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Consider a polygon lying in the Euclidean plane with labeled edge lengths.

The moduli space of polygons is the space of all polygons with the same labeled

edge lengths, modulo orientation preserving isometries. It is well known that this

space is generically a smooth manifold. For certain combinations of edge lengths,

however, non-smooth points can arise. We show these points to be isolated, each

with a neighborhood homeomorphic to a cone over a product of spheres. We

proceed to explicitly compute the homeomorphism types that arise from non-

smooth moduli spaces of pentagons. We then turn our attention to the number

of different (up to diffeomorphism) smooth manifolds that can arise as moduli

spaces of polygons. It is known that, for a fixed number of edges, this number

is finite. The exact number is only known up to the case of pentagons, however.

We provide a new structure that summarizes the possible manifold topologies of

a moduli space of polygons in a directed graph. We then use this structure to

provide bounds on the number of diffeomorphism types that can arise as moduli

spaces of polygons with no more than eight edges.
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[n] The set of natural numbers {1, . . . , n}

aff A The affine hull of the set A ⊆ Rn

P̄n The space of all planar n-gons with marked vertices, modulo orientation pre-

serving isometries of the plane

convA The convex hull of the set A ⊆ Rn

R The set of real numbers

Rn The n-fold product of R

Mr The moduli space of polygons with edge-length vector r

relintA The relative interior of A ⊆ Rn.

Σn The singular set of Dn
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∅ The empty set

Dn The edge-length polytope of n-gons

F k(P ) The set of all k-faces of a polytope P

Hp(f) The Hessian of f : M → R at p ∈M

Pn The subspace of P̄n of unit perimeter n-gons

Sn The symmetric group on n-elements
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1. Introduction

This dissertation principally concerns the study of the so-called moduli space of

polygons. The idea is as follows. Consider a polygon lying in the Euclidean plane.

Label the edges of this polygon by their edge-lengths, (r1, . . . , rn) = r ∈ Rn
≥0. By

varying the interior angles of the polygon, one can generally form many different

polygons with the same edge-length vector. For example, a rhombus shares the

same edge-lengths as a square of equal perimeter. We allow our polygons to have

self-intersections, and it will be useful at times to allow one or more of the edge-

lengths to shrink to 0. By considering all polygons with a given edge-length vector

r, and identifying those polygons that differ by an orientation preserving isometry

of the plane, we obtain the moduli space of polygonsMr.

The study of configuration spaces like the moduli space of polygons has a long

history. Early applications involved the problem of transforming rotational mo-

tion into linear motion in mechanical linkages. For example, James Watt described

what is essentially the moduli space of a certain quadrilateral in his 1784 patent

for a steam engine (Figure 1.1). Watt’s linkage can still be found in automo-

bile suspensions to this day! Modern applications include motion planning in

robotics [27], and the obvious generalization to three dimensions has applications

in chemistry [26].

The primary inspiration for this dissertation comes from a 1995 paper by Michael

Kappovich and John Millson [18]. Portions of their results are also found in [10, 13,

14, 24, 30, 17]. Kappovich and Millson’s main insight was that the diffeomorphism

types of Mr could be parametrized by a certain polytope subdivided by hyper-

planes. They were then able use Morse theory and a wall crossing argument to
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Figure 1.1.: James Watt’s hand drawn diagram of his linkage, from a letter to his
son. In this diagram, points B and C are fixed, and point E is the
midpoint of a segment connecting point A to point D. Thus, this
linkage has four fixed lengths CD, DA, AB, and BC forming a (self-
intersecting) quadrilateral. The space of all possible configurations of
this linkage, modulo rotations and translations, forms a moduli space
of quadrilaterals. (James Watt. The Kinematics of Machinery Fig.
1. 1808. <wikipedia.org>. Accessed May 9, 2019.)

identify all of the smooth manifolds that arise as moduli spaces of pentagons, and

they gave a finite list of diffeomorphism types for the moduli spaces of hexagons,

though this list was not tight in the sense that some of the diffeomorphism types

are not actually realized in a moduli space of hexagons.

Since Kappovich and Millson’s 1995 paper, a body of literature has developed

around moduli spaces of polygons. Kappovich and Millson themselves extended

their results to 3-dimensional Euclidean space, 3-dimensional hyperbolic space,

and 2-dimensional spherical space [19, 21, 20]. In this process, they found an

additional symplectic structure on the moduli space of spatial polygons. This

symplectic structure proved very fruitful, and a great deal of attention in this field

has been focused on the 3-dimensional case. For example, Hausmann and Knutson

[9], and later Mandini using different methods [25], computed the cohomology rings

of the moduli spaces of spatial polygons. The symplectic volume of the moduli

spaces of spatial polygons was computed first by Kamiyama and Tezuka [16] and

later by Khoi [22].

As it turns out, the moduli spaces of polygons are generically smooth mani-

folds. The sense that this is generic will be made clear in Section 2.3. However,

for certain combinations of edge-lengths, the moduli spaceMr can contain non-
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manifolds points. Relatively little attention has been paid to this non-smooth case.

It was known to Walker [30] that the non-manifold moduli spaces of quadrilaterals

are homeomorphic to either (i) a wedge of two circles, (ii) two circles joined at

two points, or (iii) three circles, any pair of which share a unique point of intersec-

tion. In this dissertation, we turn our attention to the non-manifold spaces that

arise as moduli spaces of pentagons. It turns out that all non-manifold points

in these spaces are locally modeled on a cone C(S0 × S1). Collectively, we will

refer to spaces of this type as crimped manifolds (Definiton 1.1.2). In Chapter 3

we compute, up to homeomorphism, all of the crimped manifolds that arise as

moduli spaces of pentagons. We then turn our attention to bounding the number

of diffeomorphism types of moduli spaces of polygons in Chapter 4. Kappovich

and Millson were able to compute the manifolds that arise as moduli spaces of

pentagons, and they produced a list of manifolds which gave an upper bound on

the number of distinct diffeomorphism types of moduli spaces of hexagons. We

improve the bound in the hexagon case, and provide bounds on the number of

diffeomorphism types for the moduli spaces of 7- and 8-gons.

Remark 1.0.1. After writing this dissertation, we became aware that the results

of Chapter 4 were discovered by Hausmann and Rodriquez [12] and later improved

upon by Hausmann [11]. Our methods are substantially similar to theirs, though

they did not produce the graphs of the networks found in Figures 4.1 and 4.2.

1.1. Main results

Here we summarize the main results of this dissertation. The chief result of Chap-

ter 3 is providing a list of spaces illustrating the homeomorphism types of the

moduli spaces of pentagons. Before we state the result, we require some notation.

Definition 1.1.1. We will denote the set of natural numbers no larger than n by

[n] = {1, . . . , n} .
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Definition 1.1.2. Let M be a topological space, and Π = {p1, . . . , pn} ∈M be a

finite set of points. Assume that M\Π is a smooth manifold of dimension n, and

about each pi ∈ Π there is a neighborhood Ni ⊆ Π homeomorphic to a cone over

a product of spheres pi ∈ Ni
∼= C

(
(Sj × Sk

)
, with j + k = n . Then we will call

M a crimped manifold and the pi ∈ Π will be called crimped points.

Definition 1.1.3. Let Σg denote an orientable surface of genus g. For distinct

points p1, . . . , pn, q1, . . . , qn ∈ Σg, define the equivalence relation pi ∼ qi for i ∈ [n].

Denote by Σg,n the quotient space

Σg,n = Σg/ ∼ .

We call Σg,n a surface of genus g with 2n-points pairwise identified.

Definition 1.1.4. Let M and N be topological spaces. For distinct points

m1, . . . ,mq ∈M, n1, . . . , nq ∈ N,

define the equivalence relation mi ∼ ni for i ∈ [q]. We denote the disjoint union

of M and N by M
⊔
N . Then the q-fold wedge sum M ∨q N is the quotient

M ∨q N =
(
M
⊔

N
)
/ ∼ .

Remark 1.1.5. Notice that both Σg,n and Σg′ ∨q Σg′ , g, g′, q, n ∈ N∪{0}, are ex-

amples of crimped manifolds, where each of the crimped points has a neighborhood

homeomorphic to a cone C(S1 × S0).

It turns out the non-manifold moduli spaces of pentagons are homeomorphic to

either a surface with 2n points pairwise identified or q-fold wedge sum of two tori.

We list the specific crimped manifolds in the tables below. The notations of the

first columns will become apparent in the introduction to Chapter 3.
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Theorem 1.1.6. The following tables list all homeomorphism types of non-manifold

moduli spaces of hexagons. The d-cells of D5, 0 ≤ d ≤ 3, are listed in the left col-

umn, and the homeomorphism types of Mr for r in the relative interior of each

d-cell is listed in the right column.

3-cells in D5 Topology ofMr

conv {hi,j, hi,k, hi,`, ti} Σ0,1

conv {hi,j, hi,k, q`, ti} , ` /∈ {i, j, k} Σ1,1

conv {hi,j, hi,k, q`, qm} , `,m /∈ {i, j, k} Σ1 ∨ Σ1

conv {hi,j, qk, q`, ti} , k, `, /∈ {i, j} Σ2,1

conv {qi, qj, qk, t`, tm} , `,m /∈ {i, j, k} Σ3,1

2-cells in D5 Topology ofMr

conv {hi,j, hi,k, ti} Σ0,2

conv {hi,j, qk, ti} , k /∈ {i, j} Σ1,2

conv {hi,j, qk, q`} , k, ` /∈ {i, j} Σ1 ∨2 Σ1

conv {qi, qj, tk} Σ2,2

1-cells in D5 Topology ofMr

conv {hi,j, ti} Σ0,3

conv {qi, tj} Σ1,3

conv {qi, qj} Σ1 ∨3 Σ1

0-cells in D5 Topology ofMr

{ti} Σ0,4

In the course of proving Theorem 1.1.6 we realized that the Kappovich-Millson

polytope Dn contained a large amount of redundant data. In order to push our

census of the topology of the moduli spaces of polygons to higher dimensions, it

became necessary to find a way to simplify that data. We pursue that process
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in Chapter 4. As a result, we were able to provide a bound on the number of

non-diffeomorphic smooth manifolds that arise as moduli spaces of n-gons for

n ≤ 8. Denote by tn the number of non-diffeomorphic, maximal dimensional

smooth manifolds that arise as a moduli space of n-gons. It is shown in [18] that

t3 = 1, t4 = 2, and t5 = 6. We extend those results with the following theorem.

Theorem 1.1.7. Let tn denote the number of distinct (up to diffeomorphism)

maximal-dimensional, smooth manifolds that arise as a moduli space of n-gons.

Then we have the following bounds:

t6 ≤ 20, t7 ≤ 134, t8 ≤ 2469.

Remark 1.1.8. After completing the work of this dissertation, we were made

aware that these bounds were previously known to Hausmann and Rodriguez [12].

Their approach to providing these bounds was more combinatorial, while ours is

more geometric. We both attempt to count the number of connected components

of a certain subdivision of D̃n ⊆ Rn. For a definition of D̃n, see Section 4.1.

Hausmann and Rodriguez’s approach is to induce a certain partial order on the

components of D̃n. They then give each chamber of D̃n a label they call the genetic

code. They develop a set of rules that produce a finite set of virtual genetic codes,

and then they use polyhedral computations to check if their virtual genetic codes

are, indeed, realized as the genetic code of a chamber of D̃n.

Our approach is much more geometric. We consider D̃n to be the fundamental

region of a larger polytopal complex modulo the action of a certain reflection group.

We then identify one component of D̃n for arbitrary n. Finally, we identify the

remaining components of D̃n by inductively searching for the chambers adjacent

to all of the known chambers of D̃n.
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2. Background

Before we proceed with the proofs of our main results, we require some background

material on the tools of convex geometry and Morse theory that form the basis of

our arguments. We provide those backgrounds in Sections 2.1 and 3.2. We then

give an overview of the main results of Kappovich and Millson in Section 2.3.

2.1. Polytopes

Here we collect some basic facts about one of the fundamental objects in combi-

natorial geometry: the polytope. The main source of this material is Grünbaum’s

Coinvex Polytopes [8]. A polytope allows one to generalize the combinatorial prop-

erties (vertices, edges, faces, etc.) of polygons and polyhedra to higher dimensions.

Before describing the manner of this generalization, we require language allowing

us to discuss subsets of Rn.

Definition 2.1.1. A hyperplane H ⊆ Rn is a solution to a linear equation

Hh,b = {x ∈ Rn | h · x = b}

for some fixed h ∈ Rn\{0}, b ∈ R. In the above formula, · represents the usual

Euclidean inner product. The vector h is called a normal to the hyperplane Hh,b.

Every hyperplane splits Rn into two (closed) half-spaces H±h,b defined by

H+
h,b = {x ∈ Rn | h · x ≥ b}
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and

H−h,b = {x ∈ Rn | h · x ≤ b} .

Definition 2.1.2. Let p1, . . . , pm ∈ Rn. A convex combination of p1, . . . , pm is a

sum
m∑
i=1

λipi

for some λ1, . . . , λm ∈ R≥0 satisfying
∑m

i=1 λi = 1. On the other hand, if the

α1, . . . , αm ∈ R are possibly negative, and
∑m

i=1 αi = 1, then we call

m∑
i=1

αipi

an affine combination of p1, . . . , pm. Now consider any A ⊆ Rn. The convex

(affine) hull of A is

convA (aff A) = {x ∈ Rn | x is a convex (affine) combination of points in A} .

We call set D ⊆ Rn convex provided D = convD.

Example 2.1.3. Consider a half-space H+
h,b ⊆ Rn. Let

y =
m∑
i=1

λixi

be a convex combination of points x1, . . . , xm ∈ H+
h,b. Then

h · y =
m∑
i=1

λi(h · xi) ≥
m∑
i=1

λib = b,

so H+
h,b is convex. Notice the importance that each λi ≥ 0 to conclude λi(h · xi) ≥

λib. Indeed, no half-space is closed under affine combinations. To see this, notice

that if z1 = b
|h|2h and z2 = z1 + h

|h|2 , then

h · z1 = b,
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and

h · z2 = b+ 1 > b.

We conclude z1, z2 ∈ H+
h,b. We now have z = 2z1 − z2 ∈ aff H+

h,b, but z /∈ H+
h,b

because

h · z = 2b− (b+ 1) < b.

Definition 2.1.4. A subset A ⊆ Rn is called an affine subspace if, for fixed a ∈ A,

the set

A− a = {x− a ∈ Rn | x ∈ A}

is a linear subspace of Rn

Proposition 2.1.5. Let S ⊆ Rn be a nonempty subset, and A = aff S. Then A is

an affine subspace of Rn. Conversely, suppose that A ⊆ Rn is an affine subspace.

Then aff A = A.

Proof. Let S ⊆ Rn be nonempty, set A = aff S, and choose a ∈ A. Now, as

A − a ⊇ S − a 6= ∅ is nonempty, we proceed to check closure under scalar

multiplication. Let λ ∈ R and x − a ∈ A − a. Write x =
∑m

i=1 αisi as an affine

combination of s1, . . . , sm ∈ S. Then

λ(x− a) =

(
m∑
i=1

(λαi)si + (1− λ)a

)
− a ∈ A− a

since
∑m

i=1 λαi + (1 − λ) = 1 and s1, . . . , sm, a ∈ S. To see closure under vector

addition, let y − a ∈ A − a, and write y =
∑k

j=1 βjtj as an affine combination of

t1, . . . , tk ∈ S. Then

(x− a) + (y − a) = 2

(
m∑
i=1

αi
2
si +

k∑
j=1

βj
2
tj − a

)
∈ A− a,

since
∑m

i=1 αi/2 +
∑k

j=1 βj/2 = 1. Thus A−a is closed under vector addition, and

therefore a linear subspace of Rn.
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For the converse, assume that A ⊆ Rn is an affine subspace. It is immediate

from the definition that A ⊆ aff A, so it suffices to show the reverse contain-

ment. Assume x ∈ aff A, and write x =
∑m

i=1 αiai as an affine combination of

a1, . . . , am ∈ A. Then, since
∑m

i=1 αi = 1,

x− a1 = x−
m∑
i=1

αia1 =
m∑
i=1

αi(ai − a1)

is a linear combination of elements in the linear space A−a1, hence x−a1 ∈ A−a1.

Therefore x ∈ A.

Definition 2.1.6. Let A ⊆ Rn. The relative interior of A is denoted relintA and

represents the interior of A in the subspace topology of aff A ⊆ Rn, i.e.,

relintA = A◦ ⊆ aff A ⊆ Rn.

We are now equipped with the language to define a polytope. As motivation,

consider two ways to view a polyhedron. In one respect, a polyhedron can be

viewed as being carved out of R3 by making a series of straight cuts. This view

gives rise to the h-representation (h stands for “half-space”) of a polytope. On the

other hand, a polyhedron can be viewed as taking a finite set of points in Rn, and

tautly stretching a membrane across them. This gives rise to the v-representation

(v for “vertex”) of a polytope. We give both definitions here.

Definition 2.1.7. Let H1, . . . , Hm ⊂ Rn be a collection of closed half-spaces. A

polytope P ⊆ Rn is the intersection

P =
m⋂
i=1

Hi.

