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1 Introduction

With the development of power electronic technology, many nonlinear loads are brought in
power networks and result in a corresponding rise in harmonic levels. However, the frequency of
a power system is a significant power quality parameter and is only allowed to shift around its
nominal value within a small predefined range [1]. The amplitude of voltage is another important
power quality parameter that could be distorted by harmonic and inter-harmonic components [2].
Recently, the frequency and amplitude variations of a power system are envisaged because the
power networks are undergoing the dynamic abundant imbalanced changes between the
generation and the load. Unexpected frequency, magnitude, and phase variations, such as grid
faults, are harmful to the system and may further cause other problems. In order to maintain the
stability of the power grid and the electrical devices in normal operation, accurate frequency and
amplitude tacking and estimation is necessary. Besides, accurate and real-time frequency
estimation in a power system is a prerequisite for the future smart grid, where the generation,

loading, and topology will be dynamically updated [3].

Throughout the last few decades, various algorithms have been proposed for frequency and
amplitude estimation of a power system. Traditionally, the definition of frequency is described
by the time period between two zero crossing as well as the number of cycles in the brief period
of time [4], [5]. However, this method is apparently sensitive when the signal undergoes
transient or abnormal changes, or the distorted signal under harmonics and noise pollution [6]. In
order to suppress this disadvantage, a number of alternative techniques have been proposed
during recent years. Based on the analysis of the voltage frequency spectrum, some methods are
suggested to solve the problem, such as discrete Fourier transform (DFT). The author in [7]
proposed a hybrid method for power system frequency estimation. This method is applied using
a second-order Taylor series expansion and a DFT algorithm, however, it is assumed that the
power system operates in a noise-free environment. Moreover, to compensate for the spectral
leakage, which is caused by incoherent sampling and finite frequency resolution problems of the
discrete Fourier transform, the advanced windowed functions and interpolation schemes are

utilized here [8].

Phase-locked loop (PLL) techniques and adaptive notch filters (ANFs) are the other effective

frequency and amplitude estimation methods. The key idea of the PLL is to actively generate a



signal whose phase angle adaptively tracks variations of a given signal via a control loop [9]. In
the same spirit, adaptive notch filtering (ANF) passively derives its phase angle output from a
given signal [10]. However, it has the drawback of an estimation error in steady state and has a
slow dynamic response in the filtering process. Many other PLL-based techniques are developed
and presented in the literature such as the enhanced PLL [11], [12], the quadrature PLL [13], and
the state-variable feedback PLL [14], [15]. All the authors in the aforementioned PLLs need to
compromise between the desirable transient response and the acceptable steady-state estimation

error according to desired purposes of their experiments.

The least squares (LS) and other LS-based algorithms are widely used signal processing
methods to estimate frequency, magnitude, and phase as well, such as least mean squares-based
adaptive filtering (LMS), weighted least square (WLS), Complex-valued least square (CLS), and
self-tuning least square (STLS). Pradhan et al presented a LMS technique to compute the
frequency of three-phase voltages in complex domain [16]. They used an adaptive step size
approach that showed good performance when smooth changes in frequency occurred, however,
the algorithm had difficulties tracking a frequency step change. In [6], the authors built three
estimators for the frequency estimation under both noise and harmonic contamination, based on
time-series voltage sample relationship, to find the optimal phase interval. All the approaches
provided accurate response under balanced operating system, but one of the estimators did not
produce comparable frequency estimation results under the unbalanced three-phase voltage with
noise. The weakness of least squares and LS-based algorithms is the tradeoff between accuracy
and response speed when the signal is under heavy noise and higher order harmonics pollution

[17], [18].

Another widely accepted real-time dynamic estimation algorithm is the Kalman filter (KF)
and its variants. The linear Kalman filter and non-linear extended Kalman filter (EKF)
approaches are widely use to estimate accurate frequency, amplitude and phase of the
fundamental and harmonic components of a noisy signal. The authors in [19] use a linear
Kalman filter (KF) to detect the fast modal changes in power system. The approach in [19]
estimates the frequency through the differentiation of the phase angle. A point in this thesis
worth noting is that there is not a phase angle abrupt change in this case. Since the prerequisite of
the EKF is to linearize the non-linear system, one must be careful to choose the initial conditions

to avoid the divergence phenomena of the linearized filter. Wiltshire et al [20] combined a robust



extended complex Kalman filter and a sliding-surface-enhanced fuzzy adaptive controller
(RECKF-FAC) to estimate frequency and amplitude of the distorted signals in power system.
The authors studied the feasibility of their approach in three different cases, including a single
sinusoid, harmonic signals and an actual signal from a stainless-steel factory. Even though the
approach shows good performance on steady-state tracking, the drawback is that the approach
cannot converge fast enough after an abrupt frequency change. Another common shortcoming of
the extended Kalman filter (EKF) is the complicated computation of Jacobian matrices. It
increases the processing requirements and execution time which affects the real-time response
[21].

