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Abstract In this work, we study the transient behavior of homogenized models for solute transport
in two-region porous media. We focus on the following three models: (1) a time nonlocal, two-
equation model (2eq-nlt). This model does not rely on time constraints and, therefore, is particularly
useful in the short-time regime, when the time scale of interest (t) is smaller than the characteristic
time (τ1) for the relaxation of the effective macroscale parameters (i.e., when t ≤ τ1); (2) a time
local, two-equation model (2eq). This model can be adopted when (t) is significantly larger than (τ1)
(i.e., when t ≫ τ1); and (3) a one-equation, time-asymptotic formulation (1eq∞). This model can be
adopted when (t) is significantly larger than the time scale (τ2) associated with exchange processes
between the two regions (i.e., when t ≫ τ2). In order to obtain insight into this transient behavior,
we combine a theoretical approach based on the analysis of spatial moments with numerical and
analytical results in several simple cases. The main result of this paper is to show that there is
only a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq∞) in
terms of standardized moments but, interestingly, not in terms of centered moments. The physical
interpretation of this result is that deviations from the Fickian situation persist in the limit of long
times but that the spreading of the solute is eventually dominating these higher order effects.
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Nomenclature

Roman symbols

bij Closure mapping vector in the i− region associated with ∇〈cj〉j , (m).

ci Pointwise substrate concentration in the i− region, (mol ·m−3).

〈ci〉 Superficial spatial average of ci, (mol ·m−3).

〈ci〉i Intrinsic spatial average of ci, (mol ·m−3).

〈c〉γω Weighted spatial average concentration, (mol ·m−3).

c̃i Solute concentration standard deviation in the i− region, (mol ·m−3).

Di Diffusion tensor in the i− region, (m2 · s−1).

Dij Dispersion tensor in the two-equation models associated with ∂t〈ci〉i and ∆〈cj〉j , (m2 · s−1).

Dij Dispersion coefficient in the 1-D two-equation models associated with ∂t〈ci〉i and ∆〈cj〉j , (m2 · s−1).

D
∞ Dispersion tensor of the one-equation time-asymptotic model, (m2 · s−1).

D∞ Dispersion coefficient of the 1-D one-equation time-asymptotic model, (m2 · s−1).

exp Exponentially decaying terms, (−).

h Transient effective mass exchange kernel, (s−1).

h∞ Effective mass exchange coefficient, (s−1).

j̃i Deviation of the total mass flux for region i, (mol ·m−2s−1).

Ji Average of the total mass flux for region i, (mol ·m−2s−1).

L Characteristic length of the field-scale, (m).

ℓi Characteristic length of the i− region, (m).

mi
n nth-order centered moment associated with 〈ci〉i for the two-equation model, (mn ·mol).

mγω
n nth-order centered moment associated with 〈c〉γω for the two-equation model, (mn ·mol).

m∞
n nth-order centered moment associated with 〈c〉γω for the one-equation asymptotic model, (mn ·mol).

Mγω
n nth-order standardized moment associated with 〈c〉γω for the two-equation model, (−).

M∞
n nth-order standardized moment associated with 〈c〉γω for the one-equation asymptotic model, (−).

nij Normal unit vector pointing from the i− region towards the j − region, (−).

pk Three lattice vectors that are needed to describe the 3-D spatial periodicity, (m).

Qi(x, t) Macroscopic source term in the i− region, (mol ·m−3 · s−1).

Qγω Weighted macroscopic source term, (mol ·m−3 · s−1).

R Radius of the REV, (m).

Sij Boundary between the i− region and the j − region, (−).

Sij Area associated with Sij , (m2).

ri Closure parameter in the i− region associated with 〈cγ〉γ − 〈cω〉ω , (−).

t Time, (s).

t’ Nondimensionalized time, (−).

T Period of the oscillations, (s).

vi Velocity at the microscale in the i− region, (m · s−1).

〈vi〉 Superficial spatial average of vi, (m · s−1).

〈vi〉i Intrinsic spatial average of vi, (m · s−1).

〈vi〉i Norm of the intrinsic spatial average of vi, (m · s−1).

ṽi Velocity standard deviation in the i− region, (m · s−1).

Vij Effective velocity in the two-equation models associated with ∂t〈ci〉i and ∇〈cj〉j , (m · s−1).

V ∞ Effective velocity of the one-equation time-asymptotic model, (m · s−1).

Vi Domain of the averaging volume that is identified with the i-region , (−).

Vi Volume of the domain Vi, (m
3).

V Domain of the averaging volume, (−).

V Volume of the domain V, (m3).
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Greek Symbols

α Weighted mass transfer coefficient, h∞

(

1
Φγεγ

+ 1
Φωεω

)

, (s−1).

β∗
1 and β∗

2 Source terms in the closure problems, (m · s−1).

γ − region First region, (−).

∆V Velocity contrast between the γ and ω regions, Vγγ − Vωω , (m · s−1).

∆D Dispersion contrast between the γ and ω regions, Dγγ − Dωω , (m2 · s−1).

Φi i− region volume fraction, (−).

εi Darcy-scale fluid fraction (porosity) within the i− region, (−).

ω − region Second region, (−).

τ1 Characteristic time for the relaxation of the two-equation model effective parameters, (s).

τ2 Characteristic time for the transition towards the one-equation asymptotic regime, (s).

µi
n nth-order raw moment associated with the 〈ci〉i for the two-equation model, (mn ·mol).

µγω
n nth-order raw moment associated with the 〈c〉γω for the two-equation model, (mn ·mol).

µ∞
n nth-order raw moment associated with the 〈c〉γω for the one-equation asymptotic model, (mn ·mol).

Subscripts, superscripts

i, j Indices for γ or ω, (−).

1 Introduction

The physics of transport in porous media deals inevitably with multiscale heterogeneities (Cush-
man 1997). A number of theoretical and numerical methods have been developed to model these
systems. The most direct approach is to solve the transport equations at the sub-pore scale by
directly computing solutions with sufficient resolution over an enormous number of pores. Contem-
porary computational methods have begun to make this approach possible. However, such detailed
microscale solutions generally contain a substantial amount of information that is of low value to
most applications. To provide results with practical relevance, tensor fields at the microscale can
generally be filtered by eliminating the small-scale high frequency fluctuations. Various upscaling
techniques have been developed for this purpose, where one first averages the partial differential
balance equations that apply at the microscale, and then solves these averaged equations at a
coarser scale of resolution. This kind of approach always requires the solution of ancillary closure
relations to provide representations of how the small-scale correlations influence the solution at the
macroscale. Such techniques have been widely used to model transport problems in porous media
and example approaches include volume averaging (Whitaker 1999), ensemble averaging (Dagan
1989; Cushman and Ginn 1993), moments matching (Brenner 1980), and multiscale asymptotics
(Bensoussan et al. 1978). An overview of upscaling methods has recently been provided by Cushman
et al. (2002).

In this article, we are interested in comparing the behavior of several different upscaled models
for describing solute transport via convection and diffusion in a discretely hierarchical porous-
medium containing two different regions consisting of coarse and fine porous media (see Fig 1). In
this figure, we have illustrated three characteristic scales in the sequence of scales in the hierarchy:
(1) the macroscale associated with the volume VM and the charateristic length L; (2) the support

scale associated with the volume of the averaging operator, V, and the characteristic length R;
and (3) the microscale associated with the size of a representative volume of porous material within
the coarse and fine regions and the characteristic lengths ℓγ and ℓω.

