cm’kV? and, when combined with Eq. (4.28), a
value for the specific Kerr constant K, can be calculated as follows:
-9 2 -2
_ 060 om BV _ _ | (o1 05 e’k =2

7 (2.30x107%)(1.33)
=1.68x107° m*V "2 (ST units)

The polarizability of the clay platelet may now be obtained from the value of

(An/E*)z— and the specific Kerr constant using Eq. (4.29):

n’K 2 RE
A =152 22 g7 =15 0:33) (1'68"195 ) 414510 =5.56x10"" Fm?
27Ag (27)(3.41x107°)

6
= 10 5.56x107°' Fm? = 4.98x10 ¥ cm’®
4re = ———

o
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For comparison, Table 5.3 gives the values of Aa as reported in the literature by
different groups. The common practice is to report Aa in units of Fm’. However, in
order to get a better feel for how the value relates to particle size, the polarizability
volumeAqa’ has also been reported in units of cm’. Surprisingly, the rod model
correlates with the values reported by other groups better than the disk model. This is
evidenced by looking at how the value for A’ determined here scales with the value
determined by the other groups and then comparing it to how the particle volume for a
rod and a disk (also determined here) scales with the disk volumes reported by the
same groups. It is observed that the volume for the rod model used here scales more
closely with Aa’ than the disk model; the difference between the ratios for A’ and

volume differing by only 3 and 19%.

Table 5.3: Polarizability anisotropies Ao for Na-montmorillonite, as reported here
and by other groups. The calculated ratios show a direct correlation between Aa’
and the disk/rod volumes.

3 2 ' 3 . Vol. ratio | Vol. ratio
Group Vol. (cm”) Aa (FmY) | Aa’ (em’) | Aa ratio disk/disk disk/rod
. _ -17
Current S(l)sdk _ gigﬁ 8.19 5.56x10°" | 4.98x10™" 1 1 1
Matsumoto™ 1.91x107'6 1.6x10% | 1.43x10™ 288 6.87 354
Sasail®! 5.11x10" 54x10% | 4.83x10™ 97.1 1.84 94.5

The above comparison implies that the rod model might be a better representation of

the clay solution.

We interpret this result by considering the anisotropy in the
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dimensions of a rod and a disk. Given that the rod lengths are three to four times
longer than the disk diameters, the magnitude of the induced dipole in the rods could
also be larger to the same degree. Such an argument becomes even more reasonable
when we consider that the saturation analysis is done at intermediate fields where the
alignment due to the induced-dipole has been saturated. The results obtained in this
range of field strength could be only representative of the largest polarizability

anisotropy.

5.7. Field Dependence of the Rise Time

The rise times were determined by fitting the same experimental data used for the
concentration analysis. The resulting rise constants were plotted as a function of E’
and are displayed in Figure 5.11. Unlike the decay, the rise of the birefringent
response fits best to a single exponential function. This is somewhat unexpected since
the geometry of the particle dictates a minimum of two constants (as was discussed in
the earlier section on the rotational diffusion coefficient). It will also be seen in later
sections that the fit of the rise to a single exponential is not limited to clay; it is
universal among all cases studied herein. It could be argued that, because the rise of
the alignment is a driven process, maybe the two constants are difficult to separate.
However, this seems an unlikely explanation because the same observation was
obtained even at minimal field strength when the rise time was particularly slow.
Another explanation offered elsewhere is that, because the alignment is a driven

process, it is free from being governed by Brownian motion.”] Needless to say, at this
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time the discrepancy between the fitting of the rise and decay portions of the curve is
not understood; a question that should be explored in future work.

As was seen earlier for the décay of the birefringence, the concentration of 5
pg/ml appears to be the percolation threshold. The slower rise times for the 10 and 20
pg/ml samples can be attributed to inter-particle interactions due to an increase in
repulsive forces. In contrast, the decay times of the higher concentration samples were
shown to decrease; a results that can also be attributed to repulsive forces. In all cases,

however, the rise times are observed to be proportional to the square of the field

strength.
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Figure 5.11: Rise constants for clay samples at varying concentrations and
field strengths. All concentrations show a linear dependence on the squared
field strength.
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In order to calculate the polarizability anisotropy of the platelets using their rise times,
the birefringence curves are first normalized to their saturation value An,, which is
determined by extrapolation of An to E — oo. The reader may recall that the same
method was used in an earlier section as a first step in determining the optical
anisotropy Ag. For this application, the method requires that the value of Ang be

determined for each set of concentrations due to its dependence on the volume fraction

of particles in solution. The resulting <P2> vs. t curve for a 5 pg/ml clay sample,

subjected to a 1.7 kV/cm field is shown in Figure 5.12.

0.7
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Figure 5.12: Rise curve for a 5 pg/ml clay sample subjected to a
1.7 kV/cm field. The dashed line shows the linear fit of the data in
the limit where ¢ — O.
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In a weak field for a solution with no initial alignment, the response of the
birefringence as E — 0 results in a value of 5.80 s for the slope. Using Eq. (4.62) and

Eq. (4.63), the polarizability anisotropy Aa is calculated as follows:

(P,) 5.80
=lim ~=>""=1038
@ =lim o "= 55
G:§a2=8.6
6
ra=-2 DE6) 3 87x107 Fm?
BE>  (2.42x10%)(2.77x10"°)
_10°

2.60x107° Fm? =2.46x10"* cm®
dre —_—

o

For this calculation the value of Dy was taken as the weighted average of the two
rotational diffusion coefficients: Dg = (.65Dg(fast)+.35Dg(slow)). In comparison, the
value of Dy is irrelevant to the calculation of Aa if we use the saturation data discussed
in the previous section. Thus the consistency of the anisotropy from the two different
methods offers some clue as to the validity of the model.

Upon inspection, it can be seen that the rise time analysis gives a value for Aa
which is approximately five times larger that that obtained from the saturation
analysis. The difference between the values calculated for Aa using the two methods
can be understood from the following consideration. The field dependent trials use the
initial response of the particles where ¢+ — 0. In this region, the polarizability of the
smaller diameter, disk shaped particles should govern the change in birefringence,

since they will respond to the applied field faster and align with the field direction
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sooner than their larger, rod shaped counterparts. In contrast, the saturation trials rely
on the birefringence once total alignment has occurred. Therefore, the polarizability
of the longer and more anisotropic, rod shaped particles will become dominant. Thus,
the experimental polarizability anisotropy is only representative of the dominant
particles under different conditions, i.e. disks at t — 0 for the field dependent trials
and r — oo for the saturation trials. Of course, for the preceding argument to be
considered reasonable, the two methods should result in similar values of Aa for a
sample with near monodispersity. It will be shown in the upcoming analysis of CdSe
quantum dots, which display a very narrow size distribution, that this is in fact the
case.

The results for Ao from both the saturation and rise time analysis are displayed
as functions of particle volume, along with the results from other groups, in
Figure 5.13. Weighted averages for the disk and rod models are given, along with
horizontal error bars to account for the rage of particle volumes based on values of
both Dg(fast) and Dg(slow). Vertical bars have also been added to the anisotropies
calculated from the rise times as they are depended on Dy as well. The figure is best
read by looking at how the data points correlate to the dashed line running diagonally,
which represents a linear scaling of polarizability anisotropies with volume. Thus, the
close scaling of the rod model from the saturation analysis and the disk model from

the rise time analysis can be observed by the fit of the linear regression (R* = .9919).
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Figure 5.13: Polarizability anisotropies Ao from saturation and rise time
analysis, plotted as a function of particle volume. The results for Ao from
outside groups are given for comparison. Error bars are used to express the
range of values given two rotational diffusion coefficients.

5.8. Birefringent response to Pulsed AC Fields

It was shown earlier and expressed through Eq. (4.75) that, when subjected to an
alternating field, it is possible to discriminate between the effects of the permanent and
induced dipole-moments on the alignment response of a particle. At low frequencies
the permanent-dipole will change direction with the field while the induced-dipole

only relaxes between the two extremes of the field. Both effects can result in an
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observed AC component to the birefringent signal, but they are governed by two
different physical processes, hence they should have ditferent frequency dependence.

The response of a 5 pg/ml clay sample to a .67 kV/cm, pulsed AC field of
varying frequency is shown in Figure 5.14. The signal at 2 kHz oscillates marginally
with the field while, at the same time, increasing in its overall DC value. A similar
trend can be seen when the frequency of the field is doubled. However, this time more
of the steady state component is observed. By the time the frequency is increased to
200 kHz, the oscillating behavior of the sample has disappeared and the signal
behaves as if the sample is s'ubjected to a 500 us DC pulse. Thus, the limiting case
expressed in Eq. (4.74) has been reached.

In the case of Na-montmorillonite, the mechanism given by [.014% + .99(2)]
does not suggest that an AC component due to a permanent dipole will be readily
observed. Thus, the oscillation can be attributed to relaxation of the particles between
field maximums and minimums. This explanation makes sense when the
birefringence of the sample is below the saturation level and relaxation of the particle
alignment instantanepusly produces changes in birefringence. If, on the other hand,
the birefringence had achieved saturation and the AC component was still observed at
the frequencies which exceed the relaxation time of the particles, a permanent dipole
could be attributed as the source. This case will be observed and addressed in the later
section on quantum dots, where a direct calculation of the change in birefringence as a

function of the ratio of permanent to induced-dipole is made. For now, the AC
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response is presented as a qualitative method of analysis which serves to support the

already determined moments in the particles.
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Figure 5.14: Response of a 20 ug/ml clay sample subject to a .67
kV/cm, pulsed AC field of varying frequency.

5.9. Anomalous Behavior
A few birefringent studies on clay have shown anomalous behaviors with regard to its

response to alignment fields.'*"?!

Some reported inversion of the birefringence upon
initial application of the alignment field, while others showed much more complicated

behaviors. The work of Holzheu and Hoffmann is duplicated in Figure 5.15. A
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standard TEB signal is observed for the two curves on the far left, while the remaining
curves show responses that fluctuate between positive and negative values over time at

high concentrations and high ionic strengths.
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Figure 5.15: TEB signals for pure hectorite at varying concentrations and
hectorite at a constant concentration of .2 mgml and varying ionic
concentrations.

The first explanation of such anomalous signals was based on the assumption of a
permanent-dipole moment perpendicular to the clay platelet surface, which would
have an opposite effect from that of the fast induced dipole moment parallel to the
surface. However, this explanation would imply that the anomalies are intrinsic to the

clay particles and that there should be no influence from the environment. The
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observations of Figure 5.15 and a few later reports have invalidated such an
explanation.!'>

In some cases, the particles demonstrate a negative birefringence at low fields that
remains negative over the duration of the field; a behavior that has also been attributed
to an apparent permanent-dipole.[l4'16] Then, at higher field strengths an induced-
dipole develops and, when the two dipoles are not aligned along the same direction,

reorientation of the particles may occur, along with a subsequent change in the sign of

the birefringence.'”? An example of this process can be seen in Figure 5.16, where
<P2 > values are plotted as a function of field strength, and the inversion of their steady

state birefringence at low fields is observed.

Using a pulsed square wave technique, Shah and coworkers showed a response
of Na-montmorillonite analogous to the example just discussed in Figure 5.16. Shah
explained the reversal behavior in terms of two orientation mechanisms, i. e., the
particles possess a permanent-dipole moment x along the symmetry axis normal to the
disk plane in addition to an induced-dipole moment Aa.E in the plane.

In a more recent report, Sasai and Yamaoka questioned Shah’s proposal by
studying the steady-state birefringence in dilute solutions.'® In order to explain the
behavior of the platelets without invoking a permanent-dipole moment x, they

proposed the following, which is also outlined graphically in Figure 5.17:

L. The particle possesses an interfacial polarizability anisotropy

A, = (ai; — ), where the subscripts 33 and 11 indicate the directions



il.

