
AN ABSTRACT OF THE PROJECT OF

Vikram Iyer for the degree of Master of Science in Computer Science presented on December 11,

2009

Title: Interactive Methods for Authoring Behaviors of Multiple Agents

Abstract approved:

Ronald A Metoyer

Virtual environments and simulations are being used increasingly to both visualize and

understand data as well as to create scenarios for training and analysis purposes. In this

paper, we are interested in the use of simulation and visualization of interactive virtual

agents to create realistic motions for training scenarios. We explore the creation of

animated scenarios for domains with complex spatial and temporal interactions to prepare

or train for real possible events. Although, we are specifically studying 2D interactions

exhibited in the game of American Football, the concepts and methods adopted can be

extended to various fields involving spatial and temporal interactions. We present an

approach for the coach to author various spatial and temporal actions by allowing him to

interactively author plans, modifications, and corrections for the players’ (agents’)

behaviors.

Interactive Methods for Authoring
Behaviors of Multiple Agents

by
Vikram Iyer

A PROJECT REPORT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 2009
Commencement June 2010

Master of Science project of Vikram Iyer presented on December 11, 2009.

APPROVED:

Major Professor, representing Name of Major

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my project will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my project to any
reader upon request.

Vikram Iyer, Author

TABLE OF CONTENTS

Topic Page

1. Introduction 1

1.1 Motivation 1

1.2 Overview 2

2. Related Work 4

3. Interactive Football Playbook 7

3.1 Background 7

3.2 New Rules 7

4. Interface Usability Support 11

4.1 Filters 11

4.2 Parameterization 12

4.3 Customization 13

4.4 Steering Behavior 16

4.5 Grammar and Type Checking of Rules 18

5. Visual Coaching 22

5.1 Sketch To Plan 22

5.1.1 Route Specification and Modification 22

5.1.2 Track Rule 25

5.1.3 Parameters Specification and Modification 26

5.2 Sketch To Modify 26

5.2.1 Mid Play Rules 26

5.2.2 Implementation 27

TABLE OF CONTENTS (Continued)

Topic Page

5.3 Sketch To Correct 29

5.3.1 Outcome Authoring 29

5.3.2 Implementation 30

6. Discussion 33

7. Future Work 35

8. Bibliography 42

LIST OF FIGURES

Figure Page

1. Inside Leverage 8

2. Route Editing 24

3. Mid Play Rules 28

4. Ease-in-ease-out Curve 31

5. Speed Modification Original Position 39

6. Speed Modification Repositioned Position 39

LIST OF TABLES

Table Page

1. Valid Rules in Parallel 21

2. Valid Rules in Sequence 21

3. Parameter Modification Table 37

1. Introduction

1.1. Motivation

There are several application domains that require interaction and training of virtual

dynamic agents. These include military training, emergency response simulation and

training, evacuation, sports training etc. The domain experts in these domains typically

do not possess any skills in animation, simulation or programming. They are experts in

their domains like military, sports etc and have knowledge of the interactions between

agents in their domains. They need a simulator where they can characterize each agent in

these domains by their motion or behavior easily. They must have an organized approach

to communicate the strategy for each agent and visualize the future outcome.

Along with an ability to specify the behavior and characteristics of agents, they also

require an ability to edit or modify it. Goal based editing is another important feature they

want. This is particularly useful when the experts may know what they want but not how

to specify it. The simulator must satisfy all these needs and hide the tedious details of

programming the agent behavior from the expert. The interface for the domain expert to

work with has to be simple without any need to possess programming or animation

knowledge. The simulator must implement the strategy for the agent behavior and

provide the domain expert with a visualization of this behavior and its possible outcomes.

In this paper, we focus on the application domain of training in the game of American

Football. We have chosen American Football because it contains both complex spatial

and temporal interactions between agents [1], in this case, the players; and because we

have convenient access to domain experts at our university. As in military training and

emergency response preparation, much time and effort go into preparing for a football

game. This preparation typically includes the collection and segmentation of real data of

the opponent, understanding how a play evolved and the attempted strategy, the re-

creation of scenarios for communicating to the players what went wrong or what was a

2

good play and manipulation of scenarios to explore the alternatives or the desired

outcomes.

1.2. Overview

Providing tools for domain experts such as military commanders, first responders, or in

our case football coaches, to create and edit content in order to quickly generate effective

training scenarios is a complex task. The task is complex because these individuals, while

experts in their domains, are not experts in computer simulation, 3D graphics, or

animation. We consequently provide tools to make the domain experts the content

creators. We try to accomplish this task by taking the example of American Football and

improving on the Interactive Football Playbook developed earlier [1]. The original

Interactive Football Playbook was designed specifically for coaches to author various

hypothetical plays and help their players visualize how these plays evolve [1].

The users of Interactive Football Playbook had the ability to create and edit football play

contents. We realized the user needs to have complete command of an agent’s behavior

and motion in the simulation scenario he creates. In our enhanced simulator, we allow the

coach to edit the content created at any time during the animation and author spatial and

temporal constraints on the players. We have added features including route editing,

integration of real sensor data in a scenario and modifying the same, authoring mid play

rules, editing and augmenting the past and future simulation etc.

Our basic design approach to the problem was inspired from Deep Green project and

consists of three phases: Sketch to Plan, Sketch to Modify and Sketch to Correct [5].

These three phases need not necessarily follow one another in order. The Sketch to Plan

allows the coach to specify rules and is basically derived from the original Interactive

Football Playbook. The Sketch to Modify allows the coach to edit and manipulate the

parameters and the rules when the play is in motion. The Sketch to Correct is used to

3

correct the behavior of any agent and is specified by constraints on an agent in time and

space. The details for each are described in Section 5; Visual Coaching.

The next few sections are organized as follows. Section 2 takes a look at the related work.

Section 3 gives a background of the original Interactive Football Playbook and the new

rules added to the current playbook. In Section 4 we provide a detailed discussion of the

usability support for the simulator interface. The topics covered include filtering rules by

types and by players, customization of rules and player parameters, steering behavior of

players, and the grammar of rules describing the permissible combination and sequence

of rules. Section 5 is devoted to Visual Coaching. We summarize our work and

generalize our approach in Section 6. We end with a discussion on the future work in

Section 7.