Under the most general conditions, the transport process applying at the macroscale is spec-
ified by a differential balance equation that is time and space nonlocal; such transport equations
have been widely reported in the literature, and have been developed from a number of different
upscaling approaches (e.g., Koch and Brady (1987); Cushman and Hu (1995); Wood (2009)). This
behavior can be mathematically described via solutions of integro-differential equations that involve
convolutions of a memory kernel over space and time. These nonlocal macroscale formulations are
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extremely important from a theoretical point of view and have also been applied to the description
of transport phenomena in heterogeneous porous media (Cushman et al. 1995). However, there are
also a number of computational and physical issues that lower their practical value. For example,
with most discrete numerical methods, spatial convolutions lead to dense matrices that are much
more complicated to invert than the sparse matrices produced by purely local models (Wood 2009).
Without additional approximations regarding the evolution of the kernels, nonlocal models may
not actually reduce the information content as compared with the direct solution to the microscale
problem.

To make these equations more tractable, various simplifications to the exact nonlocal models
have been considered (e.g., (Chastanet and Wood 2008; Haggerty et al. 2004)). These simplifica-
tions often rely on conjectures about the time and space scales of the transport processes with the
general goal of localizing equations, i.e., transforming integro-differential formulations into systems
of partial differential equations. The local models that result from this procedure have more re-
stricted domains of validity but are generally simpler to solve; the difficulty being to determine the
best compromise for a specific application. In this paper, we will consider three approximations to
the exact nonlocal description in the case of two-region porous media: (1) a two-equation, nonlocal
in time model (2eq-nlt); (2) a time and space local two-equation model (2-eq); and (3) an asymptotic
in time one-equation model (1eq∞). Each of these models is briefly described below.

The time nonlocal two-equation model examined here corresponds to the developments by
Moyne (1997); Souadnia et al. (2002); Wood and Valdès-Parada (2012). The model is specified by

Model 1: Two-equation, time nonlocal (2eq-nlt)

∂t〈cγ〉γ +
∑

j=γ,ω

∂tVγj · ⋆∇〈cj〉j =
∑

j=γ,ω

∇ ·
(

∂tDγj · ⋆∇〈cj〉j
)

− ∂th

Φγεγ
⋆ (〈cγ〉γ − 〈cω〉ω) +Qγ , (1)

∂t〈cω〉ω +
∑

j=γ,ω

∂tVωj · ⋆∇〈cj〉j =
∑

j=γ,ω

∇ ·
(

∂tDωj · ⋆∇〈cj〉j
)

− ∂th

Φωεω
⋆ (〈cω〉ω − 〈cγ〉γ) +Qω. (2)

In these equations, 〈ci〉i refers to the intrinsic volume averaged concentration in the i− region. The
bracket notation 〈·〉 is here as a reminder that the concentrations appearing in this two-equation
model are defined as volume averages of the pointwise concentrations ci at the microscale. The ⋆

operator refers to convolutions in time defined by e ⋆ f (t) =
∫ t
0
e (τ) f(t− τ)dτ . The product A · ⋆B

is the mixed contraction (·) /time-convolution (⋆) between tensor fields A and B. The macroscale
parameter Φi is the volume fraction of the i− region, considered constant in time and space; εi is
the Darcy-scale volume fraction of fluid phase within the i − region, considered constant in time
and space; the macroscale parameters, Vij and Dij , are intrinsic velocities and dispersion tensors
of the two-equation model (Vij and Dij with i 6= j are interphase coupling terms for the macroscale
fluxes); the parameter h is a macroscale mass exchange kernel; and Qi is a source term. In terms
of the volume averaging theory, this formulation refers to situations in which the concentration
perturbations are well captured by the two-equation spatial localization process; but which require
a fully transient closure. Effective parameters, Vij , Dij and h, are defined as integrals of mapping
variables that solve initial boundary value problems (IBVPs) at the microscale. Hence, in Eqs (1)
and (2), the convolution kernels are generic functions and can be related to a specific porous
medium via computation of these IBVPs over a representative volume. In practice, if the topology
of the microscale problem is unknown, the kernels may be approximated by heuristic functions
(see (Haggerty et al. 2000; Luo et al. 2008)). We also remark that this local in space/nonlocal in
time approach is adapted to situations for which the nonlocality in time is weakly coupled with
the nonlocality in space and the temporal convolutions can be treated separately from the spatial
convolutions. This is the case, for instance, for a periodic mobile-immobile system for which the
time convolution will capture all the relaxation times for diffusion in the immobile domain.
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A second set of approximations leads to a formulation that is both local in time and space.
The particular model examined here corresponds to the developments of Ahmadi et al. (1998) and
Cherblanc et al. (2007, 2003):

Model 2: Local two-equation (2eq)

∂t〈cγ〉γ +
∑

j=γ,ω

Vγj · ∇〈cj〉j =
∑

j=γ,ω

∇ ·
(

Dγj · ∇〈cj〉j
)

− h∞
Φγεγ

(〈cγ〉γ − 〈cω〉ω) +Qγ , (3)

∂t〈cω〉ω +
∑

j=γ,ω

Vωj · ∇〈cj〉j =
∑

j=γ,ω

∇ ·
(

Dωj · ∇〈cj〉j
)

− h∞
Φωεω

(〈cω〉ω − 〈cγ〉γ) +Qω. (4)

This model is valid when the characteristic times for the relaxation of the effective parameters are
very small compared to the macroscopic time of interest. In this case, the convolutions disappear,
i.e., we have ∂tA (t) · ⋆B (t) ≈ A (∞) ·B (t), (cf. Section 4.1 and 4.2 in (Chastanet and Wood 2008)
and (Davit and Quintard 2012)). The relaxation of the convolution kernels and the convergence of
∂tA (t) · ⋆B (t) towards A (∞) · B (t) are both controlled by the characteristic times of the IBVPs
discussed above. An attractive feature of this model is the unique coefficient, h∞, whereby mass
exchange processes between the two regions are described. In this way, spatial heterogeneities may
be accounted for by simply considering a spatial distribution of h∞, see in (Kfoury et al. 2004,
2006). The disadvantage of this model when compared with the (2eq-nlt) model is that it will fail
to describe transport processes in the short-time regime when the convolutions must be considered
(Parker and Valocchi 1986; Landereau et al. 2001). Other possible descriptions are multi-rate mass
transfer models (Haggerty and Gorelick 1995), but we will limit our study to the fully nonlocal and
fully local two-equation descriptions, Eqs (1)-(2) and (3)-(4).

The third, and last, set of approximations that we will consider leads to the one-equation time-
asymptotic formulation, as described by Quintard et al. (2001):

Model 3: Time-asymptotic, one-equation (1eq∞)

∂t〈c〉γω +V∞ · ∇〈c〉γω = ∇ · (D∞∇〈c〉γω) +Qγω. (5)

In Eq (5), 〈c〉γω is the weighted average solute concentration over the regions (γ) and (ω):

〈c〉γω ≡ Φγεγ〈cγ〉γ + Φωεω〈cω〉ω
Φγεγ + Φωεω

. (6)

V∞ is the solute weighted average velocity,

V∞ ≡ Φγεγ〈vγ〉γ + Φωεω〈vω〉ω
Φγεγ + Φωεω

,

where 〈vi〉i is the volume average velocity over the phase (i); D∞ is the time asymptotic dispersion
tensor (see (Davit et al. 2010) for a detailed expression); and Qγω is the weighted average source
term. In the literature, this model has been derived using, at least, two different techniques. Zanotti
and Carbonell (1984) studied the asymptotic behavior of the spatial moments of (2eq) in a semi-

infinite medium and used the relationship D
∞ ≡ 1

2 lim
t→∞

d
dt

(

m
γω
2

mγω
0

)

, where m
γω
n is the nth-order

centered spatial moment associated with 〈c〉γω, to derive an analytical expression for D
∞. A more

direct one-step derivation can be obtained by averaging over the two phases simultaneously and
using a non-conventional perturbation decomposition (see (Davit et al. 2010)).

The purpose of this work is to gain insight into the correspondence between these three different
models. More specifically, the contributions of this study are to:
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1. illustrate the transient behavior of all three models by studying analytical solutions to the
purely diffusive problem with periodic excitations in a “space-clamped” stratified geometry.