In this thesis, we use an alternative real-time algorithm called Unscented Kalman filter (UKF)
to estimate the frequency and magnitude of balanced and unbalanced power systems. This
technique originally appeared in 1997 to overcome the disadvantages of the extended Kalman
filter (EKF) [21]. Instead of linearizing the non-linear system for the EKF, the Unscented
Kalman filter creates a statistical distribution of the state, which is propagated based on the
Unscented Transformation (UT). Therefore, this method could perform better in terms of
tracking accuracy because it produces a more accurate posterior covariance matrix [22]. The
thesis presents the frequency and magnitude estimation in the complex domain. In order to
characterize the power system from three-phase measurements, the complex-valued Clarke’s
transform is exploited here. It casts the available three-phase information into the complex
domain. In this thesis, we tests two types of frequency changes, namely, linear change and step
change for the frequency estimation and also test four types of amplitude changes for the
magnitude estimation. The magnitude estimation is conducted under both the linear and step
frequency changes. The computer simulation is implemented using realistic initial conditions of

the UKF to assess performance of the proposed algorithm.



2 Model of the Three-Phase Power System

In a power grid voltage system, the three phase voltages can be described by

N
V,(t) = z Vy, cos(imgt+ ;) + W,
i=1

V() = ZN:Vbi cos[i <oo1t - 2;) + ¢l + W,

i=1

N

21
V.(t) = z Ve, cos[i <oo1t + ?> + ¢;] + W,
i=1

i=1,23,-

where V., Vi, and V., are the peak voltage of the amplitudes ith harmonic; ¢; is the fixed initial

phase angle; W,, W,, and W, are noise terms associated with the measurements.

In order to represent the three phase voltages in complex form, the Clarke’s transform is used

here. At the kth sampling instant, we get

VI V2 V2

Vo (K) , |2 2z V, (k)

Vol = [Zx|1 =5 —3|= [

Vs (k) o & v Ve®
2 2

After applying the Clarke’s transform, the three phases voltages are cast into V, and the

quadrature-axis components V, and V. Normally, only the V, and Vg parts are utilized to

construct the complex voltage model V(k) at the kth sampling instant, namely,
V(k) = Vu(k) +j Vg (k)
In general, the complex voltage V(k) can be written as

N
V(k) = z Al (@IkT+6) 4 B e=I(@ikT+é)
i=1



2.1 Model of balanced power system

In a balanced power grid voltage system, due to the fact that V., V},, and V., are identical, the

three phase voltages can be written as

N
V,(t) = ZVi cos(imt + ;) + W,
i=1

Vi, () = ZN:Vi cos[i <(o1t — 2;) + ;] + W,

=1
N
21
V.(t) = z V; cos|i <(o1t + ?> + ;] + W,
i=1

i=1,24,5,-
where: V,., V. and V., are the peak voltage amplitudes of the ith harmonic; ¢; is the fixed initial

phase angle; W,, W,, and W, are noise terms associated with the measurements.

When the amplitudes of the three-phase are identical, V(k) =0.

The complex voltage can be simplified to

N
V(k) = Z A;el(@ikT+bi)
i=1

i=1,2,45,-

Under balanced conditions, the 3rd harmonic is eliminated when applying the Clarke’s

transform, so we just list the fundamental frequency, 2nd, 4th and 5th harmonics.

In a balanced system, after lengthy calculations, we get
Vo (k) = \E [Vi cos(w, KT + &) + V, cos(w, KT + ¢,) + V, cos(w,KT + )
+V; cos(wsKT + ¢s)]

—Vs sin(wgkT + ¢5)]

As a result, the complex representation of system voltage V(K) is given as



V(k) = \/E [Vl ej(wlkT‘l' q)l) + V2 e_j(msz+ 4)2) + V4 ej((l)4-kT+ ¢4) + Vl e_j((*)skT+ ¢5) ]
2

+W(k)

where W(k) = Wy (k) +j Wg(K) is zero-mean complex Gaussian noise. In order to transfer the
grid voltage signal to state space model, the initial step is to define the discrete-time presentation

of the system voltage V(k). The phase angle of the discretized version of V(k) can be written in

time-varying form as
T oD T+ b= B(KT) i=1,2,4,5,,

where T is sampling period and w;(t) is the time-varying radian/s frequency.

Therefore, the discretized complex representation of the grid voltage is obtained as
3 . i . i
V(k) = \/; [Vl elal(kT) + V2 e j62(KT) + V4 e]94(kT) + Vl e j65(KT) ] + W(k)
and at the next sampling period, V(k + 1) is given by
V(k + 1) = \/é [Vl ejel[(k‘l'l)T] + VZ e_jez[(k+1)T] + V4 ej94[(k+1)T] + V1 e_j95[(k+1)T] ]
+W(k+1)

However, at the (k + 1)th sampling instant,

(k+1)T

0

(k+1)T

kT
- f w; (1) dt+f w; (Ddt + ¢;
0 k

T
= el(kT) + Ael(T) i= 1: 2: 4; 5; Y

where A8;(T) = f(k+1)T

T w; (t)dt

Thus, the discretized complex representation of the grid voltage is given by
Vik+1) = \/E [V, ell01(kD)+20:(D] 1y, o=il02(kT)+402(T)] | y, eil0a(KT)+ A8, (T)]
2

4V, e iOskD+20s(DI ] 4 W (k + 1)



where A8, (T) = % A8, (T) = i A8, (T) = g A8 (T)

The nonlinear model of three-phase voltage could be written in a complex state space model

with 8 state variables: X1y, X2k, X3k X4k X5k X6kr X7k Xgk» 1-€-

eAel(T)
3 j01 (KT
\/;Vle] 1( )
X
1k a—00(T)
X2k
X3k 3y, e 102(kT)
Xar | _ | V2 2
Xk = x| oA04(T)
X6k
3 .
X7k \/;V4e]e4(kT)
X
8k o—A05(T)
\/gvse—ies(kT)

Moreover, the measurements and observations of this model can be defined as

Xp+1 = F(x) + M

Yk =h(x) + Wy

X1k T X1k 1
X1k " X2k X2k

X3k X3k
X3k " X4k X4k

where f(xy) = Xse h(x)=[0 1 0 1 0 1 0 1] Xsp |

X5k " X6k Xek

X7k X7k
_X7k * ng- -X8k'

Tk is the process noise vector and Wy is the measurement noise.

