AN ABSTRACT OF THE DISSERTATION OF

Jungchul Kim for the degree of Doctor of Philosophy in Chemistry presented on November 2. 2000. Title: NATURAL PRODUCT SYNTHESIS VIA CYCLOBUTANES: PART 1. ASYMMETRIC SYNTHESIS OF (+)BYSSOCHLAMIC ACID. PART II. AN APPROACH TO THE NOOTROPIC AGENT HUPERZINE A.

Abstracted approved:_Redacted for Privacy

James D. White

PART I. Asymmetric syntheses of both natural (+)- and nonnatural (-)byssochlamic acid via a [2+2] photoaddition-cycloreversion strategy are described. X-ray crystallographic analysis of the cyclohexylamine salt 99 showed that the structure of the monomethyl ester 100 from esterase hydrolysis of 44 was originally misassigned as 56 . The enantiomeric relationship of the two diolides 106 and $\mathbf{7 0}$ permitted syntheses of nonnatural byssochlamic acid (-)-3 and natural byssochlamic acid (+)-3 from enantiopure alcohol (+)-64 and from its enantiomer $(-)-110$, respectively. Through the use of $(\pm)-103$ to reach both enantiomers of byssochlamic acid (3) and subsequent epimerization of the n -
propyl chain, it was proved that the cis configuration of the two alkyl substituents is strongly preferred in the natural product.

PART II. An asymmetric approach towards the nootropic agent huperzine A is described. Formation of cyclobutane 122 with the desired stereochemistry was accomplished using intramolecular [2+2] photoaddition of the enantiopure enone 121. Attempts to prepare the methoxypyridine system via an azadiene DielsAlder reaction were unsuccessful. However, intramolecular Michael addition of 181 produced silyl ether 182 which was converted into the pyridone 187 by treatment with hydrogen fluoride followed by selenoxide elimination. Attempts to effect the key sigmatropic rearrangement of ketone 197 into a direct precursor of huperzine A were unsuccessful.
${ }^{\circ}$ Copyright by Jungchul Kim
November 2, 2000.
All Rights Reserved

NATURAL PRODUCT SYNTHESIS VIA CYCLOBUTANES:
 PART I. ASYMMETRIC SYNTHESIS OF (+)-BYSSOCHLAMIC ACID. PART II. AN APPROACH TO THE NOOTROPIC AGENT HUPERZINE A.

by
Jungchul Kim

A DISSERTATION
 submitted to Oregon State University

in partial fulfillment of
the requirements for the
degree of

Doctor of Philosophy

Completed November 2, 2000
Commencement June 2001

Doctor of Philosophy dissertation of Jungchul Kim presented on November 2. 2000

APPROVED:

Rêdacted for Privacy

Major Professor, representing Chemistry

Redacted for Privacy

Chair of the Department of Chemistry

Redacted for Privacy

Dean of Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes the release of my dissertation to any reader upon request.

Redacted for Privacy

\qquad

ACKNOWLEDGMENTS

I would like to sincerely thank professor James D. White for the support and guidance that made this thesis possible. I would also like to thank the present and past members of the White group, Jorg Deerberg, Duncan J. Wardrop, Carla Hassler, Sung-kee Kim, Christine S. Nylund, Scott J. Kemp, Roger Hanselmann, Volker K. Schulze, Eric Hong, Rich G. Carter, Bart Phillips, Paul Blakemore, Cindy Browder, Wolfgang Wenger, Uwe Grether, Laura Quaranta, Nicholas E. Drapela, Nadine Lee, Peter Hrnciar, Lonnie A. Robarge, Joshua D. Hansen, Kurt F. Sundermann, Sundaram M. Shanmugham, Christopher M. Lincoln, Punlop Kuntiyong and Eric Korf.

I would like to thank particularly Younggi Choi for his friendship at Oregon State University

I thank Alex Yokochi for X-ray crystallographic analysis and Rodger Kohnert for his advice and assistance on the NMR analysis.

The National Science Foundation and The National Institutes of Health are acknowledged for financial support.

Finally, I thank my wife, Eun-Young Suh, and my son, Colin Mugeun Kim, for their love.

TABLE OF CONTENTS

Page
Chapter I GENERAL INTRODUCTION 2
Chapter II ASYMMETRIC SYNTHESIS OF (+)-BYSSOCHLAMIC ACID 3
History and Background 3
Results and Discussion 23
Experimental Section General 47
Experimental Section 49
References 77
Chapter III AN APPROACH TO THE NOOTROPIC AGENT HUPERZINE A 82
History and Background 82
Results and Discussion 106
Experimental Section 163
References 206
Chapter IV GENERAL CONCLUSION 212
Bibliography 213
Appendices 222

LIST OF FIGURES

Figure Page
1.1 The nonadrides. 4
1.2 Dimerization of two C_{9} units to form a nonadride. 7
1.3 Proposed biosynthesis of the C_{9} units of byssochlamic acid. 8
1.4 Energy-minimized (PM3) conformations of byssochlamic acid (3c) and its trans isomer (3t). 31
1.5 ORTEP representation from X-ray structure of 99. 39
1.6 The enantiomeric relationship between 106 and 70. 42
2.1 Structures of some known acetylcholinesterase inhibitors. 83
2.2 Huperzine A and analogs. 84
2.3 NOE data for cycloadduct 122. 120
2.4 Coupling pattern of protons in 150. 133
2.5 ORTEP Representation from X-ray structure of 157. 137
2.6 Conformation of selenoxides 185 and 186. 146
2.7 ORTEP Representation from X-ray structure of 197. 152
2.8 Conformation of enamine 202 and imine 204. 156

LIST OF APPENDIX TABLES

Table Page
A. 1 Crystal data and structure refinement for 99 224
A. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 99 225
A. 3 Bond lengths $[A ̊]$ and angles $\left[{ }^{\circ}\right]$ for 99. 226
A. 4 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 99 228
A. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 99. 229
B. 1 Crystal data and structure refinement for Cyclobutane 157. 231
B. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for Cyclobutane 157. 232
B. 3 Bond lengths [\AA] and angles [${ }^{\circ}$] for Cyclobutane 157. 233
B. 4 Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Cyclobutane 157. 236
B. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Cyclobutane 157. 238
C. 1 Crystal data and structure refinement for Pyridone 197. 241

LIST OF APPENDIX TABLES (Continued)

Table Page
C. 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Pyridone 197. 242
C. 3 Bond lengths [$\AA \AA$] and angles $\left[{ }^{\circ}\right]$ for Pyridone 197. 243
C. 4 Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Pyridone 197. 245
C. 5 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \mathrm{X} 10^{3}$) for Pyridone 197. 246

NATURAL PRODUCT SYNTHESIS VIA CYCLOBUTANES:
 PART I. ASYMMETRIC SYNTHESIS OF (+)-BYSSOCHLAMIC ACID.
 PART II. AN APPROACH TO THE NOOTROPIC AGENT HUPERZINE A.

PART I. ASYMMETRIC SYNTHESIS OF (+)-BYSSOCHLAMIC ACID.

Chapter I. GENERAL INTRODUCTION

The importance of organic synthesis in contemporary chemistry cannot be overestimated. Organic synthesis can play a vital role in structure elucidation and stereochemical assignment of new compounds. In the case of biologically active natural products, organic synthesis can sometimes be the only means for obtaining sufficient quantities of the compounds. Organic synthesis can also aid in new drug development through the preparation of structural analogues derived from a parent compound. In general, the most important function of organic synthesis lies in the development of new methodologies and in expansion of the scope and utility of known reactions.

The dissertation presented in the following pages describes synthetic efforts directed toward two natural products. The first part of the thesis describes asymmetric syntheses of (+)-byssochlamic acid and its enantiomer (-)byssochlamic acid. Byssochlamic acid is the simplest member of the family of the nonadrides, and was isolated from the Ascomycete, Byssochlamys fulva. The second part of the thesis presents an approach to the nootropic agent huperzine A. Huperzine A is a valuable naturally occurring substance used for the treatment of Alzheimer's dementia. It functions through inhibition of acetylcholinesterase.

Chapter II. ASYMMETRIC SYNTHESIS OF (+)-BYSSOCHLAMIC ACID

History and Background

The natural products known collectively as nonadrides comprise a small structural class in which the core unit is a nine-membered carbocyclic ring. ${ }^{1}$ Two five-membered anhydrides or an anhydride and a lactol are fused to the core, which also bears a pair of n-alkyl chains and, in some cases, one or more hydroxyl substituents (Figure 1.1). Glaucanic and glauconic acids, 1 and 2 respectively, were the first members of the class to be discovered, ${ }^{2}$ and soon thereafter a "symmetrical" variant, byssochlamic acid (3), was isolated by Raistrick. ${ }^{3}$ Subsequently, two hepatotoxic substances, rubratoxins $A(4)$ and B (5), were obtained from extracts of the fungus Penicillium rubrum, ${ }^{4}$ and more recently the nonadrides scytalidin (6), ${ }^{5}$ heveadride (7), ${ }^{6}$ and castaneiolide (8$)^{7}$ have been found in nature. The latest examples of this family of structures are CP-225,917 (9) and CP-263, 114 (10), two metabolites isolated by a research group at Pfizer from an unidentified fungus which also produces zaragozic acid. ${ }^{8}$ The powerful inhibition of ras farnesyl transferase by 9 and 10^{9} has made these nonadrides the objects of much interest, ${ }^{10}$ and a synthesis of $(\pm)-9$ and $(\pm)-10$ was completed in 1999 by Nicolaou. ${ }^{11}$

Glaucanic acid (1)

Glauconic acid (2)

Byssochlamic acid (3)

Rubratoxin A (4), $\mathrm{R}=\mathrm{H}, \mathrm{OH}$ Rubratoxin $B(5), R=0$

Scytalidin (6), $\mathrm{R}=\mathrm{H}$ Castaneiolide (8), $\mathrm{R}=\mathrm{OH}$

Heveadride (7)

CP-225,917 (9)

CP-263,114 (10)

Figure 1.1 The nonadrides

Byssochlamic acid (3) was isolated in 1933 during an investigation into the natural metabolites of a new Ascomycete, Byssochlamys fulva. ${ }^{12}$ This organism was noteworthy due to its frequent occurrence as a cause of spoilage among processed fruits. Its spores were determined to be unaffected by the normal fruit sterilizing process in which the temperature obtained exceeds $90^{\circ} \mathrm{C}$. After several weeks of incubation of the fungus on a synthetic medium, it was found that acidification of the mixture produced an ether soluble precipitate. Recrystallization of this solid from ether-benzene yielded pure byssochlamic acid.

11

Structural elucidation of 1, 2, and 3 by the Barton group ${ }^{13}$ at Imperial College built upon earlier degradative work addressed at $\mathbf{1}$ and $\mathbf{2}$ by Sutter ${ }^{14}$ and Kraft, ${ }^{15}$ and led to the proposal 3, exclusive of stereochemistry, for byssochlamic acid. Confirmation of this assignment and designation of cis relative configuration was obtained through X-ray crystallographic analysis of the bis-pbromophenylhydrazide 11 of byssochlamic acid. ${ }^{16}$

Byssochlamic acid (3)

12

1. $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}_{2} \mathrm{Cl}$
2. $\mathrm{NaOH}, 90^{\circ} \mathrm{C}$

15

13

14
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}_{2} \mathrm{Cl}$
aq KOH (0.5 M)

Scheme 1

The absolute configuration of byssochlamic acid was determined by degradative experiments which caused fission of the nine-membered ring and gave products of known stereochemistry (Scheme 1). ${ }^{17}$ When byssochlamic acid tetrasodium salt was reacted with one mole of hydroxylamine hydrochloride, the generated mono-N-hydroxyimide 12 undergoes degradation with p toluenesulfonyl chloride and sodium hydroxide to give ketones 13 and 14. Nitrosation of 13 gave the oximino ketone 15 which, upon treatment with ptoluenesulfonyl chloride and sodium hydroxide underwent a Beckman fragmentation yielding the nitrile acid 16. Subsequent ozonolysis followed by oxidative work up gave (S)-(-)-n-propylsuccinic acid 18 and the nitrile 17. Identification of these products established the absolute configuration of byssochlamic acid.

On inspecting the structures of glaucanic and byssochlamic acids, it is striking that each contains two identical nine-carbon unit. Accepting that this structural feature has biogenetic significance, it was postulated that these nonadrides are derived from two units having essentially identical carbon skeletons, and that the anion of one subunit is coupled to the other in forming the nine-membered ring (Figure 1.2). ${ }^{18}$

Figure 1.2 Dimerization of two C_{9} units to form a nonadride.

The anhydride subunits, in turn, could be derived by decarboxylation and elimination of water from a tricarboxylic acid 19 formed via a modified citric acid cycle. The citric acid derivative 19 could presumably arise by condensation of oxaloacetic acid 20 with hexenoic acid (Figure 1.3). This hypothesis was strengthened by precedent in the biosynthesis of other microbial products. ${ }^{19}$

19

20

Figure 1.3 Proposed biosynthesis of the C_{9} units of byssochlamic acid.

The first synthesis of a member of the nonadride family was that of $(\pm)-3$ by Stork in $1972 .{ }^{20}$ Stork's strategy employs two hydroquinone dimethyl ethers as latent maleic anhydride systems; the aryl rings of these hydroquinone are also sufficiently sterically demanding to induce the correct cis relationship of the two alkyl chains across the nine-membered ring, The Stork synthesis is convergent, with the central ring formed from ketone 22 and dichloride 25 via enolate dialkylation. The synthesis begins as shown in Scheme 2.

Scheme 2

Commencing with 5,8-dimethoxy-2-tetralone, alkylation of its pyrrolidine enamine with n-propyl iodide produced 22. Fragment 25 was made via lithium aluminum hydride (LAH) reduction of diethyl 3,6-dimethoxyphthalate (23) followed by treatment with hydrochloric acid (Scheme 3).

Scheme 3

The coupling of $\mathbf{2 2}$ and $\mathbf{2 5}$ was accomplished using sodium hydride in glyme at reflux to furnish the tetracycle $\mathbf{2 6}$ (Scheme 4). Hydroxylamine treatment of $\mathbf{2 6}$ gave oxime $\mathbf{2 7}$ which underwent Beckmann fragmentation with phosphorus oxychloride-pyridine to give an approximately $1: 1$ ratio of tricyclic nitriles $\mathbf{2 8}$ and 29. The yield of the desired isomer 28 could be increased by transformation of
exo alkene 29 into the more thermodynamically stable endo 28 using p toluenesulfonic acid.

26
$\mathrm{NH}_{2} \mathrm{OH}, 100 \%$

27

29

Scheme 4

33
32
13\%

1. KMnO_{4}, glyme $/ \mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$
(\pm) $\mathbf{- 3}$

Scheme 5

Treatment of 28 with excess methyllithium presumably formed the unisolated imine 30, which was then subjected to Wolff-Kishner reduction to produce 31 (Scheme 5). Reduction of 31 under thermodynamic conditions using lithium in ammonia afforded cis diastereomer 32 in high yield, a result which can be readily understood if nine-membered ring of 32 adopts a U-shaped conformation similar to that seen in the X-ray crystal structure of the bis-pbromophenylhydrazide of byssochlamic acid (Figure 1.2). Formation of the trans
isomer would move the propyl group into a serious eclipsing interaction with one of the anhydride residues. The transformation of 31 to 32 suggested a strong preference by the alkyl chains in this system for the cis configuration over the trans.

Final conversion of the two hydroquinone ethers into the anhydrides of byssochlamic acid proved to be problematic. Methyl ether cleavage with boron tribromide provided the bisdihydroquinone 33 which was oxidized in a two-step operation with potassium permanganate and lead tetraacetate to give racemic byssochlamic acid in 13% yield (Scheme 5). In spite of low yield at its finale, Stork's synthesis was relatively concise and convergent, and it broke new ground in the area of nonadride chemistry.

A seemingly inconsequential addendum to the Imperial College structural elucidation of byssochlamic acid by the Barton group ${ }^{17}$ was the disclosure that the natural product undergoes a reaction to give a saturated isomer when irradiated in tetrahydrofuran (Scheme 6). Two structures were considered for "photobyssochlamic acid," one (34) derived from intramolecular, parallel $[2+2]$ cycloaddition and the other (35) corresponding to a crossed photoaddition. Since pyrolysis of the photoisomer of byssochlamic acid failed to regenerate 3, the conclusion was drawn that its structure was 35 . The implication that 34 should have reverted to byssochlamic acid upon thermolysis was a proposition which played an important role in guiding our approach to byssochlamic acid. ${ }^{21}$

Scheme 6

Our plan for constructing the 1,5-cyclononadiene nucleus of 3 (Scheme 7) hinged upon connection of two photo partners, a cyclobutene 36 and a cyclopentene 37, to produce a substrate 38 which upon irradiation would be expected to yield 39. Subsequent cycloreversion of 39 would provide the carbocyclic structure 40.

photoaddition

Scheme 7

The concept of a [2+2] photoaddition-cycloreversion strategy for assembling carbocyclic structures has long been recognized as a powerful paradigm in medium-ring synthesis. ${ }^{22}$ It was first exemplified in the context of natural product synthesis by Lange ${ }^{23}$ (Scheme 8) and Wender ${ }^{24}$ in their approaches to germacranolide sesquiterpenes, and others soon followed their lead. ${ }^{25}$ In Lange's work, irradiation of dimethyl cyclobutene-1,2-dicarboxylate and 3 -methyl-2-cyclohexenone in benzene resulted in the formation of the cycloadduct 41 which was heated to produce the 1,5-cyclodecadiene 42.

41
m-xylene, $139{ }^{\circ} \mathrm{C}$ 60\%

42

Scheme 8

In White's synthesis of racemic 3, formation of the cyclobutene component 36 required for coupling with 37 was also accomplished by a [2+2] photoaddition
(Scheme 9). A mixture of 1-pentene and bromomaleic anhydride was irradiated in the presence of a sensitizer, then treated with aqueous sodium carbonate to give a mixture of cyclic diacids 43. Treatment of this mixture with diazomethane, followed by 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) induced dehydrobromination, and afforded the cyclobutene dimethyl ester 44. This compound was then saponified to provide the diacid 45.

$$
43
$$

Scheme 9

The cyclopentene partner 49 required for coupling to 45 was prepared by acylation of 4-ethylcyclohexanone with dimethyl carbonate to give the keto ester 46 (Scheme 10). This was brominated and the the resulting dibromide 47 was subjected to a Favorski rearrangement-elimination ${ }^{26}$ to yield the cyclopentene
dimethyl ester 48. Finally, treatment with the "ate" complex of diisobutylaluminum hydride provided diol 49.

Scheme 10

Coupling of 44 and 49 to yield the diolide 50 was accomplished using Steglich-Keck conditions (Scheme 11). ${ }^{27}$ Irradiation of $\mathbf{5 0}$ in dichloromethane afforded the highly strained structure 51 which, when refluxed in toluene, opened quantitatively to produce the dilactone 52 as a mixture of the cis and trans diastereomers. Saponification of $\mathbf{5 2}$ with lithium hydroxide, followed by potassium permanganate oxidation and an acidic work-up afforded racemic byssochlamic acid 3. Only a single diastereomer was produced in this sequence, the propyl chain again showing a marked preference for the cis over the trans configuration
in this system. Presumably, epimerization occurred during conversion of 52 to 3 to give exclucively the more stable natural diastereomer.

52
51

1. $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}$-Dioxane
2. KMnO_{4}
3. $\mathrm{HCl}(\mathrm{aq}) 37 \%$ (3 steps)
$(\pm)-3$

Scheme 11

In 1996, an effort to extend this photoaddition-cycloreversion approach to an asymmetric synthesis of natural (+)-byssochlamic acid was initiated by Nick Drapela ${ }^{28}$ in these laboratories. Synthesis of the chiral, differentiated cyclopentene component 54 began from dimethyl ester 48 (Scheme 12). Desymmetrization of dimethyl ester 48 with buffered (pH 7) porcine liver esterase ${ }^{29}$ gave a half acid 53 ($>99 \%$ ee) in virtually quantitative yield. The
absolute configuration of 53 was determined as (R) by X-ray crystallographic analysis of the (S)-(-)- α-methylbenzylamine salt 55 of carboxylic acid 54 , prepared via the tert-butyl ester of 53.

Scheme 12

The cyclobutene component 58 was prepared from diester 44. Treatment of this dimethyl ester with buffered porcine liver esterase furnished a carboxylic acid 56 (Scheme 13). The nearly quantitative yield of 56 implied that the esterase had failed to distinguish enantiomers in the racemate 44 while effecting a completely regioselective ester hydrolysis. This unexpected result will be discussed in the next chapter in greater detail. Selective reduction of the
carboxylic acid of 56 was achieved by using the mixed anhydride method to give hydroxy ester $57 .{ }^{30}$ Protection of the free alcohol in 57 followed by reduction of the resulting ester furnished alcohol 58.

1. $\mathrm{EtOCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$ 83\%
2. $\mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{O}$

Scheme 13

Coupling of 58 with tert-butyl ester 54 proceeded efficiently to yield ester 59 (Scheme 14). Removal of the silyl ether from 59 followed by acidic cleavage of the tert-butyl ester afforded hydroxy acid 60, which underwent Yamaguchi lactonization ${ }^{31}$ to produce diolide 61. To Drapela's suprise, all attempts to effect intramolecular photoaddition of $\mathbf{6 1}$ by irradiation through Pyrex resulted only in recovered starting material, and after measurement of the UV spectrum of 61 which showed an extinction coefficient (ϵ) of only 500 at 313 nm , it became clear that insufficient light absorption by 61 was responsible for this lack of reactivity.

59

1. TBAF, THF, 72%
2. TFA, DCM, 100%

Scheme 14

An alternative approach investigated by Drapela, in which the cyclobutene and cyclopentene functionality was reversed, was intended to produce the diolide 50 in asymmetric form. Thus, reduction of the carboxylic acid 53 via its mixed anhydride provided primary alcohol 62 which was protected as its silyl ether 63. Reduction of 63 with DIBAL-H gave the mono protected diol 64 (Scheme 15).

Scheme 15

Esterification of methyl ester 56 by reaction with isobutylene and sulfuric acid in dioxane gave the mixed diester 65 . The methyl ester of 65 was then selectively saponified to afford the half acid 66 .

Scheme 16

Esterification of carboxylic acid 66 with alcohol 64 using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) and 4-
dimethylaminopyridine gave the ester 67 in 76% yield, and deprotection of the silyl ether in 67 with tetrabutylammonium fluoride produced alcohol 68. However, attempts to remove the tert-butyl group in 68 to obtain the free acid required for subsequent lactonization to the diolide $\mathbf{5 0}$ gave an intractable mixture of products. This disappointing outcome brought an end to Drapela's efforts to devise an asymmetric route to 3 .

TBAF, THF 58\%

Scheme 17

Results and Discussion

The conclusion reached from the previous research of Drapela was that decomposition of 68 under acidic conditions is a property inherent to this specific compound. However, in the racemic synthesis, coupling of diacid 45 with diol 49 to form diolide $\mathbf{5 0}$ under Keck-Steglich lactonization conditions is believed to proceed stepwise via an intermediate hydroxy acid. This successful coupling indicates the hydroxy acid 69 is not unstable. Therefore, if access to 69 can be gained by a route different from that shown in Scheme 17, a more favorable outcome may prevail leading to a diolide.

In continuing the earlier studies in these laboratories, our primary goal became the synthesis of diolide 70, a key intermediate if an asymmetric synthesis of (+)-byssochlamic acid using the consecutive [2+2]-photoaddition and cycloreversion approach was to be realized (Scheme 18). With the knowledge already in hand that a tert-butyl ester was not a suitable means for protecting the carboxyl group of the cyclobutene component, we selected a different protecting group to circumvent the previous difficulties. Two major concerns needed to be addressed in choosing the correct protecting group. First, the protecting group from 72 must be removable under mild conditions which avoid strongly acidic or basic reagents. As previously observed with 68, strongly acidic deprotection conditions would likely result in decomposition of the starting material. In addition, the selective hydrolysis of one of the esters in the presence of an adjacent ester that has a structurally similar environment would require a delicate
maneuver. These difficulties had already been encountered during attempts to deprotect the methyl ester 75 (Scheme 19).

Scheme 18

Scheme 19

A second consideration was that the mono-protected acid 73 should be readily available from enzymatic hydrolysis of the corresponding diester. Toogood ${ }^{32}$ reported the use of porcine liver esterase to differentiate the aspartate carboxylate functions by regioselective hydrolysis of the diesters 76 (Scheme 20). It was shown in these studies that the regioselectivity of this hydrolysis reaction was unaffected by the nature of the ester. Thus, our expectation was that porcine liver esterase hydrolysis of the diester 74 would parallel the esterase catalyzed reaction of dimethyl ester 44.

76

$$
\begin{aligned}
& \mathrm{R}= \mathrm{Me} \\
& \mathrm{Et}^{\mathrm{t}} \mathrm{Bu}
\end{aligned}
$$

$$
\xrightarrow[\text { pH } 7.5 \text { buffer }]{\text { esterase }}
$$

$$
\begin{gathered}
R=92 \%(0.5 h) \\
\\
\\
96 \% \\
86 \%
\end{gathered}
$$

77
78

Scheme 20

Consideration of these two issues led us to the methylthiomethyl (MTM) carboxylate as the protecting group in ester 72. The methylthiomethyl group can be removed under essentially neutral conditions in the presence of heavy metal catalysts with a high affinity for sulfur such as mercury(II) or silver(I). ${ }^{33}$ An additional advantage to the methylthiomethyl group as a protecting device is its usefulness in relay deprotection. Methylthiomethyl esters possess the stability of a typical unhindered ester towards base, but their lability can be greatly increased by oxidation to the corresponding methylsulfonylmethyl esters. ${ }^{34}$ A striking example of the value of a methylthiomethyl ester in activating a carboxyl group towards nucleophilic attack can be found in the synthesis of the pyrrolizidine alkaloid integerrimine reported by Narasaka and co-workers (Scheme 21). ${ }^{35}$ In this synthesis, activation of the carboxyl group in 79 was accomplished via oxidation of the methylthiomethyl ester to the corresponding methylsulfonylmethyl ester 80 with ammonium molybdate and hydrogen peroxide. Upon treatment with triphenylmethyllithium, 80 underwent macrolactonization to give the 12 -membered bislactone 81 , which was advanced to integerrimine.

79

Integerrimine

Ammonium molybdate

$\left.\begin{gathered}\mathrm{Ph}_{3} \mathrm{CLi} \\ \mathrm{THF},-78^{\circ} \mathrm{C}\end{gathered} \right\rvert\, 41 \%$

81

Scheme 21

Narasaka's chemistry offered an attractive means to avoid the complications arising from selective deprotection of 72. Since a synthesis of alcohol 64 had already been developed in our laboratories, our effort was focused on the synthesis of the methylthiomethyl protected half acid 80 (Scheme 22). The previously synthesized diacid 45 was first treated with chloromethyl methyl sulfide to give bis-methylthiomethyl ester 82. Enzymatic hydrolysis using buffered porcine liver esterase (pH 7) afforded a separable 7:1 mixture of half acids 83 and 84 in 92% yield. The major product from this hydrolysis reaction
was assigned structure 83 by analogy with the esterase catalyzed reaction of dimethyl ester 44 (Scheme 13). The structural assignment to methyl ester 56, in which the propyl group is placed adjacent to the carboxylic acid rather than the methyl ester moiety, had been based on a HMBC experiment which showed a weak coupling between the methylene protons of the cyclobutene ring and the ester carbonyl carbon. ${ }^{28}$

Scheme 22

As previously mentioned, the quantitative yield of 56 and the 92% yield of mixture of 83 and 84 implied that the esterase had failed to distinguish enantiomers in the racemates 44 and 82 while effecting a nearly complete regioselective ester hydrolysis. Optical rotation values for 56 and 83 were zero,
strongly suggesting that both compounds were indeed racemic. The failure of porcine liver esterase to distinguish stereoisomers of 44 and 82 while effecting highly regioselective hydrolysis of these diesters is presumably a reflection of the fact that the rate of hydrolysis for each enantiomer is essentially the same, thus precluding kinetic resolution. Although we must conclude that the esterase, while recognizing the location of the propyl substituent in relation to the two esters, makes no distinction between the orientations of the propyl group relative to the plane of the cyclobutene, this type of observation is not unique. Toogood ${ }^{32}$ reported that hydrolysis of both (R)- and (S)-aspartate dimethyl esters 76 and 85 by porcine liver esterase resulted in selective hydrolysis of the α-ester to give the 77 and its enantiomer 86 (Scheme 23) within 0.5 hour and 1.5 hour, respectively. This result indicates that the three-fold rate difference for hydrolysis of the enantiomers 76 and 85 is insufficient for achieving clean kinetic resolution of racemic aspartate diesters.