2. examine the convergence of solutions for the two-equation (2eq) and one-equation (1eq∞) models
as time increases. In particular, we are interested in developing a constraint that indicates when
one can use the one-equation time-asymptotic model (1eq∞) given by Eq (5) instead of the two-
equation model (2eq) given by Eqs (3)-(4). For the expression of this constraint, we consider
the propagation of a pulse through an infinite one-dimensional porous medium. We will not
study the influence of the boundary conditions on the time-asymptotic regime (see discussions
in (Davarzani et al. 2010)).

The remainder of this article is organized as follows. In Section 2, we briefly outline the derivation
of the three macroscale models described above using the volume averaging theory. In Section 3, we
illustrate the frequency response of all three models by studying analytical solutions to the purely
diffusive transport problem. In Section 4, we analyze Eqs (3)-(4) using spatial moments and study
their asymptotic behavior. We also compute the corresponding spatial moments up to the sixth
order and show that these numerical results support the theoretical analysis.

2 Macroscale models derivation

2.1 Preliminaries and definitions

In this section, we provide a brief presentation of the volume averaging technique and discuss the
derivation of the three models described above. The purpose here is to provide only an outline;
the details of these derivations can be found in the original papers referenced for each of the three
models.

For these developments, we consider two different regions (cf. Fig 1) in which the solute under-
goes diffusion and convection: we can think of these two regions as being associated with a binary
distribution of coarse and fine porous media. We assume a continuity of the concentrations and
of the fluxes at the boundary between the coarse (γ) and fine (ω) regions. The microscale mass
balanced equations take the form

γ − region : ∂t (εγcγ) +∇ · (εγcγvγ) = ∇ · (εγDγ · ∇cγ) , in Vγ , (7a)

BC1 : cω = cγ , on Sγω, (7b)

BC2 : −nγω · εγDγ · ∇cγ = −nγω · εωDω · ∇cω, on Sγω, (7c)

ω − region : ∂t (εωcω) +∇ · (εωcωvω) = ∇ · (εωDω · ∇cω) , in Vω, (7d)

IC1 : cγ = 0, in Vγ at t < 0, (7e)

IC2 : cω = 0, in Vω at t < 0. (7f)

In these equations, ci (i = γ, ω) is the concentration in the i − region and we impose uniformly
zero initial concentrations. In addition, the velocity field, vi, is assumed to be known pointwise for
the purposes of this study. This is correct if the flow problem, i.e., the total mass and momentum
balance equations can be solved independently; which is the case if the component is a tracer.
The reader may refer to (Quintard and Whitaker 1998) for a derivation of regional Darcy’s laws
which may be used in conjunction with the equations derived in this paper. Dγ is the Darcy-scale
dispersion tensor. Sij is the interface between the i− region and the j − region and Sij is the area
of this interface; nij is the corresponding normal unit vector pointing from i to j. We remark that
these equations are based on the assumption that a continuum description holds for representative
volumes defined at a length scale that is smaller than ℓγ and ℓω, i.e., Eqs (7a)-(7f) already represent
an average Darcy-scale description where the averaging has been used to homogenize the pore-scale
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details. An important consequence of this heterogeneous configuration is the appearance of the
Darcy-scale porosities εi (i = γ, ω); porosities that we will consider constant in time and space
throughout this work.

To obtain a macroscopic model for mass transport, we average each microscopic equation over
a representative region (REV) and use the following quantities: Vi represents the i-region within
the REV and Vi is the volume of Vi . The superficial averages of ci over the volume V are given by
〈ci〉 ≡ 1

V

∫

Vi
ci dV . The associated intrinsic averages for ci are 〈ci〉i ≡ 1

Vi

∫

Vi
ci dV . We define the

constant volume fractions as Φi ≡ Vi

V ; with this definition implying that 〈ci〉 = Φi〈ci〉i.

2.2 Perturbation analysis

During the averaging process, terms involving point values of cγ , cω, vγ and vω appear in the
integrands. To treat these terms, one conventionally defines perturbation decompositions for any
property ϕi (where i indicates the region, so that i is either γ or ω) by ϕi = 〈ϕi〉i + ϕ̃i. Upon
imposing the separation of length scales, ℓγ , ℓω ≪ R ≪ L, it is possible to show that the volume
averaged equations take the form (see Appendix A):

∂t

(

Φiεi〈ci〉i
)

+∇ ·
(

Φiεi〈ci〉i〈vi〉i
)

= ∇ ·
[

ΦiεiDi ·
(

∇〈ci〉i +
1

Vi

∫

Sγω

nij c̃idS

)]

(8)

+
1

V

∫

Sγω

nij · εiDi · ∇c̃idS −∇ ·
(

Φiεi〈c̃iṽi〉i
)

.

Eq (8) represents a macroscopic description of the transport processes. However, because unknown
deviation quantities appear in the equation, the problem is not in a closed form. In order to close
the problem, we need to: (1) determine the IBVPs that the perturbations satisfy; and (2) use the
solutions of these IBVPs to obtain a closed form of Eq (8).

The definition of the perturbations, c̃i ≡ ci−〈ci〉i, suggests that the set of equations governing c̃i
can be obtained by subtracting suitable multiples of Eq (8) from Eqs (7a) and (7d). This operation
leads to a problem of the form

∂tc̃i +∇ · (c̃ivi)− 〈∇ · (c̃ivi)〉i + ṽi.∇〈ci〉i = ∇ · (Di · ∇c̃i)− 〈∇ · (Di∇c̃i)〉i, (9a)

BC1 : c̃γ − c̃ω = − (〈cγ〉γ − 〈cω〉ω) , on Sγω, (9b)

BC2 : nγω ·
(

j̃γ − j̃ω
)

= −nγω · (Jγ − Jω) , on Sγω, (9c)

where j̃i ≡ −εiDi · ∇c̃i, Ji ≡ −εiDi · ∇〈ci〉i and 〈∇ · (Di∇c̃i)〉i = 1
Vi

∫

Sγω
ni · Di · ∇c̃idS. To ensure

uniqueness of c̃i, we impose the zero initial condition c̃i (t = 0) = 0, the solvability condition 〈c̃i〉i = 0
and local periodicity.

At this point, Eqs (9) are still coupled with the macroscopic concentrations but in a weaker
sense. One can look for a solution of the form (see (Moyne et al. 2000; Souadnia et al. 2002;
Valdes-Parada and Alvarez- Ramirez 2011; Davit and Quintard 2012)):

c̃i =
∑

j=γ,ω

∂tbij · ⋆∇〈cj〉j − ∂tri ⋆ (〈cγ〉γ − 〈cω〉ω) , (10)

where the microscale fields, b and r, may be interpreted as spatial integrals of the corresponding
Green’s functions (see discussions in (Wood 2009) and in (Wood and Valdès-Parada 2012)). This
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mathematical structure for the fluctuations is conditioned by the source terms in Eqs (9) and,
therefore, by the localization approximations, ℓγ , ℓω ≪ R ≪ L, that have been made previously.

On injecting Eq (10) into Eqs (9), we can obtain a unit cell IBVP that can be used to calculate
the microscale fields, b and r (see Appendix B).

2.3 Macroscopic models

We can now use Eq (10) into Eq (8) to eliminate unknown deviation concentrations from macroscale
equations. The result of this operation leads to Eqs (1) and (2); see (Moyne et al. 2000; Souad-
nia et al. 2002) for more details. Transient effective parameters are expressed as integrals of the
microscale fields, b and r, which are given in Appendix C.

