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Lidar is currently the most accurate method for remote estimation of forest structure, but it has limited spatial
and temporal coverage. Conversely, Landsat data are more widely available, but exhibit a weaker relationship
with structure under medium to high leaf area conditions. One potentially valuable means of enhancing the re-
lationship between Landsat reflectance and forest structure is to incorporate Landsat spectral trends prior to a
date of interest. Because the condition of a forest stand at any point in time is linked to the stand's disturbance
history, an approach that directly leverages the temporal information of Landsat time series should improve

Ifzxzrtds. estimates of forest structure. The main objective of this study was to test and demonstrate the utility of distur-
Time series bance and recovery metrics derived from spectral profiles of annual Landsat time series (LTS) to predict current
Forest disturbance forest structure attributes (as compared to more traditional approaches, including airborne, discrete return lidar
Biomass and single-date Landsat). We estimated aboveground live biomass (AGBje), dead woody biomass (AGBgead),
Carbon

< basal area (live and dead), and Lorey's mean stand height for a mixed-conifer forest in eastern Oregon, USA,
Lidar and compared the results with estimates from lidar and single, current-date Landsat imagery. Annual time-

;\_ASS led series stacks for the entire Landsat record (1972-2010) were obtained to characterize all long-term (insect,
L:;S;Tfenzarp growth) and short-term (fire, harvest) vegetation changes that occurred during that period. This required the
TimeSync additional objective of integrating Landsat data from MSS and TM/ETM + sensors, and we describe here our

approach. To extract spectral trajectories and change metrics associated with forest disturbances and recovery
we applied a temporal segmentation to the calibrated time series.
Lidar predicted forest structure of live trees most accurately (e.g. AGBjye: R?=0.88, RMSE=35.3 Mgha~1).
However, LTS metrics significantly improved model predictions (e.g. AGBje: R? = 0.80, RMSE =46.9 Mg ha™!)
compared to single-date Landsat data (AGBye, R =0.58, RMSE = 65.1 Mg ha™!). Conversely, distributions of
AGBeaq Were more strongly associated with disturbance history than current structure of live trees. As a result,
LTS models performed significantly better in estimating AGBgeaq (R?>=0.73, RMSE =31.0 Mg ha~— '), than lidar
models (R?=0.21, RMSE=43.8Mgha~'); and single-date Landsat data failed completely (R®*=0,
RMSE =47.8 Mg ha™!). Further, LTS metrics that integrated disturbance and recovery history over the entire
time series generally predicted AGBgeaq better than metrics describing single events only (e.g. the greatest dis-
turbance). This study demonstrates the unique value of the long, historic Landsat record, and suggests new po-
tentials for mapping current forest structure with Landsat.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction studies that have demonstrated that lidar can accurately estimate

forest height and aboveground biomass (Drake et al., 2003; Lefsky

Accurate spatial estimates of forest structure are required for a
broad range of ecological applications including studies of the terres-
trial carbon cycle (Houghton, 2005) and research on wildlife habitat
and biodiversity (Bergen et al., 2009). Because forest structure is
highly variable in space and time, there is great interest in estimating
key parameters using remote sensing. Lidar is currently the most ac-
curate sensor technology to achieve this task. There are numerous
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et al., 1999), and a variety of other ecologically imporant variables
such as leaf area index (Zhao & Popescu, 2009), vertical vegetation
strata (Morsdorf et al., 2010), succession stages (Falkowski et al.,
2009), and canopy structure (Andersen et al., 2005; Lefsky et al.,
2005a). As aresult, the availability of airborne lidar data is rapidly in-
creasing, but the costs associated with acquisition, data storage and
processing are high. Lidar data from spaceborne sensors that meet
the measurement requirements for vegetation studies (Hall et al.,
2011)) will not be available in the near future. Therefore, alternative
approaches that include other remote sensing data, e.g. passive opti-
cal, are needed.
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Estimating forest structure variables with Landsat and other
multi-spectral sensors has been a research topic of great interest
(e.g. Cohen & Spies, 1992; Hall et al., 2006; Powell et al., 2010). The
advantages of Landsat are several, including a spatial resolution that
captures the fine-grained patterns of land-cover and land-use change
associated with land management, a long history of widespread use
and acceptance (Cohen & Goward, 2004), and a data record going
back to 1972. However, the sensitivity of Landsat and other passive
optical sensors to discriminate vertical structure is limited (e.g. Lu,
2006); the signal recorded by these sensors is known to saturate in
high leaf-area forests (Turner et al., 1999).

Current forest structure and composition is a function of distur-
bance history (Harmon et al., 1990; Spies, 1998). Type and intensity
of disturbance events (e.g. insect, fire, and harvest) affect the amount
of dead woody material produced, and by extension the amount of
live biomass left following disturbance. Bark beetle outbreaks can
cause widespread tree mortality that may become a large contiguous
fuel base for subsequent fires (Parker et al., 2006). Frequency and in-
tensity of disturbances affect carbon storage not only through the
production of dead woody material, but also by affecting forest pro-
ductivity when nutrient availability is limited (Gough et al., 2008).
The concept that forest structure is influenced by disturbances and
environmental conditions, and can be described through ecological
processes of tree growth, mortality, and decomposition, is commonly
applied in forest yield and ecosystem process models (Landsberg &
Waring, 1997; Thornton et al., 2002). In fact, forest management uti-
lizes these concepts to achieve specific, desirable structural condi-
tions, either for wood production or other ecosystem services such
as wildlife habitat. By means of silvicultural treatments such as har-
vest, planting, herbicide application, prescribed fire, humans alter for-
ests in ways that lead to specific prescribed conditions (O'hara, 2001).

It follows that if sufficient spatial data of the disturbance and
regrowth history can be obtained then this information could be
used to map the current condition of forest stands for which structur-
al information is unavailable or incomplete. There is growing consen-
sus that dense time-series records are required to accurately monitor
forest change in dynamic systems (Lunetta et al., 2004). However, it is
less clear what kind of change metrics need to be observed to accu-
rately characterize current forest conditions. Because forest age is a
primary driver of forest structure in homogenous and managed for-
ests, time since disturbance is frequently being used as a surrogate
to predict structure (Helmer et al., 2010; Lefsky et al., 2005b). Howev-
er, partial disturbances from fire, insect, and logging can lead to more
complex systems of uneven age-structure. Rates of forest regenera-
tion after disturbances can be highly variable even for relatively ho-
mogeneous coniferous forests within similar site conditions (Yang
et al., 2005). One potential way to improve on single age-related pre-
dictors is to quantify disturbance and regrowth trends across the full
Landsat record and include information not only related to stand-
replacing disturbances but also to long-term changes in vegetation
cover (Kennedy et al., 2010).

Landsat's data record makes it well suited for mapping forest
change, and there have been numerous studies on this topic. Distur-
bance characterization has been the most common usage of the Land-
sat archive (Cohen et al., 2002; Huang et al., 2010; Masek et al., 2008),
with specific emphases on harvest and fire (Roder et al., 2008;
Schroeder et al.,, 2011), insects (Meigs et al., 2011; Goodwin et al.,
2008; Wulder et al., 2005), and forest loss due to land use conversion
(Powell et al., 2008). Other studies have used the Landsat archive for
the purpose of understanding recent trajectories of forest succession,
including both primary (Lawrence & Ripple, 2000) and secondary
succession (Peterson & Nilson, 1993; Jakubauskas, 1996; Schroeder
et al., 2007; Goémez et al., 2011). However, the focus of most studies
that used Landsat time-series has been to quantify historic changes
for retrospective analyses (e.g., Healey et al., 2008; Kuemmerle et
al., 2009) or as baseline information to establish potential future

scenarios (e.g. Baker et al., 2004; Spies et al., 2007). There are studies
that have used multi-temporal Landsat data to detect stand replacing
disturbances, and then estimate forest structure from the timing of
disturbance (which is related to forest age in some systems as men-
tioned above) (Helmer et al., 2010; Lefsky et al., 2005b). However,
there have been no studies that use the long-term data record at an
approximately annual time step to map current forest conditions by
explicitly incorporating Landsat-derived forest disturbance and re-
covery trends in predictive models.

Recent improvements of Landsat MSS data products support stud-
ies of historical vegetation trends back to the early 1970s. The release
of the long-term Landsat archive for free (Woodcock et al., 2008)
opened new opportunities to detect long-term vegetation changes
with dense time series (Huang et al., 2010; Kennedy et al., 2010;
Sonnenschein et al., 2011), but to-date only few time-series studies
have utilized MSS imagery (Hostert et al., 2003; Powell et al., 2008;
Gomez et al.,, 2011). However, recent developments could greatly en-
hance the utility of MSS imagery for time-series analyses. In fall 2010,
the USGS released new MSS data products with improved radiometry
and geometric correction (http://landsat.usgs.gov/NewMSSProduct.
php). MSS data are now processed with the Level 1 Product Genera-
tion System (LPGS), similar to TM and ETM+, and are cross-
calibrated to improve radiometric consistency across sensors. In addi-
tion, the majority of imagery is now available as terrain-corrected
product (L1T).

In this study, we test the hypothesis that Landsat disturbance his-
tory is a good predictor of current forest structure by exploring em-
pirical relationships between field-measurements of current forest
structure and disturbance and recovery trajectories derived from
spectral profiles of annual Landsat time series. Forest structure can
be described in numerous ways (Spies, 1998). Here, we focus on a
few, representative metrics: aboveground tree biomass, basal area
and height. Because lidar is the ‘gold standard’ for remote detection
of forest structure, and because single-date Landsat data have been
exhaustively studied for this problem, we compare the results from
Landsat time series with results from these two other datasets. Our
objectives were to:

Characterize forest disturbance history through the full temporal
depth of the Landsat archive. This required integration of MSS and
TM/ETM + data into a single, normalized time series to obtain an-
nual Landsat observations between 1972 and 2010. For our ap-
proach, it was necessary to improve MSS geometric registration
relative to TM/ETM+, derive new tasseled cap coefficients for MSS
data, and conduct scene-level radiometric normalization and
pixel-level spectral index alignment.

Derive and evaluate prediction models, for a variety of forest struc-
ture variables, from Landsat time series, lidar, and single-date Land-
sat. Aboveground live biomass is an important variable for linkage
with ecosystem models, but we include others, like basal area
(BA) and height, which are important for forest management. Be-
cause dead wood is important for a variety of wildlife, fire behavior,
and related models that are based on comprehensive ecosystem
functional descriptions, we also examine predictability of above-
ground dead wood.