85

86

87

Fortunately, the racemic nature of 83 is of no consequence to the asymmetric synthesis of byssochlamic acid because it was already known from our previous work ${ }^{21}$ that the propyl substituent can be epimerized in favor of the natural configuration at a late stage of the route to 3 . While continuing our progress toward 3, the anticipated preference for the cis configuration of side chains was substantiated through a conformational analysis of byssochlamic acid in which energy minimization using a PM3 algorithm predicted a difference of $\sim 2.6 \mathrm{kcal} / \mathrm{mol}$ between cis (3c) and trans (3t) isomers in favor of the former. The factor which destabilizes $3 t$ relative to $3 c$ is the pseudoaxial orientation of the propyl chain, which creates a transannular steric interaction with an endo hydrogen of the methylene adjacent to the ethyl substituent (Figure. 1.4). Interestingly, the nine-membered rings of both 3 c and 3 t adopt a chair-like conformation according to this computation and are therefore quite distinct from the "U-shaped" conformation seen in the crystal structure of byssochlamic acid bis-p-bromophenylhydrazide 11. ${ }^{16}$ An important consequence of this conformational analysis of 3 is that, if the center bearing the propyl group is stereomutable, the absolute sense of an asymmetric synthesis of byssochlamic acid can be controlled through correct orientation of the remote ethyl substituent.

3c

3t

Figure 1.4 Energy-minimized (PM3) conformations of byssochlamic acid (3c) and its trans isomer (3t).

This analysis allowed to the synthesis to proceed with the racemic form of the mono-methylthiomethyl ester 83 with the certainty that subsequent equilibration of the center bearing the propyl substituent would lead to the cis orientation of side chain characteristic of the natural product (Scheme 24). Racemic 83 and (+)-64 were coupled using 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide hydrochloride (EDCI) and 4-dimethylaminopyridine to give an inseparable 1:1 mixture of stereoisomeric methylthiomethyl esters 88 . Oxidation of 88 with ammonium molybdate and hydrogen peroxide provided the corresponding methylsulfonylmethyl esters 89 , and the tert-butyldimethylsilyl group in 89 was removed to give alcohol 90 , again as a $1: 1$ mixture of inseparable stereoisomers.

88

Ammomnium molybdate, $\mathrm{H}_{2} \mathrm{O}_{2}$
Acetone/ $\mathrm{H}_{2} \mathrm{O}, 80 \%$

89

Scheme 24

With 90 in hand, efforts were undertaken to promote the macrolactonization of this hydroxy diesters (Scheme 25), but all attempts using n-butyllithium or methylmagnesium bromide were unsuccessful. Under these conditions, only decomposition of the starting material was observed. Treatment
of 89 with various anhydrous fluoride sources such as dry tetrabutylammonium fluoride or cesium fluoride gave the same result.

Scheme 25

Although these negative results were discouraging, the simultaneous deprotection of both the methylthiomethyl group and the tert-butyldimethylsilyl group in 88 to form hydroxy acid 71 remained a possible escape route from this problem. Our goal was in situ synthesis of the diolide precursor, hydroxy acid 71, in which the silyl ether and the cyclobutene ester would be cleaved in a single step that would not perturb the connecting ester linkage between cyclobutene and cyclopentene subunits. Thus, methylthiomethyl ester 88 was exposed to hydrogen fluoride which, as hoped, removed both the tert-butyldimethylsilyl and methylthiomethyl groups without compromising the cyclopentenylmethyl ester (Scheme 26). The hydroxy acid 71 generated in this reaction was not isolated but was subjected directly to Keck-Steglich lactonization conditions ${ }^{27}$ to produce dilactone 70 . Interestingly, Yamaguchi lactonization conditions ${ }^{31}$ produced
dilactone 91 in which the cyclobutene has undergone opening to a diene. This is probably due to the high temperature (refluxing toluene) at which lactonization carried out. Since the remote stereocenters in 88 provide no basis for stereoselection, diolide $\mathbf{7 0}$ was produced as a 1:1 mixture of stereoisomers at the center bearing the propyl substituent. The mixture proved to be inseparable under all chromatographic conditions.

Scheme 26

In contrast to 61, diolide 70 exhibited significant absorption in its UV spectrum above $300 \mathrm{~nm}(\epsilon \sim 16,000$ at 313 nm), supporting the rationale based upon comparison of conformations of the two diolides, and suggesting a more productive outcome for the irradiation of 70 .
70

hv (Pyrex)
DCM

92
exo, exo

93

exo,endo | Δ | |
| :---: | :---: |
| toluene | quant |
| | |

94
cis

95 trans

Scheme 27

In the event, irradiation of $\mathbf{7 0}$ (1:1 mixture) through Pyrex glass yielded two stereoisomeric photoproducts in approximately equal amount (Scheme 27). One of these products, resulting from the cis isomer of $\mathbf{7 0}$, is assigned the exo, exo structure 92 in which both the ethyl and propyl substituents are directed away from the interior of the cage. The second photoproduct, derived from the trans isomer of 70, is believed to be exo,endo adduct 93 in which the ethyl substituent rather than the propyl group occupies the interior space. Puckering of the cyclopentane ring of 93 moves the ethyl group away from the congested cage
interior, whereas the alternative photoadduct in which the propyl group is endo would create severe compression between the propyl substituent and a methylene group of the cyclopentane ring.

It was apparent during the photolysis of 70 that, even under the irradiation conditions, cycloreversion was taking place, and the facility of this fragmentation was confirmed when the mixture of 92 and 93 was heated in toluene. A quantitative yield of 94 and 95 resulted from this reaction, the former arising from 92 and the latter from 93 (Scheme 27).
$94+95$

LiOH $\downarrow \mathrm{H}_{2} \mathrm{O}$-dioxane

96

97

(-)-byssochlamic acid (3)

The steps from 94 and 95 to byssochlamic acid entailed hydrolysis of the pair of γ-lactones, oxidation of the resultant diol to tetracarboxylic acids 96 and 97, and final treatment with hydrochloric acid to effect dehydration to give the bis anhydride (-)-3. As expected, the last step was also accompanied by epimerization of the propyl substituent in 97, probably via a maleic-itaconic anhydride equilibrium, since only byssochlamic acid (3) and none of its trans isomer was produced in this sequence. However, to our suprise, synthetic 3 showed a negative value for its optical rotation measurement indicating that it is the enantiomer of natural byssochlamic acid (+)-3.

In order to rationalize this unexpected result, the entire synthetic sequence was carefully examined. It appeared that the only step which could be responsible for this outcome was the enzymatic hydrolysis of bismethylthiomethyl ester 82, in which the stereochemical assignment to the product 83 was based on perhaps misleading NMR studies conducted on the enzymatic hydrolysis product from dimethyl ester 44 (Scheme 13). In order to remove ambiguity in the assignments to the structures of mono-methylthiomethyl ester 83 and methyl ester 56 , a deuterium exchange experiment was devised (Scheme 29). In principle, a strong base should deprotonate the carboxylic acid and remove the γ-proton of the ester group in 56 to form a dianion. Subsequent quenching with d_{4}-methanol would give a deuteriated compound 98 in which NMR analysis of the protons in the cyclobutene ring would confirm the position of the propyl chain. Unfortunately, treatment of 56 with two equivalents of lithium diisopropylamide and d_{4}-methanol only resulted in the decomposition of the starting material.

Scheme 29

However, the cyclohexylamine salt of product of hydrolysis of 44 was crystalline, and X-ray crystallographic analysis of 99 established the structure of the hydrolysis product as 100 (Figure 1.5). Hence, the propyl side chain is adjacent to the ester group rather than to the carboxylic acid moiety as first thought. In retrospect, it is clear that too much weight was placed on a HMBC experiment which, at best, should have been regarded as inconclusive. The NMR evidence which led to the assignment of 56 as the esterase product from 44 could have been interpreted differently, particularly knowing that conclusions drawn from spin-spin couplings in small rings are notoriously unreliable.

Scheme 30

1. porcine liver esterase 2. cyclohexylamine, $\mathrm{Et}_{2} \mathrm{O}$

99

Figure 1.5 ORTEP representation from X-ray structure of 99.

Correction of the structure of the product from porcine liver esterase hydrolysis of 44 as shown in Scheme 30 raised another question regarding the structure of mono-methylthiomethyl ester 83. We had hoped that porcine liver esterase hydrolysis of the bis-methylthiomethyl ester 82 would parallel the esterase catalyzed reaction of dimethyl ester 44 and our expectation was realized with comparison of spectroscopic data of 101 and 102 (Scheme 31). The carboxylic acid 100, prepared from porcine liver esterase hydrolysis of dimethyl ester 44, was converted into methylthiomethyl ester 101 and the
methylthiomethyl ester 102 was prepared from porcine liver esterase hydrolysis of bis-methylthiomethyl ester 82 followed by methylation of the resulting the half acid. If 44 and 82 result from the same regioselectivity in the hydrolysis reaction, 101 and 102 should be different compounds. Spectroscopic data revealed that these compounds are regioisomers, not identical, thereby proving that the enzymatic hydrolysis of $\mathbf{8 2}$ indeed parallel that of 44.

Scheme 31

The X-ray crystallographic analysis of the cyclohexylamine salt 99 together with the comparison of spectroscopic data of 101 and 102 established that the structure of the major methylthiomethyl ester from porcine liver esterase hydrolysis of $\mathbf{8 2}$ was not 83 but was in fact 103 as shown in Scheme 32.

(7:1)

Scheme 32

$1: 1$ mixture of diastereomers

Scheme 33

With the structure of 103 now correct, the formation of $(-)-3$ was easily explained by the sequence shown in Scheme 33. Coupling of 103 with 64 produced a 1: 1 mixture of diastereomers 105 which gave diolide 106 after
deprotection followed by lactonization. Irradiation of diolide 106 and subsequent cycloreversion produced dilactone 107 as a cis/trans mixture which furnished (-)3 by oxidation and epimerization of the propyl chain.

With the recognition that the cis relationship of the ethyl and propyl substituents of 3 can be controlled through equilibration, the goal of an asymmetric synthesis of natural (+)-byssochlamic acid became a straightforward exercise. The enantiomeric relationship between diolide 106 which led to (-)-3 and $\mathbf{7 0}$ which would afford (+)-3 (Figure 1.6) reveals that the only difference lies in the configuration of the ethyl group (S in 106, R in $\mathbf{7 0}$). Thus, asymmetric synthesis of natural byssochlamic acid (+)-3 can be achieved simply by reversing the configuration of the ethyl substituent of the cyclopentene.

70

$(+)-3$

Figure 1.6 The enantiomeric relationship between 106 and 70.

In principle, there are two options for accomplishing reversal of the ethyl configuration in 62. A different esterase could perhaps be employed to effect desymmetrization of 48 in the opposite sense to 53 (Scheme 12). ${ }^{36}$ Alternatively, 53 can be adapted to our goal by stepwise coupling with 103 in the reverse sequence. This approach only requires interchange of the primary alcohol and silyl ether substituents in 64, a transformation which was easily achieved by protection of $\mathbf{6 2}$ with dihydropyran and reduction of the methyl ester in $\mathbf{1 0 8}$ to give alcohol 109. Protection of this alcohol as its silyl ether was followed by selective removal of the tetrahydropyran protection with magnesium bromide in ether to give 110 (Scheme 34). ${ }^{37}$ Optical rotation measurement confirmed that 110 was the enantiomer of 64 :

Scheme 34

The alcohol 110 was used to esterify (\pm)-103, and the resultant diester 111 was deprotected and lactonized as before to give a $1: 1$ mixture of inseparable diolides $\mathbf{7 0}$ (Scheme 35). Irradiation of this stereoisomeric mixture gave exo,exo and exo,endo cage photoadducts 112 and 113 in equal quantity, the assumption again being made that in 113 the ethyl substituent rather than the propyl chain is more easily accommodated in an endo orientation.

Scheme 35

As with 92/93, thermal cycloreversion of 112 and 113 was a quantitative reaction, resulting in a $1: 1$ mixture of dilactones 114 and 115. The same
hydrolysis, oxidation, and acidification sequence used with 94 and 95 was applied to this mixture to give (+)-3, identical with a sample of natural byssochlamic acid supplied by the late Professor Sir Derek Barton.

Scheme 36

In conclusion, we have shown that a [2+2] photoaddition-cycloreversion pathway can be employed for asymmetric synthesis of both enantiomers of the nonadride byssochlamic acid (3). X-ray crystallographic analysis of the cyclohexylamine salt 99 showed that the structure of the monomethyl ester 100 from esterase hydrolysis of 44 was originally misassigned as 56 in Drapela's work. Recognition of the enantiomeric relationship of the two diolide 106 and 70
allowed us to bypass this error and to synthesize both unnatural (-)-3 from enantiopure alcohol (+)-64, and natural byssochlamic acid (+)-3 from (-)-110, enantiomeric with $(+)-64$, respectively. The use of racemic $(\pm)-103$ to reach both enantiomers of byssochlamic acid (3) demonstrated that the propyl group is indeed epimerizable and that the cis configuration of the two alkyl side chain is strongly preferred.

Experimental Section General

Starting materials and reagents were obtained from commercial sources and were used without further purification. Solvents were dried by distillation from the appropriate drying agents immediately prior to use. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium and benzophenone under an argon atmosphere. Diisopropylamine, triethylamine, acetonitrile and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were distilled from calcium hydride under argon. All solvents used for routine isolation of products and chromatography were reagent grade. Moisture and air sensitive reactions were carried out under an atmosphere of argon. Reaction flasks were flame dried under stream of argon gas, and glass syringes were oven dried at $120^{\circ} \mathrm{C}$ and cooled in a desicator over anhydrous calcium sulfate prior to use. Unless otherwise stated, concentration under reduced pressure refers to a rotary evaporator at water aspirator pressure.

Analytical thin layer chromatography (TLC) was performed using precoated aluminum E. Merck TLC plates (0.2 mm layer thickness of silica gel 60 F-254). Compounds were visualized by ultraviolet light, and/or by heating the plate after dipping in a 1% solution of vanillin in 0.1 M sulfuric acid in methanol or 1% solution of potassium permanganate in $2 \% 1 \mathrm{~N}$ sodium hydroxide in water. Flash chromatography was carried out using E. Merck silica gel 60 (230-400 mesh ASTM). Radial chromatography was carried out on individually prepared rotors with layer thickness of 1,2 , or 4 mm using a Chromatotron manufactured by Harrison Research, Palo Alto, California.

Melting points were measured using a Buchi melting point apparatus, and are uncorrected. Infrared (IR) spectra were recorded with a Nicolet 5DXB FT-IR spectrometer. Proton and carbon nuclear magnetic resonance (NMR) spectra were obtained using either a Bruker AC-300 or a Bruker AM-400 spectrometer. All chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane using the δ scale. 1H NMR spectral data are reported in the order: chemical shift, multiplicity $(s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, m $=$ multiplet and $\mathrm{br}=$ broad $)$, coupling constant (J) in Hertz (Hz) and number of protons.

Chemical ionization (Cl) high and low resolution mass spectroscopy (HRMS and MS) were obtained using a Kratos MS-50 spectrometer with a source temperature of $120^{\circ} \mathrm{C}$ and methane gas as the ionizing source. Perfluorokerosene was used as a reference. Electron impact (EI) mass spectra (HRMS and MS) were obtained using a Varian MAT311 or a Finnegan 4000 spectrometer. X-ray crystallographic data were collected on a Siemens P4 spectrometer and these data were interpreted using the direct methods program contained in the SHELXTL (Silicon Graphics/Unix) software package.

Experimental Section

Dimethyl 3-n-Propylcyclobut-1-en-1,2-dicarboxylate (44). A photolysis apparatus, equipped with a Dry Ice condenser and an argon inlet, was charged with acetonitrile (250 mL), bromomaleic anhydride ($8.00 \mathrm{~g}, 45.2 \mathrm{mmol}$), and benzophenone ($1.6 \mathrm{~g}, 9 \mathrm{mmol}$). The solution was purged with argon for 1 h and 1-pentene ($12.7 \mathrm{~g}, 181 \mathrm{mmol}$) was added. The mixture was irradiated with a 450W Hanovia mercury lamp, using a Pyrex filter, for 3 h . The solvent was evaporated under reduced pressure, and the residue was taken up into $\mathrm{Et}_{2} \mathrm{O}$ (100 mL) and stirred vigorously with 10% aqueous sodium carbonate (50 mL) for 1 h . The aqueous phase was separated and the process was repeated three times. The combined aqueous phases were acidified to pH 1 with 6 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL}$), and the combined organic extracts were washed with brine and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and the solution was treated with ethereal diazomethane at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and concentrated under reduced pressure, and the residue was taken up into CHCl_{3} (250 mL). To this solution was added DBU ($16 \mathrm{~mL}, 107 \mathrm{mmol}$), and the mixture was heated to reflux for 1 h . After cooling to room temperature, the mixture was
diluted with $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$, washed with water $(50 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, and dried over anhydrous MgSO_{4}. The solvent was removed and the residue was chromatographed on silica, using 15% ethyl acetate in hexane as eluent, to give $5.60 \mathrm{~g}(58 \%)$ of 44 as a colorless oil: IR (neat) 2955, 2925, 2867, 1738, 1717, 1641, 1443, 1299, 1209, $1132 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}, \mathrm{m}), 2.21(1 \mathrm{H}, \mathrm{dd}, J=2,15 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{dd}, J=$ $4,15 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.0,20.4,33.5,34.0,40.5,51.7,51.8,140.7,146.4,161.8,161.9 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}$ $213\left(M^{+}+H\right), 181,170,165,151,148,137,121,93 ;$ HRMS (CI) m/z 213.1125 (calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4}$: 213.1127).

3-n-Propylcyclobut-1-en-1,2-dicarboxylic Acid (45). To a solution of 44 $(0.226 \mathrm{~g}, 1.06 \mathrm{mmol})$ in THF (5 mL) and water (1.5 mL) was added lithium hydroxide monohydrate ($0.10 \mathrm{~g}, 2.4 \mathrm{mmol}$). The mixture was stirred for 1 h at 0 ${ }^{\circ} \mathrm{C}$, acidified to pH 1 with 1 N HCl , and poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and water (10 mL). The separated aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20$ mL), and the combined organic extracts were washed with water and brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to yield 0.141
$\mathrm{g}(72 \%)$ of 45 as a colorless solid: $\mathrm{mp} 98-100^{\circ} \mathrm{C}$; IR (neat) $3400-2800$ (br), 2964, 2935, 1723, 1621, 1445, 1284, $1225 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94$ $(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.4(3 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=1,16 \mathrm{~Hz}), 2.88(1 \mathrm{H}$, dd, $J=4,16 \mathrm{~Hz}$), $3.06(1 \mathrm{H}, \mathrm{m}), 9.70-10.8(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,20.4,33.4,33.6,40.7,146.7,151.0,164.7,164.8 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 167\left(\mathrm{M}^{+}-\right.$ OH), 151, 140, 137, 125, 93; HRMS (CI) $\mathrm{m} / \mathrm{z} 167.0709$ (calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}$: 167.0708).

Methyl 5-ethyl-2-oxo-cyclohexancarboxylate (46). To a refluxing solution of dimethyl carbonate ($28.7 \mathrm{~mL}, 340 \mathrm{mmol}$) and sodium hydride ($6.8 \mathrm{~g}, 170 \mathrm{mmol}$, 60% in oil) in benzene (150 mL) was added a solution of 4-ethylcyclohexanone ($7.16 \mathrm{~g}, 56.7 \mathrm{mmol}$) in benzene (50 mL) dropwise during 1 h . The mixture was refluxed for 1.5 h , then cooled to room temperature. Acetic acid ($9.74 \mathrm{~mL}, 170$ $\mathrm{mmol})$ was added, and the mixture was washed with water. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$, and the combined organic extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 2% ethyl acetate in hexane as eluent, to give $9.70 \mathrm{~g}(93 \%)$ of 46 as a colorless oil: IR (neat) 2954, 2935, 2852, 1753, 1719, 1660, 1616, 1441, 1298, $1205 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.20-1.45(4 \mathrm{H}, \mathrm{m}), 1.68-1.85$ $(2 \mathrm{H}, \mathrm{m}), 2.28-2.45(3 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 12.15(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.5,27.6,28.4,28.6,29.0,35.3,51.3,97.0,172.1,173.0 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ $184\left(\mathrm{M}^{+}\right), 152,128,109,95,69$; HRMS (CI) $\mathrm{m} / \mathrm{z} 184.1101$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: 184.1099).

Dimethyl 4-ethylcyclopenten-1,2-dicarboxylate (48) To a solution of 46 (6.40 $\mathrm{g}, 34.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added $\mathrm{Br}_{2}(3.70 \mathrm{~mL}, 72.9 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$ during 40 min , and the mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The solution was poured into a mixture of ice and saturated aqueous sodium bicarbonate (150 mL) at $0^{\circ} \mathrm{C}$, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was taken up into dry MeOH (100 mL), and this solution was added to a solution of NaOMe in MeOH [prepared by dissolving $\mathrm{Na}(3.19 \mathrm{~g}, 138.8 \mathrm{mmol})$ in $\mathrm{MeOH}(60$ mL)] at $0^{\circ} \mathrm{C}$ during 1 h . The mixture was allowed to warm to room temperature and was stirred for 30 min . The solution was poured into a mixture of ice and aqueous $1 \mathrm{M} \mathrm{KHSO}_{4}(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting precipitate was filtered off by passage through a pad of Celite. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x

100 mL), and the combined organic extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 20% ethyl acetate in hexane as eluent, to give $2.90 \mathrm{~g}(39 \%)$ of 48 as a colorless oil: IR (neat) 2958, 2921, 2933, 2875, 2854, 1742, 1714, 1650, 1434, 1280, $1231 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.43(2 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}), 2.25-2.4(3 \mathrm{H}, \mathrm{m})$, $2.85(2 \mathrm{H}, \mathrm{m}), 3.72(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.1,28.5,38.5,40.2$, 51.9, 139.2, 166.0; MS(CI) m/z 212 (M^{+}), 181, 151, 137; HRMS (CI) m/z 212.1050 (calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$: 212.1049).

(R)-(+)-Methyl hydrogen 4-ethylcyclopenten-1,2-dicarboxylate (53). To a rapidly stirred mixture of $48(1.70 \mathrm{~g}, 8.0 \mathrm{mmol})$ in acetone (20 mL) and pH 7 phosphate buffer (180 mL , sodium phosphate dibasic and potassium phosphate dibasic) at room temperature was added porcine liver esterase ($200 \mathrm{mg}, 4005$ units). After stirring for 3 h at room temperature, the mixture was diluted with brine and ethyl acetate, and was acidified to pH 1 with 2 N HCI at $0^{\circ} \mathrm{C}$. The resulting emulsion was filtered through a pad of Celite, and the filtrate was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were
washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced pressure to yield $1.55 \mathrm{~g}(98 \%)$ of 53 : $[\alpha]_{0}^{23}-7.8$ (c $1.00, \mathrm{CHCl}_{3}$); IR (neat) 3400-2400 (br), 2952, 2921, 2664, 1735, 1730, 1650, 1458, 1350, $1293 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.9(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.42$ $(2 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{m}), 2.48-2.63(2 \mathrm{H}, \mathrm{m}), 2.95-3.12(2 \mathrm{H}, \mathrm{m}), 3.9(3 \mathrm{H}$, $\mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.1,28.3,36.2,41.2,42.3,53.5,137.8,147.3$, 163.8, 168.6; MS(CI) m/z 199 ($\mathrm{M}^{+}+\mathrm{H}$), 181, 167, 151, 137; HRMS (CI) m/z 199.0969 (calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4}$: 199.0970).

Methyl hydrogen 3-n-Propylcyclobut-1-en-1,2-dicarboxylate (56). To a rapidly stirred solution of $44(0.10 \mathrm{~g}, 0.47 \mathrm{mmol})$ in acetone (3 mL) and pH 7 phosphate buffer (30 mL , sodium phosphate dibasic and potassium phosphate dibasic) at room temperature was added porcine liver esterase ($9.4 \mathrm{mg}, 188$ units). The mixture was stirred for 3 h at room temperature, diluted with brine and ethyl acetate, and acidified to pH 1 with 2 N HCl at $0^{\circ} \mathrm{C}$. The resulting emulsion was filtered through a pad of Celite and the filtrate was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}, and concentrated under reduced
pressure to yield 0.09 g (98%) of pure racemic 56: IR (neat) 3400-2800 (br), 2959, 2930, 1746, 1681, 1640, 1445, 1338, $1294 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.94(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.38(3 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{dd}, J=2$, $16 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=5,16 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 11.55-12.70(1 \mathrm{H}$, br s); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,20.4,33.8,34.0,39.7,53.2,145.2$, 149.7, 160.7, 165.3; MS(CI) m/z 199 ($\mathrm{M}^{+}+\mathrm{H}$), 181, 167, 154, 137, 121, 111, 93 ; HRMS (Cl) m/z 199.0971 (calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4}$: 199.0970).

Methyl (4R)-4-Ethyl-2-hydroxymethylcyclopent-1-encarboxylate (62). To a solution of $53(1.50 \mathrm{~g}, 7.57 \mathrm{mmol})$ and triethylamine ($1.05 \mathrm{~mL}, 7.58 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of ethyl chloroformate $(0.72 \mathrm{~mL}, 7.58$ mmol) in THF (5 mL) dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and filtered directly into a stirred solution of sodium borohydride ($0.573 \mathrm{~g}, 15.15$ $\mathrm{mmol})$ in water $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min , the mixture was acidified to pH 7 with 1 N HCl and poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL}$) and water (50 $\mathrm{mL})$. The aqueous phase was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, and the combined organic extracts were washed with saturated aqueous sodium bicarbonate, water, and brine, and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 30% ethyl
acetate in hexane as eluent, to give $1.23 \mathrm{~g}(89 \%)$ of 62 as a colorless oil: $[\alpha]_{o}^{23}$ -5.7 (c 1.00, CHCl_{3}); IR (neat) 3422 (br), 2956, 2922, 2878, 1712, 1645, 1441, 1249, $1128 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.34(2 \mathrm{H}$, $\mathrm{dq}, J=7,7 \mathrm{~Hz}), 2.16(1 \mathrm{H}, \mathrm{m}), 2.28(2 \mathrm{H}, \mathrm{m}), 2.74(2 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 4.09(1 \mathrm{H}$, $\mathrm{t}, J=6 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 12.2, 28.7, $37.6,39.5,42.6,51.4,60.3,127.3,159.4,167.0 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 184\left(\mathrm{M}^{+}\right), 167,155$, 151, 123; HRMS (CI) m/z 184.1103 (calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: 184.1099).

(R)-(+)-Methyl 4-Ethyl-2-(tert-butyldimethylsilyloxy)methylcyclopentene Carboxylate (63). To a stirred solution of $\mathbf{6 2 (1 3 \mathrm { mg } , 0 . 0 7 0 \mathrm { mmol }) \text { and 2,6- }}$ lutidine ($46 \mathrm{mg}, 0.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added tertbutyldimethylsilyl trifluoromethanesulfonate ($58 \mathrm{mg}, 0.22 \mathrm{mmol}$) dropwise. The mixture was stirred at $0^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h}, \mathrm{MeOH}(1 \mathrm{~mL})$ was added dropwise, and the mixture was allowed to warm to room temperature and stirred for an additional 15 min . The mixture was poured into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and 3% aqueous copper sulfate (10 mL), and the phases were separated. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$), and the combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure The residue was purified by chromatography on silica,
using 6\% ethyl acetate in hexane as eluent, to yield 20 mg (95\%) of 63: $[\alpha]_{0}^{23}$ +1.6 (c 1.00, CHCl_{3}); IR (neat) 2954, 2929, 2855, 1713, 1644, 1464, 1435, 1361, 1233, 1191, 1122, 1086, 1034, $840 \mathrm{~cm}^{-1}$; 1 H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.06(6 \mathrm{H}$, s), $0.90(3 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{s}), 1.41(2 \mathrm{H}, \mathrm{dq}, J=6,6 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{m})$, $2.28(2 \mathrm{H}, \mathrm{m}), 2.81(2 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 4.70(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta-5.5,12.3,18.2,25.8,28.8,37.3,39.4,41.2,50.9,61.0,125.3,159.5,166.0 ;$ MS(CI) m/z $299\left(\mathrm{M}^{+}\right)$, 283, 267, 251, 241, 167, 135, 115, 107, 89, 75; HRMS m/z 299.2041 (calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$: 299.2042).

