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THRESHKNOT: THRESHOLDED PROBKNOT FOR IMPROVED RNA
SECONDARY STRUCTURE PREDICTION



1. INTRODUCTION

RNAs are involved in multiple processes, such as guiding RNA modifications [1]
and regulating a particular disease [2], and their functionalities are highly related to
structures. However, physical structure determine techniques, such as X-ray crystallog-
raphy [3] or Nuclear Magnetic Resonance (NMR) [4], and chemical probing methods
[5], though reliable and accurate, are slow and costly. Therefore, fast and accurate com-
putational prediction of RNA structure is useful and desired. Since predicting tertiary
structure is challenging [6], many studies focus on predicting the secondary structure,
i.e., the double helices formed by base pairing of self-complementary nucleotides (A-U,
G-C, G-U base pairs) [7]. The secondary structure is well-defined, provides detailed in-
formation to help understand the structure-function relationship, and is a basis to predict
full tertiary structure [8, 9, 10, 11].

Most algorithms for RNA secondary structure prediction can be divided into two
camps, the classical ones computing a single structure with the minimum free energy
(MFE) [12, 13], and the more recent ones based on the partition function, which is the
sum of all equilibrium constants for all possible structures and is the normalization for
estimating marginal probabilities of base pairs and motifs [14]. Generally speaking, there
is a trend to shift from the former (MFE-based) methods to the latter (partition function-
based) ones for many reasons, including (1) the overall accuracy of partition function-
based methods is generally higher than that of MFE-based [15, 16, 17], (2) instead of pre-
dicting a single structure as in MFE, the partition function captures the whole ensemble
of conformations and an RNA molecule (e.g., mRNAs) can be many different conforma-
tions at equilibrium [18, 19, 20, 21], (3) we can also induce the base-pairing probabilities

from the partition function, and (4) as a by-product, heuristic algorithms can use the



partition function to predict pseudoknots! in O(n3) time [22, 23].

Two typical (and widely used) examples of partition function-based prediction al-
gorithms are maximum expected accuracy (MEA) [15] and ProbKnot [22]. Both of them
use base-pairing probabilities to assemble the output structure, but the former requires
another O(n%)-time dynamic program for the assembly, while the latter is a much sim-
pler heuristic method that only needs O(n?) time, and more importantly, it can predict
pseudoknots which the former can not.

However, the full potential of ProbKnot has not been fully exploited. In particular,
unlike MEA, ProbKnot lacks a hyperparameter to balance the positive predictive value
(PPV; a.k.a. precision) and sensitivity (a.k.a. recall) of the output structure. To address

this problem, we present ThreshKnot (short for Thresholded ProbKnot), which adds a

probability threshold 0 to disallow any pair whose probability falls below 6. Therefore,
a smaller value of 6 encourages ThreshKnot to predict more base pairs, and a higher one
makes it more selective. By tuning 6, we can balance the PPV (the fraction of predicted
pairs in the accepted structure) and sensitivity (the fraction of accepted pairs predicted).

Simple as it is, we show that ThreshKnot leads to more accurate overall predic-
tions, and with three widely-used folding engines (RN Astructure [24], Vienna RNAfold
[25], and CONTRAfold [15]), ThreshKnot always outperforms the much more involved
MEA algorithm in all three aspects: (1) it can achieve better overall predication accuracy
than MEA, (2) it can predict pseudoknots that MEA can not, (3) it is much simpler to
implement and runs much faster. This suggests that ThreshKnot should replace MEA as

the default partition function-based structure prediction algorithm.

LA pseudoknot involves at least two pairs (i, /) and (k,1) such thati < k < j < .



2. ALGORITHM

2.1. ThreshKnot Algorithm and Pseudocode

ThreshKnot, like ProbKnot, outputs the secondary structure made of “most proba-
ble base pairs”, i.e., pairs (i, j) whose probability p(i, j) is the highest among “competing
pairs”, i.e., p(i,j) > p(i, k) for all k and p(i,j) > p(l,j) for all I. But in addition to that,
ThreshKnot also rules out any pair whose probability falls below 0, i.e., it returns the set
2

of pairs

{(0.7) | p(i,j) = max p(i,k) = maxp(k,j) and p(i, j) = 6}

We split ThreshKnot algorithm into two parts: pruning and selection. The pseu-

docode of ThreshKnot is as follows:

Algorithm 1 ThreshKnot

1: P: base pairing probabilities of an RNA sequence
2: Pyax(i): base pairing probability of the most probable pair for nucleotide i
3: 0: probability threshold

4:

5: procedure PRUNING(P, 6)

6: for each (7,j) in P do

7 if P(i,j) < 6 then remove (i, ) from P
8
9

: procedure SELECTION(P)
10: for each i do

11: Pyiax (i) = max(max p(i,j), max p(j,i))
i<j<n 1<j<i
12: for each (7,j) in P do
13: i P(i, ) = Puax(i) = Puax(j) then yield (i, )

We show a predicted structure sample in Fig. 2.1. These output base pairs are the

“most probable” ones whose probabilities are greater than the given threshold 6.

