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PREFACE 
 

This is my Honors College Thesis project. Through the Opportunity Plus program at Oregon 

State, offered by the College of Engineering and the University Honors College, I will be 

continuing this research and expanding this work into a Master’s Thesis. Expected completion of 

physical tests, data analysis and the thesis is about one year from now. 

 

All units are English. This is for simplicity, convenience, and to prevent error in conversion. 

Design, experimentation, and results will all be done in English units, so this is appropriate. 

 

 



 

INTRODUCTION 
 
 
 
The most commonly used loads in structural engineering include wind, rain, snow, earthquake, 

live and dead loads. Also included in the ASCE Minimum Design Loads publication are loads 

due to hydrostatic loads, flood loads and earth pressure loads (ASCE and SEI, 2005). Despite 

consideration of a variety of loads, most building codes and design specifications, provide only 

minimal guidance to design and construction professionals on the effects of ponding. The lack of 

dedicated space in code is not reflective of the importance or intricacy of this type of loading. 

Ponding related roof collapses are common, destructive, and potentially life threatening. They 

often occur without warning, and can be difficult to predict (Blaauwendraad, 2007). They have 

occurred on roofs made of a variety of materials, including wood, steel, concrete and aluminum 

(Haussler, 1962) (Moody and Salama, 1967). Failures due to these loads have occurred across 

America, in both northern and southern regions, regardless of climate. This type of loading and 

the continued collapse of engineered roof systems under such conditions demand more research, a 

better understanding of the phenomena, and more prescriptive design provisions in building 

codes. 

 
 
Definition 
 
 
The ponding condition can be defined simply as progressive deflection and resulting 

accumulation of load until either stability or collapse is reached. In a typical scenario, a nearly flat 

roof will collect a certain amount of load in the form of snow or standing water, which will cause 

deflection. Assuming water is available, it can fill this deflection to a certain height (to at least the 

height of the supports), and the deflection will create a still larger volume for the water to fill. As 

more water flows in, the deflection increases, and the water level continues to rise. This process 

can continue to one of three end cases. First, the roof system could reach stability, in which case 
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excess water will flow out over the edges, leaving collected water to eventually drain or dry out 

later. Second, the roof system could approach stability, but reach an overload condition before 

stability, and fail because the loads are too large. Third, in the most dangerous case, the roof 

deflections could become large and unbounded rapidly so that the roof system will never reach 

stability. In this case, the roof will fail eventually due to overload. 

 
 
Ponding Stability 
 

There are two phenomena that lead to failure under ponding loads: overload due to load 

amplification, and instability. While the overload condition will be tested, as it is more common, 

stability is also investigated. Ensuring stability of a roof system is not a simple matter, as the 

literature demonstrates. Many factors play a role, including the effects of two way systems, 

support conditions, sloped roofs, camber, and the general geometry of the system. The work done 

in the area has shown that ponding stability or instability can be determined, and there are various 

methods of doing so. The most simple and widely cited ponding stability criterion was initially 

published by Robert Haussler in 1962, for a flat, simply supported beam. This generally 

represents the worst case, and a safe way to ensure stability. It is reproduced in modified form 

here: 

 4 4EI BLπ γ>  (1.1) 

Where E is the modulus of elasticity, I is the moment of inertia, L is the length, B is the spacing 

between beams and γ is the density of the fluid ponding on the roof. It is worth noting that the 

ponding problem is purely geometric. In general, the stability of a system will depend on the 

properties of the members and their layout in the system. The properties that determine stability 

are internal to the system and do not include external factors, such as the initial load. 
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If a system is stable, then as the load and deflections increase, they will approach a limit. As 

pointed out earlier, this limit may be above or below the critical load that will fail the structure, 

but if an infinitely strong, yet flexible system is assumed, then a stable system will come to 

equilibrium and not fail. If a system is unstable, the load and deflection will increase 

unboundedly, until failure is reached. In this case, if an infinitely strong, yet flexible system is 

assumed, then it will simply deflect infinitely far. This means that for an unstable system with 

water available, any initial imperfection or deflection that allows water to begin to collect will be 

catastrophic. 

 
 
Causes of Ponding 
 

Ponding loads can be caused by either rain or snow loads. It is common for snow on a roof to 

melt as heat passes through the building membrane, which can lead to the ponding effect. 

Additionally, snow on a roof often acts as a sponge, absorbing rainfall, and increasing the loads 

on a roof. Rain after a snowstorm may produce some of the heaviest loads a roof will experience, 

and can lead to ponding. 

 

Several things must be present in a roofing system for it to be susceptible to ponding loads. First, 

it must be a relatively flexible roof. Without this quality, the roof will not deflect enough to 

collect additional water to create a ponding situation. Also, a roof must either be relatively flat, or 

sloped with some form of a parapet that allows collection of runoff water. Each of these 

properties will allow water to pond, and initiate deflections that may continue to failure. Other 

issues that can exacerbate the problem include blocked, misplaced, or missing drains or scuppers, 

and initial sag due to mechanical units or other unexpected dead loads. One problem to be aware 

of is that often, drains are placed near columns (Kaminetzky, 1991). This can be a problem 



4 
 

because as the roof deflects under load, the points at columns will be the high points, and there is 

little sense in providing a drain at a high point. 

 

Over the last century, there has been a trend in construction towards stronger materials. By using 

high strength materials such as steel, more efficient, long span roofs made of smaller, shallower 

and more slender building elements have been possible (Bohannan and Kuenzi, 1964). This trend 

is epitomized in the efficiency provided by open web steel joists: very slender elements made of 

strong but ductile materials can lead to very efficient but very flexible structural units. All of 

these properties serve to make it increasingly flexible, which can increase the chances of ponding 

loads. While they allow for more efficient designs, high strength materials and flexible roofs 

require careful attention to detail to prevent ponding. 

 
 
Prevention 
 

It seems it would be a simple matter to ensure that a roof was stable and strong enough to 

withstand these loads, yet buildings continue to collapse under ponding loads. The problem in 

practice is that systems that are stable under the criteria provided in the literature and in the 

design specifications still experience a degree of the ponding effect. A beam that is close to the 

critical ratio will be subjected to an amplification of the loads it experiences. A beam that is stable 

and strong enough to hold loads will still deflect, allowing larger loads to collect on the system. 

As will be seen subsequently, this amplification factor is not accounted for in roof systems that 

provide a slight pitch. The two simplest ways to avoid ponding are to either increase the pitch of 

the entire roof, or to provide more drainage in better locations (midspan), and conduct regular 

maintenance and inspection of the drainage systems. Both of these options will help to limit the 

water that collects on the roof and can help to prevent ponding loads. While not a cure for the 

problem, providing additional camber to steel joists or to the roofing system will help to reduce 
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the effects of ponding loads. A cambered roof will collect water first at the edges, instead of at 

midspan, which produces much smaller bending moments and stresses in the system. This can 

easily be the difference between a failed and a safe roof. 

 
 
Data Collection 
 

The first thing any researcher will find regarding structural failures is that it is incredibly difficult 

to get data. It is hard to find any relevant, important, accurate data at all, let alone a 

comprehensive collection of information on the subject. It seems as though failures do not like 

exposure. In an article published in June 1981, a forward looking author wrote about the lack of 

available information on structural failures (ENR, 1981): 

“Large-scale structural failure is a nightmare that haunts the construction 
industry. The financial devastation, the demolished reputations and the loss of 
life that could result from collapse have troubled the sleep of probably every 
architect, engineer, contractor or owner at some time. 
This frightening quality of failures almost guarantees that they will continue to 
happen. Fear, embarrassment and the gag of interminable lawsuits have kept 
information on failures from traveling quickly enough, what little of it gets into 
general circulation at all. 
The way to dispel a nightmare is to attack it with hard fact, with eyes open wide 
and the mind alert… 
…A more promising development is the Engineering Performance Information 
Center. Its developers hope eventually to set up repositories for information on 
all types of failures, in a standardized format that would permit the comparisons 
necessary to develop an understanding of how failures can be prevented. This 
availability of complete and accurate information could be the first step towards 
shaking the dread of collapse.” 

 
The result of this work was the Architecture and Engineering Performance Information Center, 

established at the University of Maryland in 1982. The center no longer exists in this form, and 

could not be found elsewhere. It is likely that the “Fear, embarrassment and gag of interminable 

lawsuits” kept support from reaching the volume required to make it useful. A data center as 

described here would be incredibly valuable, and could lead to fewer structural failures in the 

future. It remains to be seen, however, if such an institution will succeed. 
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The best information obtained regarding failures, roof collapse and ponding loads came from the 

Factory Mutual Insurance Company (FM Global). They provide public data sheets on their 

webpage regarding the safety of a variety of commercial buildings and equipment. FM Global 

Public Data Sheet 1-54 provides information relevant to structural roof collapses, and some 

important statistics. An employee was also contacted for more specific information. 

 

According to FM Global statistics, more than 1700 roof failures occurred over the twenty years 

from 1977 to 1996 (FM Global, 2006). FM Global states that the primary cause of overloading 

that leads to these failures is ponding of water in roof depressions. Their statistics show that the 

majority of these failures occur on flat roofs, and that blocked or inadequate drainage systems are 

a large contributor to the ponding problem. In a phone conversation with an employee at FM 

Global, it was noted that roof collapse is a serious problem, and that roof failures are typically 

very expensive, but that the number of deaths is relatively very small. It was also pointed out that 

the majority of roof collapses are due to snow and rain, and that collapse is a much larger 

problem in the southern states, as rainfall intensity is higher, and resistance to loads is often 

lower, due to lower design snow loads. 

 

FM Global also provided financial data on the costs involved in roof collapse. The data provided 

is representative of all roof collapses that were insured by FM Global, and provides the data both 

by number of failures and by the costs of those failures. This data shows that the average cost of a 

roof failure is around $770,000, which illustrates how costly these failures are. In the first set of 

data, the failures are divided by the type of load; in the second set, they are divided by type of 

construction.  From the first set, it can be seen that the two most damaging loads, by expense, are 

snow and rain (both contributors to the ponding effect). From the second set of data, it can be 

seen that the two most damaged roofing systems, by cost, are metal buildings and steel decking 
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on a steel frame, indicating that flexible materials more often lead to failures. Together, this data 

indicates that the ponding effect is a very strong contributor to roof collapse. 

Roof Collapse Overload Losses By Type of Load 1986-2005 
Probable Overload Cause No. of Losses Indexed Gross 2007$ 
SNOW, ICE, HAIL 730 $588,739,011 
RAIN, ETC 255 $219,910,829 
FIXED EQUIPMENT LOAD 16 $40,473,920 
MISCELLANEOUS OVERLOAD 90 $33,761,599 
CEMENT, SAND 15 $13,511,047 
SNOW, ICE EQUIPMENT OVERLOAD 21 $12,988,698 
STORAGE 55 $10,788,188 
MISCELLANEOUS MATERIAL 4 $4,526,282 
SAWDUST, CHIPS 9 $4,434,785 
TEMPORARY EQUIPMENT LOAD 16 $4,006,022 
Grand Total 1,211 $933,140,380 

Table 1: Roof Collapse Data by Load 

Roof Collapse Overload Losses By Type of Construction 1986-2005 
Type of Construction No. of Losses Indexed Gross 2007$ 
All Metal Buildings 116 $369,027,896 
Steel Deck on Steel 141 $207,629,811 
Not Classified by Construction Type 779 $181,675,505 
Concrete on Steel (Exposed) 22 $49,147,899 
Boards on Joists 81 $42,292,682 
Plank on Timber or Steel 24 $30,942,251 
Plywood on Laminated Beam 23 $25,914,381 
All Concrete (No exposed steel) 11 $14,050,841 
Plank on Laminated Timber 7 $8,990,095 
Miscellaneous 7 $3,469,019 
Grand Total 1,211 $933,140,380 

Table 2: Roof Collapse Data by Construction 

To put this data in perspective, it is important to note that it only represents losses from the 

companies FM Global ensures, which include about one third of S&P 1000 companies. FM 

global does not track deaths in their statistics, as they are only a facilities insurance agent. 

According to other estimates, however, roof collapses cause about 20 deaths yearly (Senteck, 
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2008). They also lead to huge financial costs and delays to companies, which could force some 

smaller companies to close.  

 
 
Case Study: New OSU Energy Center 
 

The best way to get a good practical understanding of how these types of roofs (steel deck, steel 

joist) are put together is to look at an actual example. There just happens to be a great example of 

this type of construction on the OSU campus now. The new Energy Center, which is a 

replacement and upgrade to the old facility, will have about 23 thousand square feet of building 

space and produce enough energy to power about half of the campus. This facility provides an 

interesting example of steel joist roof design. A typical roof will be pitched to the edge so that 

rain runs off into gutters. This roof, however, is pitched in both directions, so the rain from either 

side collects in the middle of the building. 

 

The structure will use a steel deck roof supported on steel joists. The membrane roofing system 

will consist of a 2 ply SBS modified bitumen roofing system on ½” Georgia Pacific DensDeck 

insulation. Based on the design drawings, the joists of the highest roof are 30’ 16K9 joists spaced 

at 7.5’, and are welded to their supports. These joists are shorter than typical, but their strength is 

representative of roof loads in the area. Included here are photos of the facility during 

construction. 
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November 15, 2007 
The joists have been installed, and some decking has begun to go up: 
 

  
 
 
 
 
November 30, 2007    February 25, 2008 
All of the steel decking has been installed: Insulation and roofing are being installed: 
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BACKGROUND 
 
 
 
Literature Review 
 

Ponding has become a more important design consideration recently as a result of increased 

strength of materials available for construction, which leads to more flexible roofing systems. 