In a balanced power system, this state space model will be adopted to estimate the frequency
and amplitude of the time-varying sinusoid signals with fundamental frequency, 2nd, 4th and 5th

harmonics in a white Gaussian noise environment.

2.2 Model under unbalanced conditions

For an unbalanced power system, due to voltage sags, V., Vi,, and V., are not identical. Then

the complex voltage V(k) can be written as



N
V(k) = z Al (@IkT+6) 4 B e=I(@ikT+é)

i=1
Again, after lengthy calculations, the values of A; and B; for the fundamental frequency, the

2nd and the 3rd harmonic are given by

\/E(Va1+vb1+vc1) \/g (Zval _Vbl_vcl) s \/E (Vbl_vcl)

= A= 6 Bi = 12 4
=2 Ay= CmVnVe) BUnVe) g VgtV tVe)
i=3 A, = x/E(ZVa3I;/b3—VC3) +jx/§(vb:—vcg)

i=3 B, = V6 (2Vaz=Vp,—Vey) i VZ (Vs —Vey)

12 4

We can generalize this calculation as follows:

i=314+1
A _ \/E(Va31+1+Vb31+1+VC31+1) B _ X/E(ZV331+1_Vb31+1_VC31+1) . V2 Vbz141~Vegped),
3141 — 6 3141 — 12 4 )
i=3142
A _ \/E(Va31+2+Vb31+2+VC31+2) B _ X/E(ZV331+2_Vb31+2 “Vesian) . V2 bz, Vesiya),
3142 = 6 3142 = 12 ) 4 ’
i=3l

\/g(Va31+Vb31+V531) + V2 (Vbgy=Vey)

V6 (2Vag;=Vbg =Vey)) + V2 (Vbgy=Vey),
6 4

12 4 i

Az = B3 =

wherel =0,1,2,3, -
As a result, the system voltage V(k) with harmonics can be expressed as
V(K) = Alei(w1kT+¢1) + Ble—i(w1kT+¢1) + Azej(wsz+¢2) + Bze—i(wsz+¢z) + Agei(wskT+¢3)

+ Bye i (@skY+ds) 4 w(k)

where W(k) = Wy (k) +j Wg(K) is zero-mean complex Gaussian noise. In the same way, to
represent the grid voltage signal in state space form, we define the discrete-time presentation of
the system voltage V(k) again. The phase angle of V(k) in discretized time-varying form has the

exact same form as illustrated in balanced system.



Therefore, the discretized complex representation of the grid voltage under unbalanced system

conditions at the kth sampling instant is given by
V(k) = Aleie1(kT) + Ble—191(kT) + Azei92(kT) + Bze—iez(kT) + A3e193(kT) + B3e—j93(kT)
+W(k)
and at the next sampling period, V(k + 1) is given by
Vk+1) = Alejel[(k+1)T] + Ble—ie1[(k+1)T] + A2e192[(k+1)T] + Bze—j92[(k+1)T]
+A3e]'93[(k+1)T] + B3e—j93[(k+1)T] +W(k+1)
However, as in the balanced system case, at the (k + 1)th sampling instant, we get

0i[(k + DT] = 6;(kT) + A8;(T) =123,

where AB;(T) = f(k+1)T

T w; (t)dt

Thus, the discretized complex representation of the grid voltage is rewritten as
V(k + 1) = A, ell01(kT)+20:(D] 4 B o=i[02(KT)+48:(D] 1 A @il62(KT)+ 262 (T)]

+ Bze—j[ez(kT)+ A62(T)] A3ei[93(kT)+ AB3(T)] 4 B3e_j[63(kT)+ A83(T)] 4 W(k + 1),

where A8, (T) = % A8, (T) = g A8,(T)

The nonlinear model of the three-phase voltage under unbalanced system will be written as

12 complex state variables: X1y, X2k, X3k X4k X5k X6k X7k X8k» Xoks X10k» X11k» X12k

A8 (T)
DO A, ei8:1 (kD)
X2k e—A91(T)
X3k B, e 101 (kT)
))((4511(( eA?:(T()
i8 (KT
xp = §6k _ Aze] 2(kT)
7k e—A6>(T)
X8k B,e102(KT)
ok £65(T)
X10k e
X11K A3e193(kT)
L X 12k e—A93(T)
| B3e—j93(kT)_

Moreover, the measurements and observations are defined again as
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X1 = F(X) + M

Yk = h(xy) + Wy

- Xqk -
X1k " X2k
X3k
X3k " X4k
X5k
where f(xy) = XSI;;:“‘ ,
X7k * X8k
Xogk
Xok " X10k
X11k
L X11k * X12k-
- Xq -
X2k
X3k
X4k
X5k
h(x)=1[0 1 0 1 0 1 0 1 0 1 0 1]§§‘;,
Xgk
Xok
X10k
X11k
L X122k

Tk is the process noise vector and Wy is the measurement noise.