(S)-(+)-1-(tert-Butyldimethylsilyloxy)methyl-2-hydroxymethyl-4-

ethylcyclopentene (64). To a stirred solution of diisobutylaluminum hydride (5.0 $\mathrm{mL}, 1.0 \mathrm{M}, 5.0 \mathrm{mmol}$) in hexanes at $-78^{\circ} \mathrm{C}$ was added a solution of $63(500.0 \mathrm{mg}$, 1.675 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4.0 \mathrm{~mL}\right.$) dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for $3 \mathrm{~h}, \mathrm{MeOH}(5 \mathrm{~mL})$ was added, and the mixture was allowed to warm to room temperature. To this mixture was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ followed by 20% aqueous Rochelle's Salt in water (8 mL), and the mixture was stirred until both layers were transparent. The phases were separated, and the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated
under reduced pressure. The residue was purified by chromatography on silica, using 20% ethyl acetate in hexane as eluent, to afford $360 \mathrm{mg}(80 \%)$ of 64 : $[\alpha]_{D}^{23}$ +1.0 (c 1.00, CHCl_{3}); IR (neat) 3349 (br), 2955, 2927, 2855, 1465, 1253, 1082, $1006,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.09(6 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$, $0.91(9 \mathrm{H}, \mathrm{s}), 1.40(2 \mathrm{H}, \mathrm{dq}, J=7 \mathrm{~Hz}, 7 \mathrm{~Hz}), 2.09(3 \mathrm{H}, \mathrm{m}), 2.55(2 \mathrm{H}, \mathrm{m}), 4.16(2 \mathrm{H}$, s), $4.23(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta-5.5,12.4,18.3,25.8,29.1,37.8$, 41.2, 41.4, 59.6, 60.5, 136.3, 136.3.

Bis-(Methylthio)methyl 3-n-Propylcyclobut-1-en-1,2-dicarboxylate (82). To a solution of chloromethyl methyl sulfide ($1.50 \mathrm{~mL}, 17.9 \mathrm{mmol}$) in 1,2dimethoxyethane (5 mL) was added sodium iodide ($3.00 \mathrm{~g}, 20.2 \mathrm{mmol}$) in small portions. The mixture was stirred for 20 min at room temperature and a solution of 45 ($0.61 \mathrm{~g}, 4.49 \mathrm{mmol})$ and N, N-diisopropylethylamine ($3.1 \mathrm{~mL}, 17.9 \mathrm{mmol}$) in 1,2-dimethoxyethane (5 mL) was added dropwise. After 2 h at room temperature, the solution was heated at $70^{\circ} \mathrm{C}$ for 2 h , then was cooled and cautiously diluted with water (25 mL). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the combined organic extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was
chromatographed on silica, using 8% ethyl acetate in hexane as eluent, to give $0.81 \mathrm{~g}(59 \%)$ of 82 as a colorless oil: IR (neat) 2954, 2922, 1720, 1634, 1430, $1262,1195,1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.38$ $(3 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{m}), 2.26(6 \mathrm{H}, \mathrm{s}), 2.28(1 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=4,15 \mathrm{~Hz})$, $2.95(1 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 5.21(2 \mathrm{H}, \mathrm{s}), 5.27(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,15.4$ (2), 20.4, 33.6, 34.0, 40.6, 68.6, 68.7, 141.0, 146.7, 160.7, 160.8; MS(CI) m/z 305 (M++H), 275, 227, 195, 167; HRMS (CI) m/z 305.0878 (calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}_{2}: 305.0881$).

Methylthiomethyl hydrogen 3-n-Propylcyclobut-1-en-1,2-dicarboxylate

 (103). To a rapidly stirred mixture of $82(0.155 \mathrm{~g}, 0.51 \mathrm{mmol})$ in acetone $(2 \mathrm{~mL})$ and pH 7 phosphate buffer (10 mL , sodium phosphate dibasic and potassium phosphate dibasic) at room temperature was added porcine liver esterase (5 mg , 100 units). After stirring for 3 h at room temperature, the mixture was diluted with brine (10 mL) and ethyl acetate (10 mL), and the resulting emulsion was filtered through a pad of Celite. The filtrate was extracted with ethyl acetate ($4 \times 30 \mathrm{~mL}$) and the combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to yield $0.11 \mathrm{~g}(90 \%)$ of a $7: 1$ mixture of 103 and 104 (determined by ${ }^{1} \mathrm{H}$ NMR analysis)as racemates. Chromatography of the mixture on silica, using 50% ether in hexane as eluent, afforded 0.076 g of pure 103 as a colorless oil: IR (neat) 33002800 (br), 2959, 2930, 1738, 1673, 1631, 1421, 1349, 1266, $1210 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}$, s), $2.37(1 \mathrm{H}, \mathrm{dd}, J=2,16 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=4,16 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{m}), 5.36$ $(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 12.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ § 14.0, 15.7, 20.4, 33.7, 34.1, 39.7, 71.0, 144.9, 150.2, 160.3, 164.3; MS(CI) m/z 245 ($\mathrm{M}^{+}+\mathrm{H}$), 195, 183, 167, 139, 123, 93; HRMS (CI) m/z 245.0846 (calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}: 245.0848$).

Methylthiomethyl ester 88 . To a solution of $83(0.048 \mathrm{~g}, 0.197 \mathrm{mmol})$ and 64 $(0.053 \mathrm{~g}, 0.197 \mathrm{mmol})$ in dichloromethane (2 mL) was added sequentially solutions of 4-dimethylaminopyridine ($0.048 \mathrm{~g}, 0.393 \mathrm{mmol}$) in dichloromethane (0.5 mL) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.045 $\mathrm{g}, 0.236 \mathrm{mmol}$) in dichloromethane (0.5 mL) at room temperature. After stirring 4 h at room temperature, the solvent was removed under reduced pressure and the residue was chromatographed on silica, using 4\% ethyl acetate in hexane as eluent, to give $0.06 \mathrm{~g}(66 \%)$ of 88 as a colorless oil: IR (neat) 2953, 2924, 1738, $1718,1259,1198,1128 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.88-$
$0.95(\mathrm{~m}, 6 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 1.3-1.5(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.0-2.2(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{dd}$, $J=2,15 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=4,15 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.8$ $(\mathrm{d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 5.2(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}) ;^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,12.5,14.1,15.4,18.3,20.4,25.9,29.2,33.7,34.0,37.8$, $40.5,40.6,40.9,59.8,61.0,68.5,130.4,140.8,141.7,145.7,160.9,161.3$; MS(CI) $\mathrm{m} / \mathrm{z} 495\left(\mathrm{M}^{+}-\mathrm{H}\right), 439,435,359,343,313,253,241,195,181$; HRMS (CI) $\mathrm{m} / \mathrm{z} 495.2601$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{SiS}: 495.2601$).

Methylsulfonylmethyl ester 89. A mixture of the 88 (0.02 g 0.04 mmol), 28% hydrogen peroxide (0.03 ml), 0.1 M aqueous ammonium molybdate $(0.04 \mathrm{ml}$, 0.004 mmol), acetone (1.5 ml), and water (0.5 ml) was stirred for 3 h at room temperature. Water (2 ml) was added, and most of the acetone was removed under reduced pressure. The aqueous phase was extracted with dichloromethane ($3 \times 10 \mathrm{ml}$) and the combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 20% ethyl acetate in hexane as eluent, to give $0.017 \mathrm{~g}(80 \%)$ of 89 as a colorless oil: IR (neat) 2957,

2931, 1729, 1457, 1339, 1257, 1211, 1113, $1067 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.88-0.98(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}) 1.35-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{~m}$, $1 \mathrm{H}), 2.03-2.2(\mathrm{~m}, 3 \mathrm{H}), 2.3(\mathrm{dd}, J=1,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.5-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=$ $4,16 \mathrm{~Hz}, 1 \mathrm{H}), 3.0(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=15$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.8(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.4,12.4,14.0,18.3,20.4$, $25.9,29.1,33.8,34.3,37.8,39.5,40.5,40.6,40.9,59.8,61.2,75.1,130.1,141.1$, 143.4, 144.9, 158.6, 160.7; MS(CI) m/z 529 ($\left.{ }^{+}+\mathrm{H}\right), 513,471,441,419,375$, 361, 253, 137; HRMS (CI) $\mathrm{m} / \mathbf{z} 529.2641$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{O}_{7} \mathrm{SiS}$: 529.2655).

Alcohol 90. To a solution of $89(0.072 \mathrm{~g}, 0.136 \mathrm{mmol})$ in acetonitrile (2 ml) at room temperature was added 4.8% hydrofluoric acid ($0.23 \mathrm{ml}, 0.55 \mathrm{mmol}$) dropwise. After stirring for 1 h at room temperature, the mixture was diluted with ether (20 mI), washed with brine and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 20% ethyl acetate in hexane as eluent, to give $0.049 \mathrm{~g}(87 \%)$ of 90 as a colorless oil: IR (neat) 3600-3200 (br), 2965, 2930, 1726, 1640, 1343, 1327, $1206 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88-0.96(\mathrm{~m}, 6 \mathrm{H}), 1.3-1.5(\mathrm{~m}, 5 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.2$
(m, 3H), 2.25 (br s, 1H), 2.3 (dd, $J=1,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.5-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J$ $=4,16 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=$ $15 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.8(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 12.4, 14.0, 20.3, 29.1, $33.8,34.2,37.9,39.5,40.5,40.7,41.0,59.0,61.2,75.1,131.4,141.5,143.6$, 144.7, 158.6, 161.0; MS(CI) m/z $413\left(\mathrm{M}^{+}-\mathrm{H}\right), 397,350,331,259,167,138,120$; HRMS (CI) m/z 413.1637 (calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{~S}: 413.1634$).

Dilactone 91. To a solution of $88(0.02 \mathrm{~g}, 0.04 \mathrm{mmol})$ in acetonitrile (4 ml) at room temperature was added 4.8% hydrofluoric acid ($0.067 \mathrm{ml}, 0.16 \mathrm{mmol}$) dropwise. After stirring for 1 h at room temperature, the solvent was removed under reduced pressure and the residue was left under vacum (1 mmHg) for 6 h . The residue was taken up into tetrahydrofuran (0.5 ml) and added to a solution of 2,4,6-trichlorobenzoyl chloride ($9.8 \mathrm{mg}, 0.04 \mathrm{mmol}$) and triethylamine (4.6 mg , 0.046 mmol) in tetrahydrofuran (0.5 ml) at room temperature The mixture was allowed to stir at room temperature overnight and filtered through glass wool into dry toluene (5 ml). The resulting solution was added via syringe pump over 18 h to a refluxing solution of 4-dimethylaminopyridine ($24 \mathrm{mg}, 0.2 \mathrm{mmol}$) in toluene (35 ml). After addition was completed, the reaction mixture was cooled to room
temperature. The reaction mixture was filtered through a pad of silica, and the solvent evaporated under reduced pressure. The residue was chromatographed on silica, using 5% ethyl acetate in hexane as eluent, to give $3.8 \mathrm{mg}(32 \%)$ of 91 as a colorless oil:); IR (neat) 2959, 2930, 1732, 1288, 1196, $1178 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H})$, $1.54(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.2(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.6(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.7-4.9(\mathrm{~m}, 4 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.2(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 12.4,13.8,22.3,28.7,31.4,37.4,42.9,43.1,61.6,62.4$, $124.6,129.8,131.6,131.7,140.0,146.8,165.7,166.5 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 304\left(\mathrm{M}^{+}\right)$, $287,274,258,231,167,138,121$; HRMS (CI) $m / z 304.1673$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$: 304.1675).

Diolide 106. To a solution of $88(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ in acetonitrile (4 mL) at room temperature was added 48% hydrofluoric acid ($0.016 \mathrm{~mL}, 0.804 \mathrm{mmol}$) dropwise. After stirring the solution for 1 h at room temperature, the solvent was removed under reduced pressure and the residue was dried under vacuum (1 mm Hg) for 5 h . The resulting crude hydroxy acid was taken up into CHCl_{3} (15 mL) and the solution was added to a refluxing solution of N, N^{\prime} dicyclohexylcarbodiimide ($0.167 \mathrm{~g}, 0.804 \mathrm{mmol}$), 4 -(dimethylamino) pyridine
$(0.123 \mathrm{~g}, 1.00 \mathrm{mmol})$, and 4-(dimethylamino)pyridine hydrochloride ($0.154 \mathrm{~g}, 1.00$ mmol) in CHCl_{3} (100 mL) via syringe pump during 18 h . After addition was complete, the mixture was cooled to room temperature and methanol (1 mL) followed by acetic acid (0.05 g) were added. Stirring was continued for 1 h and the mixture was concentrated to a volume of 5 mL , diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, filtered, and concentrated. The residue was chromatographed on silica, using 5\% ethyl acetate in hexane as eluent, to give $30 \mathrm{mg}(49 \%)$ of 106 as a colorless oil: IR (neat) 2954, 2925, 1719, 1293, $\left.1142 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(300} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89$ $(6 \mathrm{H}, \mathrm{m}), 1.35-1.56(5 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{m}), 2.05-2.20(3 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{dd}, J=1$, $15 \mathrm{~Hz}), 2.46-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{dd}, J=4,15 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{m}), 4.60-4.91$ $(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.4,14.0,20.7,28.8,33.6,34.4,37.2$, 41.3, 43.1, 43.2, 62.2, 62.4, 132.1 (2), 143.4, 149.3, 162.4, 162.6; MS(CI) m/z $305\left(M^{+}+H\right), 286,257,229,193,153,149,121 ;$ HRMS (CI) m/z 305.1749 (calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4}: 305.1753$).

$+$

Dilactone 94 and 95. A photolysis apparatus, equipped with a Dry Ice condenser and an argon inlet, was charged with a solution of $70(7.0 \mathrm{mg}, 0.023 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$). The solution was purged with argon for 1 h and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Pyrex filter for 3.5 h. The solvent was evaporated under reduced pressure and the residue was chromatographed on silica, using 5% ethyl acetate in hexane and then 60% ethyl acetate in hexane as eluent, to give 1 mg of a mixture of $\mathbf{7 0}$ and 4.2 mg of a mixture of 92, 93, 94, and 95. The mixture was taken up into toluene (2 mL) and heated to reflux for 7 h . After removal of the solvent, the residue was chromatographed on silica, using 50% ethyl acetate in hexane as eluent, to give $3.5 \mathrm{mg}(50 \%, 58 \%$ based on recovered $\mathbf{7 0}$) of 94 and 95 as a colorless oil: IR (neat) 2949, 2911, 1754, 1667, 1458, 1067, $1040 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.88(3 \mathrm{H}, \mathrm{m}), 1.03(3 \mathrm{H}, \mathrm{m}), 1.11-1.40(2 \mathrm{H}, \mathrm{m}), 1.41-1.72(4 \mathrm{H}, \mathrm{m}), 1.75-$ $2.02(1 \mathrm{H}, \mathrm{m}), 2.24-2.55(5 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{m}), 2.96-3.30(1 \mathrm{H}, \mathrm{m}), 4.43-4.78(4 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.1,12.3,13.9,14.0,20.7,21.1,27.7,27.8$, $29.0,29.7,30.1,31.1,32.0,33.1,34.5,35.3,41.8,42.3,70.8,71.5,71.8,72.3$, 127.6, 128.3, 130.4, 131.8, 158.6, 159.0, 159.7, 160.0, 174.3, 174.7, 174.9; MS(CI) m/z $305\left(\mathrm{M}^{+}+\mathrm{H}\right.$), 286, 257, 193, 153; HRMS (CI) m/z 305.1753 (calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4}: 305.1753$).

(-)-Byssochalmic Acid. To a solution of 94 and $95(2.0 \mathrm{mg}, 0.0065 \mathrm{mmol})$ in dioxane (1 mL) and water (1 mL) was added lithium hydroxide monohydrate (2.8 $\mathrm{mg}, 0.065 \mathrm{mmol}$), and the mixture was stirred for 2.5 h at $100^{\circ} \mathrm{C}$. The mixture was cooled to room temperature and $\mathrm{KMnO}_{4}(4.2 \mathrm{mg}, 0.026 \mathrm{mmol})$ was added. After 2 h at room temperature, the mixture was cooled to $0^{\circ} \mathrm{C}$, acidified to pH 1 with 2 N HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 30% ethyl acetate in hexane as eluent, to give $0.5 \mathrm{mg}(22 \%)$ of $(-)-3:[\alpha]_{0}^{23}$ $-83\left(c 0.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}$, $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.43(\mathrm{~m}$, $2 H), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=2,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H})$.

Cyclohexylammonium Carboxylate 99. To a solution of $100(0.05 \mathrm{~g}, 0.252$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ (2 mL) was added cyclohexylamine ($0.029 \mathrm{~mL}, 0.252 \mathrm{mmol}$) and the mixture was stirred for 10 min . After removal of the solvent, the residual solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ and crystallized by vapor diffusion from CHCl_{3} to give 99 : IR (neat) 2925, 2857, 1724, 1633, 1543, 1384, $1210 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.92(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.05-1.40(8 \mathrm{H}, \mathrm{m}), 1.60(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 1.72$ $(2 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 1.8(1 \mathrm{H}, \mathrm{m}), 1.99(2 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{dd}, J=1,15$ $\mathrm{Hz}), 2.73(1 \mathrm{H}, \mathrm{dd}, J=4,15 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 5.80-$ $7.20(3 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.2,20.5,24.6,24.9,31.4,34.6$, 34.6, 39.1, 50.2, 51.3, 136.5, 152.9, 162.8, 168.9; MS(CI) m/z $298\left(\mathrm{M}^{+}+\mathrm{H}\right), 280$, 254, 199, 181, 167, 154, 137, 93; HRMS $m / z 298.2019$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{4}$: 298.2018).

Methyl
(4R)-4-Ethyl-2-(2-tetrahydropyranyloxy)methylcyclopent-1encarboxlate (108). To a solution of $62(0.09 \mathrm{~g}, 0.50 \mathrm{mmol})$ and dihydropyran
($0.11 \mathrm{~mL}, 1.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) at room temperature was added p toluenesulfonic acid monohydrate ($0.001 \mathrm{~g}, 0.005 \mathrm{mmol}$). After stirring for 1 h , the mixture was diluted with ether (20 mL), washed with aqueous sodium bicarbonate and brine, and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 5% ethyl acetate in hexane as eluent, to give 0.12 g (93%) of 108 as a colorless oil: IR (neat) 2935, 2876, 2852, 1712, 1650, 1445, 1352, 1228, $1119 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.80(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.31(2 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}), 1.38-1.80(6 \mathrm{H}, \mathrm{m})$, $2.04(1 \mathrm{H}, \mathrm{m}), 2.21(2 \mathrm{H}, \mathrm{m}), 2.61-2.81(2 \mathrm{H}, \mathrm{m}), 3.40(1 \mathrm{H}, \mathrm{m}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.75$ $(1 \mathrm{H}, \mathrm{m}), 4.52(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.2,19.4,25.3,28.8,30.5$, $37.4,37.5,39.3,41.5,41.6,50.9,62.0,64.6,98.4,98.4,127.3,155.5,155.6$, 165.7; MS(CI) m/z 269 (M++H), 236, 207, 199, 184, 167, 155, 107; HRMS (CI) $\mathrm{m} / \mathrm{z} 269.1753$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4}: 269.1753$).

(4S)-4-Ethyl-2-(2-tetrahydropyranyloxy)methylcyclopent-1-enmethanol (109). To a solution of diisobutylaluminium hydride ($1.73 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 1.73 mmol) at $0^{\circ} \mathrm{C}$ was added a solution of $43(0.155 \mathrm{~g}, 0.587 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) dropwise. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, allowed to warm to room temperature, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. A saturated solution of Rochelle's salt (20 mL) was added and, after stirring for 20 min , the mixture was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$), and the combined organic extracts were washed with brine and dried over anhydrous MgSO_{4}. The solvent was removed and the residue was chromatographed on silica, using 15% ethyl acetate in hexane as eluent, to give $0.126 \mathrm{~g}(91 \%)$ of 44 as a colorless oil: IR (neat) 3448 (br), 2925, 2881, 2852, 1130, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}$, $\mathrm{t}, J=7 \mathrm{~Hz}), 1.38(2 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}), 1.43-1.85(6 \mathrm{H}, \mathrm{m}), 2.00-2.21(3 \mathrm{H}, \mathrm{m})$, 2.45-2.77 (3H, m), $3.51(1 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}, \mathrm{m}), 4.02-4.23(4 \mathrm{H}, \mathrm{m}), 4.6(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.5,19.0,25.3,29.2,30.3,38.0,38.0,41.2,41.2$, 41.4, 41.5, 58.9, 61.8, 62.8, 96.7, 96.7, 134.0, 139.8; MS(CI) m/z $222\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, 205, 155, 138, 122, 109, 85; HRMS (CI) $m / z 222.1622$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$: 222.1620).

(4R)-1-(Tert-butyldimethylsilyloxy)methyl-4-ethyl-2-(2-tetrahydropyranyloxy)methyl-cyclopent-1-ene. To a solution $109(0.113 \mathrm{~g}$, 0.47 mmol) and 2,6 -lutidine ($0.11 \mathrm{~mL}, 0.94 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added tert-butyldimethylsilyl trifluoromethanesulfonate ($0.16 \mathrm{~mL}, 0.7 \mathrm{mmol}$) dropwise. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with brine, and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 7\% ethyl acetate in hexane as eluent, to give
$0.158 \mathrm{~g} \mathrm{(95} \mathrm{\%)}$ of (4R)-1-(Tert-butyldimethylsilyloxy)methyl-4-ethyl-2-(2-tetrahydropyranyloxy)methyl-cyclopent-1-ene. as a colorless oil: IR (neat) 2955, 2928, 2862, 1474, 1259, 1078, 1022, $837 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.05(\mathrm{~s}, 6 \mathrm{H}), 0.88(12 \mathrm{H}, \mathrm{m}), 1.39(1 \mathrm{H}, \mathrm{m}), 1.45-1.61(4 \mathrm{H}, \mathrm{m}), 1.67(1 \mathrm{H}, \mathrm{m}), 1.81$ $(1 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{m}), 2.58(2 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{m}), 4.05-4.3(4 \mathrm{H}, \mathrm{m})$, $4.55(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,12.5,18.3,19.4,25.5,25.9$, $29.2,30.6,37.8,40.5,40.6,41.2,41.3,59.6,62.0,62.9,97.6,133.1,139.0 ;$ MS(CI) m/z 353 ($\mathrm{M}^{+}-\mathrm{H}$), 297, 252, 159, 85; HRMS (CI) m/z 353.2512 (calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}: 353.2512$).

(4S)-4-Ethyl-2-(tert-butyldimethylsilyloxy)methylcyclopent-1-enmethanol
(110). To a solution of (4R)-1-(Tert-butyldimethylsilyloxy)methyl-4-ethyl-2-(2-tetrahydropyranyloxy)methyl-cyclopent-1-ene ($0.125 \mathrm{~g}, 0.353 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (4 $\mathrm{mL})$ at room temperature was added magnesium bromide ($0.228 \mathrm{~g}, 0.883 \mathrm{mmol}$). After stirring for 5 h at room temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20$ mL), washed with brine, and dried over anhydrous MgSO_{4}. The solvent was removed and the residue was chromatographed on silica, using 20% ethyl acetate in hexane as eluent, to give $0.068 \mathrm{~g}(71 \%)$ of 110 as a colorless oil: $[\alpha]_{0}^{23}$ -1.0 (c 2.7, CHCl_{3}); IR (neat) 3389 (br), 2955, 2926, 2854, 1465, 1260, 1082, 1006, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H})$,
$0.91(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{dq}, J=7,7 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H})$, 4.23 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.4,12.5,18.3,25.8,29.1,37.8$, 41.3, 41.4, 59.5, 60.5, 136.4, 136.5; MS(Cl) m/z 269 ($\mathrm{M}^{+-} \mathrm{H}$), 253, 213, 195, 121; HRMS (CI) $\mathrm{m} / \mathrm{z} 269.1933$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$: 269.1937).

Diester 111. To a solution of $103(0.12 \mathrm{~g}, 0.49 \mathrm{mmol})$ and $110(0.13 \mathrm{~g}, 0.49$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added sequentially solutions of 4 (dimethylamino)pyridine ($0.12 \mathrm{~g}, 0.98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($0.14 \mathrm{~g}, 0.74 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) at room temperature. The mixture was stirred for 4 h at room temperature, the solvent was removed under reduced pressure, and the residue was chromatographed on silica, using 3% ethyl acetate in hexane as eluent, to give $0.145 \mathrm{~g}(60 \%)$ of 111 as a colorless oil: IR (neat) 2953, 2923, 1731, 1462, 1253, 1198, 1081, $837 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(6 \mathrm{H}, \mathrm{s}), 0.88-$ $0.95(6 \mathrm{H}, \mathrm{m}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.31-1.48(5 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{m}), 2.01-2.20(3 \mathrm{H}, \mathrm{m})$, $2.25(1 \mathrm{H}, \mathrm{dd}, J=2,15 \mathrm{~Hz}), 2.27(3 \mathrm{H}, \mathrm{s}), 2.59(2 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=4,15$ $\mathrm{Hz}), 2.95(1 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{d}, J$ $=13 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{d}, J=12$
$\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,12.5,14.1,15.4,18.3,20.4,25.9,29.2$, $33.7,34.0,37.8,40.5,40.6,40.9,59.8,61.0,68.5,130.4,140.8,141.7,145.7$, 160.9, 161.3; MS(CI) m/z 495 ($\left.\mathrm{M}^{+}-\mathrm{H}\right), 439,435,359,343,301,252,241,195$, 181, 133; HRMS (CI) $\mathrm{m} / \mathrm{z} 495.2601$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{SiS}: 495.2601$).

Diolide 70. To a solution of 111 ($0.096 \mathrm{~g}, 0.194 \mathrm{mmol}$) in acetonitrile (2 mL) at room temperature was added 48% hydrofluoric acid ($0.015 \mathrm{~mL}, 0.77 \mathrm{mmol}$) dropwise. The solution was stirred for 1.5 h at room temperature, the solvent was removed under reduced pressure, and the residue was dried under vacuum (1 mm Hg) for 6 h . The resulting crude hydroxy acid was taken up into CHCl_{3} (10 mL) and the solution was added to a refluxing solution of N, N^{\prime} dicyclohexylcarbodiimide ($0.16 \mathrm{~g}, 0.77 \mathrm{mmol}$), 4-(dimethylamino) pyridine (0.12 g , 0.98 mmol), and 4-(dimethylamino)pyridine hydrochloride ($0.15 \mathrm{~g}, 0.98 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ via syringe pump over 20 h . After addition was complete, the reaction mixture was cooled to room temperature, and methanol (1 mL) followed by acetic acid $(0.05 \mathrm{~g})$ were added. Stirring was continued for 30 min , and the mixture was concentrated to a volume of 5 mL , diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, filtered, and concentrated. The residue was chromatographed on silica, using 5\% ethyl acetate in hexane as eluent, to give $23.6 \mathrm{mg}(40 \%)$ of 70 as a colorless oil:

IR (neat) 2957, 2928, 1722, 1299, $\left.1133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(300} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89$ $(6 \mathrm{H}, \mathrm{m}), 1.35-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=1,15$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J=4,15 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.91$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.4,14.0,20.7,28.8,33.6,34.4,37.2$, 41.3, 43.1, 43.2, 62.2, 62.4, 132.1 (2), 143.4, 149.3, 162.4, 162.6; MS(CI) m/z $304\left(\mathrm{M}^{+}\right), 286,258,224,206,191,177,168,163,137,120 ;$ HRMS (CI) m/z 304.1674 (calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}: 304.1675$).

