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Recently, there has been a shift from the classical minimum free energy-based methods

(MFE) to partition function-based ones that assemble structures based on base-pairing

probabilities. Two typical examples of the latter group are the popular maximum ex-

pected accuracy (MEA) method and the ProbKnot method. ProbKnot is fast heuristic

that pairs nucleotides that are reciprocally most probable pairing partners, and unlike

MEA, can also predict structures with pseudoknots. However, ProbKnot’s full potential

has been largely overlooked. In particular, when introduced, it did not have an MEA-like

hyperparameter that can balance between positive predictive value (PPV) and sensitiv-

ity. We show that a simple thresholded version of ProbKnot, which we call ThreshKnot ,

leads to more accurate overall predictions by filtering out unlikely pairs whose prob-

ability falls under a given threshold. We also show that on three widely-used folding

engines (RNAstructure, Vienna RNAfold, and CONTRAfold), ThreshKnot always out-

performs the much more involved MEA algorithm in structure prediction accuracy, in

its capability to predict pseudoknots, and in its faster running time. This suggests that

ThreshKnot should replace MEA as the default partition function-based structure pre-
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1. INTRODUCTION

RNAs are involved in multiple processes, such as guiding RNA modifications [1]

and regulating a particular disease [2], and their functionalities are highly related to

structures. However, physical structure determine techniques, such as X-ray crystallog-

raphy [3] or Nuclear Magnetic Resonance (NMR) [4], and chemical probing methods

[5], though reliable and accurate, are slow and costly. Therefore, fast and accurate com-

putational prediction of RNA structure is useful and desired. Since predicting tertiary

structure is challenging [6], many studies focus on predicting the secondary structure,

i.e., the double helices formed by base pairing of self-complementary nucleotides (A-U,

G-C, G-U base pairs) [7]. The secondary structure is well-defined, provides detailed in-

formation to help understand the structure-function relationship, and is a basis to predict

full tertiary structure [8, 9, 10, 11].

Most algorithms for RNA secondary structure prediction can be divided into two

camps, the classical ones computing a single structure with the minimum free energy

(MFE) [12, 13], and the more recent ones based on the partition function, which is the

sum of all equilibrium constants for all possible structures and is the normalization for

estimating marginal probabilities of base pairs and motifs [14]. Generally speaking, there

is a trend to shift from the former (MFE-based) methods to the latter (partition function-

based) ones for many reasons, including (1) the overall accuracy of partition function-

based methods is generally higher than that of MFE-based [15, 16, 17], (2) instead of pre-

dicting a single structure as in MFE, the partition function captures the whole ensemble

of conformations and an RNA molecule (e.g., mRNAs) can be many different conforma-

tions at equilibrium [18, 19, 20, 21], (3) we can also induce the base-pairing probabilities

from the partition function, and (4) as a by-product, heuristic algorithms can use the
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partition function to predict pseudoknots1 in O(n3) time [22, 23].

Two typical (and widely used) examples of partition function-based prediction al-

gorithms are maximum expected accuracy (MEA) [15] and ProbKnot [22]. Both of them

use base-pairing probabilities to assemble the output structure, but the former requires

another O(n3)-time dynamic program for the assembly, while the latter is a much sim-

pler heuristic method that only needs O(n2) time, and more importantly, it can predict

pseudoknots which the former can not.

However, the full potential of ProbKnot has not been fully exploited. In particular,

unlike MEA, ProbKnot lacks a hyperparameter to balance the positive predictive value

(PPV; a.k.a. precision) and sensitivity (a.k.a. recall) of the output structure. To address

this problem, we present ThreshKnot (short for Thresholded ProbKnot), which adds a

probability threshold θ to disallow any pair whose probability falls below θ. Therefore,

a smaller value of θ encourages ThreshKnot to predict more base pairs, and a higher one

makes it more selective. By tuning θ, we can balance the PPV (the fraction of predicted

pairs in the accepted structure) and sensitivity (the fraction of accepted pairs predicted).