This nonlinear state space model will be used to estimate the frequency and magnitude of the
time-varying sinusoid signals with the fundamental frequency, the 2nd and the 3rd harmonics in

a white Gaussian noise environment under unbalanced power grid system.
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3 Unscented Kalman Filter

3.1 Unscented Transformation

The Unscented Transformation (UT) is a transformation based on the insight that it is easier to
approximate a Gaussian distribution than a highly nonlinear function [22]. It is assumed that the
original signal vector has mean X and covariance Py,. The UT is a mechanism used to find a new
set with mean y and covariance P, that is propagated with so called sigma points through a
nonlinear transformation. The following formulas are used to calculate the sigma points based on

the original signal vector mean X and covariance Pyy
Xo =X
X+ (V(n+ DPg )i
Xisn = X—(/(n+ MNPy ); i=12,..,n
where (\/m )i is the ith column of matrix \/m and A = o?(n+ ) —n. The

parameter a, which is used to describe the spread of the sigma points around mean x, is

Xi

suggested to be between 10™* and 1. The value of k is often set to 0 or 3 — n.
After the sigma points are calculated, the nonlinear function is utilized to propagate them
Yi = f(Xl) i= 0,1, 2, vee) 2n

The new signal vector with mean y and covariance P, are calculated as follows:

_ 2n
Y= Z Wi Vi
i=0
2n _ _
Py = z OWiC[(Yi -V — V)]
1=

where the weights wi™ and w{ are defined as

wC=L+(1—a2+ B)
" " n+ 2
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1
2(n+ A)

m o
w i

i =W

where f3 is utilized to incorporate prior knowledge of the distribution of sigma points x; and

usually it is set to 2 for Gaussian distribution.

3.2 The UKF Algorithm

The UKF algorithm is designed to obtain estimates of a nonlinear system with state space

model
Xis1 = F(X) + g
Vi = h(xy) + 1
where X is discrete observation state vector; y is the discrete measurement vector; q is the

process Gaussian noise vector with zero mean and covariance matrix Q; r is the measurement

Gaussian noise vector with zero mean and covariance matrix R [23].

The sigma points are generated based on the mean of the initial condition X,_,, i.e.

Xgk-1 = Xk-1

Xik-1 = Xk T (W(+ DPy); i=1,2,..,n
Xi+n,k—1 = ik—1 - (‘V (l’l + )\)Pxx )i i= 1' 2' -,

The sigma points are then propagated through
Xi,k/ k=1 — f(xi,k—l)a i= 0,1, 2, ,2 n

The predicted state mean Xy —; and predicted covariance Py, update are given by
2n

ey —_ m
XK/ k-1 = Wi Xjk/ k-1
i=0

2n
Po/k-1 = z OWiC[(Xi,k/ ke1 — Xie/ k1) K/ k-1 — X/ k=1) ]
.

The sigma points related to the predicted state vector mean and covariance matrix are

generated by

Xok/ k-1 = Xk/ k-1
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Xik/ k-1 = Xk/k-1 T (J(n + DPyk-1)i» i=12,..,n

1

Xjk/ k-1 = Xk/k-1 — <\/(n + VP k-1 ) , i=12,..,n

Therefore, the sigma points of the measurements are obtained through the measurement-

update function
Vik/k-1 = hXix/k-1),» 1=01,2,..,2n
The measurement state mean y, k-1 is calculated with the following formula:

2n
< — m
yk/ k-1 — ) OWi Vik/k—1-

Meanwhile, the measurement covariance matrix Py, and cross-covariance of the state and
measurement P, are represented as follows:

Pyy = le_no wi [(y“‘/ k-1 yk/k—l) (y“‘/ k=17 yk/k—l)T] R

2n
Py = Z wa[(xi,k/ k-1~ Xi/ k-1) Vik/ k-1~ ¥ie/ 1) ]
i

As a result, the Kalman gain, the state mean and covariance at iteration k can be obtained as

follows:

Ky = nypyy_1
Xk = Xi/k-1 + Ke(Wie/k-1 = ¥y -1)

P = Piyxo1 — KiPpyKi"
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4 Frequency Estimation of Balanced Power System

In order to evaluate the performance of the Unscented Kalman Filter to estimate frequency
and amplitude of the power system on a real-time basis, we select the parameters of the system to
implement the MATLAB simulation based on realistic data. Estimation is implemented for linear
and step frequency changes. We test the algorithm and compared the results within different

input signals based on the same initial conditions.

The linear variation of voltage fundamental frequency from 55Hz to 62Hz starts at t = 0.2s

and ends at t = 0.8s, is shown in Figurel.

63

62 -

61 .

60 - B

59 - .

Amplitude[V]

57 - .

56 - B

55 - .

54 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time[s]

Figure 1 Linear fundamental frequency change

The fundamental frequency of the second input signal undergoes step change from 55Hz to

62Hz at t = 0.4s, is shown in Figure 2.
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63

61+ E

60 - B

Amplitude[V]
3
T
|

a1
[o2)
T
|

57 - §

56 - §

55 - §

54 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time[s]

Figure 2 Step change of the fundamental frequency

In the experiment, we use the sampling frequency fs = 500Hz. The amplitudes of
fundamental frequency, 2nd harmonic, 4th harmonic and 5th harmonic are set to 120V, 12V, 6V
and 3.6V, respectively. The initial phase shift of each harmonic is randomly chosen from 0 to
180° without overlapping. The sinusoidal waveforms of the combined signal, fundamental

frequency and harmonics are shown in Figure 3.
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200 T T
Combined Signal
Fundamental Frequency Signal
150 P 2nd Harmonic
h 4th Harmonic
5th Harmonic

100

> 50
(0]
©
2
g2
< 0
-50
-100
_150 - | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time[s]

Figure 3 Combined signal, fundamental frequency signal and harmonics

The measurement and process noise variances are selected based on realistic data. According
to [24], the average value of the observation noise power is in the order of 1072 for 110 volt
power signals and we select the value of 4.21x1072 for the variance of the observation noise.