To understand the correspondence between Eqs (1)-(2) and Eqs (3)-(4), it is useful to consider
the transient behavior of the integrands and the relaxation of the convolution kernels. For example,
h (t) undergoes a transient regime and then reaches a stationary state, i.e., after a given relaxation
time τ1 (the smallest eigenvalue of the unit cell IBVP), h (t) tends towards a constant exchange rate
h∞ (more exactly, within the convolution, h (t) may be approximated by u(t)h∞ where u(t) is the
unit step function). Therefore, ∂th⋆(〈cγ〉γ − 〈cω〉ω) ≈ h∞δ (t)⋆(〈cγ〉γ − 〈cω〉ω) = h∞ (〈cγ〉γ − 〈cω〉ω),
where δ (t) is the Dirac distribution. The relaxation time, τ1, is determined by the IBVP in the
unit cell and a similar approximation can be made for other effective kernels (see discussion in
(Souadnia et al. 2002; Moyne 1997)).

To derive the one-equation time-asymptotic model, Eq (5), two techniques have been previously
used. Zanotti and Carbonell (1984) used an asymptotic analysis of the first two centered spatial
moments of (2eq) in a semi-infinite medium. A more direct one-step derivation can be obtained
by averaging over the two phases simultaneously and using a non-conventional perturbation de-
composition (see (Davit et al. 2010)). However, both approaches do not provide clear limitations
for the validity of this approximation. In the approach devised by Zanotti and Carbonell (1984),
higher order spatial moments have been neglected and it is unclear how this may affect solutions.
With the other approach, constraints are expressed in terms of scaling constraints of the concen-
tration perturbations; constraints which are not necessarily straightforward to interpret in real
applications.

To gain insight into the nature of these constraints, we develop in Section 3 analytical solutions
in a simple case and illustrate the transient behavior of the models. In Section 4, we use the
framework proposed in (Zanotti and Carbonell 1984) to study higher order moments in a one-
dimensional situation.

3 Convergence of solutions of the (2eq-nlt), (2eq) and (1eq∞) models: An example for the

case of pure diffusion

In this section, our goal is to gain insight into the long-time behavior of the three different models
presented above. In the general case, solutions to these equations require numerical computations.
To simplify our study, we will focus on analytical solutions in the case of pure diffusion in a
“space-clamped” stratified medium (see detailed description in Fig 2). Stratified geometries have
been used extensively as model systems (cf., literature cited throughout this paper) because they
capture the physics of the problem while allowing dimensional reduction. Furthermore, we will
focus on the relatively simple case of a sinusoidal excitation, so that the macroscopic signal is
fully characterized by the period of the oscillations, T ≡ 2π

ω . We remark that this problem is not
necessarily of particular importance to applications but it does allow to gain insight into the long-
time behavior of the models. Without loss of generality, we also fix εγ = Φγ = 1.0 so that we can
treat the phase ω as a boundary condition (lω → 0 in Fig 2).
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3.1 Models

The microscale diffusion problem boils down to the one-dimensional parabolic equation,

∂tc
micro
γ = Dγ

∂2cmicro
γ

∂x2
, (11)

with −l < x < +l, zero initial concentration, and the boundary conditions x = ±l maintained at
sin (ωt) for t ≥ 0. With regard to the macroscopic models, Eq (1) takes the form:

d〈c⋆γ〉γ
dt

+ d
dth ⋆ 〈c⋆γ〉γ =

d

dt
h ⋆ sin (ωt) . (12)

Eq (3) may be written as:

d〈cγ〉γ
dt

+h∞〈cγ〉γ = h∞ sin (ωt) , (13)

Eq (5) corresponds to the local mass equilibrium situation,

〈c∞γ 〉γ = sin (ωt) . (14)

In these equations, we have used the superscripts ⋆ and ∞ to denote the nonlocal and asymptotic
models, respectively.

3.2 Analytical solutions

Since we have imposed a spatially uniform concentration on the boundary, the nonlocal model is
exact and 〈c⋆γ〉γ can be determined via direct integration of the analytical solution to Eq (11);
a solution which can be found in (Carslaw and Jaeger 1946). Discarding exponentially decaying
terms, this operation yields

〈c⋆γ〉γ =
t→∞

C sin(ωt+D), (15)

with C =
√

(

〈A sin (χ)〉γ
)2

+
(

〈A cos (χ)〉γ
)2
, D = arctan

(

〈A sin(χ)〉γ
〈A cos(χ)〉γ

)

, χ = arg
{

cosh kx(1+i)
cosh kl(1+i)

}

,

A =
√

cosh 2kx+cos 2kx
cosh 2kl+cos 2kl and k =

√

ω
2Dγ

. For the solution of the local two-equation model, we apply

Laplace transforms to Eq (13) and obtain,

〈cγ〉γ =
t→∞

h∞
√

h2∞ + ω2
sin
(

ωt− arctan
(

ω

h∞

))

. (16)

For our purposes, we also need to determine a characteristic time (τ1) for the relaxation of h (t)
and the corresponding asymptotic value for the exchange rate, h∞. Eq (62) may be written as

h = 1
2l

∫+l
−l

Dγ
∂rγ
∂x dx with rγ solution of the following partial differential equation,

∂trγ = Dγ
∂2rγ
∂x2

− h, (17)

with the boundary condition rγ = 1 on Sγω. To facilitate solution, we decompose rγ into rγ =
1−Rγ ⋆ ∂

∂th where Rγ solves

∂tRγ = Dγ
∂2Rγ

∂x2
+ 1, (18)
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with the boundary condition Rγ = 0 on Sγω. The solution of Eq (18) is (see (Carslaw and Jaeger
1946))

Rγ =
l2

2Dγ

[

1− x2

l2
− 32

π3

∞
∑

n=0

(−1)n

(2n+ 1)3
cos

(2n+ 1)πx

2l
e−Dγ(2n+1)2π2t/4l2

]

, (19)

and the expression of h is derived from 〈Rγ〉γ ⋆ ∂th (t) = 1, e.g., by Laplace transform inversion

procedures. We can now extract the smallest eigenvalue in Eq (19) to obtain τ1 = 4l2

π2Dγ
and the

stationary part of Eq (19) yields h∞ =
3Dγ

l2 .

3.3 Results

To plot solutions, we fix l = 0.5 and the time t is non-dimensionalized with T = 2π
ω , i.e., t′ =

t
T = ω

2π t. Results are presented in Fig 3 for different ratios τ1
T = 2l2

π3Dγ
ω, after relaxation of the

exponentially decaying terms. Fig 4 shows the behavior of the phases and amplitudes of the three
models with varying τ1

T . These results illustrate two specific transient behavior. Firstly, it shows
that Eq (14) is only valid in the strict limit τ1

T → 0, when the phases and amplitudes of all three
models converge to a unique value. Secondly, it shows that the solution of Eq (12) converges towards
the solution of Eq (13) when τ1 ≪ T . More generally, this suggests that Eqs (3)-(4) represent a
good approximation of Eqs (1)-(2) under the condition that T ≫ τ1 where τ1 can be estimated via

τ1 ≡ O
(

sup

{

lγ
〈vγ〉γ

,
lω

〈vω〉ω
,

l2γ
Dγ

,
l2ω
Dγ

})

, (20)

and T via

T ≡ O
(

inf
{

T〈cγ〉γ , T〈cω〉ω , T∇〈cγ〉γ , T∇〈cω〉ω , T∇2〈cγ〉γ , T∇2〈cω〉ω
})

. (21)

In these equations, Tϕ is the characteristic time associated with ϕ.