$+$

Dilactone 114 and 115. A photolysis apparatus, equipped with a Dry Ice condenser and an argon inlet, was charged with a solution of $70(0.040 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The solution was purged with argon for $1 . \mathrm{h}$ and was irradiated with a 450-W Hanovia medium pressure mercury lamp using a Pyrex filter for 6 h . The solvent was evaporated under reduced pressure and the residue was chromatographed on silica, using 5% ethyl acetate in hexane and 70% ethyl acetate in hexane as eluent, to give 7 mg of 70 and 19 mg of a mixture of $112,113,114$, and 115 . The mixture was taken up into toluene (3 mL) and heated to reflux for 7 h . After removal of the solvent, the residue was chromatographed on silica, using 50% ethyl acetate in hexane as eluent, to give
$17.5 \mathrm{mg}(44 \%, 56 \%$ based on recovered 70$)$ of 114 and 115 as a colorless oil: IR (neat) 2958, 2930, 1750, 1653, 1457, 1060, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.72(\mathrm{~m}, 4 \mathrm{H})$, 1.72$2.00(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.58(\mathrm{~m}, 5 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.28(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.75(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0,12.3,13.9,14.0,20.7,21.1,27.7,27.8$, $29.0,29.8,30.3,31.2,32.1,33.2,34.5,35.3,41.6,42.2,70.8,71.5,71.8,72.3$, 127.4, 128.1, 130.1, 131.6, 158.2, 158.8, 159.2, 159.8, 173.9, 174.3, 174.8, 174.9; MS(CI) m/z 304 (M^{+}), 286, 257, 224, 193, 167, 153, 143, 119, 99; HRMS (CI) $\mathrm{m} / \mathrm{z} 304.1681$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}: 304.1675$).

(+)-Byssochlamic Acid. To a solution of 114 and 115 ($11 \mathrm{mg}, 0.036 \mathrm{mmol}$) in dioxane (2 mL) and water (2 mL) was added lithium hydroxide monohydrate (15 $\mathrm{mg}, 0.36 \mathrm{mmol}$) and the mixture was stirred for 1.5 h at $50^{\circ} \mathrm{C}$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and KMnO_{4} ($40 \mathrm{mg}, 0.252 \mathrm{mmol}$) was added. After 1 h at room temperature, the solution was heated at $40^{\circ} \mathrm{C}$ for 1 h , then was cooled to $0^{\circ} \mathrm{C}$ and acidified to pH 1 with 2 N HCl . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 20$ mL), and the combined organic extracts were washed with saturated aqueous NaCl and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue
was chromatographed on silica, using 30% ethyl acetate in hexane as eluent, to give $2.8 \mathrm{mg}(23 \%)$ of $(+)-3: \mathrm{mp} 164-165^{\circ} \mathrm{C} ;[\alpha]_{0}^{23}+101\left(c 0.24, \mathrm{CHCl}_{3}\right)$; IR (neat) 2966, 2934, 1829, 1766, 1260, $927 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(3 \mathrm{H}$, $\mathrm{t}, J=7 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.28-1.50(2 \mathrm{H}, \mathrm{m}), 1.50-1.75(4 \mathrm{H}, \mathrm{m}), 1.90$ $(1 \mathrm{H}, \mathrm{m}), 2.25-2.43(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2,14 \mathrm{~Hz}), 2.77-2.98$ (2H, m), 3.41 (1H, m); 13C NMR (75 MHz, CDCl3) (11.6, 13.7, 20.6, 28.1, 29.2, $29.7,30.0,34.7,36.0,40.4,143.2,143.4,144.1,144.7,164.9,165.4$ (2), 165.7; MS(CI) m/z $332(\mathrm{M}+$), 260, 208, 166, 125; HRMS (CI) m/z 332.1263 (calcd for C18H20O6: 332.1259).

References

1. Sutherland, J. K. Fortschr. Chem. Org. Naturst. 1967, 25, 131.
2. Wijkman, N. Just. Lieb. Ann. Chim. 1931, 485, 61.
3. Raistrick, H.; Smith, G. Biochem. J. 1933, 27, 1814.
4. a) Wilson, B. J.; Wilson, C.H. J. Bacteriol. 1962, 83, 693. (b) Büchi, G.; Snader, K. M.; White, J. D.; Gougoutas, J. Z.; Singh, S. J. Am. Chem. Soc. 1970, 92, 6638.
5. Overeem, J. C.; Mackor, A. Recl. Trav. Chim. Pays-Bos 1973, 92, 349.
6. Crane, R. I.; Hedden, P.; MacMillan, J.; Turner, W. B. J. Chem. Soc. Perkin Trans 1 1973, 194.
7. Arai, K.; Shimizu, S.; Miyajima, H.; Yamamoto, Y. Chem. Pharm. Bull. 1989, 37, 2870.
8. Dabrah, T. T.; Kaneko, T.; Massefski, Jr., W.; Whipple, E. B. J. Am. Chem. Soc. 1997, 119, 1594.
9. Leonard, D. M. J. Med. Chem. 1997, 40, 2971.
10. (a) Davies, H. M. L.; Calvo, R.; Ahmed, G. Tetrahedron Lett. 1997, 38, 1737. (b) Sgarbi, P. W. M.; Clive, D. L. J. Chem. Commun. 1997, 2157. (c) Armstrong, A.; Critchley, T. J.; Mortlock, A. A. Synlett 1998, 552. (d) Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 1877, 1880. (e) Waizumi, N.; Itoh, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 6015. (f) Chen, C.; Layton, M. E.; Shair, M. D. J. Am. Chem. Soc. 1998, 120, 10784. (g) Frontier, A. J.; Danishefsky, S. J.; Koppel, G. A.; Meng, D. Tetrahedron 1998, 54, 12721. (h) Bio, M. M.; Leighton, J. L. J. Am. Chem. Soc. 1999, 121, 890.
11. (a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Choi, H.-S.; Yoon, W. H.; He, Y.; Fong, K. C. Angew. Chem. Int. Ed. Engl. 1999, 38, 1699. (b) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Fong, K. C.; He, Y.; Yoon, W. H.; Choi, H-S. Angew. Chem. Int. Ed. Engl. 1999, 38, 1676.

12: Olliver, Smith, J. Bot. 1933 71, 196.
13. Baldwin, J. E.; Barton, D. H. R.; Bloomer, J. L.; Jackman, L. M.; Rodriguez-Hahn, L.; Sutherland, J. K. Experientia 1962, 18, 345.
14. (a) Sutter, H.; Wijkman, N. Just. Lieb. Ann. Chim. 1933, 505, 248. (b) Sutter, H.; Wijkman, N. Just. Lieb. Ann. Chim. 1935, 519, 97. (c) Sutter, H.; Rottmayr, F.; Porsch H. Just. Lieb. Ann. Chim. 1936, 521, 189.
15. (a) Kraft, K.; Porsch, H. Just. Lieb. Ann. Chim. 1937, 527, 168. (b) Kraft, K. Just. Lieb. Ann. Chim. 1937, 530, 20.
16. Hamor, T. A.; Paul, I. C.; Monteath Robertson, J.; Sim. G. A. Experientia 1962, 18, 352.
17. Baldwin, J. E.; Barton, D. H. R.; Sutherland, J. K. J. Chem. Soc. 1965, 1787.
18. Moss, M. O. In Microbial Toxins; Ciegler, A., Ed.; Academic Press: New York \& London, 1971, 6, 381.
19. (a) Asano, M.; Kanematsu, T. Chem. Ber. 1932, 65. (b) Birkinshaw, J. H.; Raistrick, H. Biochem. J. 1934, 28, 828
20. Stork, G.; Tabak, J. M.; Blount, J. F. J. Am. Chem. Soc. 1972, 94, 4735.
21. White, J. D.; Dillon, M. P.; Butlin, R. J. J. Am. Chem. Soc. 1992, 114, 9673.
22. Schaumann, E.; Ketcham, R. Angew. Chem. Int. Ed. Engl. 1982, 21, 225.
23. (a) Lange, G. L.; Huggins, M.-A.; Neidert, E. Tetrahedron Lett. 1976, 4409.
(b) Lange, G. L.; McCarthy, F. C. Tetrahedron Lett. 1978, 4749.
24. (a) Wender, P. A.; Lechleiter, J. C. J. Am. Chem. Soc. 1977, 99, 267. (b) Wender, P. A.; Hubbs, J. C. J. Org. Chem. 1980, 45, 365. (c) Wender, P. A.; Letendre, L. J. J. Org. Chem. 1980, 45, 367.
25. (a) Wilson, S. R.; Phillips, L. R.; Pelister, Y.; Huffman, J. C. J. Am. Chem. Soc. 1979, 101, 7373. (b) Williams, J. R.; Callahan, J. F. J. Chem. Soc. Chem. Commun. 1979, 405. (c) Williams, J. R.; Callahan, J. F. J. Org. Chem. 1980, 45, 4475, 4479. (d) Randall, M. L.; Lo, P. C-K.; Bonitatebus Jr., P. J.; Snapper, M. L. J. Am. Chem. Soc. 1999, 121, 4534 and reference 5 cited.
26. Cf.: Schorno, K. S.; Adolphen, G. H.; Eisenbraun, E. J. J. Org. Chem. 1969, 34, 2801.
27. Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394.
28. Drapela, N. E. Synthetic Studies of nonadrides. 1998, 139.
29. Sabbioni, G.; Shea, M. L.; Jones, J. B. J. Chem. Soc. Chem. Commun. 1984, 236.
30. Soai, K.; Yokoyama, S.; Mochida, Y. Synthesis 1987, 647.
31. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
32. Stein, K. A.; Toogood, P. L. J. Org. Chem. 1995, 60, 8110.
33. Corey, E. J.; Bock, M. Tetrahedron Lett. 1975, 3269.
34. Gerdes, J. M.; Wade, L. G. Tetrahedron Lett. 1979, 689.
35. Narasaka, K.; Sakakura, T.; Uchimaru, T.; Guedin-Vuong, D. J. Am. Chem. Soc. 1984, 106, 2954.
36. (a) Wang, Y.-F.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. Am. Chem. Soc. 1984, 106, 3695. (b) Laumen, K.; Schneider, M. P. J. Chem. Soc. Chem. Commun. 1986, 1248.
37. Kim, S.; Park, J. H. Tetrahedron Lett. 1987, 28, 439

PART II. AN APPROACH TO THE NOOTROPIC AGENT HUPERZINE A.

Chapter III. AN APPROACH TO THE NOOTROPIC AGENT HUPREZINE A

History and Background

Alzheimer's disease is a common neurodegenerative disorder that accompanies aging and afflicts an estimated 4,000,000 people in the U.S. alone. The disease leads to progressive loss in cognitive abilities, performance of routine tasks, time and space orientation, communication skills, abstract thinking, and personality. Since incidence of Alzheimer's disease increases with age (approximately. 40% of individuals over 85 have Alzheimer's disease), more people will be at risk in coming years. ${ }^{1}$

While the etiology of Alzheimer's disease is not fully understood, many of those involved in research in this field believe that the deposition of senile plaque, formed through aggregation of insoluble β-amyloid, a protein of unknown function, is closely related to the degree of cognitive function impairment. Senile plaque may be linked to a deficiency which develops in the cholinergic system of Alzheimer's patients. The primary neurotransmitter in the cholinergic system, acetylcholine, is produced at lower levels in these individuals due to a decrease in the level of choline acetyltransferase, the enzyme that mediates acetylcholine synthesis. The amount of choline acetyltransferase is known to be reduced by $50-95 \%$ in Alzheimer's patients compared with age matched controls. ${ }^{2}$

Accordingly, enhancement of the central cholinergic function has been regarded as one of the most promising approaches for treating Alzheimer's disease patients. This is mainly achieved by means of acetylcholinesterase inhibitors. Acetylcholinesterase hydrolyzes the neurotransmitter acetylcholine into
acetate anion and choline. Through inhibition of this enzyme, the concentration of acetylcholine is increased resulting in improved cognitive functions. Among the several known acetylcholinesterase inhibitors are physostigmine (1), the recently marketed tacrine (2), ${ }^{3}$ donepezil (3), ${ }^{4}$ and rivastigmine (4) ${ }^{5}$ (Figure 2.1). Unfortunately, the use of physostigmine has limits due to its short duration of action, and tacrine, although now approved for use in the U. S., is a liver toxin. ${ }^{6}$

Physostigmine (1)

Donepezil (3)

Tacrine (2)

Rivastigmine (4)

Figure 2.1 Structures of some known acetylcholinesterase inhibitors.

Huperzine $A(5)$ is an alkaloid from the clubmoss Huperzia serrata (Thunb.) Trev. $=$ Lycopodium serratum Thunb., which is used in the treatment of Alzheimer's disease. ${ }^{7}$ In fact, H. serrata has been used in Chinese traditional medicine under the name Chien Tseng Ta to treat several illnesses. ${ }^{8}$ in pharmacological studies carried out during the late 1980s, huperzine A proved to be a very potent inhibitor of the acetylcholinesterase. Recently, purified natural huperzine A has undergone clinical trials in China in patients suffering from various memory disorders including Alzheimer's disease. ${ }^{9}$

Huperzine A (5)

Huperzine B (6)

Selagine (7)

$R=H(8)$
$R=M e(9)$

6β-Hydroxyhuperzine A (10)

Figure 2.2 Huperzine A and analogs.

Huperzine A (5) has been shown to improve memory 1-4 h after injection in individuals suffering from serious Alzheimer's dementia and other memory impairments. ${ }^{10}$ Several huperzine A derivatives (8 and 9, Figure 2.2) more potent than the natural product were also developed by modeling the interaction of huperzine A with acetylcholinesterase. ${ }^{11}$

Huperzine A (5) was first isolated in 1960 by Wiesner and coworkers from the plant Lycopodium selago, but was assigned an incorrect structure 7. ${ }^{12}$ A later comparison of the alkaloid selagine and huperzine A by Liu and coworkers showed that they were identical and that Wiesner's structural assignment (7) to huperzine A was incorrect. ${ }^{13}$ In addition to huperzine $A(5)$ and $B(6)$, only one other alkaloid, 6β-hydroxyhuperzine $\mathrm{A}(\mathbf{1 0})$, has been found to possess the huperzine ring system (Figure 2.2).

In spite of huperzine A's interesting structure and its important biological activity, relatively few research groups have investigated its synthesis and only two have achieved a total synthesis. However, prior to the discovery that the huperzine A/selagine structure was misassigned, several studies were initiated towards the synthesis of these supposed natural products.

One of the first investigations into the synthesis of selagine (7) was published by Kende and coworkers who prepared keto ester 15, possessing the tricyclic framework assigned to selagine (7) (Scheme 1). ${ }^{14}$ The synthesis of 15 began with 2-carbomethoxycyclohexanone (11), which was alkylated with allylic chloride 12 using Weiler's method to afford the sulfide 13. After acid catalyzed cyclization, the thiophenyl group was oxidized and the resulting sulfoxide underwent elimination to give the bicyclic compound 15.

11

13

TFA, $0^{\circ} \mathrm{C}, 20 \mathrm{~h}$ 41% from 11

14

Scheme 1

Similar methodology was developed by Gravel ${ }^{15}$ who used selenium in place of sulfur to allow for a more gentle oxidation-elimination to the olefin 19. Gravel and coworkers' approach to the bicyclic framework proposed for selagine started with 4-methylcyclohexanone (16) which was advanced in three steps to the enone 17 (Scheme 2). ${ }^{16}$ Dual alkylation with the dichloride 18 afforded the bicyclo[3.3.1]nonane 19 which was converted to its ethylene ketal 20.

Scheme 2

The pyridone annulation began with selective ozonolysis of the disubstituted double bond of $\mathbf{2 0}$, and the resulting ketone 21 was taken to the β keto ester 22 with dimethyl carbonate and sodium hydride (Scheme 3). Alkylation of the dianion of $\mathbf{2 2}$ with allyl bromide using Weiler's method afforded 23 as a mixture of diastereomers. The mixture was equilibrated and the carbomethoxy group was removed with aqueous potassium hydroxide to give $\mathbf{2 4}$ in which the allyl group occupied the equatorial orientation. Hydroboration of the terminal vinyl group was followed by oxidation of the resulting alcohol to a carboxylic acid, and the latter was esterified with diazomethane to yield the keto ester 25. Pyridone formation was achieved with benzylamine to give 26, and the

28

Scheme 3
enamine double bond was isomerized into the ring fusion with bromine, followed by further oxidation to the bromopyridone 27 . The bromine was removed under reducing conditions to give 28 possessing the tricyclic framework of selagine (7).

A second route to the selagine bicyclic framework was published by Kende. ${ }^{17}$ This approach began with Birch reductive alkylation of 2-methoxy-5methylbenzoic acid (29) with allyl chloride to afford the triene 30 which, upon treatment with palladium(II) trifluoroacetate in acetonitrile, gave the bicyclo[3.3.1]nonane 31. The ketone functional group was protected as its ketal, the disubstituted olefin was hydroborated regioselectively, and the resulting alcohol was oxidized to afford the ketone 21 (Scheme 4).

The first completed total synthesis of huperzine A was not reported until 1989 when Kozikowski and coworkers described a route that has now been
revised several times. ${ }^{18}$ In Kozikowski's initial publication, ${ }^{19}$ the synthesis of 38 was accomplished by reacting the enamine of 33 with acrylamide in aqueous dioxane (Scheme 5). This returned a $85: 15$ mixture of 34 and $\mathbf{3 5}$, from which the minor isomer 35 was separated, N -benzylated, and dehydrogenated to afford the pyridone 37. Due to its instability, 37 was converted to the methoxypyridine 39 through debenzylation and treatment of 38 with methyl iodide and silver(I) carbonate.

Following ketal hydrolysis of 39, carbomethoxylation with methyl carbonate and potassium hydride gave 40 and set the stage for insertion of the three-carbon bridge to form the bicyclo[3.3.1]nonane system (Scheme 6). The 1,1,3,3-tetramethylguanidine (TMG) catalyzed Michael-aldol reaction of $\mathbf{4 0}$ with methacrolein proceeded in good yield to give 41 as a mixture of diastereomers. The ketol mixture 41 was dehydrated to the alkene 42 by reaction of its derived mesylates with sodium acetate and acetic acid. Wittig reaction with ethylidenetriphenylphosphorane took place to provide a $9: 1$ mixture of the (Z) and (E)-alkenes 43 . The Z / E mixture was isomerized to a mixture 44 comprised predominantly of the (E)-olefin by heating with thiophenol and azobisisobutyronitrile. The methyl ester was saponified, and the resulting acid was employed in a Curtius rearrangement which afforded the urethane 45. Lastly, trimethylsilyl iodide was employed to effect both N - and O -deprotection (Scheme 6).

33

$\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{AcOH}$ 80\%

Scheme 5

methacrolein, TMG
DCM, 93\%

1. $\mathrm{NaOH}, \mathrm{MeOH}, 78 \%$
2. SOCl_{2}, toluene
3. $\mathrm{NaN}_{3}, 80 \%$

Scheme 6

In Kozikowski's improved route to huperzine A, 33 was converted to 39 in one pot with propiolate and ammonia under high pressure (Scheme 7). ${ }^{20}$

33

39

Scheme 7

It should be noted that the Michael-aldol methodology used by Kozikowski is not original, but was developed by Raphael ${ }^{21}$ and coworkers in 1966 and was subsequently exploited by Horii ${ }^{22}$ and coworkers in 1968. Horii assembled the bicyclo[3.3.1]nonane ring system 48 using this approach in his studies directed at the synthesis of lycopodium alkaloids (Scheme 8).

46

NaOEt ,
 then 6 N HCl

47

1. MsCl, Pyr.
2. Collidinie

48

Shortly after Kozikowski published his first synthesis of huperzine A, a second almost identical synthesis was published by Ji and Qian. ${ }^{23}$ The only significant difference in Ji's synthesis is the method used to prepare key intermediate 40, which was obtained from 5-methoxycarbonyl-6-methyl-2pyridone (49) (Scheme 9).

53
54

40

Conversion of 49 to the methoxypyridine 50 was followed by reduction of the ester to afford 51. The methyl substituent at C6 was metallated and the anion was condensed with formaldehyde to give the diol 52 which was converted to the bis-nitrile 53 via the corresponding dichloride. The bisnitrile 53 was solvolyzed with methanol to yield the diester 54, which upon Dieckmam condensation with sodium hydride returned the methoxypyridine 40.

From this point forward, Ji's synthesis of huperzine A is remarkably similar to Kozikowski's (Scheme 10). The keto ester 40 was used as a substrate for a Michael-aldol reaction with methacrolein to furnish the alcohol 41 as a mixture of diastereomers at both the hydroxyl and methyl bearing stereocenters. The hydroxyl group of 41 was mesylated, and the stereoisomeric mixture was exposed to hot acetic acid and sodium acetate to afford the olefin 42 in modest yield. Ji's synthesis was completed with a Wittig olefination which installed the exocyclic ethylidene function of 43 and gave an $85: 15$ mixture of Z and E isomers, respectively. The mixture was treated with aqueous potassium hydroxide which resulted in the selective saponification of the E isomer. The carboxylic acid 55 was treated with diphenylphosphoryl azide and ethanol to effect a Curtius rearrangement, and the intermediate isocyanate was trapped with ethanol to yield the urethane 45. The final steps involved deprotection of the pyridone with trimethylsilyl iodide and decomposition of the urethane in aqueous base to afford huperzine A.

1. $\mathrm{MsCl}, 63 \%$
2. $\mathrm{NaOAc}, \mathrm{AcOH}$, $130^{\circ} \mathrm{C}, 30 \%$

43

Scheme 10

Kraus and coworkers ${ }^{24}$ have published a preliminary investigation into the synthesis of huperzine A in which the monoprotected diketone 33 was the starting material for their approach (Scheme 11).

61

62

Scheme 11

This substance 33 was converted to the keto sulfoxide 57 in two steps Once again, methacrolein was used in a Michael-aldol reaction with 57 to afford the bicyclic[3.3.1]nonane 58 with cis stereochemistry. The hydroxyl group was protected, and a Wittig olefination returned the Z olefin $\mathbf{6 0}$ which is hydrolyzed to
the ketone 61. The novel aspect of this approach was the incorporation of the bridgehead amine. Thermal elimination of the sulfoxide presumably results in the formation of a transient bridgehead olefin which was trapped by ammonia to give 62.

A substantial improvement on the Michael-aldol strategy was reported by Kozikowski using a palladium-catalyzed bicycloannulation reaction originally developed by Huang and Lu. ${ }^{25}$ These investigators reported the reaction of bifunctional allylic alkylating agent $\mathbf{6 4}$ with 1,3-bis-nucleophile $\mathbf{6 3}$ under palladium catalysis to form bicyclic ketoester 65 (Scheme 12)

Scheme 12

In Kozikowski's second route to huperzine A (Scheme 13), the palladiumcatalyzed bicycloannulation of β-keto eater 40 with 2-methylene-1,3-propanediol diacetate 64 in the presence of palladium catalyst afforded the methylenebridged structure 66 in good yield. ${ }^{26}$ To complete the synthesis, the ketone 66 was condensed with ethylidenetriphenylphosphorane to give a 9:1 mixture of Z and E alkenes 67 which isomerized with thiophenol and α, α-azoisobutyronitrile

(AIBN) to a 19:1 mixture of E and Z alkenes 68 , respectively. The methyl ester was saponified and the resulting acid 69 was employed in a Curtius rearrangement which afforded the urethane 70. Lastly, the pyridone ring and amine were liberated via treatment with trimethylsilyl iodide, and the exocyclic double bond was isomerized with trifluoromethanesulfonic acid to afford 5.

Following the route established to (\pm)-huperzine A, several groups have reported asymmetric syntheses of (-)- and (+)-huperzine A using, either the Michael-aldol strategy or the palladium-catalyzed bicycloannulation to construct the bicyclo[3.3.1]nonane framework of huperzine A.

The first synthesis of (-)-huperzine A was described by Kozikowski ${ }^{27}$ using the Michael-aldol route with a (-)-8-phenylmenthol derived chiral auxiliary (Scheme 14). Transesterification of 40 with (-)-8-phenylmenthol, Michael-aldol reaction at $-20^{\circ} \mathrm{C}$, and dehydration yield a separable $9: 1$ mixture of the diastereoisomers 72. For the major isomer, further steps in its transformation to huperzine \mathbf{A} were similar to those reported previously. After Wittig reaction and isomerization of the E/Z mixture, the bulky phenylmenthol group in $\mathbf{7 2}$ was reduced to give the corresponding primary alcohol which was reoxidized to the enantiomerically pure acid 55.

40

71

1. methacrolein, TMG, $-20^{\circ} \mathrm{C}, 90 \%$
2. $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$
3. $\mathrm{NaOAc}, \mathrm{AcOH}$, reflux

55

72
de 80%

Scheme 14

A more recent asymmetric approach using a chiral base was reported by Terashima. ${ }^{28}$ In this work, various commercially available Cinchona alkaloids were used as Michael-aldol catalysts, the best result was observed with one equivalent of $(-)$-cinchonidine. This afforded 44 with an enantiomeric excess of 64\% (Scheme 15). To explain the observed ee and the absolute configuration of 44, a plausible transition state model based on an ion-pairing mechanism ${ }^{29}$ was postulated for the asymmetric Michael addition promoted by (-)-cinchonidine.

40

44
ee 64\%

Scheme 15

The same group also developed an asymmetric bicycloannulation of 40 with 2-methylene-1,3-propandiol diacetate 64 catalyzed by a palladium catalyst carrying ferrocenylphosphine ligands. ${ }^{28}$ Use of a modified chiral ferrocenyl ligand 73 previously developed by Hayashi afforded 44 with an enantiomeric excess of 64\% (Scheme 16). The enantioselectivity observed for this bicycloannulation may be explained by a secondary ligand-substrate interaction ${ }^{30}$ involving hydrogen bonding between the terminal hydroxyl group of the pendant chain and the attacking nucleophile as postulated in Scheme 16.

Scheme 16

A similar result was obtained by He and Bai^{31} who prepared compound 44 in 52% ee with another modified Hayashi catalyst 75 (Scheme 17).

Scheme 17

In 1999, Langlois and coworkers reported a new formal enantioselective synthesis of (+)-huperzine A using palladium mediated annulation of β-keto ester 77 derived from 64 and (1R,2S)-2-phenylcyclohexanol (76). ${ }^{32}$ A diastereomeric excess of 92% was obtained in this reaction (Scheme 18).

40

77
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{TMG}$ dioxane, 75%

78
ee 92%

Scheme 18

In summary, it is noteworthy that only two general methods have been developed for assembling the bicyclo[3.3.1]nonane framework of huperzine A. These are: (a) a Michael-aldol strategy, utilized initially by Horri and subsequently
by Kozikowski, Ji and Kraus, and (b) a palladium-catalyzed bicycloannulation originally developed by Huang and Lu and later applied to huperzine A by Kozikowski and Gravel.

All asymmetric approaches of $(-)$ - and (+)-huperzine A are based on these two methods. Thus, Kozikowski reported a Michael-aldol annulation using (-)-8phenylmenthol as a chiral auxiliary. Cinchona alkaloids such as $(-)$-cinchonidine have been used as Michael-aldol bases by Terashima who also developed an asymmetric palladium-catalyzed bicycloannulation using Hayashi's chiral ferrocenylphosphine ligands. The latter were used by He and Bai in their approach as well. Langlois reported an enantioselective synthesis of (+)huperzine A via palladium mediated annulation using (1R,2S)-2phenylcyclohexanol as chiral auxiliary.

Results and Discussion

The Cope rearrangements ${ }^{33}$ has played a pivotal role in many synthetic efforts directed at natural products. ${ }^{34}$ It is important to recognize that the rearrangement is reversible; the starting and product 1,5 -dienes exist in equilibrium at the rearrangement temperature through a cyclic transition state. Also, the rearrangement usually require high temperature, generally $\sim 200{ }^{\circ} \mathrm{C}$ (Scheme 19).

Scheme 19

Two approaches have been studied which effectively lower the temperature at which Cope rearrangement occurs. First, the rearrangement is accelerated by placing an electron-donating substituent such as a hydroxyl group at carbons C3 or C4 of the 1,5-diene. This results, after rearrangement, in an enol 81 whose tautomerization leads irreversibly to an unsaturated carbonyl compound 82.35 A second approach employs catalysis to accelerate the reaction. ${ }^{36}$ For example, 2-methyl-3-phenylhexa-1,5-diene (83) rearranged at room temperature in the presence of a palladium(II) catalyst to (E)-2-methyl-1-phenylhexa-1,5-diene (84).