As far as the process is concerned, we use a variance of 1x107%.

Moreover, when we choose the initial conditions for the Unscented Kalman filter (UKF), the

parameter a is used to describe the deviation between the sigma points and mean f, and is
selected to be 1072 here. The value of  is set to 0. Thus, for n =8 (the dimension of our model
for the balanced case), A = a?(n + x) —n = —7.992. Another important parameter [3 is
utilized to incorporate prior knowledge of the distribution of sigma points. In [25], it is
established that high 8 means smoother tracking and longer convergence time; on the other hand,
small 3 value could achieve higher sensitivity to frequency changes. In our experiment, since we
assume that the distribution of the sigma points is Gaussian, f3 is set to 2. Now we have the

weights wi and w{ for the sigma points in Table 1.



wi" w{
1 -9999 -9996
2 625 625
3 625 625
4 625 625
5 625 625
6 625 625
7 625 625
8 625 625
9 625 625
10 625 625
11 625 625
12 625 625
13 625 625
14 625 625
15 625 625
16 625 625
17 625 625

Table 1 Initial values of weights wi" and w{ for the balanced power system case

4.1 Frequency Estimate Calculation

After the Unscented Kalman filter is updated, we get the estimated state



18

[ X1 k+1 ]
X2 k+1
X3 k+1

X4 k+1
Xsk+1 [

X6 k+1
X7 k+1

- Xg k+1 -

Xk+1 =

In order to get an estimate close to the true value, we first estimate the fundamental, the second,

the fourth and the fifth harmonic from state variables X; x4 1, X3 k41, X5 k+1, ANd X7 k41, Namely,

1
fi = T sin 1(1m(x1k+1))
S

1
f: = T sin (Im(x3k+1))
S

1 1
fa = T sin (Im(x5k+1))
S

fs =

1
2T, sin 1(Im(x7 k+1))

and then obtain the estimate of the fundamental frequency by averaging the estimates, i.e.

fest = (i +2/2 + fa/4+f5/5)/4

4.2 Linear Frequency Change

In the experiment, the fundamental frequency of system voltage experience linear variation
from 55Hz to 62Hz. In Figure 4 the estimated state tracks the actual frequency change accurately
and the errors are displayed in Figure 7. We can see that the maximum error is at sample 302,
and the proportion of error and current frequency is 0.3886/59.7133 = 0.0065. Furthermore,

the RMSE over 500 independent runs for a linear variation in frequency is 0.1285.

1
RMSE = \/%Xzéoo(fest — frear)? =0.1285
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4.3 Step Frequency Change

In this case, the fundamental frequency of the input signal undergoes step change from 55Hz
to 62Hz. Figure 8 shows the tracking accuracy between estimated and actual frequency. We can
see in this figure that convergence to the actual value is quick. Figure 9 shows tracking
performance near the transition. Figure 11 presents the errors of every run and the maximum
percentage error is 0.3442/55 = 6.3%1073 at sample point 4. The RMSE in this experiment is

0.1240, which is similar to the linear change of the fundamental frequency.

1
RMSE = \/_Xzéoo(fest — frear)? = 0.1240
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Figure 8 Step change of the fundamental frequency from 55Hz to 62Hz
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S Frequency and Magnitude Estimation of Unbalanced Power System

Just as in the balanced system case, we use the realistic data to verify the performance of the
UKEF algorithm in the unbalanced system. The step and linear frequency changes are applied as
the input signals to our model to evaluate the performance of the UKF algorithm on frequency
estimation. We observe and compare the simulation results between the balanced system and the
unbalanced system. Furthermore, we evaluate the tracking accuracy of the UKF algorithm based
on the same initial conditions. We use the root mean square error (RMSE) as the index of

tracking accuracy again.

1 1
RMSE = \[_X é (fest_factual)z
n n

Again, we use measurement and process noise levels that are realistic. As in the balanced case,
we select an observation noise variance of 4.21x1072 and a process noise variance of 1x10~*

to assess estimation algorithm performance.

Further, in unbalanced power system, we utilize the same initial conditions in the Unscented
Kalman filter (UKF) algorithm. The parameter o is set to 1072 and the value of x is set to 0 as
well. Hence, for n =12 (the dimension of our model for the unbalanced case), we have
A= a’(n+ k) —n = —11.9988. The scaling parameter  is set to 2 for the Gaussian
distribution of sigma points. The weights w;" and w{ for the sigma points have the exact same

values in Table 2.

wi" wi
1 -9999 -9996
2 416.6667 | 416.6667
3 416.6667 | 416.6667
4 416.6667 | 416.6667
5 416.6667 | 416.6667
wi" w{
6 416.6667 | 416.6667




7 416.6667 | 416.6667

8 416.6667 | 416.6667

9 416.6667 | 416.6667

10 416.6667 | 416.6667

11 416.6667 | 416.6667

12 416.6667 | 416.6667

13 416.6667 | 416.6667

14 416.6667 | 416.6667

15 416.6667 | 416.6667

16 416.6667 | 416.6667

17 416.6667 | 416.6667

18 416.6667 | 416.6667

19 416.6667 | 416.6667

20 416.6667 | 416.6667

21 416.6667 | 416.6667

22 416.6667 | 416.6667

23 416.6667 | 416.6667

24 416.6667 | 416.6667

25 416.6667 | 416.6667

Table 1 Initial values of weights wi" and wy for the unbalanced power system case

5.1 Frequency and Magnitude Estimate Calculation

Similar to the balanced case, we use the updated UKF state at the (k + 1) time step, i.c.