2To keep it simple, unlike ProbKnot, ThreshKnot does not remove “helices composed of two stacked
pairs”.
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Figure 2.1: An example of ThreshKnot prediction with 6 = 0.1. ThreshKnot only outputs

the “most probable base pairs”.

2.2. Prediction Runtime

After obtaining base-pairing probabilities, ThreshKnot takes O(n?) time in the worst
case, whereas MEA takes O(n3) time (see Table 3.1 for time complexities); this is indeed
confirmed in practice by Figure 2.2A. Furthermore, Fig. 2.3 shows that with ThreshKnot,
after the O(n?) threshold pruning step, the number of surviving base pair candidates
scales linearly with the length of the RNA sequence (even with a small 6 such as 0.01).
This is because the vast majority of those O(n?) pairs have close-to-zero probabilities
(also evidenced by Figure 3B in Zuber et al. 2017). This means the core “selection” step of

ThreshKnot only takes O(#n) time. Therefore, as summarized in Table 4.1, there are three
steps in the whole ThreshKnot pipeline:
1. O(n®)-time computation of partition function and base-pairing probabilities,

2. O(n?)-time threshold pruning, and

3. O(n)-time final pair selection.
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Figure 2.2: Runtime comparison: ThreshKnot (6 = 0.3) vs. MEA (y = 1.5). A: excluding
the time for computing base-pairing probabilities (ThreshKnot is substantially faster than
MEA). B: including the time for computing base-pairing probabilities.
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Figure 2.3: The number of base pairs whose probabilities > threshlds 0

That being stated, in both ThreshKnot and MEA, the overall runtime is still domi-

nated by the O(n®)-time first step (see Figure 2.2B).



3. EXPERIMENTS

3.1. Dataset

We use the Archivell dataset [27], a diverse set of RNA sequences with accepted
structures.® Following LinearFold [28], we only consider full sequences (i.e., excluding
the individual folding domains 16S/23S rRNAs) and remove those sequences found in
the S-Processed set [29] (because CONTRAfold is trained on S-Processed). The resulting
dataset contains 2,889 sequences over 9 families, with an average length of 222.2 nt and

maximum length of 2,968 nt.

3.2. Software and Computing Environment

We use the following software:

1) RNAstructure 6.1: https://rna.urmc.rochester.edu/RNAstructure. html

2) CONTRA(fold 2.02: http://contra.stanford.edu/contrafold /download.html

3) Vienna RNAfold 2.4.13: https:/ /www.tbi.univie.ac.at/RNA/

4) IPknot: https:/ /github.com/satoken/ipknot

5) pKiss: https:/ /bibiserv.cebitec.uni-bielefeld.de/pkiss

All software were compiled by GCC 5.4.0 on a laptop with Intel Core i7-8550U at
1.8GHz running Ubuntu 16.04.2.

3http:/ /rna.urmc.rochester.edu/pub/archivell.tar.gz



3.3. Evaluation Methods

Following Mathews et al. 1999, we allow correctly predicted pairs to be offset by
one position for one nucleotide as compared to the known structure (see Table SI'1). We
also report in Table SI2 the accuracies using exact matching.

The per-family accuracy is the mean over all sequences in that family, and the over-

all accuracy is the mean over per-family accuracies from all families.

We use the Jackknife resampling method [31] to choose the best parameter (0 for
ThreshKnot and v for MEA) as follows: each time we held out one family, and evaluate
the relative accuracy of ThreshKnot over MFE on the remaining 8 families with 6 ranging
from 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Coincidentally, in each case, the same 6 = 0.3 is
consistently chosen as the best paramter for ThreshKnot. The same is true for y = 1.5
for MEA. The “relative accuracy” is defined as the F-score between the difference in PPV

and the difference in sensitivity:

2PR
P+R

AF((P',R'),(P,R)) = F(P'—P,R —R)

F(P,R) =

Where (P’,R’) are the PPV and sensitivity of ThreshKnot and (P, R) are the PPV and
sensitivty of MFE (we assume P’ > P and R’ > R).

For pseudoknot accuracy, we use the PPV and sensitivity of “crossing pairs”, i.e.,
we restrict ourselves to comparing the set of crossing pairs in the predicted structure
to the set of crossing pairs in the accepted structure, and a crossing pair in predicted

structure 7 is considered correct if it is also a crossing pair in the accepted structure y*.