To overcome the short-time limitations of the local two-equation model, one could use an
exchange coefficient, h∞, that depends on the frequency of the oscillations, ω, in Eqs (3) and (4),
i.e., without convolutions. For instance, such an approach was proposed in the case of transient
dispersion in porous media and is discussed in (Davit and Quintard 2012). Equating amplitudes
and phases of Eqs (15) and (16) yields the following values for the exchange rate:

hamplitude (ω)

ω
≡

√

(

〈A sin (χ)〉γ
)2

+
(

〈A cos (χ)〉γ
)2

√

1−
(

〈A sin (χ)〉γ
)2 −

(

〈A cos (χ)〉γ
)2

, (22)

and,

hphase (ω)

ω
≡ −〈A cos (χ)〉γ

〈A sin (χ)〉γ . (23)

To illustrate the behavior of these expressions, we have plotted
hamplitude

ω and
hphase

ω as functions

of τ1
T in Fig 5. Results show that

hamplitude

ω and
hphase

ω only overlap in the strict limit τ1
T → 0, where

two-equation models are not needed and the asymptotic formulation can be adopted. This shows
that it is not possible to recover the phase and the amplitude of the signal simultaneously and that
the exchange rate, h∞, cannot be adjusted to the frequency of the oscillations.
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4 Convergence of solutions of the (2-eq) and (1eq∞) models: Spatial moments analysis

In this Section, we consider the convergence of the solution of the (2eq) model to the solution of
(1eq∞) with increasing time. Our analysis will focus primarily on the spatial moments of the two
models, with our goal being to show that the properly conditioned moments of the two models
converge as time grows.

4.1 Preliminaries and definitions

Moments are mathematical tools that can be used to analyze the shape of spatial/temporal signals.
They have been used for a variety of purposes, including studies of: solute breakthrough curves in
soils, e.g., in (Stagnitti et al. 2000); the behavior of fractional advection-diffusion equations (see
in (Zhang 2010)); mixing in heterogeneous porous media (see in (Chiogna et al. 2011)); model pa-
rameter estimations from column experiments, e.g., in (D. F. Young and Ball 2000); and analytical
solutions in dual-permeability media in (Xu and Hu 2004).

Here, our study is based on developments performed by Zanotti and Carbonell (1984) who
used spatial moments to study the asymptotic behavior of (2-eq) for the propagation of a pulse in
an infinite medium. An interesting conclusion from this analysis is that the distance between the
spatial signals, 〈cγ〉γ and 〈cω〉ω, tends towards a constant Ω in the long time limit, not towards 0.
This result suggests that the macroscopic concentration fields, 〈cγ〉γ and 〈cω〉ω, are two separate
entities, even in the asymptotic regime and this is unclear how a single macroscopic concentration,
〈c〉γω, may be used to describe solute transport. To study this phenomenon, we will use the following
spatial moments (see for example (Govindaraju and Bhabani 2007)):

1. Raw spatial moments for intrinsic average concentrations of the (2eq) model:

µi
n (t) ≡

+∞
∫

−∞

xn〈ci〉idx. (24)

2. Raw spatial moments for the weighted average concentration of the (2eq) model:

µγω
n (t) ≡

+∞
∫

−∞

xn〈c〉γωdx. (25)

3. Centered spatial moments for intrinsic average concentrations of the (2eq) model:

mi
n ≡

+∞
∫

−∞

(

x− µi
1

)n
〈ci〉idx. (26)

4. Centered spatial moments for the weighted average concentration of the (2eq) model:

mγω
n ≡

+∞
∫

−∞

(x− µγω
1 )

n 〈c〉γωdx. (27)

5. Standardized spatial moments for the weighted average concentration of the (2eq) model:

Mγω
n ≡ mγω

n

(mγω
2 )

n
2

. (28)
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The corresponding spatial moments for the (1eq∞) model will be denoted by the superscript ∞:
µ∞
n , m∞

n and M∞
n . We will also use the following functional,

δn ≡
∣

∣

∣

∣

∣

mγω
n −m∞

n

(m∞
2 )

n
2

∣

∣

∣

∣

∣

, (29)

to measure deviations of the (2eq) model from the (1eq∞) model.
In order to understand how these moments can be used to describe the asymptotic behavior

of the two-equation model, we briefly review below their physical interpretation. The raw spatial
moments characterize the shape of the signal in a fixed referential. For example, the first order
moment corresponds to the mean position and the second order moment describes the net spreading.
If the mean position is transient, µ1 (t), the second order moment will account for the spreading
relative to the mean and for the spreading due to the movement of the mean. With dispersion effects,
one is only interested in the spreading relative to the mean which is the information captured by the
second order centered moments, m2. More generally, centered moments, mn, describe the shape of
the signal in the referential moving with µ1 (t). We can further rescale centered moments with the
second order moment to obtain standardized moments that may be used to measure the relative
importance of higher order moments compared with the spreading. Following this idea, we can
characterize differences between solutions and convergence properties using the definition given in
Eq (29).

4.2 Assumptions

To simplify the analysis, we will use the following assumptions:

1. The domain is treated as an infinite medium in which we assume that there is no mass in the
system at t < 0.

2. We consider only the case where the initial condition is specified by a delta inpulse, i.e.,
Qγ(x, t) = Qω(x, t) = δ(x)δ(t). The goal of this assumption is only to simplify the results;
more complex initial conditions can be found from such a solution by simple convolutions.

3. We assume that Vγω ≪ Vγγ , Vωγ ≪ Vωω, Dγω ≪ Dγγ , and Dωγ ≪ Dωω. Physically, Vii and Dii

contain the leading order terms; Vij and Dij are often neglected, e.g., for the mobile-immobile
models (see (Coats and Smith 1964)).

Note that the goal of hypotheses 2 and 3 is primarily to facilitate the presentation of the theoretical
analysis. Although the results are not presented in this paper, we studied numerically (similarly
to what we present in Section 4.6) the effect of these hypotheses, and did not observe a significant
(qualitative) modification of the results for typical 1-D problems.

4.3 Spatial moments analysis of the two-equation local model, (2eq)

The easiest way to determine the spatial moments of Eqs (3) and (4) is to compute them directly
from analytical solutions to the transport problem. However, there is no analytical solution for
the general form of the two-equation model, so an alternative approach is required. A balance
equation for the moments themselves can be determined by multiplying Eqs (3) and (4) by xn and
integrating by parts to obtain the following result

dµγ
n

dt
= n (n− 1)Dγγµ

γ
n−2 + nVγγµ

γ
n−1 − h∞

Φγεγ
(µγ

n − µω
n) for n ≥ 2, (30)

dµω
n

dt
= n (n− 1)Dωωµ

ω
n−2 + nVωωµ

ω
n−1 − h∞

Φωεω
(µω

n − µγ
n) for n ≥ 2, (31)
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with µγ
0 = µω

0 = 1, µγω
1 = V ∞t and,

V ∞ ≡ ΦγεγVγγ + ΦωεωVωω

Φγεγ + Φωεω
. (32)

This leads to the following expression for the weighted central second order moment:

1

2
mγω

2 = −3

2

ΦγεγΦωεω

(Φγεγ + Φωεω)
2
Ω2 + D

∞t+ exp, (33)

with

D
∞ ≡

∑

i,j=γ,ω

Φiεi
Φγεγ + Φωεω

Dij +
ΦγεγΦωεω

(Φγεγ + Φωεω)
2

∆V 2

α
. (34)

In these equations, we have used ∆V = Vγγ −Vωω, Ω = 1
α∆V where Ω represents the shift/distance

between the two signals at long times (see Fig 6 and (Zanotti and Carbonell 1984)), and

α ≡ Φγεγ + Φωεω
ΦγεγΦωεω

h∞. (35)

For simplicity, we have also grouped exponentially decaying terms of the form tme−kαt, where
m and k are positive integers, into the unique notation exp. We remark that, on considering the
time-infinite limit of Eq (33), we have reached the same conclusions than in (Zanotti and Carbonell
1984) and have found an equivalent expression for D

∞.
For centered moments, an analytical calculation up to the sixth order leads to the following

conclusion, ∀n ≥ 2:

mγω
n = (n− 1)!! (2D∞t)

n
2 +O

(

t
n
2
−1
)

+ exp for n even, (36)

mγω
n = O

(

t
n−1

2

)

+ exp for n odd, (37)

with (n− 1)!! =
∏

i;0≤2i<n−1

(n− 1− 2i). A formal derivation of these relationships is rather tedious,

so that we briefly outline below a methodology that may be used to prove these results. The first
step towards solution is to extract µγ

n (µω
n) from Eq (30) (Eq (31) respectively), which yields

µω
n = µγ

n +
Φγεγ
h∞

dµγ
n

dt
− Φγεγ

h∞

[

n (n− 1)Dγγµ
γ
n−2 + nVγγµ

γ
n−1

]