Scheme 20

The position of equilibrium in Cope rearrangement is determined by several factors, including the substitution pattern, conjugation, ring strain, or the irreversible conversion of one diene to a more stable product. Thus, cis-1,2divinylcyclopropanes and cis-divinylcyclobutanes are known to undergo facile Cope rearrangement to less-strained seven- and eight-membered ring dienes, respectively, as shown in Scheme 20. For example, cis-1,2-divinylcyclopropane
(85) undergoes spontaneous Cope rearrangement below room temperature ${ }^{37}$ to produce 1,4-cycloheptadiene (86), and cis-1,2-divinylcyclobutane (87) rearranges easily ${ }^{38}$ to afford 1,5-cyclooctadiene (88).

Our approach to the synthesis of huperzine A(5) is based on a strategy that employs Cope rearrangement of enamine 90 to assemble the complete framework of the target structure in a single step (Scheme 21). This enamine is envisioned to arise from ketone 91.

Huperzine A (5)

89

92

Cope rearrangement

90

91

There is no known precedent for this type of enamine-Cope rearrangement in which a 3-amino-1,5-diene is produced. However, the reverse reaction in which thermally induced [3,3]-sigmatropic rearrangement of a 3-amino-1,5-diene occurs to give the corresponding enamine has been reported. ${ }^{39}$ In that case, the enamine was derivatized by alkylation (Scheme 22). ${ }^{36}$ Another question underlying our approach is whether the Cope rearrangement of enamine 90 could also proceed via cleavage of $\mathrm{Cb}-\mathrm{Cc}$ bond to yield the unwanted product 92 (Scheme 21).

Scheme 22

Although fully aware of the potential difficulties involved in this enamineCope rearrangement strategy for synthesis to huperzine A, we were nevertheless optimistic that the presence of the strained cyclobutane in $\mathbf{9 0}$ would be sufficient to drive the equilibrium toward target structure 89. Clearly, the bicyclic structure of 89 can not revert to the enamine 90 .

The structure of the key intermediate 91 is unique in that it has a cyclobutane ring bearing an exo-methyl group on one side and a methoxypyridine ring on the other. Our initial intention was to synthesize enone 94 in the expectation that upon treatment with a 1 -aza-1,3-diene such as 95 it would undergo regioselective Diels-Alder addition to produce the corresponding
[4+2] adduct 93 (Scheme 23). Subsequent loss of methanol and dimethylamine from 93 would yield the a methoxypyridine 91 in a single operation. Precedent for a hetero-Diels-Alder reaction using this type of azadiene was reported by Ghosez and coworkers ${ }^{40}$ who demonstrated that treatment of the N -dimethylhydrazone 96 with naphthoquinone in acetonitrile produces the aromatized adduct 99 via the cycloadduct 98 (Scheme 24). Cyclobutane rings are frequently prepared by enone-olefin $[2+2]$ photoaddition, ${ }^{41}$ and we planned to synthesize the 4 membered ring of 91 by means of a photo-cycloaddition between cyclohexenone and 2-methyl-1,3-pentadiene (Scheme 23).

Scheme 23

Scheme 24

Initial studies of the intermolecular photo-cycloaddition of 2-cyclohexenone with both 2-methyl-1,3-pentadiene and olefin 101, prepared from 3-pentene-2-ol 100, were abandoned because inseparable isomeric cycloadducts were obtained. Furthermore, a large amount of olefin was necessary to avoid dimerization of the enones, a requirement that was not practical for a multistep synthesis. Various solvents and the presence of sensitizers were not helpful in solving this problem (Scheme 25).

100

101

Scheme 25

Given the difficulties encountered with the intermolecular photoaddition, a more practical method for assembling the required bicyclo[4.2.0]octane system was clearly needed. For this reason it was decided to investigate an intramolecular photoaddition route. ${ }^{42}$ A synthetic plan employing an intramolecular [2+2] photoaddition for the synthesis of huperzine A is shown in Scheme 26. This scheme requires additional steps to cleave the C-O bond in cycloadduct 103 and to convert the side chain in 104 to the isopropylene group needed for the Cope rearrangement. However, we envisioned that the intramolecular [2+2] photoaddition of enone 102 would be highly regioselective and diastereoselective. In particular, the methyl group in the cycloadduct 103 should occupy the desired exo position in order to avoid steric congestion. The photoaddition substrate 102 would be obtained from 4-hydroxy-2-cyclohexene-1one (105) and a coupling partner 106.

The eventual goal of our approach to huperzine A (5) was to develop an enantioselective synthesis, and the plan outlined in Scheme 26 can be easily adapted to this purpose, since the required (S)-4-hydroxy-2-cyclohexene-1-one (105) is available in optically pure form via a known procedure. ${ }^{43}$

102

106

105

103

104

94

Scheme 26

Our synthesis of (S)-4-hydroxy-2-cyclohexene-1-one (105) which utilized $(-)$-quinic acid (107) as the starting material was carried out according to a literature procedure,but with some modifications (Scheme 27). ${ }^{44}$

Scheme 27
(-)-Quinic acid (107) was first converted into its isopropylidene derivative 108 in acidic acetone. Since the triol 109 from lithium aluminum hydride (LAH) reduction of lactone 108 was difficult to purify, we instead reduced 108 with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ and carried out subsequent oxidative cleavage of
the crude triol with sodium periodate to afford hydroxy ketone 110 in high yield. The hydroxyl group was removed from 110 by a sequence involving elimination and hydrogenation of the derived enone 111 to give ketone 112. Treatment of 112 with tert-butyldimethylsilyl chloride and 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) afforded 113 which was treated with aqueous hydrogen fluoride to give (S)-4-hydroxy-2-cyclohexene-1-one (105).

According to the "Rule of Five", as termed by Hammond and Srinivasan, ${ }^{45}$ five membered rings are highly favored during intramolecular [2+2] photoaddition. This led us to choose 114 as the substrate for photoaddition (Scheme 28). Since 105 is highly sensitive to both acid and base, a mild reaction was required to acylate the hydroxyl group of this cyclohexenone with crotonyl chloride. After considerable experimentation, the ester 114 was obtained by acylation of 105 with crotonyl chloride in the presence of silver cyanide. A second photoaddition substrate 116, containing an additional carbon in the acyl appendage, was prepared by treating 105 with 1,3-dicyclohexylcarbodiimide (DCC), 4dimethylaminopyridine (DMAP), and 2-methyl-3-pentenoic acid 115. The latter was obtained by methylation of the dianion of 3 -pentenoic acid. Our expectation was that, after cleavage of the $\mathrm{C}-\mathrm{O}$ bond of the cycloadduct, the methyl bearing side chain on the cyclobutane ring could be easily transformed into the isopropylene group necessary for the Cope rearrangement.

105

AgCN, benzene, 77\%

116

Scheme 28

Unfortunately, irradiation of 114 or 116 under various conditions did not yield any cycloadducts, but instead provided a complex mixture of products which could not be identified (Scheme 29). The presence of olefinic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude mixture indicated that neither 114 nor 116 had undergone photoaddition.
114

116

Scheme 29

A possible solution to this problem was recognized in the work of Gariboldi who photocyclized a series of 4-(allyloxy)cyclopentenones, all of which gave the expected [2+2] adducts (Scheme 30). ${ }^{46}$. The 4-(allyloxy)cyclopentenones 117 and 118 were shown to produce the cyclobutanes 119 and 120 , respectively. The implication from this work was that an ether tether rather than an ester was needed for successful photoaddition.

Scheme 30

With this idea in mind, we next attempted to synthesize ether 121. Formation of 121 was not as straightforward as the synthesis of esters 114 and 116, but, after considerable experimentation, hydroxy enone 105 was found to give the etherified product 121 using crotyl bromide in large excess in the presence of silver(I) oxide (Scheme 31).47 With enone 121 in hand, its intramolecular $[2+2]$ photo reaction was investigated. The best results were obtained from irradiation of 121 in dichloromethane at $0^{\circ} \mathrm{C}$ in the absence of a sensitizer. In this reaction, the cycloadduct 122 was formed in 64% yield along with small amounts of unidentified cycloadducts.

122

Scheme 31

The stereochemistry of cycloadduct 122 was confirmed by ${ }^{1} \mathrm{H}$ NMR and NOE experiments as shown in Figure 2.3. The two protons H_{1} and H_{3} on the ring junction displayed a 3% signal enhancement in a NOE experiment which indicates a cis relationship between the cyclohexanone and the cyclobutane rings. The exo orientation of the methyl group on the cyclobutane ring was assigned from its 1% signal enhancement when ring junction proton H_{1} was irradiated. Finally, 2% and 5% signal enhancements of protons H_{3} with H_{2} and H_{4} confirmed that the tricyclic cycloadduct $\mathbf{1 2 2}$ has a rigid cage-like structure.

122

Figure 2.3 NOE data for cycloadduct 122.

The cycloadduct 125 presented us with, our next task, which was to cleave the bond between the γ-carbon and oxygen as intended previously. A survey of the literature showed that there are many methods to remove an oxygen on the γ-carbon of an α, β-unsaturated carbonyl compound. For example, Yadav reported reductive deoxygenation of α, β-unsaturated ester 123 with zinc to obtain β, γ-unsaturated ester 124 (Scheme 32). ${ }^{48}$ A plausible mechanism for this reaction involves the supply of an electron from zinc to generate radical anion 125 which then undergoes reductive elimination of the γ-oxygen with accompanying olefin migration. Other electron transfer reagents such as samarium diiodide, ${ }^{49}$ magnesium, ${ }^{50}$ lithium in ammonia, and sodium amalgam ${ }^{51}$ have been used.

$\left|\begin{array}{ll}\mathrm{Zn} \\ \mathrm{e}^{-}\end{array}\right|$

125

Scheme 32

Anticipating that one of these methods would successfully effect reductive elimination, the cycloadduct 122 was converted into enone 127 by treatment with phenylselenyl chloride followed by oxidation with sodium periodate (Scheme 33). The enone 127 was subjected to the reducing agents described above, but reductive cleavage of the C-O bond could only be achieved by refluxing the enone 127 in ethanol in the presence of activated zinc. This produced primary alcohol 128 and the cyclohexanone 122 in 53% and 22% yield, respectively. The formation of 122 was not unexpected because the intermediate anion can abstract a proton from ethanol. Treatment of enone 127 with samarium diiodide, magnesium, or sodium amalgam did not give 128 but only caused decomposition of the starting material.

Scheme 33

At this point, we decided to attempt the conversion of the primary alcohol group in 128 into the isopropylene unit that would be needed for eventual Cope rearrangement. Our plan was to use an oxidation-methylation-oxidation sequence to form a diketone 129 which could be transformed into the isopropylene 94 by a selective carbonyl olefination (Scheme 34). However, when the alcohol 128 was treated with Dess-Martin periodinane, the isolated product was not the expected aldehyde but the hydroxy ketone 130 resulting from an intramolecular aldol condensation.

128

Dess-Martin periodinane, DCM, 67\%

130

1. oxidation
2. methylation
3. oxidation
olefination

94

Scheme 34

Before chromatography of the crude reaction mixture, a characteristic aldehyde peak at $\delta 9.85$ was clearly visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. This suggested that the aldehyde 131 was generated but was converted into 130 during the chromatographic purification. A plausible mechanism for the transformation of $\mathbf{1 2 8}$ into $\mathbf{1 3 0}$ is shown in Scheme 35. Enolization of the initially formed aldehyde 131 would give dienol 132, and subsequent intramolecular aldol reaction between the enol and the aldehyde moiety would produce the secondary alcohol 130.

128
130

131

Scheme 35

At this point, we realized that we could not reproduce the zinc-mediated reductive deoxygenation of the enone 127 (see Scheme 33). Since it is known that the results of many reactions using zinc metal are highly dependent on the activated state of zinc, ${ }^{52}$ it seems reasonable to assign the lack of reproducibility of deoxygenation of 127 to the zinc used. Thus, several different activation methods ${ }^{53}$ were employed to obtain active zinc metal. However, all attempts to effect the deoxygenation with newly activated zinc resulted in uniformly no reaction. Changing the solvent also showed no reaction. These results indicated that this is not a function of the activity of zinc or solvent. Further analysis, however, revealed that this result is probably due to the acidity of the reaction medium. When 127 was heated with zinc in the presence of acids such as acetic
acid, hydrogen chloride, of hydrogen iodide, the enone 127 slowly decomposed, and no separable spot was detected in thin layer chromatographic analysis. Since the initial successful conversion of 127 to 128 was carried out without such acids, the lack of reproducibility of deoxygenation of $\mathbf{1 2 7}$ is presumably due to trace amount of impurities contaminated in enone 127. The acidic contaminants were likely introduced in to the $\mathbf{1 2 7}$ during its formation which employs a acidic condition (Scheme 33).

Scheme 36

Since it had not been possible to find reliable reaction conditions for the cleavage of the γ-carbon-oxygen bond in enone 127, it was decided to delay this step and instead pursue the annulation required to install the pyridine ring of huperzine A. For this, a hetero-Diels-Alder reaction of $\mathbf{1 2 7}$ with an azadiene was
envisioned. In this approach, we anticipated that the Diels-Alder adduct 133 from 127 and 95 would undergo spontaneous aromatization to give methoxypyridine 134. In this scenario, cleavage of the C-O bond in 134 could be achieved using hydrogenolysis ${ }^{54}$ since the oxygen substituent is now attached to a benzylic carbon (Scheme 36).

Studies published by Ghosez (see Scheme 24), ${ }^{40}$ indicate that the presence of the dimethylamino group on the nitrogen of an azadiene results in both increased Diels-Alder reactivity of the azadiene with respect to an electrophilic dienophile, and in a reversal of its polarity. The latter results from an increase in the coefficient at C4 of the highest occupied molecular orbital of the azadiene. However, we believed that the presence of the two methoxy groups in the azadiene would override this polarity reversal and would ensure the desired regiochemical outcome from the Diels-Alder reaction.

Based on this premise, we attempted to prepare a suitable diene for cycloaddition to 127 (Scheme 37). Methyl trans-3-methoxyacrylate (135) was treated with 1,1-dimethyl hydrazine and trimethylaluminum ${ }^{55}$ to give the amide 136 along with a small amount of the β-lactam 137 resulting from intramolecular Michael addition of 136 . Similarly, the amide 139 was prepared using trimethylaluminum and ammonia. Unfortunately, O-methylation of the amides 136 and 139 was unsuccessful and the requisite azadiene 95 was not formed under any of the reaction conditions that were attempted. For example, in the case of 136, treatment with dimethyl sulfate and potassium hydride as the base, the only product was the N -methylated amide 138. The use of triethyloxonium
tetrafluoroborate $\left(\mathrm{Et}_{3} \mathrm{OBF}_{4}\right)$ with 136 and 139 caused decomposition of these amides.

Scheme 37

Since the preparation of azadiene 95 from the amide 136 was unsuccessful, our next endeavor was focussed on an in situ Diels-Alder reaction using a transient azadiene 140 (Scheme 38). However, treatment of 136 with tert-butyldimethylsilyl trifluoromethanesulfonate in the presence of bases such as triethylamine, diisopropylethylamine, or sodium hydride, and subsequent addition of dienophiles such as cyclohexenone or the enone 127 resulted in decomposition. Most of the dienophiles were recovered intact. Even a very reactive dienophile such as benzoquinone did not form a cycloadduct.

No cycloadducts

Scheme 38

These negative results can be explained in two ways. First, the azadiene 140 was, in fact prepared, but it was unreactive toward dienophiles. Alternatively, the azadiene was not formed from the treatment of the amide 136 with tertbutyldimethylsilyl trifluoromethanesulfonate and bases. To make sure that an azadiene was indeed present in the reaction, we synthesized the known diene 142 from 3-methoxyacrylonitrile (141) (Scheme 39). ${ }^{56}$ The fact that 142 did not undergo the a Diels-Alder reaction benzoquinone implies that methoxy substituents at C2 and C4 of the azadiene are not sufficient to overcome an intrinsically unreactive Diels-Alder partner.

142

No cycloadducts

Scheme 39

Since most of the azadienes which were reported to undergo the DielsAlder reaction have a methyl substituent at C 3 or $\mathrm{C} 4,{ }^{57}$ it is clear that the substitution pattern on the azadiene is a crucial factor for successful cycloaddition. It is also known ${ }^{58}$ that the presence of a substituent at the C 2 position decreases the reactivity of the diene due to steric interactions in the transition state of the Diels-Alder reaction. These factors led us to conclude that azadiene 142 is not a suitable partner for the Diels-Alder reaction.

The failure to append the methoxypyridine needed for huperzine A via a hetero-Diels-Alder reaction with enone 127 prompted a search for a stepwise route to this goal. Our second approach was based on an intramolecular Michael addition strategy and is shown in Scheme 40. It was surmised that dehydrogenation of the α, β-unsaturated δ-lactam 143 , derived from 144 by elimination of HX, would lead to the methoxypyridine 134. In principle, 144 could
be obtained by intramolecular Michael reaction of 145 , which could be synthesized from the enone 127 by Michael reaction of ammonia to give 146

Our initial attempts to incorporate a nitrogen functionality at the β-position of the enone 127 using a Michael addition were foiled by incomplete reaction and the inseparability of the reaction products (Scheme 41). Several Michael donors such as benzylamine, sodium azide, and sodium nitrite were investigated, but none gave the a Michael adduct.

Scheme 41

A possible solution to this problem was recognized in the work of Magnus, who reported the transformation of a triisopropylsilyl enol ether to a β-azido triisopropylsilyl enol ether (Scheme 42). ${ }^{59}$ Specifically, Magnus showed that treatment of 147 with iodosobenzene and trimethylsilyl azide $\left(\mathrm{TMSN}_{3}\right)$ at a temperature between -16 and $-19{ }^{\circ} \mathrm{C}$ produced β-azido triisopropylsilyl enol ether 148.

Scheme 42

Implementation of this plan began by silylating the ketone 122 with triisopropylsilyl chloride to afford the triisopropylsilyl enol ether 149 (Scheme 43). Treatment of the silyl enol ether 149 with iodosobenzene and trimethylsilyl azide at $-19{ }^{\circ} \mathrm{C}$ cleanly furnished the azide 150 as a single stereoisomer. The stereochemistry of the azide 150 was assigned by vicinal coupling constants of
protons in ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 2.4). The β-proton H_{5} showed a clean $d d$ pattern. The coupling constants were 6 Hz with vinyl proton H_{6} and 3 Hz with H_{4}, and this assignment was later confirmed by X-ray crystallographic analysis of 157 (Figure 2.5). Reduction of 150 with lithium aluminum hydride gave the primary amine 151 which was acylated with acryloyl chloride to give the amide 152 (Scheme 43).

152

150

Figure 2.4 Coupling pattern of protons in 150.

LDA, TrocCl
THF, $-78^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$
58\%

Scheme 44

With 152 in hand, efforts were undertaken to promote the intramolecular Michael reaction of this acrylamide (Scheme 44). Disappointingly, all attempts to effect cyclization using various Lewis acids such as titanium(IV) chloride, boron
trifluoride diethyl etherate, trimethylaluminum, and tert-butyldimethylsilyl trifluoromethanesulfonate were unsuccessful. Under acidic conditions, decomposition of the starting amide was the predominant outcome. Compound 153, prepared by treatment of 152 with 2,2,2-trichloroethoxycarbonyl chloride, was exposed to boron trifluoride diethyl etherate, but this produced only the ketone 154.

Attempts to employ base-promoted Michael reactions of 154 were also unsuccessful. In the presence of strongly basic reagents such as butyllithium or lithium diisopropylamide (LDA), the amide moiety was eliminated to leave the enone 127 (Scheme 45).

154

Scheme 45

In light of these results, a search was initiated to find a more reactive Michael acceptor than the acrylamide of 152, in the hope that milder reaction conditions could avoid desilylation and/or decomposition of the Michael reaction substrate. α-Bromo-acrylamide 155 appeared to satisfy this requirement and was synthesized from azide 150 using reduction with lithium aluminum hydride followed by acylation with α-bromoacryloyl acid (Scheme 46). Although initial
attempts to effect a the Michael reaction with 155 gave similar results to those previously seen with 152 (for example, treatment with titanium(IV) chloride caused desilylation and gave the corresponding ketone 156), further experimentation was found to produce a new compound 157 in modest yield when 155 was heated in dichloroethane in the presence of trimethylaluminum, (Scheme 46).

150

155
$\mathrm{AlMe}_{3}, \mathrm{DCE}, 70^{\circ} \mathrm{C}$
24h, 76\%

157

156

Scheme 46

This unexpected result was found to have precedent when it was discovered that Magnus and coworkers had published a similar observation
during their studies on the intramolecular $[2+2]$ cyclization of β-amino triisopropylsilyl enol ethers. ${ }^{60}$ Thus, when the triisopropylsilyl enol ether 158 was treated with trimethylaluminum, the lactam 159 and cyclobutane 160 were produced in yields of 9% and 43%, respectively (Scheme 47).

Scheme 47

The formation of the cyclobutane containing structure 157 can be explained by the mechanism shown in Scheme 48. Initial reaction of amide 155 and trimethylaluminum would form the imidate 161 which undergoes intramolecular Michael reaction to generate the zwitterion 162. Subsequent attack of the anion in 162 at the α-face of the carbonyl carbon would form the cyclobutane 157.

The identity of the structure 157 was independently verified by X-ray crystallography (Figure 2.5). The crystal structure of 157 reveals interesting configurational details of this molecule, including the fact that the photoaddition of enone 121 indeed formed the desired cyclobutane ring with the correct stereochemistry at both the ring junction and the methyl group.

Scheme 48

Figure 2.5 ORTEP Representation from X-ray structure of 157.

Even though the Michael reaction of 155 did not furnish the desired lactam, it was reasonable to suppose that desilylation of 157 would produce 164. This would occur via intermediate 163 which should undergo concomitant cleavage of the C1-C2 bond to yield 164 rather than fracture of the C2-C3 bond to form the bridged structure 165 (Scheme 49). The reason we believed pathway a should be favored over b is that the anion generated from cleavage of the $C 1$ C2 bond can be stabilized by both the carbonyl group and the bromine substituent.

157

163

165

164

Scheme 49

As expected, when 157 was treated with aqueous hydrogen fluoride in nitromethane, stereoisomeric lactams 166 and 167 were produced. These were
was obtained as a separable 3:1 mixture in favor of 166 (Scheme 50). It should be mentioned that this reaction was found to be highly sensitive to the solvent used, and only nitromethane gave the 166/167 mixture. Most other solvents such as acetonitrile, tetrahydrofuran, and methanol caused decomposition of 157.

Scheme 50

With 166 and 167 in hand, our next goal was elimination of hydrogen bromide. Introduction of the double bond by this means would facilitate aromatization of the δ-lactam to form an α-pyridone. The results of attempted dehydrobromination are shown in Scheme 51. Treatment of the major isomer 166 with lithium carbonate in the presence of lithium bromide produced only the minor isomer 167 by epimerization. Longer reaction time failed to complete the reaction and resulted in slow decomposition of 166 and 167. Interestingly, treatment of 166 with organic bases such as 1,8 -diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), collidine, or 2,6-di-tertbutylpyridine gave cyclopropane 169. The latter is formed probably via anion 168, which displaces bromide in a manner similar to that seen in a Favorski reaction. The structure of 169 was assigned through the use of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and

HSQC-COSY NMR analyses. The HSQC-COSY experiment revealed a protonproton spin system linking the methylene protons and methine proton on the cyclopropane. The coupling pattern in the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 6 9}$ is also in agreement with this structural assignment.

166

DBU,
DBN, collidine, or 2,6-di-t-butyl pyridine 5\%-15\%

Scheme 51

These findings indicated that dehydrobromination of substrates 166 or 167 is not a feasible way to form the desired α, β-unsaturated lactam. It was therefore decided to prepare a substrate for intramolecular Michael reaction bearing a methylthio or phenylseleno group in place of the problematic bromine, in the
belief that the corresponding sulfoxide or selenoxide would undergo facile synelimination to produce a conjugated double bond. ${ }^{61}$
α-Methylthioacrylic acid was synthesized according to the literature procedure (Scheme 52). ${ }^{62}$ A mixture of methylthiomethyl chloride (170) and triethyl phosphite (171) was heated to form diethylphosphorylmethyl methyl sulfide (172) which was treated with butyllithium and carbon dioxide to give the carboxylic acid 173. A Horner reaction of the phosphonate 173 with formaldehyde furnished α-methylthioacrylic acid 174 in an overall 18% yield for the three steps.

Scheme 52

Acylation of the primary amine, obtained from reduction of azide 150, with 174 using 1,3-dicyclohexylcarbodiimide and 4-dimethylaminopyridine afforded amine 175 in a good yield. The Michael reaction of 175 in the presence of
trimethylaluminum again led to a the cyclobutane 176, and subsequent treatment of 176 with aqueous hydrogen fluoride in nitromethane produced a 1:3.5 mixture of diastereomeric lactams 177 and 178, as expected. The major isomer 178 was next protected as its tert-butoxycarbonyl derivative 179 (Scheme 53).

AlMe_{3}, DCM
$80^{\circ} \mathrm{C}, 32 \%$

$\left(\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}\right.$
86\%

Disappointingly, all attempts to bring about oxidative elimination of the methylthio group via its sulfoxide in 177, 178, and 179 met with failure (Scheme 54). When these compounds were treated with oxidants such as sodium periodate, 3-chloroperoxybenzoic acid, or hydrogen peroxide, they gave inseparable mixtures of unidentified products. The crude NMR of the reaction mixture in each case showed complex resonances in the vinylic region which could not be assigned to specific structures.

177, 178, or 179

Scheme 54

This unfavorable outcome led us to explore the use of the acrylic acid analogous to 174 in which a phenylselenyl group replaces the methythio substituent. In general, the elimination of selenoxides takes place at temperatures between $0{ }^{\circ} \mathrm{C}$ and. $25^{\circ} \mathrm{C}$, contrasting with the more stable sulfoxides, which generally require temperatures around $60^{\circ} \mathrm{C}-120^{\circ} \mathrm{C}$ in order for elimination to occur. Our hope was that a lower reaction temperature for elimination would allow us to isolate the desired but perhaps thermally unstable α, β-unsaturated lactams.
α-Phenylselenoacrylic acid 180 was synthesized according to a procedure reported by Reich (Scheme 55). ${ }^{63}$ Phenylselenyl bromide was treated with vinylmagnesium bromide to give phenylvinylselenide. The anion generated by deprotonation of the phenylvinylselenide with lithium diisopropylamide was treated with carbon dioxide to give α-phenylselenoacrylic acid 180.

180

Scheme 55

The previous sequence of reactions using α-methylthioacrylic acid 174 was now applied to the derivative 180. Acylation of the primary amine, obtained by reduction of azide 150 , with 180 in the presence of 3,5 -dinitrobenzoyl chloride afforded amide 181 (Scheme 56). The Michael reaction of 181 in the presence of trimethylaluminum again gave a cyclobutane 182, and subsequent treatment of 182 with aqueous hydrogen fluoride in nitromethane produced a $1: 1.3$ mixture of diastereomeric lactams 183 and 184.

Scheme 56

It was interesting to find that the β-selenide 183 when treated with sodium periodate showed vinylic protons in the ${ }^{1} \mathrm{H}$ NMR of the product mixture, whereas α-selenide 184 did not. A careful conformational analysis was undertaken to understand these results. It is known that selenoxide elimination requires a syn relationship between the oxygen on the selenium and the hydrogen which is lost (Figure 2.6), ${ }^{64}$ and it is clear that selenoxide 186 generated from α-selenide 184 would suffer an unfavorable steric interaction between the phenyl group on selenium and cyclohexanone ring. In case of the β-selenoxide 185, a syn alignment for elimination can be easily achieved by orienting the phenyl group away from the rest of the molecule.

183

185

184

186

Figure 2.6 Conformation of selenoxides 185 and 186.