Although roof collapses have been a major concern for quite some time, collapse due to this 

specific load scenario was not studied until the 1960s. In the following, technical literature will be 

reviewed and summarized. Note that the material comes from a variety of sources, so variables 

are defined differently in different places. For this reason, all variables will be defined with the 

equations containing them. 

 

The first paper written on the topic was published in 1962 by Robert W. Haussler (Haussler, 

1962). In this paper, the author begins by assuming that the roof structure is a simply supported 

beam, and that deflections can be approximated by a half sine wave. Many authors use this 

approximation, as it makes the mathematics much simpler, and is only slightly conservative. He 

also assumes that the ponding fluid is not held by any wall, but only rises to the level of the 

supports. Using this as a starting point, he finds that for a stable system under water loads: 

 
4

4

EI
L
π γ>  (2.1) 

Where E is the modulus of elasticity, I is the moment of inertia per inch of width, L is the length 

and γ is the density of the fluid. If a roof is flat, provided with adequate drainage, and meets this 

stability requirement, then it will be safe from ponding loads. He also states that any roof built on 

an adequate slope will not experience ponding loads, as water will simply run off. 
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Haussler provides a very simplified method for calculating the required slope for a safe roof. He 

suggests the designer choose an initial slope, then use local rainfall data to estimate a depth at the 

low end. Assuming this depth is constant across the roof (a very conservative and simple 

assumption), an end rotation can be calculated. This rotation can then be used as a conservative 

value for the safe pitch of the roof.  

 

Finally, Haussler notes that the analysis of complex roof structures (those with primary and 

secondary members) could be handled by using the sum of individual deflections. A designer 

could apply a 5 psf load (approximately one inch of water), then sum the resulting deflection of 

each system. If this deflection is greater than an inch, then ponding will probably be a problem. 

He also considers long span systems, and concludes that the common code live load limit of a 

fraction of the length (live load deflection limited to L/360) is meaningless with respect to 

ensuring ponding stability. The equation Haussler arrived at, shown above, is not dependant on 

the live load at all. A better limit to ensure ponding stability would be a ratio of deflection to load 

(1/2 inch per 5 psf). 

 

Two years later, analysis of ponding loads superimposed on existing load cases was done 

(Bohannan and Kuenzi, 1964).  The authors began by assuming linear elastic behavior and a 

sinusoidal deflected shape. Using energy methods, the authors determine that the work done by 

the load will be less than the energy in the beam if: 

 
4

4

EI k
a
π

>  (2.2) 

Where E is the modulus of elasticity, I is the moment of inertia, a is the length and k is the unit 

weight of the fluid times the beam spacing. They conclude that if the inequality is not satisfied, 

then the work done by the load will be greater than the bending energy, and the beam is unstable. 

This is essentially a confirmation of the work of Haussler. The authors continue, however, to 
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expand the work to the case of an original distributed load in addition to the ponding load due to 

the deflection. The midspan deflection resulting from both loads can be calculated as: 

 
4

0
4

4

5 *

384 1

w a
kaEI

EIπ

Δ =
⎛ ⎞
−⎜ ⎟

⎝ ⎠

 (2.3) 

Where w0 is the initial uniform distributed load and all other variables are as defined above. Note 

that this equation is simply a combination of the critical ponding criteria and the deflection due to 

a uniform distributed load. It is also good to notice that as a system approaches the limits for 

stability as defined in equations 2.1 and 2.2, this expression goes to infinity, and that the ponding 

effect amplifies the deflection due to initial loads by the factor: 

 4

4

1

1 ka
EIπ

−
 (2.4) 

As a result, the stresses in the materials are also increased by the same factor. The authors also go 

on to solve the problem for the case of a point load with additional ponding effects, and they 

repeat the analysis for both loading cases under fixed end conditions instead of the simply 

supported case. The theory was then tested with small aluminum beams. The experiment was set 

up with three cases. In the first, the total deflection should have been twice that under dead load 

alone, in the second, four times, and in the third case, the beam was designed to be unstable and 

deflect to infinity or failure. The experiment verified the theory. The largest difference between 

the theory and the results of the experiment was the discrepancy between the theoretical and 

actual deflections under uniform loading, signaling that the greatest uncertainty is not in the 

ponding theory. 

 

Less than a year later, a paper regarding the failure due to overload of these simply supported flat 

roofs under ponding loads was published (Chinn, 1965). The author expands on the problem of 
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overload of stable roofs. For a first step, Chinn determines that the final deflection of a beam 

under ponding loads is: 

 4

41

dD
L
EI

γ
π

=
−

 (2.5) 

Where d is the initial deflection, γ the fluid density times the beam spacing, L the length, E the 

modulus of elasticity of the material and I the moment of inertia. As in the Kuenzi and Bohannan 

paper, it is clear that as the system approaches the limits of the requirements for a stable system 

as outlined in equations 2.1 and 2.2, the final deflection will go to infinity. Chinn then solves for 

the maximum stress in a beam under ponding loads: 

 
2 2

0
4 4

M c L EcdF
I EI L

γ π
π γ

= +
−

 (2.6) 

Where M0 is the moment due to the initial loads, c is the distance from the neutral axis to the 

extreme fiber, and all other variables are as defined above. The maximum stress can be calculated 

by this equation and compared to the yield stress of the material to check for possible failure. This 

assumes that a beam will fail when it becomes inelastic. This equation allows an engineer to 

calculate when a stable system will fail due to overload, and could be used by a designer to 

choose an appropriate value for the moment of inertia of a member to prevent this failure mode. 

 

The theory was then expanded to consider the effects of a two way system (Marino, 1966). Until 

now, all equations only considered a one way system bending independently of the supports. This 

paper treated the system as one with secondary members holding the load and supported by 

primary members that collect the load and transfer it to columns.  

 

In a two way system, the primary elements hold up the secondary elements. The secondary 

elements are more closely spaced, and have less strength than the primary members. The critical 
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secondary member is the one at the center of the span of the primary member because it will be at 

the lowest elevation, thus incurring the greatest load. The author assumed that all of the primary 

members will deflect together so that a single bay can be analyzed as a unit, and that all 

deflections are sine waves. He also assumed that a theoretically stable system will not fail in 

overload conditions. From his analysis, Marino concludes that: 

 
( )0 0 0 04 4

1
4

p p s

w

p s

π πα δ α α δ

π α α

⎛ ⎞Δ + + + Δ⎜ ⎟
⎝ ⎠Δ =

−
 (2.7) 

And: 

 
2 2 0 0 0 0

0 0

2
4 4

8 8 1
4

s s

w s p s

p s

π πδ α δ α δπ π πδ α δ α α π α α

Δ + + −⎛ ⎞
= + Δ +⎜ ⎟

⎝ ⎠ −
 (2.8) 

Where Δ is the midspan deflection of a primary member, and δ is the midspan deflection of the 

critical secondary member. Subscript w indicates after the fluid load, subscript 0 indicates before 

the fluid load. The parameters α are defined in terms of flexibility constants: 
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And these flexibility constants are defined in terms of the properties of the system, reflecting the 

critical ponding criteria already outlined in previous literature: 
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Where s indicates secondary and p primary, S indicates the spacing between secondary elements, 

L the length of the members, E the modulus of elasticity, I the moment of inertia, and γ the 

density of the fluid. 

 

Marino went on to make simplifying assumptions that make these equations easier to work with, 

and, using a factor of safety of 1.25, creates design aides based on the important properties of 

these systems. This analysis is now the basis of the AISC steel manual check for ponding. 

Marino’s design aides are included in the AISC code appendix 2: design for ponding. Marino 

concludes by stating that the easiest method of preventing this type of collapse is to provide 

sufficient slope to adequate drainage. He claims that 1/8 inch per foot should be sufficient, but 

notes that roof drainage can be complex and should be analyzed in more detail for roofs of this 

pitch. 

 

Soon thereafter, the theory was expanded to cover several variations on the ponding problem 

(Moody and Salama, 1967). The authors expand the theory to include beams with different 

support conditions, ponding loads on plates, and they are the first to draw a connection between 

the ponding problem and steady state vibrations.  

 

They begin by restating Haussler’s inequality for a simply supported beam, rearranged to identify 

the critical stiffness. The authors go on to calculate the critical stiffness for beams and plates with 

varied supports. Throughout, the authors use superposition, a set of differential equations and 

impose the appropriate boundary conditions. They solve the problem of the critical stiffness under 

ponding loads for a beam that is simple-fixed, fixed-fixed, continuous over three supports with 

fixed ends, and continuous over any number of supports with simple supports. They also solve 

the problem for plates simply supported on all edges, simply supported on two edges and fixed on 
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the others, fixed on all edges, and continuous over several simple supports. The results are 

summarized in this table: 

 

Figure 1: Critical stiffnesses by boundary conditions (Moody and Salama, 1967) 

Whereγ is the unit weight times the beam spacing, L is the length, and a and b are the edge 

dimensions of a plate. In their work, the authors also note that the ponding problem is analogous 

to steady state forced vibrations. They relate the idea of the critical stiffness to the natural 

frequency of the member. This is useful, they assert, because there has been much more work 

done on the problem of steady state vibrations than ponding, so to relate the two would open up 

additional approaches for study of the ponding problem. In this analogy, the critical stiffness is 

analogous to harmonic vibration: as the period of a forcing function approaches the natural 

frequency, deflection becomes unbounded, just as deflection becomes unbounded when the 

stiffness of a beam or plate equals the critical stiffness. From this analogy, it is concluded that the 

critical stiffness can be calculated if the natural frequency of the beam or plate is known: 

For Plates:  
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For Beams: 
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Where γ is the density of the liquid, D and EI represent flexural rigidity, m is the mass per unit 

length or unit surface area, and ω is the natural frequency. The authors conclude by comparing 

the critical stiffness value for beams to the Euler buckling load for columns, and suggest that it 

should be used similarly as a critical design value. 

 

More authors began attempting to create simple aides for designing for ponding (Sawyer, 1967). 

Donald Sawyer starts by re-deriving Haussler’s original inequality. Sawyer sets the ponding 

critical stiffness criteria equal to a new value he terms the Criterion Ratio: 
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If the Criterion Ratio (R) is greater than unity, then Sawyer calls the beam supercritical. If the 

criterion ratio is equal to one, the beam is critical, and if it is less than that, it is subcritical. 

 

It is understood that supercritical beams will fail with sustained rain or snow that allows the roof 

to continually deflect and collect load. This analysis of supercritical beams is only applicable for 

a set amount of water, that is, if conditions are such that water is not continually entering the 

system. Based on the criterion ratio and the design plots provided, a designer should be able to 

calculate maximum moments, maximum deflection, and maximum weight. The plots are shown 

here: 
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Figure 2: Design guide (Sawyer, 1967) 

After pulling these values from the plots, the important properties of the supercritical beam can be 

calculated: 

 f ws sW C BY Lγ=  (2.16) 
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 2
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Where Wf is the total weight of the load, Ym is the maximum deflection, Yf is the midspan liquid 

depth, Mm is the maximum moment. Ys is the end depth of the liquid, γ is the density of the 

liquid, B is the spacing, L is the length of the beams and the parameters Cws, Cf and Cms are from 

the charts. This analysis is somewhat limited in the fact that it only applies to the situation where 
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a set amount of liquid sits on the structure. For this specific case, this method makes the 

calculations simpler from a design standpoint. 

 

It is more interesting, however, to study subcritical beams to determine when they will or will not 

fail, especially because most practical beams are subcritical. A general solution should allow for 

any depth, initial camber or sag, pitch, and include the effects of a two way system. The author 

constructs some curves that help identify parameters regarding subcritical beams. The use of this 

chart requires the designer to calculate both the Criterion Ratio, as well as a parameter, α, as 

defined individually in each plot, based on the degree of camber of the beam. From this chart, a 

designer can find Cy for cambered or non-cambered beams, and Cw and Cm for cambered beams: 

 

Figure 3: Design guide (Sawyer, 1967) 

From these parameters, important properties of the subcritical beam can be calculated: 

 f w sW C BY Lγ=  (2.20) 
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 t y sY C Y=  (2.21) 

 2
m m sM C BY Lγ=  (2.22) 

Where Wf  is the total weight of the load, Yt is the midspan deflection, Mm is the maximum 

moment, Ys is the height of the liquid above the supports, and Cy, Cw and Cm are values pulled 

from the plots. The values are important because they will let a designer determine whether a 

beam will fail under ponding loads, even if it is part of a subcritical system. 

 

It is clear that initial upward camber is beneficial to preventing ponding from occurring, but the 

author notes that caution should be used. Camber should not be used to replace the additional 

benefits provided by increasing the beam stiffness. This is because as the depth of water 

approaches the height difference provided by the initial camber, the rate of deflection increases 

rapidly. For this reason, some roofs could perform well in some events, but fail completely in 

only slightly different circumstances, depending on how close to this tipping point the system 

gets. 

 

Sawyer also provides charts that allow a designer to calculate the maximum shear and moments 

in a beam on a slope, which is useful, as many sloped roofs should also be checked for ponding 

problems. He notes that in the current AISC specifications, (1963 Ed.) the check for ponding 

stability was disregarded for anything but a completely flat roof. He points out that some sloped 

roofs, if the slope is shallow enough, will still experience the ponding effect, and it is 

unacceptable to ignore this loading because a nominal pitch is specified. Sawyer argues that if it 

is reasonable to expect the water level to rise above the high end of the roof by at least one half of 

the depth at the low end, then the roof should be treated as flat. The charts he provides again 

require the user to calculate the Criterion Ratio and a parameter α based on the initial camber. 