2. Methods
2.1. Study area

The study area is located in the Blue Mountains of eastern Oregon,
USA, and covers an area of ~830 km? (Fig. 1). The region is dry, with a
large range of average annual precipitation from 305 mm to
1270 mm. Elevation ranges between 500 m and 2700 m. Forest
types include spruce (Picea engelmannii Parry ex Engelm.) and
grand fir (Abies grandis [Douglas ex D. Don] Lindl.) at the higher


http://landsat.usgs.gov/NewMSSProduct.php
http://landsat.usgs.gov/NewMSSProduct.php

148 D. Pflugmacher et al. / Remote Sensing of Environment 122 (2012) 146-165

[ wrs-1 46120 [] wRs-243/29

Lidar heic.;ht

0Om >25m

* Field plots

Fig. 1. Study area in Oregon, USA, location of field plots, and lidar canopy height surface.

elevations, mixed conifer at mid elevations, and ponderosa pine
(Pinus ponderosa Douglas ex P. Lawson & C. Lawson) at lower eleva-
tions (Franklin & Dyrness, 1988). Hardwood species such as black cot-
tonwood (Populus trichocarpa Torr. & Gray), quaking aspen (Populus
tremuloides Michx.), and willow (Salix spp.) occur mainly in the ripar-
ian areas and wetlands. Current forest structure of the area has been
shaped by natural and anthropogenic disturbances, with harvest, in-
sects, and fire as major components. Mountain pine beetle (Dendrocto-
nus ponderosae Hopkins) and western spruce budworm (Choristoneura
occidentalis Freeman) are the main causes of insect defoliation and mor-
tality. Thinning harvest and frequent low intensity fire are common,
which have created structurally and compositionally complex mixed
and multi-aged conifer-dominated forests (Campbell et al., 1996).

2.2. Field sampling

Fifty-one plots were located across the study area using a stratified
systematic sampling protocol (Fig. 1). We stratified the study area
using a combination of lidar median canopy height and Landsat Nor-
malized Burn Ratio (NBR, Key & Benson, 2005) for the year 2008.
Using the Jenks Natural Breaks Classification in ArcGIS 9.3 (ESRI,
Inc.), the median canopy height distribution was grouped into 4 clas-
ses (0.5-5.2 m, 5.3-10.7 m, 10.8-15.4, 15.5-23.2) and the NBR distri-
bution was grouped into 5 classes (—0.3-0.12, 0.13-0.25, 0.26-0.37,
0.38-0.48, 0.49-0.76). The Jenks method determines class breaks by
minimizing within class variance and maximizing differences be-
tween classes. Field plots were randomly selected and equally distrib-
uted across the canopy height and NBR classes, respectively. Because
lidar height is related to forest structure (Lefsky et al., 2005a,b) and
NBR (like most spectral indices) is related to forest cover, employing
these strata ensured that the plots covered a range of current forest
structure and cover conditions. Field data were collected during sum-
mer 2009 using a fixed, 15-m radius at each plot. The location of each
plot center was recorded using a Trimble GeoXM GPS. Average hori-
zontal precision of plot coordinates after differential correction was
2.6m (£1.1 m).

2.2.1. Field data

Within each plot, diameter at breast height (dbh), species, height,
decay class, and the height of broken tops were recorded for live and
dead trees with dbh>2.5 cm. For selected trees, we also measured
the distance and bearing from the plot center. Tree heights were mea-
sured using a Haglof Laser Vertex Hypsometer. We estimated total
aboveground (oven-dry weight) biomass for all trees from a set of
10 allometric equations developed for regional studies (Jenkins et
al., 2003). The Jenkins equations distinguish between four hardwood
and six softwood species groups and use a simple log-linear regres-
sion model with tree diameter (dbh) as the predictor variable.

Biomass for standing dead trees including snags greater than
1.3 m height was estimated by adjusting total tree biomass estimates
for live trees using component ratio equations from Jenkins et al.
(2003). The component equations estimate the proportion of total
aboveground biomass in a given biomass component (wood, bark, fo-
liage). Total biomass in branches and treetops was calculated from
the differences between total biomass and the sum of the individual
components. Analogous to Smith et al. (2003), we reduced the mass
of intact standing dead relative to live by the following amounts:
10% of stem wood and bark, 100% of leaves, and 33% of branches.
For trees with broken tops we estimate the total tree height by fitting
a Lundqyvist function (Moore et al., 1996) for each tree species to the
diameter and height of measured live intact trees. Then, we calculated
the ratio of actual tree volume to total tree volume based on estimat-
ed total tree height using formulas for the frustum of a cone with a
top diameter of 2.5 cm. Finally, the ratio of actual to total bole volume
was used to further reduce stem wood and bark biomass of dead trees
with broken tops.

We calculated total dead biomass by adding together biomass of
standing dead trees and biomass of down wood. We measured
down woody debris at each plot with the line-intercept method
(Harmon & Sexton, 1996; Van Wagner, 1968; Warren & Olsen,
1964), using two orthogonal line-transects crossing at the plot center
and pointing towards magnetic north and east, respectively. We
recorded species, decay class (Waddell, 2002) and diameter of each
down log with diameter> 10 cm. Volume was calculated after Van
Wagner (1968):

V=mn’Yd’/sL (1)

where V is the volume per unit area (m® m~2), d is the piece diame-
ter (m), and L is the transect length (m). Volume estimates were con-
verted to biomass using species-specific wood densities from Jenkins
et al. (2003) and decay-class-specific density reduction factors from
Waddell (2002).

In addition to biomass, we estimated basal area (m? m~2) of live
and dead trees and stand height for live trees (Table 1). As a measure
of stand height we calculated Lorey's mean height (Lorey, 1878),
which reflects more closely the height of the dominant tree stratum
in multi-layer canopies compared to the standard mean height. The
Lorey height weights the contribution of trees to the stand by their
basal area as follows:

_2gh
2.g

where g and h represent basal area and height of all measured trees
within a plot, respectively.

H (2)
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Table 1

Number of plots, mean stand height, basal area of live and dead trees, and biomass of live trees and dead wood grouped by disturbance agent of the greatest disturbance between

1972 and 2010 (standard deviation =SD).

Type of greatest Number Mean stand height Mean live basal Mean dead basal area Mean live AGB Mean dead AGB
disturbance of plots (SD) (m) area (SD) (m?ha—1) (SD) (m? ha—1) (SD) (Mg ha—1) (SD) (Mg ha—1)
Fire 3 46 (6.1) 28 (5.2) 85 (12.2) 11.8 (26.7) 65.4 (77.2)
Harvest 14 17.6 (5.8) 15.7 (7.9) 1.5 (1.9) 79.5 (52.1) 19.9 (15.4)
Insect-Pathogen 8 21.3 (6.5) 334 (12.2) 10.1 (14.2) 189.3 (113.9) 71.7 (59.5)
Undisturbed 21 19.3 (6.9) 273 (13.3) 22 (2.9) 147.0 (94.0) 19.4 (20.9)

2.3. Lidar

Discrete return lidar data for the entire study area were acquired
between 19 and 28 August 2008 using a Leica ALS50 Phase II laser
system mounted in Cessna Caravan 208B (Table 2). The lidar system
recorded range and intensity of up to 4 returns per pulse, and
achieved a nominal pulse density of > 8 pulses per m?. Data delivered
by the vendor included a digital elevation model (DEM) of 1-m spatial
resolution. To obtain estimates of aboveground height for each return,
we subtracted the DEM elevation from the point elevations.

We extracted all lidar returns co-located with our field plots, and
computed 26 potential predictor variables from the height and in-
tensity distributions of each plot (Table 3). Returns above a thresh-
old of 0.5 m were considered vegetation returns, and returns below
that threshold were considered ground returns. Height metrics in-
cluded all recorded returns per pulse, whereas only first returns
were used to compute intensity metrics. Height metrics were se-
lected to characterize top (HMAX) and average vegetation height
(HMEAN, HPEAK), vegetation density (CANCOV, RPC1), volume
fraction (HVOL), and shape (HKURT and HSKEW) and variability
(HCV, HSD, and HCV75) of the vertical distribution of vegetation.
CANCOV was calculated by dividing the number of all returns
above 2-m by the total number of returns including ground returns.
We found that CANCOV calculated from all returns explained slight-
ly more variation in forest biomass than when only first returns
were used, albeit the difference was minimal. We therefore report
here only results based on all returns. To obtain HVOL we multiplied
CANCOV by HMEAN (Kim et al., 2009). Intensity metrics included
mean (IMEAN and IMEAN75), maximum (IMAX), standard devia-
tion (ISD) and shape of the vegetation intensity (ISKEW and
IKURT). We did not correct lidar intensity for variable gain or
range differences. However, visual inspection of the mean intensity
raster revealed no significant terrain or flight line patterns. Finally,
we derived percentile metrics from the relative frequency distribu-
tions of vegetation heights and return intensities. Lidar metrics
were computed using the R-language (R Development Core Team,
2011).

2.4. Landsat

2.4.1. Geometric reprocessing of MSS

Table 2
Lidar data acquisition parameters.

Sensor Leica ALS50 Phase II

Acquisition date

Flight altitude

Flight line sidelap

Maximum off-nadir scan angle

19-28 August, 2008
900 m above ground
50%

4+ 14° from nadir

Returns/pulse Up to 4
Density >8 pulses m 2
Pulse repetition >105 kHz
Laser wavelength 1064 nm

From the Landsat archive (http://glovis.usgs.gov/) we obtained
annual, near-anniversary date Landsat images of the study area ac-
quired between mid-July and August from 1972 to 2010 (Table 4).
All of the TM and ETM + data and most of the MSS data (80%) were
delivered terrain corrected (L1T). However, the terrain corrected
MSS imagery showed lower geometric accuracy than the TM/ETM +
data. About 63% of the L1T MSS data had reported scene-wide root
mean square error (RMSE) greater than 1 pixel (60 m). To improve
the accuracy of the time series analysis we co-registered all MSS im-
agery to a reference TM image using an automated tie-point program
(Kennedy & Cohen, 2003) and 2nd-order polynomial transforma-
tions. To match the spatial resolution of the TM and ETM + data we
resampled the MSS imagery to 30 m. Co-registration was performed
on the entire scene overlap. Images with RMSEs greater than
0.5 pixels were removed from the analysis leaving a stack of annual
Landsat imagery except for the years 1974, 1976, and 1982. The
1982-image was removed because it had been acquired late in the
year (October). Limiting the choice of imagery to a relatively narrow
mid-summer period minimized inter-annual variations caused by
changes in vegetation phenology and sun-illumination conditions.

2.4.2. MSS tasseled cap revisited

The tasseled cap (TC) is a linear transformation of Landsat's
spectral bands that was originally developed for Landsat MSS
(Kauth & Thomas, 1976; Kauth et al., 1979) and later adapted for
Landsat TM (Crist & Cicone, 1984), and ETM+ (Huang et al.,
2002). The transformation yields a set of orthogonal components:
brightness (TCB), greenness (TCG), and wetness (TCW), whereas
TCW is not defined for MSS data. The TC components have been
widely used to characterize vegetation conditions (Cohen &
Goward, 2004) and for studying forest change (Cohen et al., 2002;
Healey et al., 2005; Wulder, et al., 2004). The MSS tasseled cap is a
DN-based (digital number) transformation, and therefore specific
to the post-calibration coefficients used to rescale the calibrated ra-
diance data to calibrated DN. Starting September 15th 2010, the
USGS EROS switched the processing of the MSS archive to LPGS
resulting in new post-calibration dynamic ranges and data quanti-
zation that are significantly different from the ones previously
used. Because of these changes, the tasseled cap transformation
cannot be directly applied to the new MSS data without adjusting
for the differences in the band-specific rescaling factors. Following
Hay (1991) and Parris and Rice (1983), we computed new MSS tas-
seled cap coefficients that matched the current post-calibration co-
efficients by converting the original tasseled cap rotation matrix for
Landsat 2 (Kauth et al., 1979; Thompson & Wehmanen, 1980) using
earlier post-calibration coefficients from Markham and Barker
(1986). Our adjustments also accounted for variations in exoat-
moshperic irradiance and those values were obtained from
Chander et al. (2009).