0.8

0.6

04 -

111

of the symmetric axis (3) and the axis along the face of the disk (1). This
anisotropy is responsible for a “saturable” ionic-dipole moment, which
reaches a saturation value of Aa;E, at the critical field strength E,. In
higher fields, the saturated induced dipole behaves like a permanent-dipole

moment u directed along the symmetry axis.

The particle possesses an electronic polarizability anisotropy
Aa, = (a3, — ), which is along the plane of the platelet and

“unsaturated” at the critical field strength E,,.

(P,) *

Figure 5.16: An example of the inversion of birefringence at low
fields as reported by Shah and coworkers.
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This explanation rests on two basic ideas. The first is that the two types of
polarizations occur simultaneously, but have differing field dependence. The second
is that the instantaneously induced electric dipole moment Aa.E should always be
negative. Namely, a particle is more polarizable in its plane than out of the plane.
Thus, the alignment direction depends on the nature and ionic atmosphere of the clay,
and is further influenced by the frequency, magnitude and duration of the applied
field. By describing the alignment mechanism in this way, the time-dependent,
saturable, ionic-dipole Ag; is considered responsible for the inversion of birefringence

at low fields.

Figure 5.17: Dependence of

electric moments on applied

external field strength E. Aaq;is

the saturable induced interfacial
. . A
dipole moment, Acg, is the
unsaturable  induced  electric

dipole moment, E, the critical Eo E ——————»

/

field strength, and Aay is the sum

total of electric moments.
0. E

An inversion of the birefringence at low fields was noticed during the course of this
research. However, the result could not be consistently reproduced. The observation

of the sign inversion was also limited to the first few microseconds of a pulse and it
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was never possible to maintain the negative value past that point. It should be noted
that the lowest clay concentration studied here (1.25 pg/ml) is approximately 400x
more dilute than that studied by Shah and 4x more dilute than that studied by Sasai
and Yamaoka. At such a low concentration, inter-particle interactions and aggregation
are unlikely to occur; as learned from studies of the percolation threshold. Thus, if the
inversion phenomenon is somehow related to local field effects created by inter-
particle interactions, the lower concentrations in this study should be enough to negate
the response.

Although it is not the intention of this research to disprove any earlier finding, there is
another issue that brings into question the results of studies which report sign
inversions. Because the sign of the birefringent signal is of importance, the groups
whose work is highlighted here used a quarter-wave plate in their optical setup.
However, as was discussed in a previous section, the use of a quarter-wave plate
should be done with extreme caution as even the smallest offset of the optics (analyzer
included) can add erroneous effects to the birefringent response. As an example,
Figure 5.18 shows what is observed for a CNXL sample (known to produce only
positive birefringence) when the analyzer is rotated away from the alignment direction
instead of towards it. For this example the oscilloscope was AC coupled so that the
baseline was set to zero. Subsequently, negative birefringence actually appears
negative on the scale. The signal in blue is seen passing through a minimum when o =

0/2, before returning to zero and then on to its steady-state value.
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This type of behavior is observed because, as the birefringence grows, it must
first cancel the “negative” bias which is imposed on the system by rotating the
analyzer away from the alignment direction instead of towards it. If the steady-state
value is greater than the negative bias then the signal eventually becomes positive.
However, as seen by the green curve, any birefringence with a phase shift J less than
2¢ will remain negative. The inversion of montmorillonite samples had been studied
at very low field strengths (~20 to 40 V/cm) where even the slightest discrepancy in
optical adjustment could produce the described result. For this reason, the analysis of

clay dispersions in this study has been limited to their response above 200 kV/cm.
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Figure 5.18: The “artificial” inversion and negative birefringence that
can be induced in a positively birefringent CNXL sample by rotating
the analyzer away from the direction of alignment instead of towards it.
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The alignment mechanism of [.018% + .99(2y)] reported herein does suggest that a
small dipole moment (permanent or otherwise) may exit in conjunction with the
induced-dipole moment, directed along the long axis of the particle (surface for a
plate). Another possibility is that the dipole is directed at an angle, off the long axis of
the particle, which is less than 90 degrees (as a perpendicular orientation would result
in no projection along the long axis of the particle). However, given the inability to
confidently reproduce the negative birefringence values at low fields, the presence and
direction of such a dipole is inconclusive. None-the-less, the consistent observation of
anomalies in the birefringence response of Na-montmorillonite by different groups
does suggest that more might be going on than is understood.

Undoubtedly, a large contributing factor to the birefringent response of clay is
the wide range of particle shapes that can be observed from one sample to the next.
There is also a clear influence on its alignment response from the ions and their
mobility along the varying clay surfaces. Therefore, although general statements may
be made about the response of aqueous clay samples to electric fields, it can be
expected that large differences in their physical parameters will be observed if
experimental conditions and particle-ion atmospheres are not strictly maintained from

one study to the next.
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6. Cellulose Nanocrystals (CNXL)
6.1. Introduction
The decision to include CNXL in this research began during a brief collaboration with
Dr. John Simonsen; a professor here at OSU in the department of wood science. He
suggested that given the high aspect ratio, high stiffness, and low density of CNXL,
they should be an excellent candidate for TEB studies. After a few preliminary
measurements it was clear that his hypothesis was correct. Not only did the CNXL
samples from his laboratory display field induced birefringence, but also was its
birefringence considerably larger than any other material we had seen thus far.
Cellulose is reportedly the world’s most abundant biopolymer and acts as a
reinforcement material in virtually all plant matter. The structure of cellulose shown in
Figure 6.1 is derived from a linear chain of S-linked glucose monomers, with multiple
chains arranging to form cellulose fibrils through hydrogen bonding. The fibrils can

be partially dissolved by acid hydrolysis, producing rod shaped nanocrystals (CNXL).

CH,OH CH,OH CH,OH
—o Lo |

H ¢ H H C—O
R ONDL LN LR N
N AT O\ BT OO M7 O
?—(I; H Cl:_? H Clj_(]j H
H OH H OH H OH

Figure 6.1: Three of the £ linked glucose monomers making of the backbone of
cellulose nanocrystals.
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Individual cellulose crystals are prepared from cotton by hydrolysis, which is typically
done using sulfuric or hydrochloric acids. There are many sources by which the
crystals can be acquired; each having a different extent of cellulose purity: [1.2]

¢ cotton-seed fluff > 94%

¢ wood > 55%.
The preparation begins with initial acid action to remove the polysaccharide material
closely bonded to the microfibrill. Subsequent hydrolysis then breaks down portions
of the long glucose chain in accessible, noncrystalline regions. Once the degree of
polymerization is lowered to a level where only the highly crystalline regions of the
original cellulose fiber remain, hydrolysis is terminated by rapid dilution of the acid. A
combination of centrifugation and extensive dialysis is then employed to remove the
acid and the final product is sonicated to complete the process of dispersing the

individual crystals. The cellulose rods that remain after this-treatment are almost

entirely crystalline and as such are termed crystallites (Figure6.2).

Figure 6.2: TEM image of cellulose nanocrystals derived from cotton.
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Forest-based products have long capitalized on the ability of cellulose to form fibrils
and new forest-based functional materials have the potential to compete with
established materials such as plastics, clays, metals and metal alloys. Table 6.1 shows
some of the physical properties of cellulose and how it compares to other common

materials.

Table 6.1: Tensile strength and Modulus of some common materials.

Matertial Tensile Strength (MPa) | Elasticity Modulus (GPa)
CNXL 10,000 150
302 Stainless steel” 1280 210
Al alloy 380" 330 71
Zirconial¥ 240 150
Al with 20% SiC™ 593 121
Nylon 6/6 30% SiO,"! 503 65

The desirability of CNXL as a nano-filler is not only based on performance but also on
merits of recyclability, biodiversity, biodegradability, and sustainability. The current
uses of cellulose as a reinforcement material in non-biological materials are widely

reaching. Examples include, but are not limited to, strengthener in plastics,l>”

[8-10] [11-13]

ceramics, and in biomedical material applications.

Although a large amount of work has been reported on cellulose nanocrystals,
almost all has focused on their potential as an additive to other materials and little has
been devoted to their single particle properties. As an example, a search on SciFinder
using the phrase “cellulose nanocrystals” returned 154 citations; 145 of which

pertained to their use in nanocomposites and nanomaterials. Thus, this work

represents the first systematic study of cellulose crystallites at the single particle level.
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What is presented here is a detailed analysis of the properties of cellulose
crystals in an aqueous system. Our results indicate that CNXL has a larger
polarizability and an extreme ability to induce large phase shifts in polarized light.
The presence of a small dipole will also be addressed, along with its possible
contribution to the nematic liquid crystal behavior that CNXL has been shown to

display at high concentrations.

6.2. Analysis Overview
The analysis of the CNXL samples will be separated into four parts. The following
section outlines each analytical technique, the physical property it depends on, and

how that property will be used to characterize the sample:

1) Concentration dependence of the decay mechanism will be followed in
order to determine the sample’s percolation threshold. Once a suitable
concentration range has been established, the rotational diffusion coefficient
Dy will be calculated from the decay constants and used to determine particle
dimensions.

2) Saturation of the birefringent response An will be studied by plotting its
value against varying functions of E? and using features such as the slope, local
maximum, and y-intercept to determine the following:

¢ Optical anisotropy Ag



3)

4)
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¢ Specific Kerr constant K,

¢ Orientation mechanism i.e. the ratio of permanent to induced-dipole
moment

¢ Single particle polarizability anisotropy Aa

¢ Single particle permanent dipole u

Field dependence of the rise time will be followed to elucidate the orientation

mechanism (induced-dipole and/or permanent-dipole). The rise times in the

low field limit will also be used (along with the rotational diffusion coefficient

from section 1) to calculate single particle polarizability anisotropies. The

results will then be compared with the values obtained from the analysis of

section 2.

Pulsed AC trials will be conducted as a supplemental study to further confirm

the alignment mechanism. The ratio of the permanent dipole to the

polarizability anisotropy will be used to estimate the change in birefringence in

moving from the low frequency to the high frequency limit. The results of the

calculation will then be compared to the response of the crystallites to 2 and

200 kHz, pulsed AC fields.
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6.3. Experimental
An aqueous sample of cellulose nanocrystals (~1.5 %wt) was supplied by Melissa
Taylor in Dr. Simonsen’s research group. The following method was graciously

supplied by her and outlines the preparation of the sample:

60 g of Avicel PH-101 microcrystalline cellulose (Fluka) was hydrolyzed
in 1 liter of 2.4M HCI for 2 hours at 100 °C, allowed to cool to room
temperature, then washed with deionized water until conductivity of
supernatant was less than 100 micro-Seimens. Pellet was brought to pH >
9 with aqueous 4M NaOH, then 60 mg of 2,2,6,6-Tetramethylpiperidine-
1-oxyl (TEMPO) free radical (Aldrich) per gram cellulose and 10 g NaBr
(EM Scientific) per gram cellulose was added to the pellet. Oxidation was
initiated by adding 6% sodium hypochlorite (NaOCI). Oxidation reaction
was continued for 24 hours while solution was maintained at pH > 9.7
with 1M NaOH, and the oxidation/reduction potential above 400 mV with
frequent addition of NaOCIl. Reaction was quenched by the addition of
100 mL methanol, then solids were cleaned by dialysis against DI water.
Pellet was then ultrasonicated 6 hours at a duty cycle of 45%, power
output of 4.5 (Branson Sonifier, model 250), then filtered down to 1.5 pm
with Whatman glass fiber filters.