F X1 k+1 T

X2 k+1
X3 k+1

X4 k+1
X5 k+1

X6 k+1
X7 k+1
Xgk+1

X9 k+1
X10k+1

X11k+1
[X12 k+1-

Xk+1 =

and then use the state variables X; 41, X 541, and Xq 44 to first calculate estimates of the

fundamental frequency, the second and the third harmonic, namely,

1
fi = T sin 1(1m(x1k+1))
N

1 1
f2 = T sin (Im(x5k+1))
S

1 1
f3 = T sin (Im(x9k+1))
S

and then calculate the final estimate by averaging out the three estimates, i.e.

fest = (fl +f2/2 +f3/3)/3

For the magnitude estimation, after we have the updated state variables, each estimated

magnitude is obtained by taking the absolute value of the complex state, that is,

A1 = |x3 k41| By = |%4 g4l
Ay = [xgk+1l Bz = [xgg41l

Az = [x10 k41l B3 = %12 k41l
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5.2 Experiment 1
In this experiment, we use the sampling frequency f; = 500Hz. To implement the unbalanced
system, the amplitudes of fundamental frequency phase A, B and C are set to

V,; = 110 X(1 + 0.05 sin(2mt))

2T
Vp1 = 110 X (1 + 0.1sin (21‘[t - ?))

Ver = 110 x (14 0.15 sin (2t + 27)),

respectively. Then the 2nd harmonic and 3rd harmonic are defined to be 10%, and 5% of the
fundamental frequency amplitude. The initial phase shift of each harmonic is randomly chosen
from 0" to 180" without overlapping. The amplitude waveforms of the fundamental frequency

and harmonics are shown in Figure 12.
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Figure 12 The amplitude of the fundamental frequency and harmonics
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5.2.1 Linear frequency change results

In the experiment, the fundamental frequency of the system voltage experiences a linear
variation from 55Hz to 62Hz. In Figure 13 the estimated frequency tracks the actual frequency
change accurately and the errors are displayed in Figure 16. We can see that the maximum error
is at sample 312, and the proportion of error and current frequency is 0.6657/59.9467 =
0.0111. Furthermore, the RMSE over 500 independent runs for a linear variation in frequency is

0.1890.

1 1
RMSE = |g55X z (fest - factual)2 = 0.1890
500 500
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Moreover, in order to estimate amplitude, we first need to collect the coefficient magnitudes

A;, B4, Ay, B,, Az and B;. Those coefficients are shown in figures 17 and 18. The blue line

is the actual magnitude and the dotted line is the estimated value.
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Another significant parameter is the true error between actual and estimated amplitude. In

figure 19, the errors of all coefficients are plotted over time.
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Even though we have plotted the errors of all coefficients, we cannot judge them directly
since they have different bases. In figure 20, we plot of all coefficients based on their bases. We

could compare them under each amplitude change.
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5.2.2 Step change results

In this case, the fundamental frequency of the input signal undergoes step change from 55Hz
to 62Hz. Figure 21 shows the tracking accuracy between estimated and actual frequency. We can
see that the convergence time is almost negligible in Figure 22. Figure 24 presents the errors of
every run and the maximum percentage error is 0.5563/55 = 0.0101 at sample point 119. After
averaging the errors, we obtain the RMSE in this experiment of 0.1833 that is similar to the

linear change of fundamental frequency.

1 1
RMSE = |=soX > (fust = faceuar)? = 0.1833
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On the other hand, we can get the coefficient magnitudes A4, By, A,, B,, A; and B;. In figure

25 and 26, they are the estimated value compared with the actual value. Moreover, the tracking

accuracy of the magnitude is expressed as a percentage in figure 27.
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In the above three figures, all the parameters and comparisons are absolute values. In order to

get a direct view of the magnitude errors, the percentage errors are shown in figure 28.
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5.3 Experiment 2

In this experiment, we set the amplitudes of the fundamental frequency phase A, phase B and

phase C respectively to

V,; = 110 X(1.05 + 0.05 sin(2mt)),

2T
Vo1 = 110 X (1.1 +0.1sin (21Tt - ?))

2m
55 X (1.15 + 0.15 sin (Znt + ?)) 100XT, < t < 200XT,
Vcl = 21t
110 x (1.15 + 0.15 sin (Znt + ?)) ow

1
where Ty = =505

Meanwhile, the 2nd harmonic and 3rd harmonic are defined to be 10%, and 5% of the
fundamental frequency amplitude. The amplitude waveforms of the fundamental frequency and

harmonics are shown in Figure 29.
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5. 3.1 Linear frequency change results

In the experiment, we have the same input in Figure 1. The estimated state tracks the actual
frequency change accurately and the errors are displayed in Figure 30. We can see that the
maximum error is at sample 63, and the proportion of error and current frequency is
0.5918/55 = 0.0108. Furthermore, the RMSE over 500 independent runs for a linear variation
in frequency is 0.1727.