To convert between calibrated radiance and calibrated DN values
we first calculated band-specific rescaling gain and bias factors as fol-
lows:

L=B+GQ 2)
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Table 3

Lidar metrics derived from plot-level distributions of pulse return heights and intensities and their correlation coefficients with field measurements. Variables marked with an as-
terisk were correlated with other (more informative) predictor variables (r>0.9) and excluded from the regression analyses. Shading illustrates the strength of the correlation in-

dependent of the sign: from 0 (white) to —1 and 1 (gray).

Variable Description AGB live AGB dead Basal arealive  Basal areadead  Lorey height
HMAX* Height, maximum of vegetation returns
HMEAN* Height, mean of vegetation returns
HMEDIAN Height, median of vegetation returns
HPEAK Height, height of upper mode 0.20 032 0.19 0.42
HCV Height, coefficient of variation of vegetation returns 0.22
HCV75 Height, coefficient of variation of upper 75 percentile 025
HSD Height, standard deviation of vegetation returns 0.35
HSKEW Height, skewness of vegetation returns 0.07
HKURT Height, kurtosis of vegetation returns -0.37 —0.04 -0.43 -0.13
HO5PCT Height, 5th percentile of vegetation returns ) -0.20 -0.07
H25PCT* Height, 25th percentile of vegetation returns -0.13 -0.01
H75PCT* Height, 75th percentile of vegetation returns 0.00 0.06
H95PCT Height, 95th percentile of vegetation returns 0.18 0.21
CANCOV Vegetation returns >2 m*100/total returns -0.13 -0.05
HVOL CANCOVxHMEAN | 100 -0.06 0.02
RPC1 Percentage of 1st returns to all returns 0.11 0.03
IMAX Intensity, maximum of first returns 0.06 -0.02 0.14 0.00
IMEAN Intensity, mean of first returns -0.34 0.03 -0.47 -0.01
ISD Intensity, standard deviation of vegetation returns -0.09 -0.05
ISKEW Intensity, skewness of vegetation returns . -0.08 -0.07
IKURT* Intensity, kurtosis of vegetation returns _ 0.13 0.08
125PCT* Intensity, 25th percentile 0.06 0.01
I50PCT* Intensity, 50th percentile -0.31 0.03 -0.45 0.00 -0.14
175PCT Intensity, 75th percentile 0.04 -0.02 -0.02 -0.05 0.29
195PCT Intensity, 95th percentile 0.27 -0.09 0.36 -0.11 0.50
IMEAN75 Intensity, mean above 75th percentile of height distribution 0.39 -0.44 0.39 -0.32 0.43
LMAX—LMIN specific rescaling factors while accounting for variations in exoatmo-
G= QCALMAX—QCALMIN 3) spheric irradiance (ESUN). For the Landsat 2 reference we used ESUN
values for Landsat 2. Because MSS data from the USGS were cross-
calibrated to Landsat 5 MSS, ESUN values for Landsat 5 MSS were
B = LMIN—GQCALMIN (4) used for all MSS images. In the following equations, subscripts R
and I denote coefficients from the reference and input data set, re-
where, spectively.
L spectr.al radiapce at thg sensor's aperture [W/(m? sr um)] G, E'B,—Bg
Q quantized calibrated pixel value [DN] Qg = G—E'Ql + G (5)
G band-specific rescaling gain factor [(W/(m? sr um))/DN] R R
B band-specific rescaling bias factor [W/(m? sr um)]
QCALMIN minimum quantized calibrated pixel value corresponding ESUNg
to LMIN, [DN] E= ESUN, (6)
QCALMAX maximum quantized calibrated pixel value correspond-
ing to LMAX, [DN] G,
LMIN spectral at-sensor radiance that is scaled to QCALMIN [W/ Ga = fRE (7)
(m? st pm)]
LMAX spezctral at-sensor radiance that is scaled to QCALMAX [W/ EB,—Bg
(m? st )] Br=—¢. ®)
The post-calibration dynamic ranges and rescaling factors of the where,

input and reference data are shown in Table 5. To convert between
DN values of current MSS data (input) and DN values of Landsat 2
data before 7/16/1975 (reference), we computed adjusted band-

ESUN  band-specific mean solar exoatmospheric spectral irradiance

[W/m?* pm]


Unlabelled image

D. Pflugmacher et al. / Remote Sensing of Environment 122 (2012) 146-165 151

Table 4

Acquisition date and Landsat sensor of the images used in this study. The 1997 geomet-
ric and MADCAL reference image is denoted by an asterisk. Images from 1972 to 1981
are referenced to WRS-1 path 46, row 29. Images between 1983 and 2010 are refer-
enced to WRS-2 path 43, row 29.

Year Date Satellite
1972 08/12 Landsat 1 MSS
1973 08/07 Landsat 1 MSS
1975 08/15 Landsat 1 MSS
1977 08/13 Landsat 2 MSS
1978 07/30 Landsat 3 MSS
1979 08/03 Landsat 2 MSS
1980 08/16 Landsat 2 MSS
1981 08/10 Landsat 2 MSS
1983 07/04 Landsat 4 MSS
1984 07/14 Landsat 5 MSS
1984 07/14 Landsat 5 TM
1985 0717 Landsat 5 MSS
1985 07/17 Landsat 5 TM
1986 07/20 Landsat 5 MSS
1986 07/20 Landsat 5 TM
1987 08/08 Landsat 5 MSS
1987 08/08 Landsat 5 TM
1988 07/25 Landsat 5 TM
1988 08/10 Landsat 5 MSS
1989 07/28 Landsat 5 TM
1989 08/05 Landsat 4 MSS
1990 07/31 Landsat 5 MSS
1990 08/16 Landsat 5 TM
1991 07/18 Landsat 5 TM
1992 08/05 Landsat 5 MSS
1992 08/05 Landsat 5 TM
1993 08/08 Landsat 5 TM
1994 07/26 Landsat 5 TM
1995 08/14 Landsat 5 TM
1996 07/31 Landsat 5 TM
1997* 08/03 Landsat 5 TM
1998 07/21 Landsat 5 TM
1999 07/08 Landsat 5 TM
2000 08/11 Landsat 5 TM
2001 08/06 Landsat 7 ETM +
2002 08/09 Landsat 7 ETM +
2003 08/20 Landsat 5 TM
2004 07/21 Landsat 5 TM
2005 07/24 Landsat 5 TM
2006 07/27 Landsat 5 TM
2007 07/30 Landsat 5 TM
2008 08/01 Landsat 5 TM
2009 07/19 Landsat 5 TM
2010 08/07 Landsat 5 TM

Ga adjusted band-specific rescaling gain factor [(W/(m? sr um))/

DN]
Ba adjusted band-specific rescaling bias factor [(W/
(m? st um))/DN].

The adjusted rescaling gain and bias factors can be used to convert
pixel values (DN) of recent MSS data to pixel values (DN) of the Land-
sat 2 reference data. The Landsat 2 tasseled cap coefficients can then
be applied to the converted pixels. Alternatively, we calculated a set
of new tasseled cap coefficients (Table 6) from the adjusted rescaling
factors that can be used directly with the new MSS data (Appendix).
Tasseled cap transformations also include TC yellowness, which is
not utilized in this study, but its coefficients are included for future
reference. We used these new coefficients to calculate TCB, TCG, and
TC angle (TCA, see Section 2.4.3) for MSS data in this study.

2.4.3. Cross-sensor, scene-level radiometric normalization

To minimize annual variations in atmospheric conditions, we nor-
malized each image in the Landsat time series to a single reference
image. As reference we selected a cloud-free TM image acquired in
1997 (Table 4) and converted it to surface reflectance by means of

the COST correction method of Chavez (1996). Following Schroeder
et al. (2006), all other TM and ETM+ images in the time series
were radiometrically normalized to the COST image using the multi-
variate alteration detection and calibration algorithm (MADCAL) of
Canty et al. (2004). MADCAL identifies invariant pixels between
image pairs and performs a relative normalization using orthogonal
regression. Water, clouds and cloud shadows were masked out fol-
lowing the methodology in Kennedy et al. (2007a,b). All TM/ETM +
images were then transformed to TCB, TCG, and TCW using the coef-
ficients for reflectance data (Crist, 1985). To normalize MSS data with
the TM/ETM + time series we used TCB and TCG with MADCAL in-
stead of the individual spectral bands (Powell et al., 2008). As with
all the Landsat data pre-processing, radiometric normalization was
performed across the entire scene (WRS2: path 43, row 29).

Structural differences in forest vegetation have been most effec-
tively described with indices that utilize the contrast between
short-wave- and near-infrared reflectance such as TCW (Cohen &
Goward, 2004). However, MSS sensors lack short-wave infrared
bands, and therefore TCW cannot be computed for Landsat data
prior to 1982. Alternatively, we used an index called TC angle (TCA)
first introduced by Powell et al. (2010) and computed as follows:
TCA = arctan(TCG/TCB). TCA describes the gradient of percent vege-
tation cover within the TCB-TCG spectral plane (Powell et al., 2010,
Goémez et al., 2011), and once calculated for our dataset was the
only spectral index used to describe change in this study. However,
later, we do use the TCB, TCG, and TCW values at the last image
date for statistical modeling.

2.4.4. Cross-sensor, pixel-level alignment

Residual TCA offsets between MSS and TM for some pixels in the
scene-level normalized time series were evident (Fig. 2a). To correct
for these, we analyzed TCA values from the period between 1984
and 1992 where imagery from MSS and TM were available for the
same year (Table 4). We computed the mean bias between MSS and
TM TCA from year i to N, and applied it to the MSS time-series as fol-
lows:

N

Bias = %Z MSS; —TM; 9)
i=1

MSS'; = MSS; —Bias (10)

where, MSS/; is the new TCA value for year i. This final calibration step
resulted in what we call the pixel-aligned Landsat time series
(Fig. 2b). The pixel-aligned imagery can be easily interpreted without
sensor-based interruption across the series (Fig. 3). Across all pixels,
average RMSE between MSS-TCA and TM-TCA in the overlapping pe-
riod was 3.1 (SD=1.2) before and 2.3 (SD=0.9) after pixel-level
alignment.

