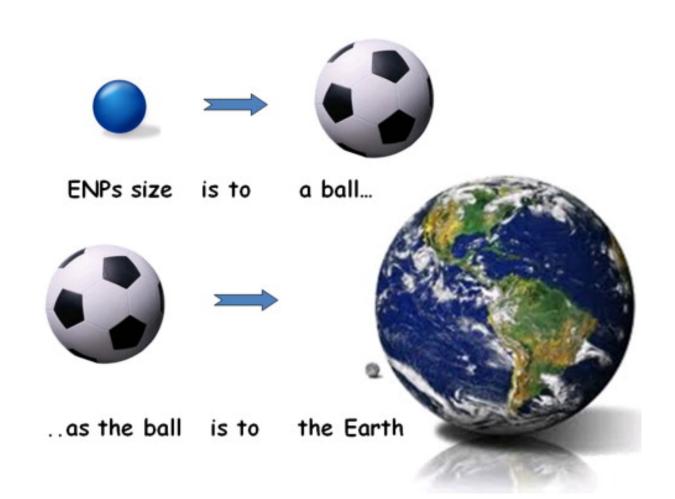
Enhancing Protocols to Improve Consistency Across Nanotoxicology Studies

Sabrina Luker¹, Dr. Stacey Harper²

BioResource Research¹ College of Agricultural Sciences Oregon State University, Corvallis, OR

Department of Environmental and Molecular Toxicology², College of Agricultural Sciences Oregon State University, Corvallis, OR

Nanotechnology


- Continuously growing field
- Application in biomedical, pharmaceutical and commercial industry
- Many Nanoparticles (NPs) are already in use and have not been evaluated for toxicity
- Important to study in toxicology as this could lead to potential human health and environmental risk

Current Commercial Uses:

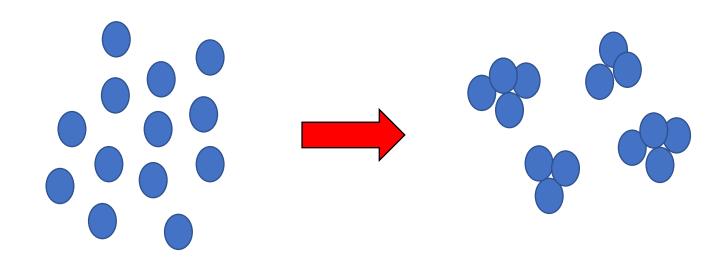
Nanoparticles (NPs)

- 1 100 nm
- Have different shapes, sizes
 and chemistry
- Can have the same chemical composition as their larger counterpart
- Differences in NPs can influence their potential toxicity

Toxicity Testing- Zebrafish Model

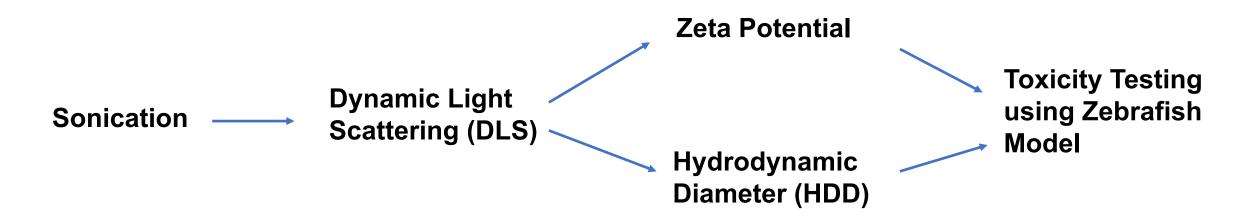
Advantages of Zebrafish Model

- Cheap
- Fast
- Streamlined
- Transparent bodies


Allows for easy observation of morphological and histopathological changes

- Conserved genomes
- Quick development

Issues with Toxicity testing of Nanoparticles


- Agglomeration Impacts:
 - ≻ Size
 - ➤ Surface area
 - ➢ Behavior
 - ➤ Toxicity
- Agglomeration causes:
 - Increase in size
 - Decrease in surface area
- Agglomeration is impacted by the way NPs are dispersed (sonication)