4

2. Related Work

The previous work on the Interactive Football Playbook provided us with a solid platform

to implement various enhancements to model authoring, parameterization, planning,

decision support and optimization. The Future Work section of the original Interactive

Football Playbook suggested improvements for parameterization, type checking,

customization and mid play rules [1]. We have enhanced the user interface to provide the

coach with various customization, type checking and filtering controls. The animation is

improved to implement steering behavior and collision detection, response and

avoidance.

Craig Reynolds [2] implemented steering behavior for autonomous characters to provide

agents with a realistic animation and locomotion model. We have adopted this work to

implement steering motion for our players in the simulator.

We have also updated the collision model of the players to incorporate collision

detection, response and avoidance. Collision detection is mainly inherited from the

original Interactive Football Playbook. We have incorporated the concept explained in [3]

for collision response of players. For collision avoidance, we make each player an

observable agent that learns from its environment if any obstacle is within a specific

distance of itself.

The original Interactive Football Playbook allowed the coach to plan and implement a

strategy. We intend to upgrade it, add features for mid play rules and support outcome

authoring. We refer to these three phases as the Sketch to Plan, the Sketch to Modify and

the Sketch to Correct. The key idea for outcome authoring was inspired from the Deep

Green [5] project of DARPA. The coach may reposition a player at any time during

animation if he considers the repositioned point as a strategically better position for the

player. We generate a list of options that satisfy the repositioning constraint. The coach

may play each option and make a choice to select the option that best matches his

5

requirement. The options optimize the past and the future play parameters with respect to

the repositioned instance. The Coach-Trainee [10] presents a similar system to satisfy

goal based constraints of articulated motion using inverse kinematics.

The Deep Green project is intended to help the US Army bird colonels to manage their

‘modular brigade’ battle groups. It maintains a state space graph of future possibilities

and uses the ongoing operation trajectories to assess the likelihood of future states [5].

The program description for Deep Green outlines several key aspects of the system; few

of which are Sketch to Plan, Automated Option Generation and Sketch to Decide

amongst others. The Sketch to Plan converts commander’s intent and sketch to a set of

actions to be performed. The automated option generation generates options from this set

of actions. The Sketch to Decide allows the commander to view the future for a choice

made by him.

Our system has various similarities and differences with respect to Deep Green. Both

projects address the needs of domain experts who do not possess skilled animation

knowledge. In both cases, the simulator is used to communicate the plan and fill in the

details. The major difference between the two projects is that while the Deep Green

project generates various options and allows the user to observe the ramifications of a

choice; our simulator allows the user to generate options and make an informed choice as

the simulator realizes each option for the user.

We are not interested in exploring the futures but to generate the desired future behavior.

The main role for our simulator is to illuminate options for the coach to perform decision

making by allowing him to quickly generate various future possibilities. Our system

provides the ability to seed the simulation with real trajectory data and to reproduce a

scenario as closely as possible to the original one. The coach may use this as a teaching

model and hence we must match his mental model or give him the ability to edit to create

it.

6

End-User Programming of 3-D Virtual Agents [4] and End-User Strategy Programming

[6] also mentioned about the need for strategy oriented programming, where virtual

agents may be programmed for training purposes by domain experts. These experts are

content creators and do not have prior knowledge of animation. Whereas End-User

Programming of 3-D Virtual Agents only highlighted the need for strategy oriented

programming, we devise a functional system for the experts to author content and

strategy for the virtual interactive agents.

Many other researchers have explored various techniques to provide realistic

visualizations and demonstrate compelling animated characters. In Animating Athletic

Motion Planning by Example [8], a data driven memory based technique is explored to

build motion sequences of characters for animation. Cohen et al [9] generate visualization

of abstract agents and their locations by preprocessing with Bayesian Clustering

algorithm.

7

3. Interactive Football Playbook

The original Interactive Football Playbook presented the coach with a visual language to

conceptualize his intent of creating animated football plays using rules specified on

players. The coach would create the entire animation content by first creating the

formations for offense and defense, and then selecting the appropriate set of rules to be

followed by each player. This section explains in detail the background of the original

Interactive Football Playbook and also the new set of rules added in our project.

3.1. Background

Interactive Football Playbook provided the coaches with the ability to author football

play content using notations similar to what they already use in static playbooks [1]. The

user interface was designed particularly for the specific user, the coach. The interface was

kept fairly simple and required mainly football domain knowledge to create formations

and specify rules. The interface had support for various rules including block, avoid,

pursue, cover and route.

The original project had various scopes for improvements and advancements. We discuss

new rules support, user usability support, mid play rules specification and modification,

and outcome authoring amongst others.

3.2. �ew Rules

We made three additions to the set of rules in this project; these include Leverage,

Shadow, Track and Wait. These are further described in detail below:

8

3.2.1. Leverage

A leverage rule instructs a player to maintain an appropriate leverage with respect to

another player. The valid value for a leverage is an inside leverage or an outside leverage.

Also a player can maintain a leverage rule with a player from an opponent team only.

3.2.1.1. Inside Leverage

In inside leverage, player A maintaining an inside leverage with respect to an opponent

player B always tries to maintain a position between player B and the center. In the

following figure, player A is maintaining an inside leverage with player B. Player B is

running a route from its current position to slight left and then to the right. The box in the

middle is the centre.

Figure 1. Inside Leverage

9

As player B moves to the left (outside), player A does not move since it is currently

between centre line and player B (inside of B). When player B runs to the right and is

about to cross player A, player A also runs to the right to continue to maintain the

leverage.

3.2.1.2. Outside Leverage

In outside leverage, player A tries to position itself on the outside of player B. That is, if

player B is on the left side of the centre, player A will try to position itself to the left of

player B. Similarly, if player B is to the right side of the centre, player A will try to

position itself to the right of player B. We say try to position because there are various

factors that may not allow player A to perform its desired behavior. For example an

opponent player is blocking it. For similar reasons we always say expected or desired

behavior and not accurate behavior.

We allow the coach to customize the leverage parameter and its distance. This is the

desired horizontal distance between the two players. Also, a leverage rule has no

significance on its own. The coach has to always provide a leverage rule in parallel with a

block, cover or pursue rule. The type checking in the simulator ensures that invalid

combinations or sequence of rules cannot be added. This topic is covered in the Grammar

and Type Checking section.