This analysis led us to examine the possibility of equilibrating 183 and 184 in the hope that β-selenoxide 183 would predominant. It was found that with five equivalents of hydrogen fluoride complete desilylation of 182 was accomplished and that the equilibrium was forced toward the β-selenide 183 in up to a $10: 1$ ratio. Having reliable access to the selenide 183, we once again began to investigate the elimination step. After much experimentation, It was found that the desired pyridone 187 could prepared from silyl ether 182 by treatment with four equivalent hydrogen fluoride in nitromethane, and subsequent exposure of the mixture of selenides to sodium periodate. Under these conditions, the pyridone 187 was obtained in 83% yield from 182 (Scheme 57). The pyridone was converted uneventfully into the methoxypyridine 134 by reaction with iodomethane in the presence of silver carbonate.

182

187
Mel, $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ $\mathrm{CHCl}_{3}, 40 \mathrm{~h}, 91 \%$

134

Scheme 57

With 134 in hand, our next endeavor was directed towards cleavage of the $\mathrm{C}-\mathrm{O}$ bond. This was envisioned by means of hydrogenolysis, the expectation being that activation of the benzylic ether by the pyridine moiety would assist this cleavage. Treatment of 134 with palladium-on-carbon (10%) in ethanol under an atmosphere of hydrogen gas gave a mixture of three products identified as $\mathbf{1 8 8}$, 189, and 190 (Scheme 58). It was clear from the absence of a carbonyl group in these products that the ketone was reduced under the hydrogenolysis conditions. The use of palladium hydroxide on carbon as catalyst gave similar results. Careful monitoring of the reaction revealed that reduction of the carbonyl group in 134 is appreciably faster than hydrogenolysis of the $\mathrm{C}-\mathrm{O}$ bond. Other reducing conditions were also problematic. For example, a catalyst system consisting of palladium-on-carbon in methanol and acetic acid resulted only in decomposition
of the starting ketone 134 , and no reduction product at all was seen with palladium-on-alumina or with Pd-black as catalyst. At this point, our hopes returned to an electron transfer process as a potential solution to this problem.

134
Pd / C or $\mathrm{Pd}(\mathrm{OH})_{2}$ H_{2}, EtOH

Scheme 58

Once again, many reagents were examined. All attempts using samarium diiodide, magnesium, lithium in ammonia, and sodium amalgam resulted in extensive decomposition of the starting material. However, it was pleasing to discover that heating 134 with activated zinc in ethanol containing two drops of 10% aqueous sodium hydroxide produced a mixture of three products 191, 192, and 193 in which no carbonyl reduction had occurred (Scheme 59). The desired product was 193 whereas 191 and 192 were derived from exchange of the methoxy substituent on the pyridine with ethanol used as the solvent.

Decomposition of 134
134
Zn , EtOH aq NaOH (10\%, 2 drops)

191

192

193

Scheme 59

Clearly, the use of methanol as solvent instead of ethanol would result in this transformation being a practical means for the preparation of 193. After further experimentation, 134 was found to give primary alcohol 193 in excellent yield when a 0.2 M solution of sodium hydroxide in methanol containing 134 was refluxed in the presence of freshly activated zinc (Scheme 60). The zinc used in this experiment was activated by Newman's method. ${ }^{53}$ Zinc dust (12 g) was stirred with 2% hydrogen chloride (30 mL) for 30 min , and was washed with a portion of 2% hydrogen chloride (30 mL), three portions of water (20 mL), two portions of ethanol (20 mL), and finally with a portion of absolute diethyl ether (30 mL). Then, the zinc was dried under reduced pressure (1 mmHg) for two hours before use.

134

Scheme 60

The acquisition of 193 enabled us to proceed to our next goal which was to convert the primary alcohol moiety to an isopropylene group. The latter is a prerequisite for the Cope rearrangement at the center of our plan as shown in Scheme 21.

MeMgBr
ether, 76\%

Scheme 61

The alcohol 193 was first oxidized with Dess-Martin periodinane to aldehyde 194 which afforded a diastereomeric mixture of secondary alcohols 195 upon treatment with methylmagnesium bromide. Treatment of this mixture with Dess-Martin periodinane gave diketone 196 (Scheme 61).

A 1. $\mathrm{TMSCH}_{2} \mathrm{MgCl}$, THF
2. HF

B $\mathrm{Cp}_{2} \mathrm{TiMe}_{2}$, toluene
C $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}, \mathrm{n}$-BuLi, THF

197
A 8\%
B 21%
C 32%

198
6\%
14\%
13%

199

4\%

Scheme 62

Diketone 196 now presented the problem of selective olefination of the methyl ketone while leaving the cyclohexanone intact (Scheme 62). Peterson olefination ${ }^{65}(A)$ of 196 produced the desired olefin 197 and its regioisomer 198 in only 8% and 6% yield, respectively, and it was assumed that the highly acidic
reaction medium which prevails during the elimination of the intermediate hydroxy silane was the reason for the poor yields. In an attempt to improve the yield and selectivity of methylenation, 196 was treated with Petasis' reagent ${ }^{66}$ (B). Although, the yields of 197 and 198 were slightly higher, the ratio of products from this and the Peterson olefination suggested that the two ketones have similar reactivity towards nucleophiles. Nevertheless, an acceptable result was achieved using a Wittig reaction (C) which furnished a 2.5:1 mixture of 197 and 198 along with a small amount of the bismethylenated product 199. The structure 197 was confirmed by an X-ray crystallographic analysis (Figure 2.7).

Figure 2.7 ORTEP Representation from X-ray structure of 197

With only modest results from the Wittig reaction of 196, we decided to search for a more selective method for converting this diketone to 197. A Stille coupling of the enoltriflate ${ }^{67}$ derived from 196 appeared to offer better prospect for selective methylenation of the methyl ketone. Even though diketone 196 has acidic protons at three different positions, we believed that highly regioselective enolate formation would be possible by deprotonation of the methyl group by treatment with a sterically hindered base. The basis for this assumption is that the other two centers at which deprotonation could occur are on the cyclobutane ring and those enolates would suffer from a degree of ring strain which is absent in the enolate from deprotonation of the methyl group.

196

KHMDS, THF, 74\%

201

197

In order to test this postulate, 196 was treated with Comins' reagent $(200)^{68}$ in the presence of potassium bis(trimethylsilyl)amide (KHMDS). As expected, the sole product was an enoltriflate 201 (Scheme 63). Unfortunately, the Stille coupling of 201 with tetramethyltin in the presence of palladium catalysts gave only a poor yield of 197.

With the disappointing outcome from our efforts with the Stille coupling, our attention returned to the Wittig reaction of 196 for the synthesis of the 197. A small consolation from that approach was that it proved possible to convert the isomer 198 back to the diketone 196 by ozonolysis, so that unwanted material could be recycled (Scheme 64).

Scheme 64

With 197 in hand, it was time to examine the proposed enamine-Cope rearrangement that is pivotal reaction in our route to huperzine A. Since the natural product is a primary amine, conventional enamine formation with 197 would require removal of the substituent on the nitrogen atom after rearrangement. We first decided to explore 1,1,1,3,3,3-hexamethyldisilazane and dimethylamine as secondary amines for the enamine formation, recognizing that the trimethylsilyl group could be removed by treatment with fluoride and the N -
methyl substituent could be cleaved by an oxidative method. However, all attempts to prepare an enamine of 197 with these amines met with failure (Scheme 65). For example, no indication of the presence of $\mathbf{2 0 2}$ or 203 was evident in the mixture obtained by heating 197 with these amines in the presence of drying agents such as molecular sieves or titanium(IV) chloride. The use of an acid catalyst, p-toluenesulfonic acid, also gave negative results. Thin layer chromatographic analysis of the reaction mixture showed mainly the starting material with a trace of unidentifiable products. NMR analysis of the crude mixture showed no peaks in the region 5.3-5.5 ppm where vinyl protons of 203 would be expected to resonate. To our suprise, the cyclobutane ring of ketone 197 was quite stable at temperatures as high as $160^{\circ} \mathrm{C}$; at higher temperatures ($>180^{\circ} \mathrm{C}$) decomposition of 197 was observed.

203

The foregoing difficulties led us to reevaluate the feasibility of the Cope rearrangement of enamine 202. Mechanistically, the Cope rearrangement occurs through a six-membered chair- or boat-like transition state in which two π-orbitals can overlap. However, modeling of the enamine structure 202 revealed that the π-orbitals in 202 adopt a perpendicular position to each other due to the rigid cyclobutane ring interposed between the reacting termini (Figure 2.8). This could be one of the reasons for the failure of Cope rearrangement, although, another possibility was that the enamine 202 was not formed under the reaction conditions.

enamine 202

imine 204

Figure 2.8 Conformation of enamine 202 and imine 204

A potential solution to the difficulties experienced with preparation of the enamine of 197 is cyclization of the corresponding imine of 197, a process that can be envisioned under acid catalysts. The attraction of this approach was that the formation of imine 204 from 197 would provide a straightforward way to incorporate the bridgehead amine of huperzine A. In principle, cyclization of imine 204 should be easier than Cope rearrangement of enamine 202 due to better alignment of the two π-orbitals (Figure 2.8). A stepwise acid-catalyzed cyclization would proceed via cyclobutyl carbinyl cation 205 (Scheme 66).

Opening of the cyclobutane in 205 and loss of a proton would lead directly to the desired bicyclic structure 206.

197

206

204
H^{+}

205

Scheme 66

When ketone 197 was heated with p-methoxybenzylamine in toluene in the presence of molecular sieves, a 3:1.2 mixture of syn and anti imines 207 was produced (Scheme 67). The oxime derivative 208 was also prepared from 197 using hydroxylamine hydrochloride and sodium acetate in methanol. However, neither 207 nor 208 yielded any cyclization products when reacted with acids such as hydrogen chloride, trifluoroacetic acid, p-toluenesulfonic acid, titanium(IV) chloride, tin(IV) chloride, or trimethylaluminum. In most cases, the
only isolated product was the ketone 197; heating the reaction mixture above 180 ${ }^{\circ} \mathrm{C}$ caused complete destruction of the starting material.

Scheme 67

Since cyclization of imine 207 was unsuccessful, revisitation of the Cope rearrangement appeared to be the final option. Specifically, we proposed to use the silyl enol ether of ketone 197 as an alternative substrate to enamine 202 to gain access to huperzine A. Although we could not establish that enamine 202 was formed, we believed it likely that the silyl enol ether of 197 could be isolated
and would be available to serve as a Cope rearrangement substrate. In this approach, the rearrangement product would be a silyl ether which would need to be converted to an amine by additional steps. However, all attempts to prepare the silyl enol ether of ketone 197 met with failure. A variety of bases including lithium diisopropylamide, lithium bis(trimethylsilyl)amide (LiHMDS), sodium bis(trimethylsilyl)amide (NaHMDS), potassium hydride, and sodium hydride were used, but all resulted in decomposition of 197. When 197 was treated with potassium bis(trimethylsilyl)amide (KHMDS) and tert-butyldimethylsilyl chloride, the bis C-silylated product 209 was isolated (Scheme 68)

Scheme 68

The structure of 209 was deduced from its IR spectrum and from ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY, and HMBC NMR experiments. The proton NMR clearly indicated the presence of two tert-butyldimethylsilyl groups in this structure, which ${ }^{13} \mathrm{C}$ and COSY analysis confirmed that the cyclobutane ring and the carbonyl group are still present. HMBC data showed that one of the tert-butyldimethylsilyl groups is at the benzylic carbon whereas the other is attached to the carbon α to the ketone in 209. Silylation at carbon in ketone 197 rather than O-silylation lends
support to the view that formation of the strained enamine 202 is likely to be very difficult.

It was considered possible that the problems associated with approaches to huperzine A from the pyridine 197 could be due to a lack of reactivity of the keto group resulting from conjugation with the methoxy substituent. This led us to modify 197 by replacing the methoxy group of the pyridine moiety by an electron withdrawing functionality which would be expected to increase the electrophilic reactivity of the ketone. Thus, ketone 197 was subjected to demethylation using trimethylsilyl iodide in chloroform in anticipation that an α-pyridone would result (Scheme 69). However, the product from this reaction in low yield was 210 in which the isopropylene substituent had isomerized to give a tetrasubstituted double bond. Exposure of 197 to borontribromide gave the same result. This series of failure directed towards conversion of 197 and its derivatives into an immediate precursor of huperzine A effectively terminated our approach along the lines of $[3,3]$ sigmatropic and related processes.

Scheme 69

On a more positive note, we were able to develop direct access to the cyclobutane 122 with desired stereochemistry via an intramolecular [2+2] photoaddition of the enantiopure enone 121. Although our azadiene Diels-Alder approach to the methoxypyridine system was unsuccessful, this objective was achieved by intramolecular Michael addition followed by selenoxide elimination. Unfortunately, the key transformation of ketone 197 into a precursor of huperzine A by means of an sigmatropic rearrangement was thwarted by difficulties which were not anticipated. Although, a negative result has to be viewed with caution, we must conclude that the Cope rearrangement approach is not a practical route to huperzine A.

In light of the difficulties that were encountered with bond formation between the carbonyl carbon and the terminal carbon of the isopropylene group in 197, it might be fruitful to consider an alternative intramolecular aldol reaction of diketone 212 as a future approach (Scheme 70). The diketone 212 bearing a leaving group (Lg) would be synthesized from 134 using chemistry already developed in the course of our research. Intramolecular aldol reaction of 212 would lead to the tricyclic structure 213 which could perhaps undergo reductive cleavage with an electron transfer reagent such as samarium diiodide. This would produce enolate species 214 which in principle would establish a route to huperzine A.

211

214
Huperzine A
134

Experimental Section

2-Benzyloxy-3-pentene (101). To a solution of the 3-pentene-2-ol $(0.084 \mathrm{~g}$, $0.98 \mathrm{mmol})$ in DMF (1.5 mL) at was added $\mathrm{NaH}(0.035 \mathrm{~g}, 1.47 \mathrm{mmol})$ and benzyl bromide ($0.17 \mathrm{~mL}, 1.47 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 2 h at room temperature, the mixture was diluted with ether (10 mL), washed with brine $(5 \mathrm{~mL})$. The phases were separated, and aqueous portion was extracted with ether (10 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica, using 5% ethyl acetate in hexane as eluent, to give $0.13 \mathrm{~g}(81 \%)$ of 101 as colorless oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27$ (d, $J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{dd}, J=2,6 \mathrm{~Hz}, 3 \mathrm{H}), 3.89(\mathrm{dq}, J=6,8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=$ $12 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{ddq}, J=2,8,15 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dq}, J=$ $6,15 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.42(\mathrm{~m}, 5 \mathrm{H})$.

2-Methyl-3-pentenoic acid (115). To a solution of diisopropylamine (0.58 mL , 4.15 mmol) in THF (7 mL) was added n -butyllithium ($0.57 \mathrm{M}, 2.6 \mathrm{~mL}, 4.15 \mathrm{mmol}$)
dropwise at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$. 2-pentenoic acid ($0.2 \mathrm{~mL}, 1.98 \mathrm{mmol}$) was added, and the mixture was stirred for 30 min at 0 ${ }^{\circ} \mathrm{C}$. A solution of iodomethane ($0.14 \mathrm{~mL}, 2.18 \mathrm{mmol}$) in THF (3 mL) was added at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to room temperature. After stirring for 30 min , the reaction was quenched with 5% aqueous $\mathrm{NaOH}(2 \mathrm{~mL})$. After evaporation of THF, the aqueous solution was washed with ether ($2 \times 5 \mathrm{~mL}$). The aqueous phase was acidified to pH 2 with concentrated hydrochloric acid at $0^{\circ} \mathrm{C}$. The aqueous phase was extracted with ether ($3 \times 20 \mathrm{~mL}$) and the combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}. After concentration under reduced pressure, the resulting oil was distilled to yield $0.13 \mathrm{~g}\left(97 \%, 1.5 \mathrm{mmHg}, 55-59^{\circ} \mathrm{C}\right)$ of 2-methyl-3-pentenoic acid (115) as a colorless oil: IR (neat) 3200 (br), 2974, 1710, 1465, $1285 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{dd}, J=1,7 \mathrm{~Hz}, 3 \mathrm{H}), 3.5$ $(\mathrm{m}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 11.3-11.5\left(\mathrm{bs}, 1 \mathrm{H} ;{ }^{13} \mathrm{C}\right.$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.9,17.5,37.5,126.5,128.8,181.5$.

Ester 114. To a solution of $\operatorname{AgCN}(35 \mathrm{mg}, 0.27 \mathrm{mmol})$ and 4-hydroxy-2-cyclohexen-1-one ($30 \mathrm{mg}, 0.27 \mathrm{mmol}$) in benzene (2 mL) at room temperature
was added crotonyl chloride ($31 \mathrm{mg}, 0.29 \mathrm{mmol}$). After stirring for 2 h at room temperature, the mixture was heated for 6 h at $80^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was diluted with ether (20 mL), washed with 10% aqueous NaHCO_{3}, and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 10% ethyl acetate in hexane as eluent, to give $37 \mathrm{mg}(77 \%)$ of 114 as a colorless oil: $[\alpha]_{D}^{23}-172.2^{\circ}$ (c $1.48, \mathrm{CHCl}_{3}$); IR (neat) 2961, 1718, 1687, 1257, 1175, $1102 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.9(\mathrm{dd}, J=1.7,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.0-2.2(\mathrm{~m}, 1 \mathrm{H}), 2.3-2.5(\mathrm{~m}, 2 \mathrm{H}), 2.6$ $(\mathrm{m}, 1 \mathrm{H}), 5.6,(\mathrm{~m}, 1 \mathrm{H}), 5.8-5.9(\mathrm{dq}, J=1.7,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.0-6.1(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.9$ (ddd, $J=1.6,2.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.9-7.1(\mathrm{dq}, J=7.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0,28.7,34.9,67.3,122.0,130.7,146.0,147.8,165.5,197.9$.

Ester 116. To a solution of 2-methyl-3-pentenoic acid ($0.1 \mathrm{~g}, 0.93 \mathrm{mmol}$) and 4-hydroxy-2-cyclohexen-1-one ($0.1 \mathrm{~g}, 0.85 \mathrm{mmol}$) in ether (2 mL) was added sequentially solutions of N, N^{\prime}-dicyclohexylcarbodiimide ($0.19 \mathrm{~g}, 0.93 \mathrm{mmol}$) and 4-dimethylaminopyridine $(0.01 \mathrm{~g}, 0.09 \mathrm{mmol})$ at room temperature. After stirring 4 h at room temperature, the N, N-dicyclohexyl urea was filtered off and the filtrate was washed with water ($3 \times 1 \mathrm{~mL}$), aqueous 5% acetic acid $(3 \times 1 \mathrm{~mL})$ and with water ($3 \times 1 \mathrm{~mL}$), dried over anhydrous MgSO_{4}. After removal of the solvent, the
residue was chromatographed on silica, using 25% ethyl acetate in hexane as eluent, to give $0.143 \mathrm{~g}(81 \%)$ of 116 as a mixture of two diastereomers: IR (neat) 2934, 1735, 1692, 1246, 1165, $1138 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{~d}, \mathrm{~J}$ $=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{dd}, J=2,7 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H})$, $2.60(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.0,17.5,28.4,28.5,34.8,37.7,67.4,67.5$, 126.5, 128.9, 130.7, 130.8, 147.4, 147.5, 174.2, 197.8.

Ether 121. To a solution of 4-hydroxy-2-cyclohexen-1-one ($0.33 \mathrm{~g}, 2.94 \mathrm{mmol}$) in crotyl bromide (2.5 mL) at $0^{\circ} \mathrm{C}$ was added silver (I) oxide ($1.7 \mathrm{~g}, 7.36 \mathrm{mmol}$) in portions. After stirring for 6 h at room temperature, the excess silver(I) oxide was filtered off. After removal of the excess crotyl bromide under reduced pressure, the residue was chromatographed on silica, using 15% ethyl acetate in hexane as eluent, to give $0.81 \mathrm{~g}(59 \%)$ of 121 as a colorless oil: $[\alpha]_{0}^{23}-122^{\circ}$ (c 1.51, CHCl_{3}); IR (neat) 2946, 2851, 1686, 1251, 1094, $968 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.74(\mathrm{dd}, J=1,6 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.53$2.65(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.65(\mathrm{dtq}, J=1,6,15 \mathrm{~Hz}, 1 \mathrm{H})$, $5.67-5.85$ (dtq, $J=1,6,15 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=2,3,10 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 17.7, 29.1,
35.2, 69.7, 72.0, 127.0, 129.5, 130.2, 150.7, 198.7; MS(CI) m/z $167\left(\mathrm{M}^{+}+\mathrm{H}\right), 149$, 141, 123, 113; HRMS (CI) $\mathrm{m} / \mathrm{z} 167.1072$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}: 167.1072$).

Cycloadduct 122. A photolysis apparatus was charged with dichloromethane (300 mL) and 121 ($0.91 \mathrm{~g}, 5.48 \mathrm{mmol}$). After bubbling with argon for 2 h , the mixture was irradiated by using Hanovia mercury lamp with a Pyrex filter for 2 h at $0^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure the residue was chromatographed on silica, using 15% ethyl acetate in hexane as eluent, to give $0.52 \mathrm{~g}(58 \%)$ of cycloadduct 122 and 0.16 g of mixture of cycloadducts: $[\alpha]_{\mathrm{D}}{ }^{23}$ $+238^{\circ}$ (c 2.3, CHCl_{3}); IR (neat) 2954, 2925, 2861, 1697, 1175, 1057, $1013 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19$ ($\mathrm{d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.91 (dddd, $J=2,4,14,14$ $\mathrm{Hz}, 1 \mathrm{H}), 2.08-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.95(\mathrm{ddd}, \mathrm{J}=$ $8,14,15 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=4,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.1,27.4,32.7,37.8,39.2$, 45.4, 47.8, 72.5, 74.0, 211.7; MS(CI) m/z 167 (${ }^{+}+\mathrm{H}$), 157, 149, 141, 137, 123, 113, 95; HRMS (CI) m / z 166.0994 (calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}$: 167.0994).

Enone 127. To a solution of $122(0.02 \mathrm{~g}, 0.12 \mathrm{mmol})$ in ethyl acetate (4 mL) was added phenylselenyl chloride ($0.035 \mathrm{~g}, 0.18 \mathrm{mmol}$). After stirring for 1 h at room temperature, the mixture was washed with saturated aqueous NaHCO_{3} (1 mL) and saturated aqueous $\mathrm{NaCl}(1 \mathrm{~mL})$. After removal of the solvent, the residue dissolved in tetrahydrofuran (4 mL) and water (2 mL) was treated with $\mathrm{NaIO}_{4}(77$ $\mathrm{mg}, 0.36 \mathrm{mmol})$. After stirring for 3 h at room temperature, the mixture was poured into ether (10 mL) and water (5 mL). The aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 15% ethyl acetate in hexane as eluent, to give $0.016 \mathrm{~g}(81 \%)$ of 127 as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}+175^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right.$); IR (neat) 2955, 2924, 2862, 1668, $1044 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27$ ($\mathrm{d}, \mathrm{J}=7$ $\mathrm{Hz}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 3.17$ (ddd, $J=8$, $8,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=4,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=5,8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}) 7.08(\mathrm{dd}, J=5,10 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 21.0,37.4,39.4,44.2,46.0,70.4,71.1,131.6,144.7,198.0 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ $165\left(\mathrm{M}^{+}+\mathrm{H}\right), 147,139,135,111,95$; HRMS (Cl) $\mathrm{m} / \mathrm{z} 165.0915$ (calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}$: 167.0916).

Alcohol 128. To a solution of $\mathrm{Zn}-\mathrm{Cu}$ dust $(0.098 \mathrm{~g})$ in dry ethanol (3 mL) was added a solution of $127(0.049 \mathrm{~g})$ in dry ethanol (1 mL) under argon atmosphere. The mixture was refluxed for 10 h at $85^{\circ} \mathrm{C}$. The solution was then cooled to room temperature and filtered. After removal of the solvent, the residue was chromatographed on silica, using 30% ethyl acetate in hexane as eluent, to give $0.026 \mathrm{~g}(52 \%)$ of 128 as a colorless oil and $0.011 \mathrm{~g}(22 \%)$ of saturated ketone 122: IR (neat) 3419(br), 2920, 2862, 1699, 1257, 1020. $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.20-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.90(\mathrm{~m}$, 1H), 3.00-3.14 (m, 1H), 3.29-3.38 (m, 1H), 3.65-3.71 (m, 2H), $5.88(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3,36.9,37.0,37.4,47.6,49.7,62.8,124.6,125.9$, 208.2.

Hydroxy ketone 130. To a solution of 128 ($0.014 \mathrm{~g}, 0.082 \mathrm{mmol}$) in DCM (3 mL) was added Dess-Martine periodinane($0.052 \mathrm{~g}, 0.123 \mathrm{mmol})$. The solution was
stirred for 1.5 h at room temperature. The solution was diluted with ether (5 mL) and aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ and strred for 20 mim . Then the solution washed with brine (5 mL) and aqueous solution was extracted with ether (2×20 mL). The combined organic solution was dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 15% ethyl acetate in hexane as eluent, to give $0.009 \mathrm{~g}(67 \%)$ of 130 as a colorless oil: IR (neat) 3409(br), 2959, 1719, $1073 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48$ (d, $J=7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, J=2,6,11 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H}), 6.32$ (ddd, $J=2,6,6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.5,33.8,38.3,41.9,51.3,58.5,73.8,131.6,132.6,209.9$.

Amide 136. To a solution of dimethylhydrazine ($0.3 \mathrm{~mL}, 4.05 \mathrm{mmol}$) in dichloromethane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Me}_{3} \mathrm{Al}(2.03 \mathrm{~mL}, 2 \mathrm{M}$ in hexane, 4.05 mmol) dropwise. After the mixture was stirred for 20 min at room temperature, methyl trans-3-methoxyacrylate ($0.2 \mathrm{~mL}, 1.84 \mathrm{mmol}$) was added dropwise. The solution was heated at $40^{\circ} \mathrm{C}$ for 15 h , cooled, and cautiously quenched with aqueous 0.1 N HCl . The aqueous phase was extracted with dichloromethane (5 x 20 mL) and the combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 10% ethyl acetate in hexane as eluent, to give
$0.11 \mathrm{~g}(42 \%)$ of 136 as a colorless oil and $0.027 \mathrm{~g}(11 \%)$ of 137: IR (neat) 3500 (br), 3194, 2952, 1670, 1616, 1205, $1160 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.51$ $(\mathrm{s}, 6 \mathrm{H}), 2.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=13 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.5$ (2C), 57.3, 94.0, 162.5, 169.4; MS(CI) m/z $145\left(\mathrm{M}^{+}+\mathrm{H}\right.$), 113, 102, 85; HRMS (CI) $\mathrm{m} / \mathrm{z} 145.0977$ (calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$: 145.0977).

137; IR (neat) 2994, 2950, 1739, 1621, 1435, $1167 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.77(\mathrm{~s}, 6 \mathrm{H}), 3.26(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 6.59(\mathrm{dd}, J=7,7 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $838.2,42.8(2 \mathrm{C}), 51.7,128.8,171.3$

Amide 138. To a solution of $\mathrm{KH}(0.033 \mathrm{~g}, 0.82 \mathrm{mmol})$ in DME (2 mL) at $0^{\circ} \mathrm{C}$ was added a solution of $136(0.059 \mathrm{~g}, 0.41 \mathrm{mmol})$ in DME (2 mL). After the mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{Me}_{2} \mathrm{SO}_{4}(0.078 \mathrm{~mL}, 0.82 \mathrm{mmol})$ in HMPA (1 mL) was added dropwise. After stirring 30 min at $0^{\circ} \mathrm{C}$, the solution was quenched with water. The aqueous phase was extracted with 1:1 mixture of ether
and hexane ($5 \times 20 \mathrm{~mL}$) and the combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 50% ethyl acetate in hexane as eluent, to give 0.049 g (84%) of 138 as a colorless oil: IR (neat) 2941, 1653, 1601, 1229, $1147 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.51(\mathrm{~s}, 6 \mathrm{H}), 2.92(\mathrm{~s}$, 3H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 6.28(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.9$ (2C), 57.3, 77.1, 95.2, 161.6, 168.9, 169.4; MS(CI) m/z 159 $\left(\mathrm{M}^{+}+\mathrm{H}\right), 145,127,116 ;$ HRMS (Cl) m/z 159.1133 (calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$: 159.1133).

trans-3-Methylacrylamide (139). To a solution $\mathrm{NH}_{3}(0.14 \mathrm{~g}, 8.23 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Me}_{3} \mathrm{Al}(4.12 \mathrm{~mL}, 2 \mathrm{M}$ in hexane, 8.23 mmol) dropwise. After the mixture was stirred for 20 min at room temperature, methyl trans-3-methoxyacrylate ($0.36 \mathrm{~mL}, 3.29 \mathrm{mmol}$) was added dropwise. The solution was heated at $40^{\circ} \mathrm{C}$ for 20 h , cooled, and cautiously quenched with aqueous 0.1 N HCl . The aqueous phase was extracted with dichloromethane (10 x 10 mL) and the combined organic extracts were washed with saturated aqueous NaCl , dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 10\% ethyl acetate in hexane as eluent, to give 0.31 g (93%) of trans-3-Methylacrylamide (139). as a colorless oil:

IR (neat) $3007,3140,1664,1587,1411,1222,1126 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $12 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.5,97.0,161.8,168.6 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ $102\left(\mathrm{M}^{+}+\mathrm{H}\right), 85,72$; HRMS (CI) $\mathrm{m} / \mathrm{z} 102.0555$ (calcd for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}_{2}: 102.0555$).