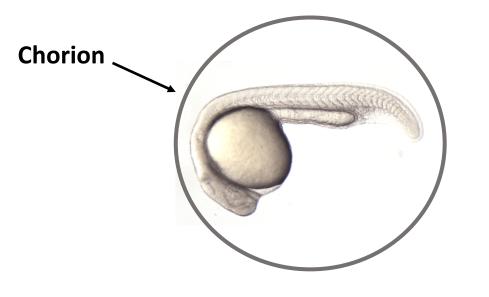
Nanoparticles

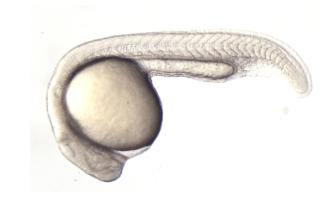
Agglomerates

Characterization of Nanoparticles

- **Dynamic Light Scattering (DLS)** works by shining a laser through a suspension that determines a particle's size by measuring random changes of light within the suspension
- **Zeta Potential** relates the surface potential to the surface charge and impacts agglomeration which gives a way to look at the stability of the sample
- Hydrodynamic Diameter is the size and size distribution

Zebrafish Exposure Media Study-Introduction


- Current lack of standardization in reporting and use of Zebrafish exposure media in nanotoxicology studies
- Literature review showed that many studies did not report media used or reported minimal information to allow the recipe to be replicated.
- Media that interacts favorably with Zebrafish and nanoparticles is important when conducting studies
- Exposure media used can impact toxicity results and cause difficulty with reproducing results between labs


Fish Water Media Components

Different components of an exposure media can impact the behavior of a nanoparticle

Recipe	CaCl ₂ (mM)	KCl (mM)	KH ₂ PO ₄ (mM)	MgSO ₄ (mM)	Na ₂ HPO ₄ (mM)	NaCl (mM)	NaHCO ₃ (mM)	Buffer
Media 1	0.33	0.17		0.33		5.0		
Media 2	0.76	0.67				59.0	2.4	
Media 4		0.23		0.13		19.3		1.67 HEPES
Media 7	1.3	5.4	0.44	1.0	0.25		4.2	
Media 10	1.0	0.5	0.15	1.0	0.05	15.0	0.01	

Fish Water Media Exposure

Chorion On

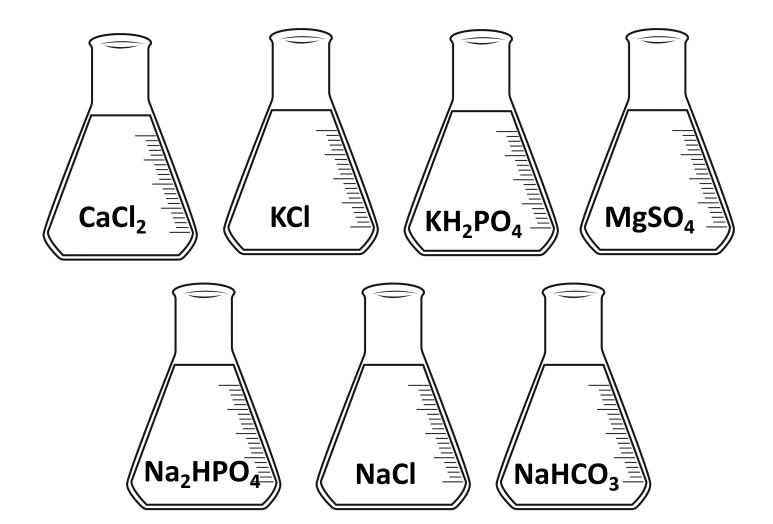
- NPs can settle on and clog the chorion pores
- Causing Hypoxia and death during nanoparticle exposure

Chorion Off

- NPs settle onto the embryos at the bottom of the 96 well plate
- Recommended method for Nanotoxicology studies