All statistical significance tests are done with two-sided permutation test.



3.4. Overall Prediction Accuracy

Below we show ThreshKnot results using the base-pairing matrices generated by
RNAstructure. Figure 3.1 compares ThreshKnot with MEA, MFE, and ProbKnot. We
choose 6 =0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 for ThreshKnot, and v = 0.5, 1, 1.5, 2, 2.5, 3,
4, 8, and 16 for MEA. We evaluate the overall prediction accuracies across all families,

reporting both PPV and sensitivity.
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Figure 3.1: Comparison: ThreshKnot, minimum free energy structure prediction (MFE),
MEA, and ProbKnot on RNAstructure. ThreshKnot has better PPV and Sensitivity than
all other methods.

Figure 3.1 shows that the accuracy curve of ThreshKnot with varying 6 is always
on the upper right side of the accuracy curve of MEA with varying -y. This shows that at
a given level of PPV, ThreshKnot always has a higher sensitivity.

We further use Jackknife resampling method to choose the best parameter 6 for
ThreshKnot and vy for MEA (see Evaluation Methods), i.e. the parameter that maximizes

the F score (harmonic mean of sensitivity and PPV). The same 6 = 0.3 is chosen con-
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overall |pseudoknot

time complexity | PPV sens.| PPV  sens.

gl MFE [O(n’) 49.86[57.71 - -
% MEA |0(n®)+0(n®) |51.98|59.31 - -
i ProbKnot |O(n®)+0(n?) |51.86(59.14| 7.04| 259
Z ThreshKnotO(n®) +0(n2) |51.96|59.64| 7.62| 2.85
IPknot  |O(n®)+ILP time|60.22 |51.46|16.16| 8.60
pKiss  |O(n*) 44.32|51.03| 9.72| 15.29

Table 3.1: The gray-shaded O(n®) denotes the time to compute the partition function
and base-pairing probabilities, and light blue shades denote the time for post-processing
steps based on those probabilities. ILP time denotes the time to solve the integer linear
program in IPknot.

sistently across all families for ThreshKnot, and the same y = 1.5 is chosen consistently
for MEA, suggesting these parameters would be widely applicable to other RNA fami-
lies. Table 3.1 summarizes the overall accuracies using these parameters, comparing four
methods (MFE, MEA, ProbKnot, and ThreshKnot) with RNAstructure. ThreshKnot’s
overall sensitivity is significantly higher than MEA (+0.33%, p-value 0.02) and is the best
among all methods, while its overall PPV is only marginally and insignificantly lower
than MEA (-0.02%, p-value 0.97). Figure 3.2 details the accuracies on each family and the
statistical significance tests.

Table 3.1 also includes two other systems: IPknot [23] and pKiss4, both of which
use energy parameters specialized for pseudoknot prediction in addition to those used
by RNAstructure. IPknot has a higher PPV but lower sensitivity than ThreshKnot, and
its F-score (55.50) is slightly lower than ThreshKnot’s (55.53); however, it is worth not-
ing that the ThreshKnot here is based on RNAstructure, and the ThreshKnot versions
based on CONTRAfold and Vienna RNAfold have higher accuracies (see Figure 3.3 and

Figure 3.4). pKiss, on the other hand, has substantially lower PPV and Sensitivities.

4pKiss is the successor of pknotsRG [32]
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Figure 3.5 shows the ThreshKnot accuracy curve with varying 6 for each family,
and the corresponding MFE accuracy on that family. Compared with MFE, ThreshKnot
improves six (6) out of nine (9) families” accuracies (in both PPV and Sensitivity).

We also test ThreshKnot on Vienna RN Afold and CONTRAfold. ThreshKnot keeps
outperforming other systems and engines on CONTRAfold and Vienna RNAfold in terms
of overall accuracy. In addition, ThreshKnot improves 8 out of 9 families over MFE on
Vienna RNAfold and improves 7 out of 9 families over MFE on CONTRAfold in both
PPV and sensitivity, which are better than the results on RNAstructure (See Figure 3.6,

Figure 3.7, Figure 3.8, and Figure 3.9).
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Figure 3.6: ThreshKnot improves 8 out of 9 families over MFE (in both PPV and sensi-
tivity) on Vienna RNAfold. The curves show the ThreshKnot accuracies with varying 0.
The arrows point from MFE (hollow circles) to ThreshKnot at 6 =0.3.
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arrows point from MFE (hollow circles) to ThreshKnot at 6 =0.2.
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3.5. Pseudoknot Prediction Accuracy