1 1
RMSE = _xz (fest _factual)2 = 0.1727
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Figure 33 Errors between actual and estimated frequency for linear change
For the estimation of the amplitudes, based on the linear frequency input and sharply

amplitude change, the tracking results of magnitude are showed in figure 34 and 35.
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Furthermore, the true errors between actual and estimated amplitude at each time sampling

instant are plotted in figure 36.
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The direct views of the performances of the amplitude estimation are listed in figure 37. We

could easily observe the error magnitude of coefficient.
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5.3.2 Step frequency change results

In this case, under the same initial conditions, we estimate the frequency and amplitude
of the fundamental frequency, the 2nd harmonic and the 3rd harmonic. The estimated and actual
frequency are shown in figure 38. We can se in figure 39 that the convergence time is negligible.
Figure 41 presents the errors of every run and the maximum percentage error is 0.5886/62 =
0.0095 at sample point 330. Integrating the errors, we have the RMSE in this experiment is
0.1772.

1 1
RMSE = |z55X z (fest - factual)2 = 0.1772
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To observe the accuracy of estimation, in figure 42 and 43, the actual and estimated values are
generated together.
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Moreover, the error gaps on each sampling instant are plotted in figure 44.
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Compared with the error gaps, the direct view of the magnitude errors in percentage is plotted

in figure 45. We can compare the amplitude errors among A,, B;, A,, B,, A; and Bs.
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5.4 Experiment 3

Now we set the amplitudes of the fundamental frequency to in the case

V,; = 110 X(1.05 + 0.05 sin(2mt)),

2T
Vo1 = 110 X (1.1 +0.1sin (21Tt - ?))

2T
110 x (1.15 + 0.15sin (2nt + ?)) Ty <t < 100XT;

Vcl = 21T
55 x (1.15 +0.15sin (Zm + ?)) oW

1
where Ty = 005"

At the same time, the 2nd harmonic and 3rd harmonic are defined to be 10%, and 5% of the
fundamental frequency amplitudes. The amplitude waveforms of the fundamental frequency and

harmonics are shown in Figure 46.
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5.4.1 Linear frequency change results

In this experiment, the same input signal in Figure 1 is used here. The estimated state tracks
the actual frequency change accurately as shown in figure 47. The amplitude errors are displayed
in Figure 50. We can see that the maximum error is at sample 112, and the proportion of error
and current frequency is 0.5904/55.2800 = 0.0107. Furthermore, the RMSE over 500

independent runs for a linear variation in frequency is 0.1817.

1 1
RMSE = _xz (fest _factual)2 = 0.1817
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In this situation, the actual and estimated amplitude are showed in figure 51 and 52.
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In order to show the amplitude error in every sampling instant, we plot them in figure 53.
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In figure 54, a direct view of the performances of the amplitude estimation is listed in

percentage. We could easily observe the error coefficient magnitude.
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5.4.2 Step frequency change results

Under the step signal, we estimate the frequency and amplitude of the fundamental frequency,
the 2nd harmonic and the 3rd harmonic. In figure 55, the frequency estimation is plotted and we
can see in figure 56 that the convergence time is negligible. The maximum error is 0.5686/62 =
9.2x1073, which is presented at the 245th sampling instant in figure 49. Integrating the errors,
we have the RMSE in this experiment is 0.1733.

1 1
RMSE = _xz (fest _factual)2 = 0.1733
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In addition to the frequency estimation, we present the results of amplitude estimation under

the same conditions. The estimation of complex coefficients is showed in figure 59.
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Meanwhile, the error gaps at each sampling instant are plotted in figure 61.
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Figure 61 Error gap of the coefficient magnitude

Furthermore, we could get the direct views of the magnitude errors in percentage in figure 62.

Then it is easy to compare the amplitude errors among A, B;, A,, B,, A3 and Bs.
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5.5 Experiment 4

In this experiment, we define the amplitudes of the fundamental frequency in more complex

to
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V,; = 110 X(1.05 + 0.05 sin(2mt)),

165 x (1.1 +0.15sin (ZTtt + %ﬁ)) 31XT, < t < 35XT,
Vbl =9 21
L 110 % (1.1 + 0.15sin (21‘[t + ?)) ow
2T
80 x (1.15 +0.15sin (21Tt + ?)) 11XT, < t < 25XT,
Ve, = 21
L 110 X (1.15 + 0.15sin (ZT[t + ?)) ow

where Ty = ;?0 s. The 2nd harmonic and 3rd harmonic are set to be 10%, and 5% of the

fundamental frequency amplitudes. The amplitude waveforms of the fundamental frequency and

harmonics are shown in Figure 63.
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Figure 63 The amplitude of the fundamental frequency and harmonics
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5.5.1 Linear frequency change results

In this experiment, we use the ramp signal as frequency change input. The actual and
estimated state is shown in figure 64. The frequency errors on every run are plotted in figure 67.
We can see that the maximum error is at sample 165, and the proportion of error and current
frequency is 0.5291/56.5167 = 9.4x1073. Furthermore, the RMSE over 500 independent runs

for a linear variation in frequency is 0.1817.

1 1
RMSE = _xz (fest _factual)2 = 0.1817
500 500
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Figure 67 Errors between actual and estimated frequency for linear change

The estimated and actual coefficient magnitudes A, B;, A,, B,, A3 and B3 are shown in
figures 68 and 69.