Such a description of P as an intersection of finitely many half-spaces is called an

h-representation of P , and the set H = {H1, . . . , Hm} is called an h-generating set

for P .
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Definition 2.1.8. Let v1, . . . , vm ∈ Rn be a collection of points. A polytope

P ⊂ Rn is the convex hull

P = conv {v1, . . . , vm} .

Such a description of P as a convex hull of finitely many points is called a v-

representation of P , and the set V = {v1, . . . , vm} is called a v-generating set for

P .

A subset B ⊆ Rn is bounded provided B ⊆ Br(0), 0 ∈ Rn, r <∞, is contained

in a finite radius ball. It should be noted that some authors require a polytope to

be bounded. For our purposes it will be useful to consider the unbounded case, so

we do not impose that restriction. Regardless, a fundamental theorem of convex

geometry is the Minkowski-Weyl Theorem which states that, so long as a polytope

is bounded, it has both a v-representation and an h-representation.

Theorem 2.1.9 (Minkowski-Weyl). Assume that P ⊆ Rn is compact. Then the

following are equivalent.

1. There exist half-spaces H1, . . . , Hs ⊆ Rn such that

P =
s⋂
i=1

Hi.

2. There exist a finite list of points v1, . . . , vt ∈ Rn such that

P = conv {p1, . . . , pt} .

A proof of the Minkowski-Weyl theorem can be found in, e.g., [31] where it

appears as Ziegler’s “Main Theorem” of Chapter 1. For an algorithm to switch

between v- and h-representations of a polytope see [1]. In addition to the utility of

being able to describe a polytope in two different ways, the equivalence of of the
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v- and h-representations of a polytope has practical significance. For example, the

goal of linear programming is to maximize a linear function, called the objective

function, subject to a finite set of linear constraints. The constraints then define a

polytope, and, so long as this polytope is non-empty and bounded, the objective

is maximized at some (not necessarily unique) vertex. Thus, linear programming

is equivalent to switching from the h-representation to the v-representation of a

polytope.

We now make precise the combinatorial properties of a polytope.

Definition 2.1.10. Let P ⊆ Rn be a polytope. The dimension of P is

dimP = dim (aff P ) .

We say P is full dimensional if dimP = n. A hyperplane H ⊂ Rn is called a

supporting hyperplane of P provided P ∩H 6= ∅, and P lies entirely in one of the

closed half-spaces defined by H. Alternatively, the hyperplane H cuts P provided

H ∩ relintP 6= ∅.

Remark 2.1.11. Notice that if P ⊆ Rn is full dimensional, and H is a supporting

hyperplane of a polytope P , then H ∩ P ⊆ ∂P ⊆ Rn lies in the boundary of P as

a subset of Rn.

Definition 2.1.12. A face of P is the intersection of P with a closed half-space

whose bounding hyperplane does not cut P . It follows immediately from the h-

representation that a nonempty face F ⊆ P of a polytope P is, itself, a polytope

with dimension dimF ≤ dimP . If dimF = k, we will call F a k-face. If dimP =

n, we call the 0-faces vertices, the 1-faces edges, and the (n− 1)-faces facets. We

denote the set of all k-faces of P

F k(P ) = {F ⊆ P | F is a k-face of P} .
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Remark 2.1.13. As a consequence of the definition, the polytope P is a face of

itself, as is the empty set ∅. By convention, we declare dim∅ = −1. We call a

k-face proper provided −1 < k < dimP .

Notice that if H ⊂ Rn is a supporting hyperplane of a polytope P ⊆ Rn, then

either H ∩ P = H+ ∩ P or H ∩ P = H− ∩ P . Therefore the intersection of a

supporting hyperplane with P is a face of P . Moreover, every proper face of P is

realized by the intersection of P with a supporting hyperplane.

Definition 2.1.14. A supporting hyperplane H ⊂ Rn of a polytope P ⊆ Rn is

an essential supporting hyperplane provided

dim (H ∩ P ) = (dimP )− 1.

Definition 2.1.15. A v- (h-) description of a polytope P is minimal provided

the v- (h-) generating set S is minimal amongst all v- (h-) generating sets.

The next goal is to verify the fact that minimal v- and h-generating sets essen-

tially correspond with the vertices and facets of a polytope. To prove this, though,

a lemma is required.

Lemma 2.1.16. Assume A,B ⊆ Rn are compact, convex subsets with A ∩ B =

∅. Then there exists a hyperplane H ⊆ Rn such that A ⊆ H+, B ⊆ H−, and

A ∩H = ∅ = B ∩H.

Proof. Consider the Euclidean distance function δ : A×B → R defined by δ(a, b) =

|a− b|. Since A×B is compact, δ attains a minimum. Let (a, b) ∈ A×B be such

a minimum, and set d = a − b. Since A ∩ B = ∅, we have d 6= 0 ∈ Rn. Now let

p = (a+ b)/2, and set c = d · p. I claim that

Hd,c = {x ∈ Rn | d · x = c}
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is the desired hyperplane. Calculating

d · a =
d · a+ d · b

2
+

1

2
(d · a− d · b)

= d · p+
1

2

(
|a|2 − 2a · b+ |b|2

)
= d · p+

1

2
|d|2

> d · p,

we see a ∈
(
H+
d,c

)◦ is in the interior of one of the half-spaces bounded by H. We

show that, in fact, A ⊂ (H+)
◦. For a contradiction, assume that a′ ∈ H− ∩ A.

Then

(a′ − a) · d = a′ · d− a · d < d · p− d · p = 0,

so the angle between the vectors a′ − a and d is obtuse. But d is the exterior

normal at the point a for the sphere of radius |d| centered at b. Therefore, there

is a section of the line segment from a to a′ that lies within the ball of radius

|d| centered at b. Since A is convex, this contradicts the minimality of the point

(a, b) for the function δ. We conclude that A ⊂ (H+)
◦, and a symmetric argument

shows B ⊂ (H−)
◦.

Proposition 2.1.17. Let P ⊆ Rn be a polytope.

1. A v-description of P with v-generating set V is minimal if and only if V =

F 0(P ).

2. Assume P is full dimensional. An h-description of P with h-generating set

H is minimal if and only if every half-space H ∈ H has the property that

∂H is an essential supporting hyperplane of P .

Proof of (1). We first show that

Claim. If V is any v-generating set of P , then F 0(P ) ⊆ V .

For a contradiction, assume that V is a v-generating set of a polytope P , and
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v ∈ F 0(P )\V . Then we may write

v =
m∑
i=1

λivi

as a convex combination of v1, . . . , vm ∈ V . Since v is a vertex, there is a half-

space H ⊆ Rn such that H ∩ P = {v}. Since v1, . . . , vm ∈ V ⊆ P , we conclude

v1, . . . , vm ∈ Hc are in the complement of H. But Hc is convex, and v is a convex

combination of points in Hc. Therefore v ∈ Hc, a contradiction. We conclude

v ∈ V , and the Claim is proved.

To prove (1), it now suffices to show that if V is a minimal v-generating set of

P , then V ⊆ F 0(P ). Let V = {v1, . . . , vj} be such a minimal v-generating set,

select k ∈ {1, . . . , j}, and denote Q = conv{vi ∈ V | i 6= k}. Then vk /∈ Q by

the minimality of V as a v-generating set. Thus Q and {vk} are compact, convex,

disjoint subsets of Rn, and we may apply Lemma 2.1.16 to find a separating

hyperplane H ⊆ Rn satisfying Q ⊆ (H+)◦ and vk ∈ (H−)◦. Assume H is defined

by the equation d · x = a. Let H ′ be the translate of H defined by the equation

d · x = d · vk. Consider any convex combination
∑j

i=1 λivi. Then

d ·
j∑
i=1

λivi ≥ λkd · vk + a
∑
i 6=k

λi ≥ λkd · vk + (d · vk)
∑
i 6=k

λi = d · vk,

with equality holding if and only if λk = 1 and λi = 0 for i 6= k. Since any

point in P can be expressed as such a convex combination, we conclude that

(H ′)− ∩ P = {vk}, and vk ∈ F 0(P ).

Proof of (2). Denote the set of essential supporting hyperplanes of P ⊆ Rn by

E(P ). Assume that P is full dimensional. We first claim

Claim. If H is any h-generating set of P , then E(P ) ⊆ H.
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Assume that Π ∈ E(P ). First notice that

∂P = ∂
⋂
H∈H

H ⊆
⋃
H∈H

∂H.

Second, since P is full-dimensional and Π is a supporting hyperplane of P , Π∩P ⊆

∂P . Combining these two observations yields

Π ∩ P ⊆ Π ∩
⋃
H∈H

∂H =
⋃
H∈H

(Π ∩ ∂H) .

Since Π is an essential supporting hyperplane of the full dimensional polytope P ,

we have

dim(Π ∩ P ) = n− 1 ≤ max
H∈H

dim(Π ∩ ∂H) ≤ n− 1.

We conclude dim Π ∩H = n− 1 for some H ∈ H, whence Π = H ∈ H.

It now suffice to show that if H is a minimal h-generating set, then ∂H ∈ E(P )

for each H ∈ H. Assuming H is such a minimal h-generating set, fix K ∈ H, and

set H′ = H\{K}. Now define

P ′ =
⋂
H∈H′

H,

and L = ∂K ∩ P ′. Toward a contradiction, assume that dimL < n − 1. Since

P ⊆ P ′ is full-dimensional, so, too, is P ′. Therefore, since dimL < n − 1, ∂K

does not cut P ′. We conclude P ′ lies entirely in one of the half-spaces defined

by ∂K. But P ⊆ K and ∅ ⊆ P ⊆ P ′, so we must have P ′ ⊆ K. Therefore

P = P ′ ∩K = P ′, contradicting the minimality of H. We conclude that, in fact,

dimL = n− 1. Now

L = ∂K ∩ P ′ = (∂K ∩K) ∩ P ′ = ∂K ∩ (K ∩ P ′) = ∂K ∩ P,

so ∂K must be an essential supporting hyperplane of P .

To gain familiarity with the setting, let us consider the v- and h-representations
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P3

P2

P1

D

e1

e2

e3

Figure 2.1.: The standard 2-simplex ∆2.

of a few important families of polytopes.

Example 2.1.18. Let ei ∈ Rn+1 denote the standard i-th basis vector. The

standard n-simplex ∆n ⊆ Rn+1 (Figure 2.1) has a v-representation

∆n = conv {e1, . . . , en+1} .

Alternatively, let Pj ⊆ Rn+1 denote the j-th coordinate hyperplane, i.e.,

Pej ,0 =
{
x ∈ Rn+1 | ej · x = 0

}
.

Define d =
∑n+1

i=1 ei and the hyperplane

Dd,1 =
{
x ∈ Rn+1 | d · x = 1

}
.

Then an h-representation of ∆n is the following intersection of closed half-spaces

∆n = D+
d,1 ∩D

−
d,1 ∩

n+1⋂
j=1

P+
ej ,0
.
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Figure 2.2.: The 3-cube.

Example 2.1.19. Let

V = {(δ1, . . . , δn) ∈ Rn | δi ∈ {±1}, 1 ≤ i ≤ n} .

The n-cube �n ⊆ Rn (Figure 2.2) has v-representation

�n = conv V.

On the other hand, define the hyperplane

Pj± = {x ∈ Rn | ej · x = ±1} ,

where, as before, ej denotes the j-th standard basis vector in Rn. Then �n has

h-representation

�n =
n⋂
i=1

P−i+ ∩
n⋂
j=1

P+
j− .

Example 2.1.20. Again, let ei ∈ Rn denote the i-th standard basis vector. Let

V = {±e1, . . . ,±en} .

The n-cross-polytope ♦n ⊆ Rn (Figure 2.3) has a v-representation

♦n = conv V.
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Figure 2.3.: The 3-cross-polytope ♦3 is also known as the octahedron.

Toward an h-representation of ♦n, let

D = {(δ1, . . . , δn) ∈ Rn | δi = ±1, 1 ≤ i ≤ n} .

Let for each d ∈ D, consider the hyperplane Hd,1 = {x ∈ Rn | d · x = 1}. Then

H =
{
H−d,1 | d ∈ D

}
is an h-generating set of ♦n, i.e.,

♦n =
⋂
d∈D

H−d,1.

For example, the 3-cross-polytope in Figure 2.3 is defined by the eight inequalities

(1, 1, 1) · x ≤ 1

(1, 1,−1) · x ≤ 1

(1,−1, 1) · x ≤ 1

(−1, 1, 1) · x ≤ 1

(1,−1,−1) · x ≤ 1

(−1, 1,−1) · x ≤ 1

(−1,−1, 1) · x ≤ 1

(−1,−1,−1) · x ≤ 1.

These examples show that the size of minimal h- and v-generating sets can be

meaningfully different. While the n-simplex has a minimal v-generating set of size
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n + 1 and a minimal h-generating set of size n + 3, the n-cube has a minimal

v-generating set of size 2n, but a minimal h-generating set of only size only 2n.

The n-cross-polytope is just the reverse; it has a minimal v-generating set of size

2n, but a minimal h-generating set of size 2n. When dealing with high dimensional

polytopes, then, there can be significant computational savings by selecting one

description over the other.

The concept of a polytope generalizes naturally, and saliently for the sequel, to

a polytopal complex.

Definition 2.1.21. Let C be a collection of polytopes in Rn. We call C a polytopal

complex provided the following two axioms are satisfied.

1. If P ∈ C, then every d-face of P is contained in C, i.e., F d(P ) ⊆ C.

2. If P, P ′ ∈ C, then P ∩ P ′ ∈ C.

Definition 2.1.22. A d-cell in C is a polytope P ∈ C satisfying dimP = d. As

an abuse of notation, we will refer to the d-cells in C as

F d(C) = {P ∈ C | dimP = d} .

In the sequel, we will study a certain polytopal complex that arises as a sub-

division of a given polytope by hyperplanes. We describe that process in general

here. Assume P ⊆ Rn is a polytope with h-generating set B = {B1, . . . , Bi} where

each Bk ⊆ Rn is a half-space. Now let W = {W1, . . . ,Wj} be a collection of

hyperplanes Wk ⊆ Rn, 1 ≤ k ≤ j. Let Q be the collection of all polytopes of the

form

Q = P ∩
j⋂

k=1

W ∗
k ,

where each W ∗
k is a choice of half-space W+

k or W−
k . Finally define

C =
⋃
Q∈Q

n⋃
d=0

F (d)(Q).
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−1 1

−1

1

Figure 2.4.: A subdivision of a polytope by hyperplanes.

We call the the polytopal complex C a subdivision of P by the collection of hyper-

planes W.

Example 2.1.23. Let

P = conv {(±1, 0), (0,±1)} ⊆ R2,

Wx = {(x, 0) | x ∈ R} ⊆ R2,

Wy = {(0, y) | y ∈ R} ⊆ R2,

and W = {Wx,Wy}. The complex C that results from the subdivision of P by W

is shown in Figure 2.4. The complex C contains four 2-faces, eight 1-faces, and

five 0-faces.

2.2. Morse theory

In this section we provide an overview of Morse theory. The Morse theory in

this section follows Milnor [28]. For a reference on the wider differential topology

discussed here, see Bröcker and Jänich [2].

Just as a CW-complex provides a systematic way to resolve a topological space

into a collection of fundamental pieces, Morse theory provides a setting for mod-

ifying the topological structure of a smooth manifold. There are various flavors
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of Morse theory, but the essential ingredient is that the presence of a sufficiently

well-behaved function on a smooth manifold in turn provides a well-behaved set

of coordinates with which to study that manifold. This section will focus on the

classical Morse theory.

Definition 2.2.1. LetM be a smooth manifold of dimension n, and let f : M → R

be a smooth function. A critical point of f is a point p ∈M where the differential

dfp : TpM → Tf(p)R vanishes. Equivalently, if (x1, . . . , xn) are coordinates near p,

then (∂f/∂xi) (p) = 0 for all i.

Definition 2.2.2. Let M be a smooth manifold of dimension n, let f : M → R

be a smooth function, and let p ∈M be a critical point of f . The Hessian of f at

p is a bilinear form Hp(f) : TpM × TpM → R defined as follows. For v, w ∈ TpM ,

let V,W ∈ Γ(TM) be vector fields that extend v and w. Then

Hp(f)(v, w) = Vp(Wf).

Proposition 2.2.3. The Hessian is a well-defined, symmetric bilinear form. If

(x1, . . . , xn) are coordinates for M near p, then the matrix of Hp(f) in the basis

{∂/∂x1|p, . . . , ∂/∂xn|p} is

Hp(f) =

(
∂2f

∂xi∂xj

)
(p).

Proof. We follow Milnor [28]. We first show Hp(f) is symmetric. Let v, w ∈ TpM .

Then

Hp(f)(v, w)−Hp(f)(w, v) = Vp(Wf)−Wp(V f) = [V,W ]pf = 0,

where [V,W ] is the Lie bracket of V and W . That [V,W ]p(f) = 0 follows from

the fact that [V,W ]p ∈ TpM , and p is a critical point of f .

Next, Hp(f)(v, w) = Vp(Wf) = v(Wf) is independent of the choice of extension
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V of v. On the other hand, Hp(f)(v, w) = Hp(f)(w, v) = Wp(V f) = w(V f) is

independent of the choice of extension W of w. Thus Hp(f) is well-defined.