2.4.5. Landsat-derived disturbance history

We used the pixel-aligned Landsat time-series to characterize dis-
turbance history for all pixels co-located with field plots (one pixel
per plot). Our logic followed that of Cohen et al. (2010) and
Kennedy et al. (2010), which temporally dissects each pixel's time
trajectory into a series of approximately linear segments, each repre-
senting some directional change in spectral index response (Fig. 4).
Each segment is given a label associated with disturbance or succes-
sion (depending on spectral index used and trend direction) and is
bounded by a start and end date vertex. For temporal segmentation
of each plot trajectory we used the TimeSync software developed by
Cohen et al. (2010) for manual interpretation of land cover change
using a time series of Landsat image chips and historic airphotos.
First, we determined the change year (start vertex) and the label
(fire, harvest, insect and pathogens, recovery, maturation, or stable)
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Table 5

Post-calibration dynamic ranges and derived gains and offsets for Landsat 2 data prior to 7/16/1975 (Markham & Barker, 1986, QCALMINganp1-4 =0, QCALMAX panp1-3 = 127,
QCALMAXgpanpa = 63) and for MSS data processed with LPGS 11.2.0 (source: header files) (QCALMIN = 1, QCALMAX = 255). Exoatmospheric irradiance (ESUN) values are from
Chander et al. (2009). Because LPGS data are cross-calibrated with Landsat MSS 5, ESUN from Landsat 5 were used for Landsat 1-5 (LPGS).

Landsat Band LMIN LMAX GAIN OFFSET ESUNy\
W/(m? sr um) W/(m? sr um) (W/m? sr um)/DN W/m? st um W/m? pm
2 (NLAPS) 1 10 210 1.5748 10 1829
2 7 156 1.1732 7 1539
3 7 140 1.0472 7 1268
4 5 138 21111 5 886.6
1 (LPGS) 1 0 243.8 0.9598 —0.9598 1824
2 10 187.4 0.6984 9.3016 1570
3 —8.9 170.5 0.7063 —9.6063 1249
4 0 166.5 0.6555 —0.6555 853.4
2 (LPGS) 1 8.6 288.8 1.1031 7.4969 1824
2 —0.8 184.6 0.7299 —1.5299 1570
3 —2.6 151.5 0.6067 —3.2067 1249
4 4.1 131.7 0.5024 3.5976 853.4
3 (LPGS) 1 43 284.7 1.1039 3.1961 1824
2 3 179.6 0.6953 2.3047 1570
3 3.1 154.3 0.5953 2.5047 1249
4 1 127 0.4961 0.5039 853.4
4 (LPGS) 1 23 260.8 1.0177 1.2823 1824
2 4.3 194.5 0.7488 3.5512 1570
3 42 136.7 0.5217 3.6783 1249
4 3.1 137 0.5272 2.5728 853.4
5 (LPGS) 1 3 268 1.0433 1.9567 1824
2 3 179 0.6929 2.3071 1570
3 5 148 0.5630 44370 1249
4 3 123 0.4724 2.5276 853.4

associated with the underlying process or forcing factor for each seg-
ment. Next, we used the segmentation fitting routines from the Land-
Trendr algorithm (Kennedy et al., 2010) to derive fitted TCA values
for each trajectory. LandTrendr also segments time series, but, as an
automated algorithm, is more prone to interpretation errors than is
a human using TimeSync. As we were interested in the most accurate
segmentation possible for each plot, we used TimeSync for the actual
segmentation. However, even pixel-aligned Landsat TCA time series
still contain residual inter-annual noise (e.g. phenology, sun-angle,
and residual atmospheric effects) that is minimized by fitting regres-
sion lines to each segment and adjusting the TCA values within each
segment to the fitted lines (Fig. 4). The application of LandTrendr
resulted in a series of interconnected linear segments.

From the fitted time-series for each plot (e.g., Fig. 4) we derived
seven sets of quantitative metrics describing the temporal patterns

Table 6

Tasseled cap coefficients for Landsat 2 data processed prior to 7/16/1975 (Kauth et al.,
1979; Thompson & Wehmanen, 1980), and tasseled cap coefficients for Landsat 1-5
MSS processed with LPGS 11.2.0 coefficients in Table 5.

Landsat Feature Band 1 Band 2 Band 3 Band 4 Bias
2 (NLAPS) Brightness 0.3323 0.6032 0.6758 0.2628 0.0000
Greenness —0.2832 —0.6601 0.5774 0.3883 0.0000
Yellowness —0.8995 0.4283 0.0759 —0.0408 0.0000
1 (LPGS)  Brightness 0.2031 0.3520 0.4627 0.0848 —12.7421
Greenness —0.1731 —0.3852 0.3953 0.1253  —9.5016
Yellowness —0.5497 0.2499 0.0520 —0.0132 5.9304
2 (LPGS)  Brightness 0.2334 0.3679 03975 0.0650 —11.6690
Greenness —0.1989 —0.4026 0.3396 0.0960 —0.6579
Yellowness —0.6318 0.2612 0.0446 —0.0101 —2.4038
3 (LPGS)  Brightness 0.2336 0.3504 0.3900 0.0642  —7.3048
Greenness —0.1991 —0.3835 0.3332 0.0948 0.6085
Yellowness —0.6323 0.2488 0.0438 —0.0100 1.9141
4 (LPGS)  Brightness 0.2153 03774 03418 0.0682  —6.0451
Greenness —0.1835 —0.4130 0.2920 0.1007 1.3184
Yellowness —0.5829 0.2680 0.0384 —0.0106 3.5011
5 (LPGS)  Brightness 0.2208 0.3492 03688 00611 —6.0382
Greenness —0.1881 —0.3822 0.3151 0.0903 2.2989
Yellowness —0.5976 0.2480 0.0414 —0.0095 2.7263

of forest disturbance and recovery (Table 7). The greatest disturbance
set contains metrics associated with the disturbance segment having
the greatest amount of spectral change (b in Fig. 4). The TCA value be-
fore and after the disturbance is identified by the TCA value at the be-
ginning (vertex B) and end (vertex C) vertex of this segment (b),
respectively. Duration of greatest disturbance is the number of years
between vertices (C minus B). Magnitude of the greatest disturbance
is the TCA value difference between vertices (C minus B). Relative
magnitude is the magnitude of greatest disturbance divided by the
TCA value prior to disturbance, and rate of change is the absolute
magnitude divided by duration of greatest disturbance. The
duration-weighted magnitude highlights subtle but long-term distur-
bances and is calculated as the product of magnitude and duration of
the greatest disturbance. Time since start of greatest disturbance is
the number of years between the beginning disturbance year (vertex
B) and the year of the last vertex (vertex E). Time since the end of the
greatest disturbance is the number of years between the ending distur-
bance year (vertex C) and the last year (vertex E). Agent of disturbance
is a categorical variable that distinguishes between fire, insect-
pathogen, and harvest disturbances and is interpreted directly during
use of TimeSync Cohen et al. (2010).

The total disturbance, total recovery, total no change and total all
sets summarize the entire historic Landsat record. Total disturbance
magnitude and duration are the sums of the magnitudes and dura-
tions of all disturbance segments (e.g., Fig. 4, a plus b). Total recovery
magnitude and duration sum the magnitudes and durations of all re-
covery segments (c and d). The rates of change for total disturbance
and total recovery are obtained by dividing change magnitude by
change duration. Duration-weighted magnitude was calculated from
the product of magnitude and duration similar to the greatest distur-
bance set, but from the total of all disturbance segments. Total no-
change duration is the total number of years across stable segments
(none for the plot shown in Fig. 4). The disturbance-recovery ratio
is the total disturbance divided by the total recovery. The mean
square error (MSE) of the trajectory is the sum of the individual
MSEs of the fitted segments weighted by their duration.

The last monotonic trend set describes the union of the final seg-
ment and any preceding it that have the same directional trend. For
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Fig. 2. Example trajectory of a single Landsat pixel showing TCA offset before (a) and
after (b) pixel-level alignment of time series. The abrupt decrease of TCA in 1997
was caused by a stand replacing wildfire in August 1996. The disturbance is followed
by a slow increase in TCA indicating forest recovery.

the example in Fig. 4, magnitude is TCA of E minus that of C. Likewise,
duration is number of years between C and E. Rate of change is mag-
nitude divided by duration, and similar to earlier MSE is also derived
for the recent trend.

The final set of metrics describes the current condition in terms of
TCB, TCG, TCW, and TCA. The tasseled cap indices, when used in uni-
son, capture the three basic dimensions of Landsat spectral space and
are generally aligned with gradients of forest cover, composition, and
structure Cohen et al. (2010). Landsat metrics were computed in IDL
(Interactive Data Language, ITT Visual Information Solutions, Inc.).

2.5. Regression analyses

We performed multiple linear regression analyses to explore the
relationships between each forest structure variable (response) and
remote sensing variables (predictors). Predictor variables were divid-
ed into three main groups: 1) lidar (Table 3), 2) Landsat time series
(Table 7 — all variables), and 3) single-date Landsat variables
(Table 7 — TC of current condition). Analyses were conducted for
each group separately. Prior to building regression models, we re-
moved variables with nearly identical information and thus a high
correlation coefficient with other predictor variables (r>0.9). This
step did not eliminate colinearity among all variables. However, a
lower correlation threshold would have significantly reduced the
number of potential lidar predictors, which often tend to be correlat-
ed (Muss et al., 2011). To avoid problems associated with over-fitting
and colinearity we employed all-subsets regression using the
leaps package (Lumley, 2009) in the R statistical language (R
Development Core Team, 2011). All-subsets regression does not
limit model selection to a single ‘best’ model, but it performs an ex-
haustive search for the best subsets of predictor variables. Once the
best subsets were identified, we selected the most parsimonious
models with the lowest Cp value (Mallows, 1973) approximately
equal to the number of parameters and removed models that showed
signs of colinearity (variance inflation factors<5). Cp compares the
residual sum of squares for a subset model to the MSE of the full
model and is closely related to the adjusted R? (R2). For final models
we report multiple R? and R2. Further, we measured the relative im-
portance of variables using the Lindeman-Merenda-Gold (Rlzmg) met-
ric from the relaimpo package in R (Gromping, 2006). Rlzmg computes

Fig. 3. Image chips of a field plot (center pixel) and its local neighborhood. Tasseled cap
brightness, greenness, and angle are displayed as red, green, and blue. The clearcut
patches (red) appearing in 1979 begin the process of recovery towards moderately
dense cover of young conifer trees (orange to cyan to light blue), which is nearly com-
plete by 1997. Both MSS and TM are shown in the overlap period (1984-1990) and
only images between 1978 and 1997 are displayed for illustrative purposes. In practice,
once the pixel-level normalization is completed the MSS of the overlap period are dis-
carded. White areas represent cloud-covered pixels that were removed from the
dataset.
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Fig. 4. Example of a normalized Landsat time series for a single pixel, showing yearly
tasseled cap angle values (gray dots), the fitted time series (black lines), and the fitted
segment start and end vertices (black dots). Downward trending segments represent
disturbance (or maturation) and upward trending segments represent recovery. Flat
segments (not shown) represent stable segments. A variety of disturbance and succes-
sion process (and related) parameters are derived from the fitted segment vertices. For
example, the duration for insect disturbance segment a is determined by subtracting
the year of vertex A from that of vertex B. The magnitude of change for fire disturbance
segment b is calculated from the difference between the TCA values of B and C. The
spectral value at vertex C represents the spectral value at the end vertex for the distur-
bance having the greatest observed magnitude. Time since the end of the greatest dis-
turbance is calculated by subtracting the year of vertex C from that of vertex E for
recovery segments ¢ and d.

the average contribution of each variable to the overall R? across all
possible orderings and thus provides a unique decomposition of the
explained variance when predictors are correlated. The interpretation
of the method is convenient because individual R.zmg sum to the mul-
tiple R? of the model. Finally, we evaluated model performance using
leave one out cross-validation, which provides a nearly unbiased esti-
mator of prediction error (Efron & Gong, 1983). For each final model,
we computed RMSE of model predictions (from cross-validation) ver-
sus observed (field) data.