Sample solutions were prepared from the stock solution by the direct addition of

deionized water, followed by a ten minute sonication period.
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6.4. Concentration Dependence of Dg
The purpose of the concentration trials is to determine the percolation threshold for the
cellulose crystallites. As the sample concentration increases, the inter-particle
distance is reduced and interactions occur due to the limited space. With increasing
field strength the order within the system will also increase. A simple method for
determining a threshold concentration is to follow the diffusion as a function of the
alignment field and concentration. If inter-particle interactions are present, both
factors will have an observable effect on Dy

Following the procedure described for the clay sample, field strength trials
were run on CNXL samples ranging from .15 to .019 %wt. In each case the decay
curves were fit using the double exponential expression represented by Eq. (4.71).
The results for a fast and slow rotational diffusion coefficient Dy as a function of field
strength were determined. However, the difference between the amplitudes of the two
exponential functions is approximately two orders of magnitude; with values for
Dr(fast) and Dg(slow) of .98 and .02, respectively. In order to determine if preference
could be given to the biexponential model, an F-test was performed using the ¥ values
from each fitting. A limiting value of F =~ 3.84 at a 95% confidence level was taken

[ Given that the decay curves consisted of ~1000 data

from the available tables.
points and that two and four adjustable parameters were involved in the fitting, the

value of F for the given chi squared values was:

2 2 B .
F= )(_;1 _ le /(1000 —-2) _ .0112/998 _ 756
X X, /(1000-4) .004°/996
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Hence, a double exponential fit is a more appropriate model for the system. The two
observed values for the rotational diffusion coefficient show a similar trend to those of
clay in that they are separated by approximately one order of magnitude, as seen in
Figures 6.3 & 6.4. For each set of data there appears to be a slightly faster decay for
the highest concentration sample, while the remaining concentrations have decay
constants within the standard deviation, which remained at ~10% for all groups of
samples. There also appears to be little change in the fast Dy as the field strength is

increased, with virtually no change for the slow values.
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Figure 6.3: “Fast” rotational diffusion coefficients Dg for CNXL at varying
concentrations as a function of the squared field strength.
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“Slow” rotational diffusion coefficients Dp for CNXL at

varying concentrations as a function of the squared field strength.

The weak dependence on concentration and negligible dependence on field strength

observed in the decay data suggests that even the highest concentration sample is

below the percolation threshold for aqueous CNXL. Given the desire to always

maintain a large signal to noise ratio, it would seem reasonable to increase the

concentration until the maximum value below the threshold is achieved. However,

further increase in concentration proved to be unnecessary due to the large optical

anisotropy of CNXL, calculated as follows:

_Ann (3.14x107°)(1.33)

R =
8= onC,

27(9.37x107%)

=3.55x107*
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For this reason, samples well below the percolation threshold were used to prevent the
detection system from being overloaded.

An interesting consequence of the large optical anisotropy of CNXL is “over-
rotation” of the probe beam at high concentrations/field strengths, i.e., the induced
phase shift reaches multiples of w. Figure 6.5 shows an example when J reaches 4 in
a 2.0 kV/cm field for a 1.0 %wt CNXL solution. The applied field is overlaid with the
birefringent response of the sample. The oscillations to the right of the square wave
are due to relaxation, and it was observed that the number of cycles from the
relaxation were equal to the number of cycles when the field was applied. In addition,
we also confirmed the nature of the oscillation by extending the beam path and
changing the concentration.

The ability of cellulose nanocrystals to induce such a significant phase shift is
one of their multiple properties shared with liquid crystals. For example, it has been
shown by Lima and Borsali that as the concentration of cellulose crystallites is
increased, they form spontaneously ordered phases, displaying nematic liquid crystal
properties. [15] " At higher concentrations, the suspensions form birefringence droplets
that coalesce to give cholesteric packing by spontaneous self-assembly. It will also be
shown momentarily that the specific Ketr constant of CNXL is of the same order of

magnitude (~10° m?V?) as that of many liquid crystals."'*"®!

Such results suggest that
CNXL may be a greener alternative to liquid crystals in electrics applications; an idea

that should certainly be explored further.
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Unlike Na-montmorillonite addressed earlier, CNXL is best modeled as a rigid
rod. Thus, calculations for the average crystal length based on the fast and slow
rotational diffusion coefficients were done using Eq. (4.68) and displayed in Table
6.2. The length to diameter ratio of L/a = 40 was chosen based on TEM images in the

literature and conversations with Dr. Simonsen,

1.2+

ul |

0.6
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A
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0.2

time (ms)

Figure6.5: TEB signal of a 1.0 %wt CNXL sample displaying a phase
shift in the probe beam equal to ~4=w; each maximum and minimum being
equal to a phase shift of .

The precise dimensions of the crystallites depend on several factors, including the

source of the celluloée, the exact hydrolysis conditions, and the ionic strength of the

t.[19]

solution environmen Reported dimensions determined by TEM vary for

crystallites derived from different species : 4 x 180 = 75 nm for bleached softwood
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pulp,?” 7 x (100 - 300) nm for cotton,'"? and 20 x (100 — 2000) nm for Valonia.l*!!
The results reported here of 5 x 205 nm, for the faster coefficient, are in excellent

agreement with those of other studies which were also done on cotton derived crystals.

Table 6.2: Average lengths and diameters for aqueous CNXL based on a slow and
fast rotational diffusion coefficient and a length to diameter ratio of L/a = 40.

Dy (s'l) rod length (nm) rod diameter (nm)

% wt
fast I slow fast I slow fast I Slow

15 2278 +£246 266+42 | 197+7 414+14 | 50+ 2 104+.4

075 | 2140+304 203+£19 | 201 +£10 440+14 | 50+£.2 11.0+ 4

.038 1823 £236 193+16 | 212+10 449+13 | 52+.2 112+ .4

.019 1913 +263 201+23 | 208+10 44318 | 52+.2 11.0+4

2039 +£307 211+29 | 20511 436+19 | 5.0+x.2 11.0*+ 4

Another study on CNXL using TEB and dynamic depolarized light scattering
(DDLS) measurements was reported by Lima and Wong et al.?! Similar to the results
reported here, they also found, using both methods, that the birefringent decays were
best fit using a biexponential function. It was mentioned in the earlier section on the
rotational diffusion coefficient that it is common for the existence of two constants to
be attributed to polydispersity and not the presence-of three unique axies in the
particle. We see the trend continuing here, as Lima and Wong attributed the existence

of two decay constants, with amplitudes of .90 and .10, entirely to polydispersity and
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disregarded the constant that did not result in reasonable particle dimensions;
suggesting that it represented smaller fragments which are resolved into a separate
relaxation mode. The particle dimensions they reported of L=255 =26 nm and d = 15
+ 2 nm (based only on their slower rotational diffusion coefficient, with an amplitude
of .90) are also in good agreement with the dimensions determined here for the faster

of the two coefficients; both of which are the dominant modes from each study.

6.5. Saturation of the Birefringent Response at Low Fields
The birefringent responses for a 1.50x10” %wt CNXL sample, subject to fields
between .02 and 1.5 kV/cm were recorded after averaging over 128 pulses at 2 Hz,
with a pulse width of 500 ps. The change in birefringence An at each field strength
was calculated according to Eq. (3.35) for an optical arrangement with a quarter-wave
plate.

With the value of the optical anisotropy already acquired (Ag = 3.55x107), the
next step is to determine the specific Kerr constant K;,. A non-normalized plot of the
data yielded a value for An/E* where E—0 of 1.57x10 cm’kV>. When combined

with (64), the specific Kerr constant K, is calculated as follows:

_1.57x10 em®ky

= - =1.45x10" em’kV
(9.37x107°)(1.33)

=1.45x10""> m*V 7 (SI units)
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6.6. Saturation of the Birefringent Response at High Fields
The determination of the ratio of permanent to induced-dipole moment in the cellulose
nanocrystals was carried out using the plot in Figure 6.6 of AW/E? vs. logE’,
normalized to its low field limit, for a series of CNXL samples. The slope of -1.12 at
intermediate field strengths, when combined with Eq. (4.26), results in an estimated
contribution of [.058> + .95(2y)], i.e., 95% of the alignment originated from the
induced dipole in the cellulose crystals. For comparison, a theoretical curve was
constructed and plotted against the experimental result. The peak value of 1.10 for the
CNXL response matches that obtained from theory; further supporting a ratio of
[.058% +.95(2y)] for the crystals.

In order to determine the permanent and induced-dipole, a horizontal shift of
0.265 was applied to the experimental data so to overlap with the theoretical curve.
This procedure was addressed in an earlier section, but has not been utilized up to this
point. It uses the logarithmic relation in Eq. (4.30) that results from the graph of the

normalized data as a function of logFE’ as follows:

log(P+ Q)+1og E* = 0.265+log E*
log(P+ Q)=0.265

P+0=1.84x10""m*V >

where P, the permanent-dipole term, is P = BIE? = ik T’ and Q, the induced-dipole

term is Q = 2y/E* = Aa/kT.
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Figure 6.6: Normalized plot of An/E vs. logEe for a CNXL sample laid over
the theoretical curve for an alignment mechanism of the ratio [.058% +.95(2p)].

From the specific Kerr constant K, and the ratio of the permanent moment and
polarizability anisotropy, we can now determine both the permanent-dipole and

polarizability anisotropy using Eq. (4.29) as follows:

2
15K ,n’

P=184x10"m*V?-Q [.05P+.950]=
2nAg

15(1.45x107" m*V )(1.33)*

05(1.84x10 " m?V 2 — Q) +.950|=
[ ( Q) Q] 27(3.55x107%)

9.20x10" 2 m?V 2 —.90Q =1.73x10 " m*V
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0=182x10"m*V P=221x10"2m’V
Ax 10 2qr=2 /JZ -2 2772
=1.82x10"" m*°V — =221x107"m"V
B B
Aa =17.53x10"" Fm® 4 =6.16x10"" Cm
Aa' =6.74x107"° cm® 1 =1.84x10°D

Although not ideal, a comparison with the clay sample studied earlier can serve as a
reference for the value of Aa. In this case it is appropriate to use the rod model for the
clay sample. The volume of clay rods was determined to be ~5.4x10" cm?, and the
corresponding polarizability anisotropy from saturation analysis was Aa = 5.56 x 107!
Fm’. For cellulose crystals, a volume of 1.26x10™'® cm® was obtained based on the
results from field free relaxation. The ratios of polarizability and volume for the two
samples are:

Ac(CNXL) 135 vol(CNXL)
Aa(clay) . vol(clay)

=232

Although not identical, the similarity between the two ratios does suggest that the
value of Ao determined for CNXL here should be not too far off.
There are currently no reports in the literature on the existence of a dipole in

CNXL. However, its likely presence can be argued based on some properties in
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aggregation. For example, above a critical concentration, cellulose suspensions
separate into isotropic and anisotropic phases. It has also been found that nanocrystal
suspensions prepared from cellulose form chiral nematic order at appreciably high
concentrations.”®! Several hypotheses have been presented to explain the origin of a
chiral nematic phase in cellulose nanocrystals, such as the particle shape being
twisted,** 2! or a twisted charge distribution.”) However, the true mechanism has yet
to be established. Since only chiral molecules (those lacking inversion symmetry) can
give rise to a nematic phase, CNXL must to either the C, or D, point groups.
Compounds in the C, point group have exactly one C, axis and nothing more, while
compounds in the D, point group contain the same C, axis and nC; axes perpendicular
to it. The rules for symmetry grouping confine the shape of the crystals to virtually
perfect cylinders if they are going to exist in the nonpolar D, point group. Therefore,
if twisting of the crystal structure, twisting of charged groups, or edge imperfections
exits, the perpendicular nC; axes required by the D, point group are absent and the

presence of a permanent-dipole is possible.