, (38)

µγ
n = µω

n +
Φωεω
h∞

dµω
n

dt
− Φωεω

h∞
[n (n− 1)Dωωµ

ω
n−2 + nVωωµ

ω
n−1] . (39)

Then, we may uncouple Eqs (30) and (31) by injecting Eq (38) into Eq (31) and Eq (39) into
Eq (30). The result of these operations can be expressed as a second order ordinary differential
equation on µγω

n and then on mγω
n (i.e., by considering the moving frame with velocity V ∞) that

may be used to perform a recurrence analysis and demonstrate Eqs (36)-(37).
For the standardized moments, it is thus straightforward to show that:

Mγω
n = (n− 1)!! +O

(

1

t

)

+ exp for n even, (40)

Mγω
n = O

(

1√
t

)

+ exp for n odd. (41)
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4.4 Spatial moments analysis of the one-equation time-asymptotic model, (1eq∞)

Following a similar technique, the moments of the one-equation model can be determined by mul-
tiplying Eq (5) by xn and integrating by parts to obtain the following relationship

dµ∞
n

dt
= n (n− 1)D∞µ∞

n−2 + nV ∞µ∞
n−1, n ≥ 2, (42)

with µ∞
0 = 1 and µ∞

1 = V ∞t. A similar approach was used by Luo et al. (2008) to determine the
temporal moments. To calculate these moments, we could also use the relationship given by Aris
(1958). From these equations, by considering the frame moving with µγω

1 , we can determine the
centered moments,

m∞
n = (n− 1)!! (2D∞t)

n
2 for n ≥ 2 even, (43)

m∞
n = 0 for n ≥ 2 odd. (44)

The standardized moments, defined in Eq (28), are:

M∞
n = (n− 1)!! for n ≥ 2 even, (45)

M∞
n = 0 for n ≥ 2 odd. (46)

In particular, we have the skewness of the Gaussian signal, M∞
3 = 0, and the kurtosis, M∞

4 = 3.

4.5 Theoretical analysis of the convergence

From Eq (33), we can obtain the first constraint for the validity of the one-equation approximation.
We require that t ≫ 1

α in order to relax the exponentially decaying terms. Equivalently, we will
write this constraint as t ≫ 1

h∞

by assuming Φγεγ ∼ Φωεω and avoid the simpler case where the
volume fraction weighting simplifies the analysis.

Even when these exponential terms are relaxed, we see, from Eqs (36)-(37) and Eqs (43)-(44)
that centered moments of Eqs (3)-(4) do not converge towards those of Eq (5). This is particularly
clear when considering the behavior of odd-order centered moments, which are non-zero for the
two-equation model, Eq (37), and zero for the one-equation model, Eq (44).

However, by comparing Eqs (40)-(41) with Eqs (45)-(46) and considering the long-time limit,
we see that there is a convergence of solutions in terms of standardized moments. In particular,
we have lim

t→∞
Mγω

3 = M∞
3 = 0 for the skewness and lim

t→∞
Mγω

4 = M∞
4 = 3 for the kurtosis. The

physical interpretation of these results is that one never rigorously obtains a normal distribution of
the concentrations; but the spreading (the second order centered moment) is eventually dominating
higher order deviations from the Fickian situation (higher order moments). This phenomenon is
illustrated in Fig 6.

To develop clear constraints that apply to any order, we define a metric, δn, that measures the
normality of the signal. In conjunction with the constraint for the relaxation of the exponential
terms, t ≫ 1

h∞

, we require that, for n ≥ 2:

δn =

∣

∣

∣

∣

∣

mγω
n −m∞

n

(m∞
2 )

n
2

∣

∣

∣

∣

∣

≪ 1, (47)

This constraint, for the second order, yields

3

2

ΦγεγΦωεω

(Φγεγ + Φωεω)
2

Ω2

D∞ ≪ t. (48)
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This inequality may be interpreted as the constraint
√
2D∞t ≫ Ω where

√
2D∞t is the net spreading

and Ω is the distance between the two signals (see the graphical representation of this constraint
in Fig 6). In addition, the definition of D∞, Eq (34), supplies

D
∞ ≥ ΦγεγΦωεω

α (Φγεγ + Φωεω)
2
∆V 2, (49)

which can be combined with Ω = 1
α∆V and Eq (48) to obtain the following (order of magnitude)

sufficient condition for δ2 ≪ 1:

t ≫ 1

h∞
. (50)

This shows that the constraints associated with δ2 and exp are the same; although δ2 corresponds
to a weak convergence of the form δ2 = O

(

1
t

)

. An identical analysis can be carried out for higher
order moments. It may be summarized as follows:

1. For n = 2k (k ∈ Z
+∗), there is correspondence between leading order terms, O

(

tk
)

, of mγω
2k and

m∞
2k. Therefore, we have mγω

2k −m∞
2k = O

(

tk−1
)

and m∞
2 = O (t) which yields δ2k = O

(

tk−1

tk

)

=

O
(

1
t

)

.

2. For n = 2k + 1 (k ∈ Z
+∗), m∞

2k+1 = 0 and mγω
2k+1 = O

(

tk
)

, so that mγω
2k+1 −m∞

2k+1 = O
(

tk
)

.

This yields δ2k+1 = O
(

tk

tk+ 1
2

)

= O
(

1√
t

)

.

At any order, an analysis similar to that of the second order supplies the constraint t ≫ 1
h∞

; with a

convergence in O
(

1
t

)

for even-order moments and in O
(

1√
t

)

for odd-order moments. Higher order

analytical calculations are extremely tedious so that we will focus, in Section 4.6, on a numerical
confirmation of the behavior of δn up to the sixth order.

4.6 Numerical analysis of the convergence

Eqs (30) and (31) were computed numerically to determine the values of δn up to the sixth order.
We used MATLABTM environment with the ode15s solver to compute these solutions; a relative
tolerance of ≈ 2x10−14 was adopted for the solver. The moments computed are presented in Fig 7
for δn, up to sixth order, with Φγεγ = 0.7, Φωεω = 0.1, Vωγ = Vγω = Dωγ = Dγω = 0, Vγγ = 2,
Vωω = 1, Dγγ = 10, Dωω = 5 and h∞ = 1.

The results are presented in a log-log graph; examination of the plots shows that there are two
different time scales for the evolution of the moments. For small times, t ≪ 1/h∞, the dominant
term is the exponential part. For longer times, t ≫ 1/h∞, δn monotonically decreases to zero as

O
(

1√
t

)

and O
(

1
t

)

; therefore corroborating the theoretical results presented above.

5 Discussion and conclusions

Upscaling techniques aim at filtering information from the microscale to obtain homogenized de-
scriptions of the transport phenomena. This filtering process usually takes the form of constraints
regarding the space and time scales of the transport processes. However, there is not uniqueness
of these constraints and the scaling must be adapted to the physical configuration of interest. In
this paper, we provided some insight into the transient behavior of models that are specific to
the description of solute transport in two-region porous media. We focused on three deterministic
formulations that have been previously developed, namely: the two-equation time nonlocal model,
the two-equation time local model and the one-equation time-asymptotic model. Roughly speaking,
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we may think of these three models as approximations of the exact nonlocal formalism; approxima-
tions that are particularly well suited to the two-region problem: the two-equation time nonlocal
model may be seen as second-order in space, nonlocal in time; the two-equation time local model
as second-order in space and time; and the asymptotic model as first-order in space and time.

In the first part of this study, we used the volume averaging theory to derive these three
models and discuss the assumptions that are made during upscaling. In the second part of this
work, we compared results obtained using the three different models via analytical solutions to
the purely diffusive transport problem. We focused on a “space-clamped” stratified geometry with
periodic Dirichlet boundary conditions. The time-scale constraints associated with each formulation
were discussed by comparing the period of the oscillations with characteristic times of the partial
differential equations. Finally, we studied the asymptotic behavior of the spatial moments of Eqs (3)
and (4) for the propagation of a pulse through an infinite/semi-infinite medium.