Finally, in coordinates write v =
∑

i v
i ∂
∂xi

∣∣
p
, w =

∑
j w

j ∂
∂xj

∣∣
p
, and use the local

extension W =
∑

j w
j ∂
∂xj

near p. Then

Hp(f) =

(∑
i

vi
∂

∂xi

∣∣∣∣
p

)∑
j

wj
∂f

∂xj

=
∑
i,j

viwj
(

∂2f

∂xi∂xj

)
(p).

Therefore, the matrix of Hp(f) in the basis {∂/∂x1|p, . . . , ∂/∂xn|p} is
(

∂2f
∂xi∂xj

)
(p),

as claimed.

Definition 2.2.4. Let M be a smooth n-dimensional manifold, f : M → R be

a smooth function, and p ∈ M be a critical point of f . We say that p is a non-

degenerate critical point provided Hp(f) is non-singular, i.e., Hp(f)(v, w) = 0 if

and only if either v = 0 or w = 0. If p is a non-degenerate critical point of f , let λ−

and λ+ be the maximal dimensions of the subspaces on which Hp(f) is negative

and positive definite, respectively. The index of f at p is the pair (λ−, λ+). If

every critical point of f is non-degenerate, then we say f is a Morse function.

Remark 2.2.5. Since Hp(f) is nonsingular at p, we have λ− + λ+ = n. For this

reason many author’s simply specify λ− as the index of f .

Remark 2.2.6. When working in coordinates, the eigenvalues of the matrix

(∂2f/∂xi∂xj)(p) depend on the choice of coordinates. Due to Sylvester’s Law

of Inertia, though, the index of f at p is coordinate independent.

We are now ready to state the key lemma of Morse theory. For a proof, see [28].

Lemma 2.2.7 (Morse Lemma). LetM be an n-dimensional smooth manifold, and

let p ∈M be a non-degenerate critical point of f : M → R. Denote the index of f

at p by (λ−, λ+). Then there are coordinates (x1, . . . , xλ− , y1, . . . , yλ+) near p such
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that f has the form

f = f(p)−
(
x1
)2 − · · · −

(
xλ−
)2

+
(
y1
)2

+ · · ·+
(
yλ+
)2
.

Corollary 2.2.8. If f : M → R is a Morse function, then the critical points of f

are isolated.

The final goal of this section is to use Lemma 2.2.7 to study how the topology

of the fibers of a Morse function change when passing through a critical value. It

should be noted that if f : M → R is a Morse function on a smooth manifold M ,

and p ∈ R is a regular value of f (i.e., f−1(p) contains no critical points of f),

then the fiber f−1(p) is a smooth submanifold of M . This is due to the so-called

Regular Level Set theorem [23].

Theorem 2.2.9 (Regular Level Set Theorem). Let f : M → N be a smooth map

between smooth manifolds, and let p ∈ N be a regular value of f . Then f−1(p) is

a properly embedded submanifold whose codimension is equal to the dimension of

the codomain.

The presence of a Morse function gives a great deal of topological information.

Our interest is mainly in understanding how the topology of the level sets of a

Morse function changes when the levels cross a critical value. To facilitate that

discussion, we develop the language of a surgery.

Definition 2.2.10. LetM be a smooth n-dimensional manifold. Denote by Dλ ⊆

Rλ the closed unit disk, and Sn−λ ⊆ Rn−λ the unit sphere. Assume that φ :

Dλ × Sn−λ →M is a smooth embedding. Then we a have a diffeomorphism

∂(imφ) ∼= Sλ−1 × Sn−λ = ∂
(
Sλ−1 ×Dn−λ+1

)
.

Denote the interior of the image of φ by (imφ)◦. Then M\(imφ)◦ is a smooth

manifold with boundary, and the restriction φ|Sλ−1×Sn−λ provides a diffeomorphism
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between the boundary of M\(imφ)◦ and

Sλ−1 × Sn−λ = ∂
(
Sλ−1 ×Dn−λ+1

)
.

Now, produce a new manifoldM ′ by identifying the common boundary ofM\(imφ)◦

and Sλ−1 ×Dn−λ+1 via the diffeomorphism φ|Sλ−1×Sn−λ :

M ′ = (M\(imφ)◦) ∪φ|
Sλ−1×Sn−λ

(Sλ−1 ×Dn−λ+1).

We say that M ′ is obtained from M by a surgery of index λ.

Remark 2.2.11. Note that in the literature, our definition of surgery is generally

called a surgery of index (n−λ). For our purpose, though, it will be more natural

to refer to the index of the surgery as the dimension of the embedded disc factor.

Remark 2.2.12. Strictly speaking, we did not define a smooth structure on M ′.

That can be remedied, though. A collar of the boundary component ∂(imφ) ⊆

M\(imφ)◦ is a set κ0 ⊇ ∂(imφ) that is diffeomorphic to the product κ0
∼=

∂(imφ)× [0, 1). After selecting such a collar κ0, choose a collar κ1 of the bound-

ary of Sλ−1 × Dn−λ+1 satisfying Sλ−1 × Sn−λ ⊆ κ1 ⊆ Sλ−1 × Dn−λ+1 and κ1
∼=(

Sλ−1 × Sn−λ
)
× [0, 1) (diffeomorphism). We now have normal vector fields ∂/∂t0

and ∂/∂t1 to the boundary Sλ−1 × Sn−λ of κ0 and κ1, respectively. The smooth

structure onM ′ is now defined by identifying the boundary of κ0 and κ1 so that the

normal fields ∂/∂t0 and ∂/∂t1 align into a smooth vector field in a neighborhood

of ∂(imφ) ⊆M ′. Moreover, this smooth structure turns out to be independent of

the choice of κ0 and κ1. For the details of identifying the boundaries of collared

manifolds, see [2].

We now consider the following situation. Assume f : M → R is a Morse function

on a smooth n-dimensional manifold M . Assume that c ∈ R is a critical value

of f with a unique critical point p ∈ f−1(c). In this setting we can choose an

ε > 0 small enough so that f−1[c − ε, c + ε] contains no other critical point than
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|x|2 + |y|2 = 2ε

f = c+ ε

f = c− ε

f = c

p

x1 = · · · = xλ− = 0

y1 = · · · = yλ+ = 0

Figure 2.5.: The neighborhood of a critical point of a Morse function f of index
(λ−, λ+).

p. Assume further that f−1[c − ε, c + ε] is compact. If the index of the critical

point p is (λ−, λ+), we intend to show that M− = f−1(c − ε) is obtained from

M+ = f−1(c+ ε) by a surgery of index λ−.

We first consider the local behavior of the level sets of f near p. By choosing

ε small enough, we may apply Lemma 2.2.7 to find a neighborhood U ⊆ M

containing p, and coordinates (x, y) : U → Rλ− × Rλ+ so that (x, y)(p) = (0, 0),

and

f = c−
(
x1
)2 − · · · −

(
xλ−
)2

+
(
y1
)2

+ · · ·+
(
yλ+
)2

whenever and |x|2 + |y|2 ≤ 2ε. We denote by B√2ε ⊆M the set

B√2ε =
{
p ∈ U | |x(p)|2 + |y(p)|2 ≤ 2ε

}
.
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An illustration of the situation is presented in Figure 2.5. Now it is apparent that

{f = c− ε} ∩B√2ε =
{
|x|2 = |y|2 + ε | |y|2 ≤ ε/2

} ∼= Sλ−−1 ×Dλ+ ,

and

{f(x, y) = c+ ε} ∩B√2ε =
{
|y|2 = |x|2 + ε | |x|2 ≤ ε/2

} ∼= Dλ− × Sλ+−1.

So, local to p, at least, the level set M− is produced from M+ by a surgery of

index λ−.

The final step is to show that M− and M+ are diffeomorphic on the closure

of the complement of B√2ε. The full proof is provided by Milnor in [28], but we

outline the key steps here. The required hypotheses are that f : M → R is a Morse

function, f(p) = c is a critical point / critical value pair, and f−1[c− ε, c+ ε] and

is compact with no other critical value of f other than p. Then Milnor is able

to produce a function F : M → R such that F−1[c − ε, c + ε] ⊆ f−1[c − ε, c + ε],

and the level sets of F coincide with those of f outside of B√2ε, yet F has no

critical points in F−1[c − ε, c + ε]. Thus F is a submersion on the compact set

F−1[c−ε, c+ε]. Using Ehresmann’s Lemma, we then find that that the levels of of

F over [c− ε, c+ ε] are diffeomorphic. For a proof, see e.g. Bröcker and Jänich [2].

Theorem 2.2.13 (Ehresmann’s Lemma). Let f : E →M be a proper submersion

of differentiable manifolds. Then f is a locally trivial fibration, that is, if p ∈ M

and F = f−1(p) the fiber of p, then there exists a neighborhood U of p in M and a

diffeomorphism φ : U×F → f−1(U), so that the following diagram is commutative:

U × F f−1(U)

U

pr1

φ

f |f−1(U)

Since the level sets of F coincide with those of f outside of B√2ε, we conclude
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that M− and M+ are diffeomorphic on the closure of the complement of B√2ε.

Finally, what of the level f−1(c)? Inside B√2ε, we have homeomorphisms

f−1(c) ∩B√2ε =
{
|x|2 = |y|2

}
∩
{
|x|2 + |y|2 ≤ 2ε

}
∼=
{

(x, y) ∈ Rλ− × Rλ+ | |x|2, |y|2 = r, 0 ≤ r ≤ ε
}

∼= C
(
Sλ−−1 × Sλ+−1

)
.

Thus, near p ∈ M , f−1(c) is homeomorphic to a cone C(Sλ−−1 × Sλ+−1). We

summarize these results as a theorem.

Theorem 2.2.14. Assume f : M → R is a Morse function. Assume that c ∈ R is

a critical value of f . Finally, assume that f−1[c− ε, c+ ε] is compact and contains

no other critical point than p ∈ f−1(c), whose index we denote by (λ−, λ+). Then

1. The level sets f−1(c − ε) and f−1(c + ε) are compact, smoothly embedded

codimension 1 submanifolds of M .

2. The level set f−1(c− ε) is obtained from f−1(c+ ε) by a surgery of index λ−.

3. The level set f−1(c)\{p} is a smooth manifold, and there is a neighborhood

U ⊆ f−1(c) of p homeomorphic to a cone U ∼= C(Sλ−−1 × Sλ+−1).

4. The level f−1(c) is obtained from f−1(c+ε) by deleting a region diffeomorphic

to the interior of Dλ− × Sλ+−1 and coning over the resulting boundary.

2.3. The moduli space of polygons in the Euclidean plane

The goal of this section is to summarize the main results of Kappovich and Mill-

son’s “On the moduli space of polygons in the Euclidean plane” [18], upon which

the results of Chapters 3 and 4 are built. Unless otherwise stated, all results in

this section are due to Kappovich and Millson.

Denote by P n the space of all planar n-gons with marked vertices, modulo ori-

entation preserving isometries of of the Euclidean plane. We allow all degeneracies
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of polygons, except for degeneration to point. For a class [P ] ∈ P n we may identify

the representative P by its vertex vector P = (v1, . . . , vn) ∈ Cn. By a translation

and rotation, each [P ] ∈ P n has a unique representative with its initial vertex

lying at the origin, and its final edge lying along the positive x-axis. This allows

us to identify

P n = {(0, v1, . . . , vn) ∈ Cn | vn ∈ R≥0}\{(0, . . . 0)} = Cn−2 × R≥0\{(0, . . . , 0)}.

For [P ] = [(v1, . . . , vn)] ∈ P n, define the edge length vector of [P ] to be

r = (r1, . . . , rn) = (|v2 − v1|, . . . , |v1 − vn|) ∈ Rn.

Since this is independent of the representative, we obtain a projection π̄ : P n → Rn

by π̄([P ]) = (r1, . . . , rn). The moduli space of polygons with side-length vector r

is then the fiber of this projection: Mr = π̄−1(r).

For λ ∈ R>0, the scaling r 7→ λr induces a diffeomorphismMr
∼= Mλr. In order

to study the topology ofMr, we may thus assume our polygons to have perimeter

1. We assume henceforth that
∑
ri = 1. Let Pn ⊂ P n denote the subspace of unit

perimeter pentagons, and π = π̄|Pn . We define the Kapovich-Millson edge-length

polytope Dn = π(Pn). By definition, Dn ⊆ ∆n−1, the standard (n − 1)-simplex.

Moreover, for each j ∈ [n],
∑

i 6=j ri ≥ rj, so we must also have rj ≤ 1/2. Now it

is apparent that the moduli space of unit perimeter triangles is nonempty if and

only if rj ≤ 1/2 for j ∈ [3]. An inductive argument now yields the

Lemma 2.3.1. The edge-length polytope Dn ⊂ Rn is an (n − 1)-polytope with

h-generating set

∑
ri ≤ 1∑
ri ≥ 1

0 ≤ ri ≤ 1/2, i ∈ [n].



30

We will find the structure of Dn to provide important insights into the topol-

ogy of Mr. To facilitate a discussion of that structure, we require additional

definitions.

Definition 2.3.2. We call a polygon [P ] ∈ Mr degenerate provided [P ] is con-

tained in a line.

Definition 2.3.3. The intersection of the interior (Dn)◦ with a hyperplane
∑

i εiri =

0, εi ∈ {−1, 1}, i ∈ [n], is called a wall of Dn. The vector ε = (ε1, . . . , εn) will be

called a signature of the wall. We call the union of all the walls of Dn the critical

locus of Dn, denoted by Σn.

Remark 2.3.4. The definitions of Dn, the walls of Dn, and the critical locus of

Dn appear in [18], while the verbage of the signature of a wall is original to this

dissertation.

Collectively, the intersection of all the walls with Dn forms a polytopal complex.

Hereafter, by Dn, we will refer to this entire polytopal complex. For brevity, we

will refer to the (n − 1)-cells of Dn as chambers. These (n − 1)-cells arise as the

components of Dn\Σn.

It is immediately obvious that Mr admits degenerate polygons if and only if

r lies in a wall of Dn. Now we provide the fundamental lemma justifying the

language we have developed.

Lemma 2.3.5. If [P ] ∈ P n is not degenerate, then π is a smooth submersion at

[P ].

Proof. First recall that

P n = Cn−2 × R≥0\{(0, . . . , 0)},

so we are working in the smooth category. Consider the space of all marked

polygons in the plane Qn = Cn, where the points of Qn are identified with the
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vertices of a polygon. We have the quotient map q : Qn → P n. Let p : Qn → Rn

by

p(v1, . . . , vn) = (|v2 − v1|, . . . , |v1 − vn|) .

Then p factors through the quotient by p = π ◦ q. Writing vj = xj + iyj ∈ C, we

have

∂pj/∂xj =
xj − xj+1

|vj+1 − vj|
,

∂pj/∂xj+1 =
xj+1 − xj

|vj+1 − vj|

∂pj/∂yj =
yj − yj+1

|vj+1 − vj|

∂pj/∂yj+1 =
yj+1 − yj

|vj+1 − vj|
,

and all other derivatives are zero. Ordering our coordinates (x1, y1, . . . , xn, yn),

and writing ej = vj+1 − vj ∈ C, we find

dp|(v1,...,vn) =



x1−x2
|e1|

y1−y2
|e1|

x2−x1
|e1|

y2−y1
|e1| 0 · · · 0 0

0 x2−x3
|e2|

y2−y3
|e2|

x3−x2
|e2|

y3−y2
|e2| · · · 0 0

...
...

...
...

... . . . ...
...

x1−xn
|en|

y1−yn
|en| 0 0 0 · · · xn−x1

|en|
yn−y1
|en|


.

Assume ξ = (ξ1, . . . , ξn) ∈ R2n lies in the kernel of dp|(v1,...,vn). Then either ξ =

(z, . . . , z) ∈ R2n for z ∈ R2, or (ξi+1 − ξi) · ei = 0 for each i, where we are using

the usual inner product on R2. Writing ξ̂i = ξi+1 − ξi we see that

ker dp|(v1,...,vn) =
{

(ξ̂1, . . . , ξ̂n) ∈ R2n | ξ̂i · ei = 0,
∑

ξ̂i = 0
}

∪
{

(z, . . . , z) ∈ R2n | z ∈ R2
}
.

Assume that (v1, . . . , vn) are not contained in a line. Then {e1, . . . , en} span R2.

Therefore the equation
∑
ξ̂i = 0 is a nondegenerate system of two equations, and
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dim ker dp|(v1,...,vn) = n− 2. But then

dim ker dp|(v1,...,vn) = (n− 2) + 2 = n = dimRn = dim im p.

We conclude that p is a submersion, and therefore so, too, is π.

The following corollary is implicit in Section 11 of [18].

Corollary 2.3.6. If r ∈ Dn does not lie on a wall, thenMr is a compact, smooth,

orientable manifold of dimension n− 3.