Fish Water Media Study- Objective

 To characterize and implement a fish water media recipe to replace the fish water currently used in our laboratory (Instant Ocean)



Literature Review- Methods

- Focused on current published nanotoxicology studies to look for reporting of recipes for Zebrafish exposure media
- Found 11 medias reported, cited, or used
- Selected 5 of the media recipes based off thoroughness and ability to replicate the recipe for study

Fish Water Media Stock Preparation- Methods

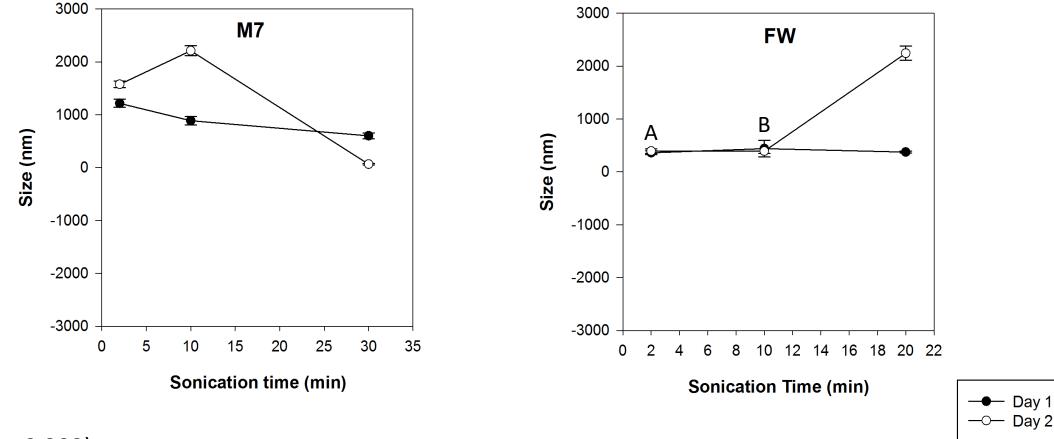
- 1.67 mM HEPES buffer was added directly to the media
- Required amount of each stock was combined with ultrapure water to form a completed media
- Each media recipe was vortexed, then tested for pH and conductivity
- Stock solution of TiO₂ NPs was created

Sonication & Dynamic Light Scattering- Methods

Ultrasonication:

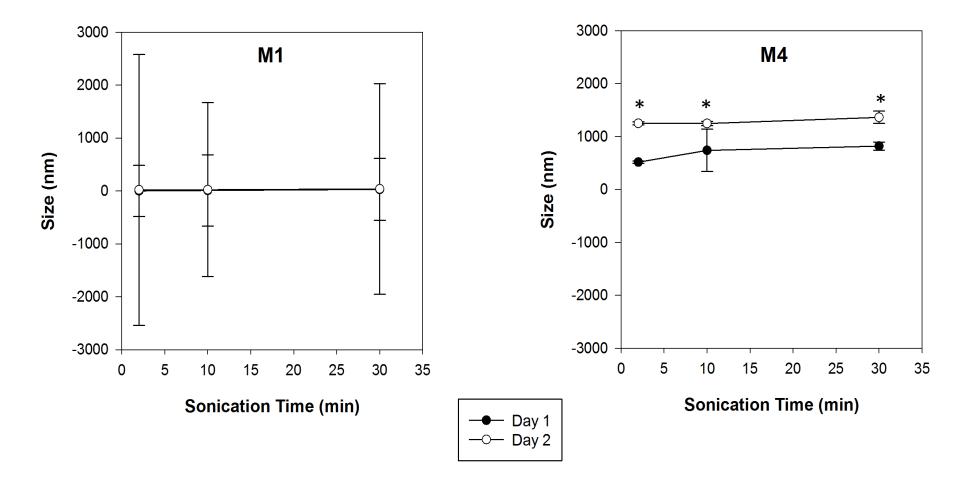
• TiO₂ NPs stock was sonicated for 2 min. at 40% amplitude