The charts are shown here: 
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Figure 4: Design guide (Sawyer, 1967) 

Based on the values for the coefficients Cv and Cm from these plots, the maximum shear and 

moments can be calculated as follows: 

 2
m m sM C BY Lγ=  (2.23) 

 f v sV C BY Lγ=  (2.24) 

Sawyer goes on to discuss roof systems under ponding loads. Roof systems are more complicated 

than the simple one member case for several reasons. The variables are essentially compounded 

and interact in various ways. Sawyer treats the system in pairs of framing members. In each pair, 

he assigns a host (supporting members) and a parasite (supported members), and uses the 

properties of the parasite to modify those of the host. His procedure calls for the modification of 

the host Criterion Ratio by a factor of the parasitic member’s Cw. First, R values are calculated. 

Next, starting at the top of the system, a Cw value is found for the parasite, and multiplied by the 

host’s R to find the host’s effective R value. This new R is then used in the next iteration when 

the host is treated as the parasite. In this way, the modifications of the Criterion Ratio compound, 

and a system that looks sound at first glance may by further analysis not be adequate. This 

method is more involved than the one presented by Marino for two way systems. 
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Later, Salama and Moody expanded their study of beams and plates (Moody and Salama, 1967) 

to those with a nonlinear response (Moody and Salama, 1969). Following a complex analysis, 

they outlined an iterative procedure for calculating the response of these elements. They conclude 

that for these nonlinear-elastic members, the initial load is an important factor on the final 

response, which is in contrast to what other authors have shown for linear-elastic beams and 

plates. It is doubtful that much of this work would be useful in a design situation, as materials are 

generally taken as linear elastic. The authors outline a complex iterative analysis technique, but 

provide no simple method of analysis. 

 

That same year, an article was published that investigates subcritical beams with various loading 

conditions and the effect of initial imperfections on the ponding factor (Adams, Chinn and 

Mansouri, 1969). The authors begin with the usual assumptions, and analyze a simply supported 

beam with a fluid filling the depression formed in the middle of the span. They solve the 

governing fourth order linear non-homogeneous differential equation, and arrive at the same 

equation Haussler published years earlier. The authors provide equations for the maximum 

deflection, maximum moment, and beam end rotations for beams with ponded water 

superimposed with a point load, a distributed load, applied end moments, and nothing. The 

equations published are long and numerous; they will not be reprinted here. 

 

The authors go on to investigate the effects of initial sag and crookedness on ponding loads. They 

express the deflection in a Fourier sine series, which shows that the critical ponding factor is not 

dependant on the type of loading. They point out that a numerical solution would require 

truncating the series to the dominant term to get an approximate value of the internal forces. A 

more accurate method would be to treat the loads from the liquid in the depression separately 

from everything else. It has been shown that deflection is linear with initial imperfections and 
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loads, so this analysis would work by superposition of all sources of deflection (Moody and 

Salama, 1967). 

 

Again, engineers began trying to make the analysis simpler and more suitable for design use, this 

time for two way systems (Burgett, 1973). The author simplified the existing plots and equations, 

which were based on the work of Marino, and produced just two simple equations. Roof framing 

systems were identified as stable if: 

 0.9 0.25p sC C+ ≤  (2.25) 
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Where Id is the moment of inertia of the deck, S is the spacing, and Cp and Cs are defined: 
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Where L is span length, I moment of inertia, and the subscripts p and s represent the primary and 

secondary systems, respectively. Burgett also included graphical representations of these 

expressions for both deck and framing checks. This approach has now become part of the AISC 

code, in appendix 2, design for ponding, and is called the simplified design for ponding. 

 

The same year, a paper was published that focused specifically on truss behavior under the loads 

(Chao, 1973). The author studies a specific type: warren, pin connected, simply supported trusses. 

Using a set of differential equations, Chao solves for the joint displacements in the x and y 

directions for every node of the truss. The solution for the nodal displacements lists the 

displacements as functions of several variables: several parameters, a, defined below, the number 

of panels in the truss, n, and an arbitrary constant C.  
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Where γ is the fluid density, s is the spacing of the trusses in the one way roof, d is the width of a 

panel, A is the cross sectional area, E is Young’s Modulus, and Θ is the angle between chord and 

web members. The subscript w is for web, t for top chord, and b for bottom chord. The truss 

geometry and parameters are illustrated in figure five: 

 

Figure 5: Truss diagram (Chao, 1973) 

With these parameters established, the solution for the nodal displacements is: 
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Where u and v are the displacements in the x and y directions, respectively. The parameter k is an 

index that represents the number of the panel point node. The subscripts t and b indicate either the 

top or bottom chord. Chao goes on to determine a stability condition requirement for trusses 

under ponding loads. He defines this condition in terms of the parameter β: 
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Based on this value of β, stability is mathematically assured if: 

 cos
n
πβ ⎛ ⎞< ⎜ ⎟
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 (2.40) 

By making some simplifying assumptions, this equation can be shown to be equivalent to the 

stability equation other authors have found (equations 2.1, 2.2, 2.15 etc.) These simplifying 

approximations are shown to be reasonable for large values of both n and the ratio AwEw/AtEt. 

Chao was the first to note that the typical 15% reduction the critical ponding load for joists, which 

is reflected in the AISC code as a 15% reduction in the moment of inertia. Chao asserted that this 

may not be an appropriate reduction, and that the effect of n and AwEw would be better criteria for 

adjusting the critical load. 

 

More analysis was published on the topic of two way systems (Avent and Stewart 1975). The 

stated goal of the paper was to come up with an analysis method that was more accurate than the 

work of Marino, but more efficient for design use by the typical engineer. The general approach 

was the formulation of a set of differential equations solved by Fourier series analysis. The result 

of this analysis is an inequality that provided a check for the stability of the primary members. As 

the authors point out, the stability of the secondary members should still be checked by the same 



26 
 

criteria that other authors have published. By these calculations, the primary members of a two 

way system are stable if the following holds true: 
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Where H is the Criterion Ratio as defined by Sawyer, and σ values are defined as: 
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Where n is the number of bays parallel to the secondary members and m is the number of bays 

parallel to the primary numbers. This solution provides a simple check for ponding stability in the 

primary members and is, according to the authors, more accurate than any other previous 

approach. The authors also go on, using the same method, to find the maximum moment in a 

primary member. The equation they developed was a double summation, and would take time to 

use as an office tool. When used, however, it would help a designer determine whether a member 

will fail from typical load combined with ponding, even if it meets the stability criteria. 

 

Richard Avent published another article, this time on his own, the following year. He analyzes the 

deflection of steel joists under loads, including ponding loads (Avent, 1976). He notes that the 

deflection of these structural units is often important, and that not much work has been done on 

the subject. He analyzes the idealized warren truss, which is the configuration used in most joists 

today. The configuration as illustrated by the author is: 
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Figure 6: Joist diagram (Avent, 1976) 

The author began by improving what had been the equation for calculating the effective moment 

of inertia in a way he claimed was much more accurate than previous methods. He used this and 

calculated equations that govern the motion of each of the nodes in the truss with increasing load. 

The resulting equations resemble those published by Chao in 1973. There are equations for the 

displacement of a node on each axis, for top and bottom nodes. The results produced the same 

stability criteria for joists as found by Chao. The author noted that stability can be determined, but 

that designers should calculate deflection and stresses to ensure that a stable system does not fail. 

To increase the ease of these calculations, the author determined simple equations to be used in 

design that very closely approximate the maximum chord and web member forces. The maximum 

top or bottom chord force is: 
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And the maximum web bar force is: 
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Where Ms is the maximum moment due to non-ponding loads, Vs is maximum reaction due to 

non-ponding loads, h and Θ are as defined in figure six, and G is the Criterion Ratio as defined by 

Sawyer. These equations provide simple estimates for the forces experienced by the members in a 

warren truss, and should be useful to anyone steel joists designers. 
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Thus far, treatment of ponding loads on sloped roofs has been minimal. Bin Chang and Ken 

Chong presented a paper on this topic to the World Congress on Space Enclosures in 1976 which 

resulted in an almost identical paper published the next year in the Forest Products Journal 

(Chang and Chong, 1976) (Chang and Chong, 1977). In the paper, the authors assume that the 

height of ponded water at the low end of the sloped roof is zero, allowing for water to collect only 

in the deflected shape below the low support point. This is limiting in that the analysis only 

allows for this single load case. The results of this analysis show that the deflection due to the 

ponding effect is dependent on the initial loads and deflection. However, no results are given as to 

how the stability of such a system changes from that of the flat case. 

 

Figure 7: Sloped beam ponding setup (Chang and Chong, 1977) 

Based on this geometry, the authors determine that the deflection due to ponding loads only, yp, 

can be expressed as a function of the total deflection, A, the angle theta, the length, L, the 

stiffness, EI, and the density times the spacing, λ: 

 ( )( )
4

14 9
1440p

LEIy A Lλ
= − Θ  (2.46) 

It can be shown that when the angle is zero, this expression reduces to that found by Chinn 

(equation 2.5). It should also be noted that by increasing the angle, the deflection due to ponding 

is decreased. In fact, if the angle is increased to 14A/9L then there will be no deflection due to 

ponding. Because A is typically very small compared to L, the angle required to eliminate 

ponding deflection effects is typically very small. In general, a slight pitch should be sufficient to 

avoid these loads. This equation allows some insight to the ponding problem on sloped roofs, but 
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is limited, as it does not provide an explicit equation for the stability criteria of a sloped roof. 

More work could be done in this area. 

 

When a new set of stability equations designed for office use were formulated and became 

candidates for inclusion in the specifications, and some engineers spent some time evaluating 

them (Carter and Zuo, 1999). The source of the new equations is cited as a letter from author K. 

P. Milbradt to an AISC representative in February 1995. The equations proposed by Milbradt are 

candidates for replacement of the analysis based on the work of Marino in the AISC code 

(Marino, 1966). It is suggested that these equations may provide greater ease and accuracy, as 

they are calculation based, as opposed to Marino’s graphically based solution. The proposed 

equations for checking the primary and secondary systems (respectively) are as follows: 
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Where Cs and Cp are as defined by Burgett in equations 2.27 and 2.28, Fy is the yield stress, and 

Fo the maximum extreme fiber stress in the member due to all loads except ponding (Burgett, 

1973). The authors’ conclusion regarding the comparison of Milbradt’s equations with those of 

Marino is that they are close but different. No conclusions about relative accuracy were drawn.  

 

In his discussion of the article, Milbradt argues that his equations should replace both the ponding 

analysis based on the work of Marino and the simplified method based on the work of Burgett 

(Milbradt, 2000). The argument is that his equations are more accurate than the simplified ones, 

and because his method is calculation based, it is easier and better than Marino’s method. 

Milbradt also discusses the effect of f0, residual stresses, and the trouble with calculating effective 

moments of inertia for joists. He argues that the equation provided in the Steel Joist Institute 
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Design Manual 3 only represents an average approximation and in some cases is unconservative 

(SJI, 1971). Milbradt suggests that all of this should be included in the commentary of the AISC 

code. These equations have yet to show up in the AISC specifications. 

 

A paper that presented and discussed ponding loads and a numerical model was presented to the 

second European conference on steel structures, in Prague (Colombi and Urbano, 1999). The 

authors present no new results here, but the paper leads to a published article the following year 

that presents a new, interesting method of analyzing ponding loads (Urbano, 2000). In this paper, 

the author treats a beam under ponding loads as two equal length beams connected by a spring at 

midspan: 

 

Figure 8: 1 DOF bar-spring model (Urbano, 2000) 

The author defines a factor he terms the influence coefficient, α, which is a property of the system 

and defined as the ratio of the displacement f due to a corresponding applied force F. Based on 

this value and some simple algebra and geometry, Urbano derives equations for the displacement 

of the system, as well as the moment carried in the spring: 
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Where f, F, m and l are as defined in the diagram. The naught subscript indicates a value that is 

due to loads before ponding effects occur. Alpha is as defined above, Y is the unit weight of the 

fluid times the spacing of the beams, and h is the height of the water on the system. For this 

system, Urbano determines that the critical value for the ponding effect occurs when αY = 1. For 

a system to be stable, it should be ensured that this value is less than one by whatever factor of 

safety may be appropriate. 

 

Urbano goes on to incorporate the typical code serviceability requirements of restricting 

deflection to some fraction of the length into his equations. This is interesting, but adds little to 

his ideas. He also adds the effect of shear on the deformation by repeating the analysis with three 

springs: 

 

Figure 9: 3 DOF bar-spring model (Urbano, 2000) 

Based on this analysis, he finds that the deflection can be calculated by the equation: 
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Where r is the spring constant for the springs in shear, and k is the spring constant for the spring 

in flexure. He also continues to expand these ideas to a two way roofing system: 

 

Figure 10: 2-way bar-spring model (Urbano, 2000) 

Based on this analysis, Urbano calculates the ratios of moments due to additional ponding load to 

moment due to initial load for both framing systems as functions of the influence coefficients and 

Y. This is equivalent to the amplification factors discussed previously (Bohannan and Kuenzi, 

1964). The factor amplifies both the displacements and the moments equally. The factors are 

solved for explicitly, and plots are provided for increased visual comprehension and simplicity: 
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Figure 11: Design guides (Urbano, 2000) 

This analysis is good because it is the most comprehensive analysis provided in a single source. 