Proof. By Lemma 2.3.5, r is a regular value of π, so we may apply the Regular

Level Set Theorem (see, e.g., [23]) to conclude that Mr = π−1(r) is a smooth

submanifold of Pn of codimension (n− 1). Since

P n = Cn−2 × R≥0\{(0, . . . , 0)},

we see that dimP n = 2n−3. Adding the condition that all polygons have perime-

ter 1 implies dimPn = 2n−4. Thus the dimension ofMr is 2n−4−(n−1) = n−3.

For orientability, consider the hyperplane

H =
{

(e1, . . . , en) ∈ Cn |
∑

ei = 0
}

of edge vectors of n-gons. Then Pn is diffeomorphic to the projective space P (H) ∼=

CP n−2. By Ehresmann’s lemma, π is a locally trivial fibration near r. Thus there

is a neighborhood U ⊆ Dn such that π−1(U) ∼= U ×Mr
∼= Rn−1×Mr. WereMr

non-orientable, we would have found a non-orientable open subset of the orientable

manifold CP n−2, a contradiction. This viewpoint also allows us to conclude that

Mr is compact, asMr = π−1(r) ⊆ Pn ∼= CP n−2 is a closed subset of a compact

manifold.

Corollary 2.3.7. Let C ⊆ Dn\Σn be a chamber of Dn, and assume r, r′ ∈ C.

Then there is a diffeomorphismMr
∼=Mr′.
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Proof. Let C ⊆ Dn\Σn be a chamber. Fix r ∈ C, and consider any other r′ ∈ C.

By convexity of C, there is a line segment L ⊆ C connecting r and r′. Since

π : Pn → Dn is a submersion on π−1(C), the map π is transverse to L. Indeed,

dπp is surjective for every p ∈ π−1(C), hence π is transverse to any submanifold

M ⊆ C. Consequently, K = π−1(L) ⊆ Pn is an embedded submanifold of Pn. By

compactness, π|K is a proper submersion. Ehresmann’s lemma now implies that

π|K is a fibration, so π−1(r) and π−1(r′) are diffeomorphic.

As a first step to studying the topology ofMr we note that disconnected space

can arise. The following is Theorem 1 of [18].

Proposition 2.3.8. The moduli spaceMr, r ∈ Dn, is disconnected if and only if

there are three edge lengths ri, rj, rk such that each of

ri + rj > 1/2, ri + rj > 1/2, rj + rk > 1/2.

If this is the case, then Mr is homeomorphic to a disjoint union of two (n − 3)-

dimensional tori.

The proof of Proposition 2.3.8 is too involved to be reproduced here, but we will

provide the geometric intuition behind it. From basic trigonometry, the moduli

space of triangles is disconnected. Now consider building an n-gon from a triangle

by expanding the vertices of the triangle into a number of edges. If the conditions

of Proposition 2.3.8 are satisfied, then consider growing an n-gon from the triangle

with edge-lengths ri, rj, and rk. The resulting n-gon will be too “close” to the

original triangle, and it is impossible to find a continuous deformation from the

polygon whose edges e1, . . . , en are arranged in a clockwise ring, to that polygon

whose edges are arranged in a counter-clockwise ring.

The final piece is to study how the topology of Mr changes as r crosses a

wall in Dn. For r̂ = (r1, . . . , rn−1) ∈ Rn−1, define Fr̂ to be the space of “free-

linkages” modulo orientation preserving isometries of the Euclidean plane (Fig-
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r1

r2

r3

Figure 2.6.: A free linkage of 3 rods with length vector r̂ = (r1, r2, r3).

ure 2.6). A free-linkage is a sequence of marked line segments place end-to-end.

Let (v1, . . . , vn) ∈ Cn be the vertices of a free-linkage Λ of (n− 1)-many rods. Let

θi be the argument of the edge vector ei = vi+1 − vi ∈ C, 1 ≤ i ≤ n − 1. We

identify Λ with its vector of edges

Λ =
(
r1e

iθ1 , . . . , rn−1e
iθn−1

)
.

Let S1
ρ ⊆ C be the circle of radius ρ centered at the origin. Then

Fr̂ = S1
r1
× · · · × S1

rn−1
/SO(2),

where SO(2) acts diagonally. Given a linkage [`] =
[
r1e

iθ1 , . . . , rn−1e
iθn−1

]
∈ Fr̂ ,

we define the function rn : Fr̂ → R by

rn[`] =
∣∣∣∑ rje

iθj

∣∣∣2.
Notice that rn is independent of the representative `, and rn gives the distance

between the first and last vertices in `. For technical reasons, we wish to restrict

ourselves to the space Er̂ = Fr̂\{rn = 0}. Now for each linkage in Er̂, there is a

canonical representative whose final vertex lies on the positive x-axis. As usual,

we define a linkage to be degenerate if it is contained in a line. At a degenerate

canonical linkage Λ, letf(Λ) denote the the number of edge vectors pointing to
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the right, and b(Λ) denote the number of edge vectors pointing to the left. Then

we have the following lemma, which is Lemma 11 in [18].

Lemma 2.3.9. The function rn is a Morse function on Er̂ whose critical points

are those linkages contained in a line. If Λ is such a critical point, then the Morse

index of Λ is (f(Λ)− 1, b(Λ)).

Now consider a line segment γ : (−δ, δ)→ D5 with the following properties:

1. γ′ > 0, hence γ is a diffeomorphism onto its range.

2. γ(−δ, 0) lies on the interior of a chamber C.

3. γ(0, δ) lies on the interior of an adjacent chamber C ′.

4. γ(0) lies in a unique wall W ⊇ C ∩ C ′.

5. The first (n− 1)-coordinates (r1, . . . , rn−1) are fixed along γ.

Then Γ = π−1(im γ) ⊆ Er̂ is an open submanifold, and rn is a Morse function

on Γ with a unique critical point Λ in the fiber over γ(0). Moreover, if W has

the equation
∑
εiri = 0 with εn = 1, C ⊆ W− is in the lower half-space, and

C ′ ⊆ W+ is in the upper half-space, then f(Λ) is the number of positive entries

in the signature ε of W , and b(Λ) − 1 is the number of negative entries in the

signature ε of W (recall that the final edge is not a member of Λ, viewed as a

linkage). Taken with Lemma 2.3.9 we have the most important result of [18] for

our purposes.

Theorem 2.3.10. Assume W is a wall in Dn with signature ε = (ε1, . . . , εn−1, 1).

Let λ− be one fewer than the number of 0-entries in ε, and let λ+ be one fewer than

the number of 1-entries in ε. Let C and C ′ be chambers of Dn adjacent so that

C ∩ C ′ ⊆ W . Assume that C is contained in the lower half-space
∑

(−1)εiri ≤ 0,

and C ′ is contained in the upper half-space
∑

(−1)εiri ≥ 0. Let r ∈ relintC, and

r′ ∈ relintC ′. Then Mr′ is obtained from Mr by a λ− surgery. Explicitly, to
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obtain Mr′, (i) delete the interior of an embedded Dλ− × Sλ+−1 ⊆ Mr, then (ii)

sew in a Sλ−−1 ×Dλ+ along the resulting common boundary.

In [18], Kappovich and Millson used Theorem 2.3.10 to compute the smooth

manifolds that arise as moduli spaces of pentagons.

Theorem 2.3.11. The smooth manifolds that arise as moduli spaces of pentagons

are the surfaces of genus no greater than 4, and a disjoint union of two tori.

They also found a list that contained all possible smooth manifolds that arise

as a moduli space of hexagons.

Theorem 2.3.12. If the moduli space of hexagons is nonsingular and connected,

then it is either diffeomorphic to a connected sum of k copies of S2 × S1 and of

the product Σg × S1, or it is diffeomorphic to a connected sum of T 3#T 3 and t

copies of S2 × S1. Here k ≤ 4, the genus g of the surface Σg is not greater than

4, and t ≤ 2. If it is nonsingular and disconnected, then it is diffeomorphic to the

disjoint union of two tori T 3
⊔
T 3.

Notice that if all values of t, k, and g in Theorem 2.3.12 are achieved as moduli

spaces of hexagons, then one will find (5)(5) + 3 + 1 = 29 non-diffeomorphic

smooth manifolds that arise as moduli spaces of hexagons. However, we will show

in Chapter 4 that, there can be no more than 20 diffeomorphism types of smooth

moduli spaces of hexagons.
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3. Singularities in the moduli spaces of pentagons

The topology of non-smooth moduli spaces of polygons has so far received little

attention. Since the moduli spaces of quadrilaterals are one dimensional, analysis

of connected components was enough for Kapovich and Millson to deduce the three

singular topologies that arise as moduli spaces of quadrilaterals [18]: they are (i)

a wedge of two circles, (ii) two circles connected at two points, and (iii) a union of

three circles, each pair sharing a unique point of intersection. To this point, the

topology of a non-smooth moduli space of n-gons, n > 4, has not been explicitly

computed, however. It should be noted that the Betti-numbers ofMr have been

computed as a function of r, first by Kamiyama and Tezuka [17], who computed

the Betti-numbers in the equilateral case, and later by Farber and Schütz [4] for

all edge-lengths vectors. In three dimensions, Kamiyama computed the rational

homology of singular polygon spaces [15].

The goal of this chapter is to analyze the topology of non-smooth moduli spaces

of pentagons. We will see that these spaces are all crimped manifolds (Defini-

tion 1.1.2), and we will produce a list containing a member of each homeomor-

phism class of non-smooth moduli spaces of pentagons (Theorem 1.1.6).

We summarize our results here. The first step of the process is to analyze the

combinatorial structure of the polytopal complex D5. In Section 3.1 we implement

a computer search to find all the vertices in D5, and the v-description of all the

chambers of D5. The result is the following lemma.

Lemma 3.0.1. Denote by ei the i-th standard basis vector in R5. The vertices in
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D5 are

hi,j =
1

2
(ei + ej), qk =

1

4

(
−ek +

5∑
i=1

ei

)
, t` =

1

6

(
e` +

5∑
i=1

ei

)

for i 6= j, k, ` ∈ [5].

The chambers in D5 are

C4 = conv {q1, . . . , q5, t1, . . . t5}

Ci,j
3 = conv

(
{ti, tj, hi,j} ∪ {qk}k/∈{i,j}

)
Ci,j,k

2 = conv
(
{ti, hi,j, hi,k} ∪ {q`}`/∈{i,j,k}

)

Ci,j
1,1 = conv

(
{qi, qj} ∪ {hk,`}k 6=`/∈{i,j}

)
Ci,j

1 = conv
(
{ti, qj} ∪ {hi,k}k/∈{i,j}

)
Ci

0 = conv
(
{ti} ∪ {hi,j}j 6=i

)
for i 6= j 6= k 6= i ∈ [5].

Having computed the v-description of the d-cells in D5, their pairwise intersec-

tions easily produce the v-descriptions of the (d − 1)-cells, and so Lemma 3.0.1

provides all of the information necessary to compute every cell in D5.

Next, we extend Corollary 2.3.7 to the lower dimensional cells of D5.

Theorem 3.0.2. Let C be a d-cell, 0 ≤ d ≤ 4, lying in the relative interior of

D5, and let r and r′ lie in the relative interior of C. Then Mr and Mr′ are

homeomorphic. Moreover, the Mr is homeomorphic to a crimped manifold with

(4− d)-many crimped points.

The proof of Theorem 3.0.2 is contained in Section 3.2. In light of Theorem 3.0.2,

we have the following definition.
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Definition 3.0.3. Let C ⊆ D5 be a d-cell, 0 ≤ d ≤ 4. The topological type of C

is the homeomorphism class ofMr for r ∈ relintC.

We conclude this chapter with Section 3.3, in which we compute the topological

type of each d-cell, 0 ≤ d ≤ 3, in D5, yielding the proof of Theorem 1.1.6.

3.1. The edge-length polytope D5

We begin this section by studying the edge-length polytope

D5 =

{
(r1, . . . , r5) ∈ R5

≥0 |
5∑
j=1

rj = 1, rk ≤ 1/2 for all k

}
.

Remark 3.1.1. One immediately observes that D5 is a 4-polytope lying in the

affine space

A =

{
(r1, . . . , r5) ∈ R5 |

5∑
j=1

rj = 1

}

with essential supporting hyperplanes

H0
j = {(r1, . . . , r5) ∈ A | rj = 0}

and

H
1/2
k = {(r1, . . . , r5) ∈ A | rk = 1/2} .

Remark 3.1.2. If r ∈ H0
j for some j, then Mr is diffeomorphic to the moduli

space of quadrilateralsMr̂ where r̂ is obtained from r by deleting the j-th coor-

dinate. If r ∈ H1/2
k for some k, thenMr is a single point corresponding to a line

segment of length 1/2. Thus we may restrict our attention to the relative interior

of D5 in order to study the topologies of the moduli space of pentagons.

NowMr contains degenerate pentagons if and only if r is contained in a wall.

The intersection of D5 with all the half-spaces arising from all the walls turns D5

into a polytopal complex. Hereafter, any reference to D5 will be to this polytopal
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complex.

We study the combinatorics of D5. The walls of D5 are of two types:

Bi =

(r1, . . . , r5) ∈ D5 | ri =
∑

j∈[5]\{i}

rj



Ij,k =

(r1, . . . , r5) ∈ D5 | rj + rk =
∑

`∈[5]\{j,k}

r`

 .

That every point in D5 satisfies
∑5

i=1 ri = 1 implies Bi = H
1/2
i lies in a supporting

hyperplane of D5. We will refer to the walls Ij,k as interior walls, and to the Bi

as boundary walls. As a first step, we identify the 0-cells and 4-cells of D5.

Proof of Lemma 3.0.1. For each interior wall Ij,k, denote by I+
j,k (I−j,k) the half-

spaces defined by

rj + rk ≤ (≥)
∑

`∈[5]\{j,k}

r`.

Each cell in D5 is determined by a choice of half-spaces of the
(

5
2

)
= 10 interior

walls. Additionally, all points in D5 satisfy the inequalities 0 ≤ ri ≤ 1/2, i ∈ [5],∑
rj ≤ 1, and

∑
rk ≥ 1. The chambers of D5 are then solution sets to a system

of inequalities of the form Ar ≥ b, where A is 22 × 5 matrix, b is a 22 × 1

column vector, and the inequality is to be valid in each coordinate. This system

now forms an h-description for a (possibly empty) bounded polytope lying in R5.

Algorithms exist, e.g. [1], to compute a minimal v-description for these polytopes.

See Appendix A for a SageMath 8.4 implementation of a script that computes the

v-description of each of the 76 chambers in D5, and collects a list of all of the

vertices that appear in at least one of the chambers. The output of that script are

exactly the vertices and chambers listed above.

Corollary 3.1.3. The vertex description of all d-cells, 0 ≤ d ≤ 4, lying in the

relative interior of D5 are algorithmically computable.

Proof. Inductively having found all d-cells, 0 < d ≤ 4, the (d − 1)-cells of D5
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appear as an intersection of two d-cells. Moreover, if V1 and V2 are the vertex sets

of two d-cells C1 and C2, respectively, then V1 ∩ V2 is the vertex set of C1 ∩ C2.

Thus, by finding the pairwise intersection of all vertex sets of d-cells, we compute

the minimal v-description of all (d − 1)-cells. The initial step of the induction is

provided by Lemma 3.0.1.

To avoid a proliferation of notation, we do not carry out the process described

in Corollary 3.1.3 here. Instead, we refer the reader to the full statement of

Theorem 1.1.6 which contains a complete list of all interior d-cells inD5, 0 ≤ d ≤ 4.

3.2. The Morse theory above walls

Let us first give an alternate description of P 5. Let ei = vi+1 − vi ∈ C (indices

modulo 5) denote the i-th edge vector of [P ] ∈ P 5. In polar coordinates, write

ej = rje
iθj . Then

P 5 ={
(θ1, . . . , θ5, r1, . . . , r5) ∈ (S1)5 × R5

≥0 |
∑5

i=1 ei = 0 ∈ C, (r1, . . . , r5) 6= 0 ∈ R5
}

SO(2)
,

where SO(2) acts diagonally on the first five factors. Since there is a unique

representative of each [P ] ∈ P 5 whose terminal edge lies on the positive x-axis,

we obtain coordinates for P 5

P 5 =

{
(θ1, . . . , θ4, r1, . . . , r4) ∈ (S1)4 × R4

≥0 |
4∑
j=1

rj sin θj = 0,
4∑
j=1

rj cos θj > 0

}
.

Such a pentagon will be considered in standard position. For a pentagon

[P ] = (θ1, . . . , θ4, r1, . . . , r4) ∈ P 5,

we call the vector (θ1, . . . , θ4, π) the angle vector of [P ]. Let π : P 5 → R5 be the

projection to the edge-length vector, and define F : P 5 → R to be the length of
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the final edge. In coordinates

F (θ1, . . . , θ4, r1, . . . , r4) =
4∑
j=1

rj cos θj.

Towards the proof of Theorem 3.0.2, we have our first key Lemma.

Lemma 3.2.1. Let I = ∩dk=1Iik,jk be an intersection of exactly d-many walls in

D5. There exist disjoint open sets N1, . . . , Nd ⊆ π−1(I) such that π−1(I)\ ∪Ni is

a smooth, compact, manifold with boundary. Moreover, for each r in the relative

interior of I and i ∈ [d],Mr ∩Ni is homeomorphic to a cone C(S1 × S0).