and 30 min. at 40%

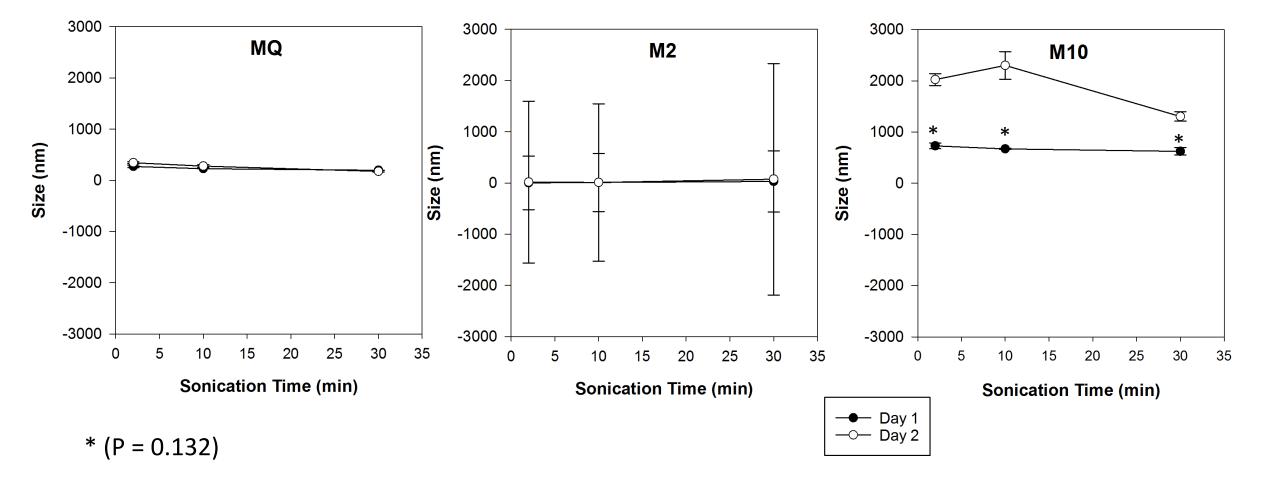

 NPs were placed into the 7 different medias and sonicated at 2, 10

Dynamic Light Scattering (DLS):

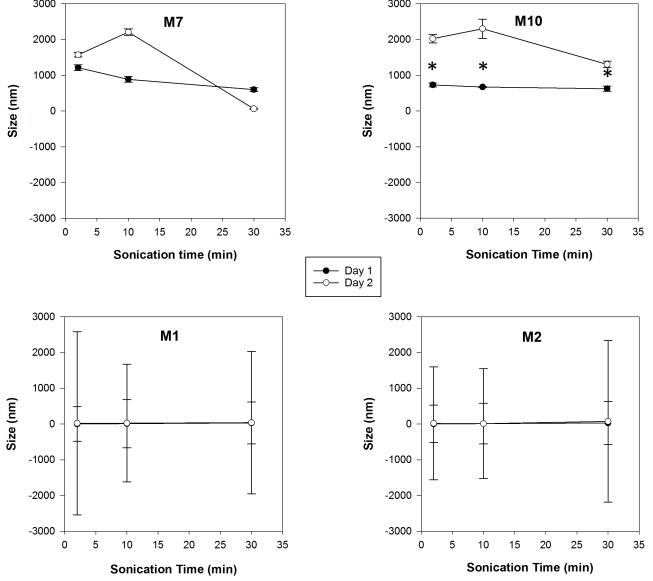
- For Day 1 samples, sonicated dispersion medias were placed into DLS to test for agglomerate size
- For Day 2 samples, these same samples were allowed to sit for 48 hours before vortexing sample (no repeat sonication) and measured using DLS



Impact of Ultrasonication on Media 7 and Instant Ocean's Simulated Fresh Water (FW)