3.2.2. Shadow

The coach uses a shadow rule to specify a player A has to maintain the same vertical

location on the field as another player B from the opponent team. A shadow rule is

similar to a leverage rule. Whereas a leverage rule has a horizontal offset to determine

inside or outside parameter, the shadow rule does not have any such parameter.

10

3.2.3 Wait

The wait rule specifies a player must wait and do nothing for a specified period of time.

The coach may customize the time. The player is waiting for an event or for a time

period. This is especially useful at the start of the play until snap. We have not explored

the applications of the shadow and the wait rules in this project. The brief description

here allows users to understand how to specify these rules and enhance it for their

specific needs.

3.2.4 Track

Track is another important rule added to our simulator. The track rule is used mainly to

simulate real football plays. Real sensor data are fed into the system and their simulations

are performed via track rules. The coach cannot create or customize a track rule since it is

created only from real sensor data fed into the simulator. Track rule instructs a player to

position itself at specified locations at specific time instants. The track rule and its

integration are explained in detail in the Visual Coaching; Sketch to Plan section.

11

4. Interface Usability Support

The various domain experts do not have much programming or animation experience.

There is a constant need to keep the user interface simple, easy to understand and use,

familiar and tailor-made for the domain experts. Our simulator is developed keeping in

mind football coaches and playbooks. The interface notation, customization and

parameterization options are supported to make the task easy for the coaches. The

interface is kept simple without any tedious requirements to specify the entire play

sequence or interactions for each player. We discuss the various interface customization

and parameterization support in this section.

4.1. Filters

The filters provide the coach with an ability to diagnose a particular behavior or a

particular rule usage. The set of rules may be filtered based on a particular player or a

particular rule. This may be very useful in creating strategies like how many players are

executing a block rule or what are the different rules that a player is performing. The

coach may have certain numbers in mind for each rule, for example two players should

be pursuing, four players blocking etc. Instead of counting through the various rules in

the scenario or having to remember each specified rule, he may simply apply these filters

and get the desired subset of rules. The various rule filters are provided as check boxes on

the interface. The filters are only for viewing purposes. The animation phase will play all

the rules including the filtered out rules.

There are three other check boxes for player filter, collision enable and reposition player.

The player filter check box is deactivated by default and activated if a player is selected.

The coach selects a player whose rules he wants to filter, checks the player filter check

box and all rules except the selected player’s rules are made invisible. These filters

provide an easy way for the coach to analyze player behavior. The collision enable filter

activates the collision detection, avoidance and response system. The reposition player

12

check box is used to reposition a player during animation. This check box is also

deactivated by default and is activated if a player is selected during the animation phase.

During animation the coach may press the pause button, select the reposition player

checkbox and specify a spatial constraint on a player by dragging it to the desired

location. The reposition player and collision enable check boxes are described in detail in

the next few sections.

4.2. Parameterization

We identified the need to parameterize the players and the rules in the original Interactive

Football Playbook. There are various parameters added for the player and for each rule.

The main rules that we concentrate on are block, cover, route, wait and leverage. These

parameterization options are discussed next.

4.2.1. Player

The player characteristics like player speed, weight and strength are added as parameters

to the simulator. The player speed is used in determining the motion of the player. The

speed and mass are used for momentum calculations and the strength is used as a

parameter to determine relative strengths of two players involved in a collision.

4.2.2 Block

A block rule has two parameters; blocking time and blocking boundary angle. A player

blocks another player for a specified amount of time. The blocking may be done

indefinitely as well. The blocking boundary angle depends on the initial positions of the

two players and is currently set as perpendicular to the initial distance between the two

players. The blocking angle has been added as a parameter but is currently not

customizable.

13

4.2.3 Cover

A cover rule instructs a player A to cover an opponent player B by maintaining a specific

distance in between. The vertical distance maintained between the two players is added as

a parameter to the cover rule. The horizontal distance is provided by the associated

leverage rule.

4.2.4. Route

The route running rule has a parameter named route speed. This is the speed with which

the player runs the route. A default value of route speed means that the route will be run

with the speed of the associated player.

4.2.5. Wait

A wait rule instructs a player to wait in a specified position for a certain period of time.

This period of time is a parameter specified on the wait rule.

4.2.6. Leverage

A blocking, covering or a pursuing player maintains a leverage with respect to the target

player. The leverage can be inside or outside, which is specified as a parameter to the

leverage rule.

4.3. Customization

We provide the coach with the ability to customize the various parameters. We use

various user interface entities including sliders, radio boxes, check boxes, buttons etc. to

allow the coach to customize and specify a value. Both the player and the rule parameters

may be customized. The coach has to double click the player or the rule to customize the

14

associated parameters. A new dialog box opens where these parameters and their current

values are displayed. The appropriate defaults are set for each parameter. The new values

for these parameters may be customized in the dialog box and then set by pressing the

‘OK’ button.

4.3.1. Player

The player speed, strength and mass may be customized using sliders from the user

interface. The speed is calculated from the 40 yard dash time specified by the coach. The

40 yard dash time ranges from 4.8 seconds as slowest to 4.3 seconds as fastest. The

player speed is the maximum speed with which it can run a rule.

We use the equations of motion to calculate the maximum acceleration. The player

accelerates from rest to top speed in 2 seconds and then maintains his speed [11]. Let’s

suppose the 40 yard dash time is t, the distance covered in the first 2 seconds is s1 and

the distance covered in the remaining time (t -2) is s2. From equations of motion, for

the first 2 seconds we have,

s1 = ut + 1at2
 2

v = u + at

Here,

u = 0,

t = 2 seconds

Substituting these values we have

s1 = 2a

v = 2a (1)

This equation (1) gives the player’s maximum speed.

15

For the remaining time (t-2) seconds,

s2 = v(t-2) + 1a(t-2)2
 2

Here,

� = 0,

Now,

s1 + s2 = 40

2a + 2a(t-2) = 40 (2)

This equation (2) gives us the value of acceleration a.