The primary result of this paper is to show that there is convergence of the solution of Eqs (3)-(4)
towards the solution of Eq (5) in terms of standardized moments, but not in terms of centered mo-
ments. The physical interpretation of this result is that, in the asymptotic regime, higher order deviations

from the Fickian situation are increasing at a slower rate than the net spreading; but these deviations are

not converging towards zero. This result sheds light on the physics underlying the correspondence
between these two models and shows that convergence only occurs in a weak sense. It may also
be useful to interpret more general aspects of mass transport in heterogeneous porous media, such
as the difference between spreading and mixing. For example, Le Borgne et al. (2010) show that
net spreading may scale in a Fickian manner while mixing can persist to scale in a non-Fickian
manner. This phenomenon is reminiscent of the idea that, in the asymptotic regime, deviations
from the Fickian situation do not disappear, i.e., solutions do not converge in terms of centered
moments; but become small compared with the net spreading, i.e., solutions do converge in terms
of standardized moments.

Secondary results of this paper can be summarized as follows:

1. We have detailed the derivation of the above three models using the volume averaging and
moments matching techniques. We have discussed the domains of validity of the models, as
illustrated in Fig 8.

2. We have defined a generic measure of higher order deviations from the asymptotic regime,

δn =

∣

∣

∣

∣

mγω
n −m∞

n

(m∞

2
)
n
2

∣

∣

∣

∣

∀n ≥ 2, that may be used in a more general manner to compare the behavior

of a variety of different models.
3. We have shown in Section 3 that h∞ cannot be made frequency-dependent and transient effective

kernels must be used with convolutions.

In essence, this study extends the work of (Zanotti and Carbonell 1984) and (Moyne 1997; Moyne
et al. 2000; Souadnia et al. 2002; Quintard et al. 2001) in that we solve the issue of higher order
moments that was not addressed in (Zanotti and Carbonell 1984) and study the convergence of the
solutions of the two-equation and one-equation formulations. When compared with more generic
discussions of nonlocal transport theories with randomly varying fields (see Koch and Brady (1987,
1988); Neuman (1993)), the originality of this work is to explore in more details the relationships
between three localization procedures and models which are specific to the two-region problem.

Future work will focus on:

– developing a broader comparison of these models with other descriptions, e.g., multi-rate mass
transfer.

– studying the influence of initial/boundary conditions upon these results.



Correspondence between one- and two-equation models for solute transport in porous media 17

Acknowledgments

Support from CNRS/GdR 2990 is gratefully acknowledged. The second author (BDW) was sup-
ported in part by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-
07ER64417. This publication was based on work supported in part by Award No KUK-C1-013-04,
made by King Abdullah University of Science and Technology (KAUST).

Appendix A

To develop equations governing mass transport at the macroscopic scale, we need to average each
Darcy-scale equation:

i− region : 〈∂t (εici)〉+ 〈∇ · (εivici)〉 = 〈∇ · (εiDi · ∇ci)〉. (51)

To interchange derivatives and integrals, we use: (1) the general transport theorem for static interfaces
(see (Whitaker 1981) or Leibniz rule); and (2) the spatial averaging theorems (see in(Howes and
Whitaker 1985; Gray et al. 1993)). These yield

i− region : ∂t

(

Φiεi〈ci〉i
)

+∇ ·
(

Φiεi〈ci〉i〈vi〉i
)

=∇ ·
[

ΦiεiDi ·
(

∇〈ci〉i +
1

Vi

∫

Sγω

nicidS

)]

(52)

+
1

V

∫

Sγω

ni · εiDi · ∇cidS −∇ ·
(

Φiεi〈c̃ivi〉i
)

.

Further, we use the following decompositions ci = 〈ci〉i + c̃i and 〈ci〉ix+y = 〈ci〉ix + y · ∇〈ci〉ix +

O
(

∇∇〈ci〉ix
)

where x is the vector pointing towards the position of the center of the REV and
y is the vector pointing inside the REV. We also neglect terms involving y by imposing R ≪ L

(Whitaker 1999), where L is a characteristic field-scale length. This supplies

1

V

∫

Sγω

nicidS ≃ 〈ci〉ix

(

1

V

∫

Sγω

nidS

)

+
1

V

∫

Sγω

nic̃idS. (53)

Using spatial averaging theorems for unity yields 1
V

∫

Sγω
nidS = −∇Φi and since we have assumed

constant volume fractions, we can eliminate the first term in the right-hand side of Eq (53). A
similar approximation applied to averaged fluxes and advective terms leads to Eq (8).

Appendix B

Upon substituting Eq (10) into Eqs (9), we can collect separately terms involving ∇〈cγ〉γ , ∇〈cω〉ω
and 〈cγ〉γ −〈cω〉ω. For all these problems, we consider only zero initial conditions and local period-
icity.

Collecting terms involving 〈cγ〉γ − 〈cω〉ω yields

∂tri + vi · ∇ri = ∇ · (Di · ∇ri)± Φ−1
i ε−1

i h (t) , (54a)

BC1 : rγ − rω = 1, on Sγω, (54b)

BC2 : nγω · (εγDγ · ∇rγ − εωDω · ∇rω) = 0, on Sγω, (54c)

Periodicity : ri (x+ pk) = ri (x) , k = 1, 2, 3. (54d)
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Using previous assumptions, we can write h (t) ≡ Φγεγ〈∇ · (Dγ∇rγ)〉γ = −Φωεω〈∇ · (Dω∇rω)〉ω.
The symbol ± corresponds to the signs − in the region γ, + in the region ω. We have used pk to
represent the three lattice vectors that are needed to describe the 3-D spatial periodicity. We also
have the solvability condition, 〈ri〉i = 0.

Collecting terms involving ∇〈cγ〉γ yields

∂tbiγ + vi · (∇biγ − riI) + δiγ ṽi = ∇ · [Di · (∇biγ − riI)]− 〈ṽiri〉i ± Φ−1
i ε−1

i β
∗
1, (55a)

BC1 : bγγ − bωγ = 0, on Sγω, (55b)

BC2 : nγω · [−εγDγ · (∇bγγ − rγ I) + εωDω · (∇bωγ − rωI)] = nγω · εγDγ , on Sγω, (55c)

Periodicity : bij (x+ pk) = bij (x) , k = 1, 2, 3. (55d)

Here β∗
1 ≡ Φγεγ〈∇ · [Dγ · (∇bγγ − rγ I)]〉γ = −Φωεω〈∇ · [Dω · (∇bωγ − rωI)]〉ω and δij ≡ 1 if i = j,

δij ≡ 0 if i 6= j.The symbol ± corresponds to the signs − in the region γ, + in the region ω. We
also have the solvability condition, 〈biγ〉γ = 0.

Collecting terms involving ∇〈cω〉ω yields

∂tbiω + vi · (∇biω + riI) + δiωṽi = ∇ · [Di · (∇biω + riI)] + 〈ṽiri〉i ± Φiε
−1
i β

∗
2, (56a)

BC1 : bγω − bωω = 0, on Sγω, (56b)

BC2 : nγω · [−εγDγ · (∇bγω + rγ I) + εωDω · (∇bωω + rωI)] = −nγω · εωDω, on Sγω, (56c)

Periodicity : bij (x+ pk) = bij (x) , k = 1, 2, 3. (56d)

where we have used β∗
2 ≡ Φγεγ〈∇ · [Dγ · (∇bγω + rγ I)]〉γ = −Φωεω〈∇ · [Dω · (∇bωω + rωI)]〉ω. The

symbol ± corresponds to the signs − in the region γ, + in the region ω. We also have the solvability
condition, 〈biω〉ω = 0.