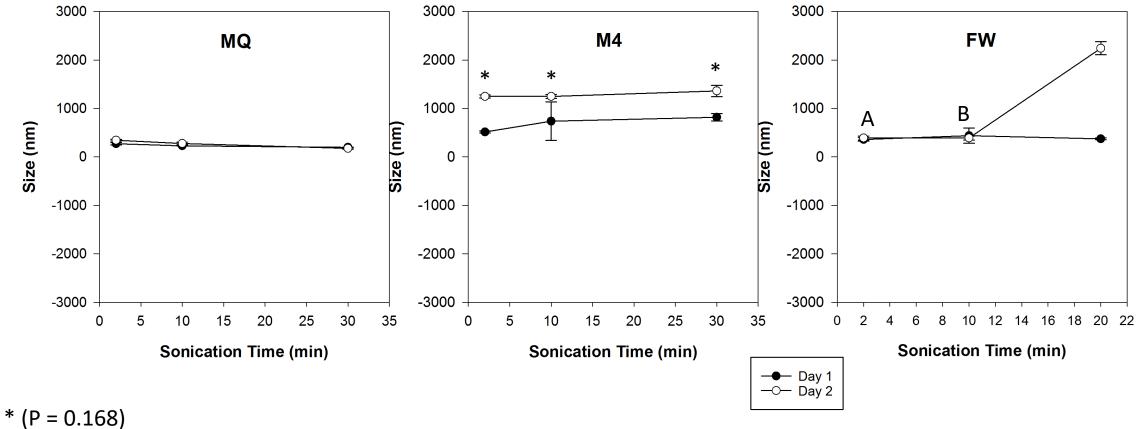

A (P = 0.392) B (P = 0.642)

Impact of Ultrasonication on Medias 1 & 4



* (P = 0.168)

Impact of Ultrasonication on Medias 2, 10 and Ultrapure (MQ) Water

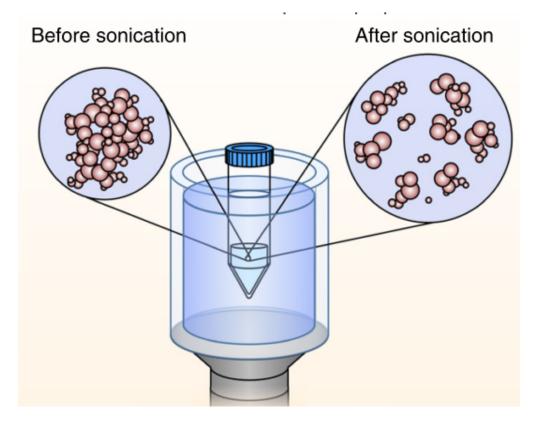


Impact of Media on Agglomerate Size (HDD)-Discussion

* (P = 0.132)

Impact of Media on Agglomerate Size (HDD) Continued

A(P = 0.392)

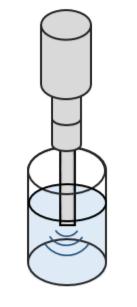

B(P = 0.642)

Fish Water Media- Conclusion

- Media recipe used had an impact on NPs agglomerates ability to deagglomerate during sonication
- We see the medias impact on HDD when comparing 7 different media recipes while holding amplitude, energy and the TiO₂ NPs constant
- Creating a standardized reporting of medias used will increase the chances of a successful reproduction of results between nanotoxicology studies

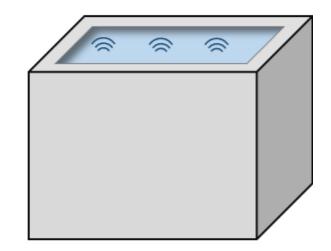
Sonication Techniques Study-Introduction

- Issues with reproducibility of results between labs is partly due to lack of standardization in sonication methods
- What is sonication?
 - Used to disperse and deagglomerate NPs
 - Technique that utilizes sound energy to agitate and break up agglomerates within a solution to create a stable suspension
 - Allows for more accurate toxicity testing
- Different sonication methods can impact NPs agglomerates differently


Ultrasonication Systems

Direct Sonicator:

• Probe


Indirect Sonicator:

- Cup horn
- Bath

Probe

Cup horn

Bath

Amplitude & Calibration of Sonicators

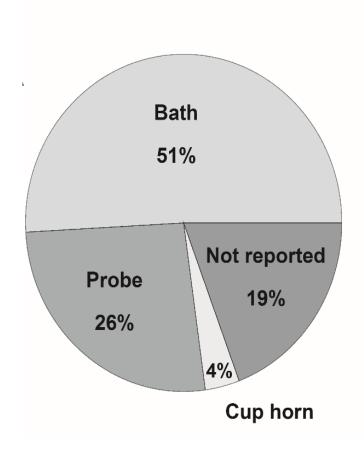
Amplitude:

- The cup horn and probe ultrasonicator utilizes programmed amplitude in the form of a %. Amplitude shows the maximum extent of vibration of probe tip.
- The higher in % the sonicators are set, the greater the intensity and energy available to the sample.
- Amplitude is constant while power itself is varied

Calibration:

- Required by OECD standard protocols.
- Calibration allows the holding of energy equivalents between three different sonication systems.
- Calibrated energy and machine reported power is not equivalent

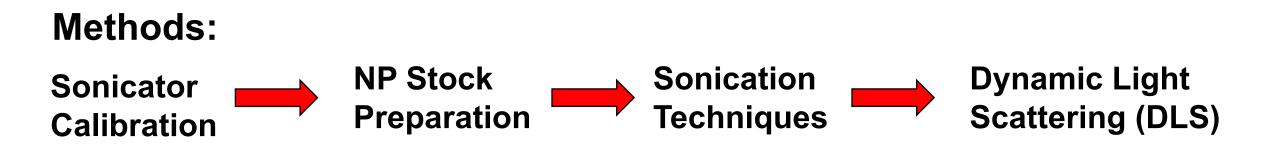
Standard Protocols


OECD Standard Protocols:

- Preparation of stock concentration of 0.5 5.0 x 10¹² particles/L in ultrapure water at a volume of 125 mL
- Recommends direct sonication (Probe Sonicator) at a power of 40W for 10 minutes

Review of Sonication Practices in Nanotoxicology Studies

- Literature review of 52 nanotoxicology studies to see which sonicators were most utilized
- The majority of studies used bath sonicators
- 19% of studies made no mention of specific sonication system
- Type of sonicator impacts energy intensity


Review of Sonication Practices in Nanotoxicology Studies Continued

Literature Review Findings:

- In over 50% of studies no energy input was reported
- Reported energies ranged across orders of magnitude
- Type of dispersion media used varied and was reported as ultrapure water, buffer solution or appropriate exposure media
- Components of dispersion media such as ions, organic matter and pH/buffers affect agglomeration and overall suspension stability

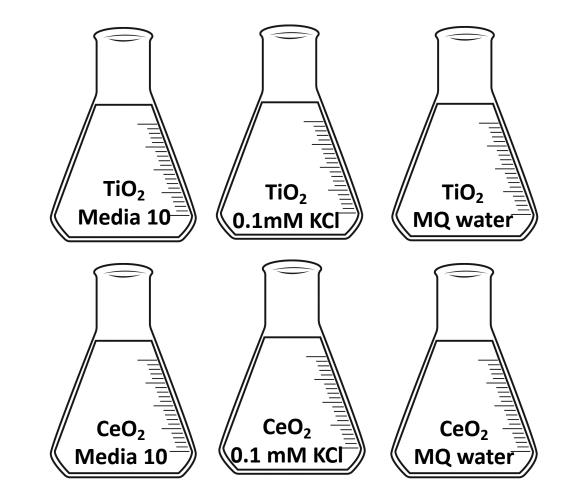
Sonication Techniques Study- Objectives

 To create a standardized approach to sonication of NPs to better characterize and reduce the current issue with reproducibility of results between nanotoxicology labs.