The player mass may be selected from a range of 210 to 360. The player strength may be

selected from a range of 50 to 100. The strength is a relative field and is specified in

percentage basis.

4.3.2. Block

After adding the block rule, the coach may customize the parameters by double clicking

it. The block time may be set between 0.5 seconds and 3.0 seconds using a slider. There

are markings every 0.5 seconds on the slider. The coach may select the indefinite time

check box to indicate an indefinite period for the block rule. The blocking angle slider

has values from 90 O to 270 O with markings every 45O.

4.3.3. Cover

The cover slider has markings from 0.5 to 3.0 yards with markings after every 0.5 yards.

The coach may select the distance from the slider and then press the ‘OK’ button to set

the vertical cover distance.

16

4.3.4. Route

The route speed may be set between 3.0 yards/second and 8.0 yards/second. The speed

slider has markings every 1.0 yard/second. The default route speed check box selection

results in the player running the route with its own speed. The route speed cannot be

more than the player’s speed.

4.3.5. Wait

The wait time customization dialog box has a slider and a button. The slider has a range

of 0.0 seconds to 5.0 seconds with markings every 1.0 seconds. The button is an ‘OK’

button that is pressed to set the new wait time.

4.3.6. Leverage

The leverage rule parameter may be customized by double clicking a leverage rule. A

dialog box opens where the coach may select either the inside or the outside radio button

and then press ‘OK’ button.

Although there are potentially several parameters that may be specified and customized,

we have limited our analysis to only the ones specified in this paper.

4.4. Steering Behavior

We intend to provide a realistic visualization for the simulated play and the player

motion. We realize that the uniform velocity model in the original Interactive Football

Playbook needs to be updated to simulate a more realistic approach. We implement

steering behavior for our players to fulfill these needs and adopt the work of Craig

Reynolds [2].

17

The players always have certain characteristics associated with their motion. They start

from rest with a speed of zero and may accelerate up to a maximum of their top speed,

run the fastest in straight directions and slow while making sharp turns, run fast to reach a

destination and slow down when they meet any obstacle etc. We implement these

characteristics for our players and discuss them next.

The player starts from rest with zero velocity. Its acceleration and maximum speed are

obtained from the 40 yard dash time that the coach specifies. The player accelerates from

zero until it reaches its maximum speed. The player need not decelerate from its

maximum speed when running in straight directions; but in curved paths, its speed is a

percentage of its maximum depending on the amount of curve in its path. We calculate

the angle of the curve in the player’s path and associate a tolerance value with this angle.

This tolerance provides the percentage of deceleration that must be applied to its

maximum velocity.

When the player arrives at a point, its speed gradually decreases to zero. To implement

this arrival behavior, we assume it can decelerate at twice the rate with which it can

accelerate. To keep things simple, our simulator ignores friction. Suppose the current

speed of the player is u. Its final speed v when it arrives at the point is 0. Its deceleration

is -2a where a is its acceleration. From the first equation of motion,

v = u + at,

t = u (3)
 2a

This equation (3) provides us with the time the player will take to decelerate to zero.

From the third equation of motion,

v2 = u2 + 2as,

s = u2 ,
 4a

18

This is the distance from which the player needs to start decelerating to follow the arrival

behavior. The new velocity u1 is given by,

u1 = u * (distance_to_arrival_point)
 s

The updated current velocity for the player that handles the arrival behavior is the lower

of u and u1.

We have enhanced the collision system in our simulator and have added a module each to

handle collision detection, collision response and collision avoidance. We assume each

player occupies a small space around its current coordinate location in the simulated

field. We associate a threshold between two players’ coordinate locations and if the

distance between any two players is less than this threshold, a collision is detected. The

collision response or collision avoidance system is now activated and that determines the

resultant motion of the two players. We assume if both the players have a very low

velocity, lower than a threshold of 3.0, they are able to avoid a collision. But if at least

one of the players has a velocity higher than the threshold, we assume the players will

collide and the collision response system calculates their effective velocity. We have

implemented an elastic collision in 2D and applied the technique developed in [3] to

obtain the resultant velocity for our players. The resultant animation with the steering

behavior and collision looks relatively natural. It required adjustment of various threshold

values.

4.5. Grammar and Type Checking of Rules

The original Interactive Football Playbook assumed the coach would create only legal

scenarios. There were no checks performed to verify the validity of the specified

combination of rules. We have identified a grammar to denote the set of allowable rules

and implemented a type checking to validate acceptable combinations of rules in our

simulator. The grammar has been designed specifically for the domain of American

19

Football. Currently, we do not have a facility for the various domain experts to specify a

grammar for their respective domains.

The grammar, G, for our simulator language to specify the set of rules is defined as

follows:

� = (�, ∑, 	,
)

Here,

G is the grammar

V is the non terminal set and consists of {S, R1, P1, P2, C1, C2, B1, B2, H1, H2}

∑ is the alphabet set containing the various rules - Route(r), Block(b), Pursue(p),

Avoid(a), Cover(c), Leverage(l), Shadow(s), Wait(w)

R is the production rules and specified as shown below.

S is the starting symbol denoting the set of rules specified for a player

R is specified as follows:

S → ε

S → ∑ - l

S → rS│bS│wS

R1 → r ││ a

P1 → p ││ a

B1 → b ││ a

H1 → s ││ a

C1 → c ││ a

P2 → p ││ l

B2 → b ││ l

H2 → s ││ l

C2 → c ││ l

S → SR1│SP1│SP2│SC1│SC2│SH1│SH2│SB1│SB2

where ││ denotes rules that exist in parallel

20

The valid set of rules can be identified from this grammar. We have implemented type

checking using this grammar to ensure only valid combinations of rules are added to the

simulator. These valid combinations are described in the following two tables. The rules

that can execute in parallel are shown in the first table with a corresponding Y, and the

rules that cannot exist in parallel as N. Similarly, for rules executing in sequence, the

second table shows the valid combinations.

Table 1 describes in detail the set of rules that can exist in parallel to one another. When a

player is running a route, the only thing it can do in parallel is to avoid another player.

