
AN ABSTRACT OF THE DISSERTATION OF

Bogdana A. Georgieva for the degree of Doctor of Philosophy in Mathematics

presented on June 5, 2001.

Title: Noether-type Theorems for the Generalized Variational Principle

of Herglotz

Abstract approved: 61

Ronald B. uenther

The generalized variational principle of Herglotz defines the functional whose

extrema are sought by a differential equation rather than an integral. It reduces to

the classical variational principle under classical conditions. The Noether theorems

are not applicable to functionals defined by differential equations.

For a system of differential equations derivable from the generalized variational

principle of Herglotz, a first Noether-type theorem is proven, which gives explicit

conserved quantities corresponding to the symmetries of the functional defined by

the generalized variational principle of Herglotz. This theorem reduces to the clas-

sical first Noether theorem in the case when the generalized variational principle of

Herglotz reduces to the classical variational principle.

Applications of the first Noether-type theorem are shown and specific examples

are provided.

A second Noether-type theorem is proven, providing a non-trivial identity cor-

responding to each infinite-dimensional symmetry group of the functional defined by

the generalized variational principle of Herglotz. This theorem reduces to the clas-

sical second Noether theorem when the generalized variational principle of Herglotz

reduces to the classical variational principle.

A new variational principle with several independent variables is defined. It

reduces to Herglotz's generalized variational principle in the case of one independent

variable, time. It also reduces to the classical variational principle with several



independent variables, when only the spatial independent variables are present.

Thus, it generalizes both. This new variational principle can give a variational

description of processes involving physical fields. One valuable characteristic is

that, unlike the classical variational principle with several independent variables,

this variational principle gives a variational description of nonconservative processes

even when the Lagrangian function is independent of time. This is not possible with

the classical variational principle.

The equations providing the extrema of the functional defined by this general-

ized variational principle are derived. They reduce to the classical Euler-Lagrange

equations (in the case of several independent variables), when this new variational

principle reduces to the classical variational principle with several independent vari-

ables.

A first Noether-type theorem is proven for the generalized variational princi-

ple with several independent variables. One of its corollaries provides an explicit

procedure for finding the conserved quantities corresponding to symmetries of the

functional defined by this variational principle. This theorem reduces to the clas-

sical first Noether theorem in the case when the generalized variational principle

with several independent variables reduces to the classical variational principle with

several independent variables. It reduces to the first Noether-type theorem for Her-

glotz generalized variational principle when this generalized variational principle

reduces to Herglotz's variational principle.

A criterion for a transformation to be a symmetry of the functional defined by

the generalized variational principle with several independent variables is proven.

Applications of the first Noether-type theorem in the several independent vari-

ables case are shown and specific examples are provided.
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NOETHER-TYPE THEOREMS FOR
THE GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ

INTRODUCTION

The generalized variational principle, proposed by G. Herglotz., defines the

functional whose extrema are sought by a differential equation, rather than an inte-

gral. For such functionals the classical Noether theorems are not applicable. In this

thesis Noether-type theorems are formulated and proved which do apply to the Gen-

eralized Variational Principle, and contain the first and second Noether theorems

as special cases. The first Noether-type theorem gives explicit conserved quanti-

ties for non-conservative (and conservative) systems described by the Generalized

Variational Principle, corresponding to symmetries of the functional under an one-

parameter symmetry group. The second Noether-type theorem gives an identity,

which reduces to the identity provided by the classical second Noether theorem in

the case when the functional is defined by an integral.

In the middle of the nineteenth century Sophus Lie made the far-reaching dis-

covery that the seemingly unrelated techniques for solving differential equations

like separable, homogeneous or exact, were in fact all special cases of a general

integration procedure based on the invariance of the differential equation under

a continuous group of transformations. This observation unified and significantly

extended the available integration techniques. Lie devoted the remainder of his

mathematical career to the development and applications of his monumental the-

ory of continuous groups. These groups, now known as Lie groups. have had a

profound impact on all areas of mathematics, both pure and applied. as well as

physics, engineering and other mathematically based sciences. The applications of

Lie groups include such fields as algebraic topology, differential geometry, bifurca-

tion theory, invariant theory, numerical analysis. special functions, control theory,

classical mechanics. quantum mechanics, relativity, continuum mechanics, etc.

After the pioneering work of Lie and Noether, the works of Caratheodory,

Herglotz, George Birkhoff. Ovsiannikov, Lefschetz, Kahler and numerous others
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followed. George Birkhoff called attention to the unexploited applications of Lie

groups to the differential equations of fluid mechanics. Subsequently Ovsiannikov

and his school began a systematic program of successfully applying these methods to

a wide range of physically important problems. During the last two decades there

has been an explosion of research activity in this field, both in the applications

to concrete physical systems, as well as extensions of the scope and depth of the

theory itself. Nevertheless, many questions remain unsolved, and the full range of

applicability of Lie group methods to differential equations is yet to be found.

Roughly speaking, a symmetry group of a system of differential equations is a

group which transforms solutions of the system to other solutions. In the classical

framework of Lie, these groups consist of geometric transformations on the space

of independent and dependent variables for the system, and act on solutions by

transforming their graphs. He called them contact transformations. In mechanics a

special case called canonical transformations were used. Typical examples are the

groups of rotations and translations, and the scaling symmetries, but these do not

exhaust the range of possibilities. The great advantage of looking at continuous

symmetry groups, as opposed to discrete symmetries such as reflections, is that

they can all be found using computational methods. This is not to say that discrete

groups are not important in the study of differential equations (see, for example,

Hejhal,[1]), but rather that one must employ quite different methods to find or

utilize them.

Lie's fundamental discovery was that the complicated nonlinear conditions of

invariance of the system under the group transformations could, in the case of

a continuous group, be replaced by equivalent, but far simpler, linear conditions

reflecting a form of "infinitesimal" invariance of the system under the generators

of the group. In most physically important systems of differential equations, these

infinitesimal symmetry conditions - the so-called defining equations of the symmetry

group of the system - can be explicitely solved in closed form and thus the most

general continuous symmetry group of the system can be explicitly determined.
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Once the symmetry group of a system of differential equations has been deter-

mined, a number of applications become available. To begin with, one can directly

use the defining property of such a group and construct new solutions from known

ones. The symmetry group thus provides a means of classifying different symme-

try classes of solutions, where two solutions are considered equivalent if one can

be transformed into the other by some group element. Alternatively, one can use

the symmetry groups to effect a classification of families of differential equations

depending on arbitrary parameters or functions; often there are good physical or

mathematical reasons for preferring those equations with as high a degree of sym-

metry as possible. Another approach is to determine which types of differential

equations admit a prescribed group of symmetries; this problem is also answered

by infinitesimal methods using the theory of differential invariants.

In the case of ordinary differential equations, invariance under a one-parameter

symmetry group implies that the order of the equation can be reduced by one. The

solutions to the original equations can be recovered from those of the reduced equa-

tion by a single quadrature. For a single first order equation, this method provides

an explicit formula for the general solution. Multi-parameter symmetry groups lead

to further reductions in order, but, unless the group satisfies an additional "solv-

ability" requirement, the solutions of the original equation may not be recoverable

from those of the reduced equation by quadratures alone. If the system of ordinary

differential equations is derivable from the classical variational principle, either as

the Euler-Lagrange equations of some functional defined by an integral, or as a

Hamiltonian system, then the power of the symmetry group reduction method is

doubled. A one-parameter group of variational symmetries allows one to reduce

the order of the system by two; the case of multi-parameter variational symmetry

groups is more delicate.

For systems of partial differential equations one can use general symmetry

groups to determine explicitly special types of solutions which are themselves in-

variant under some subgroup of the full symmetry group of the system. These group-

invariant solutions are found by solving a reduced system of differential equations
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involving fewer independent variables than the original system, which presumably

makes it easier to solve. For example, the solutions to a partial differential equa-

tion in two independent variables which are invariant under a given one-parameter

symmetry group are all found by solving a system of ordinary differential equations.

For many nonlinear systems these are the only explicit exact solutions which are

available, and, as such, play an important role in both the mathematical analysis

and the physical applications of the system.

Symmetries and their properties were investegated by Herglotz, [3], Klein [1]

and Kneser, [1]. Emmy Noether was inspired by their work when she carried out

her oun fundamental investigations. In 1918, she proved two remarkable theorems

relating symmetry groups of a variational integral to properties of its associated

Euler-Lagrange equations, see Noether, [1], [2]. For modern derivations and discus-

sions of these theorems see Logan, [1], Olver, [5], Bluman and Kumei, [1]. In the

first of these theorems, Noether shows how each one-parameter variational symme-

try group gives rise to a conservation law of the Euler-Lagrange equations. Con-

servation of energy, for example, comes from invariance of the problem under time

translations, while conservation of linear and angular momenta reflect invariance

of the system under spatial translations and rotations. This first theorem gives a

one-to-one correspondence between symmetry groups and conservation laws. Each

one-parameter group of symmetries of the classical variational problem gives rise to

a conservation law, and , conversely, every conservation law arises in this manner.

Noether's second theorem involves an infinite-dimensional symmetry group de-

pending on an arbitrary function. Another reason for the importance of the infinite-

dimensional symmetry groups is that a class of systems in general relativity arrises

as those systems whose variational integral admits an infinite-dimensional symmetry

group. Noether's second theorem shows that there is a non-trivial relation between

the Euler-Lagrange expressions and provides an identity which holds on solutions

of the Euler-Lagrange equations.

Conservation laws have many important applications, both physical and math-

ematical. These applications include existence results, shock waves, scattering the-
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ory, stability, relativity, fluid mechanics, elasticity, etc. Conservation laws have an

old origin, although the idea of conservation of energy was not conceptualized until

the work of Mayer and Helmholtz, in the late 1830's, and Joule in the 1840's. See

Elkana, [1], for an interesting study of the historical development of this idea.

Lax, [1], uses conservation laws (called entropy-flux pairs in his context) to

prove global existence theorems and determine realistic conditions for shock wave

solutions to hyperbolic systems. This is further developed in DiPerna, [1],[2], where

extra conservation laws are applied to the decay of shock waves and further exis-

tence theorems are proved. Conservation laws have been applied to stability theory

starting with the work of Poincare and Liapunov. Also, Benjamin, [1], and Holm,

Marsden, Ratiu and Weinstein, [1] have applied conservation laws to problems of

stability. Morawetz, [1] and Strauss, [1], use them in scattering theory. In elasticity,

conservation laws are of key importance in the study of cracks and dislocations; see

the papers in Bilby, Miller and Wills, [1]. Knops and Stuart, [1], have used them

to prove uniqueness theorems for elastic equilibria. This is only a small sample of

all the applications which have appeared. Trivial conservation laws were known for

a long time by researchers in general relativity. Those of the second kind go under

the name of "strong conservation laws" since they hold regardless of the underlying

field equations; see the review papers of J. G. Fletcher, [1], and Goldberg, [1]. The

characteristic form of a conservation law appears in Steudel, [1], but the connection

between trivial characteristics and trivial conservation laws is due to Alonso, [1].

See Vinogradov, [1], and Olver, [3], for related results.

The concept of a variational symmetry, including the basic infinitesimal crite-

rion, is due to Lie, [1]. The first people to notice a connection between symmetries

and conservation laws were Jacobi, [1], and later, Schutz, [1]. Engel, [1], developed

the correspondence between the conservation of linear and angular momenta and

linear motion of the center of mass with invariance under translational, rotational

and Galilean symmetries in the context of classical mechanics.

Klein and Hilbert's investigations into Einstein's theory of general relativity

inspired Noether to her remarkable paper, [1], in which both the concept of a
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variational symmetry group and the connection with conservation laws were set

in complete generality. The extension of Noether's methods to include divergence

symmetries is due to Bessel-Hagen, [1]. The next significant reference to Noether's

paper is in a review article by Hill, [1]. During the following twenty years many

papers appeared which rederived Noether's original result or special cases of it. The

lack of immediate appreciation of Noether's theorem has had some interesting con-

sequences. Eshelby's energy-momentum tensor, which has much importance in the

study of cracks and dislocations in the study of elastic media, was originally found

using ad hoc techniques, Eshelby, [1]. It was not related to symmetry properties of

the media until the work of Gunther, [1], and Knowels and Sternberg, [1].

Frobenius found all the crystallographic groups for the elastic equation in three

dimensions. An extension to the equations of linear elastodynamics was made by

D. C. Fletcher, [1]. Subsequently, Olver, [1],[2],[4], found some new conservation

laws. Similarly, the important identities of Morawetz, [1], used in scattering theory

for the wave equation were initially derived from scratch. Subsequently Strauss,

[1], showed how these were related to the conformal invariance of the equation. A

similar development holds for the work of Baker and Tavel, [1], on conservation laws

in optics.

A version of the theorem showing the use of variational symmetry groups to

reduce the order of ordinary differential equations which are the Euler-Lagrange

equations of some variational integral, for Lagrangians depending on only first order

derivatives of the dependent variables, is given in Whittaker, [1; p.55], Olver's book

[5] gives the full version of the theorem.

Noether's theorems are applicable only to the classical variational principle, in

which the functional is defined by an integral. They do not apply to functionals de-

fined by differential equations. The Generalized Variational Principle, proposed by

Gustav Herglotz in 1930, see Herglotz [2], generalizes the classical variational princi-

ple by defining the functional, whose extrema are sought, by a differential equation.

It reduces to the classical variational integral under classical conditions. Herglotz's

original idea was published in 1979 in his collected works, see Herglotz, [1]; this
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publication was supervised by Schwerdtfeger. Immediately thereafter, Scherdtfeger

and R.B. Guenther published Herglotz's Vorlesungen uber die Mechanik der Kon-

tinua which appeared in the series Teubner-Archive zur Mathematik, B. G. Teub-

ner Verlagsgesellschaft, Leipzig, 1985. Herglotz reached the idea of the Generalized

Variational Principle through his work on contact transformations and their con-

nections with Hamiltonian systems and Poisson brackets. His work was motivated

by ideas from S. Lie, C. Caratheodory and other researchers. For historical remarks

through 1935, see C. Caratheodory's Variationsrechnung and Partielle Differential-

gleichungen Erster Ordnung, Teubner Verlagsgesellschaft, Leipzig 1956. An impor-

tant reference on the Generalized Variational Principle is The Herglotz Lectures

on Contact Transformations and Hamiltonian Systems published in 1996 by R.B.

Guenther, J.A. Gottsch and C. M. Guenther, [1].

The generalized variational principle is important for a number of reasons:

1. The solutions of the equations, which give the extrema of the functional

defined by the generalized variational principle, when written in terms of xi and

pi = OL/aXi , determine a family of contact transformations. This family is a one-

parameter group in a certain case. See Guenther et al, [1]. The significance of

contact transformations in mathematics and mathematical physics is well recog-

nized. See Caratheodory [1] and Eisenhart [1].

2. The generalized variational principle gives a variational description of non-

conservative processes. Unlike the classical variational principle, the generalized one

provides such a description even when the Lagrangian, denoted by L, is independent

of time.

3. For a process, conservative or nonconservative, which can be described

with the generalized variational principle, one can systematically derive conserved

quantities, as shown in this thesis, by application of the first Noether-type theorem.

4. For any process described by the generalized variational principle the second

Noether-type theorem, proved in this thesis, can be applied to produce a non-trivial

identity which holds on solutions of the equations which provide the extrema of the

functional defined by the generalized variational principle.
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5. There are two major methods in control and optimal control theories. The

first is based on the Laplace transformation. The second, and more recent one, is

the so called "state variable" method, see Furta [1]. In this method the controlled

physical system is described by a normal system of ODE's. Each of these ODE's

has the same form as the defining equation of the generalized variational principle.

Thus, there is a link between the mathematical structure of control / optimal control

theories and the generalized variational principle.

6. The contact transformations, which can always be derived from the gener-

alized variational principle, have found applications in thermodynamics. Mrugala

[1] shows that the processes in equilibrium thermodynamics can be described by

successions of contact transformations acting in a suitably defined thermodynamic

phase space. The latter is endowed with a contact structure, which is closely related

to the symplectic structure (occuring in mechanics).

7. In physical applications the dimensionality of the Lagrangian L in the

generalized variational principle is energy. From this and the defining equation

of this variational principle follows that, when a process is described by it, the

dimensionality of the functional is [action].

The remaining part of this introduction gives a brief description of the contri-

butions of this thesis.

The classical Noether theorems apply only to functionals defined by integrals.

For a system of differential equations derivable from the generalized variational prin-

ciple of Herglotz, a first Noether-type theorem is proven, which provides explicit

conserved quantities corresponding to the symmetries of the functional defined by

the generalized variational principle of Herglotz. This theorem reduces to the clas-

sical first Noether theorem in the case when the generalized variational principle of

Herglotz reduces to the classical variational principle.

A criterion for a transformation to be a symmetry of the functional defined by

the generalized variational principle of Herglotz is proved.

Three corollaries of the first Noether-type theorem are stated and proved, giving

the conserved quantities, which correspond to time translations, space translations
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and rotations. The correspondence between these new results and the classical

results of conservation of energy, linear and angular momentum is observed. Ap-

plications of the first Noether-type theorem are shown and specific examples are

provided.

A second Noether-type theorem is proven, providing a non-trivial identity cor-

responding to each infinite-dimensional symmetry group of the functional defined by

the generalized variational principle of Herglotz. This theorem reduces to the clas-

sical second Noether theorem when the generalized variational principle of Herglotz

reduces to the classical variational principle.

A new variational principle with several independent variables is defined. It

can give a variational description of processes involving several independent vari-

ables, with one independent variable being the time and the rest of the independent

variables being the spatial variables. It reduces to Herglotz's generalized varia-

tional principle, when only one independent variable, the time-variable, is present.

It also reduces to the classical variational principle with several independent vari-

ables, when only spatial variables are involved. Thus, it generalizes both Herglotz's

variational principle and the classical variational principle with several independent

variables. I call this new variational principle generalized variational principle with

several independent variables.

One valuable characteristic of the generalized variational principle with several

independent variables is that, unlike the classical variational principle with several

independent variables, it can give a variational description of nonconservative pro-

cesses where the Lagrangian function does not explicitly depend time. This is not

possible with the classical variational principle. Some of the applications of this

new variational principle involve giving a time-independent variational description

of non-conservative processes involving physical fields.

The equations providing the extrema of the functional defined by the general-

ized variational principle with several independent variables are derived. I call them

generalized Euler-Lagrange equations with several independent variables. They re-

duce to the classical Euler-Lagrange equations with several independent variables,



10

when the new variational principle reduces to the classical variational principle

with several independent variables. The generalized Euler-Lagrange equations for

the new variational principle reduce to the generalized Euler-Lagrange equations of

Herglotz's variational principle in the case when only one independent variable, the

time-variable, is present.

A first Noether-type theorem is proved for the generalized variational princi-

ple with several independent variables. One of its corollaries provides an explicit

procedure for finding the conserved quantities corresponding to symmetries of the

functional defined by this variational principle. This theorem reduces to the clas-

sical first Noether theorem in the case when the generalized variational principle

with several independent variables reduces to the classical variational principle with

several independent variables. It reduces to the first Noether-type theorem for Her-

glotz's generalized variational principle when this generalized variational principle

reduces to Herglotz's variational principle.

A criterion for a transformation to be a symmetry of the functional defined by

the generalized variational principle with several independent variables is proved.

Applications of the first Noether-type theorem in the several independent vari-

ables case are shown and specific examples are provided.
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CHAPTER1

FIRST AND SECOND NOETHER-TYPE THEOREMS FOR THE
GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ

1. INTRODUCTION

The generalized variational principle, proposed by G. Herglotz, defines the

functional whose extrema are sought by a differential equation, rather than an inte-

gral. For such functionals, the classical Noether theorems are not applicable. Here,

Noether-type theorems are formulated and proved which do apply to the general-

ized variational principle of Herglotz, and contain the classical Noether theorems

as special cases. The first of these theorems gives explicit conserved quantities

for non-conservative (and conservative) systems described by the generalized vari-

ational principle of Herglotz, corresponding to symmetries of the functional. The

conserved quantities corresponding to translations in time, translations in space and

rotations in space are derived in the case of non-conservative systems. The relation-

ship with the fundamental conservation laws of physics is discussed and examples

for applications are given.

The second Noether-type theorem provides an identity which holds on solu-

tions of the generalized Euler-Lagrange equations, which give the extrema of the

functional. This theorem reduces to the classical second Noether theorem when the

variational principle of Herglotz reduces to the classical variational principle.

2. FIRST NOETHER-TYPE THEOREM FOR THE
GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ

The generalized variational principle of Herglotz defines the functional z ,

whose extrema are sought, by the differential equation

L (t, x(t),
d

t)
dt

where t is the independent variable, x - (xl, ... , x') stands for the dependent

variables and dx(t)/dt denotes the derivatives of the dependent variables. In order

for the equation (2.1) to define a functional z of x(t) we must solve equation (2.1)
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with the same fixed initial condition z(O) for all argument functions x(t) , and

evaluate the solution z(t) at the same fixed final time t = T for all argument

functions x(t) .

The equations which produce the extrema of the functional z defined by the

generalized variational principle of Herglotz are

8L d aL aL aL
Ox idtOxi+azOXi0 i1,...n

Herglotz called them generalized Euler-Lagrange equations. See Guenther, [1].

Consider the one-parameter group of invertible transformations

t = 0(t, x, e)

xk = 'k (t, x, k = 1, ..., n (2.2

where E is the parameter, c(t, x, 0) = t , and ik(t, x, 0) = Xk . Let the generators

of the corresponding infinitesimal transformation be

T(t, x) =
d

(t, x, 0) and k (t, x) =
CIO,

dE dE
,x,0) . (2.3

Denote by ( _ c(t) the total variation of the functional z = z[x; t] produced

by the family of transformations (2.2), i.e.

d
z[x; t, e]fi(t) = ds E=o

We make the following

Remark: c(0) = 0 . Indeed, as explained earlier, in order to have a well-

defined functional z as a functional of x(t) , we must evaluate the solution z(t) of

the equation (2.1) with the same fixed initial condition z(0) , independently of the

function x(t) . Then z(0) is independent of e . Hence, the variation of z evaluated

at t = 0 is
d

z(0) = 0 .
e=o dE e=o

Throughout the chapter we assume that the summation convention on repeated

indices holds.



13

Theorem 2.1. If the functional z = z[x(t); t] defined by the differential equation

z = L(t, x, i, z) is invariant under the one-parameter group of transformations (2.2)

then the quantities

p (_
ft OL )( DL ),r aL

ex
az

d9 (L -k
axk + DXkk

0

are conserved along the solutions of the generalized Euler-Lagrange equations

OL d OL OL OL+ = 0 (2.5)
axi - dt axe Oz ai2

Proof. By Taylor's theorem we have

t=t+T(t,x)z+O(z2)

Xk = xk + bk(t, x) z + O (2.6

Let us apply the transformation (2.6) to the differential equation (2.1). Observing

that dz f dt = (dz/dt) (dt/dt) we get

dt
L (t, , d z

dz dx(O A
dt

L (t, x(t'
dt '

z d

Differentiate (2.7) with respect to z and set z = 0 to obtain

dz

(dt)

Now observe that

E=o dt ( dz)

since by Taylor's theorem

dL
E=o dz

dt

dt

dt

E=o dt

dt do (t, x, z) d ((t,x,0) +
dip

dt dt dt az

and o(t, x, 0) = t . Also we observe that

d

+ L
(dt

E=o dz dt

,x,0)z+0(z

(2.8)
E=o

=
d

T(t, X)
d ((t,x,0)+o(z))

dz (dt o dt
(_dE

E=o dt dz E=o dt
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Thus, equation (2.8) becomes

do dL
dt de

d aL dt aL dxk aL d dXk aL dz
dtt at de L" + axk d (E=o + ask de A =o + Oz de

Expanding the derivative dL/de and setting E = 0, we obtain

L
dT

e=o + dt
dC aL aL aL d dxk aL d7-

dt at r + axk k + axk de dt=o + Oz + L dt
(2.9)

We still need to calculate and insert in equation (2.9) the expression

d (d,;Vk)
dE dt e=0

dxk axk axk . dxk dt dxk at at
at = at + axh Xh = at dt = dt at + axh Xh) .

(2.10)

Set e = 0 to obtain
dxk

dt =shk xh =xk .
e=

Differentiate (2.10) with respect to s

d (Dxk axk. d dxk at at
dE at + axh xh = d A (at + axh xh

and expand both sides to get

We set

ak d

e=o = at ' de

(0t)
at

at
at

d axk d axk
d at)+d\axh
_dxk(d(at) dat)

dt d at + dE axh

+L dT
.

e=0 dt

d 'It at
,+ J

(d
dtk / \ at + axh

X h

(2.11)

(2.12)

e = 0 in this equation, substitute in it (2.11) and use the following relations:

Or d at
e=0 = at ' dE C ax h

at
axh

OT

E=0 axh
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Then equation (2.12) becomes

ask ask . aT d dk
+

axxh - xk
(Dr
at + axh hI + d dt e=0

Now observe that the total derivatives of ek and T appear in the last equation.

Solving for the last term in it, we obtain

d dJVk d k dT- Xk-
dE v dt Ie=o dt dt

We insert the last result in equation (2.9) to obtain the differential equation for the

variation c of the functional z . This equation is

d( OL OL OL dk dT aL dT

dt at 7+ axk + ak dt - xk dt) + az + L dt
. (2.13)

Its solution ( is given by

exp( 1t aLd9)(-(0

aL ) (aL aL aL r d k dT lIt (-f
3

exp
az de as T + axk k +axk \ ds - xk

ds l + L ds ds
0

By the remark preceeding the Theorem, (° = ((0) = 0. Also, since by hy-

pothesis the one-parameter family of transformations (2.2) leaves the functional

z = z[x(t); t] stationary, we have ((t) = 0. Thus, one obtains

/ (- / 3
OL ) (OL OL OL

(dk
dT- d7.

exp
az

d9
s

T + axkk + axk ds - Xk ds I + L ds ds = 0. (2.14)
0 0

An integration by parts of the last equation produces

exp(- [DL
Dz
-dO)(LT+a kk -a kxkT J

3=t

3=0
ft

exp
- f3 aL

) (aL OL OL d (-L OL OL

0 Oz
d9 (\ as T - LT L

Oz
T axkk - ds \ axk)k + axk az k

+ J0

OL OL d aL OL ..xkT + - ( ) X. + xkT ds = 0
az axk ds Ox* k OX* k

which on solutions of the generalized Euler-Lagrange equations becomes

exp l -
[DLade) (LT + a k k - a k xkT)

3=t

3=0

))t

eXp J
(- f 3 OL ) (- OL

z
, OL OL d OL dL OL

Tds = 0.
19Z

de az + L az - xk axk ds axk + dz axk+ 0 0
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Taking into consideration the fact that z = L , we obtain that along the solutions

of the generalized Euler-Lagrange equations (2.5)

exp No 3 L d9J (LT + k k - k xkT
10

exp
- / t aL

)((
aL )T+ aL

0

1
J 49Z

dO L -xk
axk / axk k J

along solutions of the generalized Euler-Lagrange equations, as claimed.

It should be observed that the exponential factor

3=t

3=0
=0.

= constant

exp (- / ' L do) _ 1 (2.15)

which is present in the conserved quantities

function p which appears in the definition

2.4 is the reciprocal of the multiplier

Pi dXi - dZ=p(pidxi - dz)

of contact transformations (since aL/az = - OH/Oz ). See Guenther, [1].

The conserved quantities (2.4) have a remarkable form they are products of

p-1 with the expressions

(L - xk aL )T aL
axk axk

k (2.16)

whose form is exactly the same as that of the conserved quantities obtained from

the classical first Noether theorem. Consequently, in the special case DLlaz = 0,

when the functional z is defined by the integral

t
z = jL(t,x,th)dO

we have p = 1 . Hence, in this case Theorem 2.1 reduces to the classical first

Noether theorem. Three modern references on the classical first Noether theorem

are Logan [1], Olver [5] and Bluman, Kumei [1]. For applications to physics see

Goldstein [1] and Roman [1].
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3. CONSERVED QUANTITIES
IN GENERATIVE AND DISSIPATIVE SYSTEMS

Physical systems described by the generalized Euler-Lagrange equations 2.5

or by the canonical equations (see system (0.16) in the Appendix) are not con-

servative in general. Since the Lagrangian functional of such systems cannot be

expressed as an integral, the first Noether theorem cannot be used for finding con-

served quantities. Below we show how the first Noether-type theorem can be used to

find conserved quantities in non-conservative systems. For this we need to describe

the physical system with the generalized Euler-Lagrange equations or the canonical

equations and then find symmetries of the functional z = z[x(t); t] defined by the

differential equation z = L(t, x, i, z) , that is, transformations of both dependent

and independent variables which leave z[x(t); t] invariant.

To test whether a transformation is a symmetry of the functional z[x(t); t] we

use the following

Proposition 3.1. The transformation

t = (t4t, x, E)

Xk = Ok(t, x, 6)

leaves the functional z , defined by the differential equation z = L(t, x, i, z) in-

variant if and only if

L (t' x, dt (dt , z) dt
L (t, x(t),

dxdtt)
z) (3.2

holds for all t, x, z in the domain of consideration.

Proof: Apply the transformation (3.1) to the differential equation defining z to

obtain
dZ &V (t=
dt

L (t, x(t),
dt

By the chain rule we get

dz

dt
dV dt -1

z
dt

, , dl (dt) dt
(3.3)



18

If condition (3.2) is satisfied then the differential equation defining z is the same as

the differential equation defining z. Thus, z = z, i.e. the transformation leaves z

invariant. Conversely, if (3.1) leaves z invariant, then dz/dt = dz/dt. Comparing

(3.3) with the equation z = L(t, x, x, z) defining the non-transformed z we obtain

condition (3.2).

We are now ready to apply the first Noether-type theorem to find specific

conserved quantities corresponding to several basic symmetries. Because of their

generality and physical significance we state the results as corollaries to the first

Noether-type theorem.

Corollary 3.2. Let the functional z defined by the differential equation

z = L(t, x, ±, z) be invariant with respect to translation in time, t = t + , x = x

Then the quantity

E = exp C-f aL d8) (L(x, x, z) 7xk

is conserved on solutions of the generalized Euler-Lagrange equations.

Proof. By Proposition 3.1 we see that aL/at = 0 . The infinitesimal generator

of the group translation in time is 9/at . To obtain the conclusion of the corollary,

apply the first Noether-type theorem with

dt
T =

dz
=1 k

6=o dz

dxk

E=o
=0.

Noticing that the Hamiltonian is H = Pkxk - L we see that on solutions of

the generalized Euler-Lagrange equations

E =
1

H = constant , (3.5)
P

where p is the multiplier function (2.15). We observe a correspondence with the

classical law of conservation of energy: If a physical system is described by a time-

independent Lagrangian, which does not depend on z, then the Hamiltonian H

is conserved and is identified with the energy of the system. If we continue to

interpret H as the energy of the system when L does depend on z , then we see

from formula (3.5) that H varies proportionally to p since E is constant.
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Let us now verify by a direct computation that the quantity E in (3.4) is

conserved. Indeed,

dE
(

aL d

C-

ft aL
dB exp (-It aL ) d aL

xdt - L -
axk k

dt
exp

OZ 19Z de dt L OX* k k

f t aL aL aL=-ex
l\ J0 azde az L axk

NO
t aL aL aL aL aL ., d aL

ex az dB ask xk + axk xk + az L - axk Xk - xk
dt axk J

/ t aL ) ( aL d aL aL aL 1
- ex p

az
de

axk dt axk + OZ axk J
xk = 0

on solutions of the generalized Euler-Lagrange equations.

Corollary 3.3. Let the functional z defined by the differential equation

z = L(t, x, x, z) be invariant with respect to translation in space direction Xk , Z. e'

t = t , X k = Xk + E , xi = xi for i = 1, ..., k - 1, k + 1, ..., n . Then the quantity

Mk = exp I aL de)

a

k

is conserved on solutions of the generalized Euler-Lagrange equations.

Proof: By proposition 3.1 we know that aL/axk = 0. The infinitesimal generator

of the group of translations in direction Xk is a/axk . To get the conserved quantity

Mk apply the first Noether-type theorem with

dtT = -
dE E=0

dxk

E S=0
1, i =

dxi
de e=0

=0, for ilk.

In terms of the multiplier function p the expression (3.6) takes the form

1 aL
= xk = constant.

p a

Again, we observe a correspondence with the classical law of conservation of linear

momentum. If we retain the definition of linear momentum DLlaxk then the result

(3.7) says that the linear momentum is not conserved, but changes proportionally

to P.
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Because of the importance of this result, we shall verify it directly:

d d t aL aL t aL aL aL d aL
dtMk

dt
(exp (- f

az
de)

aXk)
exp -J

az de) ( 0Z axk + dt axk

exp
aL aL d aL aL aL
az de) Caxk dt axk + az axk)OJ

which holds on solutions of the generalized Euler-Lagrange equations. Notice the

use of aL/axk = 0 .

Corollary 3.4. Let the functional z defined by the equation z = L(t, x, i, z) be

invariant with respect to rotations in the xixj -plane. Then the quantity

-L3zt aL ) ( aL aL ) (3.8)Ai - ex p d8
ax i

x a j x2

is conserved along solutions of the generalized Euler-Lagrange equations.

Proof: By Proposition (3.1) we know that the Lagrangian has the form

L=L(t,xi2 +xj2,xr,x2 + z)

where xr stands for all coordinates distinct from xi or xj . Indeed, dt/dt = 1

and the invariance of z under rotations in the xixj -plane implies the specific form

of L.

The infinitesimal generator of the group of rotations is

axj
axi

Thus, to obtain the conserved quantity Ai j , we apply the first Noether-type the-

orem with T=O, ci = xj , j = -xi r = 0 for r L i, j.

Once again, in the case of z -independent L, we have a correspondence with

the classical law of conservation of angular momentum

aL aLxj - xi -
axi axj

(
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The importance of (3.8) demands a verification by a direct calculation:

d
dtAu3

z
de J

=
exp

(-Jot
aOL,

aL aL aL d aL aL d aL a
az Caxi xj a j xi/ + dt axZ xj + axZ xj - dt axj xi axj i,
(_I' aL 1 (_ aL aL aL d aL d aL

ex
az

d9)
az Ca i a + dt x dt ax xij j

L
t aL

az
d8)

7 H d aL aL aL aL d aL aL aL
xi(axj -daxj +az axj) -xjCaxi-dtaxiazai)) =o

on solutions of the generalized Euler-Lagrange equations. Notice the use of both

aL . aL aL aLxj = xi and xj = -xi
axi axj axi axj

which hold since L = L(t, xi2 + x j2, Xi + x , z) .

4. ADDITIONAL APPLICATIONS OF
THE FIRST NOETHER-TYPE THEOREM

It is known that dissipation effects in physical processes can often be accounted

for in the equations describing these processes by terms which are proportional to

the first time derivatives wi(t) = dxi/dt of the dependent variables. (See Goldstein

[7]). For example, the viscous frictional forces acting on an object which is moving

in a resistive medium, such as a gas or a liquid, are proportional to the object's

velocity. Similarly, the dissipative effects (due to the ohmic resistance) in electrical

circuits can often be modeled by including terms which are proportional to the

first time-derivative of the corresponding dependent variables, such as the electric

charge.

All such dissipative processes can be given a unified description by the gener-

alized variational principle.

For example, let us consider the motion of a small object with mass m (point

mass) under the action of some potential U = U(t, x) with x = (x1, x2, x3) in a

resistive medium. We assume that the velocity of the object is not extremely high
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so that the resistive forces are proportional to the velocity. Thus, the equations of

motion of such an object, according to Newton's Second law, are

mxi=-aU-kxi, i 1,2,3 (4.1)

where k > 0 is a constant. All equations of this form can be obtained from the

generalized variational principle by choosing for the Lagrangian function L the

expression

L
2

(xi+...+xl)-U(t,x1,...,xn)-az (4.2)

where U = U(t, x1 , ... , x7) is the potential energy of the system and a > 0 is

a constant. From (4.2) we obtain the generalized Euler-Lagrange equations

aL d aL aL aL aU d

axi dt DXi + Dz axi axi
--

dt
(mi) - maxi = 0

which are the same as (4.1) for n = 3 and k = ma .

Depending on the choice of the function U , equations (4.1) can describe a

variety of systems. For instance:

1. When U = kr2 = c(xi + + xn) , with c > 0 constant, (4.1) describe

one-dimensional or multi-dimensional isotropic damped harmonic oscillators.

2. When U = - c/r k/ xl + x2 + x3 , equations (4.1) describe the

motion of a point mass m under Coulomb (electrostatic) or gravitational forces in

a resistive medium characterized by the constant a.

3. The equations describing the currents, voltages and charges in single or

coupled electrical circuits have the same form as equations (4.1) with i = 1, . . . , n ,

where n is the number of state variables (currents, voltages and charges) and U is

an appropriately chosen function (see Goldstein, [1], p. 52). Hence, the processes in

electrical circuits can also be derived from a Lagrangian function of the form (4.2)

via the generalized variational principle.

As an illustration of the preceeding discussion consider a system whose La-

grangian is of the form (4.2) and assume that the potential U is time-independent.

Then, DL/Dt = 0 and it follows from the Noether-type Theorem that the quantity

exp - t aL
d J

DL L) =eat ( + ... + th ) + U(x) + az)
o az Dx i
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is conserved. Recognizing that H = ii (aL/axi) - L is the Hamiltonian of the

system, we conclude that the value of the Hamiltonian decreases exponentially in

time, i.e.

H=e-at(2 (i1+...+.
n

e-atH
0t=o

where Ho is the initial value of the Hamiltonian, that is, the initial total energy of

the system.

5. SECOND NOETHER-TYPE THEOREM FOR THE
GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ

The classical second Noether theorem does not apply to functionals defined by

differential equations. In this section we prove a theorem which extends the second

Noether theorem to the generalized variational principle of Herglotz, which defines

the functional, whose exterma are sought, by a differential equation. This theorem

provides an identity, involving the generalized Euler-Lagrange expressions, which

corresponds to an infinite-dimensional Lie group. This new theorem reduces to the

classical second Noether theorem when the generalized variational principle reduces

to the classical variational principle.

Consider the differential equation

dt
L (t, x(t), d xtt) z) (5.1)

where t is the independent variable, x (x',... , xn) stands for the dependent

variables and dx(t)/dt stands for the derivatives of the dependent variables. Equa-

tion (5.1) defines the functional z whose extrema are provided by the generalized

Euler-Lagrange equations

aL d aL aL aL
09Z axi Q ' i = l ... , n . (5.2)Qi axi dt 8xi +

We call the left hand sides Qi of equations (5.2) the generalized Euler-Lagrange

expressions.

Theorem 5.1 If the infinite continuous group of transformations

t = 0(t, x, p(t), p(1) (t), ... , p(r)(t))

xk = 0k(t, x, p(t), p(') (t), ... , P(r) (t)) k = 1,...,n 1 (5.3
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which depends on the arbitrary function p(t) E C r+2 , with t = t and xk xk

when p(t) pl(t) p(r)(t) = 0, is a symmetry group of the functional z

defined by the differential equation (5.1) then the identity

Xk(EQk) - U(EQ

holds. Here U and X k are the linear differential operators

00 00 d 06 dr
8p dp(i) dt + ...

ap(r) dtr
k k k r

Xk
a

+apldt+...+gpr}dr k=1,...,n, (5.5)

evaluated at p(t) =- p(')(t) - ... = p(r) (t) - 0, U Xk are the adjoints of U and

X k respectively, the quantities Qk are defined in (5.2), and

E = exp (- J t OL d8) . (5.6)
0

Proof: By Lie theory we know that close to the identity transformation the action

of the group (5.3) is the same as the action of the infinitesimal group corresponding

to (5.3). Thus, we must find the infinitesimal transformation which corresponds to

(5.3). For this reason we replace p in (5.3) with E p to obtain

t = 0(t, x, E P(t), E PM (t), ... , E P(r) (t))

Xk = 0k(t, x, E
P(t),

E p(1) (t).... , E P(r) (t)) , k = 1,...,n . (5.7)

Expand (5.7) in Taylor series with respect to E and retain the zero and first order

terms only:

=t+E(pp+ ap<(1)P(1)+...+ a()P(r))

d k
xk = xk +E = xk + E (O pk p + O 1) p(i) + ... + C O P(r))

P
OP(-) E=0

Then the infinitesimal transformation corresponding to (5.3) is

t=t+EUp
k k kX =x +EX p, k=l,...,n,
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where U and X k are defined by (5.5). Apply (5.8) to the differential equation

(5.1) to obtain
dz

L (t, x(t)
dx(

dt dt

By the chain rule

or written more explicitly

Z)
-

dz_dt d
dt dt L

(t x(t)' dt z) '

dz 1 d(Up)
L t + E Up, x + EX p,

dx
z (5.9)

dt dt dt

Here x + EX P = (x1 + EX1 p, xn + EXn P). Differentiate (5.9) with respect to

E , set E = 0 and recall that

E=o
(5.10)

Then from (5.9) we obtain the differential equation for the total variation c pro-

duced in the functional z by (5.3), namely

dC d(Up) aL aL k d dxk aL aL
5.11

dt dt L + at
Up

+ axk X p + dE dt 16=0 axk + az ( )

We now need to calculate the term

d dxk
dE dt

For this we observe that

E=o

dxk dxk dt
dt dt dt

or more explicitely
d(Xkp) dxk Ed(Up)

(5.12)
dt dt dt )

Set E = 0 in (5.12) to obtain dxk/dt E=o = 0. Differentiate (5.12) with respect

to E to get
d(Xkp) dxk d(Up) d(Up) d dxk

dt dt dt + C l +
E

dt ) dE dt

Set E = 0 in the last equation to find

d(Xkp) d dxk
dt dE dt 1--=o

,
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Thus, equation (5.11) becomes

do d(Up) aL aL k d(Xkp) aL aL
. (5.13)

k
X p +

dt k
+

adt dt L + at
Up

+ zax as

The solution c of equation (5.13) is given by

exp(-t 5Ldt)(-(0

0

(5.14)

I'
exp

(3 IL
d8\ CL

d(Up)
+ aL

Up +
aL Xk

p +
aL d(Xkp)\- - ds .

az ds as axk ajk ds

Since (5.3) is a symmetry group of the functional z , the total variation produced

by it is zero, i.e., c = 0 in (5.14). Also, as explained earlier, in order to have a

well-defined functional z as a functional of the function x(t) we must evaluate

the solution z(t) of the equation (5.1) with the same fixed initial condition z(0)

independently of the function x(t) . Then zo = z(0; E) is independent of E. Hence,

the total variation of z evaluated at t = 0 is

o d

d [x; 0, E]
E=o de

z(0)

We integrate the terms involving total derivatives of Up and Xkp by parts. 'Then

(5.14) becomes

-3 - dO- U+ LLUp+ s Up+ Xkp (5.15)
L

exp(LDZ)
aL aL k d aL k 1 (- / 80L ) aL k+ - k X p - -

k X p J ds + exp J de (LUp + X p)
az aX ds i o az axk

t

3=0

Since p(s) is arbitrary, we may choose p(s) such that p(0) = p(')(0) = ...

= p(')(0) = 0 and p(t) = P(1) (t) _ ... = p( )(t) = 0 . Then, we get from (5.15)

J0
[1exp

/ 3 aL aL aL aL k aL ..k aL aL
(\ Jo az de ( as az

L - k x aXk x +
az L + as

Up

aL aL aL d aL k 1
.W k + az aX k ds ax k I

X p/Jds = 0

One more integration by parts yields

fo ex p
3

aL l (- aL aL aL d aL
xk U

p o az l\( ax k a k Oz ds a k) p

+ (axk + a ax ds a
)Xkp)ds = 0 . (5.16)
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Let U be the adjoint of U and Xk be the adjoint of X k
. This allows us to put

(5.16) into the form

1'(±k(E Qk) - (T(E Qk Xk)) p(s)ds + [ - ]8_o = 0 , (5.17)

where Qk and E are defined in (5.2) and (5.6). Equation (5.17) is obtained by

repeated integration by parts in (5.16). We may force the boundary terms [ - ]9_0

to zero using the arbitrariness of p. Since t is arbitrary, applying the fundamental

lemma of the calculus of variations we obtain the identity (5.4).

We observe that the identity (5.4) reduces to the identity provided by the

second Noether theorem, namely,

ROk L d aL aL d aLX k

dt axk) - U
(axk - dt axk

)
xk) = o

when the generalized variational principle of Herglotz reduces to the classical vari-

ational principle, i.e., when L does not depend on z.

Theorem 5.1 reduces to the classical second Noether's theorem when the gener-

alized variational principle of Herglotz reduces to the classical variational principle.
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CAPTER 2

GENERALIZED VARIATIONAL PRINCIPLE WITH SEVERAL
INDEPENDENT VARIABLES.

FIRST NOETHER-TYPE THEOREM.
CONSERVED QUANTITIES IN DISSIPATIVE AND GENERATIVE SYSTEMS

1. THE GENERALIZED VARIATIONAL PRINCIPLE
WITH SEVERAL INDEPENDENT VARIABLES

1. Extention of the Herglotz variational principle to the case of several inde-

pendent variables

We would like to extend the generalized variational principle of Herglotz, i.e.,

dz

dt
L(t, z)

with generalized Euler-Lagrange equations

DL d aL aL aL
axe - dt &j + az Dxti = 0 i = l .. , n

to one with several independent variables.

As in physics applications, the t variable will again stand for time and the rest

of the independent variables x - (xl , ... , x") will stand for spatial variables. The

argument function of the functional z defined by the new variational principle will

be u = u(t, x) .

When there are no spatial variables involved, this new generalized variational

principle should reduce to the generalized variational principle of Herglotz. In addi-

tion, the new variational principle should contain the classical variational principle

with several independent variables as a special case.

The summation convention is assumed to hold throughout the chapter.

The integro-differential equation

dz

dt
= f G(t, x, u(t, x), ut, ux, z) dx , (1.1)

where dx - dxl ... dx' and ux - (uxi, ... , uxn) , defines the functional z , so that

together with the generalized Euler-Lagrange equations

a,C d D.C d a C DG aG

au dt Dut dxk Duxk + aut
L

az dx = 0 (1.2)
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derived in section 3 below, it satisfies the above requirements for a variational princi-

ple. We will call the variational principle defined by (1.1) and (1.2) the Generalized

Variational Principle with Several Independent Variables.

In order for the equation (1.1) to define a functional z of u(t, x) we must solve

equation (1.1) with the same fixed initial condition z(O) and evaluate the solution

z(t) at the same fixed final time t = T for all argument functions u(t, X).

2. Physical significance of the Generalized Variational Principle with Several

Independent Variables

The generalized variational principle with several independent variables gives

a variational description of processes involving physical fields. This is done by the

generalized Euler-Lagrange equations (1.2), which are derived in section 3 below.

The dependent variables u = u(t, x) can describe an electromagnetic or a gravi-

tational field, a temperature distribution of a body, a flow of a gas or liquid, etc.

Most of these fields and the processes which involve them have well known varia-

tional descriptions with the classical variational principle, with several independent

variables. What is new here? If a non-conservative process is describable by the

classical variational principle then the Lagrangian function L necessarily depends

on time. This dependence on time of the Lagrangian function cannot be avoided

if a non-conservative process is described by the classical variational principle with

several independent variables. However, if a non-conservative process is described

by the generalized variational principle with several independent variables then the

process does have a variational description, yet the Lagrangian function does not

have to depend on time.

2. INFINITESIMAL CRITERION FOR INVARIANCE

We are interested in finding an infinitesimal criterion for the invariance of the

functional z defined by the generalized variational principle with several indepen-

dent variables. Let us consider a functional z defined by the integro-differential

equation (1.1) where x = (x1, ... , x'), ut stands for the partial derivative of

u with respect to the independent variable t and ux stands for all first partial
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derivatives of u with respect to the spatial variables x1, ... , xn. Given a one-

parameter group of transformations of the independent and dependent variables

(t, x1, ... , xn) , we would like to know how this family of transformations affects

the functional z defined by (1.1), when the transformation is applied to (1.1). So,

consider the one-parameter group of transformations

t = c(t, x, u; e)

xk k(t, x, u; E), k = 1, ... n

u = '(t, x, u; e) . (2.1)

We need to recall how (2.1) transforms the function u = u(t, x) . The process is as

follows: For a given function u = u(t, x) , the system

t = c(t, x, u(t, x); E)

xk
CP k(t, x, u(t, x); E), k = 1,... n,

is a system of n + 1 equations with n + 1 unknowns t, xl, ... , xn and a parameter

E. W e invert this system to get t and x1, ... , xn as functions

t = O(t x; e)

xk =Tk , k = 1,...n, (2.3)

oft and x1, ... , xn . Then we substitute (2.3) into the last equation of (2.1) to get

u as a function oft and x1, ... , xn and E, which we denote by it

This is how (2.1) transforms the function u = u(t, x).

We now define what is meant by the "transformed functional" of a functional

z defined by (1.1).

Definition 2.1. The transformed functional z , of a functional z defined by

(1.1), is a solution of the transformed differential equation

dz

dt - E(t, x, ut, uq, z) dx (2.4)

where S2 is the transformed domain of the domain Q.
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There are two important observations to be made here:

1. The transformed differential equation (2.4) differs from the non-transformed

(1.1) only in the argument function and in the domain of integration, i.e. it contains

u in place of u and 52 in place of Q. In other words, we can write the transformed

equation as
dz

dt = 'C (t, x, it (t, x), ut, ux, z) dx
fu

where t and x are the new independent variables. We choose to adhere to the

notation of (2.4) in which the transformed variables have the names t and t.

2. If the one-parameter family of invertible transformations (2.1) is used to

transform the equation (1.1), then the result is meaningful only if 0 is independent

of x and u. We state and prove this fact as

Lemma 2.1. The most general form of a one-parameter family of invert-

ible transformations of the independent and dependent variables which transforms

equation (1.1) in a meaningful way is

t = O(t; E)

xk = Y k(t, x, u(t,

it = 0(t, x, u(t, x); E

k = 1,...n,

Proof: First observe that for a known fixed u = u(x, t) every solution z of

the non-transformed equation (1.1) is a function of t only. That is, z as a solution

function of (1.1) does not depend on x . This is because x is integrated out in the

right hand side of (1.1), so dz/dt = f (t) , and hence z = F(t) is a function of t

only.

Assume that we transform (1.1) with (2.1) where 0 does depend on either x

or u(t, x) or both. The result is

- = C(t, x, u(t, x), ut, ux, z) dx (2.6)
dt

and since x is integrated out, dz/dt = f (t; e) . Hence z = F(t; e) is a function

of t and e only. Now we use the fact that: if we apply an invertible transfor-

mation to an equation, solve the transformed equation and then apply the inverse

dz
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transformation to a solution of the transformed equation, we obtain a solution of

the non-transformed equation. Let's apply the transformation t = c(t, x, u; e) to

z = F(t; e) . We get z = F(O(t, x, u; e); e) . The above fact now asserts that

z = F(c(t, x, u; e); e) is a solution of the non-transformed equation (1.1) which

depends explicitely on x. This is a contradiction with the fact that no solution

functions of (1.1) depend on x.

Now we need to define what it means for the functional z to remain invariant

under the transformation (2.1). Loosely speaking, it means that the transformed

functional z is identically equal to the non-transformed functional z. The precise

definition is

Definition 2.2. Let , S2 and T be the spaces where t, x and

vary. A local group of transformations G acting on the independent and dependent

variables (D x Q x' is a symmetry group of the functional z defined by the integro-

differential equation (1.1) if whenever D is a subdomain with closure Dal C 52 and

u = f (t, x) is a function defined over t' x D whose graph lies in x S2 x ' with

continuous second partial derivatives, and g E G is such that

u= f (t x) = g 0 f(t, x)

is a single valued function defined over 41, x D C 4) x SZ then the functional defined

by the transformed integro-differential equation

dz

dt = r(t'x'u(t'x)'u1,ut,z)dx
it)

is equal to the functional defined by the non-transformed integro-differential equa-

tion
dz

dt
L(t,x,u(t,x),ut,ux,z)dx

ID
for all t . Here D and SZ denote the transformed D and Q under G.

If a group G is a symmetry group of a functional z as above then we say that

the group leaves the functional invariant.

We can now address the question of finding an infinitesimal criterion for the

invariance of the functional z defined by (1.1) under a one-parameter group of
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transformations (2.1). This condition will be necessary and sufficient for a connected

group of transformations to be a symmetry group of the functional.

Proposition 2.3. The one-parameter group of transformations G

t = c(t; E)

xk = Ipk(t, x, u; E

it = (t, x, u; )

is a symmetry group of the functional defined by the integro-differential equation

dz_ /IC
dt Jci

if and only if
d-r dt

dt dt E=o

t, x, u(t, x), ut, ux, z) dx

(pr(1)v(r) + £Div) = 0

for all t, x, u, ut and ux in the domain of definition, where

v
T(t)

at +x,

2t) + T/ (t, x,
a

On

2.8)

2.10)

is the infinitesimal generator of the group G and Div denotes the total divergence

of the n -tuple e = (...... ') .

For the definition of pr(' )v see the Appendix. Equation (2.9) can be written without

the prolongation notation as

dr.C
+ dt

d
IC + .CDiv ) = 0 . (2.11)

dt dt E_o ds L=o

Proof: The functions 7, ek and it in the formula for v are

dO
Sk

d(pk d b
7

dE Lo ' dF =o '
k = 1,...,n

dE

For each g E G the group transformation

=g t) x, u) = (Og(t), (pg(t, x, u), Og(t, x, u))

F=O

can be regarded as a change of variables, so we can rewrite the transformed equation

dz

dt
= C(t'x'u(t)'uj,ux,z)dx

D

(2.7)

(2.9)
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as

dzdt
dt dt

f £(, x, pr(1) (g o f)(t, ) z) det J. (t, x, pr(1) f (t, x)) dx (2.12)

where the Jacobi matrix has the entries

Jgi (t,x,u(1) _ d g(t,x,u(1))
dx

For the definition of u(1) see the Appendix. If G is a symmetry group of the

functional z defined by (2.8), then the functional z defined by (2.8) is identical with

the functional z defined by (2.12), for all subdomains D of S2 and all functions

u = f (t, x) . Hence

dt
C(t, x, pr(1)(g ° f)(t x), z) det Jg(t, x, pr(1)f (t, x)) dx

x, u(t, x), , ti , z) dx_
ID

holds for all subdomains D of 52 , all functions u = f (t, x) and all t in its domain

of definition. Since t = 0(t; E) does not depend on x1, ... , xn , the arbitrariness of

D as a subdomain of S2 now implies that

dt
£(t, x, pr(1)(g 0 f)(t det Jg (t, x, pr(1) f (t, )

= C(t, x, u(t, x), ut, ux, z) (2.13)

holds for all t, x, u, ut, ux in the domain of definition. To obtain the infinitesimal

version of (2.13) we set g = gE = exp(v) and differentiate with respect to e . We

need the formula

(det Jgj (t, x, )) = Div (pr(1)gE 0 (t, x, UM)) det Jg, (2.14)

expressing the fact that the divergence of a vector field measures the rate of change

of volume under the induced flow. The derivative of (2.13) with respect to E when

g = gE = exp(ev) is

dt
C det J9 + (pr(1)v (C) + £ Div det JgE = 0
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or

dt G + dt pro ,C) + G Div ) I det J9E = 0 , (2.15)

the expression in parentheses being evaluated at (t, a, u) = pr(r>ge o (t, x, u(i>).

In particular, when E = 0, ge is the identity map and we obtain that

d-r dt

dt dt E=0
(pr(1)v()+ £Div) =0

for all (t, x, u(1)) in the domain of definition. The last identity can be written

without the prolongation notation as

dT dt
dt dt

Conversely, if
dT dt
dt dt

d

E=0 (dE

e=0

E=0
+,C Dive) = 0 .

(pr(1)v(r) + CDiv) = 0

for all (t, x, u, ut, ux) in the domain of definition, then (2.15) holds fore sufficiently

small. The left hand side of (2.15) is just the derivative of the left hand side of (2.13)

(for g = gE ) with respect to E. Thus, integrating from 0 to E we prove (2.13)

for g sufficiently near the identity. The usual connectivity arguments complete the

proof of (2.13) for all g E G. The assertion of the proposition now follows.

We observe that the infinitesimal criterion which the above proposition provides

reduces to the infinitesimal criterion for the classical variational integral under a

group of transformations, when the generalized variational principle with several

independent variables reduces to the classical variational principle.

3. GENERALIZED EULER-LAGRANGE EQUATIONS FOR
THE GENERALIZED VARIATIONAL PRINCIPLE

WITH SEVERAL INDEPENDENT VARIABLES

In this section we derive the equations which provide the extrema of the func-

tional defined by the generalized variational principle with several independent vari-

ables. Due to the obvious correspondence, we call these equations generalized Euler-

Lagrange equations with several independent variables.
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Let us consider the defining integro-differential equation for the functional z

dz

dt = f(t, x, u(t, x), ut, ux, z) dx (3.1)

where x = (x', ... , xn), ux = (uxi , ... , uxn ), dx = dx1 ... dxn . As explained in

Section 1, equation (3.1) defines z as a functional of u = u(t, x) . We write this

as z = z[u; t] . Our goal is to derive the equations whose solutions u = u(t, x) will

make the functional z stationary.

Theorem 3.1 If a function u = u(t, x) produces an extremum of the func-

tional z = z[u; t] defined by the integro-differential equation (3.1) then u is a

solution of the equations

ac d aG d a,C a,C car
au - dt Out - dxk auxk + Out f az

dx = 0 (3.2)

Proof: We will need the total variation ( produced in the functional z by

the variation in the argument function u. The precise definition of ( is

fi(t) = dE
z[u + ETI; t] Lo . (3.3)

Give a variation to the argument function u of the functional z , namely u + S1].

Here q is an arbitrary function of t and x with continuous first partial derivatives.

We assume that rl is zero on the boundary Dci of S2 , rl(0, x) = 0 and 71 (T, x) = 0 ,

where [0, T] is the interval in which the time variable t varies. We now consider

the varied integro- differential equation

dz[u + El]; t]

dt =
J'C(t' x, u + ETI, ut + Erlt, ux + E77, z) dx . (3.4)

We differentiate equation (3.4) with respect to E

d dz [u + E71; t] d J'C(t'x,u+ut+ETIt,ux+Erlx
dE dt dE

d

Since E , t and xl , ... , xn are independent of each other, we may interchange the

order of differentiation in the left hand side of the last equation and the order of

integration and differentiation in the right hand side to obtain

d( a,C a,C a,C a,C ()dxdt = j (auq + dut t + auxk l xk +
19Z
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Since c does not depend on x1, ... , x' , the last equation can be written as

d( /' a.c ar ac
)

15L
19Zdt au Out auxk

Equation (3.5) is the equation for the total variation c of the functional z produced

by the variation in the argument function u(t, x) . For convenience let's denote by

A(t) and B(t) the quantities

a.G a,C a.C ac
dx .

A(t) = COU'q

+ aut 77t + au k
1l k) dx , B(t)

Oz

With this notation equation (3.5) becomes

d((t) = A(t) + B(t) ((t)dt

Its solution c(t) is given by

exp (- f B(8) d8) ((t) - ((0) = fexp(_fB(e)dO)A(s)ds. (3.6)
0

We note that ((0) = 0. Indeed, as explained earlier, in order to have a well-

defined functional z of the function u(t, x) we must evaluate the solution z(t)

of the equation (3.1) with the same fixed initial condition z(0) independently of

the function u(t, x) . Then z(0) is independent of E . Hence, the variation of z

evaluated at t = 0 is

d
((O)= z[u; 0, E]

e=o ds
z(0)

We are interested in those functions a which leave the functional z stationary, i.e.

those for which the total variation 0 identically. With these observations (3.6)

becomes

ftexp (-f 'B(e) de) A(s) ds = 0 . (3.7

Let's denote the exponent function by

E(t) exp (_ftB(8)de)
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Then equation

or

3.7 becomes

JIO E(S) , \ au
rj + au9 77s + auXk rIxk) dx ds = 0

J
t a.c or d or
E(s) f2 v au'' + aus 3 + dxk Cauxk

Application of Gauss theorem produces

t
N dAds + E(

o

fE(s)J
a u

ac
x JOast

/' /'
+ J J

E(s) O'C 77s dx ds = 0
o

where

d or
r? dx ds = 0 . (3.8)

dxk auxk

(a,C d or l
f\au dxkauxk)dxds

or ac a'C

aux = auxi aux

N is the normal unit vector to the boundary OSZ and dA is an element of OQ.

Taking into consideration the fact that q vanishes on OQ , and integrating by parts

the term involving t73 , we obtain

JE(
or d or )8_dx jf C E(s ds dx = 0

d s \ )aus)

since q (O, x) = 0 and rj(s, x) = 0. Expanding the second term in the last

equation we get

Ot E a.C d or d or or or
dx dx ds = 0

I
J au dxk aYtxk ds au8 + aus az

T'

The arbitrariness of 77 together with E(t) > 0 , for all t , imply that the generalized

Euler-Lagrange equations, which produce the extrema of the functional z , are

or d or d or or (M
au - dxk auxk - dt aut + Out u OZ

which concludes the proof of the theorem.
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It is important to observe that the generalized Euler-Lagrange equations (3.2)

reduce to the classical Euler-Lagrange equations when C does not depend on

z , i.e., when the generalized variational principle with several independent vari-

ables reduces to the classical variational integral with several independent variables.

Also, equations (3.2) reduce to the generalized Euler-Lagrange equations (2.5) in

Chapter 1, for the generalized variational principle of Herglotz.

4. FIRST NOETHER-TYPE THEOREM FOR
THE GENERALIZED VARIATIONAL PRINCIPLE WITH

SEVERAL INDEPENDENT VARIABLES

In this section we prove a theorem which provides an identity corresponding

to each symmetry of the functional z defined by the generalized variational prin-

ciple with several independent variables. We call it a first Noether-type theorem

for the generalized variational principle with several independent variables because

this theorem reduces to the classical first Noether theorem for a variational inte-

gral with several independent variables when the generalized variational principle

with several independent variables reduces to the classical variational principle with

several independent variables.

As corollaries to this theorem we show that there is a correspondence between

the symmetries of the functional z defined by the generalized variational principle

with several independent variables and the conserved quantities of the system de-

scribed by it. One of the corollaries to the theorem provides a systematic procedure

for finding the conserved quantities.

Let us consider again the generalized variational principle with several inde-

pendent variables in which the functional z is defined by

dz ('

dt = J C(t,x,u(t,x),ut,ux,z)dx , (4.1)

where x = (x1, ... , x7) , ut stands for the partial derivative of u with respect

to the independent variable t and ux stands for the gradient of u in the spatial

variables x1, ... , xn . The equations for the extrema of z are

a,C - d a.C
-

d aL Dr [ a.c
dx =

au dt aut dxk auxk + aut .Jc az
0 . (4.2)
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Let also a one-parameter symmetry group

t = O(t, E)

xk = 4Pk(t, x, u, E),

n=O(t,x,u,E) ,

of the functional z defined by (4.1) be given. The form of the transformation (4.3)

is the most general form of a transformation which meaningfully transforms the

functional z defined by (4.1). See Lemma 2.1 in section 2 of this chapter.

By Taylor's theorem we can write this transformation as

t = t + T(t) + 0(E2)

xk = xk + k(t, x, u) E + 0(E2)

CI = n + T/ (t, x, u) e + 0(E2 )

where T , k and q are

dT - -
dE

k =
dcp k

E=0 de E=0

The infinitesimal generator of the group (4.3) is

k = 1,...n

n
do

e=0dE

a a aV = T(t)- + (t'x n) + 7j(t'x n)-
at ' ax ' an

where here and throughout the rest of the chapter we assume the summation con-

vention on repeated indices i = 1, ... , n to hold.

We are interested in the total variation c produced in the functional z by

the action of the symmetry group (4.3). We know from Lie theory that near the

identity transformation the action of the nonlinear group (4.3) is the same as the

action of the infinitesimal linear group

t=t+T(t)e

xk = xk + k(t, x, u)e k=1,...n

u = u+7O,x,n)E . (4.4)
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The following theorem provides the identity of the physical or mathematical system

described by the generalized Euler-Lagrange equations (4.2), which corresponds to

the symmetry group (4.3).

Theorem 4.1 Let (4.3) be a given symmetry group of the functional z, de-

fined by (4.1), with infinitesimal generator

V
=

7(t)-
t + Z(t' x, u) axe + g(t, x, u) a . (4.5

Then the following identity

L((E((Outut-C)T+ou xj - T/ ) ))

ux. - Tl)) dx = 0 (4.6)
d kdxE (_arauxk

utT - C + auxk
(j

holds on solutions of the generalized Euler-Lagrange equations (4.2) for the func-

tional z . Here D is any subdomain of 52, including Q itself, whose closure

Dc' C Q'1 and E is

E -_exp(- f tfardxd9 (4.7)

Remarks: When the transformation (4.3) or equivalently (4.4) is applied to the

functional z[u; t] , the limits where the functional is evaluated (after the equation

(4.1) is solved) are also transformed by the transformation. Thus, we must account

for this transformation of the limits and compare the nontransformed functional

z[u; t] having nontransformed limits of evaluation with the transformed functional

z[u; fl having transformed limits of evaluation. The two tricks which make possible

this procedure are:

1. Apply the transformation (4.4) to the defining equation (4.1).

2. In the resulting integro-differential equation perform a change of the inde-

pendent variables t and xk to go back to t and xk , k = 1, ... , n.

Proof: Apply the transformation (4.4) to

dz

dt = f £(t,x,u(t,x),ut,u1,z)dx , (4.8)
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to obtain
dz

dt

where D is any subdomain of SZ , including Q itself, with closure D" C Q" Here

D denotes the result of transforming D with (4.4). Note that D = D(t, it, E)

depends on t, u and E . Now we perform a change of the independent variables

in (4.9) to go back to the original independent variables t and xk

The resulting equation is

dz_dt
dt dt JD(t,x, at,

C

E=o

, k = 1,...,n.

, (4.10)

where the determinant of the Jacobi matrix arrises from the change of the spatial

variables xk , k = 1,... , n . Differentiate equation (4.10) with respect to E and

set E = 0 to obtain

d dz
dt dE

d dt
+ dE dt E=o fD

C dx .

det ( axe)
dxl ...

axe

dx + I ,Cd det (axiax i
E=o D dE

dx l
=o

(4.11)

To get the above equation we have also interchanged the order of differentiation

with respect to E and t and the order of integration with respect to the spatial

variables and differentiation with respect to E. Observe that

dt
dt

since

dt U dC
det

dt dE E=o axe

dt
dt E=o

Jr- = ( t ,x, u(t,t), ut, ut, z) dx ,

d c(t, E)

dt

1 ,

E=o dt
((t' 0)

+ dE

A similar calculation yields

axe
det (axi

Also,
d dt

dE dt

t, 0)E + O(EZ ))

E=o dE
(1 + dt E + O(EZ))

E=0=1.

E=o
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Recall that the precise definition of the total variation ( produced by the group of

transformations (4.3) in the functional z is

d
z[u +77;t]fi(t) = d

Thus, equation (4.11) becomes

d(
dx + C d det

(\

dt =
fdr

D de ID d axe )

Now we must calculate

If a = det(aji) , where aj are functions of the same parameter E , then

da da j Z

de de
AZj

(4.13)

where summation is performed on i and j and Air is the cofactor of aj' in the

determinant. Apply this formula to det (ail/axe) to obtain

(4.14)
de

det (axi ) Ai
de

(OV)
axe

where Air is the cofactor of axZ/axe . Next,

d (ail ) - a dxz
d axe axe de

02 i a2Xi au

axe aE + all DE axe '

because = V (t' x, u(t, x); 6) , i = 1, ... , n . Hence (4.14) becomes

e=o

dx +
d

Cdx . (4.12)
6-o dt J D

Z

dE det (axe )l s=o

d axi i a2Xi all
d det (ax' ) AZ

(aa2.;

XT --ax + ail aE axe

Observing that Air
e=o

= Si' is a cofactor of the identity matrix, we get

d ax l? aau
7l = =

d det (axI e=o

(DZ
axe + au axe l SZ dxj SZ dxi

Thus, equation (4.12) becomes

d dC
dx + G d dx + rr C dx (4.15)dt - fD d l e=o fD dx2 dt ID
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The integrand of the first integral in (4.15) is

dG a,C d6 a,C d(P k a.C do a,c d au OE d au a,C dz

de =o - at de + ax k de + au de + au t de at + au x k de aX7k + Oz de E=o

which when written with ( and the infinitesimal generators of the group becomes

dC

de

ac Of k a.c a'C d (au)
E=o= at T + axk + au 77 + aut de \at

To calculate
d 0u
de(at) E=o

a.c d au ac
E=O+

auxk de
()+

az
(4.16)

which appears in the above expression, proceed as follows: Differentiate the equa-

tion u = u(t, x; e) = 0(t, x, u; E) in two different ways with respect to t. The

results are equal, so

au au au dt au d k au dt au ( aX k a'T k

at + au U' = at at + a k dt = at at + a k \ at + au
u t) ( 4.17)

Set e = 0 and take into consideration the identities:

au
=0 au

=1 at =1
axk

=0
axk

=0
at E=0 au L=0 at E=0 at LO au I'F=O

Substitute these in (4.17) and solve the resulting equation for ut 1,,=o to find

ut IE=0 = Ut . (4.18)

Differentiate the equations u = u(t,,x; e) and it = b(t, x, u; e) with respect to

xi . The results are equal, namely,

au au au dk au axk axk

ax' au ask dx' ask ax' + au
u ,

Set e = 0 and then substitute the identities:

=0 au

axe G-0 7 au

au ask k aek
= 1 ,

F=O ax3
LO = Sj ,

au E=0

in (4.19). Then solve the resulting equation for uxi LO to obtain

=0

(4.19)

1E=0 = ux, . (4.20)
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Differentiate (4.17) with respect to e to get

d au au d d dt d d axk d x k

1e at + auutut d dt dt de
ut +uxk dF at + de

('9

au ) ut/
axk axk d

+ at + au
ut

de
uxk (4.21)

Set s = 0 in (4.21) and then substitute (4.18) and (4.20) into (4.21). Take into

consideration the fact that

d au
dE at

d axk
de at

a'q d au
E=o at ' de au

all d at
-0 - au ' de at

OT at
E=o at ' at

W d axk
-=o at ' dE au

aek axk
e=0 = alt ' at

Then equation (4.21) becomes

a, a aT d

at + au
ut = ut at + dut

d
dut

Observe that the total derivatives of TI, T and c appear in the last equation.

Hence, (4.22) becomes

drl = dT d_
dt u t dt + de

u t

Solving this last equation for

we obtain
d

ut
dE

We must now calculate

axk
au

=0.
E=0

C ak

a-k

e-0
+ uxk

at + au
ut) (4.22)

dk
+ uxk

E=o at

E=0

dri dT dk
- ut - uxk

-=o dt dt dt

d 1au l
dE ax k l e=0

(4.23)

which appears in (4.16). For this purpose differentiate (4.19) with respect to E.

d au d au d axk axk l ( d axk d axk l
de aj + d au ux' - de uxk (axi + au ux' / + uxk \ de OP + uxj de au

(4.24)
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Set s = 0 in (4.24), substitute (4.18) and

d au

Then

On Ot d

axj + au
ux;

= de
utk

4.20) into (4.24) and observe that

aTI atk

E=0 au ' axj

ak d ask
ax' ' de au

k

aek

e=0 alt

Caek
0Sk 1 .

+
uxk

axe + au
2t x7 / (4.25)

e=0

E=0

Note that the total derivatives of 77 , T and k appear in the last equation, so

(4.25) takes the form

from which we get

dk
+uxk

E=o dx3

dT1
dk

- uxk
=o dx3 dx3

Substitution of (4.23) and (4.26) into (4.16) produces

dC

de

(4.26)

a.c Or- k 191C DE ( dry dT dk
e=o at T + axk + au + aut \ dt - ut dt - uxk

dt

( dTj ])
(4.27)

By inserting (4.27) into (4.15), we obtain the differential equation for the total

variation c of the functional z under the transformation (4.3), namely,

d( or or k or or d7/ dT dk
at = at + axk + au + aut at

utat - uxk d) (4.28)

or dry
+ k - 2txi

auxk dx

dr7 d

=deux'dx'

dxk)+r dx dx
+ dt

J G dx + I az dx .

D D

Its solution c evaluated at T is given by

exp
(-1

T

D 'C dx
de) - ((0

or ( dry dT

+aut dt - ut dt

de axe

all d au
E=o ax' ' de au

a-k d ask
au E=o - ° dE axe

4.24) becomes

ar aC a,C k or't

=f exp (-JO
D az

dx de)(L(0
t T + axk + au '1

dtltk)
+ auxk

(ddijx
-ux' dxk) +.C

dxj )dx+ dt
T

fDCdxdt
(4.29)

+
+
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where T is the value of t at which the solution z(t) of equation (4.1) was eval-

uated in order to obtain the functional z[u; T] . We note that ((0) = 0. Indeed,

as explained earlier, in order to have a well-defined functional z of the function

u(x, t) we must evaluate the solution z(t) of the equation (4.1) with the same fixed

initial condition z(0) independently of the function u(x, t) . So, z(0) is inde-

pendent of E . Hence, the variation of z at t = 0 is ((0) = d/dE z[u; 0, E] IE_0 =

dl dE z(0) E-o = 0. Also, since by hypothesis the one-parameter group of transfor-

mations (4.3) leaves the functional z = z[u(t, x); t, E] stationary, we have ((t) = 0.

Thus, (4.29) becomes

T [f-dd9'( ac dr] dT dl
J0

exp (-J0)D
az at T + axk + au + Out dt - ut dt -uxk dt l

aC (d d-' d] ) dT

ID
+

au dxk - ux;
dxk

+ G
axe

dx +
dt

C dx dt = 0 . (4.30)

To shorten notation in what follows, we will use E for the exponent expression,

according to (4.7). Now, the goal is to obtain the generalized Euler-Lagrange ex-

pressions
a.c d ar d a,c 9L ar

d
au - dt aut - dxk auxk + Out

I
D Oz

x

under the integral. Let us concentrate on the terms involving drj/dt and d?]/dxk

in (4.30) and form a total divergence (see Definition 9 in the Appendix). We get

IT dC d dr d dC dL aL l d aC l
E (du dt dut dxk duxk + dut ,D 19Z dxl + dt (E 77 )outJO D (

d a.c l a,c k a,C dk ar dj dl
+ dxk CEauxk +E(axk Out dt uxk auxk dxkux' +G dxjJ)dxdt

+
jT d7 IT j (at OL d7

E fDG dx dt + E
T aut dt

ut) dx dt = 0

which on solutions of the generalized Euler-Lagrange equations becomes

T
O'C

D \dt CE tl Out J + dxdk (ET/ auxk
J) dx dt

+JT
ID

E(ate k au dkuxk -
au k

dxkux +rd dxdt
0 \ x )
IT dT

IT f
dT

+
E

dt
G dx dt + E (at aut dt

dx dt = 0 . (4.31)
0 D D

k
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Next, let us concentrate on the second integral in (4.31) which involves k . The

goal is to obtain the generalized Euler-Lagrange expressions and total divergences.

fTf(Ek aL) dd
(EC

)

Oxk dt (E kuxk aut) dxk (Eeinxjausk) + j
+E kai utxk+ E k uxk

d
d

ac
-- Ek uxk

ac ac ; ac
Out dt Out Out ID Oz

dx
+

E
Dusk

u ; sk

d OL a.C a,C D,C O.c
+E 'ux; ddk Dusk - E ' \ Dx- + Du ux' + Duxk

uxkxj +
Out

utx;) dx dt

IT
dT L dx dt + (d (E 71-D,C) d

(E aL) dx dt
o dt ID o dt Out dXk Ouxk )
T (a c a,C dT

ut) dx dt = 0 . (4.32)
+ Jo

EfD(
at T

-
Out dt

We cancel three pairs of terms and factor the generalized Euler-Lagrange expressions

to obtain:

d Or d aC d ac d ae
JOJDc) + d_k (Eauxk) dt (E kuxk out) dxk \Eux' Dusk )

(ciL:d d d,C d dG dG
LL+ (E C) - E

du dt du dx du k + dx dx dt
t k

x dut D OZ )

JE
E D(

DT OuaC d7

t dt
ut) dx dt C dx dt 0 . (4.33)

Thus, on solutions of the generalized Euler-Lagrange equations, (4.33) becomes

LJDdt\
T (d Or d DG d

EOut) + dxk (Eauxk) dt (E kuxk Out dxk (E Tux' Dusk )
I T

+ddj (EG'dxdt+JDE(DtT Du utdt + dt.C)dxdt=0. (4.34)

The last integral in (4.34), involving T , is transformed as follows:

d

DE
(a7-

Out
utd + d c) dx dt

JT,
T

ET
ac d ac

ut - C - E O'C ut - C T
OG

dx
O JD at dt ( (Out

)7)
(Out ) JD OZ

d D,C D,C dL:

t + Out
utt - d) dx dt

+ ET (ut dt au

LID(
DL D,C D.C DL

ET
(Ut

dt Dut au
ut

ausk
uxkt Dz fL:dx

+ ,C
DZ

dx - Out ut
DZ

dx)
dt

(ET (uta- C))) dx dt . (4.35)

)



49

After integrating the term -uxkt O.cIOuxk by parts, (4.35) becomes

T d,C d CC d dG dL: DL: d (DL:ETu(--+ -+
k dut

Ozdx) - ETdxk\aug
utI du dt dut dx duxk JD x

+E-r (CID az dx - a I C dx) -
dt

(ET (au tt - C) )) dx dt . (4.36)

We next observe that

ID CJD OZ

dx - a ID C dx l dx = f
OZ

dx f L dx - C dx dx = 0 .

So on solutions of the generalized Euler-Lagrange equations, (4.36) becomes

-
IT

Tf (-(ET(O'utUt-L))
dt

+ dXk (ET
au k

ut) dxdt
0 D \ X

Thus, for the last integral in (4.34) we have

IL
T 0,C dT

O'C G) dx dt
E (at T - aut dt ut +

Jr

JTJ(d
- dt (ET Out

-,C)) +ddk (ET
aua'C u)) dx dt

which we substitute into (4.34) to obtain

D\dt(Eaut
O'Cdk

(E Ouxk) dt (Ekuxk aut) dxdk (E t'ux' auxk )

d
OE

+d (E C j) dt (ET
(aunt - .C)) -ddk (ET

Ouxk
u)) dx dt = 0 . (4.37)

Since T is arbitrary, it follows from the above equation that the identity

1(dt
(E ((Ou utD - C)T + Out (jux' TIM

d

C

O,c k OIC

+ dxk E (Ouxk ut T
- C

+ Ouxk (
- ii) ))) dx = 0

holds on solutions of the generalized Euler-Lagrange equations where D is any

subdomain of Q, including S2 itself, with closure DCl contained in the closure of

Q. This completes the proof of the theorem.

(au
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Corollary 4.2. Theorem 4.1 reduces to the classical first Noether theorem

when the generalized variational principle with several independent variables reduces

to the classical variational principle with several independent variables.

Proof: Consider the defining integro-differential equation

dz
dt = J,C(t,x,u(t,x),ut,ux,z)dx

s
(4.38)

for the functional z , where x = (x1, ... , x n ) and ux = (uxi, ... , uxn) . The

generalized Euler-Lagrange equations

a,C d 312 d a,C a,C [DL:
dx

- dt aut - dxk auxk + aut az
x = 0 (4.39)

provide the extrema of z. Identity (4.6), which Theorem 4.1 provides, holds on

solutions of the generalized Euler-Lagrange equations, where D is any subdomain

of Q, including Q itself, with closure DCl C Q" . If ,C does not depend on z

the integrand in (4.6) is independent of D. Then, the arbitrariness of D in the

identity (4.6) implies that the integrand is identically zero. Moreover, in this case,

E = 1 as seen from (4.7). Hence, the conservation law

))d

C(

',Cut -,C) T
a.c

('ux.i - 17
dt Out

-+- aut

d ac Or
+ ut T - k +

xk
\'ui' -'

dxk auxk a2t
= 0 . (4.40)

holds on solutions of the classical Euler-Lagrange equations. Since .C does not

depend on z , (4.38) reduces to the classical definition of a functional by an integral

and (4.40) is precisely the conservation law provided by the classical first Noether

theorem.

5. CONSERVED QUANTITIES IN DISSIPATIVE AND GENERATIVE
SYSTEMS WITH SEVERAL INDEPENDENT VARIABLES

Physical systems described by the generalized Euler-Lagrange equations

a.c d a,c d aC a,C a.c
dx = 0 (5.1)

au dt aut dxk auxk
+

aut J (9Z
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with several independent variables are not in general conservative. The physical

field which evolves according to these equations is represented by the function u =

u(t, x) . It can describe an electromagnetic or a gravitational field, a temperature

distribution of a body, a flow of a gas or liquid, and so on. In this section we show

how Theorem 4.1 can be used to find conserved quantities in such systems. To carry

out this procedure, we must find the symmetries of the functional z defined by

dz

dt = 'C (t, X, u(t' x), ut' ux, z) dx

Each one-parameter symmetry provides one conserved quantity. To test whether a

one-parameter group of transformations of the independent and dependent variables

is a symmetry group of the functional z we use the infinitesimal criterion which

Proposition 2.3 provides.

Corollary 5.1. Let

t=c(t,E

xk = pk(t, x, u, E)

u=O(t,x,u,6) ,

.n

5.3)

be a symmetry group for the functional z defined by (5.2), with infinitesimal gen-

erator
a a av = r(t)at

+ e2(t,x,u)x +'7(t,x,u)au (5.4

If
or ut7-C k+ OE (juxj 0k=1,...,n

on the boundary aQ of S2, then the quantity

fE((ut_r)r+_(e.mux, - rldx (5.5)

is conserved on solutions of the generalized Euler-Lagrange equations (5.1) of the

functional z , where E is

E = exp (_ If 01C
dx d8) . (5.6
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Proof: Consider the identity (4.6) which Theorem 4.1 provides. Since this

identity holds for every subdomain D of Q, including SZ itself, we have

J(d( E ((autut - + +
au, (t'ux'

d aG k aG (j
+ dxk E (auxk

ut T - G + auxk
uxj - r)) dx = 0

on solutions of the generalized Euler-Lagrange equations (5.1). An application of

the Gauss theorem yields

)) dxd "'C ) aG (juxj
TJdt ,J E Out

ut -GT +
Out -

+JE ( utT-G+-77)) NdA=0, (5.7)
sp\\

where
IM

x xau
UtT -G+ 'I'Cau ('uxj -t')

stands for the vector with components

,
aG

U t
k

+ (e'tL-71),xjaxk
k = 1,. . . , n

N is the unit normal vector to the boundary 3S2 and dA is an element of 0S2 .

Since by hypothesis the quantities

aG aG (juxj2ttT - G k +-71) k=1,...,n
auxk auxk

are all zeros when evaluated on the boundary aQ , (5.7) becomes

d fE (("G ) a)J 1
Ouut - G T + Ou- r = O .

The statement of the corollary follows immediately from the above equation.

The following four corollaries are specific cases in which Corollary 5.1 holds.

Corollary 5.2. Let the group of transformations

t = 0(t, -)

xk = Ok(t, x, u, E)

u = O(t, x) u, E)
7

dx
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with infinitesimal generator

V=T(t)- +'(t,x,u)ax +Tj

be a symmetry group of the functional z , defined by

tx,u)a
au

dz

dt J 'C(t' x' u(t, x), ut, ux, z) dx

If
J C(t, x, u(t, x), ut, ux, z) d

then the quantity

< oo (5.8)

fE (( a.c ) a.c
(juxj - T/ )l dxa2Gtut- ,CT +

aut

is conserved on solutions of the generalized Euler-Lagrange equations (5.1) of the

functional z defined by (5.2), where x - (x1, ... , xn) and E is

E - exp(f O'c ) .

Proof: The requirement (5.8) implies that limlxl,,,, L = 0. Then

aL /auxe , i = 1, . . . , n , are also zero at infinity. Thus, the hypotheses of Corollary

5.1 are satisfied.

Corollary 5.3. Let the functional z defined by the equation

dz
C(x, u(t, x), ut, ux, z) dxdt = I

be invariant with respect to translations in time t = t+z , xZ = x2 , i = 1, ... , n ,

u = u . Then the quantity

fexp(_ftf
Oz

dx d9) (au ut - r) dx

is conserved on solutions of the generalized Euler-Lagrange equations (5.1) with the

boundary condition u = 0 on OQ.
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Proof: By Proposition 2.3, of this Chapter, follows that a,C/at = 0. The

infinitesimal generator of the group of time translations is 01,9t. Apply Corollary

5.1 with

dt
T =

dz e=0
=1,

e=0
=0.

Since u = 0 and ut = 0 on a5Z the hypotheses of Corollary 5.1 are satisfied.

More generally, we have

Corollary 5.4. Let the functional z defined by the equation

dz

dt = J
,C(t, x, u(t, x), ut, ux, z) dx

be invariant with respect to the transformation t = 0 (t, z) , xz = xZ , i = 1, ... , n ,

it = u . Then the quantity

st exp (- JO 0Z'C dx dB) (
aTOIC

1u t - 'C az 6=0 ) dx

is conserved on solutions of the generalized Euler-Lagrange equations (5.1) with a

boundary condition u = 0 on OQ .

Proof: Apply Corollary 5.1 with

0 i=1,...,n
d Zl

=
du

dz=0 dz Z=0
=0.

Since u = 0 and ut = 0 on 3S2 the hypotheses of Corollary 5.1 are satisfied.

Example:

Consider the two-dimensional damped wave equation

utt + Ut = uxx + uyy

on a subdomain SZ of IR2 .

This equation is the generalized Euler-Lagrange equation obtained from the

generalized variational principle with several independent variables with Lagrangian

C = (ux + uY - ut )/2 + a(x, y)z , where the function a satisfies the conditions

ffa(x,y)dxdy=_1 and a = 0 on DSZ .
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Since the Lagrangian G is independent of time, we know from Proposition 2.3,

in this chapter, that time-translations form a symmetry group of the functional

defined by the equation

dt
-f(2(ux+uy-ut)+a

Then Corollary 5.3 asserts that the quantity

ly

etJQ \au
ut - ,C)dx = - 2 et J (ut + ux + uy) dx dy + etz

is conserved on solutions of the damped wave equation with a boundary condition

u=0 on 5S2.

6. FURTHER APPLICATIONS OF THE FIRST NOETHER-TYPE THEOREM
FOR THE GENERALIZED VARIATIONAL PRINCIPLE

WITH SEVERAL INDEPENDENT VARIABLES

Consider the equation

2

°2u -
v ate

+ G(uu*)u = 0 6.1)

for the real or complex field u = u(x, t) , where u* denotes the complex conjugate of

u , G is a non-constant differentiable function and v is a constant. This equation

is known in physics as the Nonlinear Klein-Gordon equation. It plays an important

role in relativistic field theories. The linear version of the same equation, which

is obtained from (6.1) when G = constant, is the Klein-Gordon equation. It is

the basic equation in early relativistic quantum mechanics. The one-dimensional

version of (6.1) with real u and G(u2)u = sin a is the well known Sine-Gordon

equation in Soliton Theory. Its space-localized solutions are solitons.

Any non-linear wave equation of the form (6.1) for the real or complex field

u = u(x, t) can be derived from the Lagrangian

1 au au*
,C(u, ut, VU) = Vu Vu* -

v2 at at
- F(uu*) (6.2

where
dF(p)

dp
G(p) and F(0) = 0
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We consider (physically meaningful) only those solutions of (6.1) for which

L
< 00 .

In the case of an unbounded domain Q, motivated by physical considerations, we

only consider those solutions of (6.1) which have no singularities, i.e., for which

there is no point y E S2 such that limx,y 1u(t, x)I = oo .

The fact that equation (6.1) is derivable from a Lagrangian which does not

depend on time explicitly shows that all processes described with an equation of

the form (6.1) are conservative.

In physics and engineering one is also interested in non-conservative processes

involving fields. The simplest modification of (6.1) which makes it non-conservative

is to add a term proportional to the time-derivative of the field. Thus, a non-

conservative version of (6.1) is

aVu
- v

1 0U au
ate +

k
at + G(uu*)u = 0 , 6.3

where k is a constant. When k > 0 the process described by (6.3) is generative,

and when k < 0 it is dissipative.

Equations of the form (6.3) cannot be derived from a classical time-independent

variational principle. However, if u is a real field, DF(p)/ap = G(p), and

a = a(x) is a given function of the coordinates x = (xi , ... , xn) with

L a(x) dx < 00 ,

then (6.3) can be derived via the generalized variational principle with several in-

dependent variables from the Lagrangian

u
1 z

G= VuVu - v (at -F(u2)+a(x)z .

Indeed, insert the Lagrangian (6.4) into the generalized Euler-Lagrange equations

(3.2):
a,c d a.c d a,c or aL
au dt Out dxk auxk + aut Jet az

dx

z

-2u
au2 + v ate - 2VuVu- v at Ja(x)dx = 0 .
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The last expression is the same as (6.3) with

k = a J a(x) dx = constant .
V2

6.5)

Consequently, we may apply the first Noether-type theorem 4.1 to obtain conserved

quantities. In particular, observing that the Lagrangian (6.4) is invariant under

time-translations we may apply Corollary 5.3 to obtain the conserved quantity

J
exp(-f'f 091C dx d8) (__ut_i)dx=constant

which, after inserting (6.4) for L, becomes

exp(-kv2t) (V2 ( 2

Vu Vu - F(ur) + a(x)z dx = constant

where z is the solution of the defining equation (4.1).

In accordance with the conservative case, the quantity

2(ut -'C dx =- (v (at + Du Vu - F(ur) + cti(x)z

6.6

can be interpreted as the total energy of the field u(t, x) . Similarly, the integrand

of (6.7) can be interpreted as the total energy density of the field u(t, x) . We see

that these quantities are not constant, they increase or decrease exponentially in

time as seen from (6.6).
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APPENDIX

In this Appendix we state a few well known definitions and theorems for the

sake of quick reference.

Definition 0.1 An r -parameter Lie group is a group G which also carries

the structure of an r -dimensional manifold in such a way that both the group

operation

m:GxG-*G, m(g,h)=gh, g,hEG,

and the inversion

i:G --+ G, i(g)=g-i, gEG,

are smooth maps between manifolds.

Let TMIx denote the tangent space to a manifold M at the point x .

Definition 0.2 A vector field v on a manifold M is a map which assigns a

tangent vector v E TM Ix to each point x E M, with v 1 varying smoothly from

point to point. In local coordinates (x', ... , xn) , a vector field has the form

09x, axn
0.1

where each 2(x) is a smooth function of x .

Definition 0.3 An integral curve of a vector field v is a smooth parametrized

curve x = q(E) whose tangent vector at any point coincides with the value of v at

the same point:
dc(E)

vi= wk-)dE

for all E.

In local coordinates, x = 0(E) 61(E), ... , 0n(,))

autonomous system of ordinary differential equations

dxz
(x) i-,

dE

must be a solution to the

where the (x) are the coefficients of v at x . For '(x) smooth, the standard

existence and uniqueness theorems for systems of ordinary differential equations

guarantee that there is a unique solution to this system for each set of initial data

c(0) = xo . (0.3)
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This implies the existence of a unique maximal integral curve yh : I -+ M passing

through a given point x0 = 0(0) E M. See Olver, [5].

Definition 0.4 If v is a vector field, we denote the parametrized maximal

integral curve passing through x in M by 1Y(E, x) and call 4 the flow generated

by v.

Thus for each x E M , and E in some interval Ix containing 0 , 1(E, x) will

be a point on the integral curve passing through x in M. The flow of a vector

field has the basic properties:

111(6, %P (E, x)) = 'I (6 + E, x) , x E M, (0.4)

for all real 6 and E such that both sides of the equation are defined,

W(0, x) = x ,

and
d
d-W (E, X) = V x (0.6

for all E where defined. Here (0.6) states that v is tangent to the curve %P(E, x) for

a fixed x , and (0.5) gives the initial conditions for this integral curve.