Sonicator Calibration- Methods

Calibration equation to calculate for actual power (P)

$$P = mC_p \frac{dT}{dt}$$

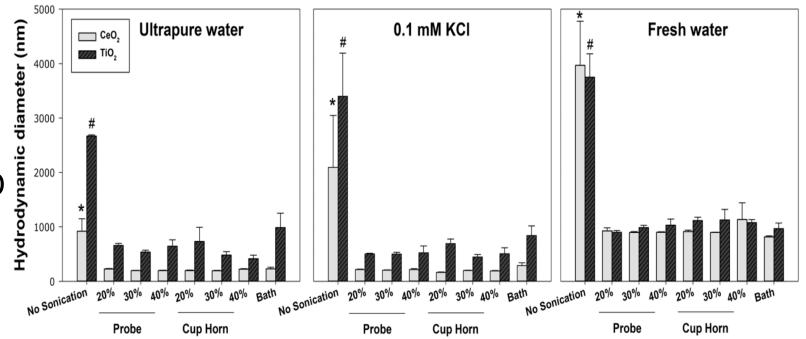

Calculation equation to solve for Sonication time (t)

$$t = \frac{E}{P}$$

NP Stock Preparation, Sonication & DLS- Methods

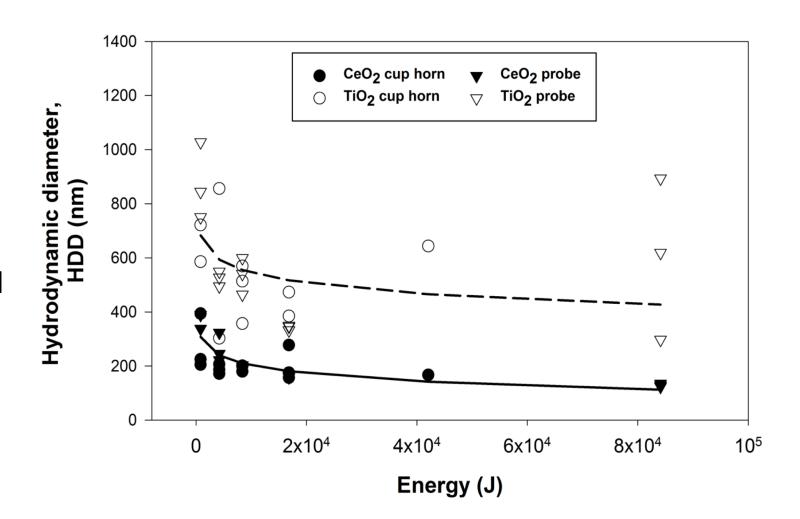
Method for sample:

- Sonicated with a bath, cup horn and probe sonicator
- Energy was held constant at 8400J
- Another set of samples in MQ water were also run with varied energy 840-84,000J to see energy impact on agglomeration
- DLS was performed directly after sonication to measure HDD



Sonicator Calibration- Results

Programmed Amplitude	Instrument Reported Power (W)	Calibrated Power (W)	Sonication Time (s)
Probe			
20%	33.8	10.0	35
30%	48.8	15.4	23
40%	78.8	19.6	18
Cup Horn			
20%	27.5	22.2	379
30%	52.0	27.9	301
40%	77.3	40.1	209
Bath			
Bath	70	15.0	564


Hydrodynamic Diameter (HDD) and Energy Dependence- Results

- CeO₂ and TiO₂ had a smaller HDD when sonicated compared to no sonication controls
- When energy was held equivalent there was no significant difference in HDD between systems
- TiO₂ was larger than CeO₂ in ultrapure water and 0.1 mM KCI. No significant difference between the two particles in Fresh Water