Any other rule may not only cause a motion in a totally different direction, but also

impede the legality of the specified rules. Similarly, a block, pursue and cover can also

have an avoid rule in parallel. Also, a leverage rule may be specified in parallel to a

block, pursue or cover and must be specified subsequent to one of them. A wait rule

cannot exist in parallel with any other rule. A player may shadow an opponent player and

at the same time may maintain leverage with or avoid another opponent player.

The wait, block and route are the only rules that can be chained. This means that for rules

executing in sequence, the former rule has to be one from this set.

21

Parallel Route Pursue Block Cover Avoid Wait Shadow Leverage

Route N N N N Y N N N

Pursue N N N N Y N N Y

Block N N N N Y N N Y

Cover N N N N Y N N Y

Avoid Y Y Y Y Y N Y N

Wait N N N N N N N N

Shadow N N N N Y N N Y

Leverage N Y Y Y N N Y N

Table 1. Valid Rules in Parallel

Table 2. Valid Rules in Sequence

22

5. Visual Coaching

The three phases that allow the coach to create and edit a football scenario are Sketch to

Plan, Sketch to Modify and Sketch to Correct. This section describes the need and

implementation details of each of these phases. The three phases do not necessarily

follow one another. The Sketch to Modify and Sketch to Correct are used to modify and

correct the behavior of a player respectively. While the Sketch to Plan is required to

specify a scenario, the coach may or may not use the other two phases.

5.1. Sketch to Plan

The Sketch to Plan phase allows the coach to create a football scenario by specifying

rules for the players. The players are in the offense and defense formations, as created by

the coach. This phase is an improved version of the original Interactive Football

Playbook and the following modifications have been implemented in this project.

5.1.1. Route Specification and Modification

A route rule specifies a path for a player to traverse. In real football plays, players run the

shortest distance from one point to another. The entire path itself may consist of many

segments. In our simulator, the coach specifies the path by free hand sketches. This free

hand representation may consist of various curves and it is necessary to convert it to

distinct segments. We have implemented the segmented least squares algorithm [7] to

satisfy this requirement.

We have also added route modification features to our simulator. Occasionally, the coach

may desire to modify a specified route for a player. The coach plays the scenario with the

original route and decides he wants to edit the path for the route rule. To realize this, we

allow route editing to be performed in static or at run time. The static route modification

23

is examined in this section and the run time modifications are discussed in the Mid Play

Changes section.

Route modification is performed by editing or replacing the path that constitutes the

route. The coach specifies a route for a player, and then after animation desires a partially

different behavior. The coach may make the necessary changes in a static manner by

following a series of steps. He stops the animation and presses the ‘Route’ button on the

simulator which is used to add a new route to a player. This button is also used to edit or

replace an existing route. The coach then specifies a new path for the player to traverse. If

this path is specified over the original path, the original path is modified; else the new

path replaces the original one for the player. The starting and ending points for the new

path determine if the original path is modified or is replaced.

The different possibilities for route modification are depicted in figure 5.1.1 Route

Modification. Suppose we want to modify a path P consisting of points S through E for a

player A as shown in figure 5.1.1.a, thus creating a new path P’. If the new path starts

over the existing path from a point S’, all points from S through S’ of the original path

are added to the start of the new path. This is shown in figure 5.1.1.b. If the start of the

new path is not over an existing point in the original path, for example it starts from the

initial location of player A, the original path P is totally discarded as shown in figure

5.1.1.c. If the new path ends over an existing path at point E’, all points of the original

path from E’ to E are added to the end of the new path. This is depicted in figure 5.1.1.d.

If the end of the new path is not over an existing path, no more locations are added to the

new path at the end. This example is shown in multiple figures in 5.1.1.a, 5.1.1.b and

5.1.1.c. The existing path may consist of a series of routes but the basic principle to route

editing remains the same as described here.

24

 5.1.1.a 5.1.1.b

 5.1.1.c 5.1.1.d

Figure 2. Route Editing - Dotted lines indicate discarded path and full lines indicated

new/existing path

25

5.1.2. Track Rule

The track rule allows the coach to seed in real football play data into the simulator. Such

data may be used to study plays that have happened in real time. These data may be used

to study opponent behavior, individual player’s and its team’s strengths and weaknesses,

mistakes committed by each player, develop better strategies to obtain the desired results

etc. The integration of track rule allows the coach to create realistic scenarios, study past

events and prepare better for future scenarios

The simulator reads a file containing locations of the players on the field for the entire

duration of the play. The file data is converted to the simulator’s field coordinate

locations. The offense and defense formations are created from the initial locations of the

players on the field. The entire data for a specific player provides a track rule for that

player. This track rule constraints the player to be located at specific locations on the field

at specific time during animation. Collisions are already accounted for in such real data

track rule. Consequently, the collision system is turned off for a player if its rules consist

of only track rules and is turned on whenever an active non track rule is performed by

that player.

The track rule and the route rule have similar characteristics. Both have an associated

path that the player runs on. The route rule is driven by the speed of the player, but the

track rule has an associated time with each point on the path. The track rule is created

from real play data only and the coach cannot create his own track rule. But the coach

may edit a previously created realistic scenario that contains track rules. The coach may

alter the path of a player performing a track rule or add other simulator rules from the

interface. Once the path for a track rule is modified, the simulator converts it from the

point of modification to a route rule. The track rule may only be specified by a series of

location and time pairs. Since the new path does not specify any time constraints, it

cannot be specified as a track rule.

26

5.1.3. Parameters Specification and Customization

We have already described the use of parameters specification and customization in the

previous section and how it is performed in our simulator. The parameterization and

customization are performed in the Sketch to Plan phase.

In the original Interactive Football Playbook, the coach could not differentiate between

characteristics of two players like speed, strength or between two rules of the same kind

like different route speeds etc. We have identified the various parameters and allow the

coach to customize these from the interface. The coach may customize a scenario in the

Sketch to Plan phase.

5.2. Sketch to Modify

The coach may use the sketch to modify phase to modify the rules at run time. The

original Interactive Football Playbook provided the ability to specify rules only at time t

= 0; that is, all the rules need to be mentioned at the start of play [1]. We discuss in this

section the need to specify the rules at different times during the animation and how we

implement it in our simulator.