Proof. We construct N1 ⊆ π−1(I). Assume (i1, j1) = (3, 5) are the indices of one

of the member walls of I, and the other cases are handled similarly. Given r ∈ I,

there is a unique degenerate pentagon P 1
r ∈Mr We study the Morse theory of F ,

defined above, in a neighborhood of P 1
r . Now F is not a classical Morse function

since P 1
r is not an isolated critical point of F . Instead, we apply the following

Morse lemma with parameters.

Lemma 3.2.2. (pg. 97 in [3]) Let F : Rn × Rr, 0 → R be a smooth map, where

we use coordinates xi in Rn and uj in Rr and 0 here stands for all xi and uj equal

to 0. Suppose that ∂F/∂xi(0) = 0 for all i and that the matrix (∂2F/∂xi∂xj(0))

is nonsingular. (Thus F0, defined by F0(x) = F (x, 0), is a Morse function.) Then

there is a map ψ : Rn × Rr, 0→ Rn, 0 with

1. the matrix (∂ψi/∂xj(0)) nonsingular, so that x 7→ ψ(x, u) is a local diffeo-

morphism for u = 0 and therefore for all u close to 0;

2. F (ψ(x, u), u) = F (0, 0) +
∑n

i=1 εix
2
i + h(u), where each εi is ±1 and h :

Rr, 0→ R, 0 is a smooth map.

Since cos θ4 > 0 in a neighborhood VP 1
r
of P 1

r , we may invert the constraint



43

∑
ri sin θi = 0 to find

F (θ1, . . . , θ3, r1, . . . , r4) =
3∑
i=1

ri cos θi +

√√√√r2
4 −

(
3∑
i=1

ri sin θi

)2

.

Moreover, by intersecting with the open set

{(θ1, . . . , θ4, r1, . . . , r4) | −π < θ1, θ2, θ4 < π, 0 < θ3 < 2π},

we may assume the only degenerate pentagons contained in VP 1
r
have angle vector

(0, 0, π, 0, π). Assume P 1
r has edge-length vector (R1, . . . , R5). Setting x1 = θ1,

x2 = θ2, x3 = θ3 − π, and ui = ri −Ri, i ∈ [4], we find

F (x1, x2, x3, u1, u2, u3, u4) =

3∑
i=1

(−1)δi,3(ui +Ri) cosxi +

√√√√(u1 +R4)2 −

(
3∑
i=1

(−1)δi,3(ui +Ri) sinxi

)2

,

where δi,j is the Kronecker delta. We now check the hypotheses of the Lemma.

One immediately sees that ∂F/∂xi(0) = 0 for all i, and a machine calculation

gives

(∂2F/∂xi∂xj(0)) = −R−1
4


R1R4 +R2

1 R1R2 −R1R3

R1R2 R2R4 +R2
2 −R2R3

−R1R3 −R2R3 −R3R4 +R2
3


with determinant

det(∂2F/∂xi∂xj(0)) =
R1R2R3(R1 +R2 −R3 +R4)

R4

.

Notice that R1 +R2−R3 +R4 = F (P 1
r ) > 0 since (R1, . . . , R5) lies in the relative

interior of I.

Having verified the hypotheses of Lemma 3.2.2, we conclude there is a neigh-
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borhood UP 1
r
⊆ VP 1

r
of P 1

r on which F has the coordinate representation

F (ψ(x, u), u) = F (0, 0)− x2
1 − x2

2 + x2
3 + h(u).

To see these are the correct values of the εi, notice that (∂2F/∂xi∂xj(0)) is not

positive definite. Indeed,

(
1 1 −1

)
(∂2F/∂xi∂xj(0))


1

1

−1

 = −R−1
4 (R1 +R2)(R1 +R2 +R3 +R4)

−R−1
4 (R1 +R2 +R3 −R4)

< 0.

Since det(∂2F/∂xi∂xj(0)) > 0, we conclude (∂2F/∂xi∂xj(0)) must have two neg-

ative eigenvalues (including multiplicity). Now on UP 1
r
, Fu = F (ψ(·, u), u) is a

classical Morse function whose critical points are where the xi simultaneously

vanish. The vanishing of the xi coincides with those pentagons that are contained

in a line. For each u, the level set of Fu passing through a critical point is locally

homeomorphic to an open cone C(S1 × S0) by the classical Morse lemma [28].

Now by holding u, constant, the edge-length vector is constant, so we find that

UP 1
r
∩Ms

∼= C(S1×S0) for each s ∈ π(UP 1
r
). Complete the construction by setting

N1 = ∪r∈π−1(I)UP 1
r
.

Inductively construct Nk. For each r ∈ I there is a unique pentagon P k
r with

angle vector containing π in the ik and jk entries, and all other entries 0. By con-

struction P k
r /∈ ∪i<kNi. Follow the process above to constructNk ⊆ π−1(I)\∪i<kNi

such that Ms ∩ Nk
∼= C(S1 × S0) for each s ∈ π(Nk). Finally, note that every

degenerate pentagon lies in one of the Nk, so Lemma 2.3.5 along with the implicit

function theorem imply π−1(I)\ ∪ Ni is a smooth manifold with boundary. For

compactness, notice that π−1(I) ⊆ P5 ⊆ P 5 is a closed subspace of the compact
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space P5 of unit perimeter pentagons.

Armed with Lemmas 3.2.1, Theorem 3.0.2 is almost a corollary.

Proof of Theorem 3.0.2. Let C be a d-cell lying in the relative interior ofD5. Then

C is contained in the intersection I = ∩4−d
k=1Iik,jk of exactly (4 − d)-many interior

walls. Let N1, . . . , N4−d be the open subsets of π−1(I) guaranteed by Lemma 3.2.1.

Let r and r′ lie in the relative interior of C. Since dπ is nondegenerate on the com-

pact manifold with boundary I ′ = π−1(I)\ ∪4−d
k=1 Nk, Ehressman’s lemma implies

Mr∩I ′ ∼=Mr′∩I ′ (diffeomorphism). Moreover,Mr∩Nk
∼= C(S1×S0) ∼=Mr′∩Nk

(homeomorphism) for each k, yielding homeomorphisms

Mr
∼= (Mr ∩ I ′) ∪4−d

k=1 C(S1 × S0) ∼=Mr′ ,

where the cones are sewn into the boundary of Mr ∩ I ′ along their boundaries

∂C(S1 × S0) = S1 × S0.

It remains to show how the topology on the smooth portions of theMr changes

as r moves between cells in D5. Consider a linear path γ in D5 not fixing r5. Then

γ can be parametrized by r5 ∈ (a, b) in some small interval, so we may write

γ(r5) = (L1(r5), . . . , L4(r5), r5)

for some linear functions Li.

Now consider the space of chains of four bars in E2. Allow the lengths of the

bars to vary according to the first four coordinates of γ for r5 > 0. Let X denote

this space modulo orientation preserving isometries. If Li ≡ ri are constant for all

i ∈ [4], then we may identify X with (S1)4/SO(2). If, on the other hand, one of

the Li is not constant, we may identify X with (S1)4 ×R>0/SO(2), where SO(2)

acts diagonally on the first four coordinates. To see this, let ri be the length of

the i-th bar of a chain in X, and ej = vj+1 − vj = rje
iθj ∈ C be the j-th edge
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vector. Then X ≡ (S1)4 × R>0/SO(2) by

[L1(r5)eiθ1 , . . . , L4(r5)eiθ4 ] = [θ1, . . . , θ4, r5].

Remark 3.2.3. Notice X is a smooth manifold since the SO(2)-action is free.

For each chain in X, there is a unique representative whose initial point lies

at the origin, and whose terminal vertex lies on the positive x-axis. This yields

coordinates

X =

{
(θ1, . . . , θ4, r5) ∈ (S1)4 × R>0 |

4∑
i=1

Li(r5) sin θi = 0,
4∑
j=1

Lj(r5) cos θj > 0

}
.

Obtain a projection p : X → D5 by

p(θ1, . . . , θ4, r5) =

(
L1(r5), . . . , L4(r5),

4∑
j=1

Lj(r5) cos θj

)

with fibers p−1(r) =Mr. We study the Morse theory of F on Γ = p−1(Imγ) as γ

crosses a wall. Unfortunately, Γ is not guaranteed to be smooth.

Lemma 3.2.4. If the Li described above are constant for i ∈ [4], then Γ is a

smooth manifold. If γ is contained in a wall Ij,k, then Γ is not smooth. However,

if P ∈ Γ is not a degenerate pentagon, then P is a regular point of p.

Proof. If the Li are constant for i ∈ [4], then Γ is an open subset of the smooth

manifold (S1)4/SO(2). Now suppose γ is contained in a wall Ij,k. Without loss,

assume (j, k) = (3, 5). Define f : X → R by

f(θ1, . . . , θ4, r5) =
4∑
i=1

(−1)δi,3Li(r5)−
4∑
i=1

Li(r5) cos θi.

Then Γ ⊆ f−1(0). Since ∂f/∂θj = Li(r5) sin θj, and Li(r5) 6= 0 for all i, the critical

points of f must be pentagons which are contained in a line.

Lemma 3.2.5. Assume γ is contained in a wall. Then there are disjoint open
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sets N1, . . . , Nd ⊆ Γ such that Γ\ ∪ Ni is a smooth manifold with boundary, and

Mr ∩Ni
∼= C(S1 × S0) for each i ∈ [d] and r ∈ Imγ.

Proof. Let I = ∩di=1Iji,ki be the intersection of all walls containing γ. Regarding

Γ ⊆ P5, Lemma 3.2.1 guarantees neighborhoods N1, . . . , Nd so that Mr ∩ Ni
∼=

C(S1 × S0) for each i ∈ [d] and r ∈ Imγ. Denote N = ∪di=1Ni. It remains to

be shown that if P ∈ Γ\N is a degenerate pentagon, then P is not a singular

point of Γ. Assume P ∈ Γ\N is a degenerate pentagon. If (θ1, . . . , θ5) is the angle

vector of P , then δ = (cos θ1, . . . , cos θ5) is the signature of a wall which intersects

γ only in the point π(P ). Assume I3,5 is a wall containing γ, and the other cases

are handled similarly. Then, defining f as in the proof of Lemma 3.2.4, we see

Γ ⊆ f−1(0). It now suffices to show that

∂f/∂r5 = L′1 + L′2 − L′3 + L′4 −
4∑
i=1

L′i cos θi

is nonzero at P . Let v = (L′1, . . . , L
′
4, 1) be the velocity of γ. Since γ lies in I3,5,

we have

v · (1, 1,−1, 1,−1) = 0.

We reduce

∂f/∂r5(P ) = 1−
4∑
j=1

δjL
′
j.

Since γ does not lie in the wall of signature δ, v · δ 6= 0, and hence ∂f/∂r5(P ) 6=

0.

Possessing an understanding of the singular set Σ ⊆ Γ, we analyze the Morse

theory of F |Γ\Σ.

Lemma 3.2.6. The critical points of F |Γ\Σ are degenerate pentagons.

Proof. The proof is by Lagrange multipliers. We solve the more complicated

system when γ is contained in a wall. The case when γ is not contained in a wall

is handled in the proof of Lemma 11 of [18]. Without loss, γ is contained in I3,5.
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The critical points of F |Γ\Σ coincide with those of F̃ : R4 → R, F̃ (θ1, . . . , θ4, r4) =∑4
i=1 ri cos θi subject to the constraints g(θ1, . . . θ4, r5) =

∑4
i=1 L(r5) sin θi = 0 =

f(θ1, . . . , θ4, r5), where f is as in the proof of Lemma 3.2.4. Applying Lagrange

multipliers,

dF̃ = λ1dg + λ2df = λ1dg + λ2(dr5 − dF̃ ).

If λ2 = −1, then

dr5 = λ1dg = λ1

(
4∑
i=1

L′i sin θi

)
dr5 + λ1

4∑
i=1

Li(r5) cos θidθi,

implying cos θi = 0 for all i. But then F (θ1, . . . , θ4, r5) = 0, an impossibility since

γ lies in an interior wall. We conclude that λ2 6= −1, and

dF̃ =
λ1

1 + λ2

dg = λdg.

We now have the reduced system

(
4∑
i=1

L′i cos θi

)
dr5 −

4∑
i=1

Li(r5) sin θidθi

= λ

(
4∑
i=1

L′i sin θi

)
dr5 + λ

4∑
i=1

Li(r5) cos θidθi

Equating the dθi yields

tan θi = −λ,

for all i. Therefore, for all i, j ∈ [4], either θi = θj or θi − θj = ±π, and a critical

point of F |Γ\Σ is contained in a line.

We are ready to prove our key lemma that will allow us to determine the home-

omorphism types of the non-smooth moduli spaces of pentagons.

Lemma 3.2.7. Let C− and C+ be two d-cells, 1 ≤ d ≤ 4, lying in the common

intersection of (4−d)−many walls satisfying T = C−∩C+ is a (4−d−1)-cell lying

the in the wall of signature ε. Let γ(r0
5−ε, r0

5 +ε)→ D5 as defined above be a path
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with γ(r0
5 − ε, r0

5) ⊆ relintC−, γ(r0
5, r

0
5 + ε) ⊆ relintC+, and γ(r0

5) ∈ relintT . Let

N1, . . . , Nd ⊆ Γ be given so that Γ\N , where N = ∪iNi, is smooth. Then F |Γ\N

has a nondegenerate critical point P ∈ Mγ(r05). Moreover, if f is the number of

positive entries in ε, and v = γ′, then the Morse index of F |Γ\N at P is

4− f if v · ε > 0

f − 1 if v · ε < 0.

Proof. There is a unique degenerate pentagon P ∈ Mγ(r05) with angle vector

θ = (θ1, . . . , θ5) satisfying ε = (cos θ1, . . . , cos θ5). We show this critical point

is nondegenerate. Near P we have in coordinates

F |Γ =
3∑
i=1

Li(r5) cos θi + ε4

√√√√L4(r5)2 −

(
3∑
i=1

Li(r5) sin θi

)2

.

But r5 = F |Γ, so we implicitly differentiate to find

∂2F |Γ/∂θi∂θj(P ) =
4∑

k=1

L′kεk∂
2F |Γ/∂θi∂θj(P )− δi,jεiLi(r0

5)

− ε4
εjLj(r

0
5)εiLi(r

0
5)

L4(r0
5)

.

Since γ does not lie in the wall of signature ε, the velocity v = (L′1, . . . , L
′
4, 1) of γ

satisfies
4∑
i=1

εiL
′
i − 1 = v · ε 6= 0.

If (R1, . . . , R5) = γ(r0
5), we find the Jacobian matrix

∂2F |Γ/∂θi∂θj(P ) =
ε4

R4(v · ε)


ε1ε4R1R4 +R2

1 ε1ε2R1R2 ε1ε3R1R3

ε1ε2R1R2 ε2ε4R2R4 +R2
2 ε2ε3R2R3

ε1ε3R1R3 ε2ε3R2R3 ε3ε4R3R4 +R2
3

 ,
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with determinant

det ∂2F |Γ/∂θi∂θj(P ) =
ε1ε2ε3ε4R1R2R3

∑4
i=1 εiRi

R4(v · ε)3

= −ε1ε2ε3ε4ε5R1R2R3R5

R4(v · ε)3
.

Let f be the number of positive entries in the signature ε. We wish to show that

(v · ε)∂2F |Γ/∂θi∂θj(P ) has f − 1 positive eigenvalues. Write

A = (v · ε)∂2F |Γ/∂θi∂θj(P ).

Then we may decompose A into

A =
ε4
R4


ε1R1

ε2R2

ε3R3


(
ε1R1 ε2R2 ε3R3

)
+ diag

(
ε1R1 ε2R2 ε3R3

)
= H + P

where H and P are both Hermitian matrices. The eigenvalues of H are

ε4
R4

(
R2

1 +R2
2 +R2

3

)
, 0, 0,

and the eigenvalues of P are εiRi for i ∈ [3]. Denote by h1 ≥ h2 ≥ h3 the

spectrum of H, and by p1 ≥ p2 ≥ p3 the spectrum of P . We analyze the spectrum

a1 ≥ a2 ≥ a3 of A by cases. The key ingredient are Weyl’s inequalities which state

that if

j + k − 3 ≥ i ≥ r + s− 1,

then

hj + pk ≤ ai ≤ hr + ps.

For a discussion of Weyl’s inequalities, including proof, see [5].

Case 1. Suppose f = 1. Then hi, pi ≥ 0 for all i, so Weyl’s inequalities imply
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A has only positive eigenvalues.

Case 2. Suppose f = 2. Then by relabelling we may assume h3 < 0 and pi > 0

for all i. Since P is positive definite, Weyl’s inequalities imply a1, a2 >

0. To see that a3 < 0 note the determinant of A

detA = −ε1ε2ε3ε4ε5R1R2R3R5

R4

< 0.

Case 3. Suppose f = 3. By relabelling, assume h3, p3 < 0. Then Weyl’s in-

equalities gives

a1 ≥ h2 + p2 > 0.

To see that a2, a3 < 0, note the determinant of A

detA = −ε1ε2ε3ε4ε5R1R2R3R5

R4

> 0.