The results are equations and graphs that are simple and easy to understand and use. The only 

drawback is that the author provides no indication of how accurate his initial assumption of a 

spring connecting two beams is. The equations are simple enough for design use, but need to be 

evaluated for accuracy. In practice, constants would need to be derived for the spring coefficients 

and the influence coefficient, so more work is required before this approach can be useful. 

 

Work has been done on members with different end conditions, but it took quite a while before 

the ideas were expanded to cantilevered members. This is eventually done so that designers can 

take advantage of the benefits of a cantilevered system derived from moments balancing each 

other better and smaller overall deflections (Bergeron, Green and Sputo, 2004). The authors begin 

by defining a variable n as the ratio of the deflection of a simply supported system to the 

deflection of another system (cantilevered in most of this paper) under the same loading 

conditions. They define the parameter Cp, as used in previous literature (Burgett, 1973), as: 
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The authors then proceed to outline a method for determining n. They begin by showing that the 

midspan deflection of a cantilever is approximately equal to the maximum, and use this as a 

simplifying assumption. Based on the following diagram, the maximum deflection will be at 

midspan, but will be less than for the simply supported case due to the negative moments caused 

by the point load on the cantilevered end.  

 

Figure 12: Cantilevered end (Bergeron, Green and Sputo, 2004) 

Based on this methodology, it is then shown that the value of n can be calculated by the equation 

that follows: 

 

2

1
2.4631

n
BA

C

=
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (2.57) 

This is the appropriate value of n for this condition only. The authors go on to calculate the value 

of n for a beam with both ends cantilevered with point loads: 

 

Figure 13: Two cantilevered ends (Bergeron, Green and Sputo, 2004) 
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The authors have provided equations for appropriate stiffness factors for two common cantilever 

setups. This allows designers to take advantage of the additional capacity of the cantilever 

system, and eliminates some of the unnecessary conservatism in the code on this topic. 

 

In another paper, the concept of partial ponding (ponding due to a given amount of water) was 

expanded (Colombi, 2005). Instead of water accumulating while a roof deflects, the water simply 

moves as the load changes and the deflected shape is adjusted. The author begins with an analysis 

of the traditional ponding problem, and based on the simply supported beam with residual 

camber, as shown, he produces an equation for the deflected shape of the beam under water loads: 

 

Figure 14: Full ponding (Colombi, 2005) 
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 (2.59) 

Where all variables are as defined in the diagram and m is the residual precambering parameter, 

the height of the beam at midspan over the straight line. The solution of the partial ponding 

problem is also found: 
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Figure 15: Partial ponding (Colombi, 2005) 
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 (2.60) 

The author then goes on to outline the numerical approach he will use to solve some of the 

problems in the rest of the paper. He uses an iterative solution technique that evaluates the initial 

deflection due to the initial load, and then calculates the subsequent deflection due to the 

additional ponding load. He divides the surface into a grid to facilitate this analysis, and 

calculates the deflection of every section of the grid to determine an overall deflected shape. After 

outlining the procedure used to set up the numerical analyses, Colombi runs through three 

examples of how the analysis works in practice. 

 

The partial ponding condition is important, as it represents a large portion of what happens in the 

field. Often, a set amount of water will collect on a roof during a rainstorm, and will remain for 

some time afterward. It is concluded that the partial ponding condition cannot lead to ponding 

instability, however, as only a set amount of water is allowed to collect. The deflected shape 

equations produced and the numerical analysis procedure described are the most useful results of 

this analysis. 
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Most recently, the methods for approaching a ponding analysis were again expanded. By 

approaching the problem from a new angle, many problems become simplified (Blaauwendraad, 

2007). The author notes that “…true insight appears to be missing on the very nature of the 

ponding phenomenon.” In his paper, he outlines two new ways of approaching the problem of 

ponding analysis: the piston spring model and the bar spring model for stiff and flexible roof 

systems, respectively. The difference in the two models is that with stiff roofs, deflections will be 

small and the roof will likely be completely covered, whereas with a more flexible system, 

deflections will be larger and water may not completely submerge the roof. These models 

consider the effects of pitch, camber, slope, and various end conditions on the full ponding 

problem. 

 

The analysis begins by assuming a sinusoidal deflected shape and accumulated water load. It is 

then shown that the average accumulated water load is eighty percent of the maximum, and this 

simplification is used throughout. The author then outlines his piston-spring model for stiff 

systems: 

 

Figure 16: Piston-spring model (Blaauwendraad, 2007) 

Where d is the original depth of water on the roof, and δ is the average additional load, eighty 

percent of the maximum in the deflected shape of the roof. He then describes three relevant 
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variables: W, the weight of a meter of water on the roof, D, the spring stiffness, and Fp, the 

overall total strength of the support structure: 

 W alγ=  (2.61) 

 396 /D EI l=  (2.62) 

If the support structure remains linear elastic, and Fp is not reached, then the deflection δ can be 

calculated: 

 
1

1
d

n
δ =

−
 (2.63) 

Where n is the ratio of D to W. Based on this result, it can be seen that for a very stiff roof, D >> 

W, the additional deflection and load, δ, will be small. When the ratio approaches unity, however, 

the additional deflection gets extremely large. This is essentially the same as the original stability 

inequality published by Haussler (Haussler, 1962). This ratio, n, determines whether a system 

will be strength dominated or stability dominated. If n is greater than one (D greater than W), 

then the system will be strength dominated. This is because successive deflections will be 

smaller, and the system will eventually fail due to simple overload. If n is less than one, then the 

system is stability dominated and will fail under pure ponding loading conditions. By analyzing 

the piston-spring system under a force equal to the maximum strength of the system, the author 

determines that an ultimate value of W can be calculated: 
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= +  (2.64) 

As W is a function of the fluid density, spacing and length, and because fluid density and length 

are typically known, this equation essentially limits the spacing of the beams in the system. It is 

shown that this method can easily include the effects of initial deflection or camber. This is done 

by using, as before, an average load or loss of load due to these effects of eighty percent of the 

maximum under the deflected shape. The deflection parameter, d, is modified by eighty percent 

of the midspan height change due to camber or initial deflection. The solution is also expanded to 
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include the effects of a two or three way roofing system. To do this, the approach is identical, but 

the formulation of D and W change: 

 
1 1 1 1

p s shD D D D
= + +  (2.65) 

 p sW l lγ=  (2.66) 

Where the subscripts p, s and sh stand for primary, secondary and metal sheet systems, 

respectively. 

 

The author also outlines a simple method for performing this analysis on systems with end 

conditions that are not simply supported. The only change required is that the effective stiffness 

will be modified by a factor. The factors for several common support conditions are shown: 

 

Figure 17: Stiffness ratios (Blaauwendraad, 2007) 

The author also outlines a simple method for taking slope into account. If the depth at the low end 

of the member is d, as before, then the effective depth over the sloped member is: 

 wd d c lα= −  (2.67) 

Where α is the angle from horizontal and c is a parameter based on how deep the ponded water is. 

For water that completely submerges the beam, c is one half. For water that does not completely 

submerge the beam, c is defined by the plot: 
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Figure 18: Design guide (Blaauwendraad, 2007) 

Blaauwendraad continues by turning to more flexible systems and the bar-spring system as 

outlined by Urbano (Urbano, 2000), but expands the previous work to treat sloped roof systems. 

He starts off by defining the location of the spring as at the midspan of the horizontal projection 

of the submerged portion of the beam, as shown: 

 

Figure 19: Bar-spring model (Blaauwendraad, 2007) 

To complete this analysis, the author begins by finding the rotational stiffness of the spring in 

terms of E, I, and l, and by treating the entire load due to water as an equivalent point load on the 

system at the spring. He goes on to check the results of the piston-spring model and the bar-spring 

model each at the point where water rises to the high end of the member, and finds that they give 

the same result. Based on the model as it is set up, and a series of algebraic and geometric 

derivations, the author outlines the results for determining a stable system. He summarizes his 

findings in the following plots: 
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Figure 20: Design guide (Blaauwendraad, 2007) 

These plots show that for given values of roof strength or dw, as the ratio w/αl (equivalent to the 

ratio of the height of the water at the shallow end to the height of the high end)  increases, so does 

the ratio of final load after ponding to initial load. The curve labeled roof in the diagram indicates 

the ultimate load allowable on a roofing system in terms of F/F0, while the curves labeled d 

indicate the maximum induced load on a roofing system in terms of  F/F0 for a given set of 

geometric parameters.  It can be seen that for low values of dw such as d1, stable systems exist, 

and there are two critical points where systems transition from stable to unstable. For high values 

of dw such as d3, the system will always be unstable. There is a value, labeled here as d2 that is the 

critical value for dw, the highest value it can be while not eliminating the possibility of a stable 

system.  The second plot shows a summary of the curves in the first. Any system that fits under 

the curve shown is stable, while any system fitting above is unstable. 

 

While these curves are instructive and conceptual, the author provides no simple way of 

mathematically determining where a system fits on these plots. As with the Chang paper 

discussed above (Chang and Chong, 1977), work could still be done in the area of providing a 

simple, accurate, equation based method of determining stability of sloped roof systems. The 
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author finishes by expanding the method for sloped members to include initial camber or sag, 

then works through some examples. The author has since realized that his method, as outlined in 

this paper, needs modification. Specifically, his approach to relatively stiff systems (the piston-

spring method) is too conservative for some systems. He has a second paper in draft form that 

would correct this by modification of the formulation of loads and moments in such systems 

(Blaauwendraad, unpublished). 

 

The theory of ponding loads has covered a lot of ground. It started as a paper that outlined the 

stability criteria for a flat, simply supported beam under water, and has been expanded to cover 

two way systems, various support conditions, amplification, slope, initial imperfections, camber, 

partial ponding, nonlinear response, and uses varied approaches and simplifications. The concepts 

have been applied to topics as wide ranging as creep, concrete, and trusses. Much knowledge has 

been published on the topic, yet much still remains to be found. Some of the areas lacking have 

been identified above, and there are others. 

 

This theory has been slowly produced over more than the last 40 years. It is important, as roof 

systems do often fail under ponding loads. Typically, heavy rainfall or large storms can create 

large loads, and the ponding effect will make it much worse. Without designing for ponding, 

roofs can collapse. It has been pointed out (Chinn, 1980) that the amplification factor, as 

discussed by Kuenzi and Bohannan (equation 2.4), is the important part of the ponding theory, 

and the important use of the Criterion Ratio. Most roof systems will be stable by the theory, but 

all roof designs should include secondary loading due to ponding in the determination of roof 

loads. All roofs must be designed with this important loading in mind, whether the end result is 

additional drains or a steeper, stiffer or stronger roof. 
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While this represents a summary of the theory developed for ponding loads thus far, the 

ideas have been expanded into some other fields. Probabilistic studies have been done on 

the reliability of wood members subject to ponding loads and creep (Folz and Foschi, 

1990) (Fridley and Rosowsky, 1993). Studies have also been done on ponding effects on 

floating membranes (Katsikadelis and Nerantzaki, 2003), more details on the effects of 

initial imperfections on roof behavior (Ahmadi and Glockner, 1984), and mapping flat 

roofs that may be prone to ponding (Avrahami, Doytsher, Raizman and Yerach, 2007). 

Other research has been done in the area of hydrology to determine how ponding is 

affected by specific rain storms (Sawyer, 1968). The work of Marino has been expanded 

to determine the excess concrete required when pouring on a flexible flooring system due 

to the ponding effect (Ruddy, 2005). This work is not directly related to the science of 

ponding loads, but is good background information. Despite this apparent interest in the 

nature of these loads, full-scale test results have never been reported. This is a motivation 

for the research at hand. It is hoped that a theory can be confirmed and design 

simplifications justified so that designers can have useful and practical tools for design of 

roof systems to resist ponding. 

 

Building Code Review 
 
 
While there is an abundance of information available on the subject of ponding, most structural 

engineers do not know this background and the evolution of the field. A small fraction of the 

information available is published in building codes and design specifications. The following is a 

summary of what a designer who has done no independent research but uses the codes and 

specifications will know of ponding loads. 
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International Building Code (IBC) 2006 
 

The model building code that is used throughout most of the United States has relevant provisions 

for rain and ponding loads. For roof drainage, the IBC requires that both a primary and a 

secondary drainage system be provided. For rain loads, the code requires a designer to assume 

there is standing water at the depth it would reach if the primary drainage system fails. To ensure 

ponding stability, the code requires that a designer provide adequate slope (at least 1/4 on 12) or 

else verify adequate stiffness to prevent ponding. For guidance on these calculations, the IBC 

refers designers to section 8.4 of ASCE 7. 

 
 
American Society of Civil Engineers (ASCE) 7-05 
 
 
This guide provides information collected by experts in the field of structural engineering, and 

provides guidelines for structural designers. These guidelines require that two independent 

drainage systems be provided, each with the same capacity. It also requires that design of a roof 

system provide adequate strength to hold standing water to the height it would reach if the 

primary system failed. For stability against ponding, section 8.4 requires either a sufficient slope 

(at least 1/4 on 12), or investigation to ensure adequate stiffness against progressive deflection. It 

is suggested that the larger of the snow and the rain load be used, and that the primary drainage 

system should be assumed to be blocked for this investigation. The commentary for this section 

suggests that the guidelines in the AISC specifications for steel construction be used to perform 

this investigation. 

 
 
American Institute of Steel Construction (AISC) Steel Construction Manual, 13th Ed. 
 