5.2.1. Mid Play Rules

The requirement to specify all the rules at the start of play is tedious and tricky as the

scenario becomes more complex and involved. Often, in football, the players improvise

in real time and modify their original plan. The coach wants his players to visualize the

effects of variations to the original set of rules. The coaches need a technique to simplify

the rules specification for the entire play duration. They expressed their ideas to be able

to mention rules at different instances of time [1]. This provides the potential for the

coach to handle unprepared situations and also improvise.

27

5.2.2. Implementation

The coach specifies the rules for a player and runs the animation. At a specific time

instance during animation, he may desire the player motion be altered. He may press the

pause button at that time and specify the new desired rule for the player. The new rule

drives the future behavior of the player and is chained to the current rule. But the current

rule may not have completed at the time of the new rule specification. At the time of the

new rule specification, the coach is satisfied with the player behavior up to that time and

specifies the rule for its future behavior. We convert this past behavior to a new track rule

and associate the original path the player had traversed to the new track rule. This ensures

the new player behavior is consistent with the past behavior that the coach is satisfied

with. The new rule specified is chained to this track rule.

We assume that the player’s environment is unchanged before and after the mid play rule

specification. If the environment is affecting the concerned player such that the converted

track rule is inconsistent with its previous behavior, then the coach may have to specify a

new set of rules for that player to obtain the desired behavior. The simulator does not

automatically create new rules or change the player behavior if its environment has

changed. The following figure, 5.2.2 Mid Play Rules, explains how changing a player

environment after mid play rule specification may render the modified player behavior

inconsistent. Suppose a player A is blocking a player B for 2 seconds and is then running

route as shown in figure 5.2.2.a. The coach, after 3 seconds, modifies the route by

specifying a new route for player A. The position of player A at the time the animation

was paused is shown in figure 5.2.2.b. The first 3 seconds of player A behavior is

converted to a track rule where it was blocking player B for 2 seconds and had run a part

of its original route. Figure 5.2.2.c shows this modification along with the new specified

route. When the animation is run again with this scenario, player A past behavior is

consistent with its original behavior of blocking player B for 2 seconds which is followed

by the new route rule. But now if the location of player B changes, for example a new

route rule is specified for player B, the track rule for player A may now not be blocking

28

 5.2.2.a 5.2.2.b

 5.2.2.c 5.2.2.d

Figure 3. Mid Play Rules

29

player B and is inconsistent with the original behavior. In figure 5.2.2.d, when the player

A arrives at player B’s original position, player B has already moved to a new position

and A is no more blocking B. In such cases, we assume the coach is responsible to

change player A behavior whenever he changes its environment.

5.3. Sketch to Correct

The sketch to correct phase of the simulator allows the coach to implement goal based

editing. It allows the coach to author behavior by describing what he wants rather than

how to achieve it. In many situations, the coach may desire certain behavior for a player,

but may find it difficult to specify it or to achieve specific spatial goals at run time. The

coach may specify the best approximation of rules and then use the sketch to correct

module to correct the player position at run time.

The coach corrects the behavior of a player by specifying spatial and temporal constraints

on it. During animation, the coach repositions the player to the desired location on the

field. The location serves as the spatial constraint and the simulated time of repositioning

provides the temporal constraint. The simulator computes the player behavior by

optimization subject to the constraints placed on the player.

5.3.1. Outcome Authoring

The sketch to correct module can also be characterized as outcome authoring. The coach

specifies the outcome of the player behavior and the simulator computes the behavior by

optimizing its motion. The coach may use a sketch to correct phase to obtain the desired

simulation by specifying the outcome of the player’s behavior rather than tediously

manipulating the player properties and the behavioral parameters.

30

5.3.2. Implementation

In this section, we discuss the steps the coach performs to specify the constraints and how

our simulator optimizes the player motion to satisfy these constraints. The coach may

press the pause button at any time during animation and reposition a player. To reposition

a player, the coach needs to select the reposition player check box and drag the player to

the repositioned location. The simulator then optimizes the parameters associated with

the player’s rule and satisfies the repositioning constraints. The repositioning constraint

attempts to position the player at the repositioned point at the repositioned instance in the

simulation. The optimization creates a new path for repositioning the player. We aim to

minimize the difference between this new path and the original path for the player until

the repositioned time.

We calculate the new path to the repositioned location by making an initial estimate of it

and we then iterate to obtain a better approximation. The initial assumption of the new

path is a straight line between the player’s current location and the repositioned location.

The player is currently running the original path and we want it to run this new path so

that it may reach the repositioned point. At each instance of time, the player is influenced

by these two paths with different velocities. We have used the concept of ease-in-ease-out

curves to move the player from the original path to the new path. We optimize the

difference between the new and the original paths subject to the parameters of this ease-

in-ease-out curve.

The equations for the curve and the objective function are discussed next. The ease-in-

ease-out curve has its input and output values clipped between 0.0 and 1.0. An example

of an ease-in-ease-out curve is shown below in figure 5.3.2.a. As the time varies from 0.0

to 1.0, the weight or influence of the new path varies from 0.0 to 1.0. This means the

influence of the original path decreases from 1.0 to 0.0. The sum of the weights has to be

1.0 at any point in time. The equation of our ease-in-ease-out curve is shown in the

equation below.

31

Figure 4. Ease-in-ease-out Curve

y = ax2 + bx + c,

Here,

0.0 ≤ x ≤ 1.0 is the time,

y is the weight of the new path ,

a, b, c are the parameters

These parameters a, b and c are computed to minimize the cost function which is as

given below:

Cost = ∑ Distance(x1i, y1i, x2i, y2i) + P,

Here,

P1 is the original path and P2 is the new path,

(x1i,y1i) is the ith point of P1,

(x2i,y2i) is the ith point of P2,

P is the penalty if the player is not located at the repositioned point at the repositioned

time

We optimize this objective function using a gradient descent approach by numerically

differentiating the function with respect to each parameter. We compute an initial cost by

making an estimate of each initial (x2, y2) pairs and the parameters a, b and c. The

32

derivative of the cost with respect to each parameter provides the gradient and we update

the respective parameter value proportional to the negative of this gradient. We compute

a new cost for this new set of parameters and iterate the numerical differentiation process

to obtain a better approximation of the parameters. We stop iterating when the difference

in cost between successive iterations is below a predefined threshold value. The final

parameter values optimize the cost and specify the desired track rule for the player.