Case 4. Suppose f = 4. By relabelling, assume pi < 0 for all i. Since P is

negative definite, Weyl’s inequalities imply a2, a3 < 0. Finally, to see

that a1 < 0, we appeal to the determinant of A

detA = −ε1ε2ε3ε4ε5R1R2R3R5

R4

< 0.

3.3. The homeomorphism types of non-smooth moduli

spaces of pentagons

Before we begin our computations, let us first make a key simplifying observation.

Let r = (r1, . . . , rn) ∈ Dn. Then we may identifyMr with

Mr =
{(
r1e

iθ1 , . . . , rne
iθn
)
∈ Cn |

∑
rje

iθj = 0
}
/SO(2),
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where SO(2) is acting diagonally. In light of the commutativity of addition in C,

we see that if σ ∈ Sn is a permutation, and r̂ = (rσ(1), . . . , rσ(n)), then we have a

homeomorphismMr
∼=Mr̂. Thus, we have proved

Lemma 3.3.1. Let the symmetric group Sn act on Dn by coordinate permutation.

ThenMr
∼=Mr̂ (homeomorphism) for r and r̂ in a common orbit of this action.

Definition 3.3.2. If C and C ′ are d-cells in Dn that lie in a common orbit of the

coordinate permutation action, then we say C and C ′ have the same combinatorial

type.

In light of Lemma 3.3.1, to classify the homeomorphism types of non-smooth

moduli spaces of polygons, we need only identify the topological type of one cell

from each combinatorial type.

As a first step to understanding the topology of the non-smooth moduli spaces

of pentagons, we must first understand how the smooth manifolds found by Kap-

povich and Millson in Theorem 2.3.11 relate to the 4-cells in D5. The calculations

below are substantially those found in [18], but translated into our notation for

the chambers of D5.

Ci
0: These chambers are adjacent to the boundary wall ri =

∑
j 6=i rj. On this wall,

the moduli space is a point corresponding to the pentagon that is a straight

line segment of length 1/2. This point is the location of a local maximum of

the Morse function r5, so Ci
0 has the topological type of a sphere S2.

Ci,j
1 : By the symmetry of D5 we may assume that j = 5. Then Ci,j

1 is adjacent

to Ci
0 across the wall −ri − r5 +

∑
j 6=i,5 rj = 0. Moreover, Ci

0 lies in the

lower half-space ri + r5 >
∑

j 6=i,5 rj, so the topological type of Ci,j
1 is that

of a sphere S2 with a handle S2 × D1 attached. Therefore Ci,j
1 has the

topological type of a torus Σ1.

Ci,j
1,1: The barycenter of Ci,j

1,1 is ri = rj = 1/20 and rk = 3/10 for k 6= i, j. Then

the rk satisfy the “three long edges” condition of Proposition 2.3.8, so the
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topological type of Ci,j
1,1 is that of a disjoint union of tori Σ1

⊔
Σ1.

Ci,j,k
2 : Without loss, assume i, j, k 6= 5. Then Ci,j,k

2 is adjacent to Ci,`
1 , ` /∈

{i, j, k, 5}, across the wall −ri − r5 +
∑

j 6=i,5 rj = 0. Again, Ci,`
1 lies in

the lower half-space ri + r5 >
∑

j 6=i,5 rj, so the topological type of Ci,j,k
2 is

that of a torus Σ1 with a handle S2 ×D1 attached. Therefore Ci,j,k
2 has the

topological type of a genus 2 surface Σ2.

Ci,j
3 : Without loss, assume i, j 6= 5. Then Ci,j

3 is adjacent to Ci,j,5
2 across the

wall −ri − r5 +
∑

j 6=i,5 rj = 0. Once again, Ci,j,5
2 lies in the lower half-space

ri + r5 >
∑

j 6=i,5 rj, so the topological type of Ci,j
3 is that of the surface Σ2

with a handle S2 ×D1 attached. Therefore Ci,j
3 has the topological type of

a genus 3 surface Σ3.

C4: Notice that C4 is adjacent to C1,5
3 across the wall −r1 + r2 + r3 + r4− r5 = 0.

Since C1,5
3 lies in the lower half-space r1 + r5 > r2 + r3 + r4, we find the

topological type of C4 to be that of a surface Σ3 with a handle S2 × D1

attached. We conclude that C4 has the topological type of a genus 4 surface

Σ4.

The remainder of this chapter is dedicated to the proof of Theorem 1.1.6. We

organize our work by the dimension of the cells.

3.3.1. 3-cells

Every interior 3-cell lies in the intersection of two adjacent 4-cells. Thus the

topological type of the 3-cells is given by the intermediate step of a Morse surgery

as detailed in Theorem 2.2.14. There are five different combinatorial types of

3-cells. We deal with each individually.

conv {hi,j, hi,k, hi,`, ti}: This cell lies in the intersection Ci
0 ∩ C

i,m
1 where m /∈

{i, j, k, `}. Thus the topological type of this cell is that of sphere with two
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discs removed, and a cone formed over the resulting boundary. Equivalently,

the topological type of this cell is a sphere with two points identified Σ0,1.

conv {hi,j, hi,k, q`, ti} , ` /∈ {i, j, k}: This cell lies in the intersection Ci,`
1 ∩ C

i,j,k
2 .

Thus the topological type of this cell is that of a torus Σ1 with two points

identified Σ1,1.

conv {hi,j, hi,k, q`, qm} , `,m /∈ {i, j, k}: This cell lies in the intersection C`,m
1,1 ∩

Ci,j,k
2 . Without loss, assume that j = 5. Then C`,m

1,1 and Ci,j,k
2 are sepa-

rated by the wall −rk − r5 +
∑

i 6=k,5 ri = 0. Moreover C`,m
1,1 lies in the lower

half-space rk +r5 >
∑

i 6=k,5. Thus the topological type of the 3-cell presently

considered is that of a disjoint union of two tori with a pair of points iden-

tified. Moreover, the space must be connected since the topological type of

Ci,j,k
2 is connected. Therefore the topological type of the intermediate 3-cell

is Σ1 ∨ Σ1.

conv {hi,j, qk, q`, ti} , k, `, /∈ {i, j}: This cell lies in the intersection Ci,j,m
2 ∩ Ci,j

3

where m /∈ {i, j, k, `}. Thus the topological type of this cell is that of Σ2

with two points identified Σ2,1.

conv {qi, qj, qk, t`, tm} , `,m /∈ {i, j, k}: This cell lies in the intersection C`,m
3 ∩C4.

Thus the topological type of this cell is that of Σ3 with two points identified

Σ3,1.

3.3.2. 2-cells

Note that every d-cell, d ≤ 3 is contained in some wall Ij,k. Since all internal walls

of D5 are of the same combinatorial type, by Lemma 3.3.1 it suffices to classify the

topologies of the cells that lie in a specific wall. Consider the wall I3,5 displayed

in an “exploded” view in Figure 3.1. The wall contains three tetrahedra in a ring

around the perimeter. The top and bottom sections are volcano shaped, composed

of of six tetrahedra in a ring around a base tetrahedron. The very center of the
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Figure 3.1.: The wall I3,5. The blue plane is the intersection I4,5 ∩ I3,5.

wall is a single 3-cell composed of two tetrahedra glued together across a common

face. Moreover, very 2-cell in the interior of I3,5 has the combinatorial type of a

2-cell in I4,5 ∩ I3,5. We compute the combinatorial type of such 2-cells.

conv {h1,5, h2,5, t5}: This cell lies in the intersection of C = conv {h1,5, h2,5, t5, q4}

and C ′ = conv {h1,5, h2,5, t5, h4,5}. The barycenter of C is c = (11, 11, 5, 2, 19)/48,

and the barycenter of C ′ is c′ = (8, 8, 2, 8, 22)/48. Let γ be the straight line

path starting at c and ending at c′ with γ′ = (−1,−1,−1, 2, 1). The wall

I4,5 between C and C ′ has signature ε = (1, 1, 1,−1,−1), and

γ′ · ε = −6 < 0,

so by Lemma 3.2.7 the topological type of C is obtained from C ′ by an index

2 surgery. Therefore the topological type of the 2-cell in question is obtained

from Σ0,1 by identifying a pair of points to form Σ0,2.
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conv{h2,5, q1, t5}: This cell lies in the intersection of C = conv{h2,5, q1, t5, q4} and

C ′ = conv{h2,5, q1, t5, h4,5}. The barycenter of C is c = (5, 14, 8, 5, 16)/48,

and the barycenter of C ′ is c′ = (2, 11, 5, 11, 19)/48. Let γ be the straight line

path starting at c and ending at c′ with γ′ = (−1,−1,−1, 2, 1). Again, the

wall I4,5 between C and C ′ has signature ε = (1, 1, 1,−1,−1), so γ′ · ε < 0.

Thus the topological type of C is obtained from C ′ by an index 2 surgery.

Since the topological type of C ′ is Σ1,1 we find the topological type of our

2-cell to be Σ1,2.

conv{h3,4, q1, q2}: This cell lies in the intersection of C = conv{h3,4, q1, q2, t3} and

C ′ = conv{h3,4, q1, q2, h4,5}. The barycenter of C is c = (5, 5, 16, 14, 8)/48,

and the barycenter of C ′ is c′ = (3, 3, 12, 18, 12)/48. Let γ be the straight

line path starting at c and ending at c′ with γ′ = (−1,−1,−2, 2, 2). The wall

between C and C ′ agin has signature ε = (1, 1, 1,−1,−1), so γ′ · ε < 0. We

find the topological type of C to be obtained from C ′ by an index 2 surgery.

Now the topological type of C ′ is Σ1 ∨ Σ1, while the topological type of C

is Σ2,1. Therefore the surgery operation must be to delete a disc from each

factor of Σ1 in the wedge sum that forms C ′, and sew in a handle S1 ×D2.

Our 2-cell of interest must therefore have the topological type Σ1 ∨2 Σ1.

conv{q1, q2, t5}: This cell lies in the intersection of C = conv{q1, q2, t5, q4, t3} and

C ′ = conv{q1, q2, t5, h4,5}. The barycenter of C is c = (8, 8, 12, 8, 12)/48 and

the barycenter of C ′ is c′ = (5, 5, 8, 14, 16)/48. Let γ be the straight line

path starting at c and ending at c′ with γ′ = (−3,−3,−4, 6, 4). Letting ε

be the signature of I4,5 we find that γ′ · ε < 0. We find the topological type

of C to be obtained from C ′ by an index 2 surgery, whence the topological

type of our 2-cell of interest is Σ2,2.
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3.3.3. 1-cells

All interior 1-cells of D5 have the combinatorial type of a 1-cell lying in the inter-

section I3,5 ∩ I4,5. Two of those 1-cells lie in the intersection I2,5 ∩ I3,5 ∩ I4,5. We

first consider those cells.

conv{h1,5, t5}: This 1-cell lies in the intersection of the 2-cells C = conv{h1,5, t5, q2}

and C ′ = conv{h1,5, t5, h2,5}. The barycenter of C is c = (11, 2, 5, 5, 13)/36,

and the barycenter of C ′ is c′ = (8, 8, 2, 2, 16)/36. Let γ be the line segment

from c to c′ with velocity γ′ = (−3, 5,−3,−3, 3). The signature of the wall

separating C from C ′ is ε = (1,−1, 1, 1,−1), and

γ′ · ε = −17 < 0,

so by Lemma 3.2.7, the topological type of C is obtained from C ′ by an

index 2 surgery. Thus the topological type of our 1-cell of interest is formed

from Σ0,2 by deleting 2 discs and coning over the boundary, resulting in the

topology Σ0,2.

conv{q1, t5}: This 1-cell lies in the intersection of the 2-cells C = conv{q1, t5, q2}

and C ′ = conv{q1, t5, h2,5}. The barycenter of C is c = (5, 5, 8, 8, 10)/36, and

the barycenter of C ′ is c′ = (2, 11, 5, 5, 13)/36. Let γ be the line segment

from c to c′ with velocity γ′ = (−3, 6,−3,−3, 3). Again, we have γ′ · ε < 0,

where ε is the signature of the wall I2,5. So the topological type of C is

obtained from C ′ by an index 2 surgery. Thus the topological type of our

1-cell of interest is formed from Σ1,2 by deleting two discs and coning over

the boundary, resulting in the topology Σ1,3.

The final combinatorial type of a 1-cell has a representative lying in the intersection

of walls I3,4 ∩ I3,5 ∩ I4,5.

conv{q1, q2}: This 1-cell lies in the intersection of the 2-cells C = conv{q1,q2, h3,4}

and C ′ = conv{q1, q2, t5}. The barycenter of C is c = (3, 3, 12, 12, 6)/36,
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and the barycenter of C ′ is c′ = (5, 5, 8, 8, 10)/36. Let γ be the line segment

from c to c′ with velocity γ′ = (1, 1,−2,−2, 2). The signature of the wall I3,4

separating C an C ′ is ε = (−1,−1, 1, 1,−1), so γ′ · ε < 0. Again we have the

topological type of C is obtained from C ′ by an index 1 surgery. Now the

topological type of C is Σ1∨2 Σ1, and the topological type of C ′ is Σ2,2. Thus

the surgery operation must be to first delete the neighborhood of an essential

loop in Σ2,2 that is homologically trivial, to form (Σ1\D1)∨2(Σ1\D1). Coning

over the resulting boundary gives the topological type of our 1-cell of interest

to be Σ1 ∨3 Σ1.

3.3.4. 0-cell

Up to combinatorial type, there is a unique 0-cell in the interior of D5. A

representative of this combinatorial type is t5. Now t5 lies in the intersection

I1,5 ∩ I2,5 ∩ I3,5 ∩ I4,5. Let C = conv{q1, t5} and C ′ = conv{h1,5, t5}. Let γ be the

line segment from C to C ′ with velocity γ′ = (1,−2,−2,−2, 2). At t5, γ crosses the

wall I1,5 of signature ε = (−1, 1, 1, 1,−1). Therefore γ′ · ε < 0, and the topological

type of C is obtained from C ′ by a surgery of index 2. Since the topological type

of C ′ is Σ0,2, we conclude that the topological type of t5 is Σ0,3. This concludes

the proof of Theorem 1.1.6, and this chapter.



59

4. Bounding the number of diffeomorphism types of higher

dimensional, smooth moduli spaces of polygons

In light of Chapter 3, it is now apparent that the polytopal complex structure ofDn

contains far more (n− 1)-cells than are necessary to describe the diffeomorphism

types of moduli spaces of n-gons. For example, the computation in Lemma 3.0.1

shows there are 76 4-cells in D5, yet there are only six different diffeomorphism

types possible for a smooth moduli space of pentagons. The main idea of this

chapter is to mod out by the action of the symmetric group on Dn to find a smaller

complex that contains exactly one top dimensional cell for each combinatorial type.

We will then be able to prove Theorem 1.1.7.

Theorem 1.1.7. Let tn denote the number of distinct (up to diffeomorphism)

maximal-dimensional, smooth manifolds that arise as a moduli space of n-gons.

Then we have the following bounds:

t6 ≤ 20, t7 ≤ 134, t8 ≤ 2469.

Remark 4.0.1. If r = (r1, . . . , rn) has ri = 0 for some i, then let

r̂i = (r1, . . . , ri−1, ri+1, . . . , rn) ∈ Rn−1

denote the vector r with its i-th coordinate deleted. Then Mr
∼= Mr̂i can be

viewed as a moduli space of (n − 1)-gons. Thus by insisting that tn only count

the maximal dimensional manifolds, we insist that tn only counts the new diffeo-

morphism types that arise when moving from a moduli space of (n − 1)-gons to
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n-gons.

Now recall that multiplication r 7→ λr, r ∈ Rn, λ ∈ R>0, induces a diffeomor-

phismMr
∼=Mλr. Thus we may remove the equation r1 + · · ·+ rn = 1 from the

computation of Dn at the price that Dn is no longer a compact polytopal complex.

Throughout the rest of this chapter we make that simplification. Combinatorially,

this simplification simply moves every cell in Dn up a dimension, and creates a

single vertex at the origin. Such an object is referred to in the literature as a

polyhedral fan [6].

Let us now concretely state the action of Sn on Dn. Throughout this chapter,

the Sn action on Dn will refer to the action

(r1, . . . , rn) 7→ (rσ(1), . . . , rσ(n))

for r = (r1, . . . , rn) ∈ Dn, σ ∈ Sn. It is immediately apparent that this satisfies

the axioms of a left group action on a set, namely (i) 1 · r = r for the identity

1 ∈ Sn and any r ∈ Dn, and (ii)

(σ1σ2) · r = (rσ1σ2(1), . . . , rσ1σ2(n)) = (rσ1(σ2(1)), . . . , rσ1(σ2(n))) = σ1 · (σ2 · r)

for σ1, σ2 ∈ Sn, r ∈ Dn. Moreover, the Sn action on Dn is cellular, i.e., if C ⊆ Dn

is a d-cell, then σC ⊆ Dn is a d-cell for all σ ∈ Sn.

4.1. Constructing a fundamental region in Dn

It is well known that the symmetric group is generated by transpositions. When

acting on Rn by coordinate permutation, a transposition of the i-th and j-th

coordinate acts as a reflection of Rn through the hyperplane xi = xj. Thus we can

study the structure of Dn/Sn using the language of finite reflection groups [7].