 
Section B3.8 of the AISC specification requires that the ponding problem be considered. It 

requires that a designer do one of three things to ensure ponding stability. Either adequate slope 
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should be provided (at least ¼ on 12), adequate drainage be provided, or the ponding 

investigation be performed as outlined in appendix 2. This is more lenient than the requirements 

in the IBC and the ASCE 7, so those documents will typically control, and providing adequate 

drainage alone, as allowed by the AISC specification, will not be sufficient to satisfy ponding 

requirements. 

 

Appendix 2 in the AISC specification is the only place where a general and useful method of 

investigating ponding is presented in code or specifications. Two independent methods are 

presented: a simplified, conservative check, and a more in depth, accurate method. The simplified 

method is taken from Burgett, and allows for a factor of safety of four against instability (Burgett, 

1973). When using this method for trusses and joists, it is required that the moment of inertia be 

reduced by fifteen percent to find the effective moment of inertia. This modification accounts for 

the part of deflections due to shear deflection, as opposed to that due to bending moment alone. 

Also, within this method, steel decking should be considered a secondary member when it is 

supported directly by the primary members alone. The in depth analysis method is taken from 

Marino (Marino, 1966). These methods are discussed in the literature review and the discussion 

will not be repeated here. 

 
 
AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings 
 
 
AISC publishes design guides in addition to the Steel Construction Manual. Design Guide 3, 

which contains information relevant to ponding loads, is now in its second edition. It provides a 

good summary of what is contained in the building codes and the AISC appendix 2, but does not, 

however expand on any of the ideas or add much to help a designer do a ponding check. 
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Steel Joist Institute (SJI) Standard Specifications, 42nd Ed. 
 
 
This document provides a list of standardized steel joists and should be used by anyone 

specifying a joist, and any company producing standard steel joists. It also provides some 

requirements on design, fabrication, and erection of steel joists. In section 5.10 of these 

specifications, the SJI requires that a ponding investigation be performed by the specifying 

professional, but provides for no method of performing such an investigation. 

 
 
SJI Technical Digest 3, Structural Design of Steel Joist Roofs to Resist Ponding Loads 
 
 
This document provides more details on how to perform the investigation required by section 

5.10 of the SJI standard specifications. It contains a summary of code related to ponding, and 

notes that it lacks in some areas, especially for atypical roofing systems. The digest suggests ways 

of expanding the AISC analysis to fit additional systems. It suggests that a good general 

procedure for a ponding analysis is that outlined in the AISC specifications, but that more 

detailed methods are available. This digest presents methods for doing a ponding analysis for 

members with both flexible and rigid supports. 

 

For roof systems with flexible supports, it is suggested that the AISC method be used, but a 

special equation is provided for the calculation of F0, the initial extreme fiber stress. For systems 

with rigid supports, the digest recommends two checks, one for the capacity of the joist, and one 

for the capacity of the support, as the bearing seats of the joists are also limited in their capacity. 

The method starts by calculating the three following values: 
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 ( )D R Sw w w or w= +  (3.3) 

Where L is the length, S the spacing, Ie the effective moment of inertia, wd the dead load, wr the 

impounded water load, and ws the snow load. By using these values and estimating a height of 

water, h, above the supports, the centerline deflection can be calculated: 

 ( )0.244 1.27
1

S
C

S

C w h
C

Δ = + −Δ
−

 (3.4) 

Using this value, both the end reaction and the final maximum load can be calculated: 

 ( )1 0.375 1.95 1.24 CR SL w h= + + Δ −Δ⎡ ⎤⎣ ⎦  (3.5) 

 ( )1 0.75 3.9 3.16 cw S w h= + + Δ −Δ⎡ ⎤⎣ ⎦  (3.6) 

These values must then be checked to ensure safety. The distributed load must be less than the 

capacity of the joist, while the reaction must be less than one half the product of the distributed 

load and the length. If both of these requirements are met, then the joist is stable and strong 

enough to support the loads, including the ponding effect. 

 
 
Other Sources 
 
 
This seems to be a complete description of what building codes and design specifications require 

as far as ponding loads are considered. Other design specifications exist, but they do not have any 

requirements for ponding. The National Design Specification for Wood Construction, the 

Building Code Requirements and the Specifications for Masonry Structures, and the Building 

Code Requirements for Structural Concrete require no ponding analysis or investigation. It should 

make sense that the only really useful general ponding investigation procedures appear in the 

Steel Construction Manual. Steel allows for long spans and slender elements, leading to flexible 

roof systems. For this reason, steel construction may be more vulnerable to ponding loads. 
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Conclusion 
 
 
In general, design codes require that adequate slope and adequate drainage be provided. The IBC 

and ASCE 7-05 do not provide a method for investigation of ponding stability; this is published 

in the AISC Steel Construction Manual instead. An additional method is presented by the SJI in a 

technical digest, but does not replace or add to the method presented in AISC. For a structural 

engineer interested in ponding loads, the single section of code that must be known is appendix 2 

of the AISC specifications. Both the simplified method and the improved method are good ways 

to ensure stability, and are taken straight from the literature. 

 

The methods provided in the design specifications are somewhat limited. They work only for flat 

roofing systems with structural members of the same length, strength and stiffness, with identical 

adjacent framing plans and simply supported members. The design methodology provided by the 

AISC specifications could use expansion to make the method more universally applicable to a 

wider variety of roofs. The biggest problem is that the specifications treat roofs as either flat, or 

pitched, and assume that if a roof is pitched, then it is safe. Often, pitched roofs can still suffer 

from ponding loads, and should be investigated correspondingly. 

 

It has also been suggested in the literature that serviceability limit requirements for the deflection 

to span ratio of roof and floor systems are not as helpful as they could be. It has been suggested 

that a good replacement to these requirements for roofs where ponding is an issue would be a 

limit on deflection per unit load (Haussler, 1962). This would be a simple, effective method to 

eliminate unstable systems from designs. The method would consist of a designer analyzing his 

roofing system with a live load of five pounds per square foot (approximately the weight of one 

inch of standing water. Then, if the resulting deflection is greater than an inch, it is clear that the 

system is dangerous and probably unstable. 
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NUMERICAL ANALYSIS 
 
 
 
The ponding effect is a simple idea that can become complex rather quickly. There are several 

variables involved, and there are numerous variations on the problem. Because there are a variety 

of factors influencing this phenomenon, a solution for the deflected shape of a member under 

ponding loads cannot be easily and accurately found. A closed form solution to the problem 

would be long, tedious, and difficult, due to varied system properties, loads, and the iterative 

nature of the problem. Since it would be useful, however, to have a tool that could calculate the 

deflections under these loads, a computer program has been written to do just that. For the 

complete code, see the appendices. 

  

Approach 
 
 
In the simplest case, a prismatic beam, with walls built at the end will accumulate load as water 

collects first behind the walls, then into the deflected area. This case has been analyzed using a 

numerical model in MATLAB. For simplicity, linear elastic behavior is assumed, and the 

program is set up only to analyze beams that are flat, or slope up to the right. The program is set 

up only to analyze beams that are simply supported and bending only due to bending moments 

induced by the water loads. Additional assumptions are that the ponding fluid is the only load, the 

beam is initially perfectly straight, and that the water will always rise to the specified height. 

Shear deformation contributions to the deflection are ignored. 

 

Even simplifying the problem to a simply supported single linear elastic prismatic beam can get 

complicated. Identifying the appropriate design approach to this problem took some careful 

consideration. Problems arise with a simply supported beam for several reasons. First, if a simply 

supported, sloped beam is loaded with water, then the question arises: are the walls connected to 
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the beam, or are the walls independent of the supports? Each setup presents difficulties and 

complications. In the case of independent supports: 

 

Figure 21: Supports independent of walls 

Here it can be seen that if the pinned connection is made at the low end, then the beam will 

experience tension, and the roller support will be pushed outward. If the pinned connection is 

made at the top, however, the opposite occurs: the beam experiences compression and the roller 

support will tend to move inward. These forces will induce second order effects and induce 

additional bending moments in the beam. These may be small, and would be neglected, but 

should be noted. In the case of walls attached to the beam: 

 

Figure 22: Walls attached to beam 

Here it can be seen that the problem of tension/compression in the beam has been eliminated, as 

the setup has changed, and the horizontal reactions are eliminated as they balance within the tank 
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itself. It is now essentially a solid tank with simple supports. A complication arises here, as the 

walls will experience pressure themselves. If the beam is isolated, then at the supports, where the 

walls meet the beam, bending moments will be induced from the walls. As before, this effect is 

small, and would be neglected in an analysis, but should be noted. 

 

Thus far, all of the designs have appropriately noted that the water pressure acts perpendicular to 

the surface it rests on, and increases linearly as a function of depth. This is correct, but creates 

serious complications as the beam deflects. After the first iteration of an analysis, the beam will 

be deflected: 

 

Figure 23: Water pressure on deflected beam 

The problem here is that the orientation of the pressure, acting perpendicular to the surface at all 

points, is difficult to determine. The direction of the resulting forces on the beam will be hard to 

find, and will change with position along the beam and with each iteration. This effect may be 

small, depending on the total deflection of the beam, but should be noted. 

 

There are different setups for this design, and there are complications to the analysis. Due to these 

issues, a simplified case will be chosen for the analysis: 
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Figure 24: Assumed conditions for numerical analysis 

This setup ignores the effects of induced tension/compression on the bending moments in the 

beam, and ignores the possible end moments from the walls. This design also neglects to consider 

the water pressure as perpendicular to the surface, instead taking it as a vertical load at all times. 

This is justifiable by a small angle approximation, as the roofs to be analyzed here are generally 

on a very shallow pitch. The vertical component of the water pressure should be ρghcos(Θ), but 

as theta gets small, the vertical component is the same as the perpendicular component: ρgh. This 

is further illustrated here: 

 

Figure 25: Numerical analysis 
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The beam will be divided up into very small slices, and each will be loaded with a vertical weight 

equal to the product of ρgh, the division width, dx, and the beam spacing. Based on this setup, all 

important internal loads, deflections, and everything else can be calculated. 

 

Method 
 
 
This program calculates bending moments, rotations, and deflections iteratively using a double 

numerical integration. The core of the problem is fairly simple. After the input has been collected, 

the program first finds some of the basic, important values, including the necessary geometric 

properties and variables, end depths, and more. The program then divides up the beam into very 

small pieces and calculates the load on each. Based on the locations of these slices and the loads 

on them, the program can calculate the moment at each slice. Once the moments are known, the 

program numerically integrates these, then determines and subtracts out the constant of 

integration. This determines the curvature at each point. The program then integrates again to 

calculate the deflection at each point. The deflected shape is now known, and the load for the next 

iteration can be calculated based on this. The program simply repeats this process for the 

specified number of iterations, and the whole process is repeated for each beam being analyzed. 

 

Variables 
 
 
There are seven variables that go into the ponding analysis. Most of these are geometric and 

define the layout of the setup. These include the length, angle, spacing, modulus of elasticity, and 

moment of inertia. The final two have to do with the load: the density of the ponding fluid and the 

initial height. The initial height represents the height of water that sits on the beam, and 

determines the initial load. It is assumed that the water level will remain constant throughout 

deflection at this height. 
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Variations 
 
 
There are four analysis options built in to the program. The first is the basic ponding analysis. 

The computer takes input regarding the system properties and loads for any number of beams, 

does the ponding calculations, and outputs the results (numerically) and the deflected shapes 

(graphically) for each iteration. This analysis will usually make it clear whether the system is 

stable or not, but will not indicate whether the system will fail under the given loads. The second 

option in the program checks the strength. By asking the user for a value for the strength of the 

beam, and comparing this to the moments induced by the loads, the program will determine 

whether the beam will fail or not. 

 

A third and very useful option has also been built in. It allows the user to input all but one of the 

variables for a ponding setup, and then determines the value of the last variable that will put the 

system exactly at the point of instability. This option has been expanded into a fourth, in which 

the program will repeat the derivation of the critical value as for as many (closely related) setups 

as desired. This saves a lot of time, and was used to find the output that led to the conclusions of 

this section. In these analyses, it is important to note that an initial guess at the correct value for 

the variable is required. Based on the method of analysis, a final result that is more than twice this 

value will never be found. Results must be checked to ensure that the results are reasonable and 

that they are less than twice the initial guess. 

 

Excel 
 
 
This program was written in its first form in an Excel spreadsheet. It is simpler to do the work 

required to get the program to work in Excel first for a couple reasons. First, Excel provides a 

simpler, more familiar interface to work in. There was no learning curve as far as syntax. 

Graphical outputs are built in and simpler than those in MATLAB. Also, it was easier to see the 
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values of the variables in the Excel cells as the work was being done. This allowed debugging, 

fixes and updates to be much simpler and easier to do. 

 

This Excel spreadsheet does what the core of the MATLAB program does on a basic level, but is 

very limited in its application. It is limited to ten beams, ten iterations and one hundred divisions 

of the beams. It is also limited in that it does not do a strength check or find points of stability. All 

of the variables are input on the first sheet, and each of the next ten sheets is the analysis of one of 

the beams. The maximum deflections for each iteration and beam are returned to the first page, 

where they are plotted in a graph. Exploring this spreadsheet provides a good way to understand 

how the MATLAB program works without having to understand MATLAB code. To see this 

spreadsheet, see the appendices. 

 

Errors and Accuracy  
 

It should be noted that as the number of iterations increases in a stable system, the successive 

moments, curvatures, and deflections go to zero. If these values get too small, the computer may 

round them to zero, leading to division by zero errors. In the MATLAB program, this has been 

accounted for and should not cause errors, but anyone using the Excel file should be aware of 

this. 