Simple as it is, we show that ThreshKnot leads to more accurate overall predic-

tions, and with three widely-used folding engines (RNAstructure [24], Vienna RNAfold

[25], and CONTRAfold [15]), ThreshKnot always outperforms the much more involved

MEA algorithm in all three aspects: (1) it can achieve better overall predication accuracy

than MEA, (2) it can predict pseudoknots that MEA can not, (3) it is much simpler to

implement and runs much faster. This suggests that ThreshKnot should replace MEA as

the default partition function-based structure prediction algorithm.

1A pseudoknot involves at least two pairs (i, j) and (k, l) such that i < k < j < l.
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2. ALGORITHM

2.1. ThreshKnot Algorithm and Pseudocode

ThreshKnot, like ProbKnot, outputs the secondary structure made of “most proba-

ble base pairs”, i.e., pairs (i, j) whose probability p(i, j) is the highest among “competing

pairs”, i.e., p(i, j) ≥ p(i, k) for all k and p(i, j) ≥ p(l, j) for all l. But in addition to that,

ThreshKnot also rules out any pair whose probability falls below θ, i.e., it returns the set

of pairs2

{(i, j) | p(i, j) = max
k

p(i, k) = max
k

p(k, j) and p(i, j) ≥ θ}

We split ThreshKnot algorithm into two parts: pruning and selection. The pseu-

docode of ThreshKnot is as follows:

Algorithm 1 ThreshKnot

1: P: base pairing probabilities of an RNA sequence
2: Pmax(i): base pairing probability of the most probable pair for nucleotide i
3: θ: probability threshold
4:
5: procedure PRUNING(P, θ)
6: for each (i, j) in P do
7: if P(i, j) < θ then remove (i, j) from P
8:
9: procedure SELECTION(P)

10: for each i do
11: Pmax(i) = max(max

i<j≤n
p(i, j), max

1≤j<i
p(j, i))

12: for each (i, j) in P do
13: if P(i, j) = Pmax(i) = Pmax(j) then yield (i, j)

We show a predicted structure sample in Fig. 2.1. These output base pairs are the

“most probable” ones whose probabilities are greater than the given threshold θ.

2To keep it simple, unlike ProbKnot, ThreshKnot does not remove “helices composed of two stacked
pairs”.
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Figure 2.1: An example of ThreshKnot prediction with θ = 0.1. ThreshKnot only outputs
the “most probable base pairs”.

2.2. Prediction Runtime

After obtaining base-pairing probabilities, ThreshKnot takes O(n2) time in the worst

case, whereas MEA takes O(n3) time (see Table 3.1 for time complexities); this is indeed

confirmed in practice by Figure 2.2A. Furthermore, Fig. 2.3 shows that with ThreshKnot,

after the O(n2) threshold pruning step, the number of surviving base pair candidates

scales linearly with the length of the RNA sequence (even with a small θ such as 0.01).

This is because the vast majority of those O(n2) pairs have close-to-zero probabilities

(also evidenced by Figure 3B in Zuber et al. 2017). This means the core “selection” step of

ThreshKnot only takes O(n) time. Therefore, as summarized in Table 4.1, there are three

steps in the whole ThreshKnot pipeline:

1. O(n3)-time computation of partition function and base-pairing probabilities,

2. O(n2)-time threshold pruning, and

3. O(n)-time final pair selection.
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That being stated, in both ThreshKnot and MEA, the overall runtime is still domi-

nated by the O(n3)-time first step (see Figure 2.2B).
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3. EXPERIMENTS

3.1. Dataset

We use the ArchiveII dataset [27], a diverse set of RNA sequences with accepted

structures.3 Following LinearFold [28], we only consider full sequences (i.e., excluding

the individual folding domains 16S/23S rRNAs) and remove those sequences found in

the S-Processed set [29] (because CONTRAfold is trained on S-Processed). The resulting

dataset contains 2,889 sequences over 9 families, with an average length of 222.2 nt and

maximum length of 2,968 nt.

3.2. Software and Computing Environment

We use the following software:

1) RNAstructure 6.1: https://rna.urmc.rochester.edu/RNAstructure.html

2) CONTRAfold 2.02: http://contra.stanford.edu/contrafold/download.html

3) Vienna RNAfold 2.4.13: https://www.tbi.univie.ac.at/RNA/

4) IPknot: https://github.com/satoken/ipknot

5) pKiss: https://bibiserv.cebitec.uni-bielefeld.de/pkiss

All software were compiled by GCC 5.4.0 on a laptop with Intel Core i7-8550U at

1.8GHz running Ubuntu 16.04.2.