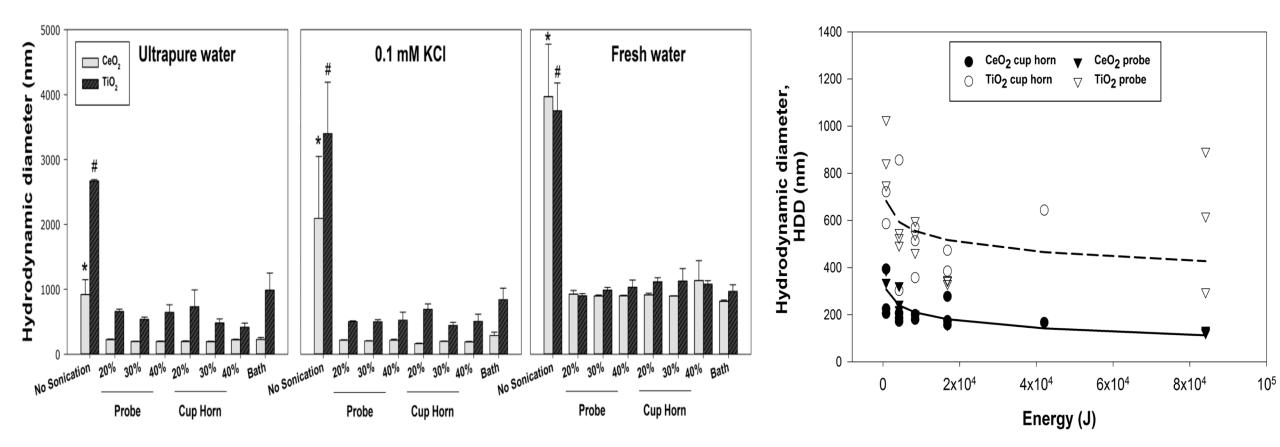
Hydrodynamic Diameter (HDD) and Energy Dependence Continued

- Energy was varied in order to look at impact of different energy inputs on HDD
- Delivered energy was varied from 840 84,000J
- CeO₂ NPs HDD decreased as energy was increased
- TiO₂ NPs HDD decreased until 8400J and from there size increased and varied

Equivalent Energy through Calibration-Discussion

- Aim of this study was to understand the importance of ultrasonication and the reporting of sonication methods in nanotoxicology studies
- Lack of information in published studies included:
 - Sonication system utilized
 - Actual energy input
 - Concentration of NPs within a dispersion media
- Differences in energy input impact NPs agglomerates
- Size of agglomerates can impact a NPs behavior and toxicity during testing

Equivalent Energy through Calibration Continued


- All three sonication systems were calibrated to hold energy equivalent between different systems
- We found that calibrated energy was lower than machine programmed energy in all three sonicators
 - Due to not accounting for loss of energy as electrical energy is converted to mechanical energy

Programmed Amplitude	Instrument Reported Power (W)	Calibrated Power (W)	Sonication Time (s)
Probe			
20%	33.8	10.0	35
30%	48.8	15.4	23
40%	78.8	19.6	18
Cup Horn			
20%	27.5	22.2	379
30%	52.0	27.9	301
40%	77.3	40.1	209
Bath			
Bath	70	15.0	564

Impact of Ultrasonication on Different Dispersion Medias- Discussion

- Additional goals of this study was to look at the impact of ultrasonication on three different dispersion medias
 - ➢ 0.1 mM KCI
 - > Ultrapure water
 - Simulated fresh water
- Wanted to see if different medias would impact the NPs, TiO₂ and CeO₂, agglomeration behavior
- Wanted to look at energy's impact on NP agglomeration behavior by varying the energy input
 - ➢ 840-84,000J

Impact of Ultrasonication on Different Dispersion Medias Continued

Conclusion & Future Studies

Conclusion:

- Many nanotoxicology studies are not following the published recommendations set forth by the OECD on sonication practices
- We demonstrated that sonication is required when creating a stable dispersion media prior to toxicity testing of NPs
- As energy was increased a decrease was seen in NPs agglomerate size with variable results between particles
- When energy is held constant there was no statistical difference between different sonicators used

Future Studies

 We recommend implementing a standardized approach to ultrasonication methods and reporting of calibrated energy in order to increase the reproducibility of results between nanotoxicology studies

Acknowledgements

Committee Members

- Dr. Stacey Harper
- Dr. Andrew Buermeyer
- Dr. Kate Field

Harper Lab

- Brian Harper
- Dr. Lauren Crandon
- Dr. Lindsay Denluck
- Matt Slattery
- Vince Cataldi