 

The results from the MATLAB program have been checked against results from the Excel 

spreadsheet, and hand calculations. The results of the MATLAB program and Excel are identical 

when MATLAB is using 10 iterations and 100 divisions as Excel does.  

 

Hand calculations can only be done for the first iteration, as successive iterations get complicated 

for analysis by hand. Also, for the pitched case, the only setup analyzed by hand for checking 
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accuracy was the first iteration of the case where water fills exactly to the high support, as this 

provides a simple load pattern. For the first iteration of the flat case, when the programs are 

compared to the hand calculations, the results are very close. It turns out that the error is 

independent of all but one of the variables (the pitch is the only one that matters here) of the 

system, and mostly depends on the number of divisions used in the analysis. The results of the 

analysis of the accuracy provided these results: 

Divisions: 100 99 75 50 35 25 20 10 2 
% Difference: 0.016 0.00408 0.00711 0.064 0.033 0.064 0.4 1.6 40

Table 3: Errors in Numerical Analysis 

Where the divisions are all fairly small numbers, and the percent difference represents the 

percentage difference between the hand calculated values for maximum displacement from 

equations as provided in the AISC steel manual, and the value for the maximum displacements 

from the MATLAB and Excel program. 

 

Based on these numbers, it can be seen that errors are very small for a surprisingly small number 

of divisions. Also, it can be noted that the error gets smaller at a rate proportional to the square of 

the rate of the increase in divisions. This can be shown by comparing the errors at 100 and 10 

divisions. Another important thing to notice is that an analysis with an odd number of divisions is 

much more accurate than an analysis with an even number. In fact, if an odd number is used, only 

half as many divisions are needed. This can be seen by comparing the accuracies of the analyses 

with 50 and 25 divisions.  

 

Finally, by checking analyses of sloped beams, it was found that this program is slightly less, but 

still very accurate for sloped beams. Analyses of sloped beams show that the errors seem to be 

about 3.5 times larger than the corresponding flat case, regardless of slope. Because the 

MATLAB program allows large numbers of divisions with little problem, this error is 



57 
 

insignificant. In some cases, analyses were run with more than 10,000 divisions, which would put 

the worst case error at less than 1 part in ten million. 

 

Results 
 
 
The program outputs results both in numerical and graphical data. For the results discussed here, 

the numerical results are the more useful, but the graphical data often gives a better understanding 

of the behavior. Shown here are three plots from MATLAB. 

 

Figure 26: Beams analyzed by numerical analysis 

The first plot shown here represents a stable system. The successive deflections get bigger, but 

the rate of deflection increase decreases. This beam is approaching stability and will not deflect 

indefinitely. The second plot represents an unstable system. Successive deflections get 

increasingly larger, and will continue to infinity. The third image represents a simplified version 

of both the other plots. The top curve represents the stable system, as the total deflection 

approaches a fixed value. The bottom curve represents the unstable system, as the deflection 

becomes unbounded. 

 

The results of the program, aside from it being a useful tool itself, are the results of the 

determination of the critical values of variables that put the system exactly at stability. Based on 

the results, it has been shown that this numerical analysis and the program created check with the 

stability criteria in the literature, first presented by Haussler in 1962. The full results are presented 

in the appendices, but a discussion is presented here. 
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Using the program option to find a series of critical points, sets of ten such points were found. 

One variable, the density, was isolated and varied between 100 and 10 pounds per cubic foot. 

Based on the critical values, results for the critical values of each other variable were found in 

turn. Based on these, it was confirmed that density is proportional to the moment of inertia and 

modulus of elasticity, inversely proportional to the spacing and inversely proportional to the 

fourth power of the length. These proportionalities all reflected the equation published by 

Haussler (Haussler, 1962).  

 

Both flat and pitched roofs were checked for the effect of the initial depth of water on the ponding 

stability and it was found that the critical point was not dependant on the initial load at all in 

either case. For the sloped case, it was found that the relationships between the variables remain 

unchanged, with the exception of length. The density is still proportional to the modulus of 

elasticity and the moment of inertia, and inversely proportional to the spacing. The relationship 

between these variables, the length and the pitch angle is not known quite as well for a non-flat 

beam. The two variables in question, length and angle, were checked against each other to 

determine a relationship at critical value for stability. The results look like this: 

For 110 pcf density, 6’ spacing, 2’ depth, 500 in4 moment of inertia, and 29000 ksi modulus of 

elasticity: 
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Figure 27: MATLAB output 

This typifies the plots of several different sets of the variables. They all have a vertical asymptote 

that crosses the length axis at the critical length for a flat beam with the other variables constant. 

It curves up quickly at first, but the growth of the angle with length slows down. This plot does 

not hit an upper bound, but simply continues up increasingly slowly as the length increases. 

 

This plot illustrates an important fact of the ponding problem. Putting a roof on a pitch will 

always make it more stable, but it is interesting to note that, in this case, a pitch up to four degrees 

really doesn’t make the allowable length much longer. The real benefits come as the pitch rises 

above five or six degrees. Building codes and design specifications only require ponding analysis 

for roofs that have a pitch below ¼ on 12 or about 1.2 degrees. This requirement is based on 

ideology completely separate from this analysis. The basis of that angle is that for a pitched roof, 

the water can simply run off. The analysis presented here, however, assumes it cannot. It is more 

conservative to assume that the water will be blocked at the low end of a roof, and use the 

analysis presented here.  

 
 
Conclusions 
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Based on this analysis, there are seven variables that determine the deflection of a beam under 

ponding loads, and six of these determine the stability criteria. The result presented by Haussler is 

verified for the flat case. The sloped case, however, is more complicated. The relationship of the 

variables length and angle to the other variables is unknown. In two different papers, the authors 

approach the problem of the sloped roof under ponding loads (Chang and Chong, 1977) 

(Blaauwendraad, 2007). While they both show that ultimate deflection depends on initial load, 

neither determines whether stability depends on initial load or not. Also, neither paper presents a 

simple method for calculating a stability factor. This analysis has shown that the initial load does 

not affect the stability, and has shown some insight into how the angle affects stability. 

 

It would be good for building codes and design specifications to include the pitch of a roof in the 

criteria beyond simply to provide a method of drainage. It would be safer to assume that the water 

draining will be blocked at least to the height of the secondary drainage system, and that this 

could initiate ponding. Requiring a ponding analysis for sloped roofs to a higher pitch would do a 

much better job of ensuring safe roof systems. 

 

Future Work 
 
 
This program works for the conditions, assumptions and design setup used. This does not mean, 

however, that there are not other things that this program could be expanded to do. A short list of 

possibly useful additions is provided here. An updated program could: 

• Analyze deflections of a joist instead of a beam 

• Check serviceability requirements (L/240, etc) 

• Allow for variations in loads (Point loads, two sets of loads, uplift etc.) 

• Allow for initially cambered beams 

• Check either the second order effect or end moments as described above 
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• Allow for variable elasticity in the beam, as the beam will go inelastic as it approaches 

failure 

• Account for two way systems 

• Allow varied support conditions 

• Account for shear deformation contributions to deflection 

• Be compiled and distributed for use by anyone interested 

• Calculate a rate of convergence for stable systems to determine a safety factor 

Some of these would be much more useful than others, but all of them are feasible. The one other 

item that needs more work in the future is the determination of a general equation for the stability 

condition in the pitched case. Results from the program have been presented for this, but no 

equation has been found. This would be useful to designers and possibly design code. 
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EXPERIMENTAL DESIGN 
 

 
Goals of the Research 
 
 
While there is a lot of knowledge in the literature regarding ponding loads, not much of it makes 

its way into the design code. The ponding checks given in the code are brief when compared to 

the numbers of observed failures and the costs over the past twenty years. Hopefully, through 

increased research and a better understanding of this loading, roofs will be made safer. 

 

There are several goals for this research. First, it is hoped that it will help create a better 

understanding of the ponding phenomenon, including how, and in what shape a roof deflects and 

how the loads are carried. Hopefully, some results will help determine how the roof structure 

fails, and what type of failure causes the final collapse. Finally, it is hoped that better design and 

construction methods may be presented for consideration. A better understanding of ponding can 

reduce the number of failures, reduce costs, and prevent deaths by improving roof designs. 

 

General Design 
 
 
Materials 
 
 
The first question when considering the design of this test is: what materials will be used in the 

roofing system? It seems as though the best option of all roofing systems available is the steel 

decking on open web steel joist system. There are several reasons for choosing this as the 

structural system. First, the test is of flexible roof systems. The most flexible systems are made of 

these materials. Steel itself is very ductile compared to other structural materials. Open web joists 

made of steel are themselves designed to be long span, slender, efficient elements, which makes 

them relatively flexible.  
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Open web steel joists are a great choice of material because of their inherent flexibility, but also 

because of their popularity. This type of roof is widely used throughout the country. Any large 

warehouse, office building, or commercial building has a good chance of being made with steel 

joists and steel decking, especially if the roofs on these structures are relatively flat. Together, 

these two factors make this the best type of roof to test. It is flexible, and commonly used in 

practice. 

 

Available Facilities 
 
 
The long wave channel at the O.H. Hinsdale Wave Research Laboratory at Oregon State 

University provides an effective setting to test a section of a roof structure under ponding loads. 

The channel is 15 ft deep, 12 ft wide, and effectively infinitely long. It provides 1 in. holes on 

grids spaced 12 in. tall and 8 in. wide to bolt supports into the walls at locations spaced at 12 ft 

along the wall. These will enable support for the test roof system. 

 

These facilities require a few things of the experimental design. First, the length of the span must 

be a multiple of 12 ft. Second, it must rest on supports that can be bolted into the walls at 

appropriate locations. Also, the design must be exactly twelve feet wide, as the walls will provide 

the barrier to hold the water on the roof. 

 

Supports 
 
 
Open web steel joists are typically modeled as simply supported, but with the addition of a 

bottom flange extension, they can easily be constructed with fixed ends that resist moments, and 

this is done in practice. For this experiment, the supports will be pin and roller connections with 

no moment resistance. This is how joists are typically designed and used, and it simplifies the 



64 
 

setup. All of the ponding literature assumes simply supported members except those specifically 

investigating alternate support conditions. This is also how the supports were modeled in the 

MATLAB program. These supports will make the structure determinate, which further simplifies 

the analysis. 

 
 
Design Background 
 
 
Open Web Steel Joist Design 
 
 
Open Web Steel Joists (OWSJ) are proprietary products that are designed and manufactured 

according to industry standards established by the Steel Joist Institute (SJI). The Institute provides 

load tables that specify designations and strengths to a variety of joists of a variety of sizes. Any 

designer can chose steel joists as framing elements, and by finding the required strength, choose a 

joist from the SJI Standard Specifications. Joists come in several forms. The K-Series joists are 

the typical framing members that support steel decking. A more specific category of K-Series 

joist is the KCS joist, which is designed for a wider variety of load cases. Longer spanned, 

stronger joists are available in the LH and DLH categories. Joist Girders can also be selected, 

which are designed to be the framing elements that support the joists. These girders are designed 

to carry several point loads along their length. The K-Series joists are the most typical framing 

members, and come in designations such as 30K7, indicating a joist that is 30 in. deep and 

stronger than a 30K6 but weaker than a 30K8. The second number is called the section number, 

but indicates nothing other than relative size within a family of joist depths. 

 

When these joists are purchased by the contractor for construction, the manufacturer can build the 

joist in a variety of ways, provided it meets the required strength and a few other requirements 

from the specifications. In general, joists are fabricated from angle sections and solid round bars. 

The flanges are generally paired angles, while the web is made from the solid round bars. At the 
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ends, the angle brackets are generally replaced by channel sections to provide a strong bearing 

seat to resist the vertical end reaction. Joists are typically given a camber during fabrication based 

on an arc radius of about 3600 feet. This allows the joists to deflect under dead weights and still 

be flat (SJI and SDI, 2008). 

 

Designing with joists is fairly straightforward. A roof design load is calculated as usual, and a 

framing plan is drawn. Based on the tributary width each joist will support, the load on each joist 

can be found in pounds per linear foot. Using the Standard Specifications, joists can be chosen. If 

a desired strength is not available, or if a joist will be supporting an unusual load pattern (not a 

uniform load), then custom joists can be ordered. This is done often in practice (SJI and SDI, 

2008). There are other considerations to take into account. When a pitched roof is required, it is 

more economical to pitch the joists themselves rather than the chords. In this case, the span is 

taken as the diagonal length. Joists are generally not designed for uplift. If this is required, then 

special joists may have to be ordered. Finally, it is generally more economical for joists to span 

the longer dimension of a bay, while the joist girders span the short dimension. 

 

Joists are slender and require significant lateral bracing in the form of bridging. Generally, joists 

are connected to each of the adjacent joists to ensure stability. Bridging requirements are outlined 

in the Standard Specifications. Based on the length and the section number, the number of rows 

of bridging can be determined. Bridging is typically horizontal, but based on location of the 

selected joist in the load table, it may be required to make one set of bridging diagonal. The 

design of these members is outlined in the Standard Specifications. 

 

By looking at existing structures, it is easy to get an idea of what typical joist framing looks like. 

Generally, there is decking, supported by joists, supported by joist girders, supported by columns. 
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Warehouses in the Portland area were investigated to see what range of values is typical. All 

numbers here are approximate, as exact measurements could not be taken.  

• The Fry’s Electronics store in Wilsonville has 60 ft joists spaced at 5½ ft.  