We next evaluate ThreshKnot’s abilities to predict pseudoknots, and we use the
PPV and sensitivity of “crossing-pairs” to measure the pseudoknot prediction accuracy
(see Materials and Methods for details). Table 3.1 compares ThreshKnot with ProbKnot,
IPknot, and pKiss (note that MFE and MEA are unable to predict pseudoknots). Thresh-
Knot is more accurate in pseudoknot prediction than ProbKnot in both crossing-pair PPV
and sensitivity. IPknot and pKiss, on the other hand, are two specialized tools tailored to
pseudoknot prediction, and they indeed have higher crossing-pair PPV and sensitivity
than ThreshKnot, which is a general-purpose structure prediction tool. Table SI3 details

pseudoknot prediction accuracies for each family.
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4. DISCUSSION

The overall runtime of ThreshKnot is still dominated by the O(n®)-time first step
to calculate the partition function (i.e., the McCaskill 1990 algorithm). Fortunately, our
forthcoming LinearPartition paper [33] reports an O(n)-time algorithm to approximate
the partition function inspired by the recently published LinearFold algorithm [28], and
it outputs just O(n) base pairs with non-zero probabilities instead of all O(n?) pairs.
This implies that we can make the whole ThreshKnot pipeline run in O(n) time with

LinearPartition (see Table 4.1).

base-pair threshold pair

probs pruning  selection
classical (McCaskill) | O(n?) O(n?) O(n)
LinearPartition O(n) O(n) O(n)

Table 4.1: The time complexities of ThreshKnot using classical partition function calcula-
tion [14] and LinearPartition [33].
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5. CONCLUSION

In RNA secondary structure prediction, partition function-based algorithms have
become increasingly popular in recent years. Among these methods, MEA is popular, but
our experiments with the three widely-used folding engines demonstrate that Thresh-
Knot always outperforms MEA in all three aspects: (1) it can achieve better overall pred-
ication accuracy, (2) it can predict pseudoknots that MEA can not, (3) it is much simpler
to implement and runs much faster. This suggests that ThreshKnot should replace MEA

as the default partition function-based structure prediction algorithm.



19

References

1. S.R. Eddy, “Non-coding RNA genes and the modern RNA world,” Nature Reviews
Genetics, vol. 2, no. 12, pp. 919-929, 2001.

2. J.T. Y. Kung, D. Colognori, and J. T. Lee., “Long noncoding RNAs: Past, present,
and future.” Genetics, vol. 193, no. 3, pp. 651-669, 2013.

3. S.H.Kim, G. Quigley, F. L. Suddath, and A. Rich, “High-resolution x-ray diffraction
patterns of crystalline transfer RNA that show helical regions,” Proceedings of the

National Academy of Sciences, vol. 68, 1971.

4. L. G. Scott and M. Hennig, “RNA structure determination by NMR,” in Bioinformat-

ics. Springer, 2008, pp. 29-61.

5. W. A. Ziehler and D. R. Engelke, “Probing RNA structure with chemical reagents

and enzymes,” Current protocols in nucleic acid chemistry, 2001.

6. Z.Miao, R. W. Adamiak, M. Antczak, R. T. Batey, A. J. Becka, M. Biesiada, M. J.
Boniecki, J. M. Bujnicki, S.-J. Chen, C. Y. Cheng, F-C. Chou, A. R. Ferré-D’Amaré,
R. Das, W. K. Dawson, E. Ding, N. V. Dokholyan, S. Dunin-Horkawicz, C. Geniesse,
K. Kappel, W. Kladwang, A. Krokhotin, G. E. Lach, F. Major, T. H. Mann, M. Mag-
nus, K. Pachulska-Wieczorek, D. J. Patel, J. A. Piccirilli, M. Popenda, K. J. Purzycka,
A. Ren, G. M. Rice, J. S. Jr., J. Sarzynska, M. Szachniuk, A. Tandon, ]. J. Trausch,
S. Tian, . Wang, K. M. Weeks, B. W.1I, Y. Xiao, X. Xu, D. Zhang, T. Zok, and E. West-
hof, “RNA-puzzles round III: 3D RNA structure prediction of five riboswitches and
one ribozyme,” RNA, vol. 23, no. 5, pp. 655-672, 2017.

7. 1L Tinoco and C. Bustamante, “How RNA folds,” Journal of molecular biology, vol. 293,
no. 2, pp. 271-281, 1999.



10.

11.

12.

13.

14.

15.

16.

20
L. Tinoco, O. C. Uhlenbeck, and M. D. Levine, “Estimation of secondary structure in

ribonucleic acids,” Nature, vol. 230, no. 5293, pp. 362-367, 1971.