180

160

140

agnitude Tracking[V]

—_

20

Tracking[v] M
~
o

N
o

Magnitude Tracking[V] Magnitude

70

— Actual Magnitude A1
— — Estimated Magnitude A1

150

200

— Actual Magnitude B1
— — Estimated Magnitude B1

50

100

150

200

250 300 350 400 450 500
Time[s]

— Actual Magnitude A2
— — Estimated Magnitude A2

50

100

150

200

250 300 350 400 450 500
Time[s]

Figure 68 Errors between actual and estimated magnitude of A;, By, A,

agnitude Tracking[V]

—— Actual Magnitude B2
— — Estimated Magnitude B2

50

100

150

200

250 300 350 400 450 500
Time[s]

— Actual Magnitude A3
— — Estimated Magnitude A3

50

100

150

200

250 300 350 400 450 500
Time[s]

— Actual Magnitude B3
— — Estimated Magnitude B3

Magnitude Tracking[V] Magnitude Tracking[V] M
o

50

100

150

200

250 300 350 400 450 500
Time[s]

Figure 69 Errors between actual and estimated magnitude of B,, As, Bs.



In figure 70, the blue line indicates the magnitude error at each sampling instant.
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To compare the performances of different magnitude estimation, we express the absolute
values of the magnitude errors as relative values in terms of a percentage. Figure 71 depicts the

performances of the magnitude estimation.

(o)
o)
S 0 T T T T T T T T T
g ] fA1 |
Error percentage o
S 001 F -
o
§ _002 Il Il Il Il Il Il Il Il Il
| 0 50 100 150 200 250 300 350 400 450 500
Time[s]
-3
O X 10 T T T T T T T T T
a4 A
’ Error percentage of B1 ‘
) 1 1 1 1 1 1 T T T
0 50 100 150 200 250 300 350 400 450 500
Time[s]
%107
5 T T T T T T
’ Error percentage of A2
0
_5 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time[s]
x107®

0 T T T T T T

’ — Error percentage of B2

0 50 100 150 200 250 300 350 400 450 500
Time[s]

— Error percentage of A3

Error Percentage Error Percentage Error Percentage Error Percentage Error Percentage

0 50 100 150 200 250 300 350 400 450 500
Time[s]

Figure 71 Magnitude error as a percentage



73

5.5.2 Step change frequency results

In the experiment, we estimated the frequency and magnitude of the fundamental frequency,
the 2nd harmonic and the 3rd harmonic. The input signal is shown in figure 2. The results of
frequency estimation are plotted in figure 72 and we can see in figure 73 that the convergence
time. The maximum error is 0.7180/62 = 0.0116, which is presented at the 430th sampling

instant in figure 75. Integrating the errors, we have the RMSE in this experiment is 0.1712.

1 1
RMSE = _xz (fest _factual)2 = 0.1712
500 500
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Another purpose of this experiment is the magnitude estimation. We do the amplitude estimation
under the same conditions as the previous frequency estimation. The estimation of complex

coefficients A;, By, A,, B,, A3 and B; is shown in figure 76 and 77.
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To view the specific errors at each sampling instant, the magnitude errors are plotted in figure
78.
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Not only the estimation errors are valuable, but we also have direct views of the magnitude

errors in percentage in figure 79. Now we could compare the magnitude errors among
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6 Conclusions

In this thesis the estimation technique based on the Unscented Kalman filter for frequency and
amplitude tracking under balanced and unbalanced power system condition is presented. Various
simulations are carried out to analyze the dynamic performance of the UKF, based on realistic

data.

Generally, the speed of response and accuracy are two crucial factors when performing
dynamic state estimation using the Kalman filter. In our work, we carried out the estimation for
two frequency changes of the input signals under the same initial conditions for both balanced
and unbalanced power systems. Moreover, we considered four other types of three phase

amplitudes changes to estimate the magnitude in unbalanced power system.

In the balanced system case, we only estimate the frequency of three-phase voltages in
complex domain. The simulation results confirmed that the Unscented Kalman filter (UKF) has
good performance in terms of convergence time. Regardless of the change, (step or linear
frequency change), the root mean square errors (RMSE) are around 0.12 ~ 0.13. Furthermore,
the maximum error of single run is not more than 0.4 Hz, which means the error percentage is
under 0.727%. Therefore, the Unscented Kalman filter performed well in terms of tracking

accuracy as well.

In unbalanced power system case, we presented four experiments for frequency and
magnitude estimation. In every experiment, we assumed a type of amplitude change happened
and track the magnitude. Meanwhile, we do frequency estimation for the two types of input
frequency changes as shown in figure 1 and 2 under the amplitude changed environment. We
found that no matter how the amplitude changed, the estimator showed good tracking accuracy
of the original signal as well as the magnitude tracking simultaneously. The RMSE of frequency
estimation under the sharp and linear change input signal are around 0.17 ~ 0.18 and the error
percentage is around 1%. Moreover, the error percentage of the magnitude estimation is below

2%.

In general, the UKF performs well in terms of response speed, convergence time and tracking
accuracy in both balanced and unbalanced power systems. The RMSE and maximum error

percentage of a single run, the performance in unbalanced system a bit worse than in the
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balanced power system case. All in all, we achieved good frequency and magnitude estimation
for both balanced and unbalanced systems. However, the performance of the Unscented Kalman

filter (UKF) in unbalanced power system case is not as such good as when applied to a balanced

power system.
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