Final, models and predictor variables were tested for significance
(p<0.05). Predictor variables were continuous metrics except for
agent of greatest disturbance (GDAGT), which was recorded as a cat-
egorical variable with four factor levels (fire, insect-pathogen, har-
vest, and undisturbed). We included GDAGT in the regression
models by recoding the four levels using three indicator variables:
GDAGTFire: GDAGTInsecty and GDAGTHarvest (GDAGTUndisturbed was im-
plicit if the other three were zero).

3. Results
3.1. Prediction models
3.1.1. Lidar estimates of forest structure

3.1.1.1. Live biomass. Individual lidar variables were strongly correlat-
ed with live biomass but weakly correlated with dead biomass
(Table 3.) Height metrics showed the strongest relationships with
live structure: volume fraction (HVOL) with live biomass and basal
area, and median and mean height with Lorey mean height. Further,
an increase in live biomass was associated with an increase in the in-
tensity variance (ISD). The correlation with dead woody biomass and
dead basal area was generally low (e.g. r<0.2). Most variables were
not statistically significant, except for mean intensity of the top height
stratum (IMEAN75), which decreased with dead biomass density, and
the standard deviation of vegetation height (HSD), which showed a
slight increase with dead biomass density. Six lidar predictor vari-
ables showed correlation coefficients greater than 0.9 with other
lidar variables and were excluded from the analysis (correlated vari-
ables that were kept are shown in parentheses): HMAX (H95PCT),
HMEAN (HMEDIAN), H25PCT (HMEDIAN), H75PCT (HMEDIAN),
IKURT (ISD), I25PCT (RPC1), and I50PCT (IMEAN).

Most of the variation in live biomass was explained by a single
variable: HVOL (R?=0.88, Fig. 5a). Adding other predictor variables
did not improve model predictability significantly. When HVOL was
excluded from analysis, median height (HMEDIAN, Rf,,=0.28) and
canopy cover (CANCOV, RE,; = 0.26) together explained the majority

of the variance (78%) in the best subset, which is not surprising as
HVOL is the product of CANCOV and HMEAN. Including ISD, a mea-
sure of intensity variability, in the alternative model improved the
model's R? by 4%.

3.1.1.2. Dead biomass. For dead biomass, two best-subsets models
were selected with similar performance and model size. The best
model explained 22% of the variance in dead biomass and included
measures of intensity (IMEAN75, R?mg:0.19) and height (H95PCT,
Rlzmg:0.03) associated with the top canopy. However, H95PCT was
not significant (p=0.181). Therefore, we selected the alternative
model (R?=0.21), which did not include intensity, but a measure of
height variability (HSD, Rf,; =0.16) and median height (HMEDIAN,
R =0.05) (Fig. 5d).

3.1.1.3. Basal area. Three variables were selected in the best subset for
predicting live basal area. Similar to the results for live biomass, HVOL
was again the most important variable (Rlzmgz 0.59). In addition, two
variables describing the variation in the top height stratum (HCV75,
Rlzmg:O.17) and the relative frequency of low vegetation returns
(HO5PCT, Rlzmgz 0.15) were selected, respectively. Overall, the
model explained 91% of the variance in live basal area (Fig. 5g). In
comparison, lidar failed to predict basal area of dead trees (R>=0.1,
Fig. 5j). IMEAN75 and HSD were the only variables showing a weak
but statistically significant relationship.

3.1.1.4. Stand height. Lorey's mean height was the most accurately es-
timated structure variable using lidar metrics (RZ=0.96). The best
subset from all-subsets regression contained five variables including
HMEDIAN (RZng = 0.35), HO5PCT (Ring = 0.29), HCV75 (RZ = 0.18),
I95PCT (Riyg = 0.07) and IMEAN75PCT (Riyg = 0.07). The model pre-
dicted Lorey height with an RMSE of 1.6 m (Fig. 5m). The best single
predictors were HMEDIAN, HVOL, H95PCT, and ISD.

Table 7
Parameters describing Landsat disturbance history.
Scope Description Parameter
Greatest disturbance TC angle before GDTCAg
(GD) TC angle after GDTCAA

Duration GDDUR
Magnitude GDMAG
Relative magnitude (GDMAG/GDTCAg) GDRCH
Rate (GDMAG/GDDUR) GDROC
Weighted Magnitude (GDMAG *GDDUR) GDMXD
Time since disturbance start GDTSDs
Time since disturbance end (GDTSD GDTSDg
— GDDUR)

Total disturbance (TD)  Magnitude TDMAG
Duration TDDUR
Rate (TDMAG/TDDUR) TDROC
Weighted Magnitude (TDMAG*TDDUR) TDMXD

Total recovery (TR) Magnitude TRMAG
Duration TRDUR
Rate (TRMAG/TRDUR) TRROC

Total no change (TS) Duration TSDUR

Total all (TA) Disturbance-recovery ratio (TDMAG/ TADRR
TRMAG)
Weighted MSE of fit TAMSE

Last monotonic trend Magnitude LMMAG

(LM) Duration LMDUR

Rate of change (LMMAG/LMDUR) LMROC
MSE of fit LMMSE

Current condition TC Brightness of 2008 image LTCB
TC Greenness of 2008 image LTCG
TC Wetness of 2008 image LTCW
TC Angle of 2008 image LTCA
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Fig. 5. Predicted (from cross-validation) versus observed forest structure attributes from lidar (left), Landsat time-series (center), and single-date Landsat data (right). Shown are
the best models for live biomass (a-c), dead biomass (d-f), basal area of live trees (g-i), basal area of dead trees (j-I), and Lorey height (m-o0). The scatterplots show the 1:1 line,
adjusted R? (R,), RMSE, and the names of the predictor variables (see Table 7).
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Table 8
Correlations between forest structure attributes and disturbance history parameters derived from Landsat (Table 7). Magnitude is negative for disturbances and positive for re-

covery. As a result, magnitudes of disturbances are negatively correlated with dead biomass and basal area. Shading illustrates the strength of the correlation independent of the
sign: from O (white) to —1 and 1 (gray). For aboveground biomass (AGB), correlations within individual greatest disturbance agent (GDAGT) classes are shown; however, for

basal area (BA) only the correlations across GDAGT are shown.

Correlation coefficients

Parameter
BA BA
AGB live AGB dead live dead Height
All All All All
All plots plots Fire Insect Harvest Undisturbed plots plots plots
GDTCAg 0.57 0.38 0.40 -0.29 - 0.48 0.36 044
GDTCAs -0.08 -0.46 0.26 -0.32 035 -0.04 079
GDDUR 0.40 -0.19 -0.11 0.37 0.01 - 0.48 -0.13 0.34
GDMAG 038 -0.48 -0.71 -0.34 -0.06 - 0.48 -0.41 0.45
GDRCH 0.45 041 -059 -0.24 -0.26 - 0.55 -0.33 0.52
GDROC 052 -0.36 072 0.15 -0.11 - 0.62 029 0.54
GDMXD -0.30 -0.49 -0.54 -0.54 -0.03 - -0.26 -0.46 -0.20
GDTSDs 0.50 -0.19 -0.23 -0.05 -0.12 - 0.56 -0.15 0.43
GDTSDg 0.32 036 -0.22 017 -0.13 - 0.37 029 0.28
TDMAG 0.42 -0.40 055 -0.26 -0.09 i 0.51 037 0.48
TDDUR 043 -0.12 -0.36 0.73 0.43 - 0.50 -0.02 0.36
TDROC 051 035 [[-089 | o032 0.18 - 0.61 -0.25 0.49
TDMXD -0.21 0.52 002 [HO8TN 038 - -0.18 0.64 0.10
TRMAG -0.46 0.03 -0.05 -0.49 0.10 0.03 047 -0.06 -0.44
TRDUR -0.01 0.16 -0.63 -0.34 -0.54 0.34 0.04 -0.19 0.16
TRROC -0.36 0.18 0.25 -0.47 0.52 0.03 -0.37 0.01 -0.37
TSDUR -0.04 0.02 0.45 057 -0.12 0.27 -0.03 0.02 -0.04
TADRR -0.03 033 -0.21 -0.02 - 0.01 -0.19 -0.10
TAMSE 0.34 0.19 0.57 0.40 0.00 0.20 0.27 0.20 0.12
LMMAG -031 -0.01 0.20 -0.70 0.04 0.12 -0.33 -0.09 -0.38
LMDUR 0.43 020 0.16 0.42 -0.26 0.00 0.47 -0.06 0.34
LMROC -036 0.11 0.08 -0.49 0.07 0.12 -0.42 0.08 -0.53
LMMSE 0.24 0.07 0.41 0.71 -0.42 0.20 0.19 0.14 0.07
LTCB -0.76 -0.03 0.14 -0.36 0.01 -0.47 -0.08 -0.69
LTCG -0.11 007 027 -0.30 0.06 0.15 -0.14 021 -0.01
LTCW 0.70 -0.04 -0.28 -0.02 0.00 0.41 | 076 -0.07 0.67
LTCA 0.47 0.03 012 -0.30 0.09 033 0.48 -0.06 0.42

3.1.2. Landsat time-series estimates of forest structure

3.1.2.1. Live biomass. Several time-series predictors were correlated
with live biomass (Table 8). There were strong correlations between
live biomass and TCA after the greatest disturbance (GDTCA,) and
TCA before the greatest disturbance (GDTCAg). Correlations between
biomass and metrics describing the time and trend of historical events
were weaker but also significant. For example, higher biomass densities
were associated with lower disturbance rates (GDROC) and longer times
since the greatest disturbance (GDTSDs). Relative change (GDRCH) and
absolute magnitude (GDMAG) of greatest disturbance showed weaker
correlations. For undisturbed plots, MSE of the time-series fit (TAMSE)
showed an increase with increased biomass.