P. E. Auron, W. P. Rindone, C. P. Vary, J. J. Celentano, and J. N. Vournakis,
“Computer-aided prediction of RNA secondary structures,” Nucleic acids research,

vol. 10, no. 1, pp. 403—419, 1982.

M. Parisien and F. Major, “The mc-fold and mc-sym pipeline infers rna structure

from sequence data,” Nature, vol. 452, no. 7183, p. 51, 2008.

M. G. Seetin and D. H. Mathews, “Automated rna tertiary structure prediction from
secondary structure and low-resolution restraints,” Journal of computational chem-

istry, vol. 32, no. 10, pp. 2232-2244, 2011.

R. Nussinov and A. B. Jacobson, “Fast algorithm for predicting the secondary struc-
ture of single-stranded RNA,” Proceedings of the National Academy of Sciences, vol. 77,
no. 11, pp. 6309-6313, 1980.

M. Zuker and P. Stiegler, “Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information,” Nucleic Acids Research, vol. 9, no. 1, pp.

133-148, 1981.

J. S. McCaskill, “The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure,” Biopolymers, vol. 29, no. 6-7, pp. 1105-1119,
1990.

C. B. Do, D. A. Woods, and S. Batzoglou, “CONTRAfold: RNA secondary structure
prediction without physics-based models,” Bioinformatics, vol. 22, no. 14, pp. €90-

€98, 2006.

Z.]J. Ly, J. W. Gloor, and D. H. Mathews, “Improved RNA secondary structure pre-



17.

18.

19.

20.

21.

22.

23.

24.

21
diction by maximizing expected pair accuracy,” RNA, vol. 15, no. 10, pp. 1805-1813,
2009.

M. Hajiaghayi, A. Condon, and H. H. Hoos, “Analysis of energy-based algorithms
for RNA secondary structure prediction,” BMC Bioinformatics, vol. 13, no. 22, p. 1,
2012.

P. Cordero and R. Das, “Rich RNA structure landscapes revealed by mutate-and-

map analysis,” PLOS Computational Biology, vol. 11, no. 11, 2015.

H. Tafer, S. L. Ameres, G. Obernosterer, C. A. Gebeshuber, R. Schroeder, J. Martinez,
and I. L. Hofacker, “The impact of target site accessibility on the design of effective

siRNAs,” Nature biotechnology, vol. 26, no. 5, pp. 578-583, 2008.

Z.]. Lu and D. H. Mathews, “Efficient sirna selection using hybridization thermo-

dynamics,” Nucleic acids research, vol. 36, no. 2, pp. 640-647, 2007.

D. Long, R. Lee, P. Williams, C. Y. Chan, V. Ambros, and Y. Ding, “Potent effect of
target structure on microrna function,” Nature structural & molecular biology, vol. 14,

no. 4, p. 287, 2007.

S. Bellaousov and D. H. Mathews, “Probknot: fast prediction of RNA secondary
structure including pseudoknots,” RNA, vol. 16, no. 10, pp. 1870-1880, 2010.

K. Sato, Y. Kato, M. Hamada, T. Akutsu, and K. Asai, “Ipknot: fast and accurate
prediction of RNA secondary structures with pseudoknots using integer program-

ming,” Bioinformatics, vol. 27, no. 13, pp. i85-i93, 2011.

J. S. Reuter and D. H. Mathews, “Rnastructure: software for rna secondary structure

prediction and analysis,” BMC bioinformatics, vol. 11, no. 1, p. 129, 2010.



25.

26.

27.

28.

29.

30.

31.

32.

22
R. Lorenz, S. H. Bernhart, C. H. Zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler,
and I. L. Hofacker, “ViennaRNA package 2.0,” Algorithms for Molecular Biology,
vol. 6,no. 1, p. 1, 2011.

J. Zuber, H. Sun, X. Zhang, I. McFadyen, and D. H. Mathews, “A sensitivity analysis
of RNA folding nearest neighbor parameters identifies a subset of free energy pa-

rameters with the greatest impact on RNA secondary structure prediction,” Nucleic

Acids Research, vol. 45, no. 10, pp. 6168-6176, 2017.

M. Sloma and D. Mathews, “Exact calculation of loop formation probability identi-

fies folding motifs in RNA secondary structures,” RNA, 22, 1808-1818, 2016.

L. Huang, H. Zhang, D. Deng, K. Zhao, K. Liu, D. A. Hendrix, and D. H. Mathews,
“LinearFold: linear-time approximate RNA folding by 5’-to-3" dynamic program-

ming and beam search,” Bioinformatics, vol. 35, no. 14, pp. i295-i304, 2019.