• The IKEA store in Portland has a complex system of joists and joist girders. There are at 

least two sets of joists, one being 60 ft joists spaced at about 8 ft, the second being 36 ft 

joists spaced at 7½ ft. These are all supported on joist girders about 110 ft long, spaced at 

77 ft. These are supported on steel columns.  

• The Best Buy store in Tualatin has joists that span 50 ft and are spaced at 7 ft. 

• The Costco location in Tigard has joists that span 38 ft and are spaced at 4.5’ 

From this, it is clear that all structures are different, even when made from the same framing 

system. 

 

Steel Decking 
 
 
Designing with steel decking is straight forward. If the roof pressure and span conditions are 

known, then steel decking can be designed. The Steel Deck Institute (SDI) publishes a Design 

Manual that includes load tables based on span, support conditions and type of decking. 

Generally, span conditions are decking continuous over three supports (joists), but the design 

manual allows for one, two or three supports per section of decking. Based on the number of 

supports and the space between them, four types of decking can be chosen: narrow rib, 

intermediate rib, wide rib and deep rib. By far the most commonly used is the wide rib decking, 

but the Design Manual provides load tables for each. These load tables are all unfactored 

strength, so based on the design methodology, they must be given a factor of safety. 
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Design Methodology 
 
 
Ideally, a testing setup would be constructed that would perfectly model a real, practical roofing 

system. The main idea is to setup a single joist that could be considered typical, instrument it and 

test it. Based on the results, deflection characteristics, load paths, and the joist behavior could be 

isolated and analyzed. To set up a single typical joist, the setup must be symmetrical about the 

joist, to avoid seeing different effects based on uneven distribution of loads. This means that there 

must be an odd number of joists in the setup. In the available space of twelve feet, either three or 

five joists must be installed as part of the roofing system. Any more than this is unreasonable 

because the spacing becomes too small, and one joist is impractical for obvious reasons. With 

three joists, the spacing will be close to six feet, while with five, the spacing will be closer to 

three. Because six feet is more typical, and because testing a setup with three joists is less 

expensive, it seems the best option is to use three joists spaced at almost six feet. 

 

A problem that arises with this or any similar setup is that each joist will see different loads, as 

the edge joists have only half the tributary area to support. This means that the center, typical joist 

will deflect more than the others, and that this will induce stresses in the decking and an imperfect 

deflected shape at each joist based on the differential deflections. In order to fix this and make the 

roof deflect as a unit, the only option would be to decrease the moment of inertia of the edge 

joists by one half, to compensate for them seeing only one half of the load. Based on the K-Series 

load tables in the SJI Standard Specifications, there are several pairs of joists that are the same 

length, where one has exactly half the moment of inertia the other does. 

 

None of these pairs works for this design, however, because for each, the edge joist with half the 

moment of inertia also has less than half the strength as the center joist. This means that though 

the roof section would deflect as a unit, the typical joist (the one the test would be focusing on) 
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would not be the one to fail. The only way to get around this problem would be to order custom 

joists, which simply may not be possible, as they are being donated. Because of this, the design 

will call for three identical joists to be used in the setup. There will be interference to the 

deflections due to the forces from the decking, but this should be workable. This is just one small 

source of error that may have to be quantified based on the data from the experiment and will be 

reported in the results. 

 

Another important aspect of the design of the experiment is the support system. The joists should 

be attached to fairly rigid supports. This also helps the roof deflect as a unit. If the supports 

deflect independently, then the experiment has become a test of a three way system, which is 

much more complicated. Ideally, there would be almost no deflection of the supports. Also, the 

structural supporting system must be much stronger than the roof system itself to preclude failure 

of the support system from the ponding loads. To ensure there is a significant overstrength of the 

supports, an additional factor of safety of 2.0 was used for design. 

  

Because supports for systems like these are typically simple supports, and because it simplifies 

the experiment, the end reactions will make this setup simply supported. This means that one end 

of the joist will be pinned, and the other will be a roller. As the joist deflects, the ends of the joists 

will be moving relative to one another. As the top flange is in compression, and because the 

horizontal length of the joist gets shorter as it deflects, the end of the joist on the roller will move 

in. Space should be allowed for this support to move, so that neither tension nor compression is 

induced in the joist. 

 

An ideal ponding test would be to select and test joists that are just at the Criterion Ratio, to 

determine how well the theory predicts ponding stability in real systems. Unfortunately, the AISC 

specifications provide a factor of safety against this condition of four, which is relatively large. In 



69 
 

order to test this condition outright, very flimsy joists would be required. Again, custom order 

joists would be required, and they would be purposely, unrealistically, understrength and flexible. 

This would defeat the purpose of attempting to test a typical roof system. The fact that none of 

the joists would be unstable against ponding loads in the facilities available demonstrates that 

joist designs are typically safe for ponding stability. This does not mean, however, that no steel 

joists will be unstable for ponding loads. Simply by increasing the spacing between joists too 

much, any joist could become unstable. 

 

This also does not consider the fact that in most roof failures where ponding is a contributing 

factor, the ponding effect is added to an existing set of loads, and the roof fails due to overload, 

rather than lack of stability. A more appropriate test may be to examine this additional 

contribution and failure due to lack of strength. The test would use a typical joist, and load it to 

failure. As the theory demonstrates, joists in a ponding situation will accumulate additional load 

due to deflections and water accumulation. The total load is the sum of the uniform load and the 

contribution from the ponding effect. Instead of testing the stability criteria, the amplification of 

existing loads (water weight) by ponding will be examined. The deflected shape, load path, and 

behavior of the joist will also be analyzed. This experiment will investigate the ponding theory 

and the code provisions, and employs standard joists. 

 

The proposed test will consist of several steps. First, a roofing system must be built that is 

realistic and possible to test in the facilities available. This system must be supported in the long 

wave flume at the Wave Research Laboratory, and a pool must be built on top of it to hold the 

ponding liquid (water). The system will be instrumented, and then loaded with water until it fails. 

The deflected shape and depth of water will be compared to those expected under normal 

distributed loads, and the ponding contribution to deflection and failure will be determined. This 
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will allow a discussion of how important the ponding contribution is to the general problem of 

roof failure, and recommendations can be provided. 

 

Design Calculations 
 
 
Several aspects of this experiment must be ensured to be safe before the experiment will work. 

The roof structure must act like a roof, and as a unit. The supports must be strong enough to hold 

the setup. Calculations have been done to ensure the system will perform as anticipated. The 

explanation of these calculations follows. For details on the calculations and methodology, see 

the appendices for the actual hand calculations. 

 

The facilities available limit the joist length to 12 ft increments. Both 48 ft and 60 ft joists are 

common in practice, and both have advantages for this experiment. In the case of the 48 ft joists, 

if a sloped test was desired (it may be, but for now, the design is done for the flat case. The design 

of a sloped experiment would be very similar, and the flat case design would require only minor 

changes to the supports), then for a ¼ on 12 slope, a 48 ft span would mean the joist would rise 

exactly one foot. This keeps the supports lined up with the holes in the existing concrete wall, 

which is convenient. The 60 ft span, however, allows the collection of more data and larger loads, 

which could be useful when analyzing the data. The 60 ft length was selected as the preferred 

alternative, and the design will proceed using this value. 

 

Based on the strength of the roof of the new OSU energy center, roofs built in this area should be 

able to withstand about 46 psf. The experimental design will attempt to achieve this load level. 

Based on the Standard Specifications, the 60 ft joist that gets closest to this value at slightly less 

than 6 ft spacing is the strongest available, the 30K12. Based on this joist, all other structural 
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elements in the setup can be sized. The steel deck that most closely matches this load is the SDI 

IR20 decking. 

 

Based on the loads these joists will be transferring to supporting steel beams, moments can be 

calculated and the beam sized. It turns out that a very small beam would be satisfactory, even 

with a significant factor of safety. The design will require, however, that connections between 

elements be bolted. Based on this, it would be sensible to choose a beam with the largest practical 

flange. The lightest section with a 10 in. flange was chosen: W10x49. Because it is known that 50 

ksi steel will be purchased, the moment capacity tables in the AISC specifications can be used to 

determine the strength of this section to check. Based on a conservative unbraced length of 12 ft, 

the strength is 238 kip-ft, which provides a factor of safety of 12.5 against bending. 

 

Next, column sections are required to support this W10 section and connect it to the concrete 

walls of the long wave flume. Four 21 in. long W12x72 steel column sections are already 

available at the wave lab, and are practical for the application. To check this column for strength, 

the unbraced length was taken conservatively as two feet, with a k value of 1.0. Based on the 

column strength tables in AISC, this steel section provides a compression strength of 953k at 6 ft, 

which is as short as the tables go. This provides a significant overdesign for the column section. 

 

Additionally, steel braces will be required for the bridging between joists, and to support the 

walls at the ends of the roof that will contain the water. These walls will be made out of double 

layered plywood, and will be supported against overturning by small steel angle sections. The 

loads were calculated for the end supports and found to be negligible for any steel section. The 

load required to be carried by the bridging elements is similarly small. Based on this, a small 

angle section (L2x2x¼) was chosen for these elements. An angle section was not chosen because 

it is particularly strong, but because it will be easier to work with in the field, when building the 
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structure. It is important to note that bridging between joists is required in both directions, which 

will be difficult for the edge joists, as there are no adjacent joists to attach the bridging to. In 

these cases, a roller bearing will be bolted to the joists that will enable thrust against the concrete 

wall, preventing side sway in the whole structure. It is also important to note that based on the 

chosen joist, four sets of bracing are required for stability of the system, and based on the joist’s 

location in the load tables, the set closest to the center will be cross bracing. To ensure the design 

meets the specified bracing requirements, a center set of bracing will be added. 

 

Finally, four additional items were checked. The bolts that will support the column sections to the 

walls were checked for shear capacity. They were found to provide sufficient strength. Also, an 

estimate of the horizontal deflection of the end of the joist at the roller support was made. This is 

important to provide adequate space to accommodate the motion of the two points with respect to 

each other. Based on conservative estimates made by determining the axial force carried in the 

flange, this deflection should be a little more than one half inch, which can be accommodated. 

Also, the deflection of the steel beam supporting the joists was calculated, and found to be less 

than one twentieth of an inch, which is sufficiently small to ignore its influence on the ponding 

effects. Lastly, the strength of the beam was calculated manually to double check the values from 

the tables, and was found to be adequate. 

 

Experimental Design 
 
 
The general testing methodology has been laid out, and the structural elements of the test have 

been designed. All that remains is to determine how the experiment will be conducted. The 

application of the load and the instrumentation are both important considerations. 
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The load will be applied by adding water on top of the roof, which will be made waterproof. On 

top of the steel deck roofing, insulation such as Georgia Pacific DensDeck will be used, as in 

typical construction. Over this, a waterproofing membrane will be applied. This membrane will 

simply rest on the insulation, and wrap up around both the concrete and plywood walls on all four 

edges. This membrane should not be pulled tight over the roof, as deflections are expected, and 

slack will be needed where the roof moves relative to the concrete tank walls. This should 

provide a waterproof barrier throughout the experiment. 

 

The experiment will require instruments to monitor the loads and the response of the specimen. 

First, a flow meter will be attached to the source that is providing the water to the roofing 

structure. This will probably provide the most accurate measure of the total volume of water on 

the system. Second, hooks will be screwed into the roofing at every panel point, so that deflection 

gages can be attached to the structure. They will be located at panel points to measure the 

deflection profile along the span. These screws will be sealed using a silicone caulking to ensure 

the roofing membrane remains watertight. The water height will also be measured. 

 

There will also be load cells under each of the joist end support points. Each joist will be 

instrumented at both ends, and this data should allow the distribution of the loads to be 

determined. It is clear that the center joist will carry the largest load, but to what degree is 

unknown, and these load cells will identify the distribution. The last piece of the instrumentation 

is a set of strain gages. These will be applied to a variety of members in the steel joist of interest, 

and possibly to the bridging. These will provide the best method for determining how the loads 

are transferred through the joist, and where failures are likely to occur. These should be applied 

last, after all fabrication and especially welds, to prevent residual stress effects. As a flange 

member may be bending in two directions and carry an axial force, three strain gages will be 

required to measure all internal loads. Finally, cameras will be set up to videotape the entire test, 
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and to take still images as needed. This may help in determining a mode of failure, and will help 

maintain a visual record of the event. 

 

It is hoped that through the tests and the failures, all of the instrumentation will be reusable. It is 

possible that during failure, some of the load cells, for example, may be damaged. If this is the 

case, then the design may have to be modified for the next test. All together, five things will be 

measured in this setup. The height of water, deflections of the roof, the total load, the load at each 

support point, and the strains in many of the joist sections will all be known at the end of the test. 

With this data, joist behavior will be characterized, including the joist deflection, the strength of 

the joist, and load distribution among the members. It should also be possible to determine the 

mode of failure and the contribution of the ponding effect. Based on this data, conclusions and 

recommendations will be made. 

 
 
Design Summary 
 
 
There are three, 60 ft 30K12 joists spaced at 5.6 ft. These are supported on 12 ft W10x49 sections 

at each end, with web stiffeners under loading points. These W sections rest on ¾ in. plates that 

are supported on W12x87 sections which are bolted into the existing concrete wall with ¼ in. 

washer plates. There are 5 sets of cross bracing spaced approximately every 10 ft along the joists; 

the center is diagonally braced. There are plywood walls at both ends, which are supported by 

2x2x1/4 steel L sections. On top of the joists is SDI IR20 steel decking, covered in ½ in. Georgia 

Pacific DensDeck, covered with a watertight liner. 