Definition 4.1.1. Let X be a subset of a finite dimensional vector space V in-
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variant under a finite group G acting on V by reflections. We call a set F ⊆ X a

fundamental region provided

1. F is relatively open in X.

2. F ∩ TF = ∅ if 1 6= T ∈ G.

3. X = ∪
{
TF ∩X | T ∈ G

}
.

Lemma 4.1.2. The inequalities

0 < r1 < · · · < rn <
n−1∑
i=1

ri

define a fundamental region F ⊆ Dn for the Sn-action on Dn.

Proof. First we recall the defining equations of the boundary of Dn. For r ∈ Rn,

we have r ∈ Dn if and only if both

ri ≥ 0, for all i

rj ≤
1

2

n∑
i=1

ri, for all j.

It is apparent that F satisfies the first condition, and adding rn to the final inequal-

ity defining F yields 2rn <
∑n

i=1 ri, so F ⊆ Dn as claimed. Since all inequalities are

not strict, F is open in Dn. Consider a cycle s = (s1 · · · sj) ∈ Sn, s1, . . . , sj ∈ [n].

We can cyclically permute s to ensure that s1 < sk for all k ∈ {2, . . . , j}. Let

r ∈ F . Then writing

s · r = r′ ∈ Dn

we see that

r′s1 = rs2 > rs1 = r′sj .

Since s1 < sj we have r′ /∈ F . As any element of Sn is a product of disjoint cycles,

we have proved that F ∩ TF = ∅, provided T is not the identity of Sn. Finally,
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consider any σ ∈ Sn. Then σF is defined by the inequalities

0 ≤ rσ(1) ≤ · · · ≤ rσ(n) ≤
∑
i 6=σ(n)

ri.

Since, for any r ∈ Dn, we my find a permutation coordinate permutation ψ ∈ Sn

so that the components of ψ · r are non-decreasing, we conclude that r ∈ ψ−1F .

This verifies the third axiom of the definition of a fundamental region, and the

proof is completed.

We now define D̃n = F̄ to be the fundamental complex in Dn. The polytopal

complex structure of D̃n is induced by cutting the polytope F̄ with the singular

set Σ of Dn.

Now it turns out F satisfies a stronger condition than that the union of the

closures of its images cover X. Notice that the boundary ∂(σF ) ⊆ Σ ⊆ Dn is

contained in the singular set of Dn. But Σ is formed from an intersection of a

union of hyperplanes with Dn, and, since Dn is n-dimensional, Σ is nowhere dense

in Dn. Therefore, the orbit of F under the Sn action is in fact dense in Dn.

Corollary 4.1.3. Let C ⊆ Dn be an n-cell. Then there is a σ ∈ Sn and exactly

one n-cell C̃ ⊆ D̃n such that

relint C̃ = relint
(

(σC) ∩ D̃n

)
.

Proof. Since the orbit of F in Dn is dense, there is a σ ∈ Sn such that (σC)∩D̃n 6=

∅. Moreover, since the Sn action is cellular, we have σC = C ′ for some n-cell in

Dn. Defining the n-cell C̃ = C ′ ∩ D̃n, we have

(σC) ∩ D̃n = C̃.

Now suppose that ψC = C ′′. Then C ′ and C ′′ lie in the same orbit under the Sn

action, so there is an η ∈ Sn so that ηC ′′ = C ′. We conclude that if C ′′ 6= C ′,
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then relint
(
C ′′ ∩ D̃n

)
= ∅. To see this, notice that C ′′ 6= C ′ implies η is not the

identity. By the second axiom of fundamental regions,

∅ = F ∩
(
η−1(relintC ′)

)
= F ∩ C ′′ = relint

(
C ′′ ∩ D̃n

)
.

The consequence of Corollary 4.1.3 is that the n-cells in the fundamental com-

plex D̃n are in one-to-one correspondence with the orbits of the n-cells in Dn.

Remark 4.1.4. The same cannot be said for lower dimensional cells. The bound-

ary ∂D̃n contains cells with essential supporting hyperplanes of the form ri = rj.

These hyperplanes are not members of the singular set Σ of Dn, hence the cells

in D̃n they support may or may not correspond to a cell in Dn. More careful

analysis is required to obtain information about the lower dimensional cells of Dn

from those of D̃n.

4.2. Computing the chambers of D̃n

Realizing that the n-cells of D̃n are in one-to-one correspondence with the com-

binatorial types of the n-cells in Dn, we now attempt to enumerate the n-cells of

D̃n. The cell enumeration is done algorithmically. The first step of the algorithm

is to identify an n-cell in D̃n.

Lemma 4.2.1. For n ≥ 3, let

I = {I ⊆ [n− 1] | ∅ 6= I 6= [n− 1]} .

For I ∈ I, define WI ⊆ Rn to be the half-space defined by the equation

xn +
∑
i∈I

xi ≥
∑

j∈[n−1]\I

xj.
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Then

C = D̃n ∩
⋂
I∈I

WI

is an n-cell in D̃n.

Proof. It suffices to find a point r ∈ Rn that solves each of the defining inequalities

of D̃n and WI for all I ∈ I without achieving equality. Such a point will have

a small neighborhood ball Bε(r) ⊆
◦
C contained in the interior of C, proving the

claim. Define

r =

(
1, 2, . . . , n− 1,

n(n− 1)− 1

2

)
∈ Rn.

Then r ∈
◦
D̃n since ri < rj for all i, j ∈ [n] with i < j, and

rn =
n(n− 1)− 1

2
<
n(n− 1)

2
=

n−1∑
i=1

i =
n−1∑
i=1

ri.

Let I ∈ I. It now suffices to show that r solves the defining equality ofWI without

achieving equality. To that end, we compute

r5 +
∑
i∈I

ri > r5 =
n(n− 1)− 1

2
>

n−1∑
i=2

ri ≥
∑

i∈[n−1]\I

ri,

where the final inequality follows since r1 is the minimum of {ri ∈ [n− 1]}.

We proceed to outline the steps of the algorithm here, and provide an imple-

mentation of the algorithm in SageMath 8.4 in Appendix B.

1. First we build the outer boundary of D̃n. This is done by solving the matrix
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inequality Ax ≥ 0, where x ∈ Rn, and

A =



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

... . . . 0 0

0 0 0 · · · −1 1

1 1 1 · · · 1 −1


.

Call this boundary polytope Bn.

2. Next we find the interior walls of Dn which cut the polytope found above.

Let Φ denote the set of these walls, collectively called the interior walls of

D̃n. Together these walls form the fundamental complex D̃n.

3. Let ε be the signature of a wall in Φ. There are two choices of ε. For each

W ∈ Φ, we specify the signature of W to be the one with εn = 1. Let W+

denote the upper half-space with this choice of signature. I.e., W+ is defined

by the inequality
∑n

i=1 εiri ≥ 0.

4. By Lemma 4.2.1, ⋂
W∈Φ

W+ ∩Bn

is an n-cell in D̃n.

5. A choice of half-spaces with boundary walls in Φ determines a cell in D̃n.

Let C be an n-cell in D̃n. Compute the minimal h-representation of C.

The essential supporting hyperplanes of this representation are either in Φ,

or they are boundary walls of D̃n. A neighbor of C across an (n − 1)-

cell is found by switching the half-space of exactly one essential supporting

hyperplane of C that lies in Φ.

6. Having found one n-cell C ⊆ D̃n, we recursively compute all neighbors across
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an (n− 1)-cell of C. We then compute the neighbors of the neighbors, and

so on.

7. This algorithm terminates due to the finiteness of the set Φ.

The output of the function “chambers(n)” defined in Appendix B is a pair [C,H],

where C is a list of all n-cells in D̃n, and H is a list of the half-spaces from

Φ that define each of these n-cells. By counting the size of C, we have proved

Theorem 1.1.7.

Remark 4.2.2. I ran the algorithm in Appendix B on a 2018 model MacBook

Pro. Computing “chambers(7)” required about 15 seconds. The runtime of “cham-

bers(8)” was under 3 hours. I allowed “chambers(9)” to run for several days, but

that wasn’t enough time for it to terminate.

4.3. The network of D̃n

We conclude this chapter by noting that D̃n has more information than simply

the number of cells. Suppose C and C ′ are adjacent across a wall W of signature

ε where εn = 1, with C ⊆ W+ and C ′ ⊆ W−. Then on a path from C to C ′ with

r1, . . . , rn−1 fixed that crosses C∩C ′ in the relative interior, rn decreases. Thus by

Theorem 2.3.10, the topological type of C ′ is obtained from C by a surgery. Let

f be the number of −1 entries in ε, and b be the number of +1 entries in ε. Then

the Morse index of the surgery is given by (f − 1, b− 1). We proceed to build the

adjacency graph of the n-cells of D̃n. We add a directed edge pointing from C to

C ′ labeled with the number of f − 1. We call this graph the network of D̃n. In

a sense the network of D̃n contains all of the information of the Morse theory of

the moduli space of n-gons. See Figures 4.1 and 4.2.

Now, the initial cell found in Lemma 4.2.1 is bounded by the hyperplane rn =

1
2

∑
i∈[n] ri. The for r contained in this hyperplane, Mr is a single point cor-

responding to a rigid line segment of length 1
2

∑
i∈[n] ri. Therefore, for r in the
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Figure 4.1.: The network of D̃5.

Figure 4.2.: The network of D̃6.
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initial cell of the network of D̃n,Mr
∼= Sn−3 is a sphere.

Next, consider an edge of D̃n labeled by n − 3. Then the topological type of

the head vertex of that edge is obtained from that of the tail by deleting a region

diffeomorphic to Dn−3 × S0 and sewing in a “handle” Sn−4 × D1. Consider the

effect of such a surgery on a sphere Sn−3. The first step of this surgery applied

to Sn−3 results in a handle Sn−4 × D1. We then double this handle across it’s

boundary. Assuming the resulting manifold is orientable, we obtain Sn−4 × S1.

Since we can always move this surgery into a region diffeomorphic to a disk, the

topological type of the head vertex of an edge labeled by n − 3 is obtained from

the tail by a connected sum with Sn−4 × S1.

Applying these results to the network of D̃6 in Figure 4.2, we obtain the following

theorem.

Theorem 4.3.1. There exist moduli spaces diffeomorphic to S3 and (S2 × S1)
#k

for 1 ≤ k ≤ 5.

Remark 4.3.2. After I completed the work of Section 4.3 I found that Hausmann,

through similar methods, had already obtained a handle description of all smooth

moduli spaces of hexagons. For completion I include his results here.

Theorem 4.3.3. [11] Let H = S2 × S1. The following table gives a complete list

of the diffeomorphism types realized as smooth moduli spaces of hexagons.

S3#H#k 0 ≤ k ≤ 5 Σ4 × S1

T 3#H#k 0 ≤ k ≤ 3 T 3
⊔
T 3

(Σ2 × S1) #H#k 0 ≤ k ≤ 2 (T 3#T 3) #H#k 0 ≤ k ≤ 2

(Σ3 × S1) #H#k 0 ≤ k ≤ 1
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5. Future work

Having completed a census of the crimped manifolds that arise as moduli spaces of

pentagons, it seems logical to consider the topology of non-smooth moduli spaces

of hexagons. The key problem is that there are degenerate hexagons at which the

Morse index of the final edge length function is (2, 2).When performing a Morse

surgery of such index, the singularity that arises is a cone over a torus C(T 2).

Unlike the surgeries performed on the moduli spaces of pentagons, the topology

of the singular space depends on how the removed solid torus was embedded

in the initial manifold. Relevant questions are: is the torus knotted? Is the

midline of the torus contractible in the ambient manifold? Though Hausmann

[11] computed all of the smooth topologies for the moduli spaces of hexagons,

he did not apply any index (2, 2) surgeries. For example, comparing his list in

Theorem 4.3.3 to the network of D̃6 in Figure 4.2, apparently there is a moduli

spaceMr
∼= (S2×S1)#(S2×S1) and anotherMr′

∼= T 3 such thatMr′ is obtained

from Mr by removing a solid torus, and gluing another solid torus in its place.

How can this torus be identified?

A promising line of reasoning is indicated by Panina [29]. She developed a

CW-structure on Mr which we describe here. Let r = (r1, . . . , rn) ∈ Rn
>0. Let

s ⊆ [n]. We call s short provided
∑

i∈s ri <
1
2

∑
j∈[n] rj. A label is a cyclic ordering

(s1, . . . , sk) such that ∪si = [n] and si ∩ sj = ∅ if i 6= j. We consider all cyclic

permutations of a label to be the same. Also the ordering of the objects with each

of the si is not considered.
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Example 5.0.1. Let n = 4. Then, as labels,

({1}, {2}, {3, 4}) = ({2}, {3, 4}, {1}) = ({2}, {4, 3}, {1}) 6= ({4, 3}, {2}, {1}).

For a label ` = (s1, . . . , sk), we call one the si a part of `. We call a label

admissible if all of its parts are short. We call a label `′ a refinement of ` if `′ can

be obtained by subdividing one or more of the parts of `.

Example 5.0.2. Consider the label of ` = ({1}, {2, 3}, {4, 5}). Then

({1}, {2}, {3}, {5}, {4})

is a refinement of `, but ({2}, {1}, {3}, {4, 5}) is not a refinement of `.

In this language we have the following CW-structure onMr.

Theorem 5.0.3. [29] Let r ∈ Dn be generic, i.e., r does not lie on a wall. Then

there is a CW-structure K(r) onMr produced as follows.

1. The d-cells of K(r) are admissible labels containing (d+ 3)-many nonempty

parts.

2. A closed cell C ′ lies in the boundary of C if and only if C is a refinement of

C ′.

To simplify notation, let us remove the set braces from the label, and insert

bars between the disparate sets. E.g., we will write

({1, 2}, {3}, {4}) = (1, 2 | 3 | 4).

Example 5.0.4. Consider Mr for r = (1, 2, 3, 5). The following are the only
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(1 | 4 | 2, 3)

(1, 3 | 4 | 2)(1, 2 | 3 | 4)

(1 | 2, 3 | 4)

(1, 3 | 2 | 4) (1, 2 | 4 | 3)

(1 | 4 | 2 | 3)

(1 | 3 | 4 | 2)

(1 | 2 | 3 | 4)

(1 | 3 | 2 | 4)

(1 | 2 | 4 | 3)

(1 | 4 | 3 | 2)

Figure 5.1.: The CW-structure forMr, r = (1, 2, 3, 5).

(1, 3 | 4 | 2)(1, 2 | 3 | 4)

(1, 4 | 2 | 3)

(1 | 3 | 4 | 2)

(1 | 2 | 3 | 4) (1 | 4 | 2 | 3)

(1, 4 | 3 | 2)

(1, 3 | 2 | 4) (1, 2 | 4 | 3)

(1 | 4 | 3 | 2)(1 | 3 | 2 | 4)

(1 | 2 | 4 | 3)

Figure 5.2.: The CW-structure forMr, r = (1, 2, 3, 3).

admissible labels of K(r) containing 3 parts:

(1, 2 | 3 | 4) (1, 2 | 4 | 3)

(1, 3 | 2 | 4) (1, 3 | 4 | 2)

(1 | 2, 3 | 4) (1 | 4 | 2, 3).

We have drawn a representation of the complex K(r) in Figure 5.1.

Example 5.0.5. Consider Mr for r = (1, 2, 3, 3). The following are the only
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admissible labels of K(r) containing 3 parts:

(1, 2 | 3 | 4) (1, 2 | 4 | 3)

(1, 3 | 2 | 4) (1, 3 | 4 | 2)

(1, 4 | 2 | 3) (1, 4 | 3 | 2).

We have drawn a representation of the complex K(r) in Figure 5.2.

Notice the complexes in Examples 5.0.4 and 5.0.5 only differ in one set of vertex

labels. Moreover, the topology of the complex in Example 5.0.5 is obtained from

that of Example 5.0.4 by removing a small neighborhood of the non-common label,

and inserting a new label. Is there an analogous procedure that can be performed

on moduli spaces of hexagons that differ by a (2, 2)-surgery? Can this process be

automated from information contained in the network of D̃6?
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A. Computing 4-cells and vertices of D5

The following code was run in SageMath 8.4 to find all 4-cells and vertices in the

polytopal complex D5.

index = cartes ian_product ( [

GF(2 ) ,GF(2 ) ,GF(2 ) ,GF(2 ) ,GF(2 ) ,

GF(2 ) ,GF(2 ) ,GF(2 ) ,GF(2 ) ,GF(2)

] )

I = matrix . i d e n t i t y (5 )

b = matrix ( [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ] )

b = b . t ranspose ( )

A = matrix ( [

[1 ,1 ,1 ,−1 ,−1] ,

[1 ,1 ,−1 ,1 ,−1] ,

[1 ,−1 ,1 ,1 ,−1] ,

[−1 ,1 ,1 ,1 ,−1] ,

[1 ,1 ,−1 ,−1 ,1 ] ,

[1 ,−1 ,1 ,−1 ,1 ] ,

[−1 ,1 ,1 ,−1 ,1 ] ,

[1 ,−1 ,−1 ,1 ,1 ] ,

[−1 ,1 ,−1 ,1 ,1 ] ,

[−1 ,−1 ,1 ,1 ,1 ] ,

[ 1 , 1 , 1 , 1 , 1 ] ,

[−1,−1,−1,−1,−1]

] )
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A = A. stack (−2∗ I )

A = A. stack ( I )

Ce l l s = [ ]

Verts = [ ]

for x in index :

C = copy (A)

for i in range ( len ( x ) ) :

C[ i ] = (−1)^x [ i ]∗C[ i ]

C = b . augment (C)

P = Polyhedron ( i e q s = C)

i f P. dim ( ) == 4 :

Ce l l s . append (P)

Q = P. v e r t i c e s_ l i s t ( )

for i in range ( len (Q) ) :

i f not Q[ i ] in Verts :

Verts . append (Q[ i ] )

for i in range ( len ( Ce l l s ) ) :

print ’ Ce l l ’ , i

print ( Ce l l s [ i ] . ve r t i ce s_matr ix ( ) ) . t ranspose ( )

print ’ \n ’

print ’ L i s t ␣ o f ␣ v e r t i c e s ’

print matrix ( Verts )
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The result of running this code follows.