3http://rna.urmc.rochester.edu/pub/archiveII.tar.gz
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3.3. Evaluation Methods

Following Mathews et al. 1999, we allow correctly predicted pairs to be offset by

one position for one nucleotide as compared to the known structure (see Table SI 1). We

also report in Table SI 2 the accuracies using exact matching.

The per-family accuracy is the mean over all sequences in that family, and the over-

all accuracy is the mean over per-family accuracies from all families.

We use the Jackknife resampling method [31] to choose the best parameter (θ for

ThreshKnot and γ for MEA) as follows: each time we held out one family, and evaluate

the relative accuracy of ThreshKnot over MFE on the remaining 8 families with θ ranging

from 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Coincidentally, in each case, the same θ = 0.3 is

consistently chosen as the best paramter for ThreshKnot. The same is true for γ = 1.5

for MEA. The “relative accuracy” is defined as the F-score between the difference in PPV

and the difference in sensitivity:

F(P, R) =
2PR

P + R

∆F
(
(P′, R′), (P, R)

)
= F(P′ − P, R′ − R)

Where (P′, R′) are the PPV and sensitivity of ThreshKnot and (P, R) are the PPV and

sensitivty of MFE (we assume P′ > P and R′ > R).

For pseudoknot accuracy, we use the PPV and sensitivity of “crossing pairs”, i.e.,

we restrict ourselves to comparing the set of crossing pairs in the predicted structure

to the set of crossing pairs in the accepted structure, and a crossing pair in predicted

structure ŷ is considered correct if it is also a crossing pair in the accepted structure y∗.

All statistical significance tests are done with two-sided permutation test.
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3.4. Overall Prediction Accuracy

Below we show ThreshKnot results using the base-pairing matrices generated by

RNAstructure. Figure 3.1 compares ThreshKnot with MEA, MFE, and ProbKnot. We

choose θ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 for ThreshKnot, and γ = 0.5, 1, 1.5, 2, 2.5, 3,

4, 8, and 16 for MEA. We evaluate the overall prediction accuracies across all families,

reporting both PPV and sensitivity.
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Figure 3.1: Comparison: ThreshKnot, minimum free energy structure prediction (MFE),
MEA, and ProbKnot on RNAstructure. ThreshKnot has better PPV and Sensitivity than
all other methods.

Figure 3.1 shows that the accuracy curve of ThreshKnot with varying θ is always

on the upper right side of the accuracy curve of MEA with varying γ. This shows that at

a given level of PPV, ThreshKnot always has a higher sensitivity.

We further use Jackknife resampling method to choose the best parameter θ for

ThreshKnot and γ for MEA (see Evaluation Methods), i.e. the parameter that maximizes

the F score (harmonic mean of sensitivity and PPV). The same θ = 0.3 is chosen con-
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overall pseudoknot
time complexity PPV sens. PPV sens.

R
N

A
st

ru
ct

ur
e MFE O(n3) 49.86 57.71 - -

MEA O(n3)+O(n3) 51.98 59.31 - -
ProbKnot O(n3)+O(n2) 51.86 59.14 7.04 2.59

ThreshKnot O(n3)+O(n2) 51.96 59.64 7.62 2.85

IPknot O(n3)+ILP time 60.22 51.46 16.16 8.60
pKiss O(n4) 44.32 51.03 9.72 15.29

Table 3.1: The gray-shaded O(n3) denotes the time to compute the partition function
and base-pairing probabilities, and light blue shades denote the time for post-processing
steps based on those probabilities. ILP time denotes the time to solve the integer linear
program in IPknot.

sistently across all families for ThreshKnot, and the same γ = 1.5 is chosen consistently

for MEA, suggesting these parameters would be widely applicable to other RNA fami-

lies. Table 3.1 summarizes the overall accuracies using these parameters, comparing four

methods (MFE, MEA, ProbKnot, and ThreshKnot) with RNAstructure. ThreshKnot’s

overall sensitivity is significantly higher than MEA (+0.33%, p-value 0.02) and is the best

among all methods, while its overall PPV is only marginally and insignificantly lower

than MEA (-0.02%, p-value 0.97). Figure 3.2 details the accuracies on each family and the

statistical significance tests.