M. Andronescu, A. Condon, H. H. Hoos, D. H. Mathews, and K. P. Murphy, “Effi-
cient parameter estimation for RNA secondary structure prediction,” Bioinformatics,

vol. 23, no. 13, pp. 119-i28, 2007.

D. H. Mathews, ]J. Sabina, M. Zuker, and D. H. Turner, “Expanded sequence de-
pendence of thermodynamic parameters improves prediction of RNA secondary

structure,” Journal of molecular biology, vol. 288, no. 5, pp. 911-940, 1999.

J. Tukey, “Bias and confidence in not quite large samples,” Ann. Math. Statist., vol. 29,

p. 614, 1958,

J. Reeder and R. Giegerich, “Design, implementation and evaluation of a practi-
cal pseudoknot folding algorithm based on thermodynamics,” BMC Bioinformatics,

vol. 5, no. 1, p. 1, 2004.



23
33. H. Zhang, L. Zhang, D. H. Mathews, and L. Huang, “Linearpartition: Linear-time
approximation of RNA folding partition function and base pairing probabilities,”

bioRxiv, 2019.



24

Appendix

ThreshKnot: Thresholded ProbKnot for Improved RNA Secondary Structure

Prediction



25

‘Gunyoyewr ared-aseq joexo

"JOUYSAI [, I0J PIMO[[e Jou a1k sired-aseq paje[osy

3sn SapeINDOE Y], "J9Sejep [[QATYDIY d} U0 sameIndde uondrpaid [emao paredq 1S qeL

08’8V 17T ||94'6F €€8S|16'85 ¥1'8S|91'8G 6C'8S|6C'€S ¥STS| 0645 80°0S|LVLS TL6¥|87'9S €€8¥||90°LS 9L'6V|€L'9S 9L°6V LSS TL LV | TTIT  688°C 9¥8°E |1[819A0
LT6Y 88FF||L9LY 8T99(|0€09 STFI (9509 SI'F9|¥T IS 99708 | 9¥'C9 08'SS|€V'T9 ¥S'GS|0S°09 0CTES| 8L6S 6€FS(88'6S T€FS|8C'SS 98'8Y || 7'4C6'C S g VNI S€C
€8¢ TTLE|| TS0V 841G 1097 19'8%|S6'SY 60'8% |6V’ 0V ¥8'6€| 10°SY 8€'6E€|S8FY ¥8'8€|9CCh 99°'SE||SE9F 0L°0F |L1'9F €F'0F|S0€Y CS9€|6LVS'T ¢¢  TC |VNIISIL
601G T1°LE||STCY C6'0V || TC09 8CLV|LE09 SV'AV|899G OV'EV | 059G 0T0¥ |68'FS CF'6E| 07’9 €59°6¢|L0°9S 06'6€|€9TVS SV'6E|64'95 66'6€ || 9FFY  LE  LE | VINR] 9SeIoWO[a}
06'SS TO'SH||8F'LF THHG||9€99 619G |P6'SS €F'9S|95°6F 1T IS | T6LS 8TLF|09°LS €1'LF|90°9S 6V'Gh||TL'9S STIV|¥9'SS €T9V|L0FS €UFF|6FcF 96 86  |uomuy]dnorn
P48 99VE || €L TV €6'€S | €G°LY 9€7CS|09°GY 891G |¥6'9€ 96'CY | 9SSy 0TI |88'FF €50V | 06Ty GL'6C||CEFY 9007 |09°€y 89°6€ | 1V'EY 99°8€|099€  T9% 9% | VINIUIR
60'9Y 61°0%||£E79S C9'€9| €999 L1'6G|C9°9S 9C8G|6€9Y SV LV | 6195 L8'6F|87'SS 86'8F|8C'CS 94°GY||L0°LS €809 (VL 99 07'09|80°€S 9V 9% | 1¥PE C8T ¥S¥ |d9SENA
€199 ¥0°19(/99°9% €0¥9| 95989 G895 | V624G 9025|1985 ¥1'6G|0€C9 L0°LS|CCCY €1°LG(6S 19 85799|01°09 8C'SS|29°6S L1°GG (2919 ¥8°95| 1981 988 8C6 |dAUS
LISy YL'GH||99°LY S9°6S||¥C69 1049 |1€89 ¥6'£9|0L04 89°0L( 199 €£6S|10°99 80°09|SEEI 8TLS| 6819 STIS|FET9 9€9G|LLT9 SG9S||8'8TT  GCI'T €8C'T| VNIESS
¥0'€q 06'GY || 1984 8C'08||4V'SL 61CL|LTEL 95€L|T1'69 1949 | V00 0T09|68'89 CTL'64|8604 GL°19|48°CL STV9|10°€L G6'99|6€89 6V'19||€44 ¥4 LSS | VNI
Suas AJJ ||Suss Add [[sues Add |sues Add [sues Add [suos Add |Suss Add |Suss Add |[Suss Add |Sues Add |sues Add ||ySusy pesn [ejo |A[mueg
0=6 g=b €0=0 g1=4 €0=0 g1=L “3ae sbas jo #
sspyd JOW ] || JOUDYSaI ], VAN HIN joudysayL| Vi AN JowysaIyL| VAN HIN
PIOJVILNOD PIOJV N BUUSIA SIMPNASYNY