All-subsets regression models explained 80% of the variance and
included current, single-date TCB (LTCB, Rlzmg:035, also included
in single-date Landsat models), TCA before the greatest disturbance
(GDTCAg, Ring=0.29), and total disturbance duration (TDDUR,
Rlzmg =0.16) (Fig. 5b). An alternative model explained 77% of the var-
iance and included GDTCAa (Rfng=0.39), LTCB (Rfng=0.28), and
GDROC (R.zmg: 0.1). Including information on disturbance agent
(GDAGT) did not improve model predictions.

3.1.2.2. Dead biomass. Dead biomass was associated with disturbances
and recovery trends, but the effects depended strongly on type of distur-
bance agent (GDAGT) (Table 8). The weighted magnitudes of the great-
est (GDMXD) and total disturbance (TDMXD) were the most
informative variables overall. The best subset model across all GDAGT
classes included TDMXD (Rfng=0.23), GDMAG (Ring=0.18), and the

total MSE of fit for the overall trend (TAMSE, Rfmg:0.06). The model
explained 46% of the variance in dead biomass (RMSE=38.3,
RZ=0.43). An alternative model that included GDAGT (Rf,;=0.24)
and GDMAG (Rf,,=022) did not improve model predictions
(RMSE =40.1, R2=0.41). However, examination of the correlation
structure suggested a non-additive effect between GDAGT and other
predictor variables. For example, dead biomass at fire-disturbed plots
(GDAGTRye) Was associated with metrics characterizing the intensity
of the disturbance, among which TDROCG;.. (Fig. 6), TADRRE;re, GDROC-
riree aNd GDMAGg; showed the strongest correlations. Conversely,
plots disturbed by insects and pathogens showed relatively weak corre-
lations with these intensity metrics (e.g. TDROCyset), but were more
strongly correlated with variables incorporating disturbance duration
information. For example, insect-disturbed plots showed high correla-
tions between dead biomass and the weighted magnitude of total dis-
turbance (TDMXDjpsecr, Fig. 6) and total disturbance duration
(TDDURyysect); metrics that were only weakly correlated for plots that
underwent more rapid disturbance from fire. Interestingly, the rate of
change across all (total) disturbances was more strongly correlated
with dead biomass from burned plots (TDROCg.) than the rate of
change associated with the greatest disturbance only (GDROCg;ye), Sug-
gesting an effect of disturbances preceding fire (e.g. insect). Dead bio-
mass for fire-disturbed plots was also associated with GDTCAgire
suggesting a relationship between pre-disturbance forest cover and cur-
rent dead biomass. In contrast, insect-disturbed plots showed a stronger
relationship with the most recent trend (LMMAGinsect, LMMSE nsect)-
Harvested and undisturbed plots had an overall weak relation-
ship but also contained significantly less dead biomass (Table 1).


Unlabelled image

D. Pflugmacher et al. / Remote Sensing of Environment 122 (2012) 146-165

157

TDROC
-200 -150 -100 -50 0-200 -150 -100 -50 0-200 -150 -100 -50 0 -200 -150 -100 -50 O
1 | 1 1 { O | 1 1 1 1 1 | 1 1 1 1 1 1 1 1
[e]
200
150 &
- o [o]
{“-\ 100 5 § 5
© 50 o o
R Oap® 8
2 0- ? oo op 2R 00 E
= Fire Harvest Insect-Pathogen Undisturbed
'g o
S 200
m
Q 150 ° %
- [e] (o]
100 ° ] Q
50 — 0 0% o E
o
0 - 0% ® o8 o o
T T T T T T T T T T T T T T T T T T T T T T T T
-3000 -2000 -1000 O -2000 -1000  0-3000 -2000 -1000 O -2000 -1000 0O
TDMXD

Fig. 6. Aboveground dead biomass (standing plus down wood) versus rate of change of total disturbance (TDROC), and total magnitude weighted by total disturbance duration
(TDMXD) for field plots disturbed by fire, harvest, insects and pathogens, and undisturbed plots between 1972 and 2010.

Mean biomass of dead wood at harvested plots was 19.9 Mg ha~! (stan-
dard deviation: SD=15.4) similar to undisturbed plots (mean=194,
SD=209Mgha~!). In comparison, mean biomass observed at fire-
and insect-disturbed plots was approximately three times higher
(65.4 Mg ha™ ' and 71.7 Mg ha, respectively).

To account for differences in the effects of time-series predictors asso-
ciated with fire and insect disturbances, we built a linear model that in-
cluded TDROC and TDMXD with interaction terms for fire-disturbance
(GDAGTFire) and insect-disturbance (GDAGT sect), F€Spectively:

AGB yeaq~DGAGT

» TDROC + DGAGT; e x TDMXD. (10)

Fire

The resulting model explained 73% of the variance and significant-
ly improved predictions of dead biomass (RMSE=131.0, R2=0.7)
(Fig. 5e). The interaction terms were statistically significant
(p<0.05). Including additional terms to describe the variation in
undisturbed and harvested plots was not significant (p>0.05).

3.1.2.3. Basal area. Models for live basal area using time-series predic-
tors performed comparably to lidar-based models. The best subset
model explained 86% of the variance and predicted live basal area
with an RMSE of 6.0 m? ha~'. The most important predictors were
LTCB (Rftng =0.35) and GDTCAg (Rfig =0.21), and metrics describing
the disturbance rate (GDROC, Rlzmg:0.17) and duration (TDDUR,
Réng=0.13) (Fig. 5h). The best subset model for predicting basal
area of dead trees had an R? of 0.63 and included TDMXD
(REg=033), GDAGT (Rk,=0.17), and GDMAG (Rfn,=0.13)
(Rftng = 0.63). For fire-disturbed plots, dead basal area was correlated
with total disturbance rate (similar to dead biomass) (TDROCg;.) but
even stronger with total disturbance-recovery ratio (TADRRE;e). Sim-
ilarly, TDMXDjnsect Was strongly correlated with dead basal area for
insect-disturbed plots, as were TDDUR|,sect and LMMSEjsect. NO sig-
nificant relationship was found for undisturbed plots and harvested
plots. Following our logic for estimating dead biomass, we built a
final model using indicator variables and interaction terms for
TADRREire and TDMXDpsece. The resulting model explained 86% of
the variance with an RMSE of 4.0 m? ha~ ! (Fig. 5k).

3.1.2.4. Stand height. The best subset for predicting Lorey's mean
height included GDTCA4 (R&,;=0.51) and the rate of change of the
last monotonic trend (LMROC, Rfng=0.16). The R? of the model
was 0.67 with an RMSE of 5.0 m (30% of mean). Other subsets includ-
ed a larger number of variables (4-5) without improving prediction
accuracy. For example, an alternative model was based on LTCB

(Rfng = 0.39), LMMAG (Rfing=0.11), TRROC (Rffng=0.09), and LTCG
(Rfng=0.08) (R?=0.64, RMSE=15.6 m).

3.1.3. Single-date Landsat estimates of forest structure

Models using current, single-date Landsat data based on TCB
(LTCB), TCG (LTCG), TCW (LTCW), and TCA (LTCA) were inferior to
models using lidar or Landsat time-series predictors. Correlations
with field data were strongest for LTCB, whereas LTCG was not statis-
tically significant (p>0.05). Models based on LTCB alone explained
70% of the variance in live basal area (Fig. 5i), 58% of the variance in
live biomass (Fig. 5c), and 47% in Lorey's mean height (Fig. 50). In-
cluding LTCW and LTCA did not improve model performance. Howev-
er, LTCW was correlated with LTCB (r= —0.86), and LTCA was
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Fig. 7. Density distributions of live (a) and dead (b) biomass predicted (from cross-
validation) by models using lidar, Landsat time-series (derived from TimeSync obser-
vations and fitted LandTrendr vertices), and single-date Landsat data in comparison
to field estimates. No adequate model was found for predicting dead biomass with
single-date Landsat data.
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correlated with LTCW (r=0.83). We did not find an adequate model
for dead woody biomass and basal area of dead trees using single-
date Landsat data (Fig. 5f and 1).

3.1.4. Probability density functions of live and dead biomass

Distributional differences between field-measured and predicted
AGB can be examined using kernel density functions (Fig. 7). For
AGBYye, distributions from lidar and Landsat time-series predictions
exhibited only minor differences relative to the field measurements,
whereas distributions from single-date Landsat models were striking-
ly different (Fig. 7a). All three datasets predicted the field-observed
live biomass of 113 Mg ha~! with minimal bias, but the difference
between median predicted biomass and field-measured biomass
was significantly higher for single-date Landsat predictions
(33.4Mgha~", 38% of the median) than for lidar (12.9 Mgha~",
15%), and Landsat time-series models (14.6 Mg ha™!, 17%). Single-
date models significantly overestimated low biomass stands
(50-100 Mg ha™—') but then saturated (approximated by the mode)
between 150 and 200 Mg ha~ . In comparison, models from time-
series data extended the dynamic range of biomass (approximated
by the smaller second mode) to 250-300 Mg ha~'. Overall, models
using time-series predictors preserved the variance in the field mea-
surements (standard deviation of the predicted data divided by the
standard deviation of the observed data, SD:,, =0.89) better than
models from single-date data (SD,a0 = 0.76), and were comparable
to lidar-based models (SD;atio = 0.93).

For dead biomass (Fig. 7b), lidar estimates deviated significantly from
the field median (bias=14.6 Mg ha™!, 79%, and bias=16.6 Mgha™!,
90%, respectively). Lidar significantly overestimated low biomass densi-
ties of dead wood while significantly underestimating higher biomass
density (<50 Mgha™'). In comparison, Landsat time-series estimates
were close to the median field biomass (bias=1.6 Mgha~!, 8.4%).
Time-series models preserved the variance in the field estimates
(SDratio=0.84) better than lidar models (SD;.to=0.46). Single-
date Landsat models did not explain any variation in dead
biomass.

4. Discussion

4.1. The role of Landsat time series and lidar for predicting forest
structure

This study explored the potential of using Landsat-derived distur-
bance history parameters to estimate forest biophysical structure in
comparison to single-date Landsat data and discrete-return, airborne
lidar data. There are well-documented limitations of single-date
Landsat data for mapping forest structure (e.g. Lu, 2006), and there
is a consensus in the remote sensing community that active remote
sensors such as lidar and InSAR (Treuhaft et al., 2004) are more accu-
rate and therefore more suitable for many applications. But the moti-
vation of this study was not to challenge the capabilities of lidar,
rather to search for alternative approaches that could potentially ex-
tend the spatial and temporal coverage of lidar observations. With a
lack of a suitable vegetation-relevant spaceborne sensor and the
great expense of airborne lidar, the availability of lidar will remain
limited in the near future. The high costs of airborne lidar further
limit the repeatability of data acquisitions whereas Landsat data can
provide near annual imagery for large parts of the northern hemi-
sphere. We have demonstrated that Landsat data are considerably
more useful for mapping forest structure than has previously been
appreciated; but only if time series are used to extract information
relevant to detailed forest disturbance history. Landsat data exist
globally, although the temporal depth of the archive, especially in
cloudy areas, may be limited. However, with the recent opening of
the US archive for free access (Woodcock et al., 2008) and ongoing re-
patriation of foreign retrieving station data, there has never before

been such a meaningful opportunity to exploit arguably one of the
most valuable global remote sensing datasets.