Appendix C

Effective velocities, containing intrinsic averages of the microscale velocities, are given by

Vγγ ≡ 〈vγ〉γ − Φ−1
γ ε−1

γ β
∗
1 − 〈ṽγrγ〉γ , (57)

Vωω ≡ 〈vω〉ω + Φ−1
ω ε−1

ω β
∗
2 + 〈ṽωrω〉ω. (58)

Inter-region velocities are given by

Vγω ≡ −Φ−1
ω ε−1

ω β
∗
2 + 〈ṽγrγ〉γ , (59)

Vωγ ≡ Φ−1
γ ε−1

γ β
∗
1 − 〈ṽωrω〉ω. (60)

Dispersion tensors are given by

Dij ≡ Di ·
(

I+
1

Vi

∫

Sγω

nibijdS

)

− 〈ṽibij〉i, (61)

and the first-order exchange coefficient reads

h ≡ 1

V

∫

Sγω

nγω · εγDγ · ∇rγdS = − 1

V

∫

Sγω

nωγ · εωDω · ∇rωdS. (62)

With these definitions, effective parameters exhibit a time-dependence, even though we have used
the notations Dij , Vij and h instead of Dij (t), Vij (t) and h (t).



Correspondence between one- and two-equation models for solute transport in porous media 19

References

Ahmadi, A., Quintard, M., Whitaker, S., 1998. Transport in chemically and mechanically heterogeneous porous
media, V, Two-equation model for solute transport with adsorption. Advances in Water Resources 22, 59–86.

Aris, R., 1958. Dispersion of linear kinematic waves. Proceedings of the Royal Society A: Mathematical and
Physical Sciences 245, 268–277.

Bensoussan, A., Lions, J., Papanicolau, G., 1978. Asymptotic Analysis for Periodic Structures. North-Holland
Publishing Company, Amsterdam.

Brenner, H., 1980. Dispersion resulting from flow through spatially periodic porous media. Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences 297 (1430), 81–133.

Carslaw, H., Jaeger, J., 1946. Conduction of Heat in Solids. Clarendon Press, Oxford.
Chastanet, J., Wood, B., 2008. The mass transfer process in a two-region medium. Water Resources Research 44,

W05413.
Cherblanc, F., Ahmadi, A., Quintard, M., 2003. Two-medium description of dispersion in heterogeneous porous

media: Calculation of macroscopic properties. Water Resources Research 39 (6), 6–1.
Cherblanc, F., Ahmadi, A., Quintard, M., 2007. Two-domain description of solute transport in heterogeneous

porous media: Comparison between theoretical predictions and numerical experiments. Advances in Water
Resources 30 (5), 1127–1143.

Chiogna, G., Cirpka, O., Grathwohl, P., Rolle, M., 2011. Relevance of local compound-specific transverse dispersion
for conservative and reactive mixing in heterogeneous porous media. Water Resources Research 47, W07540.

Coats, K., Smith, B., 1964. Dead end pore volume and dispersion in porous media. Society Of Petroleum Engineers
Journal 4, 73–84.

Cushman, J., 1997. The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles. Kluwer Acad.,
Norwell, Mass.

Cushman, J., Ginn, T., Oct. 1993. Nonlocal dispersion in media with continuously evolving scales of heterogeneity.
Transport in Porous Media 13 (1), 123–138.
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ω-region γ-region

R

M

Macroscale

Fig. 1 Schematic diagram highlighting the hierarchy of the main scales involved in solute transport in two-
region porous media. The macroscale is characterized by the length L; the support scale, associated with V, is
characterized by the radius R; and the microscale (Darcy-scale) regions are characterized by lengths ℓγ and ℓω .
Throughout this paper, homogenization of microscale equations relies on the following inequalities: L ≫ R ≫
ℓγ , ℓω .

Exchange rate kernel h(t)

Exchange rate coefficient h∞
Phase γ

Phase ω

Phase ω

cω = sin(ωt)

cω = sin(ωt)

lω

lω

0

+l

−l

x

Fig. 2 Schematic diagram illustrating the stratified space-clamped configuration with sinusoidal excitation. The
concentration field within the phase (ω) is uniform (space clamped) and sinusoidal, cω = sin (ωt). For simplicity,
we will also consider the case φγ = 1.0 which corresponds to the limit lω → 0, i.e., the phase (ω) can be treated
as a boundary condition.
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Fig. 3 (Color online) Plots of
〈

c⋆γ
〉γ

(− 2eq nonlocal), 〈cγ〉γ (� 2eq local) and
〈

c∞γ
〉γ

(◦ 1eq) as functions of

t′ = t
T
, for various ratios τ1

T
. Here, we have used l = 0.5 and εγ = Φγ = 1.0. These plots were obtained in

MAPLETM by using the analytical solutions given in Eqs (15), (16) and (14). They show that: (1) Eq (14) is only
valid in the strict limit τ1

T
→ 0; and (2) (− 2eq nonlocal) may be approximated by (� 2eq local) when τ1 ≪ T .
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π3Dγ
. Here, we have used l = 0.5 and εγ = Φγ = 1.0. These plots were

obtained in MAPLETM by using the amplitude and phase of analytical solutions given in Eqs (15), (16) and (14).
Similarly to Fig 3, they show that: (1) Eq (14) is only valid in the strict limit τ1

T
→ 0; and (2) (− 2eq nonlocal)

may be approximated by (� 2eq local) when τ1 ≪ T .
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Fig. 5 (Color online) Plots of hphase/ω (◦) and hamplitude/ω (�) as functions of τ1
T

= ω 2l2

π3Dγ
. These plots were

obtained in MAPLETM by using analytical solutions given in Eqs (23) and (22). They show that h∞ cannot be
adjusted to the frequency of the oscillations because hphase/ω ≃ hamplitude/ω only in the low-frequency limit when
two-equation models are not necessary and the one-equation asymptotic model can be used.
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Fig. 6 (Color online) Schematic diagram illustrating the transition from the pre-asymptotic to the asymptotic

regime. The picture shows that the net spreading,
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2D∞t, will eventually dominate higher order deviations from

normality, δn ≪ 1 ∀n ≥ 2 for t ≫ 1
h∞

in an infinite medium.
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Fig. 8 (Color online) Schematic representation of the domains of validity of the different models for a pulse in
a dual-region infinite porous medium. This diagram illustrates three different domains: (1) for t ≪ τ1, nonlocal
formulations are required; (2) for t ≫ τ1, the two-equation local model can be used; and (3) for t ≫ τ2, the
one-equation time-asymptotic model can be used.





RECENT REPORTS

01/12 Mechanical growth and morphogenesis of seashells Moulton
Goriely
Chirat

02/12 How linear features alter predator movement and the functional
response

McKenzie
Merrill
Spiteri
Lewis

03/12 The Fourier transform of tubular densities Prior
Goriely

04/12 Numerical studies of homogenization under a fast cellular flow. Iyer
Zygalakis

05/12 Solute transport within porous biofilms: diffusion or dispersion? Davit
Byrne
Osborne
Pitt-Francis
Gavaghan
Quintard

65/11 Adaptive Finite Element Method Assisted by Stochastic Simula-
tion of Chemical Systems

Cotter
Vejchodsky
Erban

06/12 Effects of intrinsic stochasticity on delayed reaction-diffusion pat-
terning systems

Woolley
Baker
Gaffney
Maini
Seirin-Lee

07/12 Axial Dispersion via Shear-enhanced Diffusion in Colloidal Sus-
pensions

Griffiths
Stone

08/12 Qualitative Analysis of an Integro-Differential Equation Model of
Periodic Chemotherapy

Jaina
Byrne

09/12 Modeling Stem/Progenitor Cell-Induced Neovascularization and
Oxygenation

Jain
Moldovan
Byrne

10/12 Allee Effects May Slow the Spread of Parasites in a Coastal Marine
Ecosystem

Krkošek
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