6.7. Field Dependence of the Rise Time

The rise times were determined by fitting the éame curves used for the concentration
analysis. Unlike the decay, the rise of the birefringent response fits best to a single
exponential function. The resulting rise constants were plotted as a function of E’ and

are displayed in Figure 6.7.
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In all cases the rise times appear proportional to the square of the field
strength. The linear response of the rise times as a function of E’ is in excellent
agreement with the earlier assessment of the alignment mechanism which suggests a
response driven mostly by the induced-dipole moment of the crystals. There does
appear to be an increase of the slope with concentration, which would suggest a small
influence from inter-particle attractions. However, no such response was seen in the

decay fittings so the exact cause of the decreased rise times is unclear.
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Figure 6.7: Rise constants for cellulose samples at varying concentrations and
field strengths. All concentrations show a linear dependence on the squared
field strength with a small increase in the slope with concentration.
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Linear fits of the rise curves were used with Eq. (4.62) and Eq. (4.63) to calculate the
polarizability anisotropy. Table 6.3 gives average results for the range of field
strengths at each concentration. The result obtained here for the polarizability
anisotropy has a difference of ~11% when compared with that from saturation
analysis. The discrepancy can be easily accounted for by recognizing an earlier
assumption that was made in the derivation of the rise time with regard to field
dependence.  Specifically, any permanent dipole in the particle is directed
perpendicular to the principal symmetry axis. This assumption simplified the model
of the rise time by retaining inversion symmetry in the particle. However, the theory
becomes inappropriate for this situation when a dipole is present with a projection

along the symmetry axis.

Table 6.3: Average polarizability anisotropies as calculated using the rise times at
varying field strengths.

% wt. Aa x 107! (Fm?) Ae’ x 1077 (Fm?)
0.15 5.80+ 1.24 5.19+1.11
0.075 6.59 + 1.97 5.90+1.76
0.038 7.01 £ 2.04 6.27 +1.82
0.019 7.42 +2.23 6.64 + 2.00
6.71 + 1.87 6.00 +1.67
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For curiosity’s sake, we can extend the discussion further by recalculating the
polarizability anisotropy using the saturation method. We would like to compare the
two methods of deriving the polarizability anisotropy, by assuming that the CNXL has
a negligible permanent dipole in both methods. We can recalculate P + Q using the

saturation method but this time, P = 0:

2

nkK
P=15 e
27mAg

Substituting in the relation Q = Aa/kT, in addition to multiplying both sides of the

equation by &7, then yields:

4 2 -2
o =152 2w g = 15033 (1'45’6192 ) 4.14x10" = 7.16x10° Fir”
27Ag (27)(3.55x107%)
6
=19 5 162107 Fm?® = 6.40x10"cm’
4me -

o

It can be seen from the resulting value that the agreement between the two methods is
now much better, with a difference of only ~6%. The resulting improvement in the
percent difference between the two methods suggests that the rise time analysis
actually gives a result which is a combination of both the permanent and induced-
dipoles. Thus, by treating the saturation analysis as induced dipole only, we have a
method to directly compare results from two different types of measurements.

The above agreement is in stark contrast to the large discrepancy that was

observed with the clay sample. However, the difference in values of Aa for clay was
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attributed to polydispersity in shape, with different shaped particles dominating
different measurements (disks in the rise time analysis and rods in the saturation
analysis). For the case of cellulose crystallites, only the particle size varies, while the

shape is uniform and the rod model can be clearly defined.

6.8. Birefringent Response to Pulsed AC Fields

The response of a .15 % wt CNXL sample to a .67 kV/cm, pulsed AC field of varying
frequency is shown in Figure 6.8. The signal at 2 kHz oscillates appreciably with the
field, almost reaching a zero value in the region where the pulsed AC field approaches
zero. A similar trend can be seen when the frequency of the field is doubled.
However, this time more of the steady state component is observed. By the time the
frequency is increased to 200 kHz, the oscillating behavior of the sample has
disappeared and the signal responds as if it’s been subject to a 500 us DC pulse.

For CNXL, we expected to see the effects of both a permanent and induced-
dipole at low frequencies, even though the permanent-dipole contribution is small
(~5%). However, the cause of the oscillation is questionable due to the signal not
reaching saturation. The oscillation could be attributed to the permanent dipole
following the change in field or simply, the faster relaxation times of the cellulose

crystals.
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Figure 6.8: Response of a .15 %wt CNXL sample subject to a .67 kV/cm,
pulsed AC field of varying frequency.
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7. CdSe Nanocrystals

7.1. Introduction

QDs are nanometer-scale atomic clusters, containing from a few hundred to a few
thousand atoms of a semiconductor material (mixtures of periodic groups II-VI, 1I-V,
and IV-VI), they are typically coated with an additional semiconductor shell (usually
zinc sulfide) to improve their optical properties. In recent yea;s, QDs have been the
focus of many studies. In fact, a search of the phrase “quantum dots,” returned 42,683
references. One property of rod shaped quantum dots which fueled the interest of this
study is their emission of linearly polarized light. It is hypothesized here that, if the
particles can be successfully aligned in a polymer or thin film, they could be used as a
source of linearly polarized light for thin panel displays. This idea is addressed more
in a later section on polymer composites.

Fundamentally, quantum dot nanocrystals are fluorophores; substances that
absorb photons and then re-emit at a different wavelength. However, they exhibit
some important differences from traditional fluorophores, such as organic fluorescent
dyes. These differences stem from their size and chemical composition. For a QD,
concepts of bandgap, conduction band and valence band, which govern the behavior
of bulk materials, still apply. However, quantum confinement results in discrete
energy levels and the material ceases to resemble those of the corresponding bulk.
The quantum confinement has large repercussions on the absorptive and emissive
behavior of the semiconductor material in that the addition or subtraction of just a few

atoms has the effect of altering the boundaries of the bandgap. Changing the geometry



143

of the surface of the quantum dot also changes the bandgap energy, owing again to its
small size. This property has been referred to as "tunability", and is being widely
exploited in the development of multicolor assays by companies such as Invitrogen.

Quantum dots have a wide range of applications in both biological and
material applications. Encapsulated within a layer of protective surfactant,! 21 QDs
have been used as active components inside plastic electronics,”! proposed as the
foundation for a new class of LED,” and heavily used in the biomedical field for cell
imaging and cancer research.”"” It has also been shown that rod shaped CdSe QDs
spontaneously form liquid crystalline phases
when dispersed in solvent at high
concentration."! Thus, it is of great interest
to use external electric and magnetic fields to
align these liquid crystalline samples in order
to manipulate their orientations on a large
scale.

For this research, the focus will be on
nanorods of CdSe because they have an

anisotropic geometry and also exhibit

[12-14]

excellent monodispersity. Upon

absorption of UV radiation, these nanorods Figure 7.1: Aqueous quantum
dots emitting 655 nm light under

will emit light at a wavelength of 655 nm. A UV irradiation.

2 uM aqueous sample of carboxylated CdSe



144

quantum dots is displayed in Figure 7.1. The solution is being irradiated with 350 nm
UV light and emission at 655 nm is clearly observable.

The nanorods are made by the reaction of organometallic precursors of Cd and Se in a
hot surfactant mixture. By varying the composition of the surfactant, the rodlike CdSe
nanocrystals can be tuned to varying widths and lengths.!'*! The CdSe core is then
coated with a ZnS shell, in order to minimize tunneling effects between the core and
solvent, and to increase the quantum efficiency of emission. Finally, a polymer
coating is added, for the attachment of biomolecules specific to the application.
Typically, the aspect ratio of CdSe QDs can be varied from 1 to 15, with widths from
3 to 7 nm, and length from 3 to 70 nm. The distribution is typically 5% of the average
value for width and 10% for length. A TEM image of the CdSe rods used for this

study is shown in Figure 7.2; it illustrates the range and quality of the nanorods.

polymer
coating

core

¢ 15-20nm

Figure 7.2: Transmission electron microscope image of core-shell Qdot®
nanoparticles at 200,000x magnification and the schematic of the overall structure
of a Qdot® conjugate. The layers represent the distinct structural elements of the
Qdot® nanocrystal conjugates.
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CdSe nanorods are typically functionalized with amphiphilic molecules, such that a
polar functional group is bound to the nanocrystal surface, and a long alkyl chain
projects outward. These alkyl chains provide high solubility of the nanorods in
organic solvents. However, if the rods are to be used in water, the amphiphilic shell
can be replaced with a shell of hydrophilic nature. The quantum dots used herein are

functionalized with carboxyl groups.

7.2. Analysis Overview and Experimental
CdSe nanocrystals (Qdot® ITK™ 655 carboxyl quantum dots) were used as supplied
by Invitrogen and the sample parameters are listed in Table 7.1. Sample solutions

were prepared from the 16 4M stock solution by the direct addition of deionized water.

Table 7.1: Specific physical properties of the CdSe QD sample supplied by
Invitrogen.

Concentration (uM) density ( g/cmﬁ Particle length (nm)

16.0 15.58 15-20 90%

>20 <10%
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The analysis of the QD samples will be separated into four parts. The following

section outlines each analytical technique, the associated physical property, and how

that property will be used to characterize the sample:

1)

2)

3)

4)

Concentration dependence of the decay mechanism will be followed in

order to determine the sample’s percolation threshold. Once a suitable

concentration range has been established, the rotational diffusion coefficient

Dy will be calculated from the decay constants and used to determine particle

dimensions.

Saturation of the birefringent response An will be studied as a function of

the field strength, and information thus obtained will entail:

¢ Optical anisotropy Ag

¢ Specific Kerr constant K,

¢ Orientation mechanism i.e. the ratio of permanent to induced-dipole
moment

¢ Single particle polarizability anisotropy Aa

¢ Single particle dipole moment x

Field dependence of the rise time will be followed to further elucidate the

orientation mechanism (induced-dipole and/or permanent-dipole) and to derive

the single particle polarizability anisotropy.

Pulsed AC trials will be conducted as a supplemental study to further confirm"

the alignment mechanism.
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7.3. Concentration Dependence of Dy
The concentration trials were run in order to determine the percolation threshold for
the quantum dots. An increase in concentration results in a decrease in the inter-
particle distance and inter-particle interactions occur due to space limitations. With
increasing field strength the order within the system will also increase. The easiest
method for determining a threshold concentration is to follow the diffusion of the
particles as a function of field strength and concentration. If inter-particle interactions
are present, both factors will have an observable effect on the diffusion constant Dy.
Following the procedure described for the clay sample, field strength trials
were run on QD samples ranging from 1.6 to .1 uM, and the decay curves were fit
using the double exponential expression represented by Eq. (4.71). The results for a
fast and slow rotational diffusion coefficient Dy as a function of field strength were
determined to be Dp = 13062 = 1511 s and D = 1295 + 320 s". However, the
difference between the amplitudes of the two exponential functions is approximately
three orders of magnitude; with values for Dg(fast) and Dg(slow) of .001 and .999,
respectively. In order to determine if preference could be given to the biexponential
model, an F-test was performed using the ¥’ values from each fitting. A limiting value
of F =~ 3.84 at a 95% confidence level was taken from the available tables.!") Given
that the decay curves consisted of ~1000 data points and that two and four adjustable
parameters were involved in the fitting, the value of F for the given chi squared values

was:
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2 2 /1000-2) .0212
FZu _Z (1000-2) .021 /998_305

5

7 72/(1000-4) .012%/996

Hence, single exponential fit is a more appropriate model for the system, even though
the y° is larger, because the calculated F value does not exceed the limiting value of
3.84.