Ce l l 0

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 0 1/4 1/4 1/4 ]

[1/4 1/4 0 1/4 1/4 ]

[1/4 1/4 1/4 0 1/4 ]

[1/3 1/6 1/6 1/6 1/6 ]

[1/6 1/3 1/6 1/6 1/6 ]

[1/4 1/4 1/4 1/4 0 ]

[1/6 1/6 1/3 1/6 1/6 ]

[1/6 1/6 1/6 1/3 1/6 ]

Ce l l 1

[1/2 1/2 0 0 0 ]

[1/4 1/4 0 1/4 1/4 ]

[1/4 1/4 1/4 0 1/4 ]

[1/6 1/3 1/6 1/6 1/6 ]

[1/3 1/6 1/6 1/6 1/6 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 2

[1/6 1/6 1/3 1/6 1/6 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/4 1/4 1/4 1/4 0 ]

[1/3 1/6 1/6 1/6 1/6 ]

Ce l l 3

[1/2 1/2 0 0 0 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/4 1/4 1/4 1/4 0 ]

[1/3 1/6 1/6 1/6 1/6 ]

Ce l l 4

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/4 1/4 1/4 1/4 0 ]

[1/6 1/3 1/6 1/6 1/6 ]

Ce l l 5

[1/2 1/2 0 0 0 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/4 1/4 1/4 1/4 0 ]

[1/6 1/3 1/6 1/6 1/6 ]

Ce l l 6

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 1/4 0 ]
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Ce l l 7

[1/4 1/4 1/4 1/4 0 ]

[ 0 1/2 1/2 0 0 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/2 1/2 0 0 0 ]

Ce l l 8

[1/6 1/6 1/6 1/3 1/6 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

[1/4 1/4 1/4 1/4 0 ]

[1/3 1/6 1/6 1/6 1/6 ]

Ce l l 9

[1/2 1/2 0 0 0 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

[1/4 1/4 1/4 1/4 0 ]

[1/3 1/6 1/6 1/6 1/6 ]

Ce l l 10

[1/3 1/6 1/6 1/6 1/6 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 1/4 1/4 0 ]

[1/2 0 1/2 0 0 ]

Ce l l 11

[1/3 1/6 1/6 1/6 1/6 ]

[1/2 0 0 1/2 0 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 1/4 0 ]

[1/2 1/2 0 0 0 ]

Ce l l 12

[1/6 1/6 1/6 1/3 1/6 ]

[1/4 1/4 0 1/4 1/4 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 0 1/2 0 ]

[1/4 1/4 1/4 1/4 0 ]

[1/6 1/3 1/6 1/6 1/6 ]

Ce l l 13

[1/4 1/4 1/4 1/4 0 ]

[ 0 1/2 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

[1/2 1/2 0 0 0 ]

[1/6 1/3 1/6 1/6 1/6 ]

Ce l l 14

[1/6 1/3 1/6 1/6 1/6 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 0 1/2 0 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 1/4 0 ]
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Ce l l 15

[1/6 1/3 1/6 1/6 1/6 ]

[ 0 1/2 0 1/2 0 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 1/4 0 ]

[1/2 1/2 0 0 0 ]

Ce l l 16

[1/6 1/6 1/6 1/3 1/6 ]

[1/4 1/4 0 1/4 1/4 ]

[ 0 1/2 0 1/2 0 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 17

[1/4 1/4 1/4 1/4 0 ]

[ 0 1/2 0 1/2 0 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

[1/2 1/2 0 0 0 ]

Ce l l 18

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 0 1/4 1/4 1/4 ]

[ 0 0 1/2 1/2 0 ]

[1/6 1/6 1/3 1/6 1/6 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 19

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 1/2 0 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 20

[ 0 1/4 1/4 1/4 1/4 ]

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 1/2 0 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 21

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 1/2 0 ]

[1/2 0 1/2 0 0 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 22

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 1/2 1/2 0 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 23

[1/4 1/4 1/4 1/4 0 ]

[ 0 0 1/2 1/2 0 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 1/2 0 ]

[1/2 0 1/2 0 0 ]
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Ce l l 24

[ 0 1/4 1/4 1/4 1/4 ]

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 1/2 1/2 0 ]

[ 0 1/2 0 1/2 0 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 25

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 1/4 1/4 1/4 0 ]

[ 0 0 1/2 1/2 0 ]

[ 0 1/2 0 1/2 0 ]

[ 0 1/2 1/2 0 0 ]

Ce l l 26

[1/6 1/6 1/6 1/3 1/6 ]

[1/2 0 0 1/2 0 ]

[ 0 0 1/2 1/2 0 ]

[ 0 1/2 0 1/2 0 ]

[1/4 1/4 1/4 1/4 0 ]

Ce l l 27

[1/6 1/6 1/6 1/6 1/3 ]

[1/4 1/4 0 1/4 1/4 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 1/4 0 1/4 ]

[1/3 1/6 1/6 1/6 1/6 ]

Ce l l 28

[1/4 1/4 1/4 0 1/4 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

[1/2 1/2 0 0 0 ]

[1/3 1/6 1/6 1/6 1/6 ]

Ce l l 29

[1/3 1/6 1/6 1/6 1/6 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 1/4 0 1/4 ]

[1/2 0 1/2 0 0 ]

Ce l l 30

[1/3 1/6 1/6 1/6 1/6 ]

[1/2 0 0 0 1/2 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/2 1/2 0 0 0 ]

Ce l l 31

[1/3 1/6 1/6 1/6 1/6 ]

[1/2 0 0 1/2 0 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 32

[1/3 1/6 1/6 1/6 1/6 ]

[1/2 0 0 0 1/2 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

[1/2 1/2 0 0 0 ]
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Ce l l 33

[1/3 1/6 1/6 1/6 1/6 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/2 0 0 1/2 0 ]

[1/2 0 1/2 0 0 ]

Ce l l 34

[1/3 1/6 1/6 1/6 1/6 ]

[1/2 0 0 0 1/2 ]

[1/2 0 0 1/2 0 ]

[1/2 0 1/2 0 0 ]

[1/2 1/2 0 0 0 ]

Ce l l 35

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/2 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 1/4 1/4 0 1/4 ]

[1/6 1/3 1/6 1/6 1/6 ]

Ce l l 36

[1/4 1/4 1/4 0 1/4 ]

[ 0 1/2 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

[1/2 1/2 0 0 0 ]

[1/6 1/3 1/6 1/6 1/6 ]

Ce l l 37

[1/6 1/3 1/6 1/6 1/6 ]

[ 0 1/2 0 0 1/2 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 38

[1/6 1/3 1/6 1/6 1/6 ]

[ 0 1/2 0 0 1/2 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

[1/2 1/2 0 0 0 ]

Ce l l 39

[1/6 1/3 1/6 1/6 1/6 ]

[ 0 1/2 0 1/2 0 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 40

[1/6 1/3 1/6 1/6 1/6 ]

[ 0 1/2 0 0 1/2 ]

[ 0 1/2 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

[1/2 1/2 0 0 0 ]

Ce l l 41

[ 0 1/2 1/2 0 0 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 0 0 1/2 ]

[ 0 1/2 0 1/2 0 ]

[1/6 1/3 1/6 1/6 1/6 ]
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Ce l l 42

[1/6 1/3 1/6 1/6 1/6 ]

[ 0 1/2 0 0 1/2 ]

[ 0 1/2 0 1/2 0 ]

[ 0 1/2 1/2 0 0 ]

[1/2 1/2 0 0 0 ]

Ce l l 43

[1/6 1/6 1/6 1/6 1/3 ]

[1/4 1/4 0 1/4 1/4 ]

[ 0 1/2 0 0 1/2 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 44

[1/4 1/4 1/4 0 1/4 ]

[ 0 1/2 0 0 1/2 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

[1/2 1/2 0 0 0 ]

Ce l l 45

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 1/2 0 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/6 1/6 1/3 1/6 1/6 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 46

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 0 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 47

[ 0 0 1/2 0 1/2 ]

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 48

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 0 1/2 ]

[ 0 1/2 1/2 0 0 ]

[1/2 0 1/2 0 0 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 49

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 0 1/4 1/4 1/4 ]

[ 0 0 1/2 0 1/2 ]

[ 0 0 1/2 1/2 0 ]

Ce l l 50

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 0 1/2 ]

[ 0 0 1/2 1/2 0 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 1/2 0 0 ]
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Ce l l 51

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 1/2 0 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 1/2 0 1/2 ]

[ 0 1/2 1/2 0 0 ]

Ce l l 52

[1/6 1/6 1/3 1/6 1/6 ]

[ 0 0 1/2 0 1/2 ]

[ 0 0 1/2 1/2 0 ]

[ 0 1/2 1/2 0 0 ]

[1/2 0 1/2 0 0 ]

Ce l l 53

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 0 1/2 0 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 54

[1/4 1/4 1/4 0 1/4 ]

[ 0 0 1/2 0 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/2 0 1/2 0 0 ]

Ce l l 55

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 1/2 0 1/2 ]

[ 0 1/2 0 0 1/2 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 56

[1/4 1/4 1/4 0 1/4 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 1/2 0 1/2 ]

[ 0 1/2 0 0 1/2 ]

[ 0 1/2 1/2 0 0 ]

Ce l l 57

[1/6 1/6 1/6 1/6 1/3 ]

[1/2 0 0 0 1/2 ]

[ 0 0 1/2 0 1/2 ]

[ 0 1/2 0 0 1/2 ]

[1/4 1/4 1/4 0 1/4 ]

Ce l l 58

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 0 1/2 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/6 1/6 1/6 1/3 1/6 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 59

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 0 1/2 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]
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Ce l l 60

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 0 1/2 1/2 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 61

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 0 1/2 1/2 ]

[ 0 1/2 0 1/2 0 ]

[1/2 0 0 1/2 0 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 62

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 0 1/2 1/2 ]

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 0 1/4 1/4 1/4 ]

[ 0 0 1/2 1/2 0 ]

Ce l l 63

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 0 1/2 1/2 ]

[ 0 0 1/2 1/2 0 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 1/2 0 ]

Ce l l 64

[ 0 0 1/2 1/2 0 ]

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 0 1/2 1/2 ]

[ 0 1/2 0 1/2 0 ]

Ce l l 65

[1/6 1/6 1/6 1/3 1/6 ]

[ 0 0 0 1/2 1/2 ]

[ 0 0 1/2 1/2 0 ]

[ 0 1/2 0 1/2 0 ]

[1/2 0 0 1/2 0 ]

Ce l l 66

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 0 0 1/2 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 67

[1/2 0 0 1/2 0 ]

[ 0 0 0 1/2 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 68

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 0 0 1/2 1/2 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 1/2 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]
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Ce l l 69

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 1/4 0 1/4 1/4 ]

[ 0 0 0 1/2 1/2 ]

[ 0 1/2 0 0 1/2 ]

[ 0 1/2 0 1/2 0 ]

Ce l l 70

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 0 0 1/2 1/2 ]

[1/2 0 0 0 1/2 ]

[ 0 1/2 0 0 1/2 ]

[1/4 1/4 0 1/4 1/4 ]

Ce l l 71

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 0 1/2 1/2 ]

[ 0 0 1/2 0 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

Ce l l 72

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 0 1/4 1/4 1/4 ]

[ 0 0 1/2 0 1/2 ]

[ 0 0 0 1/2 1/2 ]

[ 0 0 1/2 1/2 0 ]

Ce l l 73

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 0 1/2 0 1/2 ]

[ 0 0 0 1/2 1/2 ]

[1/4 0 1/4 1/4 1/4 ]

[1/2 0 0 0 1/2 ]

Ce l l 74

[ 0 0 1/2 0 1/2 ]

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/4 1/4 1/4 1/4 ]

[ 0 0 0 1/2 1/2 ]

[ 0 1/2 0 0 1/2 ]

Ce l l 75

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 0 0 1/2 1/2 ]

[ 0 0 1/2 0 1/2 ]

[ 0 1/2 0 0 1/2 ]

[1/2 0 0 0 1/2 ]
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L i s t o f v e r t i c e s

[1/6 1/6 1/6 1/6 1/3 ]

[ 0 1/4 1/4 1/4 1/4 ]

[1/4 0 1/4 1/4 1/4 ]

[1/4 1/4 0 1/4 1/4 ]

[1/4 1/4 1/4 0 1/4 ]

[1/3 1/6 1/6 1/6 1/6 ]

[1/6 1/3 1/6 1/6 1/6 ]

[1/4 1/4 1/4 1/4 0 ]

[1/6 1/6 1/3 1/6 1/6 ]

[1/6 1/6 1/6 1/3 1/6 ]

[1/2 1/2 0 0 0 ]

[1/2 0 1/2 0 0 ]

[ 0 1/2 1/2 0 0 ]

[1/2 0 0 1/2 0 ]

[ 0 1/2 0 1/2 0 ]

[ 0 0 1/2 1/2 0 ]

[1/2 0 0 0 1/2 ]

[ 0 1/2 0 0 1/2 ]

[ 0 0 1/2 0 1/2 ]

[ 0 0 0 1/2 1/2 ]
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B. Enumerating the n-cells in D̃n

def build_D(n) :

D = [ ]

L = [0 for i in range (n+1) ]

L [ 1 ] = 1

D. append (L)

for i in range (n−1) :

L = [0 for j in range (n+1) ]

L [ i +1] = −1

L [ i +2] = 1

D. append ( tuple (L) )

L = [1 for i in range (n+1) ]

L [ 0 ] = 0

L [ n ] = −1

D. append ( tuple (L) )

return tuple (D)

def a l l_wa l l s (n) :

wa l l s =[ ]

for i in range (n//2−kronecker_delta (0 , n%2)) :

S=Subsets ( range (n) , i +1)

for j in S :

w = [1 for k in range (n) ]

for l in j :
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w[ l ]=−w[ l ]

s = l i s t ( [ 0 ] )

s . extend (w)

i f s [ n ] < 0 :

v = vecto r ( s )

v = −v

s = l i s t ( v )

wa l l s . append ( s )

i f 2 . d i v i d e s (n) :

S=Subsets ( range (n−1) ,n/2−1)

for j in S :

w = [1 for k in range (n−1) ]

for l in j :

w[ l ] = −w[ l ]

w. append(−1)

s = l i s t ( [ 0 ] )

s . extend (w)

i f s [ n ] < 0 :

v = vecto r ( s )

v = −v

s = l i s t ( v )

wa l l s . append ( s )

return wa l l s

def necessary_wal l s (P,L) :

wa l l s =[ ]

for w in L :

Q = Polyhedron ( i e q s = [w] )

R = Polyhedron ( i e q s = [− vec to r (w) ] )
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i f dim(P. i n t e r s e c t i o n (Q) ) == dim(P. i n t e r s e c t i o n

(R) ) :

wa l l s . append ( vec to r (w) )

return tuple ( wa l l s )

def chambers (n) :

c e l l s = [ ]

h a l f s p a c e s = [ ]

boundary_list = build_D(n)

D = Polyhedron ( i e q s = boundary_l ist )

i n t e r i o r_ l i s t = necessary_wal l s (D, a l l_wa l l s (n) )

C = D. i n t e r s e c t i o n ( Polyhedron ( i e q s = i n t e r i o r_ l i s t ) )

c e l l s . append (C)

ha l f s p a c e s =[ l i s t ( i n t e r i o r_ l i s t ) ]

i = 0

while i < len ( c e l l s ) :

minimal_walls = c e l l s [ i ] . i n e q u a l i t i e s _ l i s t ( )

for j in range ( len ( h a l f s p a c e s [ i ] ) ) :

i f l i s t ( h a l f s p a c e s [ i ] [ j ] ) in

minimal_walls :

new_walls = copy ( ha l f s p a c e s [ i ] )

new_walls [ j ] = −new_walls [ j ]

C = D. i n t e r s e c t i o n ( Polyhedron (

i e q s = new_walls ) )

i f dim(C) == n and not C in

c e l l s :

c e l l s . append (C)

ha l f s p a c e s . append (

new_walls )

i = i+1
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return [ c e l l s , h a l f s p a c e s ]
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