We have limited our optimization to modifying a subset of parameters namely, track rule

formation and leverage rule modification. The future work section discusses a list of

various parameters that may be optimized to satisfy the repositioning constraint.

5.3.2.1. Track Rule

In this method the optimization calculates a new track rule to signify the set of rules

performed by the repositioned player until the repositioned time. The coach corrects a

player’s motion by repositioning it at time t to a new location L. The player may have

performed any subset of rules until now to traverse a path T1. We convert this path T1 to

a track rule R1 and compute a new track rule R2 that satisfies the repositioning

constraint. The player resumes its original rules after the track rule R2.

5.3.2.2. Leverage Rule

A leverage rule instructs a player to be on either inside or outside with respect to another

player. The leverage parameter specification may be trick, especially if the both the

concerned players are constantly moving on either side of the center. Our simulator

allows the coach to reposition a player maintaining a leverage during animation. The

simulator computes an appropriate new leverage rule using optimization. The leverage

parameter is optimized only if the current rule has an associated leverage. The parameters

that are adjusted to optimize the objective function are the leverage type and the leverage

distance. The optimization works similar to the implementation in the track rule case.

33

6. Discussion

We provide a basic summary of what we have presented in this paper, its purpose and our

approach. We also generalize our approach to various domains and describe how the

simulator may be used by various domain experts to fulfill their requirements for

simulating strategic dynamic virtual agents in their domains.

6.1. Summary

We intend to build a simulator that allows various domain experts to author strategy for

the dynamic virtual agents. The programming logic to implement the strategy is

performed by our simulator and the domain experts need not be aware of such tedious

details. Much research, therefore, has gone into the development of realistic simulators

and integration of real sensor data, so that the domain experts can produce realistic

scenarios without scripting all the desired behavior. The simulator uses the space and

time constraints specified on an agent to optimize its behavior. The simulator presents to

the expert several plausible behavior options, from which the expert may choose one as a

final strategy or as a seed to a new strategy.

Our simulator is used to fill in the simulation details to help the experts visualize their

strategy. The expert may use our simulator as a teaching tool to author a specific scenario

and plan for future events. The expert may seed in real sensor data to study a past event

or modify it to realize a better strategy. The simulator allows the expert to program an

agent, modify its behavior, specify constraints on it and visualize future possibilities.

6.2. Generalizing to other domain

Although the work performed in this paper is in the American Football domain, the

concepts presented can be extended to various other domains. The formations of teams

can be interpreted to various domains such as battle simulations, game simulations,

34

obstacle avoidance etc. The rules specified may be specialized to each of these domains.

The cover rule, for example, may be used by an agent to infer the motive of another agent

in strategy games, battles etc. The current set of rules may be expanded or modified to

cover different requirements for other domains. The addition of track rule has provided a

new dimensionality to specify behavior for an agent in terms of its motion that is read

from a file.

The naming conventions and the set of rules may change with respect to various domains

but the methods for authoring of behavior, specification of constraints, visualization of

past and future events etc remain mostly unaltered. An expert from any domain may

specify behavior for agents in terms of his own domain in our simulator. We will have to

provide the expert with a technique to specify such behavior in our simulator. This means

that just the set of rules, grammar and the corresponding actions change, but the

specification, visualization and optimization in the core remains the same. We intend to

generalize our simulator to various domains and discuss this in further detail in the Future

Work section.

35

7. Future Work

The enhanced Interactive Football Playbook has wide scope to be explored for various

possibilities with generalization, learning its decision support method and modification of

different parameters. Due to the scope of the current project they have not been

implemented and are mentioned as part of future work. We summarize these in this

section.

7.1. Different Parameters Modifications

In this paper, we have implemented decision support using track rule and leverage rule

formations. We replace the existing set of rules using either track or the leverage rule and

modify the parameters for the same to attain the desired behavior. But these two rules and

their parameters do not form an exhaustive list. There are various other rules and

parameters that may be modified to obtain the desired behavior. These parameters

include player speed, rule distance, rule time etc. We have summarized these parameters

in the table 7.1 Parameter Modification Table and explained in detail in this section.

The first parameter we consider in this section is player speed. The player speed may be

varied to satisfy the repositioning constraint. The player speed parameter is customizable

and the coach specifies it from the user interface controllers. The coach replays the

simulation and may find that he desires a different speed for the player. By way of trial

and error he may get a better value for the player speed parameter. To avoid this tedious

method, the coach may choose to reposition a player at run time to the desired location

and allow the optimization to calculate the player speed parameter.

36

 Parameter

Player

Speed Rule Radius

Rule Execution

Time

Route

Replacement

Original

Rule

Route

Forward or

behind in

the

same path

After rule

execution

close

to completion

Pursue

Forward or

behind in

the

same path

Block

Forward or

behind in

the

same path

Forward or

behind with

respect to the

child rule

Cover

Forward or

behind in

the

same path

Closer to or

away from

the

target player

Avoid

Closer to or

away from

the

target player

Wait

Forward or

behind with

respect to the

child rule

Track

Any player

performing

track rule

Table 3. Parameter Modification Table

37

The player speed can be changed to satisfy the repositioning constraint only if the player

is repositioned in the same path, either forward or behind the current position. If the

repositioned location is different, a new path will be required for the repositioning

satisfaction. Hence a different parameter or a new rule will be required, merely changing

the speed parameter may not help. The path means different for various rules. For route,

the path is the same path that the player runs. For cover and pursue, the path is at each

instance the line between the covering or pursuing player and the target player. For block,

the path is a combination of the blocking boundary angle, leverage and line between the

blocking and the target player.

The following figures show an example scenario where a player A running a route is

repositioned ahead of its current location and on the same path. Player B is pursuing

player A. The coach has specified a speed for the player A but also wants it to stay ahead

of the pursuing player B. The player A speed has to be increased for this. At the given

instance, the coach decides to reposition player A. The coach desires player A be

repositioned as in figure b below. The optimization then calculates a new increased speed

for the player A and displays it as one of the options for the coach to choose from.