The origin of the single exponential fitting function can be attributed to the
highly symmetric nature of the nanocrystals. According to Ridgeway, as detailed in
Section 4.9, when the asymmetry of an asymmetric ellipsoid diminishes, the
biexponential decay converges into a single exponential, and one of the amplitudes
approaches zero. In the case of CdSe quantum dots, as seen from the TEM pictures,
the two axes orthogonal to the long axis of the rod are essentially indistinguishable.

The values for Dy as a function of E° can be seen in Figure 7.3. A slight
increase is observed with samples of relatively higher concentrations, however, the
values are essentially constant over the range of applied field strengths. Based on
these results, we chose the 1.6 uM concentration for further study. This choice was to
maximize the signal to noise ratio in the birefringent response. The length of the rods
was calculated using Eq. (4.68) assuming a ratio L/a = 4, a value provided by

Invitrogen and our own TEM images. The results are presented in Table 7.2.
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Figure 7.3: Rotational diffusion coefficients Dy for Qdot® nanoparticles at
vary squared field strengths as a function of concentration.

The calculated lengths are in excellent agreement with those reported in the literature
and the information supplied by Invitrogen. As measured, the nanorods are coated
with a polymer shell and then carboxyl groups; and these additional layers have

brought the average length of the nanorods from 12 nm, for just the core, up to 16 nm.
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Table 7.2: Values for the rotational diffusion Dy coefficient and
diameter for CdSe quantum dots varying fields and

concentrations.

M Dr (s rod length (nm) rod diameter (nm)

.16 1553 £ 200 15.28+ .7 3.82+.18

.08 1556 £ 275 153+ 9 3.83+.24

.04 1316 + 352 163+ 1.5 4.08 +£ .37

.02 1055+ 96 173+ .5 434+ .13

.01 970 £+ 60 17.8+ 4 446+ .10
1290 + 323 164 +1.3 4.10 + .34

7.4. Saturation of the Birefringent Response at Low Fields

The birefringent responses for a 1.6 uM quantum dot sample subject to fields between
.02 and 1.5 kV/cm were recorded after averaging over 128 pulses at 2 Hz, with a pulse
width of 500 ps. The change in birefringence An at each field strength was calculated
according to Eq. (3.35) for an optical arrangement with a quarter-wave plate. The
value for An/E’ where E—0 was determined to be 1.99x10® ecm’kV>.  When

combined with Eq. (4.28), the specific Kerr constant K, is calculated as follows:

_ 1.99x107 cm*kV

o= - =7.34x10" cm’kV 2
(2.03x107)(1.33)

=734x10" ¥ m?V 2
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7.5. Saturation of the Birefringent Response at High Fields
Extrapolation of the birefringence to infinite field gives a saturation value for the

birefringence of An; = 1.17x10® and results in an optical anisotropy of:

_Angn (1.17x107)(1.33)
22C,  27(2.03x107")

Ag =1.21x10""

The determination of the ratio of permanent to induced-dipole moment in the quantum
dots was carried out using the plot in Figure 7.4 of An/E* vs. logEZ , normalized to its
low field limit. The slope of -0.60 at intermediate field strengths, when combined
with Eq. (4.26), results in an estimated contribution of [.888° + .12(2y)] toward the
alignment mechanism from the permanent and induced-dipoles in the nanoparticles.

A horizontal shift of 0.47 was necessary to align the experimental data with the
theoretical curve. This procedure was first used in Section 6.6 when a shift was
necessary to determine the dipole in cellulose nanocrystals. It uses the logarithmic
relation in Eq. (4.30) that results from the graph of the normalized data as a function

of logFE’, seen in Figure 11.5, as follows:

log(P+ Q)+log E* =0.61+log E’
log(P +Q)=0.47

P+0=295x10""m’V >

where P, the permanent-dipole term, is P = ,Bz/E2 = ,uz/kz T* and Q, the induced-dipole

term is O = 29/E* = Ao/kT.
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¢ Values after horizontal shift 1.2
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¢ Values before horizontal shift 1.0
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Figure 7.4: Normalized plot of An/E’ vs. logEZ for a quantum dot sample
laid over the theoretical curve for an alignment mechanism represented by
the ratio [.874% + .12(2y)].

The polarizability anisotropy Aa and permanent dipole moment x of the quantum dots

may now be obtained from (65) as follows:

15K n*
27Ag

P=295x10"mV 2 -Q [88P +.120]=

15(7.34x107"° m*V 7*)(1.33)°
27(1.21x107%)

[88(2.95x107™° m?V 2 - 0) +.120] =

3.58x10"m?V 2 —.640Q = 2.55x10" " m*V *
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0 =5.85x10""m?*y " P=289x10"m*y >
Ax 12 27,2 /uz -1n_ 2y7,-2
=585x107"mV = =2.89x10""'m°V
B kBT .
Aa =2.42x107 Fm® 1="1.04x10"" Cm
Aa’' =2.17x10"" em’ u=211x10°D

7.6. Field Dependence of the Rise Time

The rise times were determined by fitting the same data used for the concentration
analysis. Unlike the decay, the rise of the birefringent response fits best to a single
exponential function. The resulting rise constants were plotted as a function of E? and
are displayed in Figure 7.5.

In all cases the rise times appear proportional to the square of the field
strength. The linear response of the rise times as a function of E? is somewhat
counterintuitive. Given that the quantum dots are shown to possess a large dipole
moment, it would seem reasonable to expect them to show a linear dependence on E at
low fields. However, the E° response of the induced moment seems to govern the

response, even down to the lowest fields used in this study.
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Figure 7.5: Rise constants for quantum dot samples at varying concentrations
and field strengths. All concentrations show a linear dependence on the
squared field strength.

Linear fits of the rise curves were used with Eq. (4.62) and Eq. (4.63) to calculate the
polarizability anisotropy. Table 7.3 gives average results for the range of field
strengths at each concentration.

The result obtained here for the polarizability anisotropy is approximately two
orders of magnitude larger than that from the saturation analysis
(A =2.42x10 Fm*). This is a much larger difference than that from the two
methods in the earlier discussion on CNXL in Section 6.7, where the value for Aa

varied by only 11%. However, the reader will recall the discussion which highlighted
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the fact that the rise time analysis does not separate the permanent and induced-dipoles
and so both dipoles are represented by an equivalent value of Aa. In the case of
CNXL, the permanent-dipole’s contribution was only 5% and so the difference was
small. In the case of QDs, the permanent-dipole makes up 88% of the observed

birefringent response and so the disparity between the two methods is much greater.

Table 7.3: Average polarizability anisotropies as calculated using the rise times
at varying field strengths.

M Aa x 10 (Fm?) Ae’ x 10 (em?)

1.6 1.23 + .25 1.10+ .12

8 1.30 + .24 1.16+ .14

4 1.18 +.16 1.06 £ .08

2 1.17 £.07 1.05+.06

A 1.13£.16 1.01 = .08
1.20 £.19 1.08 = .10
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Since QD is the only sample in this thesis that has well characterized mono-dispersity,
it is worthwhile to make some more detailed investigations. We would like to
compare the two methods of deriving the polarizability anisotropy, by assuming that
the QDs have a negligible permanent dipole in both methods. We can recalculate

P + Q using the saturation method but this time, P = 0:

n’K 2 -13
Aa =15—2kT =15 (L55) (7.34x102 ) 4.14x107% =1.06x107*" Fm?
27hg (27)(1.21x107%)
10° -31 2 -15 3
e 7.16x107" Fm~™ =9.45x10" " cm

(]

This value agrees with the result from the saturation analysis to within 12%. Thus, the

“equivalent polarizability” obtained from both methods do agree.

7.7. Birefringent Response to Pulsed AC Fields
The response of a .8 uM CdSe quantum dot sample to a .67 kV/cm, pulsed AC field of
varying frequencies is shown in Figure 7.6. This result is markedly different from
those of other samples. In each of the previous cases, the eventual loss of the
alternating component of the birefringent signal was observed once the field frequency
exceeded 20 kHz. In the case of the quantum dots, the AC component persists up to
200 kHz.

Another observation unique to the quantum dot is the saturation of the
birefringence at all frequencies. This was possible because, unlike the clay and CNXL

samples, the rise time for the alignment of the QDs was fast enough that saturation
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could be achieved during the pulse duration. In an earlier discussion, it was
mentioned that if signal saturation is achieved in an AC field, relaxation of alignment
may play a minimal part in decreased birefringence, and oscillatory behaviors can be

contributed primarily to the presence of a dipole in the particles.

'.'!-I '. I' .:I_:;I"-'i- i l. h J :.'_'il'u_:
i _. i |I.'.:.i.:.-.l,:.|.! ,ni:ill:|| -III:IJ",'|.-.| I
200 kHz
AMAAAWMAAAM
o ——20kHz
4 kHz
“ 2 kHz
0 200 400 600 800 1000

time (us)

Figure 7.6: Response of a .8 uM quantum dot sample, subject to a
.67 kV/cm, pulsed AC field of varying frequency.
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Of course, even if saturation is achieved at the peak of the field, it is definitely not
achieved when the field changes sign, so relaxation will have some contribution.
However, if we look at the average birefringence, we can compare it to what is
predicted by the ratio of permanent to induced-dipoles per Eq. (4.75) and determine if
the calculated values for x and Aa are consistent with the AC response.

Thus, taking the values of x=6.83x10"°Cm and Aq=5.61x10""'Fm’

determined from the saturation analysis, an approximation of the observed

birefringence at the highest applied frequency goes as follows:

An,, = An, L =An, : j =.67An,
1+ P/Q 1+.49

2 -27\2
where P/Q= H - (7'04;;10 ) =
AakT — (2.42x1072 J4.14x10

The response of the quantum dots to the 2 and 200 kHz AC fields can be seen in

Figure 7.7, where both curves have been normalized to that of the 2 kHz response, so

that the relation An_, =.67An, is clearly visible. The decrease in the steady state at

200 kHz (green) confirms the calculation of the permanent dipole and polarizability

anisotropy in the saturation analysis.
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Figure 7.7: Response of a .8 uM quantum dot sample,
subject to a .67 kV/cm, pulsed AC field at 2 kHz (blue) and
200 kHz (green).
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7.8. Discussion of Dipole
There have been many detailed theoretical and experimental studies on the electronic
properties of CdSe quantum dots. A still unresolved question concerns the origin ofa
dipole moment in these nanocrystals; a question that has spurred somewhat
contradictory results.'">% Unlike other types of quantum dots such as the III-V dots
grown by molecular beam epitaxy,“ﬁ] colloidal CdSe (II-VI) dots have a wurtzite
hexagonal structure with no inversion center. In some cases, the dipole moment has
been attributed to the lack of inversion symmetry in hexagonal nanocrystals, or from
charges localized on the surface. A close examination of the structure of CdgsSeg;
through numerical calculations by Rabani et al revealed that it is highly symmetric
along the z direction, having a plane of symmetry for Cd atoms and for Se atoms
separately. Consequently, the dipole of each unit cell of the hexagonal crystal
structure adds up to result in a macroscopic dipole moment.'”! The same was shown
to be true for other combinations. However, there were also cases, such as CdggSeso
and Cd»3,Seys;, where it appeared that there are some structural cancellations which
decrease the dipole moment along the z direction. The primary difference between the
varying combinations was the center atom of the lattice structures, 1.e. Se-centered or
cell-centered. Thus small changes in the crystal structure can have a significant
influence on the particles’ observed dipole.