*JOU[YSaI ], 10] pamofre jou are sired-aseq pajefosy
‘puens e uo apnodnu auo Aq paddifs st 31 J1 3091100 3q 03 ared aseq e spIsuod [£z] poyrow Surddrfs snyy 19seyep [[PATYIIY
ay} uo ‘uonyisod auo £q paoerdsip aq 03 ared e ur apryoaONU duo Jurmore ‘sareIndde uondIpaid [[ersao pareIdd (1 1S [qeL

€0'1S TEFF|| 9P IS TT09| €119 €209|2F09 6709 |$5SS 89FS| SE09 STTS|96'6S 08'1G|16'8S 8€°0S || 7965 96'1S|1€6S 861G | 14°4S 98°6F [ TTCC  688°C 9¥8°E |1[eIRA0
TEIS FL9V||86'SF £0'89([01°T9 L199|SPT9 €1°99|0€°€S 6GTS||6EF9 164S|6CF9 61°4S|6FT9 F6FS||F819 £T'95|10°T9 ST9S|€LLS TO TS| ¥ LT6'T S G VNI* S€C
TPy €9°8€||SH TP 96°CS | €V LF 1T0S |6V LY 0467 |T6'TY €TIV|F6'9% L01F|069F 19°0F|6CHY LELE||F1'SY LTTH|96'LF 86'1F|61°Sh PE8E||64FS'T T TC |VNILSIL
8€°€S 88 ||FTFF 00°CH ||04'€9 L6'6¥|S6'€9 €T0G|9565 L9'SH|| €685 S9TH|€H'8S 16 TH|8F'8S 91 ||8€°8S STTH|€0'8S 98 TF|ST'6S LETH|9FPF L€ £& | VN 2Serowop)
0448 60°LF||08'8F 86'SS||08°£S 769G |8%'4S 00'8S|10°IS 14TS||8L'6S 18'8%|6F'6S 0L8F|08°LS 16'9F||F1'8S 16'LF|6SLS L8LF|TT9S ¥8'SY|6Fcy 96 86 |uonul]dnoin
€607 04'9€||ST'Eh 1465|156V €STS |9V LY 68°€S|69°8E L6FF||95LF 00°€h|S89F 0STH|€6'9F €S 1F||61LF S9TH|SE9F LI'TH|S6'Sh L80F| 099 T9F T9% |VNIWI
0897 S9'1¥||68°9S ¥T'S9|| 17’89 86109 |1SLS 60°09|86'LY 66'ST||€T'SS €9°1S|LS LS 9L°0S|0€SS €F'LF||€C6S 08°TS|S0'6S THTG|9€'SS 98 || IFve TSI ¥ |doSeNd
€065 SFFS||L0°6F €9°9S|61°T9 0209|1419 8509|S5T9 £8T9|FT'99 9509|799 9509[19°G9 8009 (84€9 0S°8S|SE€9 TH'8S(95°G9 ST09||T°98T 988 826 |dIAS
SH0S 61°LF||T1°0S €57T9 | 81T, 1469|TSTL 96°04|0TFL TIFL| 0689 F1T9|08°89 TSTI|TT99 6L°6S|€SF9 9985|1079 €485 |FSFI 10°6S||8°8TT  STI'T €8C'T|VNILSS
9T'SS TELF||ST08 6818|7894 E€FEL|€9FL 08F4|2904 00069 | 8TTL 60T9|60°TL 89 19| 1TEL 69°€9||F7SL 6€99|S'SL TT'89 (€469 ££T9||€L4 ¥4 LSS |VNIR
SuasS Add ||SU9S Add ||SU9S Add [SU9S Add |SU9S Add [[SU9S Add |SU9S Add [SU9S Add [|SUsS Add |SU9S Add |SusS Add LU—MGE —u@mS ﬁﬁfﬁ \Aﬁamm
T0=6 gz=b €0=0 g1=t €0=9 1=t “3ae sbas jo 4
sspyd JOWJ]  |[3owysaryL| VHN HIN  |[jowysoryL| VHN HIN  [[jowyseryL| VHN HIN
PIOJVILNOD PIOJV N BUUSIA IMPNISY N