We compared Landsat-based models with lidar-based models of for-
est biophysical structure as a best-case reference for what remote sens-
ing can currently provide for live trees. A comparison of our results
with other studies would have been difficult because of differences in
forest conditions, sampling designs and measurement protocols. In this
study, we did not integrate lidar and Landsat to map forest structure.
However, there are potential synergies between lidar and Landsat time
series, and studies have started to explore these (Wulder et al., 2009).
Because the collection of field data is expensive (especially in remote re-
gions), lidar could provide a more rigorous sample (at least for live forest
structure) that could help to calibrate and describe Landsat's disturbance
and recovery trajectories over a broader range of environmental condi-
tions and disturbance types. There have been a few studies that used
lidar samples to train Landsat-based models for predicting forest struc-
ture but these used single-date imagery (Armston et al., 2009; Hudak
et al., 2002; Wulder & Seemann, 2003). Using lidar samples from ICE-
Sat-I and the upcoming ICESat-Il may also help in understanding how
these concepts are applicable to larger scales. However, like Landsat, ICE-
Sat waveforms require calibration with data from field measurements or
airborne lidar.

4.2. Using the MSS archive

Including the MSS archive in this study enabled us to extend the
Landsat time series by more than a decade back to 1972. We did not
test for statistical differences between predicting forest structure
with and without MSS data. However, the forest disturbance and re-
covery trends in this study are complex and long-term processes;
several activities from timber harvests and insects would have been
missed if the analysis were limited to the TM/ETM+ era (Figs.
8 and 9). The sensitivity of the derived models to the length and den-
sity of the time series will need to be tested with a larger training
sample potentially derived from the lidar data set. Knowledge of the
required time length can be useful not only for predicting forest
structure of current time periods, but potentially for estimating his-
toric forest parameters by applying the derived models back trough
time. Another advantage of extending time series is only indirectly re-
lated to the length of time required to accurately estimate forest
structure, but results from the fact that trend-fitting algorithms
often exhibit larger errors at the beginning and end of the observation
periods (Hostert et al., 2003; Kennedy et al., 2010). Thus, a successful
integration of the MSS archive also increases the confidence in the fit-
ting of the early TM time periods.

The use of the MSS imagery presented several challenges. More re-
cently, the MSS archive has been reprocessed for better radiometric
and geometric fidelity. As with the TM/ETM + archive, the majority
of the imagery is now available with precision terrain correction,
which represents a tremendous improvement. Nevertheless, in our
study the geometric accuracy of MSS data was not as high as the
TM/ETM + data, introducing additional sources of error. Studies that
tested the effect of misregistration on change detection results
(Townshend et al., 1992; Dai & Khorram, 1998) recommend image-
registration accuracies at the sub-pixel scale (e.g. RMSE<0.5 pixels).
That means that additional geometric correction would be required
if MISS data is to be used in pixel-level time-series analysis. We used
an automated program to geometrically align all MSS images in the
time series, but doing that for large-area applications (e.g., Masek et
al., 2008) could be problematic.

To bridge radiometric differences between MSS and TM data we
used tasseled cap indices. The transformation is consistent between
the two sensors (Crist & Cicone, 1984) and has been shown to de-
scribe vegetation patterns consistently across broad geographic
ranges (Lobser & Cohen, 2007). Unlike for TM and ETM+-, however,
there are no reflectance-based coefficients for MSS. Using post-
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calibration coefficients available at the time, we corrected for differ-
ences in the post-calibration dynamic ranges of MSS data. The MSS
tasseled cap coefficients we derived (Table 6) are valid as long as
the post-calibration coefficients for MSS (Table 5) do not change.
Users should check the metadata information supplied with the Land-
sat data. As a DN-based transformation, MSS tasseled cap is influ-
enced by temporal variations in atmospheric constituents. We
minimized this source of error by means of relative normalization
(Canty et al., 2004) of all images in the time series to an atmospheri-
cally corrected reference. Relative normalization ensures a strong
level of temporal consistency (Schroeder et al., 2007) and is often ap-
plied in time-series studies (Powell et al., 2008; Powell et al., 2010;
Kennedy et al., 2007a,b; Kennedy et al., 2010; Gémez et al., 2011). Re-
sidual biases between MSS and TM time-series were small and ad-
justed for using a pixel-level alignment. Finally, we used a
trajectory-fitting algorithm (Kennedy et al, 2010) to minimize
inter-annual noise caused by residual atmospheric effects and sun-
angle differences.

To describe inter-annual changes and trends in forest disturbance
and recovery we used a single spectral index. TCA has been previously
shown to capture forest cover changes adequately (Powell et al.,
2010; Goémez et al., 2011). In this study, single-date TCA associated
with the current condition showed a weaker direct correlation with
forest structure than single-date TCB. We chose TCA, because our ex-
perience and early testing revealed a general superiority of TCA over
TCB and TCG for identifying percent cover change (time-series seg-
mentation). However, it is possible to use different indices for seg-
mentation (identify time of events) and trajectory fitting (identify
spectral values of events), which might improve estimates of forest
structure. One could also use the Normalized Difference Vegetation
Index (NDVI), which should be highly correlated with TCA. However,
NDVI is a single index derived from multivariate spectral space,
whereas the tasseled cap is a multidimensional index set derived
from the same multivariate data-space (Jackson, 1983), so there is a
potential advantage to using the tasseled cap transformation (Cohen
& Goward, 2004). Additionally, TCA has a companion index: TCD (tas-
seled cap distance, Duane et al.,, 2010), which is sensitive to cover
quality rather than cover percent. As such, TCD distinguishes between
younger and older conifer forests (Duane et al., 2010), and as ob-
served in other related work, cover type (e.g., conifer, hardwood,
grass). Consequently, used in combination, TCA and TCD are poten-
tially more powerful than either alone. TCA and TCD are actually not
new concepts, as they were originally derived for change vector anal-
ysis (Malila, 1980), and simply transform the Cartesian coordinate
system of the tasseled cap to a polar coordinate system, or for TM/
ETM + data to a spherical system (Allen & Kupfer, 2000).

4.3. Predicting forest structure of live trees

From this study, the superior performance of lidar to estimate live
forest structure is not surprising and is supported by numerous stud-
ies (e.g. Lefsky et al., 2002; Hudak et al., 2006). Interestingly, AGBjjye
models were best explained by a simple metric only: HVOL, which
is related to the lidar observed volume occupied by vegetation sur-
faces (Kim et al.,, 2009). Average prediction error was smaller for
young stands and increased with higher biomass densities
(Mg ha='>100). Because HVOL is relative to the mean lidar height,
a possible explanation is that the sensitivity of HVOL decreased with
increasing vertical complexity; the height distribution in young coni-
fer stands was relatively homogenous compared to older conifer
stands that tended to be more open and vertically differentiated.
Lidar models of live basal area and Lorey's height performed better
than the live biomass model, but included multiple predictor vari-
ables. Our results are based on a comprehensive set of metrics, most
of which have been tested in other studies (e.g. Hudak et al., 2008;
Kim et al., 2009). We defined lidar here as the ‘best possible’ scenario,

but it is still an evolving technology and not a fixed standard. Howev-
er, lidar is subject to availability, and is extremely limited across most
of the Earth's surface.

This study found significant relationships between current forest
structure from field measurements and disturbance history derived
from 38 years of annual Landsat imagery. Exploiting these relation-
ships significantly improved prediction of live forest biomass, basal
area, and stand height, compared to models using Landsat data ac-
quired for a single year. Estimates of live biomass from single-date
Landsat data showed a saturation effect between 150 and
200 Mg ha~! with an average prediction error of 65.1 Mgha™'
(RMSE). Including temporal information on disturbance and recovery
trends considerably improved AGBjy. estimates (RMSE=46.9 M-
gha™1) and increased the sensitivity by at least 100 Mgha~! to
250-350 Mg ha—'. As a result, prediction accuracy was much closer
to that obtained from lidar metrics (RMSE=35.3 Mgha™"'). This
was equally true for live basal area and Lorey's height. Perhaps most
important, however, was that frequency distributions of predictions
from lidar and Landsat time series were nearly identical, which has
important mapping implications, especially when maps of forest
structure are used in non-linear ecosystem models (Duane et al.,
2010).

4.4. Predicting dead woody biomass and basal area

In contrast to models of live forest structure variables, time-series
models yielded significantly better estimates of dead biomass and
dead basal area than did lidar models. Some studies have had moder-
ate success using lidar to estimate standing dead biomass (Bater et al.,
2009; Kim et al., 2009; Pesonen et al., 2008). Kim et al. (2009), for ex-
ample, estimated standing dead biomass at a site in Northern
Arizona (R?=0.62, RMSE=415Mgha~! 63% of mean versus
RMSE =43.8 Mg ha~ "', 125% in this study), revealing important dif-
ferences between stands that were burned and stands that were not
burned in large wildfires. Kim et al. (2009) used the relative frequen-
cy peak of low intensity returns of the lidar data to build regression
models, and suggested that a height stratification of lidar intensity
could improve results, but did not test this. In this study, we tested
a height-stratified intensity metric using the 75th height percentile
to capture the intensity of the lidar reflections from the top canopy
(IMEAN75). We found that lidar intensity of the top canopy de-
creased with increased levels of dead biomass, whereas other lidar in-
tensity metrics did not show a significant relationship (Table 3). One
reason for the weak relationship here could be that our dead woody
biomass included down logs, which cannot easily be observed with
lidar data. However, with the approach used in this study, the corre-
lation did not improve when only standing dead trees were analyzed.
Pesonen et al. (2008) used height and intensity metrics to estimate
dead wood volume and found a better prediction accuracy for
downed dead wood volume (RMSE=51%) than for standing dead
wood volume (RMSE =78%), despite there being little relationship
between field measured live and dead trees. Because lidar intensity
is not a calibrated measurement and variable across sensors and flight
conditions (Korpela et al., 2010) it is difficult to compare results
across studies. However, it is important to note that research on
lidar-based estimation of dead biomass is still new and will likely
evolve with new technological developments (e.g. waveform and
multi-spectral lidar).

The capability to estimate dead standing and down woody bio-
mass with Landsat time series has important practical significance
for spatially explicit ecosystem modeling. We found high correlations
with time-series predictors and dead woody biomass and basal area,
but the relationships varied by disturbance agent. For harvested and
undisturbed plots, we found no significant relationships. For har-
vested areas, this is understandable because woody debris is usually
removed from the site and patterns of remaining dead wood are
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strongly affected by forest management practices (Kennedy et al.,
2008). For example, if the range of activity fuel treatments varied
widely in the study area, then dead biomass associated with manage-
ment would be difficult to predict. Mean and variance of dead bio-
mass at undisturbed plots was similar to that of harvested plots and
significantly lower compared to disturbed plots. For applications of
these results in a mapping context, a disturbance agent must be char-
acterized for each disturbed patch, which has been a difficult task and
is largely not attempted (e.g., Masek et al., 2008; Huang et al., 2010)
or is hand-digitized (Cohen et al., 2002; Healey et al., 2008). Mapping
the disturbance agent is now an important focus of Landsat-based
change detection research (Schroeder et al, 2011; Kennedy et al.
2012); therefore, the finding that dead biomass can be estimated
using Landsat time series is timely.