Unfortunately, the exact structure of a specific batch of QDs is very difficult to
control. The particles are made at high temperature (~315°C) and the initial “seeding”

/
process occurs very quickly once the precursors are injected into the reaction mixture.
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Even the most subtle differences in temperature, precursor concentrations, or injection

time of the reagents can influence the resulting lattice structure. In some cases the

lattice will be Se-centered and in others it will be cell-centered.

CH, The dipole moment calculated here for the
CdSe nanocrystals is approximately one order
of magnitude larger than the value of 209 + 32
D reported recently by Liang-shi and

O__PMCHQ, Alivisatos.!*!} In their study, TEB
measurements were taken on CdSe nanorods
with an average dimension of 5 by 26 nm
dispersed in cyclohexane. The nanorods were
coated with organic ligands such as

CH,

Figure 7.8: Structure  of trioctylphosphine 9x1de (TOPO) so that they

trioctylphosphine oxide (TOPO) were stable in the non-polar solvent.  The

large hydrocarbon tails of the TOPO molecules (Figure 7.8) extend out from the
quantum dot core with no surface charges. In contrast, the quantum dots used in the
current study were functionalized with carboxyl groups so that they would be stable in
an aqueous solution. For these QDs, both an interfacial polarizability, due to the
movement of hydronium ions, and charged surface groups, contribute to the interfacial
polarizability and dipole, respectively. In the case of the permanent-dipole, any
uneven distribution of charged surface groups will have a significant effect on its

measured value.



162

Rabani el al also addressed solvent effects when they reported the electronic

1 Their calculations and results

properties of the nanocrystals in dielectric media.!"?
showed a dependence of the first and second moments of the charge density on the
dielectric constant ¢ outside the nanocrystal, and that the dipole-moment could as
much as double with increasing ¢ for the crystals they studied. This could also be a
contributing factor to the large difference between the dipole moment reported here
and those by Liang-shi and Alivisatos, as cyclohexane has a dielectric constant of & =
2, while water has a value of ¢ = 88. It is clear that the moment depends strongly on
the detailed structure of the nanocrystal and may vary significantly with small
structural changes. Thus, in summary, the differences in the nanocrystal surface

ligands, solvents, and possible lattice variation, could account for the large ditference

between the observed dipoles between this study and that of Liang-shi et al. 21l
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8. Polymer Nanocomposites

8.1. History

The origin of today’s polymers can be traced to the work of Wallace Carothers at Du
Pont, where his greatest achievement was the synthesis of nylon as a superior
replacement for silk. Over the next two decades new polymers were rapidly
introduced and began to become a common substitute for wood and metal. Today the
trend perpetuates as plastics overtake the food packaging industry where traditional
glass, metal and paper packaging continue to be displaced. The automotive industry
has also begun using plastics to lower the weight of cars and improve methods of
manufacturing. Despite the vast improvements plastics have been able to make,
however, they are not free from limitations. For instance, in the packaging industry
certain foods are sensitive to oxygen and cannot be stored in plastic containers due to
their oxygen permeability. In the auto industry, low tensile strength and the tendency
to warp under heat have limited the use of plastics in certain applications.

The first successful attempt at pushing polymers to a new level of performance
was accomplished by Toyota Central Research Laboratories where two divergent
organic and mineral materials were successfully integrated. This first practical
application of a “nanocomposite” of nylon-montmorillonite is a timing belt cover on a
Toyota Camry. The new material exhibited increased tensile strength, modulus and
heat distortion temperature without a loss in impact resistance. It was also less

sensitive to water and had a low gas permeability. This initial success has spurred a
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large amount of research in industrial and university settings which continues in full

force today.

8.2. Promise and Challenges

The term “polymer nanocomposite” has now come to refer to a multi-component
system where the primary constituent is a polymer or blend of polymers and the minor
constituent is a material exhibiting at least one dimension below 1 pm on one single
particle scale. Over the past two decades the benefits of using nanoparticles as

additives to enhance polymer performance have been well established and now many

nanocomposites are finding their way into a diverse number of applications.!"®!

Properties which have been shown to undergo significant improvements include:

1. Mechanical properties such as strength, modulus and dimensional stability!”!

2. Decreased permeability to water, gases, and hydrocarbons!'® !l

3. Thermal stability and distortion temperature!t'*'¥

4. Flame resistance and reduced smoke emissions'!

5. Chemical resistance! "7

6. Electrical conductivity!'® '*]

7. Optical clarity?®”

It is also important to recognize that many of these improved physical properties were
accomplished with very low loading levels. Low-volume additions (1-10%) of

isotropic nanoparticles such as titania, silver, or alumina, and anisotropic particles
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such as layered silicates (clays) or carbon nanotubes provide property enhancements
that are comparable to that achieved by conventional loadings (15-40%) of traditional
micrometer-scale fillers.*!) The lower loading levels reduce component weight and
thereby facilitating the processing method.
The objective for a vast majority of today’s nanocomposite research is to achieve
increased performance through dispersion at the single-particle level. The resulting
composites are treated as isotropic, filled polymers. Thus, nanocomposites today are
really just nanoparticle-filled plastics (Figure 8.1).”2 This should be considered a
significant problem if polymer nanocomposites are to move beyond commodity
plastics and provide optimal performance for high-technology applications such as
electronic packaging, engineered aerospace structural components, and optical
gratings to name a few.

There are many discussions which consider the implications of controlling the

particle orientation. [

Some reports predict huge improvements in mechanical,
barrier, and electrical performance in morphology controlled nanoparticles. As an
example, Gusev and Rozman showed that comparable shear could be obtained at half
the volume fraction of particles if a web-like morphology could be generated versus a
random or hexagonal arrangement.!”!

An extensive number of review papers are available that summarize the status
of various particle-polymer combinations, the proposed advantages of invoking spatial

order in a matrix, and the challenges that still need to be overcome.”*?* Reports over

the last few years on morphology control of composites have shown the ability to
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create uniaxial alignment of nanoparticles (both plates and rods) using external forces.

[33] [36]

Common approaches include sedimentation, spin  coating, mechanical

[37-41] [42, 43] [44]

deformation, magnetic fields, and electric gradients. However, more

detailed studies are needed, and a robust process is still yet to be found.

Figure 8.1: Nanocomposite 5 K 75
morphologies exhibiting dispersions of " :
(a) spherical shaped CdSe/ZnS quantum
dots with carboxylate functionality, (b) * i
rod shaped carbon nanofibers, and (c)
plate shaped organically modified clay.

8.3. Field Induced Alignment

The following sections highlight the use of electric fields as a patterning tool in detail.
It has already been in the current work that electric fields induce alignment and thus
“order” within a system of aqueous nanoparticles. However, because permanent and
induced-dipoles generally scale with particle size, as particle volumes decrease, the
field strengths needed to overcome the thermal motion increase considerably. The

result is an imposition on filler dimensions. Additionally, the time necessary to
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achieve appreciable alignment increases considerably with viscosity. An example of
this is shown in Figure 8.2 where the log of the rise time of a clay sample is plotted as
a function of solvent viscosity. Through varying combinations of water and PEG the
solvent viscosity was increased by a factor of three and resulted in a subsequent

increase in rise time by 47 fold.
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Figure 8.2: Rise times of a 20 ug/ml clay sample subject to a 5.0 kV/cm
field as a function of solvent flow rate. Composition of the solvent
ranged from 5 — 30% PEG.

One of the goals of this research is to show that application of a pulsed DC field will
produce appreciable alignment of a composite during the curing process while, at the

same time, avoiding polymer breakdown. The ability to align the nanofiller in this
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manner rests on the fact that the relaxation process is orders of magnitude slower than
that of the alignment. In addition, polymer breakdown can be avoided because,
although the field strength may be large, it is applied for a relatively short period of
time. This could offer a pathway to a viable manufacturing method.

The buildup of alignment in a water/PEG/clay sample is shown in Figure 8.3.
DC coupled TEB signals were captured on an oscilloscope every 30 seconds for ten
minutes. What is observed is a steady buildup in the DC signal until a saturation level
is achieved. Such a result suggests that if the viscosity of the solution is low enough

prior to curing, residual alignment can be captured in the final product.
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Figure 8.3: Birefringent response of a 20 ug/ml clay sample subject to a 5.0
kV/cm field as a function of solvent flow rate. Composition of the solvent
ranged from 5 — 30% PEG.
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8.4. Experimental Setup

The objective of this study was to produce a nanocomposite containing a spatially
ordered filler. Two methods for making the nanocomposites were explored. The first
was an evaporation technique which was chosen initially for its simplicity and the
ability to control the size and shape of the polymer units. The process required slow
addition and stirring of a polymer to a solvent until a reasonably viscous, but workable
solution is obtained. The nanofiller could then be added to the solution and sonicated
so it is adequately dispersed. A Teflon mold containing two stainless steel electrodes
was constructed (Figure 8.4) so that a field could be applied to a small aliquot of the

final solution, as the solvent was allowed to evaporate.

Figure 8.4: Sample holder constructed for the creation of nanocomposites
through solvent evaporation.

After trying various combinations of polymer and solvent, we came to the conclusion

that polystyrene dissolved in tetrahyrofuran (THF) was the most promising. The
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structure of polystyrene is simple and the polymer can be purchased in predetermined
molecular weights. Thus, interference of the alignment by a “bulky” polymer could be
minimized by keeping the molecular weight low. THEF is also very volatile and quick
evaporation of the solvent is ideal in order to minimize the curing time. In an effort to
make a set of control samples, initial trials were attempted on polymer solutions
absent of any filler. Unfortunately, we soon discovered that total evaporation of the
solvent was very hard to achieve. In most cases, only the top layer of the solution
would harden. We also found that removal of the composite was difficult, often
resulting in the polymer being stretched apart. This method of composite synthesis
was therefore abandoned.

The second method was radical initiated polymerization. The technique
involves using molecules with an O-O single bond that is unstable and breaks apart
upon application of heat. The resulting products contain a lone electron and are
termed radical initiators. Figure 8.5 shows an example of a radical initiated
polymerization on an ethene monomer. One electron pair is held securely between the
two carbons in a sigma bond, while the other is more loosely held in a pi bond. The
free radical uses one electron from the pi bond to form a new bond, while the second
electron remains unpaired, turning the whole molecule into another radical.
Termination occurs when a radical reacts in a way that prevents further propagation.
The most common method of termination is by coupling two radicals to form a single

molecule.
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Figure 8.5: Steps involved in the radical initiated polymerization of ethene.

The main drawback to radical polymerization is the termination process which occurs
randomly when two chains collide, leaving no ability to control the lengths of
individual chains. However, the curing process is fast, requiring only a couple of
hours. Once complete, the reaction should result in a hardened polymer that is solid
throughout.

A method for addition of CdSe quantum dots to a polymer using a radical

41 The process involves the use of

initiator was found in the literature.
laurylmethacrylate monomer to produce polylaurylmethacrylate (PLMA) with
ethyleneglycol dimethacrylate as a cross-linker. The monomer solution was placed in

a glass beaker containing a Teflon insert with two small grooves for the electrodes

(Figure 8.6). The benefit of this setup was that everything could be removed as one
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piece, at which time the electrodes could be pulled apart without disturbing the

composite material between them.

Figure 8.6: Sample holder constructed for the creation of
polymer nanocomposites through radial initiation.