26

- i amionas
pardaooe oy ur ared SurssoId e OS[e ST 31 JT J0ALI0D PAISPISUOD SI 4 danjonays pajdrpaid ur ared Surssond vy *, A a1njonas pajdaooe
oy ur sared Surssoxd (e ypum 4 arjongs pajdrpaid oy ur sired Surssom [re areduwod am ‘Adeindde uonorpaid jousjopnasd 10
‘puens e uo apnoapnu auo Aq paddrfs st 31 J1 3091100 3q 0} 1red aseq e s1pIsuod poyew Jurddifs sy ‘joseiep [[PAIYDIY A}
uo ‘uonyisod auo £q paodedstp aq 03 ared e ur oproaONU duo SUIMO[e ‘sardeIndde uondIpaid sjouopnasd pafreId( € IS A[qeL
6CGL TL6 |SIT'8 1TG9S T9T'661]|09'8 9T°91|048'C 829°0C 889°9FL||1€9 TOTL|8ET'E OCHFC TT1T'941|80°€ €4 |EFCT OLFFL 8TET0T||S8'T 294 |90T'T ¥L8°ET TES'00T | I88°EE TIT'SLL|IBIAQ

1901 ¢ec |4y 9T¥F'T 98%% ||TH'TL 9€'ST|SS 8¢ V6T |[90F 1TE |SL 195 €8¢ |€I'T ¥ST |S Gce €897 ||¥8'€ T8'E |LL ¥y 86¥Y |cvv  160F | VNUASEC

8¢€l €9T |92 600°€ 99401 ||1S9 LL€ |L€ 86  9STL |6CT €01 |ET €9T'T 106’8 |48°€ LIT |TC €10T  €99°0T 90T 890 |9 088 66901 89S  SET'6 |VNIISIT

6TL 6€G |¥L FLET T0€'S ||6€L €S0T|GL TIL FL8'E ||€LV 8EL |8F 0s9  808F% |[6V0 IS8T (S 94T TUTS |STT 6I€ |ET L0V 84TS | SIOT L€ | VN dserawop)
€8'7C 889 |68C 6617 86SCT ||049 TI'L |8 960'T SPL'S |¥S6 W6 |IIT  OPI'T 99201 ||¥TS 979 |19 SP6  CTSTL ||TUY LIS |8F 676  €EVTL |PITT 699'6 |uomup ] dnorn
18'£T LV'€E|€LTL 8TLTT G0S'0S ||¥T8 ¥9°€E|SST'T LOV'9 T86'FE ||SVOT €LVE|IVLT €68'L 6£6'0F ||69°C LL'61|S96  T88F ¥S0°0S ||94°€ 08°1T|€86 0ISF €ST'0S | €ST'9T CEC'ST | VNIUI

8L 149 |9S€  60€'S 96561 ||9€°01 SS'9C|04F  0LLT GOU'ST |££9 909T|Z0€  TI6'T 9SL91 |80F SOPL|G8T  €9T'T SLS'61 ||90°C SO'TL|6ET  ¥ST'T LTS'61 |8€ST S0€LL |dPSENY

VN 0 0 8701 6V1'%S ||[VN 0 0 66V'S SYE'TY |[VN 0 0 789’ 96705 VN 0 0 94T L06%S |VN 0 0 81T’E SS¥'¥S |0 089’67 |dAS

VN 0 0 989’8 9010V |[VN 0 0 ¥99°c 089°0¢ |[VN 0 0 8667 864'8€ |VN 0 0 £98°C 986'T¥ ||[VN 0 0 90T SSLTv |0 LeL'Le | VNI SS

VN 0 0 916 SS/T ||VN 0 0 0¥l ¥6¥T |VN 0 6l€  019T VN 0 0 €81 94T |VN 0 0 91 veLT |0 967l | VN3

o

suas AJJ |smed smed smed [suas AJg [sired smed smed  [[suas A |sied smred smed  [[suas pAJg |smed smed smed  [[suas A [smed smed  sied  |sied  sared | Apruoey
‘SSOID "SSOId  dseq| "SSOID 'SSOI> dseq "SSOID 'SSOI> aseq "SSOID 'SSOI> aseq 'SSOID 'SSOI> aseq | 'ssom aseq
1100 pard  -paxd 2100 pard  -paxd (zo=9) |7100 -pard -pard (g0 =9) |1100 -pard -paxd (g0=9) |00 -pard -pard | po8 prod
ssoyd Jowd1 JOWYSaI], + PIOFVILNOD JOUNYSOMT, + PIOJV N BUUSIA JOUNYSOIY], + 9INPNISY N