Standing and down woody debris play important roles for biodi-
versity and carbon sequestration (Harmon et al., 1986), but these pa-
rameters have been difficult to obtain with remote sensing, especially
with Landsat data. Landsat measures the reflective properties of for-
est canopies. Thus, the amount of dead woody biomass can only be in-
ferred indirectly when tree mortality is associated with detectable
structural and compositional changes in the canopy. Here, we found
that dead biomass is indirectly related to the spectral change magni-
tude and duration of disturbance events. Our findings are based on a

Disturbance

relatively small sample; the robustness of these relationships across a
larger region remains to be tested.

4.5. Visual interpretation of Landsat's disturbance history

Differentiation between long-term disturbances from insects and
short-term disturbances from fire and harvest was important to pre-
dict dead biomass. To visualize the interactions between disturbance
agent and dead biomass, we provide graphical representations of TCA
time series for each plot (Fig. 8). We did not convert TCA to a biophys-
ical unit, but the index corresponds with a gradient in vegetation
cover (Powell et al., 2010; Gémez et al., 2011). Within each category,
the plots were sorted by dead biomass density. For fire-disturbed
plots (most, but not all, fires occurred in August 1996 and were first
detected in 1997) current dead biomass is largely a positive function
of disturbance magnitude (light orange to red immediately after the
fire event), which also is inversely associated with the pre-fire cover
gradient (green to light orange). For insect-disturbed plots, the
amount of dead biomass is largely a function of duration of distur-
bance (number of years the TCA trend goes from greener to more or-
ange) but also the number of years of recovery since disturbance
(increasing trend towards green). In undisturbed plots, the amount
of dead biomass is mostly associated with the amount of cover as
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Fig. 8. Fitted time series of tasseled cap angle (TCA) grouped by disturbance agent and sorted by aboveground dead biomass (AGB). TCA increases (low to high: red-yellow-green)

with increasing vegetation cover.
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indicated by the positive relationship with TCA (red to green). For
harvest plots there is no clear pattern with TCA values over time.
These interpretations are consistent with our regression analysis re-
sults, but provide a different, and perhaps more comprehensive,
view of the observed relationships.

Similar graphical representations for live biomass are useful but
show weaker patterns (Fig. 9). For burned plots, there is an inverse
relationship to that observed for dead biomass, with higher values
for stands having lower magnitude disturbances, as should be
expected. For insects, the amount of live biomass is a complex inter-
action of time since end of disturbance, pre disturbance cover, and
rate of recovery towards increasing canopy cover. For harvest plots
there seems to be no association with current amount of forest
cover (as indicated by TCA values at the current time), and no clear
indication of temporal patterns. However, there is a somewhat
weak, but nonetheless distinctive trend associated with time since
disturbance; although the relationship is opposite to that expected,
with more recent disturbances having more live biomass. This could
be a function of an increasing tendency on federal ownerships in
this region towards lighter thinnings, with increasing attention to
other ecosystem service besides wood production. But this also high-
lights a potential short-coming of using TCA for indicating biomass
amount, given that TCA is not formulated to discriminate between un-
derstory deciduous and overstory coniferous species. For undisturbed

Disturbance

plots, there is a clear and distinct progression of higher cover associated
with higher live biomass. Moreover, there is a weak but notable trend in
TCA over time (towards increasing cover) for most plots that enhances
the ability of time series (over that of single date) imagery to predict
current biomass. However, we did not stratify live biomass by distur-
bance agent, as we had done for dead biomass, because it did not im-
prove prediction accuracy.

4.6. Application of the concepts to a larger landscape

This study represented a proof-of-concept that parameters de-
rived from Landsat time-series trajectories are useful for predicting
forest structure. The trajectories were obtained through manual in-
terpretation with TimeSync software (Cohen et al., 2010), but the
methods can be automated using LandTrendr (Kennedy et al.,
2010). Because the sample size was limited by the number of field
plots, we chose a manual interpretation method to minimize errors
associated with automated algorithms. However, the trajectory fitting
used in this study is consistent with the automated LandTrendr algo-
rithm (Kennedy et al., 2010), which for whole Landsat scenes, could
replace our use of TimeSync. Required, however, may be a new set
of disturbance and recovery metrics - similar to those used here -
than the standard set currently produced (Kennedy et al., 2010).
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Fig. 9. Fitted time series of tasseled cap angle (TCA) grouped by disturbance agent and sorted by aboveground live biomass. TCA increases (low to high: red-yellow-green) with

increasing vegetation cover.
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We showed that Landsat-derived disturbance and recovery infor-
mation was important for predicting current live biomass and mortal-
ity in our coniferous forest site in Eastern Oregon. We calculated
several sets of metrics from time-series trajectories that we assumed
to be relevant for characterizing forest structure in this system, e.g.
disturbance magnitude weighted by disturbance duration to differen-
tiated between abrupt-intense disturbances (fire) and long-slow dis-
turbances (insects). We also included MSE metrics, which describe
the inter-annual residuals in TCA around the segmentation lines. Be-
cause variations in sun-target-sensor viewing geometry increase
with the structural complexity of forest canopies (Cohen & Spies,
1992), we hypothesized that MSE metrics increase with forest age,
and including them would improve differentiation of older, high bio-
mass stands. However, we found only a weak but statistically signifi-
cant correlation between the MSE of the most recent trend and live
biomass at undisturbed plots. Because of the relatively small number
of undisturbed field plots, we did not account for topographic effects
(nor did we apply topographic correction to the imagery). However,
our study site is characterized by complex topography, which compli-
cates inferences based on MSE metrics. For example, the correlation
between MSE metrics and forest parameters could 1) decrease with
the effect of topography on inter-annual variations in canopy reflec-
tance and 2) artificially increase when forest attributes are correlated
with topography.

Because disturbance metrics are only indirectly related to forest
biophysical structure, the geographic region of applicability of the de-
rived relationships to forest sites outside the study area needs to be
tested. We believe our general sets of metrics are relevant for other
forest sites where disturbance and recovery processes can be ob-
served with satellite imagery over several years (e.g. boreal and
other temperate forests). However, the relative importance of the
variables may change with the nature of the disturbance regime. Con-
sidering that our study area is very complex with respect to topogra-
phy, forest structure and disturbance history, the applicability of the
presented method to other areas is promising.

5. Conclusions

We extracted metrics describing annual trends in forest distur-
bance and recovery from annual Landsat time series with the objec-
tive to predict current forest structure, and compared the results to
predictions from lidar and single-date Landsat data. Landsat time-
series metrics significantly improved predictions of live aboveground
biomass (AGBjye), basal area (BAjye) and stand height compared to
single-date Landsat data. We found a strong relationship between
post-disturbance vegetation cover (as expressed by TC Angle) and
current forest structure, which highlights the importance of detecting
the time of disturbance accurately. Lidar predicted AGBjjye, BAjive, and
stand height most accurately, but estimates of AGBy;ye and BAy;,. from
Landsat time-series models were remarkably similar. Because the
spatial coverage of lidar is limited, Landsat time-series metrics could
represent a viable alternative for estimating forest structure attri-
butes in our study region.

Lidar metrics were the best predictors for live tree biomass, but
Landsat time-series metrics captured the variation in dead woody
biomass significantly better (AGBgeaq). Most of the AGBgeaq Origi-
nated from insect- and fire-induced tree mortality, and information
on the disturbance agent was important for accurate predictions.
For insect-disturbed plots, AGBgeaq Was associated with distur-
bance magnitude after accounting for differences in disturbance
durations. For fire-disturbed plots, AGBgeaq Was associated with
the magnitude of the fire disturbance, but including information
on pre- and post-fire trends significantly improved predictions of
AGBgead-

The mixed-conifer forests in this study are the results of complex
interactions of different disturbance agents. A long history of

wildfires, insect outbreaks, and harvest activities has created struc-
turally complex forests. Suppression of fires in the past several de-
cades has resulted in smaller, low-severity fires, which decreased
landscape heterogeneity, and increased stand densities and the likeli-
hood of high severity fire events (Schoennagel et al., 2004). The Land-
sat data archive provides a unique opportunity to study the effects of
past disturbance interactions on current forest structure. Taking ad-
vantage of the full Landsat data record means that MSS data must
be seamlessly integrated with TM and ETM + imagery, and we have
described one approach to accomplish this. Because of the lower
spectral resolution and lower signal to noise ratio, MSS sensors have
a lower sensitivity to subtle vegetation changes. For long-term trends,
using dense time series partly offset this effect by increasing the num-
ber of observations. Finally, predicting forest structure in complex
disturbance systems requires a long data record, but also change-de-
tection algorithms algorithms that are able to capture both rapid
changes and long-term processes. The outlook is promising. In the
last few years, Landsat change detection has made significant pro-
gress from relatively simple and standard bi-temporal analyses to so-
phisticated algorithms that explicitly leverage the power of annual
Landsat time series (Huang et al.,, 2010; Kennedy et al., 2010). The
continuity of the Landsat data mission in the near future is a critical
requirement not only to continue the study of historic changes, but
also to understand the linkages between these changes and our cur-
rent environment. Without availability of free, high quality data, little
of this would be possible.
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Appendix

Here we describe in detail the conversion of the original Landsat 2
(reference) tasseled cap coefficients for recent MSS data (input). Con-
sistent with the text (Section 2.4.1), we use subscript R to denote pa-
rameters of the reference data, subscript I for parameters of the input
data, and subscript A for adjusted coefficients.

The tasseled cap is a linear transformation, which can be written
with respect to the reference data as follows:

4 o
TC =3P Qi (an
i1
where,
TC‘(‘ k-th tasseled cap component
',_{" coefficient of tasseled cap component k for band i
Qk quantized calibrated pixel value of band i [DN].

Using the adjusted rescaling gain G, and bias B, factors (Egs. 7
and 8), reference pixel values Qg can be substituted with the input
MSS data Q; as follows:

4 . -
TC' =3 Br'GAQi +Bx Ba. (12)
i=1
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From Eq. (12), we can obtain a new set of (adjusted) tasseled cap
coefficients:

i = Py Gy (13)
4 L
os = Pr'By (14)
i=1
where,

ki = adjusted coefficient of tasseled cap component k for band i
oK =new additive term for tasseled cap component k

Finally, the tasseled cap transformation can be expressed with re-
spect to the input data using the adjusted coefficients (including the
additive term) as follows:

4 . .
TC'= oy + > P % Q. (15)
i=1
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