Initial trials of pure polymer samples were successful. The sample holder was easy to
work with, primarily due to the ease at which the samples could be removed.
Subsequent experiments were performed with composite materials containing either
carbon nanotubes or CdSe quantum dots as fillers. The resulting nanocomposites can
be seen in Figure 8.7. The black cube on the left of the figure contains the carbon
nanotubes at a concentration of ~ 7.5 x 10° g/ml. The cube on the right contains the
CdSe quantum dots at a concentration of ~ .8 4M and appears bright because the photo

was taken while irradiating the polymer with UV light.
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8.4.1. Experimental

Organic quantum dots or multi-walled carbon nanotubes were dispersed into
laurylmethacrylate monomer with trioctylphosphine (TOP) (5% v/v) and
ultrasonicated for ten minutes. Then, the cross-linker ethyleneglycol dimethacrylate
was added to the monomer solution with a 1:4 volume ratio of cross-linker to
monomer. After azobisisobutyronitrile (AIBN) radical initiator (<1 % w/w) was
added, the final solution was polymerized in an oven at 70 ~ 75 °C for 2 h. Samples
cured under an external field were subjected to a 1 ms, pulsed 5.0 kV/cm DC field,

which was applied at a frequency of 10 Hz for the duration of the curing process.

Figure 8.7: Polymer nanocomposites containing carbon nanotubes (left) and CdSe
quantum dots (right).
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8.5. Carbon Nanotube Composite
8.5.1. Introduction
The outstanding chemical and physical properties of nanotubes have been well

documented for over a decade.® *7)

There are speculations that many of these
properties can be best exploited by incorporating the nanotubes into some form of
matrix, and the preparation of nanotube containing composite materials is now a
rapidly growing field.[*¥!

A commonly used method for preparing nanotube polymer composites
involves solvent evaporation. As was previously mentioned, this process was
attempted in the current study but with little success. An alternative method is to use
the corresponding monomers and initiate polymerization in situ. Cochet et al. were
among the first to use this latter method and prepared a nanotube/polyaniline

[49]

composite. A number of other nanotube/polymer composites have also been

(591 and

prepared using the same method, including MWNT/polystyrene
SWNT/polyimide.[5 11" Several groups have also used electrochemical polymerization
to grow porous composite films of nanotubes for use as supercapacitors.[sz’ 31 1n the
techniques described so far, the aim has been to produce uniformly distributed
nanotubes in the composites, with no attention to the alignment of the nanotubes

The goal of the present work was to observe the influence of electric fields on
alignment of carbon nanotubes in a polymer matrix. The expectation was that a clearly

visible alignment of the particles would be present if the curing process of the polymer

did not disrupt the effect of an external field. In Appendix C, the response of CNT to
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a pulsed DC electric field is discussed. Although the alignment mechanism is
dominated by the induced dipole, the contribution of a permanent dipole is not

negligible.

8.5.2. Results
Dispersions of carbon nanotubes have been achieved in a wide range of materials by
either shear mixing or by the use of a high-energy ultrasonic probe. The aqueous and
polymer dispersions created in this study were made using a GE600 Ultrasonic
Processor, with a 13 mm diameter Ti alloy probe. However, even though the
nanotubes were sonicated and dispersed well in the monomer solution, they
aggregated considerably during the curing process. Figure 8.8 shows images of the
composite under varying magnifications through a light microscope. The top two
images are of a section cut from a composite that was cured in the absence of an
external field. The random nature of the composite is evident, as well as a
considerable amount of aggregation in the nanotube filler. The bottom images show a
section cut parallel to the alignment direction but for a sample which was subjected to
a pulsed DC field. Aggregation is observed again, but there is a clear orientation to
the aggregated particles, directed along the field (white arrows). The results show that
the morphology of the composite can be directed using a pulsed DC field. However,
aggregation of the nanotubes during the polymer cure is a major problem.

Although it is desirable to have an evenly dispersed solution, the dispersive

step in creating the nanocomposites is of little help in minimizing the aggregation of
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particles during the curing process. Overcoming this crucial step is important if
improved physical properties of the composite materials are to be realized. In a 2004
interview, Satish Kumar, a professor in Georgia Tech’s School of Polymer, Textile
and Fiber Engineering, was paraphrased as saying: The greatest impact of carbon
nanotubes will be realized only if researchers can learn how to break up the bundles
to produce individual nanotubes, a process called exfoliation. If that can be done, the
quantity of tubes required to improve the properties of fibers could be reduced from
10 percent to as little as 0.1 percent by weight. That could help make use of the
nanotubes — which now cost hundreds of dollars per gram —feasible for commercial
products. [54]

A few methods have been established for the exfoliation of carbon nanotubes
to produce stable aqueous and polymer solutions. However, in some cases they are
very specific to the polymer and are limited to the dispersion of CNTs into polymers
created through the evaporation method;[55-57] thus, not allowing for their direct
application to PLMA. In other cases, the dispersion is achieved by processing
techniques which are carried out on the tubes themselves and were not achievable in
our lab.[58-60] Thus, future work should focus first on maintaining the exfoliated

nature of the nanotubes through the curing process of a radical initiated

polymerization, followed by the field induced alignment of the nanocomposite.
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Figure 8.8: Light microscope images of the CNT nanocomposite. The top
images show the random nature of a polymer composite containing carbon
nanotubes that was cured with no alignment field present. The bottom images
show the net orientation induced in aggregates of nanotubes contained in the
nanocomposite that was cured in the presence of a pulsed DC alignment field that
was applied in the direction of the white arrows.
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8.6. CdSe Quantum Dot Composites

8.6.1. Introduction

Unlike the majority of nanocomposites, which are being studied because of their
improved mechanical properties, quantum dot nanocomposites are of interest
primarily because of their possible improvement in optical propertics. The optical
enhancements that quantum dots add to their host material are due to their unique
properties as quantum confined semiconductors. This imparts them with the ability to
emit very narrow bands of light when they fluoresce. Thus, it is no surprise that, in
recent years, the focus has been on the addition of quantum dots to polymers as a first
step toward an efficient, organic light emitting diode (OLED). This is evidenced by
the peaked interest in OLEDs as a possible replacement for the current LED. For
certain device applications, semiconducting polymers can replace inorganic
semiconductors at lower costs because they are more easily processed. One example
is the development of OLEDs for full-color screen applications.[61]

Another recently discovered and highly significant property of rod shaped
quantum dots is their emission of polarized light. The significance of a polarized LED
lies in the potential improvement in the energy efficiency of liquid crystal displays
(LCDs). LCDs use polarized light, hence a polarizer is typically used with a
unpolarized light source, resulting in an energy efficiency less than 50%. The
importance of polarized backlight in LCD technology was recognized in 2008 by the
Massachusetts Institute of Technology, when they awarded the $30,000 Lemelson-

Rensselaer Prize to Martin Schubert for his development of a new LED with a



181

polarization ratio of ~2:1. Schubert’s innovation uses a carefully constructed back
reflector to redirect the more polarized light from the edges of current LEDs so that it
projects forward.[62]

On the other hand, Hu et al discovered that the emission from CdSe quantum
dots with an aspect ratio of 2:1 or greater is ~ 70% polarized.[63] It is conceivable
then that the polarized emission from these rod shaped nanoparticles could be used to
produce the first polarized OLED.  Thin films of quantum dots have alrecady been
shown to electroluminescence at relatively low voltages (~10 — 17V),[64] so
application of a voltage across the back panel of the display could result in a polarized
light source. Figure 8.9 shows the layers of a liquid crystal display and where the

quantum dot thin film would be incorporated.
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Figure 8.9: The various layers of a liquid crystal display. The light source, which
rests at the back of the display, could be a QD nanocomposite that emits polarized
light when a voltage is applied to it.
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8.6.2. Results

CdSe quantum dots were added to PLMA to see if alignment could be induced and
retained in the particles during the curing process. Figure 8.10 shows TEM images of
polymer samples containing the quantum dots, which were cured both in the presence
and absence of an external field. It can be seen in the first two images (a and b) that a
small preferred orientation is visible in the samples that were cured in a field directed
from the top left to the bottom right (white arrow). In contrast, image ¢ shows the
random nature of the quantum dots in the nanocomposite that was cured in the absence
of a field.

There appeared to be a small electrophoretic effect, which was visible in the
bulk samples. This was evidenced when the nanocomposite was irradiated with UV
light and fluorescence was not observed from approximately the first half millimeter
of composite, closes to the negative electrode. This is most likely due to the small size
of the quantum dots, which made it easier for them to be pulled through the polymer
solution before it was completely cured. Unfortunately, the power supply is unipolar,
which means that the direction of the alignment field cannot be varied. An
improvement to the system would be the ability to alter the direction of the applied
wave from one pulse to the next.

With alignment of the QDs possible, the next step should be directing the
process toward the creation of a thin polymer film composite. This could be
accomplished by spray coating a polymer solution onto a glass slide which has been

treated on its edges with TiO,, to act as electrodes. If the film is thin enough, an
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evaporation method, like the one described earlier, may be effective. We suspect that
the radical initiated polymerization process may be an inhibiting factor in achieving
maximum alignment of the filler, due to the uncontrolled nature in which the
polymerization proceeds. Thus, returning to evaporation may also result in better
alignment. If the polymer is slightly conducting, application of a voltage across the
TiO2 electrodes may induce electroluminescence in the composite. The

electroluminescent thin film could be the first step toward a polarized light source for

use in thin panel displays.

Figure 8.10: a,b) polymer composite
containing CdSe quantum dots which
exhibit a small preferred alignment, due
to the application of a pulsed DC field
during the curing process. c¢) polymer
composite containing CdSe quantum

dots which show a random orientation.
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9. Summary Remarks

9.1. General Conclusions

The experimental results described in Chapters 5 — 7 and Appendix C illustrate the
physical and chemical parameters which can be studied by means of electro-optical

measurements. The principal ones are:

1. The rotational diffusion coefficient Dy (determined through the relaxation
time), which allows for the calculation of particle dimensions and
percolation thresholds (when plotted against field strength E).

11 The optical anisotropy Ag and specific Kerr constant Ksp, which are

directly related to the permanent and/or induced-dipole moment through

the alignment parameter <P2 (B’ ,27/> )

iil. The field dependence of the rise time, which can be used to determine the
sum of the permanent dipole and polarizability anisotropy when the
thermal energy kT is taken into account and the rotational diffusion

coefficient Dy is known.

Several deductions can be made from these findings. Electronic polarizabilities
furnish information about the existence of an ionic atmosphere and its behavior under
different conditions. Permanent dipole moments are related to distributions of charged
groups on particles. In addition, relaxation times offer information on the

polydispersity, state of aggregation, and interparticle interactions.
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On the other hand, interpretations of the intrinsic anisotropy and polarizability
in terms of precise structural features have proved difficult; a fact that was exemplified
in the behavior of Na-montmorillonite. It should be pointed out that one has to exert
extreme caution and be aware of the drawbacks of the electro-optical method when
attempting an interpretation of an experimental result. For example, it was shown that
much of the anomalous, field dependent data of Na-montmorillonite could be
artificially reproduced through misalignment of optical components.  Thus,
conclusions about intrinsic anisotropy made from single measurements over limited
field strengths are of limited value, and a number of experimental tests under different
conditions and using different methods are essential.

Nevertheless, TEB is a powerful method for the determination of the physical
parameters identified above, owing to its simplicity and its applicability to virtually
any non-conducting solutions. This point is evidenced in the current work by the wide
range of particle types, ranging from a polydispersed system of relatively large sheets
and rods (Na-montmorillonite) to a virtually monodispersed system of small sized rod
shaped semiconductive QDs. In all cases, particle dimensions were accurately
calculated and confirmed by comparisons with reports from other groups and/or TEM
images, as well as permanent dipole moments and polarizability anisotropies, which
were confirmed through similar comparisons.