Table 3.1 also includes two other systems: IPknot [23] and pKiss4, both of which

use energy parameters specialized for pseudoknot prediction in addition to those used

by RNAstructure. IPknot has a higher PPV but lower sensitivity than ThreshKnot, and

its F-score (55.50) is slightly lower than ThreshKnot’s (55.53); however, it is worth not-

ing that the ThreshKnot here is based on RNAstructure, and the ThreshKnot versions

based on CONTRAfold and Vienna RNAfold have higher accuracies (see Figure 3.3 and

Figure 3.4). pKiss, on the other hand, has substantially lower PPV and Sensitivities.

4pKiss is the successor of pknotsRG [32]
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plot) averaged over all sequences in one family. The rightmost bars represent the overall
accuracies, averaging over all families. Statistical significance (two-sided) is marked as
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Figure 3.5 shows the ThreshKnot accuracy curve with varying θ for each family,

and the corresponding MFE accuracy on that family. Compared with MFE, ThreshKnot

improves six (6) out of nine (9) families’ accuracies (in both PPV and Sensitivity).

We also test ThreshKnot on Vienna RNAfold and CONTRAfold. ThreshKnot keeps

outperforming other systems and engines on CONTRAfold and Vienna RNAfold in terms

of overall accuracy. In addition, ThreshKnot improves 8 out of 9 families over MFE on

Vienna RNAfold and improves 7 out of 9 families over MFE on CONTRAfold in both

PPV and sensitivity, which are better than the results on RNAstructure (See Figure 3.6,

Figure 3.7, Figure 3.8, and Figure 3.9).
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Figure 3.6: ThreshKnot improves 8 out of 9 families over MFE (in both PPV and sensi-
tivity) on Vienna RNAfold. The curves show the ThreshKnot accuracies with varying θ.
The arrows point from MFE (hollow circles) to ThreshKnot at θ=0.3.
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Figure 3.8: Accuracy results of MFE, MEA, and ThreshKnot using Vienna RNAfold. The
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3.5. Pseudoknot Prediction Accuracy

We next evaluate ThreshKnot’s abilities to predict pseudoknots, and we use the

PPV and sensitivity of “crossing-pairs” to measure the pseudoknot prediction accuracy

(see Materials and Methods for details). Table 3.1 compares ThreshKnot with ProbKnot,

IPknot, and pKiss (note that MFE and MEA are unable to predict pseudoknots). Thresh-

Knot is more accurate in pseudoknot prediction than ProbKnot in both crossing-pair PPV

and sensitivity. IPknot and pKiss, on the other hand, are two specialized tools tailored to

pseudoknot prediction, and they indeed have higher crossing-pair PPV and sensitivity

than ThreshKnot, which is a general-purpose structure prediction tool. Table SI 3 details

pseudoknot prediction accuracies for each family.
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4. DISCUSSION

The overall runtime of ThreshKnot is still dominated by the O(n3)-time first step

to calculate the partition function (i.e., the McCaskill 1990 algorithm). Fortunately, our

forthcoming LinearPartition paper [33] reports an O(n)-time algorithm to approximate

the partition function inspired by the recently published LinearFold algorithm [28], and

it outputs just O(n) base pairs with non-zero probabilities instead of all O(n2) pairs.

This implies that we can make the whole ThreshKnot pipeline run in O(n) time with

LinearPartition (see Table 4.1).

base-pair threshold pair
probs pruning selection

classical (McCaskill) O(n3) O(n2) O(n)
LinearPartition O(n) O(n) O(n)

Table 4.1: The time complexities of ThreshKnot using classical partition function calcula-
tion [14] and LinearPartition [33].
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5. CONCLUSION

In RNA secondary structure prediction, partition function-based algorithms have

become increasingly popular in recent years. Among these methods, MEA is popular, but

our experiments with the three widely-used folding engines demonstrate that Thresh-

Knot always outperforms MEA in all three aspects: (1) it can achieve better overall pred-

ication accuracy, (2) it can predict pseudoknots that MEA can not, (3) it is much simpler

to implement and runs much faster. This suggests that ThreshKnot should replace MEA

as the default partition function-based structure prediction algorithm.
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