Azadiene 142. To the mixture of the 3-methoxy acrylonitrile ($2 \mathrm{~mL}, 23.9 \mathrm{mmol}$) and $\mathrm{MeOH}(0.97 \mathrm{~mL}, 23.9 \mathrm{mmol})$ was added dry HCl gas ($0.87 \mathrm{~g}, 23.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stoppered and placed in refrigerater for 2 days. The solid was filtered and washed with hexane to give $2.4 \mathrm{~g}(67 \%)$ of 142: IR (neat) 2864 , 1633, 1360, 1252, $1108 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~s}$, $3 \mathrm{H}), 6.00(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 10.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.70(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 58.6,59.4,92.2,167.1,171.8 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ $116\left(\mathrm{M}^{+}-\mathrm{CI}\right), 102,85 ; \mathrm{HRMS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 116.0711$ (calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}: 116.0712$).

Azide 150. To a solution of $122(0.2 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $\operatorname{TIPSCI}(0.31 \mathrm{~mL}, 1.44$ mmol) in THF (5 mL) was added slowly KHMDS ($2.9 \mathrm{~mL}, 0.5 \mathrm{~mol}$ solution in toluene, 1.44 mmol) at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred for 30 min at room temperature. The mixture was diluted with ether $(20 \mathrm{~mL})$ and washed with water and brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 2% ethyl acetate in hexane as eluent, to give crude silyl enol ether 149. The silyl enol ether 149 was dissolved in DCM (10 mL) and iodosobenzene ($0.32 \mathrm{~g}, 1.44 \mathrm{mmol}$) was added to the solution. The mixture was cooled to $-19^{\circ} \mathrm{C}$. To a suspension of the mixture was added trimethylsilyl azide ($0.38 \mathrm{~mL}, 2.89 \mathrm{mmol}$). After stirring 45 min at $-19^{\circ} \mathrm{C}$, the suspension became a white solution and allowed to warm to room temperature. The solvent was removed in vacuo, and the resulting residue was filtered and washed with 1:1 mixture of ether (30 mL) and hexane (30 mL). After removal of the solvent, the residue was chromatographed on silica, using 4% ethyl acetate in hexane as eluent, to give $0.32 \mathrm{~g}(73 \%)$ of 150 as a colorless oil: $[\alpha]_{D}^{23}-110.0^{\circ}$ (c 1.2, CHCl_{3}); IR (neat) 2946, 2866, 2099, 1649, 1377, 1228, $1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{dd}, J=2,7 \mathrm{~Hz}, 18 \mathrm{H}), 1.12-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=6,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{ddd}, J=5,5,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (ddd, $J=6,8,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (dd, $J=5,9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.75(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (dd, $J=3,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=2,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.5$ (3C), 17.9 (7C), 21.8, 34.5, 38.6, 40.0, 44.4, 58.7, 72.6, 93.9, 157.8; MS(CI) m/z 364 ($\mathrm{M}^{+}+\mathrm{H}$), 321, 266, 165, 157, 131; HRMS (CI) m/z 364.2419 (calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$: 364.2402).

Amine 151. To a solution of $150(0.1 \mathrm{~g}, 0.275 \mathrm{mmol})$ in ether $(4 \mathrm{~mL})$ was added LAH ($0.015 \mathrm{~g}, 0.41 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the solution was stirred for 1 h . The mixture was diluted with ether and quenched with aqueous $15 \% \mathrm{NaOH}(0.027$ $\mathrm{mL})$, stirred with $\mathrm{MgSO}_{4}(3 \mathrm{~g})$ for 2 h . The mixture was filtered and washed with ethyl acetate. After removal of the solvent, the residue was chromatographed on silica, using 7% methanol in dichloromethane as eluent, to give $0.085 \mathrm{~g}(89 \%)$ of 151 as a colorless oil: $[\alpha]_{\mathrm{D}}^{23}+2.1^{\circ}$ (c 1.9, CHCl_{3}); IR (neat) 3353 (br), 3281 (br), 2943, 2864, 1659, 1462, 1371, 1221, $1193 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 1.07 (dd, $J=2,7 \mathrm{~Hz}, 18 \mathrm{H}$), 1.10-1.25 (m, 3H), 1.20 (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.65 (br s, $2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=5,5,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ ($\mathrm{m}, 1 \mathrm{H}$), 3.50 (dd, $J=5,9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (dd, $J=2,6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 ($\mathrm{m}, 2 \mathrm{H}$), 4.89 ($\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6$ (3C), $18.0(6 \mathrm{C}), 21.9,33.7$, $38.4,40.0,44.3,48.7,72.6,80.7,101.8,153.3$.

Amide 152. To a solution of a silyl enol ether $150(0.263 \mathrm{~g}, 0.742 \mathrm{mmol})$ in ether $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added LAH $(0.041 \mathrm{~g}, 1.09 \mathrm{mmol})$ and the solution was stirred for 1 h . The mixture was diluted with ether and quenched with 15% aqueous $\mathrm{NaOH}(0.078 \mathrm{~mL})$, stirred with $\mathrm{MgSO}_{4}(2.63 \mathrm{~g})$ for 2 h . The mixture was filtered and washed with ethyl acetate. Evaporation of solvent gave crude amine 151 $(0.24 \mathrm{~g})$. To a solution of crude amine and triethyl amine ($0.12 \mathrm{~mL}, 0.87 \mathrm{mmol}$) in ether (6 mL) at $0^{\circ} \mathrm{C}$ was added acrylol chloride ($0.076 \mathrm{~mL}, 0.94 \mathrm{mmol}$) and the solution was stirred for 1 h . The mixture was diluted with ether (30 mL), washed with 0.1 N HCl and brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 5% methanol in dichloromethane as eluent, to give 0.24 g (84%) of 152 as a colorless oil: IR (neat) 3273 (br), 2944, 2865, 1655, 1532, 1223, $1196 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08$ (dd, $J=3,7 \mathrm{~Hz}, 18 \mathrm{H}), 1.10-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.20$ (dd, $J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (d, $J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=2,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H})$, $5.15(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=1,10 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=10,17 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}$, $J=1,17 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6(3 \mathrm{C}), 17.9(6 \mathrm{C}), 21.9,33.9$, 38.2, 39.9, 44.4, 47.2, 72.6, 76.3, 97.3, 126.4, 130.8, 155.7, 164.3; MS(CI) m/z $184\left(\mathrm{M}^{+}\right), 167,155,151,123 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 392\left(\mathrm{M}^{+}+\mathrm{H}\right), 390,376,348,321,319$, 308, 276, 184; HRMS (CI) $m / z 392.2622$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}: 392.2621$).

Amide 153. LDA was formed by addition of $\mathrm{nBuLi}(0.022 \mathrm{~mL}, 0.035 \mathrm{mmol})$ to a solution of $\mathrm{Pr}_{2} \mathrm{NH}(0.005 \mathrm{~mL}, 0.035 \mathrm{mmol})$ in THF (1 mL) at $-78^{\circ} \mathrm{C}$, and the solution was stirred at $-78^{\circ} \mathrm{C}$ temperature for 20 min . To a solution of a 152 ($0.0115 \mathrm{~g}, 0.029 \mathrm{mmol}$) in THF (1 mL) was added LDA solution at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 15 min , and added $\mathrm{TrocCl}(0.006 \mathrm{~mL}, 0.044 \mathrm{mmol})$. The mixture was diluted with ether (10 mL), washed with water and brine, and dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 20% ethyl acetate in hexane as eluent, to give $0.0095 \mathrm{~g}(58 \%)$ of 153 as a colorless oil: IR (neat) 2944, 2923, 2864, 1740, 1693, 1666, 1403, $1381,1276,1197,1123 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{dd}, J=7,10 \mathrm{~Hz}$, 18 H), 1.08-1.18 (m, 3H), $1.20(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.92$ (ddd, $J=7,7,7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dd, $J=7,7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 3.25$ (ddd, $J=8,8,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (dd, $J=1,10 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=1,17 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=10,17 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6$ (3C), 17.9 (6C), 21.8, 36.2, 38.6, 40.4, 45.0, $55.7,71.9,75.6,78.1,93.8,94.3,128.7,131.7,152.8,158.2,167.8 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ $564\left(\mathrm{M}^{+}+\mathrm{H}\right), 524,493,452,450,398,358,321$; HRMS (CI) m/z 564.1508 (calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{NO}_{5} \mathrm{Si}: 564.1507$).

Ketone 154. To a solution of $153(0.008 \mathrm{~g}, 0.014 \mathrm{mmol})$ in DCM (2 mL) was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.0034 \mathrm{~mL}, 0.028 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After stirring for 1 h at -78 ${ }^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temperature, diluted with ether (10 mL), washed with brine and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 40% ethyl acetate in hexane as eluent, to give $0.005 \mathrm{~g}(86 \%)$ of 154 as a colorless oil: IR (neat) 2956, 2921, 2862, 1741, 1693, 1402, 1316, 1296, $1136 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{ddd}, J=7,7,7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.60(\mathrm{~m}, 2 \mathrm{H})$, $2.69(\mathrm{dd}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=8,17 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (ddd, $J=8,8,8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50$ (dd, $J=4,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=1,6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.83(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (ddd, $J=2,4,8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.77 (dd, $J=1,10 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ (dd, $J=1,17 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (dd, $J=10,17 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,37.2,37.6,39.1,45.1,46.7,56.5,71.9$, 75.8, 94.0, 130.0, 131.0, 152.5, 168.5, 207.6; MS(CI) m/z $410\left(\mathrm{M}^{+}+\mathrm{H}\right), 376,356$, 320, 246, 165; HRMS (CI) m/z 410.0330 (calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{NO}_{5} \mathrm{Si}: 410.0329$).

Acrylamide 155. To a solution of azide 150 ($0.263 \mathrm{~g}, 0.742 \mathrm{mmol}$) in ether (7 mL) at $0^{\circ} \mathrm{C}$ was added LAH ($0.041 \mathrm{~g}, 1.09 \mathrm{mmol}$) and the solution was stirred for 1 h . The mixture was diluted with ether and quenched with 15% aqueous NaOH $(0.078 \mathrm{~mL})$, stirred with $\mathrm{MgSO}_{4}(2.63 \mathrm{~g})$ for 2 h . The mixture was filtered and washed with ethyl acetate. Evaporation of solvent gave crude amine (0.24 g). The solution of 2-bromoacrylic acid ($0.44 \mathrm{~g}, 2.9 \mathrm{mmol}$), oxalyl chloride (0.76 mL , 8.69 mmol) and catalytic amounts of DMF in dichloromethane (5 mL) was stirred at room temperature for 12 h . After evaporation of solvent, the acid chloride was added to the solution of crude amine and triethyl amine ($0.3 \mathrm{~mL}, 2.17 \mathrm{mmol}$) in ether (8 mL) at $0^{\circ} \mathrm{C}$, and the solution was stirred for 1 h . The mixture was diluted with ether (30 mL), washed with aqueous 0.1 N HCl and brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 13% ethyl acetate in hexane as eluent, to give $0.2 \mathrm{~g}(59 \%)$ of 155 as a colorless oil: IR (neat) 3325 (br), 2943, 2864, 1657, 1495, 1223, $1196 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08(\mathrm{dd}, J=3,7 \mathrm{~Hz}, 18 \mathrm{H}), 1.12-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~d}$, $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddd, $J=5,5,8 \mathrm{~Hz}$, 1 H), $2.99(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=$ $2,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{brd}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ ($\mathrm{d}, \mathrm{J}=1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.5$ (3C), 17.9 (6 C), 21.9, 33.9, $38.2,40.0,44.4,48.3,72.7,75.9,97.0,122.7,127.5,156.3,159.8 ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z}$
$470\left(\mathrm{M}^{+}+\mathrm{H}\right), 428,400,392,321,193,165,157$; HRMS (CI) m/z 470.1728 (calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BrNO}_{3} \mathrm{Si}: 470.1726$).

Ketone 156. To a solution of $155(0.0022 \mathrm{~g}, 0.0047 \mathrm{mmol})$ in dichloromethane (2 mL) was added $\mathrm{TiCl}_{4}\left(0.0012 \mathrm{~mL}, 1 \mathrm{M}\right.$ in dichloromethane, 0.012 mmol) at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The mixture was diluted with ether (10 mL), washed with brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 40% ethyl acetate in hexane as eluent, to give $0.001 \mathrm{~g}(68 \%)$ of 156 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H})$, 3.13 (m, 1H), 3.20 (dd, $J=5,16 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (dd, $J=4,10 \mathrm{~Hz}, 1 \mathrm{H}$), $3.93(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=3,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ ($\mathrm{m}, 1 \mathrm{H}$), $7.00(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1,37.0,37.8$, 38.3, 44.6, 47.0, 51.0, 72.9, 75.0, 121.9, 128.3, 160.2, 225.8.

Triisopropylsilyl ether 157. To a solution of 155 (0.01 g .0 .021 mmol) in dichloroethane (2 mL) was added $\mathrm{Me}_{3} \mathrm{Al}(0.027 \mathrm{~mL}, 2 \mathrm{M}$ in hexane, 0.027 mmol) at room temperature and the solution was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The mixture was diluted with ethyl acetate (10 mL), washed with aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL}$) and brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 50\% ethyl acetate in hexane as eluent, to give $0.0076 \mathrm{~g}(76 \%)$ of 157 as a yellow solid: IR (neat) 3296 (br), 2944, 2925, 2866, 1689, 1459, 1195, $1127 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13-1.23(\mathrm{~m}, 21 \mathrm{H})$, 1.12 (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.79$ (dd, $J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.20$ (ddd, $J=5$, $5,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=7,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (ddd, $J=1,5,7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=6,6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 12.5 (3C), 18.5 (Si-'Pr), 18.6 (Si-'Pr), 22.4, 33.9, 36.2, 36.9, 37.9, 38.4, 41.2, 50.9, 69.0, 75.9, 77.9, 81.4, 172.6; MS(CI) m/z $470\left(\mathrm{M}^{+}+\mathrm{H}\right), 428,406,390,362$, 321, 250, 232; HRMS (CI) m/z 469.1638 (calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{BrNO}_{3} \mathrm{Si}: 469.1648$).

Lactam 166. To a solution of $157(0.195 \mathrm{~g}, 0.415 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(20 \mathrm{~mL})$ was added aqueous $\mathrm{HF}(48 \%, 1 \mathrm{~mL})$ at room temperature and the solution was stirred for 2 h . The mixture was diluted with ethyl acetate (50 mL), washed with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 90% ethyl acetate in hexane and 1% methanol in ethyl acetate as eluent, to give $0.083 \mathrm{~g}(64 \%)$ of 166 as a colorless oil and 0.029 g (22\%) of 167 as a colorless oil: IR (neat) 3193 (br), 3062 (br), 2950, 2916, 2862, 1676, $942 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27$ (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.95(\mathrm{~m}, 1 \mathrm{H}), 3.09$ (ddd, $J=4,4,15 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=5,9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87$ (dd, $J=4,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=4,5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48 (dd, $J=4,6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7$, 31.2, 36.9, 38.6, 39.6, 41.1, 44.2, 45.4, 54.2, 73.8, 76.1, 169.3, 210.6; MS(CI) $\mathrm{m} / \mathrm{z} 314\left(\mathrm{M}^{+}+\mathrm{H}\right), 276,264,236,166$; HRMS (CI) m/z 314.0392 (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{3}: 314.0392$).

Lactam 167. IR (neat) 3210 (br), 3085 (br), 2953, 2923, 2863, 1681, 1270, 1179, $1109 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2 \cdot 10-2.30(\mathrm{~m}, 2 \mathrm{H})$, 2.55 (dd, $J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=4,10 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90 (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 4.47$ (dd, $J=3,3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (dd, $J=7$, $10 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,32.6,37.1,37.7$, 40.8, 41.1, 44.6, 46.7, $56.872 .7,75.8,168.9,208.5 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 314\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 276, 264, 250, 236, 166; HRMS (CI) $\mathrm{m} / \mathrm{z} 314.0390$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{3}$: 314.0392).

Cyclopropane 169. To a solution of the $166(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$ in toluene (4 mL) was added DBU ($0.0043 \mathrm{~mL}, 0.029 \mathrm{mmol}$) at room temperature and the solution was refluxed for 4 h . The mixture was diluted with ether (10 mL), washed with brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 80% ethyl acetate in hexane and 1% methanol in ethyl acetate as eluent, to give $0.001 \mathrm{~g}(43 \%)$ of 169 as a colorless oil: IR
(neat) 2920, 2847, 1699, 1459, 1406, $1064 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.13 (dd, $J=5,5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.25(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{dd}, J=4,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (dd, $J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (ddd, $J=5,5$, $7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ ($\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29, ($\mathrm{s}, 1 \mathrm{H}$), $5.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.2$, $21.8,30.0,35.5,36.7,38.4,44.9,45.4,58.9,73.3,77.6,174.5,206.1 ; \mathrm{MS}(\mathrm{CI})$ $\mathrm{m} / \mathrm{z} 234\left(\mathrm{M}^{+}+\mathrm{H}\right), 180,164$; HRMS (CI) $\mathrm{m} / \mathrm{z} 234.1125$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}$: 234.1130).

Acrylamide 175. To a solution of $155(0.119 \mathrm{~g}, 0.326 \mathrm{mmol})$ in ether (3 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added LAH ($0.019 \mathrm{~g}, 0.48 \mathrm{mmol}$) and the solution was stirred for 1 h . The mixture was diluted with ether and quenched with 15% aqueous $\mathrm{NaOH}(0.070$ $\mathrm{mL})$, stirred with $\mathrm{MgSO}_{4}(2.63 \mathrm{~g})$ for 2 h . The mixture was filtered and washed with ethyl acetate. Evaporation of solvent gave crude amine (0.11 g). To a solution of the crude amine and 4-dimethylaminopyridine ($0.012 \mathrm{~g}, 0.098 \mathrm{mmol}$) in dichloromethane (5 mL) was added sequentially solutions of DCC $(0.138 \mathrm{~g}$, 0.67 mmol) in dichloromethane (1 mL) and α-methylthioacrylic acid (0.007 g , $0.65 \mathrm{mmol})$ in dichloromethane (1 mL) at room temperature. After stirring 3 h at room temperature, the solvent was removed under reduced pressure and the
residue was filtered and washed with cold ether (20 mL). The filterate was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the aqueous phase was extracted with ether (4 x $15 \mathrm{~mL})$. The combined organic layers was washed with brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 20% ethyl acetate in hexane as eluent, to give 0.131 g (92\%) of 175 as a colorless oil: IR (neat) 3312 (br), 2945, 2923, 2864, 1653, 1489, 1381, 1223, 1196; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08$ ($\mathrm{m}, 18 \mathrm{H}$), 1.10-1.20 (m, 3H), 1.20 ($\mathrm{d}, \mathrm{J}=$ $7 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 227(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{ddd}, J=5,5,8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=2,6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{ddd}, J=3,7,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H})$, 6.10(br d, J = 7 Hz, 1H), $6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.2$ (3C), 16.2, 17.9 (6C), 21.9, 33.9, 38.2, 40.0, 44.4, 47.6, 72.6, 76.2, $97.3,119.5,140.1$, 155.9, 163.1; MS(CI) m/z $438\left(\mathrm{M}^{+}+\mathrm{H}\right), 422,408,384,368,338,321,131$; HRMS (CI) $\mathrm{m} / \mathrm{z} 438.2479$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{SSi}$: 438.2498).

Triisopropylsilyl ether 176. To a solution of 175 (0.38 g .0 .87 mmol) in dichloromethane (20 mL) was added $\mathrm{Me}_{3} \mathrm{Al}(1.3 \mathrm{~mL}, 2 \mathrm{M}$ in hexane, 2.6 mmol) at room temperature and the solution was stirred at $80^{\circ} \mathrm{C}$ for 9 h . The mixture was diluted with ethyl acetate (50 mL), washed with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and
brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 50\% ethyl acetate in hexane as eluent, to give $0.1 \mathrm{~g}(32 \%)$ of 176 as a yellow solid: IR (neat) 3262 (br), 2946, 2923, 2865, 1676, $1655,1465,1192,1146,1126 . \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10(\mathrm{~d}, \mathrm{~J}=7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.13-1.23(\mathrm{~m}, 21 \mathrm{H}), 1.89(\mathrm{dd}, J=6,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.05-2.20 (m, 2H), $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=7,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}$, $1 \mathrm{H}), 3.69(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=6,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.07 (m, 1H), 5.17 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.4,14.4$ (3C), 18.5 (Si-'Pr), 18.6 (Si-'Pr), 22.6, 32.8, 34.3, 36.7, 36.9, 40.0, 41.2, 51.3, 63.6, 75.9, 77.8, 81.0, 175.3; MS(CI) m/z 437 (M+), 422, 394, 368, 321; HRMS (CI) m/z 437.2413 (calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SSi}$: 437.2420).

Lactam 178. To a solution of $176(0.1 \mathrm{~g}, 0.23 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(2.7 \mathrm{~mL})$ was added aqueous $\mathrm{HF}(48 \%, 0.3 \mathrm{~mL})$ at room temperature and the solution was stirred for 2 h . The mixture was diluted with ethyl acetate (50 mL), washed with aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 3% methanol in ethyl acetate as eluent, to give $0.0046 \mathrm{~g}(71 \%)$ of 178 as a colorless oil and 0.013 g (20\%) of 177 as a colorless oil: IR (neat) 3164 (br), 3070 (br), 2961, 2901, 2872,

1697, 1693, 1672, 1390, $1201 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24$ ($\mathrm{d}, \mathrm{J}=7$ $\mathrm{Hz}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=5,5,7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.70 (dd, $J=7,9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (ddd, $J=4,4,14 \mathrm{~Hz}, 1 \mathrm{H}$), $2.89(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}$, $1 \mathrm{H}), 3.32(\mathrm{dd}, J=4,7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=4,6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=4,4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.0,21.7,26.7,36.7,38.8,39.4,43.8,44.2,45.3,54.3,73.6$, 76.3, 172.1, 210.8; MS(CI) m/z $282\left(\mathrm{M}^{+}+\mathrm{H}\right.$), 264, 252, 236; HRMS (CI) m / z 282.1162 (calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$: 282.1164).

Lactam 177. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.20(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.65 (ddd, $J=$ $5,10,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.670(\mathrm{~m}$, 1 H), 2.72 (ddd, $J=4,8,14 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=8,10 \mathrm{~Hz}, 1 \mathrm{H})$, 3.62 (dd, $J=4,9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (dd, $J=3,7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}$), $4.39(\mathrm{dd}, \mathrm{J}=3,3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.3$, $21.0,27.7,37.1,37.8,39.9,41.9,44.5,46.7,56.3,72.8,76.1,172.0,196.4$.

Amide 181. To a solution of $150(0.029 \mathrm{~g}, 0.078 \mathrm{mmol})$ in ether (1 mL) at $0^{\circ} \mathrm{C}$ was added LAH ($0.005 \mathrm{~g}, 0.117 \mathrm{mmol}$) and the solution was stirred for 1 h . The mixture was diluted with ether and quenched with 15% aqueous NaOH (0.017 mL), stirred with $\mathrm{MgSO}_{4}(0.5 \mathrm{~g})$ for 2 h . To a solution of the 3,5 -dinitrobenzoyl chloride ($0.037 \mathrm{~g}, 0.163 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.045 \mathrm{~mL}, 0.325 \mathrm{mmol})$ in dichloromethane (1 mL) at room temperature was added a solution of α phenylselenoacrylic acid ($0.037 \mathrm{~g}, 0.163 \mathrm{mmol}$) in dichloromethane (1 mL). After stirring 1 h at room temperature, the solution of crude amine and DMAP (0.001 g , 0.008 mmol) in dichloromethane (0.5 mL) was added, and the mixture was stirred for 1 h . After removal of the solvent, the residue was chromatographed on silica, using 15% ethyl acetate in hexane as eluent, to give $0.03 \mathrm{~g}(69 \%)$ of 181 as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-0.47^{\circ}$ (c 1.5, CHCl_{3}); IR (neat) 3395 (br), 2944, 2864, 1655, 1649, 1491, 1477, 1223, 1196; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.00-1.15(\mathrm{~m}, 21 \mathrm{H})$, $1.17(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=6,8 \mathrm{~Hz}, 1 \mathrm{H}), 229-2.40(\mathrm{~m}$, $2 \mathrm{H}), 3.40(\mathrm{dd}, J=4,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=2,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (ddd, $J=3,7,7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{brd}, J=$ $7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6$ (3C), 18.0 (6C), 22.0, $33.6,38.2,39.9,44.3,48.0,72.6,75.9,97.3,127.5,129.5,131.1,131.3,133.1$, 133.2, 156.0, 162.8; MS(CI) m/z 547 (M^{+}), 478, 432, 392, 350, 321, 236, 159; HRMS (CI) $\mathrm{m} / \mathrm{z} 547.2023$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si}^{78} \mathrm{Se}$: 547.2021).

Triisopropylsilyl ether 182. To a solution of 181 (0.15 g .0 .275 mmol) in dichloromethane (10 mL) was added $\mathrm{Me}_{3} \mathrm{Al}(0.42 \mathrm{~mL}, 2 \mathrm{M}$ in hexane, 0.824 mmol) at room temperature and the solution was stirred at $80^{\circ} \mathrm{C}$ for 38 h . The mixture was diluted with dichloromethane (30 mL) and saturated aqueous K-F tartrate (30 mL) and the mixture was vigously stirred for 15 min . The aqueous phase was extracted with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic solution was dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 90% ethyl acetate in hexane as eluent, to give $0.104 \mathrm{~g}(69 \%)$ of 182 as a white solid: $[\alpha]_{\mathrm{D}}{ }^{23}-8.3^{\circ}\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right)$; IR (neat) 3237 (br), 3067 (br), 2955, 2862, 1677, 1470, 1201, 1147, $1123 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.31(\mathrm{~m}, 21 \mathrm{H}), 1.79(\mathrm{dd}, J=7,9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=5,9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{dd}, J=5,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=4,4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (br s, 1 H), 7.18 (m, 3H), $7.60(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.6$ (3C), 18.7 (Si- ${ }^{-} \mathrm{Pr}$), 18.8 ($\mathrm{Si}-{ }^{-} \mathrm{Pr}$), 22.5, 34.1, 35.2, 36.7, 38.1, 39.6, 41.2, 51.4, 64.9, $76.0,78.1,82.5,127.3,127.9,128.4,135.4,175.4 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 547$ (M^{+}), 478, 432, 390, 322, 276, 251; HRMS (CI) m/z 547.2025 (calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si}^{80} \mathrm{Se}$: 547.2021).