The most significant finding of this research, however, may be related to the
association of the polarizability anisotropy to the particle volume. This relationship

was highlighted in the analysis of Na-montmorillonite and CNXL, and can be
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extended to the QD and CNT samples as well. Figure 9.1 shows the log of the
polarizability anisotropies for the particles studied in the current work, along with
those of Matsumoto and Sasai, plotted as a function of the log of particle volume. The
data clearly shows a linear relationship that yields a value for the slope m = 9670. If
the data is plotted on a linear scale, as shown by the inset of the figure, a linear
relation with an intercept of zero is obtained. Thus, if we know the volume of a
particle, we can estimate its polarizability anisotropy Aa. In fact, the relation of size
and polarizability anisotropy has been investigated by Spence J.C. et al.'l According
to the authors, studies of the protein lysozyme and the virus TMV showed that the
polarizability anisotropy Aa’ was approximately 30% less than the volume.

The current work clearly shows a much different relationship between the
polarizability anisotropy and the particle volume; the later being approximately three
to five orders of magnitude smaller. However, the results were consistent with those
of other groups in similar solution environments. In addition, calculations of the total
volume for the polarizability anisotropy of a 1 ml aqueous sample clearly indicate that
the resulting values are not unreasonable. Taking, for instance, the volume fraction of
the .16 uM QD sample studied in Section 7 (C, = 2.03x107), it can be seen that its
relative polarizability anisotropy. volume (C, = 1.45x10™) is still well below the total

volume of the sample itself, by four orders of magnitude:

> D10 2.17x107% (A’ em?)

=1.45x107
3.03x107"° (vol. cm®)
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Thus, although the exact value of the polarizability is dependent on the solution
environment, the qualitative agreement between our observation and that of Spence

J.C. et al is quite convincing of this relation.

-20 -19 -18 -17 -16 -15
. —— — e . - . 210
log(vol cm®)
clay(disk) o - ® Matsumoto
Sasai
_ & CNTs
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vrod) ey
e t -15
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2E-12
y = 9670.08x - 0.00
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Figure 9.1: Polarizability anisotropies of the particles studied in the current
research, as a function of volume. Plotted directly, the data shows a linear
trend with a slope of m = 9670.
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9.2. Future Work

We shall now examine the points which require new studies in the near future, in order
to improve the theoretical and technical aspects of the methods described here and to
enlarge the scope of their application. The theory of relaxation phenomena for
monodisperse systems of spheroids has been well established by Benoit and is widely
accepted as the governing model. However, Ridgway’s treatment for the asymmetric
ellipsoid has proven to be the preferred model in the current work. The relationship
between the amplitudes of the two rotational diffusion coefficients was shown to
follows Ridgway’s theory, with one of them approaching zero as the particles being
studied become more symmetrical around a primary symmetry axis. This relationship
should be further explored by extending the systems of study, so that a broader range
of shapes are included.

Additional work should also be done using the saturation and rise time data to
calculate polarizabilities of polydisperse systems. The results here suggest that, for a
system of particles containing a broad range of shapes, the two methods can be used
simultaneously to determine the polarizability anisotropies of each shape class
individually. Unfortunately, the direct application of the two methods is only possible
in the case of a system of particles which does not contain a permanent dipole parallel
to the long axis of the particles; as was witnessed by the results of the two methods in
the analysis of CNXL and QDs.

Finally, the relationship between the polarizability anisotropy Aa of a particle

and its volume should be further explored by applying the TEB method to a wider
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range of particle sizes. In addition, the effects of ion concentration on the systems
already studied, as well as any future studies, should be incorporated into the model so
that an accurate representation of the scaling of Aa with volume, given a specific ionic

atmosphere, can be determined.

9.3. References

1. Spence, J.C.H., et al., Diffraction and imaging from a beam of laser-aligned
proteins: resolution limits. Acta Crystallogr., Sect. A: Found. Crystallogr.,
2005. A61(2): p. 237-245.



195

Appendices



196

Appendix A: Dealing With Residual Light

The intensity “at rest” is given by (3.23), modified as:

1, =1, 470%%) ~C05J%) (A1)
2
for the crossed position when o = 0, and by (3.22) becomes:
I=1, 1- cpszza cosd, (A2)

when the analyzer is turned away from the crossed position and a # 0. Upon

application of an aligning field (analyzer and polarizer crossed), the result is:

15=Iol_c-os(5+6k) (A3)
2
The change in light intensity is then equal to:
Al =1, %_‘_ c;ﬁ—i_ 613_) (Ad)
=1,sin(6/2)sin(d, +6/2) (AS)
and the relative change with respect to the intensity at an angle a is:
Al :251n(5/2)sm(5k+6/2) (3.38)

1 1—cos2acosd,

a
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Parameter

Units

Description

Equations

E

kVZem?

The square of the field strength applied to the sample.

n/a

log E?

log (kVZem™)

Log of the applied field strength; needed for the
comparison of the experimental data to the theoretical
curve and the determination of the percent contribution
of permanent and induced-dipole to the alignment
mechanism of the particles.

n/a

degrees

Optical phase shift of the probe beam by the sample
upon application of the alignment field.

(25b)

An

unitless

Change in birefringence of the sample upon application
of the alignment field.

2

cm2kV?

The change in birefringence divided by the squared
field strength; when plotted against E?, the y-intercept
can be used along with the volume fraction of the
molecule C, to determine the sample’s optical
anisotropy Ag.

(69)

_ L\H/E2
An/E? i

unitless

The change in birefringence divided by the squared
field strength and normalized to its low-field limit;
when plotted against log E°, the slope at intermediate
fields can be used to determine the percent contribution
of permanent and induced-dipole to the alignment
mechanism of the particles.

(61c)

unitless

The alignment parameter for the sample solution.

@“9)

Ag

unitless

Optical anisotropy of the sample; used in combination
with the specific Kerr constant K, to determine the
anisotropy in the polarizability of the particles.

(40)
(65)

m2v-2

Specific Kerr constant; determined using the volume
fraction of the sample C, and the birefringent response
at the low field limit where £ — 0.

(64
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Appendix C: Carbon Nanotubes

In this section, I will discuss some alignment properties of carbon nanotubes (CNTSs)
which were used as a filler in a polymer composite. The following sections outline the
TEB results and analyses, following the same procedure as that used for other

nanomaterials in this thesis.

C1. Experimental

Hydroxide functionalized Carbon nanotubes were used as supplied by Cheap Tubes.
Approximately 2 mg of nanotubes were added to Millipore deionized water and
ultrasonicated for 20 minutes. The suspension was left to stand for 24 hours and then
filtered through a 2 pum ceramic filter. The concentration of the subsequent stock
solution was determined to be 3.2x10™ %wt by evaporation of a known volume of
solution to dry weight. Sample solutions were prepared from the stock solution by the
direct addition of deionized water. A TEM image of tubes taken from th\e stock

solution can be seen in Figure C1.

Figure C1: TEM image of tubes taken from
the stock solution used for the current work.

Outside diameter: ~ 10 nm

Length: .5 -2 pm
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C2. Concentration Dependence of Dg

Field free relaxation studies were conducted using carbon nanotube (CNT) solutions
with concentrations from 1.6x10™ %wt down to 2.0x10* %wt. The amplitudes for the
two exponential decay functions, Dg(slow) and Dpg(fast), from Section 4.9 were .99
and .01 respectively. The seemingly single exponential decay property of CNT
parallels the results for QDs in Section 7.3. We tentatively attribute this result to the
uniform coherent length of the particles. Figures C2 & C3 show the two decay
constants Dg(fast) and Dg(slow) at varying concentrations as a function of field
strength. The variations for both the fast and slow rotational diffusion coefficients are
very similar. In both cases a steady increase in the value of Dg occurs for the
concentration of 1.6x107° %wt.; whereas at lower concentrations, it is essentially
constant. This suggests that any concentration at or below .8x10 %wt. should be free
of inter-particle interactions. Calculations for the average tube length based on the
fast and slow rotational diffusion coefficients were done using Eq. (4.68) and

displayed in Table C1.

Table C1: Average lengths and diameters for aqueous CNT based on a slow and
fast rotational diffusion coefficient.

Dp (s'l) rod length (nm) rod diameter (nm)
fast l slow fast l slow fast | Slow
0.8 996+ 164 87+6|254+13 572+14 | 43+.1 9.5+.3
0.4 970+ 169 75+6 | 257+15 60117 | 42+.1 10.0+.3
0.2 934+99 81+£5| 259+9 585+13 | 43+2 9.7+4

% wt 10°

967 +139 818 |25 +12 586+19 | 42x.1 9.7+4




Dr (1/s)

Dr (1/s)

3000 -

2500 -

2000 -

1500 -

1000 -

500 -

400 -
350 -

300
250
200

150

100

50 -

200

o 0016 %wt
% 0.0008
{ A 0.0004
{ ® 0.0002
f i
- i
S
—_— T — — — g
0 5 10 15 20

E?(kV/cm)?
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Figure C3: “Slow” rotational diffusion coefficients Dy for
carbon nanotubes at varying concentrations as a function of the
squared field strength.
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C3. Saturation of the Birefringent Response
The birefringent responses for a 8.0x107 %wt carbon nanotube sample, subjected to
fields between .02 and 1.5 kV/cm were recorded after averaging over 128 pulses at 2
Hz, with a pulse width of 500 ps. The change in birefringence An at each field was
calculated according to Eq. (3.35) for an optical arrangement with a quarter-wave
plate. Figure C4 shows the plot of An/E? vs. logE’, normalized to its low field limit,
for a series of CNT samples. The slope of -0.97 at intermediate field strengths, when
combined with Eq. (4.26), results in an estimated contribution of [27B* + .73(2Y)]
toward the alignment mechanism from the permanent and induced-dipoles. The
presence of a permanent dipole can be rationalized when we consider the existence of
chiral tubes. Upon OH functionalization, the chiral tubes can lead to a permanent
dipole along the tube axis.

Extrapolation of the birefringence to the infinite field yielded a saturation value
of An, = 3.71x10°. When combined with the calculated value for the volume fraction,

the optical anisotropy was determined to be:

_Angn (5.06x107°)(1.33)

= ——==7.03x10""
22C,  2x(1.52x107)

Ag
This value is in good agreement with the optical anisotropy of Ag = 1.02x107
determined by Donovan and Scott.'! A plot of An/E’ vs E* yielded a y-intercept of
5.06x10°% cm’kV? when extrapolated by to £ = 0. When combined with Eq. (4.28),

the specific Kerr constant K, was calculated as the following:
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_5.06x10 " cm’kV

= — =1.55x107 cm*kV
(1.52x107°)(1.33)

=1.55x10"" m?V "% (SI units)

A horizontal shift of .89 was necessary to align the experimental data with the

theoretical curve. Using the logarithmic relation in Eq. (4.30):

P+Q=129x10"m?*y >

- . 1.2
0 . - \
0 %7 e'oi'i EEE{E
o -0 ¢ F - 82 ~ 1.0
o
o k3
7 o § 0.8
g £ y=-0.9724x+1.9471

- R = 0.9907 0.6
: , 0.4
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Figure C4: Normalized plot of An/E’ vs. logE’ for a CNT sample laid

over the theoretical curve for an alignment mechanism represented by the
ratio [.27/% + .73(2)].
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The polarizability anisotropy and permanent dipole moment of the carbon nanotubes

are then obtained using Eq. (4.29):

Aa =524x107 Fm’ 1 =192x10""Cm

Aa' =4.69x107" cm’ 1 =5.75x10°D

C4. Conclusion

The above results suggest that the nanotubes can be aligned in an electric field.
Although the exceedingly large aspect ratio makes the tubes rope like, a uniform
coherence length is observed. Consequently, the response of CNT to an external field
is identical to that of a monodisperse rod system. The strong alignment response, an
order of magnitude faster than their decay, makes them a reasonable candidate for the

synthesis of polymer composites containing aligned fillers.
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