The second parameter is the distance for the cover and the avoid rules. This is the

distance the covering or the avoiding player must maintain with respect to the target

player. Suppose the coach repositions the covering or avoiding player A closer to or away

from the target player B. This behavior can be obtained by updating the distance

parameter of the corresponding rule. This gives the coach another option along with the

existing set of options to choose from. The coach may play all these options and select

the one that best matches his needs.

38

Figure 5. Speed Modification Original Position

Figure 6. Speed Modification Repositioned Position

39

The wait and block rules have an associated time parameter. These rules can be chained

and any set of rules may follow it. Suppose that a player has a route rule that follows a

wait rule. The coach decides to reposition the player when it is running the route. The

repositioned point is close to the current path and behind the current position. This

example is similar to the above case where the player needs to run with lower speed. But

this could also mean that the player needs to wait for a longer period in the same position

and then run with the same speed. Thus the repositioning constraint is not only bound to

the current rule but also to the parent rule. The parent rule consideration with respect to

time is restricted only to scenarios where block and wait are the parents.

The route replacement is the next parameter we discuss in this section. It is used in

situations where the coach repositions either a track rule or a route rule that is close to

completing its execution. Let’s say the coach wants to reposition a player performing a

track rule. This may be to modify the output of an optimization or to change player rules

from a real play. The original track rule is divided into two parts; part one before the

repositioned point and part two after the repositioned point. The part one is used as a new

track rule. The part two now needs to be converted to a route rule since we do not have

any information for a track rule starting from the repositioned point. A new track rule can

be added to the scenario only if the various requirements for optimization are satisfied or

using real sensor data. This part was described earlier in the Sketch to Correct section

using Track Rule Formation. The route rule replacement is also useful if a player running

a route rule has completed most part of its execution. The coach specifies the route using

free hand path drawn on the simulator and this may cause slight errors to slip in. The

repositioning close to completion suggests that the coach desires the route rule must exist

only until the point of reposition. The original route rule is truncated and the existing set

of child rules are then added after the new route rule.

40

7.2. Generalize Scenarios and Create Repository

We envision a general framework to be used by various domain experts, not just football

coaches. We need to identify the various target audience, their requirements from the

simulator and their usage pattern. The simulator must be made generic to specify

scenarios, rules, grammar and constraints in common terminology or create various

specialized options for each domain.

Currently, the coach has to create formations and then create a scenario by using two

formations and specifying various rules on the players. The next step is to customize

different parameters for the rules and the players. The entire scenario specification by the

coach may become time consuming if he wants to run and store various simulations with

minor changes from one another that explore the different outcomes. The repetitive work

can be minimized if there is a technique to create a repository of the scenarios specified

by the coach. By generalizing the scenario, the associated rules, parameters and

formations, we are saving time on part of the coach and also trying to better model the

coach’s decisions.

7.3. Learning Choice

In optimization, we present the coach with a list of options to choose from that match his

desired behavior. This list is not ordered from the best match to worst match. It is

generated by changing different parameters and is random in terms of which parameter

we choose to modify first. Once the coach selects a particular choice from the list, there is

no concept of recalling or learning his choice. If later, the coach specifies a similar

constraint to expect similar desired behavior, a similar list is output instead of

automatically generating his preferred choice. The learning of his choice can help us

reduce unnecessary options calculation and the repetition of the coach’s selection

process. The last choice of the coach may be selected and replayed for consideration by

the coach. If the coach rejects it, then we may go for the various different options. If we

41

can represent the set of inputs and outputs in an optimized manner within the simulator,

the playback of the coach’s previous choice may be performed easily. The inputs consist

of the scenario and the repositioning constraint. The scenario is specified by the relative

positions of the different players in the neighborhood of the repositioned player, while the

repositioning constraint is the relative location and time of the constraint specification.

We also need to check if the learning of choice would be any beneficial to the output list

generation or it would cause more time and processing delay.

7.4. User Studies

The coaches’ feedback in the original version helped us create a definitive plan of action.

The user interface support and mid play rules were mainly inspired from the feedback.

The ideas helped us envision the scope for this current project. User Studies is an

important part of this project also. We need to identify how useful the decision support

and the listing of options are for the coaches. Questions like how easy is it to use and

understand the interface, what changes are required for the simulator to be more realistic,

what changes are required to the current method of specifying constraints and choosing

options, does the given set of options match the expected behavior, is there any set of

unusual behavior that needs to be rectified etc remain to be answered. The user studies

concerning different domains and a generalized scheme that optimizes the needs of all the

experts are another major work that needs special attention and could not be completed in

the current scope.

42

8. Bibliography

[1] Christoph Neumann, Jonathan Dodge and Ronald A. Metoyer. Interactive

Football Playbook. Master’s thesis, Oregon State University, July 2006.

[2] Craig W. Reynolds. Steering Behavior for Autonomous Characters. In Proc. of

Game Developers Conference, pages 763–782. Miller Freeman Game Group, San

Francisco, CA, 1999.

[3] The Physics of an Elastic Collision

http://director-online.com/buildArticle.php?id=532

[4] Christoph Neumann. End-user programming of 3D virtual agents. In IEEE Symp-

osium on Visual Languages and Human Centric Computing, pages 285-286, Sept

26-29 2004

[5] Deep Green http://www.darpa.mil/ipto/Programs/dg/dg_approach.asp

[6] Christoph Neumann, Ronald Metoyer, Margaret Burnett. End-user strategy

programming. In Journal of Visual Languages and Computing

[7] Jon Kleinberg, Eva Tardos. Algorithm Design book, pages 261-266.

[8] Ronald A. Metoyer and Jessica K. Hodgins. Animating athletic motion planning

by example. In Proc. of Graphics Interface, pages 61-68, May 15-17 2000.

[9] Paul R. Cohen, James A. Davis and John L. Warwick. Dynamic Visualization of

Battle Simulations. Massachusetts Univ Amherst Dept Of Computer Science,

2000

[10] Ronan Boulic, Nadia Magnenat-Thalmann, Daniel Thalmann. Coach-Trainee: A

New Methodology for the Correction of Predefined Motions. In Proc. of

Eurographics Workshop on Animation and Simulation, pages 1-14, 1990.

[11] How the physics of football works

http://entertainment.howstuffworks.com/physics-of-football3.htm