Ketone 183. To a solution of $182(0.014 \mathrm{~g}, 0.026 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(1.9 \mathrm{~mL})$ was added aqueous $\mathrm{HF}(48 \%, 0.1 \mathrm{~mL})$ at room temperature and the solution was stirred for 2 h . The mixture was diluted with ethyl acetate (20 mL), washed with aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~mL}\right.$) and brine, dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 90% ethyl acetate in hexane as eluent, to give $0.004 \mathrm{~g}(40 \%)$ of 183 as a colorless oil and 0.005 g (50\%) of 184 as a colorless oil: IR (neat) 3184 (br), 3070 (br), 2951, 2934, 2859, 1693, 1660, 1475, $1395 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.18(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.80 (ddd, $J=5,11,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (ddd, $J=4,6,7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, $J=3,8,14 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, $J=4,7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10$ (ddd, $J=7,7,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd, $J=4,10 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (dd, $J=3,7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84$ (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=8,11 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=3,3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 21.0, 28.8, 37.1, 37.7, 37.8, 40.3, 44.6, 46.9, 56.6, 72.8, 76.0, 127.6, 128.4, 129.1, 135.4, 172.1, 209.0; MS(CI) m/z 390 ($\mathrm{M}^{+}+\mathrm{H}$), 310, 264, 236, 217, 159; HRMS (CI) m/z 390.0766 (calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{78} \mathrm{Se}$: 390.0773).

Ketone 183. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.30(\mathrm{~m}$, 2 H), $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=5,5,15 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (ddd, $J=5,5,5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (ddd, $J=7,7,7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dd, $J=5,9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{dd}, J=4,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=5,7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.30 (dd, $J=4,4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.78 (br s, 1H), 7.29 (m, 3H), $7.70(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,28.2,37.2,39.0,39.6,40.1,44.5,45.6,55.0,73.5,76.4$, 128.1, 129.0, 129.9, 134.9, 172.9, 210.9.

Pyridone 187. To a solution of $182(0.02 \mathrm{~g}, 0.037 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(10 \mathrm{~mL})$ at room temperature was added aqueous $\mathrm{HF}(4.8 \%, 0.06 \mathrm{~mL}, 0.15 \mathrm{mmol})$ dropwise. After stirring for 1.5 h at room temperature, the solvent was removed under reduced pressure. To a solution of the residue in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1,3$ mL) was added $\mathrm{NaIO}_{4}(0.0235 \mathrm{~g}, 0.11 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$. After stirring 15 h at room temperature, the solvent was removed under reduced pressure and the residue was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and washed with saturated NaHCO_{3} (2
$\mathrm{ml})$ and brine $(5 \mathrm{~mL})$. The combined aqueous layers was extracted with $\mathrm{CHCl}_{3}(4$ $\times 20 \mathrm{~mL}$) and dried over MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 2% methanol in ethyl acetate as eluent, to give $0.007 \mathrm{~g}(83 \%)$ of 187 as white solid: $\mathrm{mp} 197-199^{\circ} \mathrm{C}$; $[\alpha]_{0}^{23}-114.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 2958. 1655, 1638, 1408, 1285, 1248; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30$ $(\mathrm{d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 3.37$ (ddd, $J=8,8,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=4,9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.77 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 12.50(\mathrm{br} \mathrm{s}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,37.5,39.3,43.3,46.0,72.1,72.2,114.2$, 120.9, 138.6, 151.2, 165.2, 193.1; MS(CI) m/z $232\left(\mathrm{M}^{+}+\mathrm{H}\right), 223,203,189,174$, 149, 131, 121; HRMS (CI) $\mathrm{m} / \mathrm{z} 232.0974$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3}$: 232.0974).

Methoxypyridine 134. To a solution of the $187(0.029 \mathrm{~g}, 0.126 \mathrm{mmol})$ in CHCl_{3} $(2 \mathrm{~mL})$ at room temperature was added $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.173 \mathrm{~g}, 0.628 \mathrm{mmol})$ and methyliodide ($0.47 \mathrm{~mL}, 7.53 \mathrm{mmol}$) and the mixture was stirred for 40 h at room temperature. The mixture was filtered through a pad of Celite and washed with ether (10 ml). The solvent was removed under reduced pressure and the residue was chromatographed on silica, using 30% ethyl acetate in hexane as eluent, to give $0.028 \mathrm{~g}(91 \%)$ of 134 as a white solid: $\mathrm{mp} 100-102^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{o}}{ }^{23}-3.8^{\circ}(\mathrm{C} 2.0$,
CHCl_{3}); IR (neat) 2949, 2920, 2857, 1671, 1594, 1484, 1324, $1269 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 2.34(1 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{dd}, J=$ $8,8 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{ddd}, J=4,6,7 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{dd}, J=8,8,8 \mathrm{~Hz}), 3.68(1 \mathrm{H}$, dd, $J=4,9 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 4.05(3 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.80$ $(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}) ; 13 \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 21.5$, $37.2,39.0,43.9,46.1,54.2,71.9,77.1,112.4,122.8,137.9,159.0,166.6,196.7$; MS(CI) m/z 246 ($\mathrm{M}^{+}+\mathrm{H}$), 216, 192, 175; HRMS (CI) m/z 246.11273 (calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}: 246.11320$).

Hydrogenolysis of 134. To a solution of the134 ($0.020 \mathrm{~g}, 0.082 \mathrm{mmol}$) in EtOH $(2 \mathrm{~mL})$ at room temperature was added 10% palladium-on-charcoal (0.020 g), and the suspension was stirred under hydrogen at one atmosphere for 8 h . The mixture was filtered through a pad of Celite, and washed with ether $(20 \mathrm{~mL})$. The solvent was removed under reduced pressure and the residue was chromatographed on silica, using 8% ethyl acetate in hexane as eluent, to give 0.006 g of $134,0.003 \mathrm{~g}(16 \%, 23 \%$ based of recovered aa) of $188,0.004 \mathrm{~g}(21 \%$, 30% based of recovered aa) of 189 , and $0.003 \mathrm{~g}(15 \%, 21 \%$ based on recovered aa) of 190 .

188: IR (neat) 2944, 2915, 1606, 1484, 1313, 1259, $1035 \mathrm{~cm}-1$; 1H NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.88(1 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{m}), 2.59(1 \mathrm{H}, \mathrm{m})$, $2.65(1 \mathrm{H}, \mathrm{dd}, J=5,16 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=9,16 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{ddd}, J=7,7,7$ $\mathrm{Hz}), 3.75(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 3.97(3 \mathrm{H}, \mathrm{s}), 4.77(1 \mathrm{H}, \mathrm{d}, J$ $=6 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 232\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 214, 202, 159, 130; HRMS (CI) m/z 232.13362 (calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}: 232.13375$).

189: IR (neat) 3350 (br), 2936, 2915, 1595, 1583, 1473, 1422, 1301, $1031 \mathrm{~cm}-1$; $1 \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.40(1 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}, \mathrm{ddd}$, $J=7,9,17 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{dd}, J=3,15 \mathrm{~Hz}), 2.70(2 \mathrm{H}, \mathrm{m}), 2.86$ $(1 \mathrm{H}, \mathrm{dd}, J=3,3 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=3,3 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{dd}, J=7,11 \mathrm{~Hz}), 3.50$ $(1 \mathrm{H}, \mathrm{dd}, J=9,9 \mathrm{~Hz}), 3.94(3 \mathrm{H}, \mathrm{s}), 6.53(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$; MS(CI) m/z 234 ($\mathrm{M}^{+}+\mathrm{H}$), 216, 202, 161, 146, 128; HRMS(CI) m/z 234.14927 (calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}$: 234.14940).

190: IR (neat) 3409 (br), 2940, 2916, 2847, 1606, 1489, 1332, 1313, 1259, 1029 cm-1; 1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 2.30(1 \mathrm{H}, \mathrm{m}), 2.55$ $(2 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{ddd}, J=7,7,9 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=5,9 \mathrm{~Hz})$, $3.98(3 \mathrm{H}, \mathrm{s}), 4.06(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{dd}, J=8,11$ $\mathrm{Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 248\left(\mathrm{M}^{+}+\mathrm{H}\right), 230$, 216, 202, 186, 176, 159, 130; HRMS(CI) m/z 248.12893 (calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}$: 248.12867).

Alcohol 193. To a solution of the $134(0.020 \mathrm{~g}, 0.082 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL}$, 0.2 M solution of NaOH) at room temperature was added activated $\mathrm{Zn}(0.54 \mathrm{~g}$, 8.2 mmol) and the suspension was stirred 2 h at $90^{\circ} \mathrm{C}$. Additional 0.54 g of activated Zn was added to the mixture. After stirring 4 h at $90^{\circ} \mathrm{C}$, the mixture was cooled down to the room temperature and neuturalrized with 1 N HCl in MeOH (4 mL) and dried over MgSO_{4}. After filteration through a pad of Celite, the solvent was removed under reduced pressure and the residue was chromatographed on silica, using 40\% ethyl acetate in hexane as eluent, to give 0.019 g (94%) of 193 as a white solid: $\mathrm{mp} 107-110^{\circ} \mathrm{C}$; IR (neat) 3394 (br), 2916, 2853, 1668, 1625, 1589, $1328 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.11(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 2.35(2 \mathrm{H}$,
$\mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{dd}, J=8,8 \mathrm{~Hz}), 3.10(3 \mathrm{H}, \mathrm{m}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=6,11 \mathrm{~Hz}), 3.73$ $(1 \mathrm{H}, \mathrm{dd}, J=8,11 \mathrm{~Hz}), 4.00(3 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 21,29,38(2 \mathrm{C}), 45,47,54,62,110,123,138,162$, 166, 198; MS(CI) m/z 248 ($\mathrm{M}^{+}+\mathrm{H}$), 230, 204, 190; HRMS(CI) m/z 248.12842 (calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}: 248.12867$).

Aldehyde 194. To a solution of the $193(0.013 \mathrm{~g}, 0.053 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature was added Dess-Martin periodinane ($0.038 \mathrm{~g}, 0.11 \mathrm{mmol}$). After stirring 1 h at room temperature, the mixture was diluted with ether (5 mL) and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ and stirred for 20 min . The aqueous phase was separated and extracted with ether (10 mL), and the combined organic solvents was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and stirred for 20 min . The organic layer was wahed with water (3 mL) and brine (3 mL), and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 30\% ethyl acetate in hexane as eluent, to give $0.012 \mathrm{~g}(93 \%)$ of 194 as a colorless oil: IR (neat) 2955, 2925, 1710, 1666, 1590, 1572, 1409, 1321, $1262 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6$ $\mathrm{Hz}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=8,8 \mathrm{~Hz}), 3.02(4 \mathrm{H}, \mathrm{m}), 3.45(1 \mathrm{H}, \mathrm{m}), 3.98(3 \mathrm{H}, \mathrm{s}), 6.67(1 \mathrm{H}$, d, $J=9 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 9.80(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21$,

30, 31, 35, 46, 54(2C), 110, 123, 138, 161, 166, 197, 202; MS(CI) m/z 246 $\left(\mathrm{M}^{+}+\mathrm{H}\right), 217,202,160 ; \operatorname{HRMS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 246.11260$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$: 246.11302).

Alcohol 195. To a solution of the $194(0.025 \mathrm{~g}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{MeMgl}(0.1 \mathrm{~mL}, 0.15 \mathrm{mmol})$ dropwise. After stirring 1 h at -78 ${ }^{\circ} \mathrm{C}$, the reaction was quenched with water, and the mixture was allowed to warm to room temperature. The mixture was diluted with ether (20 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and brine (3 mL), and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 30% ethyl acetate in hexane as eluent, to give $0.009 \mathrm{~g}(40 \%)$ of 195 and $0.008 \mathrm{~g}(36 \%)$ of diastereomer of 195 as colorless oil.

195: IR (neat) 3408, 2959, 2891, 1650, 1586, 1322, 1269, $1020 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.16(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 1.10(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.60(1 \mathrm{H}, \mathrm{s})$, $2.05(1 \mathrm{H}, \mathrm{dd}, J=9,18 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=9,9 \mathrm{~Hz}), 3.10(2 \mathrm{H}$, m), $3.25(1 \mathrm{H}, \mathrm{dd}, J=11,20 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{m}), 3.99(3 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{d}, J=9$ $\mathrm{Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 20.9,21.8,29.5(2 \mathrm{C})$, $37.6,46.2,51.1,53.9,67.6,109.7,123.0,130.9,137.5,163.0,166.3,198.0 ;$

MS(CI) $\mathrm{m} / \mathrm{z} 262\left(\mathrm{M}^{+}+\mathrm{H}\right), 244,228,175,146$; HRMS(CI) $\mathrm{m} / \mathrm{z} 262.14438$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}: 262.14432$).
diastereomer of 195: IR (neat) 3457 (br), 2954, $2920,1669,1591,1484,1415$, 1318, $1269 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.39(3 \mathrm{H}$, $\mathrm{d}, J=7 \mathrm{~Hz}), 1.59(1 \mathrm{H}, \mathrm{s}), 2.03(1 \mathrm{H}, \mathrm{m}), 2.65(2 \mathrm{H}, \mathrm{m}), 2.95(2 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{dd}$, $J=11,20 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{d}, J=$ 8 Hz); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 21.6,22.8,29.6,30.1,38.9,46.4,51.0,53.9$, 68.6, 109.8, 124.3, 137.5, 164.7, 166.7, 197.7; MS(CI) m/z $262\left(\mathrm{M}^{+}+\mathrm{H}\right), 244$, 228, 204, 175, 146; HRMS(CI) m/z 262.14389 (calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}$: 262.14432).

Diketone 196. To a solution of the $195(0.024 \mathrm{~g}, 0.092 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature was added Dess-Martin periodinane ($0.067 \mathrm{~g}, 0.184 \mathrm{mmol}$). After stirring 2 h at room temperature, the mixture was diluted with ether (30 mL) and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ and stirred for 10 min . The aqueous phase was separated and extracted with ether (10 mL), and the combined organic solvents was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and stirred for 10 min . The organic layer was washed with water (5 mL) and brine $(5 \mathrm{~mL})$, and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was
chromatographed on silica, using 30% ethyl acetate in hexane as eluent, to give $0.022 \mathrm{~g}(92 \%)$ of 196 as a colorless oil: IR (neat) 2944, 2925, 1704, 1674, 1630, 1591, 1567, 1415, 1327, $1264 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31$ (3H, d, J $=6 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=8,8 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=10,17 \mathrm{~Hz})$, $3.01(3 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{m}), 3.97(3 \mathrm{H}, \mathrm{s}), 6.65(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=8$ Hz); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 20.3,29.1,30.1,32.0,35.0,45.1,53.9,54.8$, 110.1, 122.8, 137.4, 161.8, 166.3, 196.7, 207.1; MS(CI) $m / z 260\left(\mathrm{M}^{+}+\mathrm{H}\right), 216$, 204, 175, 146, ; HRMS(CI) $\mathrm{m} / \mathrm{z} 260.12872$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3}: 260.12867$).

Ketone 197. To a suspension of dry ($120{ }^{\circ} \mathrm{C}, 1 \mathrm{mmHg}, 18 \mathrm{~h}$) methyltriphenylphosphonium bromide ($0.521 \mathrm{~g}, 1.46 \mathrm{mmol}$) in THF (10 mL) under argon atmosphere at $0^{\circ} \mathrm{C}$ was added $\mathrm{nBuLi}(0.567 \mathrm{~mL}, 1.55 \mathrm{M}$ in hexane, 0.878 mmol) dropwise. The solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and left to stand for 2 h at $0^{\circ} \mathrm{C}$.

To a solution of the $196(0.025 \mathrm{~g}, 0.095 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added supernatant Wittig reagent prepared as described above ($1.77 \mathrm{~mL}, 0.142$ mmol) dropwise. After stirring 1 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with water, and the mixture was allowed to warm to room temperature. The mixture was diluted with ether (20 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$,
and brine (3 mL), and dried over anhydrous MgSO_{4}. After removal of the solvent, the residue was chromatographed on silica, using 5% ethyl acetate in hexane and then 15% ethyl acetate in hexane as eluent, to give $0.001 \mathrm{~g}(4 \%, 8 \%$ based on recovered 196) of $199,0.007 \mathrm{~g}(29 \%, 54 \%$ based on recovered 196) of 197 , $0.003 \mathrm{~g}(13 \%, 24 \%$ based on recovered aa) of 198 and $0.012 \mathrm{~g}(48 \%)$ of 196: IR (neat) 2948, 2869, 1669, 1591, 1570, 1481, 1410, 1321, $1261 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{s}), 2.74(3 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}$, dd, $J=8,17 \mathrm{~Hz}$), $3.02(2 \mathrm{H}, \mathrm{m}), 4.00(3 \mathrm{H}, \mathrm{s}), 4.70(1 \mathrm{H}, \mathrm{s}), 4.96(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz})$, $6.64(1 \mathrm{H}, \mathrm{dd}, J=81,9 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) δ $20.1,22.2,29.3,32.5,37.7,46.1,50.6,54.3,110.2,111.3,123.0,137.9,143.2$, 163.8, 166.6, 197.8; MS(CI) m/z 257 (M^{+}), 242, 228, 190, 175, 163, 149, 135, ; HRMS(CI) $m / z 257.14197$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: 257.14158).

Ketone 198. IR (neat) 2957, 2919, 1704, 1594, 1474, 1304, 1262, $1029 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 2.10(3 \mathrm{H}, \mathrm{s}), 2.68(2 \mathrm{H}, \mathrm{m}), 2.80$ $(2 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{dd}, J=9,9 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{m}), 3.91(3 \mathrm{H}, \mathrm{s}), 4.94(1 \mathrm{H}, \mathrm{dd}, J=$ $1,2 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{dd}, J=1,2 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 20.8,31.9,34.0,37.2,42.1,53.9,55.1,108.2$,
109.2, 125.4, 136.0, 144.7, 154.1, 136.6, 208.3; MS(CI) m/z $258\left(\mathrm{M}^{+}+\mathrm{H}\right), 242$, 200, 173, 158, ; HRMS(CI) m/z258.14936(calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO} 2: 258.14940$).

Olefin 199. IR (neat) 2949, 2919, 1591, 1475, 1404, 1316, $1259 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 1.70(3 \mathrm{H}, \mathrm{s}), 2.39(1 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}$, $\mathrm{dd}, J=9,9 \mathrm{~Hz}), 2.75(4 \mathrm{H}, \mathrm{m}), 3.90(3 \mathrm{H}, \mathrm{s}), 4.60(1 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{s}), 4.91(1 \mathrm{H}$, s), $5.24(1 \mathrm{H}, \mathrm{s}), 6.56(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, CDCl3) $\delta 20.1,22.6,30.8,33.9,39.6,42.5,50.3,53.9,107.2,108.7,110.4$, 124.9, 135.8, 144.1, 145.0, 155.5, 163.5; MS(CI) $\mathrm{m} / \mathrm{z} 255\left(\mathrm{M}^{+}\right), 240,224,173$, 158, 144, 83, ; HRMS(CI) m/z 255.16184(calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}: 255.16231$).

Enol triflate 201. To a solution of the $196(0.003 \mathrm{~g}, 0.012 \mathrm{mmol})$ in THF (4 mL) at $-78^{\circ} \mathrm{C}$ was added KHMDS ($0.058 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene, 0.029 mmol) dropwise, and the mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. The mixture was warmed to 0
${ }^{\circ} \mathrm{C}$ and a solution of N -(5-chloro-2-pyridyl)triflimide ($0.006 \mathrm{~g}, 0.015 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ was added. After stirring for 12 h at room temperature, the mixture was diluted with ether (20 mL), washed with water (5 mL). The phases were separated, and aqueous portion was extracted with ether ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica, using 25% ethyl acetate in hexane as eluent, to give $0.0031 \mathrm{~g}(74 \%)$ of 201 as a colorless oil: IR (neat) 2962, 2924, 1669, 1592, 1556, 1418, 1266, 1212, 1142, $913 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.40(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=8,10 \mathrm{~Hz}), 3.10$ $(4 \mathrm{H}, \mathrm{m}), 4.00(3 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{dd}, J=1,4 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 6.68(1 \mathrm{H}$, $\mathrm{d}, J=9 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 19.8,29.6,32.2$, $38.6,45.8,46.8,54.5,106.0,110.7,123.0,137.9,155.2,162.6,166.9,196.6 ;$ MS(CI) m/z 392 ($\mathrm{M}^{+}+\mathrm{H}$), 258, 242, 214, 190, 175, 146, ; HRMS(CI) m/z 392.07753(calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}: 392.07795$).

Oxime 208. To a solution of the $197(0.0033 \mathrm{~g}, 0.013 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{NH}_{2} \mathrm{OHHCl}(0.0022 \mathrm{~g}, 0.032 \mathrm{mmol})$ and ${\mathrm{NaOAc} 3 \mathrm{H}_{2} \mathrm{O}(0.0061 \mathrm{~g} \text {; }}^{2}$ $0.045 \mathrm{mmol})$. The mixture was stirred at $85^{\circ} \mathrm{C}$ for 48 h . After cooling down to
room temperature, the solvent was evaporated and the residue was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, washed with brine (5 mL). The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica, using 10% ethyl acetate in hexane as eluent, to give $1.8 \mathrm{mg}(51 \%)$ of major isomer $208,0.4 \mathrm{mg}$ (12%) of minor 208, and 0.6 mg (18\%) of starting material: major isomer IR (neat) 3266 (br), 2928, 1596, 1482, 1324, 1256, 1070; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37$ (d, J $=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$, (br s, 1H), 7.95 (d, J= $9 \mathrm{~Hz}, 1 \mathrm{H}$); MS(CI) m/z 272 (M+), 255, 236, 190, 173, 83; HRMS (CI) $\mathrm{m} / \mathrm{z} 272.1527$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: 272.1525$).
minor $208:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, 2.02, (br s, 1H), $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H})$.

Ketone 209. To a solution of $197(0.04 \mathrm{~g}, 0.016 \mathrm{mmol})$ in THF (1 mL) was added slowly KHMDS ($0.06 \mathrm{~mL}, 0.5 \mathrm{~mol}$ solution in toluene, 0.03 mmol) at $-78^{\circ} \mathrm{C}$. After stirring 2 h at $-78^{\circ} \mathrm{C}$, a solution of $\operatorname{TBSCI}(0.007 \mathrm{~g}, 0.049 \mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$
was added. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the mixture was diluted with ether (20 mL), washed with water (5 mL). The phases were separated, and aqueous portion was extracted with ether ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by chromatography on silica, using 4% ethyl acetate in hexane as eluent, to give $0.7 \mathrm{mg}(15 \%)$ of 209 as a colorless oil: IR (neat) 2963, 2932, 2862, 1700, 1600, 1484, 1328, 1273, 1250 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.25(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H})$, $0.81(\mathrm{~s}, 9 \mathrm{H}), 0.99,(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 3.12$ (dd, $J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 82(\mathrm{dd}, J=1,11 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 4.84$ (d, $J=1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.90(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=9 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5,-5.4,-5.3,-5.2,12.9,18.5,18.8,23.2$, $26.5,40.7,42.0,47.5,54.5,81.2,84.0,111.4,112.7,124.2,138.1,142.7,157.3$, 166.8, 192.8.

Ketone 210. To a solution of the $197(0.005 \mathrm{~g}, 0.19 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ was added TMSI ($0.027 \mathrm{~mL}, 0.19 \mathrm{mmol}$) at room temperature. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . After cooling down to room temperature, the solvent was evaporated and the residue was purified by chromatography on silica, using 5%
ethyl acetate in hexane as eluent, to give $0.5 \mathrm{mg}(10 \%)$ of 210: IR (neat) 2955, 2924, 2846, 1651, 1413, $1336 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{~d}, \mathrm{~J}=7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{dd}, J=5,10 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-3.10(\mathrm{~m}, 3 \mathrm{H})$, $3.78(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 12.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 19.3,19.7,20.6,28.4,33.1,44.2,45.9,111.1,112.1$, 115.1, 127.5, 135.5, 140.8, 154.1, 195.5; MS(CI) m/z $243\left(\mathrm{M}^{+}\right), 228,215,200$, 176, 162; HRMS (CI) $m / z 243.1260$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$: 243.1259).

References

1. Touchette, N. J. NIH Res. 1992, 4, 48.
2. Giacobini, E. Progress in Brain Res. 1990, 84, 321.
3. Davis, K. L.; Powchik, P. Lancet 1995, 345, 625.
4. Sugimoto, H.; limurs, Y.; Yamanish, Y.;Yamatsu, K. J. Med. Chem. 1995, 38, 4821.
5. Prous, J.; Rabasseda, X.; Castaner, J.Drugs Future 1996, 19, 656.
6. Ahmad, S. R Lancet 1993, 342, 736.
7. Liu, J. -S.; Zhu, Y. -L.; Zhou, Y. -z.; Han, Y. -Y.; Wu, F. -W.; Qi, B. -F. Can J. Chem. 1986, 64, 837.
8. Kozikowski, A. P.; Thiels, E.; Tang, X. -C.; Hanin, I. In Advances in Medicinal Chemistry, Maryanoff, B. E.; Maryanoff, C. A., Eds.; JAI Press: Greenwich, CT, 1992; Vol. 1, 175-205.
9. $X u$, S. -S.; Gao, Z. -X.; Du, Z. -M.; Xu, W: -A.; Yang, J. -S.;Zhang, M. -L.; Tong, Z. -H.; Fang, Y. -S.; Chia, Z. -S.; Li, S. -L. Acta Pharmacol. Sin. 1995, 16, 391.
10. Kozikowsk, A. P.; Xia, Y.; Reddy, E. R.; Hanin, I.; Tang, X. J. Org. Chem. 1991, 56, 4636.
11. Kozikowski, A. P.; Campiani, G.; Sun, L. Q.; Wang, S.; Saxena, A.; Doctor, B. P. J. Am. Chem. Soc. 1996, 118, 11357.
12. Wiesner, K.; Valenta, Z.; Yoshimurs, H. Tetrahedron Lett, 1960, 12, 14.
13. Liu, J. -S.; Ayer, W.; Browne, L. M.; Orszanska, H.; Valenta, Z. Can. J. hem. 1989, 67, 1538.
14. Kende, A. S.; Schneiderk, J. A. Syn. Comm. 1979, 9, 419.
15. Gravel, D.; Deziel, R.; Bordeleau, L. Tetrahedron Lett. 1983, 24, 699.
16. Gravel, D.; Bordeleau, L.; Ladouceur, G.; Randcourt, J.; Thoraval, D. Can. J. Chem. 1984, 62, 2945.
17. Kende, A. S.; Ebetino, F. H.; Battista, R.; Boatman, R. J.; Lorah, D. P.; Lodge, E. Heterocycles. 1984, 21, 91.
18. Kozikowski, A. P.; Tuckmantel, W. Acc. Chem. Res. 1999, 32, 641.
19. Xia, Y.; Kozikowsk, A. P. J. Am. Chem. Soc. 1989, 111, 4116
20. Kozikowsk, A. P.; Reddy, E. R.; Miller, C. P. J. Chem. Soc., Perkin Trans. 1, 1990, 195.
21. Raphael, R. A.; Colvin, E.; Martin, J.; Parker, W. J. Chem. Soc., Chem. Commun., 1966, 596.
22. Horii, Z. -I.; Imanishi, T.; Kim, S. -W.; Ninomiya, I. Chem. Pharm. Bull. 1968, 16, 1918.
23. Ji, R.; Qian, L. Tetrahedron Lett. 1989, 30, 2089.
24. Karus, G. A.; Hamsen, H.; Vines, D. Synth. Commun. 1992, 22, 2625.
25. Huang, Y.; Lu, X. Tetrahedron Lett. 1988, 29, 5663.
26. Campiani, G.; Sun, L. -Q.; Kozikowski, A. P.; Aaraard, P.; McKinney, M. J. Org. Chem. 1993, 58, 7660.
27. Yamada, F.; Kozikowski, A. P.; Reddy, E. R.; Pang, Y. -P.; Miller, J. P.; Mckinney, M. J. Am. Chem. Soc. 1991, 113, 4695.
28. Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S. Tetrahedron. 1998, 54, 5471.
29. Corn, R. S. E.; Lovell, A. V.; Karady, S.; Weinstock, L. M. J. Org. Chem. 1986, 51, 4710.
30. Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1988, 53, 113
31. He, X. -C.; Wang, B.; Bai, D. Tetrahedron Lett. 1998, 39, 411.
32. Chassaing, C.; Haudrechy, A.; Langlois, Y. Tetrahedron Lett. 1999, 40, 8805.
33. Rhoads, S. J.; Raulins, N. R. Org. React. 1975. 22, 1
34. (a) Limanto, J.; Snapper, M. L. J. Am. Chem. Soc. 2000, 122, 8071. (b) MacDougall, J. M.; Santora, V. J.; