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The results indicate a significant improvement in the average kriging variance
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A saving of two-thirds of the cost and time was achieved by using electrical

conductivity as an auxiliary variable to estimate sodium absorption ratio. The

nonlinear estimator, disjunctive kriging, was an improvement over co-kriging in terms

of the variances. More information at the estimation site is a more important



consideration than when the estimator is linear. Disjunctive kriging was used to
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A solute transport model was used to show how saptially variable initial
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Geostatistical Application to Salinity Mapping and Simulated Reclamation

CHAPTER 1

Methods of Geostatistical Analysis

for Salinity Assessment
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Introduction

Maintaining an adequate supply of soil water for plant use is a problem when

salt concentrations in the soil exceed threshold levels. Knowledge of the salinity

distribution within a region is important for the development of a rational water

management system for efficient water use and for delineating possible sites of soil

and groundwater pollution. Our tasks in soil salinity assessment are to subdivide

large heterogeneous regions into smaller regions which have relatively homogeneous

salt concentrations and to associate these salinity levels with edaphic, management,

or climatic factors operating within the region. The need for comprehensive methods

for the timely assessment of soil salinity has become increasingly important. One

such method has recently been developed by Rhoades et al., (1988). This promising

new tack for assessing the spatial and temporal distribution of soil salinity uses

portable instrumental techniques for measuring bulk soil electrical conductivity (EQ.

Data collected using this new technology lends itself quite well to geostatistical

analysis and computer assisted mapping. In this chapter we will develop a

geostatistical methodology for computerized salinity assessment. In subsequent

chapters, the methodology will be applied to mapping saline and sodic soils and then

to simulated remediation of salt affected areas.

The fundamentals of geostatistics were developed empirically by Krige and

others during the 1950's to assist in the location, assessment, and management of

gold ore reserves in South Africa (Clark, 1979; David, 1977; Cooper and Istok, 1988).

A coherent body of theory was later developed by Matheron (1963) for solving ore



3

estimation problems associated with spatial variation. This theory embraces a set of

specific statistical techniques for quantifying the correlation of spatially distributed

random variables, and for performing interpolation of these variables (Journal and

Huijbregts, 1978; Oliver, 1987; Webster, 1985; Warrick et al., 1986; Stein, 1991).

Geostatistical techniques provide a means for describing the spatial variability

of soil properties by quantifying the spatial and inter-variable correlation among

samples, provide optimum interpolation schemes for preparation of soil salinity maps,

and provide a method of estimating the location of new sampling sites to improve

quantitative estimates of spatially variable soil properties (Webster, 1985). Literally

hundreds of articles have been published in soil science journals on the use of

geostatistics to characterize the spatial variability of soil properties in the natural

landscape. Some soil science researchers have used geostatistical methods to

estimate and map soil properties such as water content (Morkoc et al., 1985; Yates

and Warrick 1987), soil temperature (Vauclin et al., 1982; ten Berge et al., 1983;

Morkoc et al., 1985; Davidoff et al., 1986; Yates and Warrick 1987), soil-water

pressure head (Saddiq et al., 1985; Hamlett et al., 1986; Yeh et al., 1986), various soil

chemical properties (Campbell, 1978; Gajem et al., 1981; McBratney et al., 1982;

Yost et al., 1982a and 1982b; van der Zaag et al., 1984; Trangmar et al., 1985;

Webster and McBratney, 1987; Samura et al., 1988), soil texture and structural

stability (Campbell, 1978; Vauclin et al., 1983; Yates and Warrick, 1987; Ova lles and

Collins, 1988; Shouse et al., 1990), mechanical impedance (Selim et al., 1987),

infiltration (Sisson and Wierenga, 1981; Vieira et al., 1981; Bautista and Wallander,
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1985; Berndtsson and Larson, 1987; Cressie and Horton, 1987), water retention

properties (Gajem et al., 1981; Russo and Bresler, 1981 and 1982; Vauclin et al.,

1983), salinity (Hajrasulliha el al., 1980; Miyamoto and Cruz, 1987), and soil surface

topography (Mu lla, 1988). Some soils researchers have focused on determining

spatial scales and patterns of soil variation to improve sampling efficiency (Burgess

and McBratney, 1981; Campell, 1978; McBratney et al., 1981; McBratney and

Webster, 1981).

Few soil scientists have applied geostatistics to large-scale mapping projects,

and even fewer have applied geostatistics to salinity assessment and remedial

management studies. A well-defined, comprehensive methodology for this latter

application has not yet been developed. Although the theoretical basis and practical

implications of the methods described in this chapter do exist in the literature,

relevant papers are dispersed among journals of widely differing disciplines. Thus,

the objectives of this first chapter are 1) to briefly review and bring together all

geostatistical theory relevant to salinity mapping; 2) to outline methods to be used

in applying this theory to salinity assessment; 3) to assess the uncertainty of various

geostatistical estimation procedures; and 4) to evaluate the role of auxiliary variables

in the estimation process. Actual applications are discussed in subsequent chapters.
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Basic geostatistical principles

Any set of n values, Z (x), of a measured soil property, Z, within the

landscape is called a regionalized or spatial random variable (Cooper and Istok,

1988). The collection of random variables for all points in the landscape is the

random function Z(x). In soil science Z(x) is known only at the actual measurement

sites, xi; Z(x) is considered to be a random variable everywhere else within the

landscape. This simply means that we have only one realization of the random

function Z(x) within the landscape. The problem in soil science is that the number

of observations, ZOO, is usually quite limited. Therefore, to accurately map a soil

property requires estimation of Z(x) at unvisited (unsampled) coordinates, xo, in the

landscape. The best estimator of Z(x) at a specific location x is given by the

expected value of Z(xo) as determined by the values already measured, 44),...,Z(x,,).

This is called the conditional expectation of Z(x,,) and requires the joint probability

distribution of the n + 1 random variables Z(xo), (Journel and

Huijbregts, 1978; Rendu, 1978; Stien, 1991). Knowledge of the joint probability

distribution is impossible with only one realization of Z(x). Another estimator with

fewer requirements is necessary.

As a direct consequence of having only one realization of Z(x), linear

estimators are usually considered adequate in geostatistical analysis (Delfiner, 1976;

Olea, 1975). Linear estimators require that the mean and variance of the probability

distribution of Z(x) be known (Cooper and Istok, 1988). To estimate these statistical

moments of Z(x) stationarity of Z(x) is assumed. In the case of stationarity,
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measurements at different locations (xi) can be considered separate realizations of

Z(x) and the measured values can be used to calculate the moments of the

probability distribution of Z(x). Linear geostatistics uses linear estimators and the

assumptions of stationarity.

The first two moments of Z(x) required for geostatistical analysis are defined

by Equations 1-4. The first order moment is simply the mean, m, of Z(x):

E [ Z (x) =m [1]

There are three second order moments; the variance, the covariance and the

variogram (Equations 2, 3, and 4, respectively):

[2]
Var [ Z(x) ] =E{[ Z(x) -m] 2} =C(0)

[3]C(h) =E{[Z (x+h)][Z(x)

[4]
2-y (h) =E{[Z (x+h) -Z(x)]2}=C(0) -C(h)

where E{ } is the expected value. The form of the variogram most often used in

geostatistical practice is called the semivariogram, defined in Eq. 5.
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Under stationarity assumptions, the covariance and semivariance are not functions

of position within the landscape, but functions only of the vector distance ,h,

separating pairs of measurement points. Many spatially random variables show a

tendency for variance estimates, C(0), to increase without limit as the size of the

sampled area is increased. Under these circumstances an a priori variance and

covariance for the random function Z(x) are undefined (nonstationarity). Matheron

(1971) promoted the less restrictive intrinsic hypothesis, namely stationarity of the

mean and variance of the differences between samples which are distance h apart.

The mean and semivariance are defined under the intrinsic hypothesis. Because of

this fact, the semivariance is the principal tool used in geostatistics to describe the

spatial correlation structure of regionalized variables. The semivariogram

(semivariance plotted as a function of lag distance) reveals facts about the continuity

of the data in space, the directions of the continuity, the range of the variance

structure, or interdependence, and whether or not the data are isotropic.

Methodology

Our proposed methodology of soil salinity mapping consists of six steps.

"Preliminary data analysis" is the use of classical statistics procedures to characterize

the distribution of measured soil salinity and related variables and to make
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appropriate transformations to normality. "Variography", the second step, is

calculating the experimental semivariogram. The third step, "modeling", is selecting

and fitting appropriate theoretical models to the experimental semivariograms.

"Kriging", the fourth step, is using the semivariogram models for interpolation. Co-

kriging uses the semivariogram and cross semivariogram models (describing the

spatial correlation structure of two or more variables) for interpolation. Co-kriging

makes use of more than one regionalized variable. Step six, "disjunctive kriging", is

using non-linear geostatistical techniques in making management decisions. The

above six steps are comprehensively described below.

L Characterizing sample data

Preliminary data analysis is an essential part of characterizing a spatial data

set. Robust and resistant data analysis techniques are used for this purpose (Tukey,

1977; Hoag lin et al., 1983; Hamlett et al., 1986; Cressie and Horton, 1987). These

procedures often give valuable information about the distribution of the data, the

types of transformations needed, and identify possible outliers (errors) or atypical

values which may be important in a future study or for deeper understanding.

Application of robust and resistant statistical techniques is important for testing the

stationarity and normality conditions which must be satisfied in order to correctly use

linear geostatistics (Hamelett et al., 1986; Cressie and Horton, 1987; Cressie, 1986).

Deviations from normality can often be overcome by making appropriate

transformations or by identifying and eliminating erroneous measurements from the
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sample data (Armstrong, 1984; Tukey, 1977). Goodness of fit tests such as the

chi-squared statistic, the Kolmogorov-Smirnov statistic or the Shapiro-Wilk statistic

can be used to determine if a regionalized variable is normally distributed (Henley,

1981; Delhomme, 1976; Russo and Jury, 1987).

Soil salinity and other soil properties have been found to be log-normally

distributed (Hajrasuliha et al., 1980; Warrick and Nielsen, 1980; Jury, 1985) and must

be transformed to fit a normal probability distribution. The natural log

transformation function is given by

Y(x) =ln[Z(x) +A] [6]

where Y(x) is the natural log-transformed data, Z(x) is the original data, and A is a

constant which may be added to Z(x) to improve the fit (Rendu, 1978; Tukey, 1977).

The relationships of parameters in the normal and log-normal probability

istributions are given by

m=exp E+

a2 =m2 [exp ( )32 )
[8]

where m and o2 are the mean and variance of the random function Z(x), and a and
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2p are the mean and variance of the random function Y(x) (Rendu, 1978). These

relationships are important when transforming Y(x) to Z(x).

2. Variography: Calculating semivariograms

Equation 5 defines the true semivariance of the regionalized variable, Z(x),

but with one realization of the random function the true semivariance can only be

estimated. This estimate is the experimental semivariance, -y*(h), defined as

N(h)
7*(h)= 1 E [Z(xi+h)-Z(xj)1 22N(h) i=3. [9]

where N(h) is the number of sample pairs separated by the vector h.

Two types of estimation errors occur when calculating the true semivariance

from a single realization (Journel and Huijbregts, 1978). The first is called the

variance of estimation and is a consequence of using a limited number of sample

measurements ZOO, to estimate the semivariance. This error is inversely

proportional to the number of sample pairs N(h) at a given lag distance (Cooper and

Istok, 1988). The second type of error is a manifestation of local fluctuations in the

mean value of Z(x). These fluctuations cause estimates of the semivariance to vary

from point to point in the landscape. This source of error is called the fluctuation

variance and is related to the distribution of the separation distances between sample

pairs (Cooper and Istok, 1988).

A theoretical analysis of the above two error sources in the experimental
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semivariance is used to determine the minimum number of sample pairs, and a

maximum value of the separation vector, h, for which the true semivariance can be

estimated from the experimental semivariance (Joumel and Huijbregts, 1978;

Webster, 1985; Cooper and Istok, 1988). Two practical rules for calculating the

experimental semivariance follow directly from these analyses:

Rule 1: N(h) > 50, [10]

Rule 2: h I < L/2, [11]

where N(h) is the number of pairs at vector distance h; h I is the magnitude of the

separation vector; and L is the longest possible distance in the sampled landscape.

These two rules are used to reduce estimation errors.

Rule 2 implies that kriging (the interpolation procedure based on the

semivariogram to be described later) should not be used to estimate soil properties

that are farther than L/2 away from the nearest sampling site. The sample pairs

restriction, (rule 1) affects the calculation of the experimental semivariance. It is

often necessary to group sample pairs into distance classes for each specified vector,

h., in order to obtain adequate numbers for accurately estimating 7(h) (David, 1977;

Webster, 1985). In two-dimensional problems, like salinity mapping, h may be

specified by an angle (0) and a distance ( I h. I ) while tolerance intervals for angles

and distances can be defined using the method outlined by Webster (1985). Sample

pairs can be grouped together if the magnitude and angle describing the vector, ho,

separating the two points fall within the respective tolerance intervals for the

specified vector. These sample pairs are then used to calculate the experimental
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semivariance (7*(110).

In soil salinity mapping, the sample numbers within the landscape are usually

small, causing difficulty in selecting tolerance intervals which provide sufficient

numbers of sample pairs for calculating the entire ,y*(110) curve. Under these

conditions, the semivariance may be calculated by selecting sample pairs which fall

into the tolerance intervals for the specified angles. The selected sample pairs are

then sorted into distance classes that contain the same number of sample pairs

(specified to be > 50 according to rule 1). For each distance class, -y*(h) is

calculated for the average distance within each class. This procedure ensures that

the experimental semivariance is based on an "adequate" number of sample pairs.

The method of moments estimator of the semivariance, Eq. 9, is sensitive to

extreme values of Z(xi) - Z(x; h), especially because the squared differences follow

the highly skewed chi-squared distribution with one degree of freedom (Webster,

1985). Sometimes the class intervals or tolerance levels must be rather wide to get

sufficient numbers of sample pairs for estimating .y*(h). Within a distance class or

angle tolerance interval there may be extreme values of [ZOO - Z(xi + h)]2. Cressie

and Hawkins (1980) proposed a more robust estimator for the semivariance to deal

with these cases:

4

1N (h)
* = 1 E [(z(xo-z(xj.,,,))2)1 /(0.457 +0.494 /N)2N (h) i=1

[12]

where [0.457 + 0.494/NJ is a bias-correcting term which ensures the expected value
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of 2-y*(h) = 27(h). This robust estimator helps to minimize the effects of artificially

grouping data sample pairs into wide class bands or wide tolerance intervals, a

procedure which is sometimes necessary to calculate the experimental semivariance.

An analysis of two-dimensional variations, as in salinity mapping, must always

allow for possible anisotropy. It is not unusual to find anisotropic experimental

semivariograms in which the semivariogram along one direction is different than the

semivariogram along another (Figure 1). In these cases, the angles and distances and

their respective tolerance intervals can be selected to accentuate suspected

anisotropies and to provide enough sample pairs for accurately calculating y *(ho).

The experimental semivariogram is an excellent tool for determining the extent of

field anisotropy, by calculating the semivariogram for several directions, (e.g.

east-west, north-south, northeast-southwest, northwest-southeast) and comparing these

"directional" semivariograms. Figure 1 illustrates an example of the detection of

anisotropic conditions with directional semivariograms and is an example of

geometric anisotropy. The gradient of the semivariance in the north-south direction

is much steeper than the semivariance in the east-west direction. Experimental

semivariogram models must take into account anisotropic field conditions.
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3. Fitting models to experimental semivariograms

Soil salinity usually varies continuously in space (Jury, 1985; Webster, 1985)

and semivariograms are usually continuous functions. Structural variance analysis

consists of fitting mathematical models to experimental semivariograms. It is

generally possible to fit simple mathematical functions to experimental

semivariograms (Webster, 1985). We will use the semivariogram function for

interpolation (kriging and co-kriging), so its mathematical form is of practical

importance.

Two main types of semivariogram models exist. The first type is characterized

by a semivariance which increases with increasing lag distance, I h I , to some

maximum and then levels off and remains constant with further increases in lag

distance. This type of semivariogram is described as transitive. Figure 1 illustrates

a generalized example of transitive semivariogram models. As the distance between

sampling sites increases, the soil salt concentrations become increasingly dissimilar;

there is also a finite distance within which all variation is encountered. The lag

distance where the semivariogram reaches a maximum is called the range (a) and

marks the limit of spatial interdependence (structured variation). The range of the

semivariogram model is an extremely important statistical parameter. It has been

interpreted as a measure of the average distance across distinct soil types by Webster

and colleagues (Webster, 1973; Webster and Cuanalo, 1975; McBratney and Webster,

1981). The semivariogram maximum is the a priori variance of soil salinity within the

landscape, known as the sill (C0+ C). A regionalized variable with a transitive



16

semivariogram model is considered by some to imply that the variable is

second-order stationary. However, recent studies (Russo and Jury, 1987; Stark and

Fang, 1982) indicate that nonlinear drift can still produce transitive semivariograms.

For the second major type of semivariogram model, the semivariance

increases without limit. In this case there is no finite a priori variance. This type of

semivariogram indicates a soil property with an infinite capacity for variation within

the sampled-region (or scale of the study). If sampled on a much larger scale,

perhaps a maximum variance could be found.

Spatial correlation can be present at any scale within the soil landscape but

this correlation is only defined for distances greater than the smallest separation

between sample pairs. A ramification of this restriction is that for some

semivariograms the apparent limiting value of 7(h) is not zero as I h I approaches

zero. The situation when the y-intercept of the semivariogram is non-zero is known

as the nugget effect; the intercept is known as the nugget variance (C0). The nugget

effect is attributed to a combination of measurement errors and/or variations (of the

random function) at separation distances smaller than the closest sampling interval.

As we notice, the sample semivariogram does not provide any information about the

spatial structure of the variance for distances shorter than the minimum spacing

between sample data; unless the sampling includes duplicate samples at the same

location. So the behavior of the semivariogram near the origin can not usually be

determined from the sample semivariogram. We will see in later chapters how the

nugget variance affects the resulting estimate of the interpolated values of Z(x).



17

When there appears to be no spatial correlation over the range of h for which the

semivariogram is defined, and the semivariogram values are equal to the population

variance, then the semivariogram is modeled as a pure nugget variance. The pure

nugget effect makes the estimation procedure more like a simple averaging of the

available data.

When choosing a model to represent an experimental semivariogram, one

must allow for at least three parameters; a y-intercept (nugget variance), a

monotonically increasing section of potentially varying shape, and a sill (a priori

variance) (McBratney and Webster, 1986; Russo and Jury, 1987). In two or more

dimensions one must also provide for anisotropy if it exists. Any mathematical

function for experimental semivariograms must be conditionally positive-definite,

(i.e.,increasing or constant with increasing h, and non negative) (Olea, 1975;

McBratney and Webster, 1986; Webster, 1985). This condition is a strict one and a

model for the semivariogram may not be chosen just because it looks as though it fits

the experimental data well (Armstrong and Jabin, 1981). In the mining literature,

functions which meet this criterion are called authorized functions (David, 1977;

Journel and Hujbregts, 1978; Clark, 1979; McBratney and Webster, 1986). The best

advice is to choose an appropriate function from authorized models listed by Clark

(1979), Journel and Huijbregts (1978), or McBratney and Webster (1986). Below we

describe several authorized models frequently found in analysis of spatial variation

of soil properties.

By far the simplest authorized model that can be fitted to one-dimensional
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y (h) = Co+ W (h)

18

[13]

where Co is the nugget variance and W is the slope. In theory, W can approach zero

in which case the semivariogram model is called a pure nugget effect and all of the

variance occurs within the smallest interval between sampling sites. There is no

redundancy of information between samples, and in terms of statistical distance, no

sample is closer to the point being estimated than any other sample. If the pure

nugget model is to be used in ordinary kriging, all weights are equal. The pure

nugget model describes a complete lack of spatial correlation.

The spherical model has been found to fit semivariograms of mineral deposits

(Journal and Huijbregts, 1978; Rendu, 1978; Clark, 1979), and soil properties as well

(Burgess and Webster, 1980; McBratney and Webster, 1981; Russo and Bresler,

1981). Mathematically, this function is of the form:

7(h) =C0+c 3 h[_ 1 h3]
2 a 2 a3 for 0<ha

-y (h) =Co +C for h>a [14]

where Co + C is the sill, Co is the nugget variance and a is the range (see Figure 2).

Another transitive model, popular with soil scientists, is the exponential model



19

100

80

60

40

20

0

spherical model
exponential model

I I

0 1000 2000 3000 4000 5000

average distance (m)
Fig. 2. Spherical and exponential models using similar parameters.
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where Co, Co + C and h are as before, and where the parameter r defines the spatial

scale of the variability in a way analogous to the range of a spherical model. The sill

is approached asymptotically so there is no distinct range, although in practice the

effective range (a' = 3r) is defined as the lag at which the semivariogram reaches

0.95(Co + C).

The exponential model has appealed to statisticians because of its applicability

to randomness in space (McBratney and Webster, 1986). First-order auto-regressive

and Markov processes are described by exponential semivariograms (Sisson and

Wierenga, 1981; Webster, 1985). Transitional phenomena related to the exponential

distribution of distances between soil boundaries also give rise to exponential

semivariograms (Burgess and Webster, 1981; Oliver, 1987).

Other "authorized" models also exist. We will list some of them here for

completeness: 1) the circular model, which is the two-dimensional analog of the

spherical model; 2) the one-dimensional Gaussian model, which has a sigmoidal

shape; 3) the logarithmic model, which has been popular because of its ease to

convert data to linear expressions; and 4) the hyperbolic model, which was used by

Vieira et al. (1981) to describe the measured variation in infiltration across an

irrigated field in California. Additional discussions of these and other models are

given by McBratney and Webster (1986), Webster (1985), and Warrick et al. (1986).
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The procedure for fitting an appropriate mathematical model to an

experimental semivariogram usually consists of several steps: 1) choosing several

candidate models, e.g. the spherical, exponential, circular, etc.; 2) obtaining

preliminary estimates of the model parameters (sill, nugget, range) which can be

done either by the eyeball method (Clark, 1979; David, 1977) or by using more

objective weighted least squares (Cressie, 1985) or maximum likelihood methods

(Kitanidis, 1983; Russo and Jury, 1987); and 3) choosing the "best" model from

among the available candidate models.

Choosing from among the reasonable candidate models can be difficult

because there are rarely any theoretical grounds for choosing a particular model.

There are several statistical criteria that can be employed to pick the "best" model

for a specific experimental semivariogram. One such method is the Akaike

information criterion (AIC). This method helps to determine the model which has

the "best" fit with the fewest parameters. The AIC is estimated by

AIC* =n In (R) +2p (16]

where AIC* is the unbiased estimate of the AIC, n is the number of observations

(points in the experimental semivariogram), p is the number of independent

parameters in the model, and R is the residual sum of squares of deviations from the

fitted model. The model having the lowest AIC is judged "best" (Yost et al., 1982a;

Russo and Jury, 1987; McBratney and Webster, 1986).

Another method for determining the best model from a set of candidate
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models is by means of cross-validation (Delhomme, 1976). This procedure has been

misnamed "jackknifing" in the literature (Davis, 1987) and is in reality a

"leave-one-out" method. In this method, sample values are deleted one at a time and

then kriged (described later) to estimate the missing data point from the remaining

sample values. Statistical analysis of the kriging errors (differences between

estimated and measured values) and the standardized mean-squared errors (the

average of the kriging errors divided by their respective kriging variances) determine

if a bias is present in the estimates and if the estimation errors are consistent with

the kriging variances. The average kriging error (AKE) must be close to zero for a

model to produce unbiased estimates.

n
x--AKE= 1- [Z* (xi) -Z (xi)i= 0n .1

[17]

where Z*(xi) is the estimated value at xi, Z(xi) is the measured value at xi, and n is

the number of sample values (Cooper and Istok, 1988). For kriging errors to be

consistent with the kriging variances, the standardized errors should be normally

distributed with a mean (reduced mean, RA) of zero and a variance (reduced

variance, Re) close to one (Davis, 1987; Vauclin et al., 1983; Yates and Warrick,

1987). However, there is no independent method for testing how close to zero (the

mean) and to one (the variance) these two variables should be (Yates and Warrick,

1987). At best, the reduced mean and reduced variance are only indicators for

determining the best model from a group of models (Davis, 1987). The use of
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cross-validation for model discrimination has been suggested for applications

involving kriging, while the AIC method has been preferred for cases where it is

necessary to describe the main characteristics of the spatial variability (McBratney

and Webster, 1986).

4. Kriging for estimating soil salinity

The prime reason for developing a geostatistical analysis methodology is to

use it for estimating soil salinity at unsampled sites so that contour maps of the

spatial distribution of salt content within the landscape can be made. The method

of estimation is known as kriging (Krige, 1966; Matheron, 1971). It is essentially a

means of weighted local averaging based on the semivariogram model, which

provides the required spatial information (Oliver, 1987; Olea, 1975; Webster and

Burgess, 1980). Kriging has the advantage over regression methods in that the spatial

correlation is taken into account during the estimation process. Also, like regression

methods, the estimate is unbiased and has a minimum variance between the estimate

and the actual value (Journel and Huijbregts, 1978; Clark, 1979).

There are several forms for writing the linear kriging equations which have

been given names: simple kriging, ordinary kriging, and universal or intrinsic kriging.

Each will be discussed.

Simple Kriging

Simple kriging assumes that the mean value of the random variable is known
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a priori. This assumption limits the use of this technique for general estimation

problems, and simple kriging is not generally used in spatial estimation. Mean

salinity within the landscape is usually not known, therefore simple kriging will not

be discussed in detail. Interested readers should consult Joumel and Huijbregts

(1978) for a detailed explanation of the kriging equations.

Ordinary Kriging

In most instances the mean value of salinity in the landscape is unknown. The

kriging equations can be written in such a manner that the mean value becomes part

of the solution. In this situation we are restricted to a linear combination of the

available data to estimate Z(x0). Let us consider soil salinity to be a random

function, Z(x), defined on a point support (i.e. sample size < < < area sampled), and

sampled in two-dimensional space. The ordinary kriging estimator, Z *(xo), of an

unsampled site is a linear sum of weighted observations within a given neighborhood.

The kriging estimator for ordinary kriging is written as (Burgess and Webster 1980):

Z*(x0)= E xiz(ci) [18)

where Z *(xo) is the estimate of Z at xo, X is the weight assigned to the id' observation

and n is the number of observations within the local neighborhood.

An unbiased estimate of Z(x0) (i.e. E[Z*(x0)-Z(x4)] = 0) requires that a

constraint be placed on the weights, X1's such that
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E xi=i
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(19]

The error of estimation, or estimation variance, for this linear estimator (Eq.

18) is given by

n
E{[Z(x0)-Z*(x0)12}=-7(x0,x0)+2 E xry(xo,xi)

i=i
n n
E E xi Xi 7 ( xi , xi )
i=1 j =1

(20]

The best linear unbiased estimate of the conditional expectation of ZOO is

obtained by using Lagrangian techniques to minimize the estimation variance. The

ordinary kriging equations result from the minimization of the estimation variance

and the unbiased condition in Eq. 19. The "kriging system" is a set of n+ 1 linear

equations with n+ 1 unknowns obtained by setting each partial derivative equal to

zero

n
a Efiz (x0) -z* (x0)11-2p E x1 1 a x1i=i

(21]

where A is the Lagrange multiplier. The system of equations can be written in terms

of the semivariogram function with the following system of equations to be solved:



E xj7(xi,x;) + p (xo, xi ) for i=1 to n
j=1

E xj=i
=1
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[22a]

[22b]

This kriging system defines ordinary point kriging because it gives estimates

at points within the landscape. The system of equations is easily solved using Gauss

elimination and the solution yields the n weights and the Lagrange multiplier

(Webster, 1985; Cooper and Istok, 1988). The minimum estimation variance, or

kriging variance, gE2, is obtained from

2 r 1aE=EfiZ(xo)-Z*(xo)j 2 E xi,y(xi,x0)+p-7(x0,x0) [23]

Kriging provides both unbiased estimates (with minimum variance), and a measure

of the estimation variance. As such, kriging is superior to other interpolation

methods (Oliver, 1987; Webster, 1985).

Soil salinity and related soil properties sometimes show large nugget variances

which lead to large estimation variances and erratic contours when mapped using

point kriging (Marx and Thompson, 1987). Although a contour map drawn from

point estimates is the most accurate map that can be made using point data, local

discontinuities can obscure longer range trends in soil salinity. Also, the positions



27

of the discontinuities depend on the locations of the particular data points, and a

shift in the orientation of an observation grid can easily result in a substantially

different map. This is an artifact caused primarily by sampling (Burgess and

Webster, 1980).

The above shortcomings of point kriging can be avoided by using a procedure

known as block kriging. Block kriging can be regarded as a more general kriging

method of which point kriging is a special case (Webster, 1985). With point kriging

we have assumed that both the estimates and the samples were based on point

support. Instead of interpolating between points, block kriging considers a region

with its center at xo. The semivariances between the observed data points and the

interpolated point are replaced by the average semivariances between the observed

points and all points in the region while the average value of Z over the entire block

B, is established by

Z*(343)= E xi (xi)

The block estimation variance is written as

crE2B xiT, ( xi , xB ) (xB , xB )
i=1

(24]

(25]

where 7(xi,xo) is the average semivariance between the sample point x; and all the

points within B, and 7(xB,xB) is the within block variance. Intuitively one would
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expect the estimation variance to be reduced using block kriging since a variance

reduction is associated with averaging the smaller scale fluctuations of the random

variable over space. Depending on the assumptions about the salinity distribution

within the landscape, the ordinary kriging equations can be written in terms of the

covariance, or the semivariogram. If we assume the weaker intrinsic hypothesis, then

the kriging equations must be written in terms of the semivariogram because under

the intrinsic hypothesis the variance may not be defined. For this reason we have

chosen to use the kriging equations in terms of the semivariogram.

Universal Kriging

In some instances soil salinity and related soil variables may exhibit some non-

stationary behavior called drift. In this instance, the expected value of soil salinity

is not constant even within small neighborhoods but is a function of position within

the landscape. Thus Eq. 1. becomes

E[Z (x)] =m(x) [26]

The quantity m(x) represents the drift. Universal kriging is a method which provides

an unbiased linear estimator when drift is present. One of the difficulties with using

universal kriging is the circular nature of the problem. To determine the drift, the

semivariogram must be known, but to determine the semivariogram the drift must

be known since the semivariogram is calculated using the residuals (Z(x)-m(x)). In

practice the drift is assumed to be of the form



pm(x)= E aifi(x)
i=0
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[27]

where ai's are the coefficients and Vs are known functions which describe the drift.

First and second degree ploynomials are usually used for the functions The

semivariogram is assumed to be linear over some restricted neighborhood. By using

known functions and a linear semivariogram model the coefficients can be evaluated.

In principle, a particular combination of drift function and neighborhood size is

selected and ai's are estimated. If the experimental semivariogram (of the residuals)

matches the assumed semivariogram, then the combination is judged to be

appropriate. If the match is poor, the neighborhood size or drift function is

systematically changed until a match is confirmed. Knowledge of the coefficients is

essential to estimate the semivariogram, but not necessary for kriging. The universal

kriging estimator is of the same form as Eq. 18, but Eq. 22a becomes

n p
E Xi y (xi, xj) + E pkfk (xi) =7 (xo , xi),

i=1 k=0

and Eq. 27 becomes

E xi f; (xi) =fj (x0) for j =0 , p

The kriging variance is given by

[28]

[29]



P2 T-
GUK=2. Xi'y (xi , xo ) + E picf, (x0)

k=0
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(30]

where the ilk's are the Lagrange multipliers corresponding to the p+ 1 constraints

required to ensure the estimator is unbiased. The universal kriging variance is

usually larger than with ordinary kriging because of the uncertainty associated with

modeling the drift functions (Webster and Burgess, 1980; Warrick et al., 1986). For

a detailed mathematical explanation of universal kriging the reader is referred to

Olea (1975) and Olea (1977). Webster and Burgess (1980) explain the limitations

of universal kriging in soil science.

i Co-kriging

Co-kriging, which has been introduced into the soil sciences more recently

(Yates and Warrick, 1987), uses two or more regionalized variables simultaneously,

and in such a manner that the spatial correlation information from each variable aids

in the interpolation process. It is not necessary that both variables have the same

sampling locations, which brings to mind at least two motivations for using co-kriging,

instead of the simpler ordinary kriging: i) the under sampled problem--where one

variable is more costly or more difficult to obtain than the other; and ii) increased

apparent sampling density--where one variable is sampled at one set of sites and the

second variable is sampled at a different set of sites with only minimal coincident

sampling necessary to calculate the cross-semivariogram. Theoretically, if these
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regionalized variables are correlated with one another, there should be an overall

improvement in the quality of the estimate based on the comparison between the

kriging and co-kriging variances. Also, there is often a great potential for reducing

the sampling density required for appraising and mapping soil salinity and related soil

properties by using an under-sampling strategy.

Under-sampling is often of primary interest in salinity mapping because of the

desire to reduce labor costs and the time involved. Chemical analyses of saturated

soil extract is very costly and time consuming. If the necessity for taking and

analyzing soil samples could be reduced without reducing the quality of the salinity

assessment, then salinity surveys over large areas could be made more practical.

When two spatially random variables 4(x) and 4(x) are sampled in space,

and a significant correlation between the two variables exists, the added information

due to this correlation can be used to improve the estimate at an unsampled location

(interpolation). This procedure is known as co-kriging (Journel and Huijbregts, 1978;

Vauclin et al., 1983; Yates and Warrick, 1987; Ahmed and De Maesily, 1987). The

added information enters the interpolation through the cross-semivariance function

which gives the correlation between two variables as a function of separation distance

(h). This allows us to use the information about how one variable is distributed in

space to help estimate the spatial distribution of the other variable. The cross-

semivariance function is analogous to the semivariance function and is a measure of

the correlation in space between two regionalized variables. The moment estimator

of the cross-semivariance is given by
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N(h)
'Yt ( ) 4. E [zoxi)-zoxi+h)][zoxi)-zoxi+h)] [31]tiv11. 2N(h) i.1

To properly execute co-kriging, it is necessary to have two semivariograms (one for

each variable) and one cross-semivariogram for every pair of correlated regionalized

variables in the co-kriging system.

The theory and practice of co-kriging is a logical extension of kriging to

situations where two of more variables are spatially interdependent. A co-kriged

estimate is a weighted average of the available data with weights chosen so that the

estimate is unbiased and has minimum variance, directly analogous to ordinary

kriging. The co-kriging estimator is defined as

k k/
Z*(x0)= E xuizucx0+ E xvjzoxj)

i=1 j=1
[32]

where k and k' are the numbers of samples of 4,(x) and 4(x) used to estimate the

unsampled point, xo, Xt, and X are the associated weighing factors for Z(x) and Z,(x).

In a similar manner to ordinary kriging of one variable, the co-kriging estimator is

required to be unbiased and of minimum error variance. In order to achieve this,

the sum of the X,'s must equal one and the sum of the X,i's must equal zero.

This procedure is commonly applied to the under-sampled problem, where the

variable of interest is costly or difficult to measure, while another related variable is

relatively easy or inexpensive to measure. Co-kriging allows an improvement in the
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estimation of the variable of primary interest without additional sampling. This may

translate into a more efficient sampling scheme.

Although in most cases estimates of only one of the random functions is

desired, such as in the under-sampled problem, the complete co-kriging solution will

enable estimation of all correlated functions simultaneously (Myers, 1982 and 1984;

Can et al., 1985). In theory it is possible to use an unlimited number of variables,

in practice however, three or four is the most that can be handled efficiently.

6. Disjunctive Kriging

Linear kriging requires only the knowledge of the semivariogram or the

covariance, so it demands the least amount of information on the stochastic nature

of the random function, Z(x). The price to pay is that linear kriging estimates may

not be, in general, as precise as other estimates which do demand more information.

For example, ordinary kriging yields estimates that have the smallest estimation

variance among all unbiased linear estimators. This linear estimator may not be

optimal unless the regionalized variable has a multivariate normal probability

distribution. Non-linear geostatistics offers tools that can be applied to variables

which exhibit non-normal probability distributions.

Sometimes the observed data clearly exhibit non-Gaussian characteristics, and

whose log-transforms are also non-Gaussian. These cases have motivated the

development of a completely new set of assumptions to deal with non-Gaussian

random functions. One of the earliest products was the non-linear estimation
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procedure of disjunctive kriging that was originally formulated by Matheron (1976).

Matheron (1976) proposed disjunctive kriging as a simple non-linear

alternative which only requires that the bivariate distributions for the variable be

known. When a random variable is uni- and bi-variate normally or lognormally

distributed, the linear kriging estimator for a known mean is identical to the

disjunctive kriging estimator (Rendu, 1980; Joumel and Huijbregts, 1978). By adding

an additional assumption that the distribution is multi-variate normal, then the linear

kriging estimator and the disjunctive kriging estimator are the same as the

conditional expectation, defined as the best possible (minimum variance) estimator

that can be deduced from the available data.

The disjunctive kriging method requires many more steps and computational

capacity to obtain the estimates, compared to simple or ordinary kriging. One

assumption implicit in the disjunctive kriging method is that the original variable,

Z(x) can be transformed into a bivariate normal variable, Y(x), with a zero mean and

unit variance. So, Z = 4(Y), where f is the Gaussian transform function that is

assumed to exist, to be unique and to be invertible. These assumptions make the use

of disjunctive kriging more difficult by demanding additional verification of the

validity of the assumptions required.

The disjunctive kriging estimator is made up of a series of non-linear functions

where each function depends on only one transformed value Y(xi)



Zs ( E fi[y(xi)]
i=i
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[33]

where n is the number of samples; and U(x;)] are the functions to be determined.

When the functions, fi, are linear (i.e., fi =wiY(xi)), the disjunctive kriging technique

is the same as ordinary kriging.

Disjunctive kriging can also be used when there are two or more random

functions of interest and is called disjunctive co-kriging. The disjunctive co-kriging

technique is described by Yates (1986). For more information of disjunctive kriging,

readers are referred to Rendu (1980), Yates et al., (1986a and 1986b) and Yates and

Yates (1989).

The original developments of disjunctive kriging were done using the

assumption of a bi-variate normal distribution for the transformed variable. Later,

appropriate transformations have been found for Beta, Gamma, Poisson, binomial,

hypergeometric, uniform Rayleigh, chi square, and arcsine distributions (Matheron

and Armstrong, 1986; Christakos, 1988).

One important advantage of disjunctive kriging over linear kriging methods

is that an estimate of the conditional probability (Matheron, 1976; Journel and

Huijbregts, 1978; and Kim et al., 1977) is possible. This is defined as the probability

that Z(xo) be above a specified cutoff or threshold value, z that is P[Z(x0) I ZOO].

Conditional probability can play an important role when the user is interested in

determining the chances that a variable is above a threshold level. This is a common
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question encountered in salinity assessment and land reclamation, where growers are

concerned with areas of high salinity risk.

The overall objective when using kriging methods is to obtain a moving

average of a property that is distributed in space. For ordinary kriging this amounts

to determining the constant weighting coefficients. For disjunctive kriging, on the

other hand, unknown functions must be determined that may or may not be linear.

When these functions are linear and the random function is multivariate normal, the

disjunctive kriging method is the same as the ordinary kriging method and ,

therefore, ordinary kriging can be considered a special case of the more general

disjunctive kriging method.

Consider a second order stationary random function Z(x) that has been

sampled over two dimensions at n locations: x x2, ..., xr. It is assumed that Z(x) is

spatially correlated and this correlation can be described by a semivariogram under

a second order stationarity hypothesis.

The disjunctive kriging method utilizes the autocorrelation function in

determining the weighting coefficients for a series of Hermite polynomials.

Therefore, the second order stationarity conditions are required so that the variance

exists, in which case the autocorrelation function can be written in terms of the

semivariogram

P(h)=1T(h)/7(c0) [34]

where p(h) is the autocorrelation function, y(h) is the semivariogram, y(h) is the sill
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value of the semivariogram, h is the vector distance, and le( op) is the variance.

To obtain the disjunctive estimator, the original data must be transformed into

a new variable, Y(x), with a standard normal distribution where pairs of sample

values are bivariate normal. The function, 0[Y(x)], which describes this

transformation is

co

o[y(x)]r_z(x). E CkHk[Y(x)1
k=0

[35]

where the values for Y(x) are obtained by taking the inverse, Y(x)=p1Z(x)] and

Hk[Y(x)] is a Hermite polynomial of order k. The Ck's are the Hermitian

coefficients, which are determined using the properties of orthogonality, and are

generally determined using numerical integration, as follows

J
Ck= S' wio(vi)Hk(vi)exp[-vi1 2 i

k! (tor) i=1
[36]

where IA and wi are the abscissa and weight factors for Hermite integration

(Hochstrasser, 1965; Yates and Yates, 1989). If 0(s) is a standard normal random

function, the mean and variance of the data can be found from the coefficients, Ck.

The mean value is equal to Co and variance of the data is

co

E kl Ck
k=1

[37]
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The disjunctive kriging estimator is found from a sum of unknown functions

of the transformed sample values, Y(x). It is required that each unknown function,

fi[Y(x)], depend on only one transformed value, Y(x). This gives the disjunctive

estimator as

n co

zDK(x0)= E fi[Y(xi)]= E E fikHk[Y(xi)]i=1 1.=1 k=1
(38)

where fi is the unknown function with respect to the transformed variable, Y(x),

which is to be determined. In the last part of Eq. 38, the unknown function has been

written in terms of a Hermite polynomial with coefficients, f.

In an analogous manner to ordinary kriging, an unbiased estimator with

minimum estimation variance is sought, which results in the following system of

equations

and

K
Z*DK( XID ) E cok[y( xo )]

k=0

Hk[Y( x0)]= E biktik[Y(xi)]i=i

(39]

[40]

where the series in Eq. 40 has been truncated to k terms and bp, are the disjunctive

kriging weights. The Hk'[Y(xo)] represents the estimated value of the km Hermite



39

polynomial at the estimation site. The sum of these estimates multiplied by the

coefficient, Ck (which transforms Y(x) into Z(x)) makes up the disjunctive kriging

estimate at xo. To obtain an estimated value for the Hermite polynomial, the

disjunctive kriging weights, bil must be found by solving the linear kriging equation

for each k

n

E bik (pii )k.( k;

i=1
j=1,2,3,...,n. (41]

When k = 0, Eq. 41 represents the unbiased condition, that is, that the sum of the

weights equals unity. The disjunctive kriging variance is

aD2K
2= E kICk E- E bik(poi)k

k=1 i=1
(42]

One advantage the disjunctive kriging method has over ordinary kriging is that

an estimate of the conditional probability that the value at an estimation site is

greater than an arbitrary critical value, y can be calculated. This conditional

probability is a useful means for determining the risk of various management

alternatives. The conditional probability is obtained by defining an indicator variable

that is equal to one if Y(xi) .)/c and zero otherwise (Yates et al., 1986b). This allows

the conditional probability to be written in terms of the conditional expectation and

gives the estimator of the conditional probability as



K
P*DK (x0 ) =1 -G(Irc) +g( yc) E Hk_i ( Irc )Hk[Y( xo )] /k1

k=1

40

[431

where G(y,) and g(y,) are the cumulative probability and probability density

functions, respectively, for a standard normal variable, and Hke[Y(xo)] is found using

Eq. 40. The estimated conditional probability density function, pdfDK*(4), is found

by taking the derivative of Eq. 43 with respect to y, which is

K

pdfDK(xo )=g(u) + E Ho u ,Fik[y (x0)] /k1
k=1

[44)
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Summary

Geostatistical spatial analysis is an advanced analysis technique and a

potentially powerful tool for mapping soil resources and environmental contaminants.

Detailed descriptions of the theory and practice of geostatistics are available for the

statistician, but usually not to the nonspecialist.

We have presented a five-step methodology to help soil scientists in applying

geostatistical spatial analysis to resource mapping. The methodology can be used to

map a variety of chemical and physical soil properties and their estimation errors

within the landscape. The same is also true for optimizing locations for future

sampling, and for estimating the extent and distribution of the measured soil

properties for an inventory or design of remedial treatment strategies. For kriging

to be worthwhile, data must be collected at short spatial intervals so that they are

spatially dependent and provide enough pairs for accurately estimating the

semivariograms.
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CHAPTER 2

Application of Mapping to Soil Salinity
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Introduction

Maintaining an adequate supply of soil water for plant use is a problem when

the osmotic pressure measured as electrical conductivity (EC) exceeds the threshold

level. Maximizing water use efficiency requires a rational soil and water

management system. Knowledge of the salinity distribution as well as the soil

hydraulic properties within the region is an important input to a water management

system for efficient water uses and prevention of groundwater contamination. The

decisions to control this problem depend on the spatial structure between the soil

parameters and the assessment of current soil salinity information. The need to

assess soil salinity is becoming increasingly important for two reasons: i) the need to

increase irrigation efficiency for conserving water and reducing agricultural pollution

of water supplies; ii) the imposition of restrictions on the discharge of saline drainage

waters from irrigation projects. The variability of soil salinity can affect the

reclamation, water management, and productivity, as well as optimization of the cost-

benefit relationships.

Soil salinity is a dynamic and spatially variable soil property (Jury, 1985;

Webster, 1985; Hajrasuliha et. al, 1980). This is because soil is not a homogenous

mass, but rather a heterogenous body of material, and also because of the nature of

soil forming processes with distinct boundaries between the soil regions or horizons

being rare. Electrical conductivity; EC of soil is a physical parameter as well as the

main factor in limiting soil water use and total yield or farm production. The sodium

adsorption ratio (SAR) is considered to measure the limiting factor in soil
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reclamation. The structure of soil and the solute movement through the profile are

influenced by this ratio.

The inherent spatial variability of soil complicates salinity characterization

within the landscape (Beckett and Webster, 1971; Warrick and Nielsen, 1980).

Numerous samples are generally needed to accurately assess just one field. The

intensity with which a soil must be sampled to estimate some characteristic within a

given accuracy will depend on the magnitude of the variation within the soil

population. The more heterogenous the population, the more intense must be the

sampling rate to get a given precision. Considerable variation may be expected for

characteristics such as pH, available Phosphorus, exchangeable Potassium,

exchangeable Sodium, EC, and permeability. The heterogeneity of the salinity

parameters can be studied using statistical and mathematical functions and models

(Warrick et al, 1986). The statistics of the correlation, variations, and the analysis

of variance give a quantitative description for this variability. Samples close to each

other often have similar values, or are autocorrelated (Journel and Huijbregts, 1978;

Clark, 1979; Burgess and Webster, 1980; Rendu, 1978). The correlation between

variables might be significant or non significant. The mathematical models will take

these statistics into account in leaching processes or in transport phenomena.

Soil salinity information can become quickly out-dated as management and

edaphic factors change. When the need for repeated measurements and extensive
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spatial sampling are met, the expenditure of time, effort and money needed to

characterize salinity conditions with conventional soil sampling and laboratory

analyses can quickly become prohibitive. Geostatistical methods offer a means for

reducing the expected extensive sampling requirement by identifying areas with

similar salinities and by establishing predictive relationships between neighboring

sampling sites (Rhoades et al., 1989). Introducing geostatistical analysis to soil

salinity offers an efficient and accurate means for estimating the number of variables

required to obtain salinity information, reduces sampling effort and cost, and

determines the variance map that indicates the error source and the existence of

extreme levels of salt in the soil.

Correlation coefficients between the variables EC, SAR and clay content have

been used in a recent soil resource inventory survey conducted by the Agriculture

Research Service and the Soil Conservation Service of the U. S. Department of

Agriculture. The objectives were: 1) estimate SAR from EC; 2) determine the effect

of subsampling on the variogram and estimator procedure; 3) map the spatial

distribution of SAR, EC, and clay content; 4) compare kriging and co- kriging in

estimating variance; 5) determine the effect of sample number on the estimation of

the variable itself; 6) decide whether additional improvement is likely if other

correlations exist; 7) understand the cross-correlation between the random variables

and the auxiliary variables.
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Experimental Methods

Site description

The South-Fork King River Watershed is located in northern Kings County,

California east of the Kings River. A 3885 ha study area in the Le Moore, Hanford,

Guersey, and Stratford quadrangles was used. Irrigated agriculture predominates in

the area and a cross-section of agricultural crops and management practices are

represented. Agricultural operations range from well-managed large corporate

farming units to small family farms and abandoned parcels of land.

The area also contains a wide distribution of soil types, ranging from fine to

coarse textured soil. The water table in the area is at a depth ranging from less than

one to greater than three meters below the soil surface. The quality of the

groundwater varies from one to 20 ds/m. Generally there was good quality water

available for irrigation, although some management units had to rely on water of

lesser quality during part of the growing season. The variety of management and

edaphic factors contributed greatly to the variability of the salt content within the

landscape.

Soil sampling and instrumental methods

The project could afford to take at most 1000 soil samples in the survey area

of 8 by 4.8 km. This translated into about 64 soil sampling sites for each 1,609 m by

1,609 m block (section). To ensure a uniform distribution of sampling sites, a

stratified systematic unaligned sampling method (Webster, 1977) was used, which
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combines the advantages of a regular grid with randomization. The coordinates of

sampling sites were determined before the survey was started. Each section was

subdivided into 64 blocks (200 by 200 m), each block being further subdivided into

10 rows and 10 columns. Rows and columns were chosen at random, with the

restriction that adjacent rows and columns could not be the same. This procedure

ensured that adjacent samples were not aligned, which reduced the risk of obtaining

biased estimates of the mean values when periodicities are present at the sampling

frequency. Sites located on roads, ponds or buildings were not sampled, nor replaced

by others. All soil sampling sites were identified and their latitude and longitude

were calculated. Although all data were attempted at each sampling site, some sites

were deficient in one or several measurements due to instrument malfunction.

For the purposes of salinity mapping, sample sites must be associated with

geographic coordinates; latitude and longitude were used. If rapid methods of

salinity measurement are to be used to advantage, a rapid means of determining

sample site location must be used. For this purpose the LORAN-C (long range

navigation) system used in marine and aviation navigation was employed. The

LORAN-C system is operated by the United States Coast Guard. The coverage is

good regardless of the terrain and is not limited to line-of-sight transmission.

Soil samples were taken at every sample site at a depth between 10 and 25

cm below the soil surface, using a 6.5 cm diameter soil auger. Each sample was

approximately 2500 cm3 in volume and had a mass of approximately 3000 g. Soil

samples were sealed in water vapor tight plastic containers, and weighed using a
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portable balance. Samples were then transported to the laboratory where they were

air dried, ground, and passed through a 2 mm sieve. The Rhoades and Oster (1986)

method was used to extract the soil solution at saturated water content, and to

measure the electrical conductivity of the extracted solution as an estimate of the soil

salinity.

The traditional method of estimating soil salinity is to measure the electrical

conductivity of the saturation extract (ECe) of a soil sample taken in the field (U. S.

Salinity Laboratory, Staff, 1954). The chemical analysis for calcium, sodium,

potassium, boron, and magnesium have been included. Sodium absorption ratio was

calculated as:

SAR= Na

Ca ++ + ++

2

(45)

Clay content was estimated by hand texturing.

Figures 3-7 indicate the sampling scheme for the three variables, SAR, EC,

and clay content, chosen for this experiment. The spatial distribution of SAR, EC,

and clay content was determined in the following steps: 1) The variograms and

sample semi-variograms were calculated and fitted to theoretical models after

validation tests. Cross-semivariograms, and the kriging and co-kriging for mapping

purposes were calculated. 2) SAR was selected for the estimation procedure and the

effect of sample number on the spatial parameters, because of the expense in

determining it in the laboratory compared to clay content or electrical conductivity.
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SAR values were put into subfiles containing 901, 700, 500, 300, and 100 samples,

with a random generator program. Kriging and co-kriging was applied to each

subfile with the 901 samples of EC and clay content. The purpose was to determine

the smallest number of SAR samples required to estimate its distribution in the field

with the aid of other auxiliary variables. Statistical analysis and normality tests were

done to insure the conditions required for using geostatistical procedures. Spatial

structure requires the normality distribution assumption; the results in Tables 1 and

2 suggest that this assumption is satisfied by the lognormal transformation LEC for

EC and lognormal LSAR for SAR.
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Figure 3. Field sampling scheme for 901 EC, SAR, and caly content.
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Figure 5. Field sampling scheme for 500 EC, SAR, and clay content.
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Figure 6. Field sampling scheme for 300 EC, SAR, and clay content.
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Figure 7. Field sampling scheme for 100 EC, SAR, and clay content.
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Statistical description

The statistical parameters for the variables EC, SAR and clay content were

determined. Measurement of dispersion, standard deviation, range, and coefficient

of variation were calculated. The normality distribution tests KS and le were also

performed. Correlation between the variables was also determined and finally, the

skeweness and kurtosis tests were done.

The descriptive statistics were calculated using a SAS pc computer program

version and Geopack program.

Measures of location

Both mean and median are measures of the location of the center of the

distribution. The mean is sensitive to erratic high values. The median however will

not be affected as much because it depends only on how many values are above or

below, and not on the magnitude. Table 1 shows the values of the two statistics.

The uniformity of the transformed data for EC and SAR show that the log transform

is less noisy than the actual observations.
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Table 1
Statistical Description

Variables Mean Median

100 17.320 7.625

300 18.496 6.980

500 22.260 7.420

700 22.663 7.440

901 22.447 7.710

LSAR No.

100 2.082 2.023

300 2.037 1.943

500 2.073 2.004

700 2.089 2.007

901 2.108 2.042

EC 6.675 3.560

LEC 1.214 1.269

CLAY 22.921 22.000

Measures of dispersion

The sample standard deviation is the most widely used and the best measure

of variability. The variance is the average squared difference of the observed values

from the means. Since it involves squared differences, the variance is sensitive to

erratic high values. The interquartile range is another useful measure of the spread

of the observed data. It is the difference between the upper and lower quartiles,
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given by:

IQR = Q3 - Q1

Unlike the variance and the standard deviation, the interquartile range does not use

the mean as the center of the distribution, and is therefore often preferred if a few

erratically highly values strongly influence the mean.

Table 2 shows the results for these three statistics for EC, SAR and clay

content. The transformed data, EC and SAR, are more uniform with lower variance.



Table 2
Statistical Description

SAR No. Standard
Deviation

Variance Range

100 23.346 539.597 1.33760

300 35.648 1266.515 290.060

500 57.329 3280.004 773.900

700 50.853 2582.427 705.750

901 52.635 2767.416 773.900

LSAR No.

100 1.322 1.730 6.207

300 1.299 1.680 6.721

500 1.389 1.926 7.871

700 1.417 2.007 7.868

901 1.393 1.938 7.961

EC 9.157 83.759 83.500

LEC 1.188 1.411 5.631

CLAY 9.613 92.312 52.000

Measures of shape

1. Coefficient of skewness

The coefficient of skewness is the statistic that measures the symmetry:

E;., mr
coefficient of skewness =

cr3

58

(46)
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The coefficient of skewness suffers even more than the mean and the variance from

sensitivity to erratic high values. Often only the sign and not the magnitude of the

coefficient is used to describe the symmetry. A positively skewed histogram has a

long tail of high values to the right, making the median less than the mean. If the

skewness is close to zero, the histogram is approximately symmetric and the median

is close to the mean.

2. Kurtosis

The kurtosis, like the skewness, measures the nature and amount of departure

from normality. It describes the shape and peakedness of the frequency distribution.

where:

Skew = m3/(m2)312

Kurt = m4/(m2)2-3

M2 = E ( -x )2/n

M3 = E (x; x- )3/n

M4 = E ( x. x )4 /n

(47)

For a normal frequency distribution, both skew and kurt are zero (Snedecor and
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Cochran, 1980). They showed that if skewness or kurtosis is higher than a standard

tabulated value, the null hypothesis of no significant skew or kurtosis will be rejected

at a specified significance level. Thus significant skew and kurtosis indicate a non-

normal frequency distribution.

3. Coefficient of variation: CV

This statistic is often used as an alternative to skewness to describe the shape

of the distribution. Data with large values of CV tend to vary widely, i.e. values of

CV greater than one indicate the presence of erratic values in the data set. It is

defined as:

CV = ( SD )

In percentage form, this becomes:

100CV = 100 ( SD I ) percent

(48)

(49)

where SD is the sample standard deviation and X is the sample mean. It has been

used as a quantitative index of the measured variability ( Rogowski, 1972). However

the CV does not provide a good insight into the nature of the statistical distribution

of measurements like the range.
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Warrick and Nielsen (1980) classified the CV into :

1. Low variation; CVs 10% .

2. Medium variation 10 % < CV > 60 % .

3. Large variation CV > 60 % .

Table 3 provides a quick summary of variation among the variables measured

in this study. The CV for LEC, SAR, and clay content fall in the low variation class.

High kurtosis indicates the cumulative distribution curve is shifted to the right, i.e.

right tailed.

Table 3
Statistical description

SAR No. CV Skewness Range Kurtosis

100 0.135 2.462 1.33760 9.926

300 1.927 4.791 290.060 30.264

500 2.575 9.021 773.900 105.004

700 2.244 7.231 705.750 76.583

901 2.345 8.368 773.900 98.357

LSAR No.

100 0.635 -0.121 6.207 2.483

300 0.637 0.205 6.721 2.740

500 0.670 0.241 7.871 2.658

700 0.678 0.195 7.868 2.605

901 0.661 0.266 7.961 2.672

EC 1.372 3.307 83.500 18.429

LEC 0.979 0.141 5.631 2.147

CLAY 0.419 0.266 52.000 2.672
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4. Normal and lognormal probability plots

The estimation tools, kriging and co-kriging, work better if the distribution of

data values is close to a Gaussian or normal distribution. The Gaussian distribution

is one of many distribution for which a concise mathematical description exists. Also

it has properties that favor its use in theoretical approaches to estimation. The

normal probability plot, a type of cumulative frequency plot, helps decide this

question. Where data sets are not close to this distribution, the lognormal

distribution is a good alternative. A variable is distributed lognormally if the

distribution of the logarithm of the variable is normal.

The assumption about the distribution has a great impact on the effect of

extreme values. There is the danger of casually disregarding extreme deviations in

the probability plot.

The two most frequently used methods for establishing normality of the

measured values are: 1) visual inspection for skewness (or lack of fit) in the sample

frequency distribution using a histogram ( Nielsen et al., 1973). 2) examination of

the fractile diagram obtained by plotting the measured values on probability paper

(Rogowski, 1972; Nielsen et al.,1973; Biggar and Nielsen, 1976). In spite of the

intuitive appeal and ease of application, these graphical methods have specific drawn-

backs. First, because these methods often rely on visual inspection to establish the

appropriateness of the hypothesized distribution, they are subjected to human error.

Considerable care is needed in selection of class intervals and scale when using

method one and scale when using method two. Secondly, because these graphical
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methods are not based on quantitative measurements, objective statistical evaluation

of the goodness of fit of the theoretical distribution to the measured data is not

possible.

Geopack provides an easy program to use the first test for normality

distribution of the data to be used, and SAS program is used for the second method.

Kolmogorov - Smirnov statistics

The Kolmogorov- Smirnov ( KS,) test for goodness of fit is a non parametric

test applied to a continuous random variable to judge whether the distribution is

normal or lognormal.

KS. = MAXIF (50)

KS, is the maximum difference between Fi, the true distribution for the variable and

F^1, the hypothesized distribution. If KS, is greater than a critical value (KS,), the

null hypothesis that F. is the true distribution should be rejected. KS, values are

given by Rohlf and Sokal (1981) for the 0.1, 0.05, and 0.01 significance level. For

intrinsic hypothesis and n > 30 the calculated critical value is KS, =CAM, where C

is a constant that changes with the selected level of significance. C values for levels

of 0.1, 0.05, and 0.01 as well as the KS, are shown in Table 4.

The Geopack program has been used to determine KS,. Table 4 shows that

the distribution is more likely to be log normal for SAR and EC for some subfiles,

while other subfiles were neither normal nor lognormal, depending on which critical



values are used. Clay content shows a normal distribution.

Cramer Von Mises statistics

This is defined as:

W2 = f DF.(x)-F (x))2 f(x) d(x)

64

(51)

where f(x) is the density function corresponding to F(x). W2 is a weighed integral of

the squared deviation between Fn(x) and F(x).

It should be noted from the KS, and W2 equations that the values of the test

statistics are likely to be small when the hypothesized distribution F(x), is correctly

specified; larger values of KS, and W2 suggest the possibility that the hypothesized

distribution is incorrect. A SAS program was used to determine W2. The results in

Table 4 suggest the lognormal distribution for most LSAR subfiles, and LEC and clay

content are normally distributed without transformation. The closer the test value

is to unity, the higher is the P-value for that data to have a normal distribution.

With either test parameter, our judgement is that SAR and EC are

lognormally distributed and the clay content is normally distributed.
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Table 4

Kolmogorov-Smimov test

No. KS, KS,t W2

SAR LSAR 0.1 0.05 0.01 SAR LSAR

100 0.223 0.057 0.080 0.089 0.103 0.697 0.979

300 0.303 0.050 0.047 0.051 0.060 0.481 0.976

500 0.349 0.037 0.036 0.040 0.046 0.351 0.976

700 0.329 0.030 0.030 0.034 0.039 0.426 0.977

901 0.337 0.036 0.027 0.030 0.036 0.389 0.978

CLAY.901 0.058 0.027 0.030 0.034 0.973

EC.901 0.243 0.027 0.030 0.034 0.653

LEC.901 0.075 0.027 0.030 0.034 0.957
t is the probability of type I error (a

Linear correlation between variables

Correlation is the measure of how closely two variables are associated. The

correlation coefficient, r, of X1 and X2 is given by:

r = (E XY2) / (E X1X22)1/2

where X1=X1-112
X2=X2-.X22

(52)

Calculated r values can be compared with critical values (Snedecor and Cochran,

1980; Rohlf and Sokal, 1981) to test the null hypothesis of no correlation ( E(r) =

0) at a chosen level of significance.

Three patterns can be observed on a scatterplot, the variables are positively
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correlated, negatively correlated, or uncorrelated. Two variables are positively

correlated if the larger values of one variable tend to be associated with larger values

of the other variable, and similarly with the smaller values of each variable. For

example the porosity and permeability are positively correlated. For negatively

correlated variables, the larger value of one is associated with smaller values of the

other. Finally, the increase in one variable may have no effect on the other, these

are uncorrelated variables. Presence of extreme pairs has an effect on the

correlation coefficient.

The correlation coefficient is a measure of how close the observed values fall

on a straight line. If the correlation coefficient r = 1 the scatterplot will be a straight

line with positive slope; if r = -1 the scatterplot will have a negative slope. If the

I r < 1 the scatterplot appears as a cloud of points that becomes fatter and more

diffuse as I r I deceases from 1 to 0.

The r value provides a measure of the linear relationship between two

variables. If the two variables are not linearly related, the correlation coefficient may

be a very poor summary statistic. So the rank correlation coefficient can be useful

to identify the linearity between the two variables.

Tables 5 and 6, calculated with a SAS program, show the correlation between

the variables. LEC has highly significant values of correlation with LSAR. LSAR

has less significant values, especially with clay content, which is a negative

correlation. Strong significant positive correlation is shown between the LEC and

LSAR for different subset files as well as for the LEC and clay content. Correlation
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between clay content and LSAR was very small and negative in most subset files, but

was significant.

The correlation coefficients in Tables 5 and 6 illustrate a major role in

calculating the cross-semivariogram as indicated in Figures 8-15. Highly correlated

variables allow distinguishing theoretical models as in the LEC/LSAR cross-

semivariogram, but poor correlation raises some difficulties in fitting the theoretical

model. All this has an effect on kriging variance or co-kriging estimation (Figure

17).

Table 5

Correlation coefficient for 901 data

Variables CLAY EC SAR LEC LSAR

CLAY 1.000 0.059 -0.107 0.118 -0.036

EC 1.000 0.568 0.799 0.673

SAR 1.000 0.465 0.614

LEC 1.000 0.828

LSAR 1.000
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Table 6

Correlation coefficient for subfiles

Variables LSAR

901 700 500 300 100

CLAY -0.036 -0.051 -0.061 -0.017 0.132

EC 0.673 0.667 0.718 0.685 0.686

SAR 0.614 0.641 0.588 0.704 0.801

LEC 0.828 0.831 0.842 0.821 0.839

LSAR 1.000 1.000 1.000 1.000 1.000

Spatial Statistics

This technique is used when data are spatially dependent. Data are spatially

dependent when a neighboring observation gives information on the value or

magnitude of a parameter. In classical statistics such as regression analysis,

independence of the sample data is assumed.

Geostatistics methods measure the relationships between distance and

variance. This is a preferred method of analyzing spatially dependent data: 1) it

assures that the observed values are returned by the interpolation method; 2) it is

an unbiased estimation procedure; 3) it provides an estimate of the variance of the

interpolated value, which is the minimum among all other estimators; 4) if the

kriging error is normally distributed, it can be used to put confidence limits on

average concentrations of individual blocks of land.

Fit to a Gaussian distribution is important for two reasons: 1) The pragmatic
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one which is that all prediction, estimation, and distribution theory is relatively

straightforward. 2) The asymptotic one where the net result of many small-order

effects is approximately Gaussian (central limit theorem). When data are

multivariate normally distributed the ordinary kriging is known to be statistically

optimal. Similarly, kriging is generally considered less sensitive for extreme values.

Lognormal kriging is more resistant against outliers, but it is extremely sensitive to

slight fluctuations and to error in estimating the sill of the variogram at the lags,

which determines the bias correction factors (Armstrong and Boufassa, 1988).

Stationarity

When a parameter is homogeneous over a study area, observed values Z(xi)

and Z(xi-F h) can be considered realizations of the same random variable with a

particular distribution function. The assumption of homogeneity avoids the problem

that usually only one realization of a random function is available for a given value

of xi. An understanding of stationary leads to a greater appreciation of the semi-

variogram and spatial autocorrelation.

Stationarity is defined through the first and second order moments of the

observed random function, and the degree of stationarity corresponds to the

particular moments that remain invariant across a study area.

I- First order moment

E{Z(x)} = m(x)
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II- Second order moment

1) Variance of the random variable Z(x):

VAR{Z(x)} = E[Z(X)- m(x)]2

2) Covariance:

C(xi,x2) = E{Z(x1)- m(x1)][Z(x2) - m(x2)]}

3) Semivariogram:

-y(xl,x2) = VAR{Z(xi) - Z(x2)} /2

III- Second order stationarity requires the following:

1) E{Z(x)} = m(x). Does not depend upon x.

2) The covariance depends only on separation distance h;

C(h) = E{Z(x)*Z(x+h)} - m2 for all x

The vector h may be one to three dimensional.

If the covariance C(h) is stationary, the variance and the semivariogram are also

stationary:

C(0) = E {[Z(x) -m]2} = VAR {Z(x)}

7(h) = E{[Z(x + h)-Z(x)12} /2

= C(0) - C(h)

The correlogram is:

p(h) = C(h)/C(0)

= 1 - -y(h)/C(0)

Under the second order of stationarity, the semivariogram and the covariance are

alternative measures of spatial autocorrelation.
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The intrinsic hypothesis requires that the expected values of the first moment

and the semivariogram are invariant with respect to x. By not requiring stationarity

of the covariance and therefore the existence of a finite variance C(0) of the random

function, the intrinsic hypothesis is sufficient for most geostatistical problems.

Transformation

Assumptions about variance stability, normality and linearity need to be

satisfied in order to make inferences. If these assumptions are violated, the

underlying inferential basis is eroded. The deviation from the assumption of

normality in regionalized variable theory has been a criticism of kriging (Henley,

1981). Transformation to normality prior to geostatistical analysis results in a

nonlinear function of the original data, so that kriging estimates may not be made

with minimum estimation variance and without bias (Trangmar et al., 1985).

Lognormal distributions have been widely used in soil science (van der Zaag et al.,

1984; Yost et al., 1982a, b; Trangmar et al., 1985). It simply involves computing

semivariograms and kriging natural log transformed values of the original data using

the same procedures as for simple linear kriging. The estimation of log-kriged values

is smaller than values of the original data (Journel and Huijbregts, 1978). This

approach has been found to be practical (Rendu, 1979; Yost et al., 1982b).

Transformed SAR and EC values such as range, standard deviation, skewness,

and kurosis are lower (Tables 1-5).
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Variogram

The quantity y(h), a function of the increment hi - h2, is called a

semivariogram by Matheron (1963) or structure function by Kolmogorov (1941) in

physics and by Jowett (1952) in time series. In Matheron's geostatistics and in

Gandin's analysis the variogram is used to define coefficients and weighting factors,

X1, in an optimal linear predictor. Hence, estimating and modeling the semi-

variogram is a very important part of kriging that can be difficult if the data are
1

sparse or outliers are present. Kriging depends on an accurate variogram for

estimating weights for interpolation. Using incorrect variograms can lead to

unfavorable effects on the precision of the kriging estimate, even to a negative

kriging variance. Krige and Magri (1982) reported a study on the effect of the

outliers. Cressie and Hawkins (1980) and Hawkins and Cressie (1984) studied

several estimators of -y(h) and found they were less affected by outliers than C(h).

If the variable is anisotropic, the semivariogram will be anisotropic.

Figures 8-15 represent semivariograms and cross semivariograms for LEC,

LSAR, and clay content variables. The first set includes 10 lag points out of 20. The

second shows the 20 lag points used to create spatial structure. Each lag has 200 m

distance. Table 7 includes all the semivariogram and cross semivariogram

coefficients as well as the theoretical fitted model type.
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Table 7

Variogram coefficients

Variables No. Model Nugget Sill -
Nugget

Range

LSAR \ LSAR 100 EXP. 1.100 1.160 3760.0

LSAR \ LSAR 300 EXP. 0.380 1.210 1500.0

LSAR \ LSAR 500 EXP. 1.180 0.689 1060.0

LSAR \ LSAR 700 EXP. 0.560 1.410 700.00

LSAR \ LSAR 901 EXP. 1.000 0.717 423.00

LSAR \ LEC 100 SHP. 0.500 0.850 1300.0

LSAR \ LEC 300 SHP. 0.200 0.950 1750.0

LSAR \ LEC 500 EXP. 0.470 0.937 430.00

LSAR \ LEC 700 EXP. 0.590 0.811 800.00

LSAR \ LEC 901 EXP. 0.167 1.127 226.55

LSAR \ CLAY 100 EXP. 0.134 1.550 300.00

LSAR \ CLAY 300 SHP. 0.001 0.710 650.00

LSAR \ CLAY 500 EXP. 1.140 -0.43 1300.0

LSAR \ CLAY 700 SHP. 1.100 -0.780 1350.0

LSAR \ CLAY 901 EXP. 1.500 -1.150 600.00

CLAY \ LEC 901 SHP. 1.396 1.000 1500.0

CLAY \ CLAY 901 SHP. 36.90 54.20 1500.0

LEC \ LEC 901 EXP. 0.990 0.490 680.00
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Nugget effect

Sampling at a given site more than once would yield different measurements

because of low precision in the measurement or fine scale variation in the

phenomenon under study. This would depend on: 1) geology of the site,

2) time and duration of measurement, 3) the order and the border limit of the

sampling area, 4) the scale of sampling relative to the geographic scale of variation

in the phenomenon.

Journel and Huijbregts (1978) provided a general definition of the nugget

effect as the sum of all sources of variation with ranges much smaller than the

distances between samples. The nugget effect is the discontinuity at the origin in the

semivariogram model. Since we are interested in the local behavior of the Z(X)

field, it follows that we are most interested in 7 (h) over short distances. If the

nugget is constant over the entire distance, then we have a "pure nugget" or Z(X) is

a white noise process. In this case there is no spatial structure and we interpolate

all the places identically where there is no observation. One can conclude that the

samples are spatially independent.

The nugget model is:

7(0) = 0 h 5 a

y(h)=C0 h) a

Ways to reduce the nugget effect include better sampling control, reexamining

the data for sources of error, and applying adjustments and correction factors.
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Range

As the separation distance between pairs increases, the corresponding

variogram value will also generally increase. However, when the increase in the

separation distance no longer causes a corresponding increase in the average squared

difference between pairs of values, the variogram reaches a plateau. The distance

at which the variogram reaches this plateau is called the range.

The range of correlation is a distance within which all measurements are

correlated. Because of this correlation, a sample is representative of a neighborhood

measured by the range of correlation. This phenomena can be useful to quantify the

range of the influence of a contaminated region.

Sill

The plateau that the variogram reaches at the range is called the sill.

The shape of the semivariogram and the size of the nugget are affected by the

support of the measurements. The support is the shape, volume, and orientation of

individual samples or measurements. If the support changes, the semivariogram will

change.

Estimating the variogram

There are several ways to estimate the variogram:

1) Nonparametric estimation methods or the arithmetic mean of the squared

differences (Matheron, 1963).
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(53)

where n(h) is the number of data pairs separated by the lag h. Omer (1984)

indicated the above equation is the optimal estimator when [u(xi),u(xi+ h)] is

binormally distributed and the observations [u(xi),u(;)], (i = 1,nj = 1,n;i* j) are all

uncorrelated. This ideal case is rarely encountered in practice, and generally

deviations from this ideal case will occur.

Three main deviation types were identified (Omer, 1984). i) distributional

deviations where [ u(x),u(x + h)] can not be properly represented by a binormal

distribution. ii) Sampling deviations where [u(x);i = 1,n] are not sampled in a

randomized way, and the sampling is biased. iii) Outlier deviation where the

estimator might be sensitive to the presence of errors. In general, [u(xj),u(xj)] are not

totally uncorrelated independent variables.

Several other estimators for the variogram were suggested (Dowd, 1982, 1984).

Cressie and Hawkins (1980) suggested a more familiar estimator:

1 1 n-1,0) = [E (h)(1u(xi)-u(xi+h 1)1/2r2[0.47 +0.494/n(h)] n(h) i.i
(54)

which is based on normal distribution assumptions. Omer (1984) showed that the

Matheron estimator is superior to Equation 54 in the ideal case i.e. no distributional
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or sampling deviations occur. Another robust estimator suggested by Omer (1984)

is:

(55)
1 n n

7(h) = a.Vfu(xi)-u(xj)] 2
i=1

where a1 (i OD are weights assigned according to the relative location of two

observations in the distribution of values forming the domain of h. This estimator

was found to be superior to the Matheron estimator only when distributional and

sampling deviations occur simultaneously Omer (1984).

2) Parametric estimation methods

Kriging and co-kriging require the estimated variogram to be fitted to a

theoretical model of a positive definite type. Given the structure of a model,

estimation of the parameters of the model from the available data is a well-defined

algorithmic problem. The most advanced parametric estimation methods are the

maximum likelihood (ML), restricted maximum likelihood (RML), minimum

variance, unbiased quadratic, and weighed least squares procedures. Each of these

methods has been presented and evaluated by Kitanidis (1983) Kitanidis and Lane

(1985) and Hoeksema and Kitanidis (1985). When the data are Gaussian

distributed or transformed, the ML are known to be asymptotically unbiased with

minimum variance, consistent, and normally distributed with a covariance matrix

given by the inverse of the Fisher information matrix. In the case of non-normal

data the procedure can be viewed as a fitting process based on minimization of a



weighed sum of squares of prediction errors (Kitanidis, 1985).

The variogram -y(h) can be defined as

7 (h) = (1/2) Var[Z(x+h) -Z(x)]2
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(56)

under the zero drift assumption E[Z(x+ h)} =E[(a)] so the above equation becomes.

7(h) = E[Z(x +h)- Z(x)]2

An estimate of 7 is given by

1 a"*(h) = [_]E [(x.+h)-Z(x.)]2-y 2n(h) n.1 "

(57)

(58)

where n(h) is the number of pairs separated by a distance h.

The valid choice of a certain variogram is restricted such that the negative of

7(h) is a positive-definite function (Journel and Huijbregts, 1978; Armstrong and

Jabin, 1981).

There are several types of semivariograms models with sill:

exponential

spherical

Guassian

7(h) = 1-exp(-h/a)

7(h) = C 0+C[(3 I2)(h I a)-(112)(h I a)1 0<h <a
= C o+C h a

(59)

(60)



y(h) = 1 -exp( -h 2/a 2)

The ones without a sill are a power

y(h) = 0<a<2

and logarithmic model

7(h) = log(h)

The linear model with a finite sill is

y(h) = Co+C(hla) h <a
= Co+C a

The variogram that is a function only of the separation distance (h) is called

isotropic, and the variogram which is a function of direction is called anisotropic.

Selection of the final model from the candidates should be carried out by a

systematic model discrimination procedure, such as that which minimizes the Akaike

information criterion (AIC). Minimization of sum of squares of error; SSQ; cross

validation test and the best-fit model to the experimental variogram were the main

procedures to select the theoretical model.

The cross variogram and the variogram must be such that the co-kriging

matrix formed with them is positive-definite, (Dunn, 1983; Myers, 1984a). This

means the cross semivariogram function should satisfy the Cauchy-Schwartz

inequality; I 7(h) I 5_ I -yu(h)-yii(h) I .
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(61)

(62)

(63)

(64)

Measured variograms

The variogram represents the average rate of change of a property with

distance and its shape describes the pattern of the spatial variation in terms of
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magnitude, scale and general form. Figures 8-15 as well as Table 7 show the

coefficients of the variogram and the theoretical model used in this study. The

analysis of spatial dependence using semivariograms has contributed to our

understanding of variability of salinity management and interpretation. The

interpretation focuses on the range of influence, i.e. the size of the area in which

variables (SAR) are statistically associated with the variable in the center of the area.

This concept provides an estimate of the minimum distance required to designate the

area of different levels of salt hazard or the reclamation area as well as the sample

spacing or design.

Some semivariogram applications are:

1) Isotropic and anisotropic variation

Soil properties are isotropic if they vary in a similar manner in all directions,

in which case the semivariogram depends only on the distance between samples, h.

Geometrical anisotropy occurs when variance for a given distance h in one direction

is equivalent to variations for a distance kh in another direction. The anisotropy

ratio, k, indicates the relative size of directional differences in variation.

2) Trends

Many regionalized variables do not vary randomly, but show local trends or

components of broader regional trends. Regionalized trends are indicated by

semivariograms that increase with distance of sample separation and either do not

approach a sill (Gajem et al., 1981) or have a sill which considerably exceeds the

general variance S2 (Bresler et al., 1984).
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3) Periodic phenomena

Periodicity of parent material deposition and repetition of land form

sequences are often quoted as sources of soil variation. This is expressed in

semivariograms as a "hole effect" which is indicative of non monotonic growth of the

semivariogram with distance (Joumel and Huijbregts, 1978). The hole effect can

appear in models with or without sills. This could occur for clay content as a

continuous deposition of different mineral types or different mineralization. Its

characteristic is a succession of rich and poor zones (David, 1977).

4) Management effect on salinity distribution and reclamation

Management practices may considerably alter the inherent spatial structure

of soil properties, as well as the reclamation process. Directional application of

water, as in furrow irrigation, may introduce anisotropy of soil moisture content

(Gajem et al., 1981) and will affect the EC distribution in the field. Non-uniform

fertilizer application to the farmland leads to heterogeneity of the salinity.

Validation Tests

Once the parameters of the model have been estimated, the validity of the

model should be tested. Several tests may be conducted:

1) The cross validation test or Jackknife test, (Gambolati and Volpi, 1979). In this

test two conditions must be meet i) there is no systematic error i.e. mean maximum

error ME of the reduced error vector

RE(xi)= [u*(xi)-u(xi)]/Var[u*(xi)-u(xi)r2 must be zero:



1ME = _E RE(xi) = 0
n h.1

1ME = _E (z, -4)
n nmi
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(65)

ii) The kriging variance Var[u*(xi)-u(xi)] must be consistent with the corresponding

error [u*(x)-u(xi)]. The variance is expected to be close to one. Thus the mean

square reduced error MRS is required to be unity:

MRE = [itRE(x.)2]'/2 = 1
n

2) Mean square error; MSE

MSE = [u *(x.)-u(x.)11 /2

(66)

(67)

Figure 16 shows the mean error squre values for kriging and co-kriging

estimation for LSAR subfiles.

3. Average kriging variance; AKV

. n

AKV = (4 (68)

Table 9 indicates the results of the average kriging values. Figure 17 suggests

that co-kriging has smaller AVK than kriging.



4) Reduced mean error; RME:

R
1 .RME = __E (Zi -Z1) / am
n i.1

5) Reduced variance error; RVE:

RVE = VAR[Z (x)-Z(x) / a k]
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(69)

(70)

Table 8 shows the values for reduced mean error and reduced variance

obtained from one cross-validation technique.

Another test is a transformation of the measured residual vector e(x) = u(x) -

m(x) into a vector of uncorrelated residuals y(x) and analyzing y(x) (Kitanidis and

Vomvoris, 1983). It does not lead to a test of hypotheses in a strong statistical sense,

but it does provide a mechanism for ascertaining whether the variogram model

reproduces the characteristics of the data. For more detail refer to Davis (1987),

Chung (1984), and Gray and Schucany (1972).
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Figure 16 Variance difference between kriging and co-kriging estimation
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Figure 17 The effect of sampling number on the average kriging variance by using

kriging and co-kriging estimation.
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Figure 18 Effect of sampling number on mean error by using kriging and co-kriging

estimation.
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Table 8

Cross-validation parameters:

Variables No. Model SSQ Reduced
Mean

Reduced
Variance

LSAR \ LSAR 100 EXP. 0.014 0.048 0.950

LSAR \ LSAR 300 EXP. 0.009 0.014 1.057

LSAR \ LSAR 500 EXP. 0.117 0.000 0.833

LSAR \ LSAR 700 EXP. 0.160 0.040 0.851

LSAR \ LSAR 901 EXP. 0.0003 0.004 0.918

LSAR \ LEC 100 EXP. 0.048 0.004 0321

LSAR \ LEC 300 SHP. 0.012 0.002 0.962

LSAR \ LEC 500 EXP. 0.005 0.000 1.089

LSAR \ LEC 700 EXP. 0.590 0.081 0.981

LSAR \ LEC 901 EXP. 0.0004 0.005 0.981

LSAR \ CLAY 100 EXP. 0.433 0.005 0.826

LSAR \ CLAY 300 SHP. 0.688 0.006 0.846

LSAR \ CLAY 500 EXP. 1.361 0.000 0.852

LSAR \ CLAY 700 SHP. 1.682 0.000 0.844

LSAR \ CLAY 901 EXP. 0.508 0.005 0.872

CLAY \ LEC 901 SHP. 0.007 0.004 0.856

CLAY \ CLAY 901 SHP. 0.985 0.005 0.871

LEC \ LEC 901 EXP. 0.001 0.004 0.788
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Krizing

Kriging is a technique of making optimal, unbiased estimates of regionalized

variables at unsampled locations using the structural properties of the semivariogram

and the initial set of data values. The advantage of this method is the measurement

of variance error. Gajem et al., (1981) and Sisson and Wierenga, (1981) used it to

determine spatial variability of several soil properties. Burgess and Webster,

(1980a,b) used it for mapping soil properties. Flatman et al., (1988) and McBratney

and Webster, (1983) and Trangmer et al., (1985) also discuss optimal sampling

schemes. Campbell, (1978) described the pH distribution. Yost et al., (1982a)

examined the drift of several soil parameters in Hawaii. Burgess and McBratney,

(1981) and Webster and Burgess, (1980) extended their earlier result to include other

types of kriging. Palumbo and Khalee, (1983) estimated the transmissivity of New

Mexico soils. Russo and Bresler, (1982), Vieira et al., (1981) and Warrick and

Nielsen, (1980) looked at the physical properties of soils in the field. Vauclin et al.,

(1983) compared the result of undersampled soil properties to each other.

Kriging depends on an accurate variogram for estimating weights for

interpolation. Using incorrect variograms can lead to unfavorable effects on the

precision of the kriged estimate, even to a negative kriging variance. Figures 19-23,

indicated very clearly the distribution of estimated TSAR subfiles. The north east

zone had a higher salt concentration.
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Figure 19 Estimated LSAR.901 from LSAR.100

Figure 20 Estimated LSAR.901 from LSAR.300
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Figure 21 Estimated LSAR.901 from LSAR.500

Figure 22 Estimated LSAR.901 from LSAR.700



94

Figure 23 Estimated LSAR.901 from LSAR.901

Co-Kriging

The spatial distribution of any given property may often be closely related to

that of other properties affected by the same regionalized phenomenon or spatial

process. Such properties are said to be co-regoinalized and are spatially dependent

on one another. Co-kriging extends the principle of optimal estimation using

regionalized variable theory from a single property to situations where there are two

or more co-regoinalized properties.

Matheron, (1971) developed the concept of "cross-semivariogram"; which gives

the correlation between the two variables as a function of separation distance

between two variables and a set of kriging equations which he called " co-kriging "

(Journel and Huijbregts, 1987; Vauclin et al., 1983). For more details refer to Myers



95

(1982, 1983, 1984). Can et al., (1985a) give the co-kirging computer program. The

Yates, (1986) program "Geopack" performs co-kriging, kriging and disjunctive kriging.

Co-kriging or joint estimation can improve the estimation of an under-sampled

variable.

Co-kriging is certainly the method having the best theoretical foundation

because no assumptions are made about the nature of the correlation between the

two variables. The degree of this correlation as well as its spatial structure are taken

into account by the cross-variogram (Ahmed and De Marsily, 1987). The technique

of co-kriging improves the estimation and reduces the variance of the estimation

error, but at the same time the calculation of the cross-variogram and the fitting of

a theoretical model sometimes becomes very difficult, particularly when the two

variables are not strongly correlated (Ahmed and De Marsily, 1987).

Co-kriging can be used to increase sampling efficiency by: 1) Increasing the

sampling of the auxiliary function with respect to the primary variable by transferring

the information of the auxiliary function to the primary through the cross-correlation

function. 2) Increasing the apparent density of the sampling pattern. This will be

useful when each random function is of equal interest and sampling difficulty. An

improvement in the overall estimation process for both random functions may be

obtained if most sample locations for each random function are independent of each

other. This will have the effect of increasing the apparent sampling density in the

field with respect to the function, and when a high cross-correlation exists, will be

approximately the same as sampling for both function at all the location (Yates and
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Warrick, 1987).

Recently co-kriging has been applied to soil hydraulic properties. Shouse et

al. (1990) and Vauclin et al. (1983) used ordinary and co-kriging in the analysis of

water content and sand content, where sand content was included to improve the

estimation process. McBratney and Webster (1983b) used co-kriging to study the

spatial variability of silt content where the subsoil silt and sand content were used as

auxiliary variables. Carr and Myers (1985) annualized landsat data by using co-

kriging. Yates and Warrick (1987) used co-kriging to estimate soil water content,

with surface temperature and sand content as auxiliary variables.

On the other hand there are several limitations of co-kriging: 1) It requires

a large sample number, because the cross-correlation function will be affected by

reduced samples. 2) The cross-correlation function is difficult to obtain and

interpolate. It is very hard to fit the theoretical model to it automatically. 3) It

requires increased computer time Yates and Warrick, (1987).

Figures 24-27 are co-kriged LSAR for different subfiles by using clay content

and LEC as auxiliary variables.
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Mapping

Maps are an important analytical aids in soil science. They are based on a

specific number of samples drawn over the land surface of interest. Such analyses

are made to estimate sodium absorption ratio at every point within the sampled

space. Figures 24-27 show the co-kriging contour maps. Subfiles with LSAR.500

reveal the same distribution of LSAR in both kriging and co-kriging. Concentration

of LSAR is higher at the north east zone and around the center of the map. The

high value area is located east of the lake, which may show the adverse effect of

precipitation of salt at the soil surface. The area around the lake has a better chance

for leaching salinity. The lake enhances the drainage system and creates a higher

hydraulic gradient toward the water table.

Comparison between kriging and co-kriging

The two methods yield the same maps in general. Co-kriging gives smoother

and more uniform regions than kriging. The results from co-kriging may be more

conservative than ordinary kriged estimates. Figures 16-18 show the difference

between the two estimators variances. Figure 18 shows the minimum mean error

calculated for the LSAR.300 subfile by the co-kriging procedure. It illustrates the

effect of the correlation between the estimated parameter and the auxiliary one.

Factors affecting the average kriging variance are total number of samples,
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number of samples used in the estimation, and maximum radius. As the radius

increases AKV increases.

Figure 16 shows the minimum calculated meansquare error for the LSAR.300 subfile

using co-kriging. This illustrates the effect of correlation between the estimated and

the auxiliary parameter. Table 9 gives the variances.

Table 9

Kriging variance for kriging and co-kriging estimation

Number of variables Average Kriging Variance

Kriging Co-kriging

LSAR.100 1.622 1.384

LSAR.300 0.871 0.645

LSAR.500 1.658 1.255

LSAR.700 1.040 0.948

LSAR.900 1.411 1.101



101

Summary

The optimization decisions requried in management of agricultural fields can

be aided by the geostatistical procedures used. The complexity and heterogeneity of

soil and the soil-water-plant relationship requires knowledge of the association as

well as the differences among these parameters in the field. The correlation between

some parameters and the variance among others requires investigation of all these

relationships. This enhances the probability that the best assessment is applied, and

at the same time that it will avoid major cost, time, and unpredicted quantitative

results. In field management, this relationship can be determined by understanding

the spatial structure of the parameters.

As shown in the tables, the integrated information between LEC, clay content

and LSAR enhanced the out-come decision for estimating LSAR for the entire field.

Co-kriging gave a lower sum of squares mean error than kriging. The number of

SAR measurements required to estimate the whole field could be reduced to 300

samples, instead of the 901 samples taken. This reduction in sampling optimizes the

cost of reclamation by reducing the cost and time for sampling and analysis, and has

a direct input in the final decision for reclamation. The co-kriged estimation maps

showed how to apply different techniques for different regions. The contour maps

indicated the specific limit of treatment, i.e amount of water, the quality of water and

type of amendment required for each regionalized or block area.
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CHAPTER 3

Simulated Reclamation of Saline Soils Using Spatially Variable

Input Parameters and Initial Conditions
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Introduction

The factors most limiting agricultural development in arid and semiarid

regions is soil and water salinity. Soils in arid and semiarid regions usually contain

salt. Salinity not only limits agricultural production, but is a source of potential

groundwater and surface water pollution where irrigation is practiced. The water

supply available for irrigation contains dissolved salts, and frequently contains

phytotoxic trace elements (Hoffman et al., 1989). Over 90% of the consumptive use

of water in the western United States, some 250 x 109 L cl-' goes to irrigated

agriculture (Sol ley et al., 1988). Of 15 x 106 ha currently irrigated in the western

U S, between 25 and 35% are seriously affected by salt. The annual cost of damages

caused by excess soil salinity is estimated to be $30 million in California's San

Joaquin Valley alone; an additional $100 million is lost in productivity in the

Colorado River Basin. Salinity is the most pervasive environmental problem

stemming from irrigation in the United States; all western river basins except the

Columbia have salt levels high enough to reduce agricultural production.

The total dissolved inorganic ions and molecules define the level of salinity

in irrigation water and soil solution. The major components of salinity are the

cations Ca', Mg", Na+, and the anions Cr, SO=4,and HCO.3, while K+ and NO-3

are considered minor components. Soil salinity must be quantified for diagnosis and

remediation. There are many methods for quantifying the salinity status of soils and

waters (Rhoades and Oster, 1986). The method used most frequently is the

measurement of electrical conductivity in soil solution extract obtained at water
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contents higher than normally found in the field. The world standard method is

described in Handbook 60 (U. S. Salinity Lab. Staff, 1954) as the electrical

conductivity of the saturation extract. This is the primary assessment tool available

for diagnosis of soil salinity conditions.

Assessment of soil salinity under field conditions is complicated by its spatially

variable nature. Soil salinity is dynamic due to the many processes which influence

salt accumulation and movement in soil. The major factors influencing soil salinity

include: varying management practices, water table depth, soil permeability,

evapotranspiration rate, rainfall amount, and solute transport parameters.

Recommendations for reclamation must be based on the assessment of soil salinity

over an area. An evaluation of the initial level of soil salinity and its distribution in

space must be combined with knowledge of the transport properties affecting solute

movement in order to choose the best procedure and to predict the cost of

reclaiming saline soils.

Reclamation of salt affected soils is frequently required when arid lands are

developed for agricultural use, when saline groundwater persists near the soil surface,

or when the combined effects of rainfall and irrigation do not meet the leaching

requirement for the land. Presently the only method for reclaiming salt affected soils

is to leach salts below the crop root zone by adding large amounts of water.

Adequate drainage, then, is essential for proper reclamation. Where natural

drainage is not sufficient, artificial drainage systems need to be provided for

reclamation to be feasible.
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Leaching soil for removal of excess salt accumulation requires an

understanding of water and solute movement through soils. Solute transport is

affected by a number of chemical, physical and microbiologicalprocesses. In general,

the best reclamation procedure for a specific site will depend on the soil type, the

amount and types of salts present, irrigation water quality, hydrology of the region,

topography, and irrigation management.

The amount of water that must leach through the soil profile to remove the

excess soluble salts depends on the initial salt concentration, the technique of

applying irrigation water and the soil type. As a general rule of thumb, 70% or more

of soluble salts initially present in a soil profile will be removed by leaching with a

depth of water equal to the depth of soil to be reclaimed, when water is continuously

pounded on the soil surface. The soil type governs the rate at which water moves

through soil and the amount of soil water retained in smaller pores.

Water movement and hence solute transport, is governed by the hydraulic

conductivity of the soil and by its water retention. These hydraulic properties of field

soils are highly variable in space and time. Hydraulic properties can be measured

using laboratory or field techniques. There is an abundance of measurement

techniques, but most methods are expensive and/or time consuming. Indirect

methods have been developed to estimate soil physical properties from index

properties such as grain size distribution.

The purpose of this chapter is to use spatially variable initial salinity and

water content field conditions as model input to simulate the spatial distribution of
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the required reclamation for a 15 square mile region of salt-affected soils, to

determine the spatial variability of applied water necessary for reclamation, the

spatial distribution of total salt leached out the root zone, and the total time required

for water to pass through the 0.3 m soil profile.

Procedure

The salt-affected region chosen has been described in Chapter 2, and the

spatial distributions of salt (ECG), clay content, and SAR have been previously

analyzed using the geostatistical methods described in Chapter 1. The volumetric

water content were also measured at 901 sampling points using volumetric soil

sampling. The soil texture was determined by hand texturing and independently

calibrated against hydrometer measurements of particle size in the laboratory. The

textural class data were used to determine the amount of sand and silt, given the

measured amount of clay content, from the texture triangle.

The spatial distribution of the initial salinity content and the initial water

content profile was measured at the 901 sample sites over the 15 square miles. The

soil hydraulic properties at each of the 901 sites were estimated using a model which

estimates the soil hydraulic properties from soil texture, salt content and other

routinely measured soil properties listed in Table 10. The model uses old and new

empirical as well as theoretical relationships between more easily measured soil

properties and soil hydraulic properties. The input data required are listed in Table

10. The model produces an output data set which includes the soil water retention



107

function for each horizon as listed in Table 11. The spatial distribution of soil

hydraulic properties as input to the solute transport ie the retention factors, alpha

and beta, and the soil hydraulic conductivity function were used in the Hydrus solute

transport model which was used to calculate the solute movement through our 901

soil profiles, to simulate salt leaching and reclamation. Hydrus is a one dimensional

subsurface water flow and solute transport model which may be used to simulate the

movement of water and dissolved solutes in saturated-unsaturated soils. The solution

to the flow problem, in general, considers the effects of root water uptake and

hysteresis in the soil hydraulic properties. The solute transport equation incorporates

the processes of ionic or molecular diffusion, hydrodynamic dispersion, linear or

nonlinear equilibrium adsorption, and first order decay. The boundary conditions for

the flow and transport equations may be constant or time-varying. The model uses

fully implicit Galerkin type linear finite element solutions of the convection

dispersion equation and Richards' equation.

The Hydrus model was used to determine the linearly averaged, mean root

zone salinity of the soil profile during simulated reclamation at each of the 901

sampling sites. A ponded water surface boundary condition was used because

ponding of water is used extensively in this area for leaching of salts. The program

outputs were total amount of water applied, time required for leaching to an average

salinity of 4 ds rril, and the total salt leaving the 0.30 m soil depth.

The input parameters used in Hydrus are listed in Table 12.
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Table 10

The input file for sample number 100

Name : GENERAL CLAY DATA SET
Horizons : 3
Root Zone Depth (cm) : 30.00

Depth (cm) : 33.0 66.0 100.0
Rock Fragments (vol. %) : .00 .00 .00
Clay Activity : .35 .35 .35
Clay (weight %) : 12.00 12.00 12.00
Silt (weight %) : 21.00 21.00 21.00
Sand (weight %) : 77.00 77.00 77.00
Organic Matter (weight %) : 1.50 .50 .00
Coarse Sand (weight %) : .00 .00 .00
Macroscopic Porosity Code : 2 2 2
Compaction Code 2 2 2
Bulk Density Flag . 1 1 1

Bulk Density (g/cc) : 1.461 1.461 1.461
Sat. Conductivity (cm/hr) : .00 .00 .00
Salinity Flag 1 1 1

E.C. Soil Extract (mmhos /cm): 1.11 1.11 1.11
E.C. Irrig. Water (mmhos/cm): 1.80 1.80 1.80
W.C. of Soil Paste (g/g) : 40.02 40.02 40.02
Sodium Adsorption Ratio : 2.84 2.84 2.84



Table 11

The out put for sample number 100

SOIL PROPERTIES
Name: GENERAL CLAY DATA SET
Number of Horizons: 3
Root Zone Depth : 30.

dp rf ca clay silt om cs mp cp dbmom flag Ksat
33. .0 .35 12.0 21.0 1.5 .0 2 3 1.46 1 25.90
66. .0 .35 12.0 21.0 .5 .0 2 3 1.46 1 25.04

100. .0 .35 12.0 21.0 .0 .0 2 3 1.46 1 24.61
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DEPTH OF DRAINED UPFLUX FROM GREEN-AMPT WATER
MATRIC
WATER WATER WATER PARAMETERS CONTENT

SUCTION
TABLE VOLUME TABLE A B (THETA) (HEAD)
(cm) (cm) (cm/hr) (sq.cm/hr) (cm/hr) (vol %) (cm)

.0 .00 .2000 .0000 .0000 .4279 .0
10.0 .10 .2000 2.4629 25.9038 .4181 -5.0
20.0 .45 .2000 5.1619 25.9038 .4053 -10.0
30.0 1.03 .2000 7.4597 25.9038 .3806 -20.0
40.0 1.81 .2000 9.3126 25.7523 .3596 -30.0
50.0 2.75 .2000 10.8374 25.6096 .3421 -40.0
60.0 3.83 .1911 12.1277 25.5144 .3152 -60.0
70.0 5.03 .1304 13.2230 25.4221 .2953 -80.0
80.0 6.33 .0929 14.1579 25.3211 .2799 -100.0
90.0 7.71 .0698 14.9805 25.2425 .2528 -150.0

100.0 9.17 .0524 15.7118 25.1796 .2347 -200.0
120.0 12.28 .0311 16.9603 25.0853 .2111 -300.0
140.0 15.60 .0200 17.9933 25.0179 .2043 -340.0
160.0 19.09 .0135 18.8675 24.9674 .1959 -400.0
200.0 26.49 .0068 20.2794 24.8966 .1764 -600.0
250.0 36.37 .0032 21.6242 24.8400 .1550 -1000.0
300.0 46.78 .0000 22.6702 24.8023 .1311 -2000.0
400.0 68.78 .0000 24.2220 24.7551 .1067 -5000.0
500.0 91.95 .0000 25.3429 24.7269 .0926 -10000.0
700.0 140.73 .0000 26.9009 24.6945 .0854 -15300.0

1000.0 217.97 .0000 28.3880 24.6703 .0632 -102000.0
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Table 12

Salinity data for salinity reclamation and management for sample number 100

2 0 0 0 0 1 0 0 0 0
5000 1 1 1 6 0 0.0

0.001 0.00001 0.2 900.0 0.1 0.5 15 0.001
1 1 0.0 30.00 1.0

0.03880 1.45 41300 1.30 9.500
0.3 10.00 1.461 0.0 0.0 .000 1.0
0.0 -800.0 0.0 1.11

30.0 -800.0 0.0 1.11
0.0 2 2 1000.0 0.0 0.0 0.00

10.00 20.0 30.0 40.0 50.0 60.0

*******************************************************************

ONE-DIMENSIONAL FLOW AND TRANSPORT MODEL
HYDRUS v. 3.2

Data input file: FF100.IN

Salinity data for salinity reclamation and management

*******************************************************************

PROBLEM CONTROL PARAMETERS

SIMULATION CONTROL CODE (ITKOD) = 2
HYSTERESIS MODELING CODE (IHKOD) = 0
TRANSPORT BOUNDARY COND. CODE (ICOKOD) = 0
ROOT WATER UPTAKE CODE (IRUKOD) = 0
CONDUCTIVITY UPSTREAM WEIGHTING (IUPKOD) = 0
FLOW MASS MATRIX OPTION (ILKOD) = 1
FLOW INITIAL CONDITION CODE (ICKOD) = 0
BOUNDARY CONDITION CODE (IBCKOD) = 0
PLOT OUTPUT CODE (IOKOD) = 0
RESTART OUTPUT CODE (IRSKOD) = 0
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Table 12 Continued

TIME STEPPING PARAMETERS

INITIAL TIMESTEP (DELIN) = .100E-02
MINIMUM TIMESTEP (DELMIN) = .100E-04
MAXIMUM TIMESTEP (DELMAX) = .200
TOTAL SIMULATION TIME (TMAX) = 900.
REL. PR. HEAD CONVERGENCE TOLERANCE ....(TOL1) = .100
ABS. ....(TOL2) = .500
NUMBER OF NONLINEAR ITERATIONS (NITMAX) = 15
CONCENTRATION CONVERGENCE TOLERANCE ...(CTOL) = .002

PROBLEM SPECIFICATION PARAMETERS

MAXIMUM NUMBER OF TIMESTEPS (NSTEPS) = 5000
NUMBER OF SOIL MATERIALS (NMAT) = 1

NUMBER OF SOIL LAYERS (NLAYR) = 1

NUMBER OF BOUNDARY COND. TIME VALUES ....(NBC) = 1

NUMBER OF OUTPUT TIME VALUES (NPRINT) = 6
NUMBER OF OBSERVATION POINTS (NOBS) = 0
SOIL DEPTH (TDEPTH) = 30.0
GROUNDWATER SOLUTE CONCENTRATION (CNN) = .000

PROBLEM GEOMETRY

LAYER NUMBER 1

MATERIAL INDEX (MATL) = 1

LAYER THICKNESS (THICK) = 30.0
BEGINNING DEPTH (TOPL) = .000
ENDING DEPTH (BOTL) = 30.0
NODAL SPACING (DELZ) = 1.00

SOIL HYDRAULIC AND TRANSPORT PROPERTIES

HYDRAULIC PROPERTIES FOR MATERIAL: 1

ALPHA BETA WCS WCR SATK

.0162 1.3000 44.8000 5.7900 1.200E+ 02
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Table 12 Continued

TRANSPORT PROPERTIES FOR MATERIAL: 1

DIF DISP RHO DONE DSONE KD

.3000 10.0000 1.4490 .0000 .0000 .0000

MAXIMUM VALUE OF GRID PECLET NUMBER IS .1 FOR LAYER

BOUNDARY CONDITION DATA

TIME IRTYP IDRTYP BCN1 BCNN CN1 POTET
.000 2 2 1000.000 .000 .000 .000

OUTPUT TIME VALUES

.100E+02 .200E+02 .300E+02 .400E+02 .500E+02 .600E+02

INITIAL CONDITIONS

Depth P WC C Depth P WC C

.00 -8.000E+02 23.7320 8.900E-01 1.00 - 8.000E + 02 23.7320 8.900E-01
2.00 - 8.000E + 02 23.7320 8.900E-01 3.00 -8.000E+ 02 23.7320 8.900E-01
4.00 -8.000E+02 23.7320 8.900E-01 5.00 - 8.000E + 02 23.7320 8.900E-01
6.00 - 8.000E + 02 23.7320 8.900E-01 7.00 - 8.000E + 02 23.7320 8.900E-01
8.00 - 8.000E + 02 23.7320 8.900E-01 9.00 -8.000E+02 23.7320 8.900E-01

10.00 -8.000E+02 23.7320 8.900E-01 11.00 -8.000E+02 23.7320 8.900E-01
12.00 -8.000E+02 23.7320 8.900E-01 13.00 -8.000E+02 23.7320 8.900E-01
14.00 -8.000E+02 23.7320 8.900E-01 15.00 - 8.000E + 02 23.7320 8.900E-01
16.00 -8.000E+02 23.7320 8.900E-01 17.00 - 8.000E +02 23.7320 8.900E-01
18.00 - 8.000E + 02 23.7320 8.900E-01 19.00 - 8.000E + 02 23.7320 8.900E-01
20.00 - 8.000E + 02 23.7320 8.900E-01 21.00 -8.000E+ 02 23.7320 8.900E-01
22.00 -8.000E+02 23.7320 8.900E-01 23.00 8.000E + 02 23.7320 8.900E-01
24.00 -8.000E+02 23.7320 8.900E-01 25.00 - 8.000E + 02 23.7320 8.900E-01
26.00 -8.000E+02 23.7320 8.900E-01 27.00 -8.000E+02 23.7320 8.900E-01
28.00 - 8.000E + 02 23.7320 8.900E-01 29.00 - 8.000E + 02 23.7320 8.900E-01
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Table 12 Continued

30.00 -8.000E+02 23.7320 8.900E-01

INITIAL MOISTURE IN PROFILE : 711.9607
INITIAL SALT IN PROFILE : 633.6450

CONVERGENCE FAILURE AT TIME 1.0000E-03 DELT= 1.000E-03 NODE
= 1 PE= 0.000E+00 T= -1.000E+02 WP= 3.333E-01

NORMAL TERMINATION TIME = 5.3067 AND STEP NUMBER = 5000
CAVLIM = .10000
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Results of the Simulation

Figure 28 shows the spatial distribution of measured initial salinity conditions

in the field prior to the onset of simulated reclamation. The figure indicates that

there are several areas which have high salt concentrations. The area of high salt

concentrations are located primarily on land which has been poorly managed, had

shallow water table during part of the season or on abandoned land. The range of

salt content is very large, this is part of the reason for having sampled this area.

Electrical Conductivity

Figure 28 Spatial distribution of EC in the field.
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Figure 29 illustrates the spatial distribution of clay content across the study

area. The area has a range of soil types, from sands to clays. The clay content data

and the soil type information are determined at the time of sampling by state soil

scientists working with the Soil Conservation Service. These scientists used hand

texturing to determine the "apparent" clay content and the overall soil textural

classification of each individual soil sampling site. These estimates were confirmed

using a limited number of soil samples (usually several for each textural class) for

particle size analysis in the laboratory. The correspondence between measured and

estimated was quite good. Silt and sand content were estimated using the clay

content and the soil textural classification.
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Figure 29 Spatial distribution of clay content in the field.
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Figure 30 shows the spatial distribution of the initial soil water content used

as the initial condition in the reclamation simulation. The water content covered a

relatively wide range (0.1-0.45). The range was indicative of the soil type and recent

management practices. In general soils with higher water content were recently

irrigated and/or had a higher clay content. The soils with relatively lower water

contents were usually sandy soils and/or are soils that have been abandoned or are

in fallow.
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Figure 30 Spatial distribution of moisture content in the field.

4839

3198

3188

1117



117

Figures 28 and 30 give an indication of the spatial variability of soil properties

in the study area. The properties are highly variable and are a result of many

processes active in irrigated agriculture. By far the most dominant factor active in

the area is the management practices employed by individual farmers and land

owners.

The outputs of Hydrus are, total applied water, total amount of drainage

water, and total salt transported through the soil profile. These outputs are essential

for assessing the reclamation process. The cost and availability of good quality

irrigation water are important factors that can help determine the applicability of the

reclamation simulation. Figure 31 shows that two-thirds of the area needs to have

at least 10 cm of water to be reclaimed to 4 ds m-1. The higher applied water was

on the higher zones of salinity.
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In any reclamation assessment, drainage water amount is also an important

factor to consider because, drainage is essentially waste water and is getting harder

to dispose of. Cost of disposal of drainage effluent may be a consideration when

analyzing the total economic impact of a proposed reclamation project. In the

future, drainage water disposal may become an over-whelming environmental issue

to farmers and land owners.

The main purpose of leaching is to relocate the salts from the root zone to

some other area. Figure 32 indicates the areas expected to have large amounts of

water draining from the profile. In general the larger amounts of drainage water are

from areas of high initial salt concentrations and areas of higher clay content. These

areas need more applied water for reclamation.
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Figure 32 Spatial distribution of total drainage.

7544

2870

1420

170



119

The accumulation of salts below the root zone indicates the amount of

potential salt loading to groundwater, and is another indicator for possible source of

pollution that must be considered when analyzing the total impact of reclamation of

a saline soil using leaching principles. Figure 33 shows the spatial distribution of the

salt loading potential within the landscape. We can use this to help make the

decisions about the feasibility of using leaching to accomplish reclamation.
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Figure 33 Spatial distribution of salt loaded at subsurface profile.
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Conclusions

For a greater productivity and higher quality food, soil reclamation

management plays an important role in the future. Soil management and irrigation

management practices control soil salinity. Water quality, the irrigation method and

crop rotation also play roles in soil salinization. The analysis of salinity distribution

in this study indicates the variability of EC over the 15 square mile area. To a lesser

extent physical characteristics determine the soil salinity levels. Clay soil had higher

salt contents than did the sandy soils.

This simulation was an attempt to use the spatially variable input and initial

condition data to analyze the reclamation of a rather large-scale saline soil area.

The simulation output, water applied, salt loading to groundwater and drainage water

volume can be used in an economic analysis of salt leaching in this area. The

simulation did not include specific ions such as sodium or boron. Leaching of these

elements from soil is much more difficult than leaching of "salt".

Simulation indicated that areas with large salt concentrations were more likely

to produce areas with more drainage water and more salt loading to groundwater.

Intuitively this is consistent with known concept of soil science, but the simulation

relating effectiveness of leaching can be quantified. Areas of potential pollution can

also be identified. With newer and more sophisticated simulation models becoming

available, different management practices will be able possible.
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Summary and Conclusions

1. Electrical conductivity and sodium adsorption ratio were found to be spatially

correlated. The natural log of electrical conductivity, (EC) and sodium adsorption

ratio, (SAR) were found to fit exponential theoretical semivariogram models while

clay content fits a spherical model.

2. All theoretical models used in semi-variograms and cross-semivariograms have

been validated by i) Jack-knife procedure; the difference of error between the

actual measured points and estimated points; and The best eye fit curves with

the smallest sum of squares error. All results suggested that the models chosen were

valid.

3. Smaller subsets of the measured variable affected the magnitude of the variogram

model coefficients.

4. Ordinary kriging was the simplest and easiest method to apply. It took less time

than co-kriging and disjunctive kriging. The results were adequate for a preliminary

study of the spatial distribution.

5. Co-kriging gave the smallest variances and errors and is the best method for

estimating SAR from EC. The higher the correlation for these variables, the more

realistic and accurate the estimation will be. This criterion helps in using a less

expensive measured variable to estimate the more expensive variable.

6. Co-kriging can optimize sample numbers, cost and time. The results suggested

that 300 samples could be adequate for this field. This reduction from 900 sample

measurements of SAR will save two-thirds of the cost.
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7. Disjunctive kriging indicates the possibility of using nonlinear estimators, with

better results than linear estimators. It also provides an estimate of conditional

probability that a variable at a given site is greater or less than a certain cutoff value.

This additional information can provide a basis for risk management.

8. Simulated reclamation with the 901 data points using a Hydrus program and

disjunctive kriging gave a very good estimate of applied water and time required to

leach the whole field. From disjunctive kriging management, units can be drawn

based either on the amount of applied water or the probability of achieving the

threshold electrical conductivity.



123

References Cited

Ahmed, S. and G. De Marsily. 1987. Comparison of geostatistics for estimating
transmissivity using data on transmissivity and specific capacity. Water Resour. Res.
24:1717-1737.

Armstrong, M., and R. Jabin. 1981. Variogram models must be positive definite.
Math. Geol. 13:455-459.

Armstrong, M., and A. Boufassa. 1988. Comparing the robustness of ordinary
kriging and lognormal kriging: outlier resistance. Math. Geo. 20:447-457.

Armstrong, M. 1984. Common problems seen in variograms. J. Int. Assoc. Math.
Geol. 16:305-313.

Bautista, E. and W. W. Wallender. 1985. Spatial variability of infiltration in furrows.
Trans. ASAE 28:1846-1851 and 1855.

Beckett, P. H. T., and R. Webster. 1971. Soil variability: a review. Soils Fert. 34:1-
15.

Berndtsson, R. and M. Larson. 1987. Spatial variability of infiltration in a semi-arid
environment. J. Hydrol. 90:117-133.

Biggar, J. W. and D. R. Nielsen. 1976. Spatial variability of the leaching
characteristics of a field soil. Water Resour. Res. 12:78-84.

Bresler, E., G. Dagon, R. J. Wagenet, and A. Laufer. 1984. Statistical analysis of
salinity and texture effects on spatial variability of soil hydraulic conductivity. Soil
Sci. Soc. Am. J. 84:16-25.

Burgess, T. M. and R. Webster. 1980a. Optimal interpolation and isorithmic
mapping of soil properties I. The semivariogram and punctual kriging. J. Soil Sci.
31:315-331.

Burgess, T. M., and R. Webster. 1980b. Optimal interpolation and isarithmic
mapping of soil properties II. Block kriging. J. Soil Sci. 31:333-341.

Burgess, T. M. and A. B. McBratney. 1981. Optimal interpolation and isarithmic
mapping of soil properties VI. Sampling strategy. J. Soil Sci. 31:643-659.

Campbell, J. B. 1978. Spatial variation of sand content and pH within single
contiguous delineation of two soil mapping units. Soil Sci. Soc. Am. J. 42:460-464.



124

Carr, J., and D. Myers. 1985. COSIM: A fortran IV program to co-conditional
simulation. Computers and Geoscience. 11:675-679.

Carr, J., Myers, D. E., and C. E. Glass. 1985a. Co-kriging: a computer program.
Computers and Geoscience. 11:111-127.

Christakos, G. 1988. On-line estimation of nonlinear physical systems. J. Int. Assoc.
Math. Geol. 20:111-133.

Chung, C. 1984. Use of the jack-knife method to estimate autocorrelation functions
(or variograms). In G. Verly et al.,(Eds.) Geostatistics for Natural Resources
Characterization. by D. Reidell. Dordecht. 55-70 pp.

Clark, I. 1979. Practical Geostatistics. Applied Science Publishers. London, U.K.
129 pp.

Cooper, R. M. and J. D. Istok. 1988. Geostatistics applied to groundwater
contamination. I: Methodology. J. Env. Eng. 144:270-286.

Cressie, N. A. C. 1985. Fitting variogram models using weighted least squares. J.
Int. Assoc. Math. Geol. 17:563-586.

Cressie, N. A. C. 1986. Kriging nonstationary data. J. Am. Stat. Assoc. 81:625-634.

Cressie, N. A. C. and D. M. Hawkins. 1980. Robust estimation of the variogram.
I. J. Int. Assoc. Math. Geol. 12:115-125.

Cressie, N. A. C. and R. Horton. 1987. A robust-resistant spatial analysis of soil
water infiltration. Water Resour. Res. 23:911-917.

David, M. 1977. Geostatistical Ore Reserve Estimation. Elsevier Scientific
Publishing Co., Amsterdam, The Netherlands.

Davidoff, B., J. W. Lewis, and H. M. Selim. 1986. A method to verify the presence
of a trend in studying spatial variability of soil temperature. Soil Sci. Soc. Am. J.
50:1122-1127.

Davis, B. M. 1987. Uses and abuses of cross-validation in geostatistics. J. Int.
Assoc. Math. Geol. 19:320-328.

Delfiner, P. 1976. Linear estimation of nonstationary spatial phenomena. p. 49-68.
In M. Guarascio et al., (ed.) Advanced geostatistics in the mining industry. Reidel
Publ. Co., Dordrecht, The Netherlands.



125

Delhomme, J. P. 1976. Kriging in the hydrosciences. Adv. Water Resour. 1:251-266.

Dowd, P. 1982. Lognormal kriging: the general case. Math. Geol. 14:474-500.

Dowd, P. 1984. The variogram and kriging: Robust and resistant estimators. In
Verly et al. (Eds.), Geostatistics for Natural Resources Characterization. by D.
Reidel. Amsterdam. 91-106 pp.

Dunn, M. R. 1983. A simple sufficient condition for a variogram model to yield
positive variance under restrictions. Math. Geo. 15:553-564.

Flatman, G. T., E. J. Englund, and A. A. Yfantis. 1988. Geostatistical approaches
to the design of sampling regimes. Chapter 4. In L. H. Keith (Ed) Principles of
environmental sampling. American Chemical Society Professional reference book.

Gajem, M. R., A. W. Warrick and D. E. Myers. 1981. Spatial dependence of
physical properties of a Typic Torrifluvent soil. Soil Sci. Soc. Am. J. 45:709-715.

Gambolati, G., and G. Volpi. 1979. Groundwater contour mapping in Venice by
stochactic interpolators. I. Theory. Water Resour. Res. 15:218-297.

Gambolati, G., and G. Volpi. 1979. A conceptual deterministic analysis of the
kriging technique in hydrology. Water Resour. Res. 15:625-629.

Gray, H. and W. Schucany. 1972. The generalized jack-knife statistics. Marcel
Dekker. New York.

Hajrasuliha, S., N. Banibabbassi, J. Mettey, and D. R. Nielsen. 1980. Spatial
variability of soil sampling for salinity studies in southwest Iran. brig. Sci. 1:197-208.

Hamlett, J. M., R. Horton, and N. A. C. Cressie. 1986. Resistant and exploritory
techniques for use in semivariogram analysis. Soil Sci.Soc. Am. J. 50:868-875.

Hawkins, D. M. and N. Cressie. 1984. Robust kriging: a proposal. Math. Geolo.
16:3-18.

Henley, S. 1981. Nonparametric geostatistics. Applied Science Publishers,
Halsteaad Press, John Wiley and Sons, New York, NY.

Hoaglin, D. C., F. Mosteller, and J. W. Tukey. 1983. Understanding robust and
exploratory data analysis. John Wiley and Sons, New York, NY.

Hochstrasser, U. W. 1965. Orthogonal polynomials. p. 771-802. In M. Abramowitz
and I.A. Stegun (ed.) Handbook of mathematical functions. Dover Publ. Co. New



126

York NY.

Hoeksema, R. J., and P. K. Kitanidis. 1985. Analysis of the spatial structure of
properties of selected aquifers. Water Resour. Res. 21:563-570.

Hoffman, G. J., J. D. Rhoades, J. Letey, and Fang Sheng. 1989. Chapter 18.
Salinity Management. ASCE Salinity Handbook .

Joumel, A. G. and Ch. J. Huijbregts. 1978. Mining geostatistics. Academic Press.
New York.

Jowett, G. H. 1952. The accuracy of systematic sampling from conveyor belts. Appi.
Stat. 1:50-59.

Jury, W. A. 1985. Spatial variability of soil physical parameters in solute migration:
A critical literature review. EPRI topical report EA 4228. Electric Power research
Institute, Palo Alto, CA.

Kim, Y. C., D. E. Myers, and H. P. Knudsen. 1977. Advanced geostatistics in ore
reserve estimation and mine planning (practitioner's guide). Report to the U. S.
Energy Research and Developement Administration, Subcontract No. 76-003-e, Phase
II.

Kitanidis, P. K. 1983. Statistical estimation of polynomial generalized covariance
functions and hydrologic applications. Water Resour. Res. 19:909-921.

Kitanidis, P. K., and R. W. Lane. 1985. Maximum likelihood parameter estimation
of hydrologic spatial processes by the Gauss-Newton method. J. Hydrology 79:53-71.

Kitanidis, P. K., and E. G. Vomvoris, 1983. A geostatistical approach to the inverse
problem in groundwater modeling (steady state) and one dimensional simulations.
Water Resour. Res. 19:677-690.

Kolmogorov, A. N. 1941. The local structure of turbulence in an incompressible
fluid at very large Reynolds Numbers. Dokl. Alcad. Nauk SSR. 30:229-303.

Krige, D. G. 1966. Two dimensional weighted moving average trend surfaces for
ore-evaluation. J.South African Inst. Min. Metal. 66:13-38.

Krige, D. K., and E. J. Magri. 1982. Geostatistical case studies of the advantages
of lognormal De Wijsian Kriging with known mean for a Base Metal Mine and a
Gold Mine. Math. Geo1.14:547-556.



127

Marx, D. and K. Thompson. 1987. Practical aspects of agricultural kriging. Arkansas
Agric. Exp. Stn. Bull. 903.

Matheron, G. 1963. Principles of Geostatistics. Econ. Geol. 58:1246-1266.

Matheron, G. 1971. The theory of regionalized variables and it applications. Les
Cahiers du Centre de Morphologie Mathematique de Fontainebleau, No. 5.

Matheron, G. 1976. A simple substitute for conditional expectation: The disjunctive
kriging. p. 221-236. In M. Guarascia et al., (ed.) Advanced geostatistics in the mining
industry. Reidel Publ. Co., Dordrecht, The Netherlands.

Matheron, G. and M. Armstrong. 1986. Disjunctive kriging revisited, Parts I and II.
J. Int. Assoc. Math. Geol. 18:711-742.

McBratney, A. B., R. Webster., and T. M. Burgess. 1981. The design of optimal
sampling schemes for local estimating and mapping of regionalized variables. I.
Theory and method. Computers Geosci. 7:331-334.

McBratney, A. B. and R. Webster. 1981. The design of optimal sampling schemes
for local estimation and mapping of regionalized variables. II. Program and
examples. Computers Geosci. 7:335-365.

McBratney, A. B., R. Webster, R. G. McLaren, and R. B. Spiers. 1982. Regional
variation of extractable copper and cobalt in the topsoil of South-east Scotland.
Agronomy 2:969-982.

McBratney, A. B., and R. Webster. 1983. How many observations are needed for
regional estimation of soil properties. Soil Sci. 135:177-183.

McBratney, A. B. and R. Webster. 1986. Choosing functions for semi-variograms
of soil properties and fitting them to sampling estimates. J. Soil Sci. 37:617-639.

Miyamoto, S. and I. Cruz. 1987. Spatial variability of soil salinity in furrow-irrigated
Torrifluvents. Soil Sci. Soc. Am. J. 51:1019-1025.

Morkoc, F., J. W. Biggar, R. J. Miller, and D. R. Nielsen. 1985. Statistical analysis
of sorghum yield: A stochastic approach. Soil Sci. Soc. Am. J. 49:1342-1347.

Mu lla, D. J. 1988. Using geostatistics and spectral analysis to study spatial pattern
in the topography of Southern Washington State, U.S.A. Earth Surface Processes
and Landform. 13:389-405.



Myers, D. E.
14:248-257.

Myers, D. E.
15:633-637.

128

1982. Matrix formulation of co-kriging. J. Int. Assoc. Math. Geol.

1983. Estimation of linear combinations and co-kriging. Math. Geol.

Myers, D. E. 1984. Co-kriging - new developements. p. 295-305. In G. Verly et al.,
(ed.) Geostatistics for natural resources characterization. Part I. Reidel Publ. Co.,
Dordrecht, The Netherlands.

Myers, D. E. 1984a. A simple sufficient condition for a variogram model to yield
positive variance under restrictions. Math. Geo. 16:431-432.

Nielsen, D. R., J. W. Biggar, and K. T. Eeh. 1973. Spatial variability of field
measured soil water properties. Hilgardia, 42:215-259.

Olea, R. A. 1975. Optimum mapping techniques using regionalized variable theory.
Series on Spatial Analysis No. 2. Kansas Geol. Surv. Lawrence, KS.

Olea, R. A. 1977. Measuring spatial dependence with semi-variograms. Series on
Spatial Analysis No. 3 Kansas Geol. Surv. Lawrence, KS.

Oliver, M. A. 1987. Geostatistics and its application to soil science. Soil Use
Manage. 3:8-19.

Omer, H. 1984. The variogram and its estimation. In: Verly et al. (Ed.)
Geostatistics for Natural Resouces Characterization. by D. Reidel, Amsterdam. 107-
125 pp.

Ova lles, F. A. and M. E. Collins. 1988. Evaluation of soil variability in northwest
Florida using geostatistics. Soil Sci. Soc. Am. J. 52:1702-1707.

Palumbo, M. R., and R. Khaleel. 1983. Kriged estimates of transmissivity in the
Mesilla Bolson, New Mexico. Water Resources Bulletin. No. 131.

Rendu, J. M. 1978. An introduction to geostatistical methods of mineral evaluation,
S. Africa Inst. of Mining and Metallurgy. Johannesburg, South Africa. 84 pp.

Rendu, J. M. 1979. Normal and lognormal estimation. Math. Geol. 11:407-422.

Rendu, J. M. 1980. Disjunctive kriging: A simplified theory. J. Int. Assoc. Math.
Geol. 12: 306-321.



129

Rendu, J. M. 1981. An introduction to geostatistical methods of mineral evaluation.
South Africa Instit. Min. and Metal., Johannesburg, South Africa.

Rhoades, J. D., D. L. Corwin, and P. J. Shouse. 1988. Use of instrumental and
computer assisted techniques to assess soil salinity. p. 50-103. In Proc. Symposium
on Solonetz Soils, Osijek, Yugoslavia. 15-20 June 1988.

Rhoades, J. D. and J. D. Oster. 1986. Solute content. In A. Klute (ed.) Methods
of soil analysis. Part 1. 2nd ed. Agronomy 9:985-1006.

Richards, L. A., and Wadleigh, C. H. 1952. Soil water and plant growth. In Soil
Physical Conditions and plant Growth, pp. 73-251. Academic Press, New York.

Rogowski, A. S. 1972. Watershed physics. Soil variability criteria. Water Resour.
Res. 8:1015-1023.

Rohlf, F. J., and R. K. Sokal. 1981. Statistical tables. 2nd ed. W. H. Freeman and
Co., New York. 219 pp.

Russo, D. and E. Bresler. 1981. Soil hydraulic properties as stochastic processes: I.
An analysis of field spatial variability. Soil Sci. Soc. Am. J. 45:682-687.

Russo, D. and E. Bresler. 1982. Soil hydraulic properties as stochastic processes. II.

Errors of estimates in a heterogenous field. Soil Sci. Soc. Am. J. 46:20-26.

Russo, D. 1984. A geostatistical approach to solute transport in heterogeneous
fields and its applications to salinity management. Water Resour. Res. 20:1260-1270.

Russo, D. and W. A. Jury. 1987. A theoretical study of the estimation of the
correlation scale in spatially variable fields. I. Stationary fields. Water Resour. Res.
23:1257-1268.

Saddiq, M. H., P. J. Wierenga, J. M. H. Hendrickx, and M. Y. Hussain. 1985. Spatial
variability of soil water tension in an irrigated soil. Soil Sci. 140:126-132.

Samura, J. S., K. N. S. Sharma, and N. K. Tyangi. 1988. Analysis of variability in a
sodic soil: Structural analysis. Soil Sci. 145:180-187.

SAS Institute. 1985. SAS procedures guide for personal computers. SAS intitute,

Inc., Cary, N.Y.

Selim, H. M., B. Davidoff, H. Fliihler, and R. Schulin. 1987. Variability of in situ
measured mechanical impedance for a fragipan soil. Soil Sci. 144:442-452.



130

Shouse, P. J., T. J. Gerik, W. B. Russell, and K. D. Cassel. 1990. Spatial distribution
of soil particle size and aggregate stability index in a clay soil. Soil Sci. 149:351-360.

Sisson, J. B., and P. J. Wierenga. 1981. Spatial variability of steady-state infiltration
rates as a stochastic process. Soil Sci. Soc. Am. J. 45:699-704.

Snedecor. G. W., and W. G. Cochran. 1980. Statistical methods. 7th ed. Iowa State
University Press. Ames IA.

Stark, T. H. and J. F. Fang. 1982. The effect of drift on the experimental
semivariogram. J. Int. Assoc. Math. Geol. 14:309-319.

Stein, A. 1991. Spatial interpolation. Ph.D. diss. Agricultural University,
Wageningen, The Netherlands.

ten Berge, H. F. M., L. Stroosnijder, P. A. Burrough, A. K. Bregt, and M. J. de Heus.
1983. Spatial variability of physical properties influencing the temperature of the soil
surface. Agric. Water. Manage. 6:213-226.

Trangmar, B. B., R. S. Yost, and G. Uehara. 1985. Applications of geostatistics to
spatial studies of soil properties. Adv. Agron. 38:45-94.

Tukey, J. W. 1977. Exploratory data analysis. Addison-Wesley, Reading, MA.

U. S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and
alkali soils. Handbook 60. US Goverment Print Office, Wash. D.C.

van der Zaag, P., R. S. Yost, B. B. Trangmar, K. Hayashi, and R. L Fox. 1984. An
assessment of chemical properties for soils of Rwanda with the use of geostatistical
techniques. Geoderma 34:293-314.

Vauclin, M., S. R. Vieira, G. Vachaud, and D. R. Nielsen. 1983. The use of co-
kriging with limited field soil observations. Soil Sci. Soc. Am. J. 47:175-184.

Vauclin, M., S. R. Vieira, R. Bernard, and J. L. Hatfield. 1982. Spatial variability
of surface temperature along two transects of bare soil. Water Resour. Res. 18:1677-
1686.

Vieira, S. R., D. R. Nielsen, and J. W. Biggar. 1981. Spatial variability of field
measured infiltration rate. Soil Sci. Soc. Am. J. 45:1040-1048.

Warrick, A. W., G. J Mullen, and D. R. Nielsen. 1977. Scaling field measured soil
hydraulic properties using a similar media concept. Water Resour. Res. 13:355-362.



Warrick, A. W., and D. R. Nielsen. 1980.
properties in the field. pp. 319-344. In: D.
Physics, Academic, New York.

131

Spatial variability of soil physical
I. Hillel (Ed.), Applications of Soil

Warrick, A. W., D. E. Myers, and D. R. Nielsen. 1986. Geostatistical methods
applied to soil science. pp. 53-82. In: A. Klute (Ed.) Methods of Soil Analysis. Part
1. Monograph 9, American Society of Agronomy, Madison, WI.

Webster, R. 1973. Automatic soil boundary location from transect data. J. Int.
Assoc. Math. Geol. 5:27-37.

Webster, R., and Cuanalo de la C., H. E. 1975. Soil correlograms of North Oxford
shire and their interpretation. J. Soil Sci. 26:176-194.

Webster, R. 1977. Spectral analysis of gilgai soil. Aust. J. Soil Res. 15:191-204.

Webster, R., and T. M. Burgess. 1980. Optimal interpolation and isarithmic
mapping of soil properties. III. Changing drift and universal kriging. J. Soil Sci.
31:505-524.

Webester, R. 1985. Quantitative spatial analysis of soil in the field. IN: B. A.
Stewart (ed.), Advances in soil science 3. Springer Verlag, New York, pp. 1-70.

Webster, R. and A. B. McBratney. 1987. Mapping soil fertility at Broom's Barn by
simple kriging. J. Sci. Food Agric. 38:97-115.

Yates, S. R. 1986. Disjunctive kriging. III. Co-kriging. Water Resour. Res. 22:1371-
1376.

Yates, S. R. and M. V. Yates. 1989. Disjunctive kriging as an approach to decision
making. Soil Sci. Soc. Am. J. 52:1554-1558.

Yates, S. R. and A. W. Warrick. 1987. Estimating soil water content using co-
kriging. Soil Sci. Soc. Am. J. 51:23-30.

Yates, S. R., A. W. Warrick, and D. E. Myers.
Overview of estimation and conditional probability.

Yates, S. R., A. W. Warrick, and D. E. Myers.
Examples. Water Resour. Res. 22:615-622.

1986a. Disjunctive kriging. I.
Water Resour. Res. 22:615-622.

1986b. Disjunctive kriging. II.

Yeh, T. C. J., L. W. Gelhar, and P. J. Wierenga. 1986. Observations of spatial
variability of soi-water pressure in a field soil. Soil Sci. 142:7-12.



Yost, R. S., G. Uehara, and R. L Fox.
chemical properties of large land areas. I.
46:1028-1032.

Yost, R. S., G. Uehara, and R. L Fox.
chemical properties of large land areas.
46:1033-1037.

132

1982a. Geostatistical analysis of soil
Semi-variograms. Soil Sci. Soc. Am. J.

1982b. Geostatistical analysis of soil
II. Kriging. Soil Sci. Soc. Am. J.