 

Technical Drawings of the final experimental design have been completed in AutoCAD. Five of 

these drawings are included in the appendices. Included are a plan view, elevation view, and an 

end view of the whole design setup. Also included is a detail of the joist bracing, and a detail of 
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the support structure that shows the column section bolted into the wall, the W section that spans 

across the tank, the joist end, the wall that is built up to hold the water in, and all the other details 

of the connections. 

 

Conclusions 
 
 
This test represents the first of its kind. This will be the first full-scale test of a realistic roof 

system under ponding loads. It will take advantage of the facilities available at the O.H. Hinsdale 

Wave Research Lab at Oregon State University as the location of the test. A roofing system made 

of steel decking supported on steel joists will be tested to failure, in order to determine the 

contribution of the ponding effect to the failure. The setup will be supported on a relatively strong 

and stiff steel frame, and will represent a real roof as closely as possible. It is hoped that through 

this test, more will be understood about the behavior of flexible roof systems and how they 

behave under ponding loads. Results may enable better design and construction methods to 

prevent such failures in the future. 

 

Areas for Further Research 
 
 
While this research is important and stands independently, there are several other related areas 

that could use further investigation. First, the design outlined here is for the flat case. The sloped 

case is also important, and research could be expanded into this area. Second, roof ponds are now 

being induced purposely by design. This can be seen in the trend towards green roofs that have 

flower beds and soils for plants. When rain falls on a roof like this, the soil will absorb the water 

and create much larger loads on the roof than in the past. This must be accounted for in design, 

and it would be interesting to see what magnitude loads result from a typical green roof. Roofs 

that support water have also been designed because the water acts as an insulator. It will cool the 

building on hot days and keep it warm through cold nights. It could be interesting to research 
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such roofs and determine average water loads and their effect on the structures. Finally, it would 

be interesting to study the dynamic response of ponded roofs. How would a roof that has water 

ponded from a rainstorm or a green roof act in an earthquake? What would be the vertical and 

horizontal accelerations and how much damage would the sloshing effects cause? There are areas 

to expand the research of roof ponds. 
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CONCLUSIONS 
 
 

Most building codes and design specifications provide minimal guidance for design and 

construction professionals on the effects of ponding loads. This does not reflect the fact that 

ponding related roof collapses are common, destructive, and dangerous, and that they have 

occurred on roofs made of all types of materials. They have occurred throughout the country and 

improvements are needed to minimize this failure condition. 

 

The theory behind ponding loads, first established by Haussler in 1962, has been expanded to 

cover a variety of topics. The building codes incorporate simplified versions of ponding analysis 

for design use and require only that two independent sets of drains and a slope greater than ¼ on 

12 be provided to preclude. Beyond this, they refer designers to the ponding equations provided 

in the AISC specifications. The methods presented there are simple and based on the established 

theory, but only for flat roofs. More research on ponding loads on nearly flat roofs is needed. 

 

A numerical analysis has been done to investigate the effect of ponding loads on flexible roof 

systems. This analysis confirmed the published theory by Haussler. It was found, however, that 

the slope of a roof has an interesting effect. It was shown that real benefits to ponding stability 

from increasing the pitch of a roof do not come until the roof gets steeper than currently 

recognized by the code, for the common case where a parapet wall is used. More investigation is 

needed on this topic. 

 

Despite the work that has been done, full-scale, realistic tests of roof systems have not been 

reported in the literature. A design for such a test was completed as part of this work. The design 

calls for loading open web steel joists under ponding loads to failure. It is hoped that through this 

test, the contribution of the ponding effect to the total load can be determined. The deflected 
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shape, failure mode and load paths in the joists will be identified. This will enhance the 

understanding of the behavior of flexible roof systems under ponding loads and enable 

development of better design and construction methods to prevent ponding related collapses in 

the future. 
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Appendix A: Computer Code 
 
 
Parts of this report rely on computers to do numerical analyses of beams under ponding loads. 

The full text of these programs would be included here in the appendices, but it would obviously 

be inefficient for anyone interested to retype these documents. For any reader interested, the 

programs (written for use in MATLAB) are available online at: http://oregonstate.edu/~starkdu/ 

 

To run this code, open MATLAB, and call the function “Main.” This function will prompt the 

user to do the rest. As a user, inputting data through the MATLAB interface may get tedious, so 

an option has been built in to use stock inputs. For quicker, easier and more flexible inputting, 

change variables in the “InputStock” or “InputStock2,” then tell the program not to use user 

input. 

 



84 
 

Appendix B: Results of Numerical Analysis 
 
 
The following are the results of the MATLAB analysis presented in spreadsheets. Each set of data 

represents a group of beams at the critical ponding point. In each, one variable, highlighted darker 

is varied as the independent variable, and another, highlighted lighter, is the resulting dependant 

variable. Each set is labeled at the far left with two numbers. The first represents which group the 

results belong to. The first group of analyses is for a flat beam, and show that the relationships 

found by Haussler are true. The second group of analyses is for a beam at a pitch of five degrees. 

These analyses show that for a sloped beam, the relationships found by Haussler still apply, with 

the exception of the variable length. The third and final set of data shows the relationship between 

a varied angle and the critical length. This data is the basis for the results discussed in the 

numerical analysis section, and the plot shown there. 
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1 1 Density 100 90 80 70 60 50 40 30 20 10
1 1 Spacing 6 6 6 6 6 6 6 6 6 6
1 1 Pitch 0 0 0 0 0 0 0 0 0 0
1 1 Depth 2 2 2 2 2 2 2 2 2 2
1 1 Elasticity 29000 29000 29000 29000 29000 29000 29000 29000 29000 29000
1 1 Inertia 500 500 500 500 500 500 500 500 500 500
1 1 Length 63.5863 65.2834 67.2343 69.5167 72.248 75.6173 79.9555 85.9178 95.0837 113.0742
1 1
1 1 1.000001 1 1 1.000002 1.000002 1.000002 0.999999 1 1.000001 1.000001
1 1
1 1 L^4 16347608 18163982 20434478 23353748 27246035 32695250 40868940 54491980 81738054 1.63E+08
1 1 DL^4 1.63E+09 1.63E+09 1.63E+09 1.63E+09 1.63E+09 1.63E+09 1.63E+09 1.63E+09 1.63E+09 1.63E+09
1 1 min 1.63E+09
1 1 max 1.63E+09
1 1 % error 0.0003

4 4/BL EIγ π

 

1 2 Density 100 90 80 70 60 50 40 30 20 10
1 2 Spacing 6 6 6 6 6 6 6 6 6 6
1 2 Pitch 0 0 0 0 0 0 0 0 0 0
1 2 Depth 2 2 2 2 2 2 2 2 2 2
1 2 Elasticity 42593.06 38333.33 34074.31 29815.28 25555.56 21296.53 17036.81 12777.78 8518.75 4259.028
1 2 Inertia 500 500 500 500 500 500 500 500 500 500
1 2 Length 70 70 70 70 70 70 70 70 70 70
1 2
1 2 0.999994 1.000005 0.999999 0.99999 1.000005 0.999994 1.000019 1.000005 0.999978 1.00006
1 2
1 2 D/E 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348
1 2 min 0.002348
1 2 max 0.002348
1 2 % error 0.008152

4 4/BL EIγ π

 

1 3 Density 100 90 80 70 60 50 40 30 20 10
1 3 Spacing 6 6 6 6 6 6 6 6 6 6
1 3 Pitch 0 0 0 0 0 0 0 0 0 0
1 3 Depth 2 2 2 2 2 2 2 2 2 2
1 3 Elasticity 29000 29000 29000 29000 29000 29000 29000 29000 29000 29000
1 3 Inertia 734.37 660.89 587.5 514.03 440.64 367.16 293.77 220.3 146.9 73.43
1 3 Length 70 70 70 70 70 70 70 70 70 70
1 3
1 3 0.999985 1.00005 0.999978 1.000041 0.999944 1.000053 0.99991 1.000035 0.999808 1.00008
1 3
1 3 D/I 0.136171 0.13618 0.13617 0.136179 0.136166 0.13618 0.136161 0.136178 0.136147 0.136184
1 3 min 0.136147
1 3 max 0.136184
1 3 % error 0.027229

4 4/BL EIγ π

 

1 4 Density 100 90 80 70 60 50 40 30 20 10
1 4 Spacing 4.0857 4.5398 5.1062 5.8362 6.8079 8.1702 10.2136 13.6169 20.426 40.8527
1 4 Pitch 0 0 0 0 0 0 0 0 0 0
1 4 Depth 2 2 2 2 2 2 2 2 2 2
1 4 Elasticity 29000 29000 29000 29000 29000 29000 29000 29000 29000 29000
1 4 Inertia 500 500 500 500 500 500 500 500 500 500
1 4 Length 70 70 70 70 70 70 70 70 70 70
1 4
1 4 1.000124 1.000153 0.999942 1.000035 0.999889 0.999977 1.00006 0.999969 1.000001 1.000018
1 4
1 4 D*B 408.57 408.582 408.496 408.534 408.474 408.51 408.544 408.507 408.52 408.527
1 4 min 408.474
1 4 max 408.582
1 4 % error 0.026433

4 4/BL EIγ π
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2 1 Density 100 90 80 70 60 50 40 30 20 10
2 1 Spacing 6 6 6 6 6 6 6 6 6 6
2 1 Pitch 5 5 5 5 5 5 5 5 5 5
2 1 Depth 2 2 2 2 2 2 2 2 2 2
2 1 Elasticity 29000 29000 29000 29000 29000 29000 29000 29000 29000 29000
2 1 Inertia 500 500 500 500 500 500 500 500 500 500
2 1 Length 79.24 83.88 89.63 96.97 106.65 120.08 140.04 173.01 238.4 433.1
2 1
2 1 2.411705 2.725351 3.158274 3.786116 4.74833 6.359149 9.410542 16.44191 39.51857 215.2281
2 1
2 1 L^4 39425560 49503247 64537715 88419811 1.29E+08 2.08E+08 3.85E+08 8.96E+08 3.23E+09 3.52E+10
2 1 DL^4 3.94E+09 4.46E+09 5.16E+09 6.19E+09 7.76E+09 1.04E+10 1.54E+10 2.69E+10 6.46E+10 3.52E+11
2 1 min 3.94E+09
2 1 max 3.52E+11
2 1 % error 98.87947

4 4/BL EIγ π

 

2 2 Density 100 90 80 70 60 50 40 30 20 10
2 2 Spacing 6 6 6 6 6 6 6 6 6 6
2 2 Pitch 5 5 5 5 5 5 5 5 5 5
2 2 Depth 2 2 2 2 2 2 2 2 2 2
2 2 Elasticity 42593 38334 34074 29815 25556 21296 17037 12778 8519 4259
2 2 Inertia 500 500 500 500 500 500 500 500 500 500
2 2 Length 70 70 70 70 70 70 70 70 70 70
2 2
2 2 0.999996 0.999988 1.000008 0.999999 0.999988 1.000019 1.000008 0.999988 0.999949 1.000066
2 2
2 2 D/E 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348 0.002348
2 2 min 0.002348
2 2 max 0.002348
2 2 % error 0.011738

4 4/BL EIγ π

 

2 3 Density 100 90 80 70 60 50 40 30 20 10
2 3 Spacing 6 6 6 6 6 6 6 6 6 6
2 3 Pitch 5 5 5 5 5 5 5 5 5 5
2 3 Depth 2 2 2 2 2 2 2 2 2 2
2 3 Elasticity 29000 29000 29000 29000 29000 29000 29000 29000 29000 29000
2 3 Inertia 734.37 660.9 587.5 514.03 440.64 367.16 293.77 220.3 146.9 73.43
2 3 Length 70 70 70 70 70 70 70 70 70 70
2 3
2 3 0.999985 1.000035 0.999978 1.000041 0.999944 1.000053 0.99991 1.000035 0.999808 1.00008
2 3
2 3 D/I 0.136171 0.136178 0.13617 0.136179 0.136166 0.13618 0.136161 0.136178 0.136147 0.136184
2 3 min 0.136147
2 3 max 0.136184
2 3 % error 0.027229

4 4/BL EIγ π

 

2 4 Density 100 90 80 70 60 50 40 30 20 10
2 4 Spacing 4.0851 4.5392 5.1068 5.8356 6.8097 8.172 10.2118 13.6176 20.4254 40.8527
2 4 Pitch 5 5 5 5 5 5 5 5 5 5
2 4 Depth 2 2 2 2 2 2 2 2 2 2
2 4 Elasticity 29000 29000 29000 29000 29000 29000 29000 29000 29000 29000
2 4 Inertia 500 500 500 500 500 500 500 500 500 500
2 4 Length 70 70 70 70 70 70 70 70 70 70
2 4
2 4 0.999977 1.000021 1.00006 0.999933 1.000153 1.000197 0.999884 1.000021 0.999972 1.000018
2 4
2 4 D*B 408.51 408.528 408.544 408.492 408.582 408.6 408.472 408.528 408.508 408.527
2 4 min 408.472
2 4 max 408.6
2 4 % error 0.031326

4 4/BL EIγ π
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Appendix C: Design Drawings 

 
 
These drawings are a visual representation of the experimental design. For a better explanation of 

this, see the experimental design section of the report. 
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Appendix D: Design Calculations 
 
 
The calculations contained here are those required to design the setup for the experiment. For a 

better explanation, see the Design Calculations section of the report. 
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