The flow generated by a vector field is the same as a local group action of the

Lie group IR on the manifold M, often called a one-parameter group of transfor-

mations. The vector field v is called the infinitesimal generator of the action since

by Taylor's theorem, in local coordinates

kp(E, x) = x + (x) + O(E2

where = (...... ") are the coefficients of v. The orbits of the one-parameter

group action are the maximal integral curves of the vector field v. Conversely,

if 1IJ(E, x) is any one-parameter group of transformations acting on M , then its

infinitesimal generator is obtained by specializing (0.6) at E = 0:

d
VI X =

dE
I 'F (E, x) . (0.7
e=o
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Uniqueness of solutions to (0.2), (0.3) guarantees that the flow generated by v coin-

cides with the given local action of IR on M on the common domain of definition.

Thus, there is a one-to-one correspondence between local one-parameter groups of

transformations and their infinitesimal generators.

The computation of the flow or one-parameter group generated by a given

vector field v (in other words, solving the system of ordinary differential equations)

is often referred to as exponentiation of the vector field. The notation is

exp(ev)x = %P(e, x) .

In terms of this notation properties (0.4), (0.5) and (0.6) can be written as

exp[(6 + e)v]x = exp(6v)exp(Ev)x

whenever defined,

exp(Ov)x = x

and
d

d
[exp(EV)x] = Vlexp(ev)x

for all x E M. These properties mirror the properties of the usual exponential

function, which justifies the notation.

Let v be a vector field on M and f : M -* IR a smooth function. We are

interested in seeing how f changes under the flow generated by v, meaning we look

at f(exp(Ev)) as e varies. In local coordinates, if v= E e (x)8/axe , then using

the chain rule and (0.6) we find

de f exp(ev)x) = Z(exp(ev)x) a ff (exp(ev)x)
i-1
v(f)[exp(Ev)x] .

In particular, at e = 0,

d

n

d 1 E_of(eXp(Ev)x) _ fi(x) a ff (x) = V(f)(x)
i=1
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i.e., the vector field v acts as a first order partial differential operator on real-

valued functions f (x) on M. Furthermore, by Taylor's theorem, f(exp(Ev)x) =

f (x) + E v(f)(x) + O(E2 ), so v(f) gives the infinitesimal change in the function f
under the flow generated by v.

A symmetry group of a system of differential equations is a maximal local group

of transformations acting on the independent and dependent variables of the system

with the property that it transforms solutions of the system to other solutions.

Definition 0.5 Let be a system of differential equations. A symmetry group

of the system is a local group of transformations G acting on an open subset M of

the space of independent and dependent variables for the system with the property

that whenever u = f (x) is a solution of , and whenever g f is defined for g E G,

then u = g f (x) is also a solution of the system.

Given a smooth function u = f (x) , f : X U , where X and U are the spaces

of the independent and dependent variables, there is an induced function u(m) _

pr(m) f (x) , called the m-th prolongation off The function pr(m) f (x): X -+ U(m)

and for each x in X pr(m) f (x) is a vector whose entries represent the values of f
and all its derivatives up to order m at the point x . For example, in the case u =

f (x, y) , the second prolongation u(') = pr(2) f (x, y) = (u, ux, uy, uxx, uxy, uyy) , all

evaluated at (x, y) .

A smooth solution of the system of differential equations

Ov(x7 u(m)) = 0 , v = 1, . . . , l ,

involving x = (x1 , ... , xn) , u = (u',... , ug) and the derivatives of u up to order

m , where the functions 0(x, u(m)) = (01(x, U(-)).... , 01(x, u(m))) are assumed

to be smooth, is a smooth function u = f (x) such that

A,(x,pr(m) f(x)) = 0 , v = 11 ... 11 ,

whenever x lies in the domain of f . This is just a restatement of the fact that

the derivatives of f must satisfy the algebraic constraints imposed by the system

of differential equations. This condition is equivalent to the statement that the

,
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graph F ) of the prolongation pr(m) f (x) must lie entirely within the subvariety

. determined by the system:

r(') = {(x, pr(m)f(x))} C {(x, u(m)) : 0 =0

Suppose G is a local group of transformations acting on an open subset M of

the space of independent and dependent variables. There is an induced local action

of G on the m jet space M(m) , called the m-th prolongation of G, (or more

correctly, the m -th prolongation of the action of G on M) and denoted pr(m)G .

This prolongation is defined so that it transforms the derivatives of functions u =

f (x) into the corresponding derivatives of the transformed function is = f (_Jr) . If

g is an element of G sufficiently near the identity, the transformed function g f

is defined in a neighborhood of the corresponding point (jo, uo) = g - (xo, uo) , with

uo = f(xo) being the zeroth order components of uom) . We then determine the

action of the prolonged group transformation pr(m)g on the point (xo, u(-)) by

evaluating the derivatives of the transformed function g f at i o ; explicitely

pr(m)g ' (x0 upm)) _ (xo , upm))

where u0(m) = pr(-)(9.f)(xo) .

Definition 0.6 Let M be an open subset of the independent and dependent

variables and suppose v is a vector field on M with corresponding (local) one-

parameter group exp(Ev). The m -th prolongation of v, denoted pr(m)v , will

be a vector field on the m -jet space M(m) , and is defined to be the infinitesimal

generator of the corresponding prolonged one-parameter group pr(m)[exp(Ev)] . In

other words,

pr(m)vI(x,u(m)) = pr(m)[exp(Ev)](x,u(m)) (0.8

for any (x,u(m)) E M(m).

The explicit formula for the in -th prolongation of a vector field

V = (x, u) - + O '(X, u) dace
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is given by

pr(m)v = V + OJ(x, u(m)) aua , (0.9)

with the summation convention on repeated indices assumed to hold here and for the

rest of the appendix, the second summation being over all (unordered) multi-indices

J. The coefficient functions Oj of pr(m)v are given by the following formula:

DJ(O - eiua) + 6ZuJ,i

where ua = aua/ax2 and u Ji = au'/axi

Let S2 be an open, connected subset of the space of independent variables

x = ( x 1 , . , xn) with smooth boundary 3Q , and let u =

dependent variables.

1,...,u1) be the

Definition 0.7 The classical variational problem consists of finding the ex-

trema (minima or maxima) of a functional defined by the integral

[u] = J L(x, (0.10)

in some class of functions u = f (x) defined over Q. The integrand L(x, u(m) )

called the Lagrangian of the variational problem , is a smooth function of x, u and

various derivatives of u up to order m.

Theorem 0.1 If u = f (x) is a smooth extremal of the variational problem

(0.10) then it is a solution of the classical Euler-Lagrange equations

Ea -DJaua
0 ,

a = I.... ,l , (0.11)
J

with the sum extending over all multi-indices J = (j1, ... , jk) with 1 < jk <
n, k>0.

Here Dj denotes the total derivative with respect to the independent variables

xjl,...,xik , with J = (ii,...,jk).
Definition 0.8 A local group of transformations G, acting on an open subset

M of the space of independent and dependent variables, is a variational symmetry

group of the functional (0.10) if, whenever D is a subdomain with closure Dal C
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S1ct u = f (x) is a smooth function defined over D whose graph lies in M , and

g E G is such that ii

DCQ,then
= g'f(iO is a single-valued function defined over

(x, Pr
JD-

L(x, Pr(-)f (x)) dx = IDT L

Definition 0.9 If P(x,

f (x)) dx .

P1 (x, u(m) ), ... , Pn(x, u(m))) is an n -tuple

of smooth functions of x = (x', ... , xn) , u and the derivatives of u , we define the

total divergence of P to be the function

DivP=dPl+...+dPn

where dP2/dxz denotes the total derivative of Pi with respect to x2 .

The following theorem provides the infinitesimal criterion for the invariance of

the classical variational problem under a group of transformations. See Olver, [5].

Theorem 0.2 A connected group of transformations G acting on an open

subset M of the independent and dependent variables is a variational symmetry

group of the functional (0.10) if and only if

pr(m)v(L) + L Div = 0 (0.12)

for all (x, u(m)) E M(m) and every infinitesimal generator

v = (x, u)
a +0,i

a
,u

aua

of G. In (0.12) Div denotes the total divergence of the n -tuple T = ( 1, n)
Theorem 0.3 If G is a variational symmetry group of the functional defined

by the integral (0.10), then G is a symmetry group of the classical Euler-Lagrange

equations (0.11).

Definition 0.10 Consider a system of differential equations o(x, u(m)) = 0.

A conservation law is a divergence expression

DivP = 0
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which vanishes for all solutions u = f (x) of the given system. Here P(x, u(m)) =

(Pi .... P, (x, u(m))) is an n -tuple of smooth functions of x , u and the

derivatives of u .

The general principle relating symmetry groups and conservation laws was

first determined by E. Noether. The next theorem presents her result, known as

the classical frst Noether theorem.

Theorem 0.4 Suppose G is a (local) one-parameter group of symmetries of

the variational problem C = f L(x, u(m)) dx . Let

v = (x, u) 22 + 0,(x, u)

be the infinitesimal generator of G, and let Q,(x,u) - 0a-Zua, ua - 0ua10x'

Then there is a n -tuple P(x, u(m)) = (P,,... , PP) such that

DivP = Qa E,(L)

is a conservation law for the Euler-Lagrange equations E(L) = 0 .

The next result is the second Noether theorem. For the proof see Logan, [1].

Theorem 0.5 Suppose that the infinite continuous group of transformations

t = 0(t, x, p(t), p(i) (t), ... ,
P(r)

(t))

xk = 0k(t, x, x, p(t), p(1) (t).... , p(r) (t)) k (0.13)

is a symmetry group of the functional

b

I [x] _ f C x, X) dt ,
JJJa

where p E Cr+2[a, b] is the parameter function. Let

t=t+U(p)

X = xk + X k(p) , k = 1, ... , n,

be the infinitesimal group of transformations which corresponds to (0.13), where U

and Xk are linear differential operators. Then the identity

Xk(Qk) - U(XkQk) = 0
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holds, where Xk and U are the adjoints of the operators Xk and U and Qk are

the Euler-Lagrange expressions

aL d aL
Qk = axk dt axk

A refference for the remaining part of this Appendix is Guenther, [1].

Definition 0.11 Let z = z(x1, ... , xn) . A point, (x1, ... , xn, z, pi, ... , Pn) ,

in 2n+1 dimensional Cartesian space, with p2 = az/x2 is called an element.

A continuously differentiable, one-to-one transformation defined on a domain in

(x1 , ... , xn, z, pi , ... , pn) space with range in (X 1, ... , X', Z, P1, ... , Pn) space,

which may or may not coincide with the original space, given by the functions

X = X (X' z, p), Z = Z(x, z, P), P = P(x, z, P),

is called an element transformation. We assume that the Jacobian of the transfor-

mation is distinct than zero.

Definition 0.12 An element transformation which maps one-to-one some

domain D in (x1 , xn z P1 pn) space onto a domain h in

(X 1, ... , X", Z, Pi, ... , Pn) space is called a contact transformation if

p2 dx2 - dz = 0 implies P2 dX2 - dZ = 0 .

Theorem 0.6 An element transformation is a contact transformation if and

only i f there is a function p = p(x1, xn, z,P1, pn) zh 0 such that

p1dx2-dz=p(P' dX1-dZ).

Consider the generalized variational principle of Herglotz, i.e., let the functional

z be defined by the differential equation

z = L(t, x, x, z) (0.14)

with corresponding generalized Euler-Lagrange equations

aL d aL aL aL
axi dt axz + Oz OXz

0 n , (0.15)
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which provide the extrema of the functional z .

If we apply the Legendre transformation

H(t, x, i, z) = pjxj - L(t, x, X,
aL

Pi=axj

to the system (0.14), (0.15) we obtain the system

OH
xj = apj

OHz=pi --H
api
aH OH

Pj = + Pj )
ax j Oz /

j = 1, . n

I = 1,...,n, (0.16)

which Herglotz calls canonical equations. When H does not depend on z this

system reduces to the Hamiltonian system and so can be reffered to as generalized

Hamiltonian system.

Theorem 0.7 Let L be as in (0.14). Suppose that det (a'L/axiax j) z0 and

that the system (0.16) has initial conditions x0 = x(0) , p° = p(O) and z° = z(0) .

Then the transformation

x = x(t,x°,P ,z°)

P = P(t, x° , P° ,

z = z(t,x°,P°,z°) (0.17)

is a one-parameter family of contact transformations which contains the identity.

If L is independent of t , the family is a one-parameter group.

Consider the system of 2n+1 differential equations for the 2n+1 unknowns

X =(X1i...,Xn), Z, P=(PI,...,Pn)

X = e(X, Z, P, t) , Z = ((X, Z, P, t) , P = 7-(X, Z, P, t) , (0.18)

which satisfy the initial conditions

X =X, Z=z, P=p, when t=0. (0.19)
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The functions = (i , ... , n ), (, and 7r = (in , ... , irn) are all assumed to be

continuously differentiable. The solutions

X = X (x, z, p, t), Z = Z( z, p, , P = P(x, z, p, t), (0.20)

0.18) and (0.19) determine a family of transformations St : (x, z, p) -* (X, Z, P).

Theorem 0.8 In order for the solution (0.20) of the system (0.18) to repre-

sent a one-parameter family of contact transformations containing the identity, it is

necessary that there exists a function, H=H(X,Z,P,t), such that the system (0.18)

has the form

d OH

dt X' aPj
d

Z Pi
OH -H

dt aPi
d

dtP' -(aX4 +Pa aZ)


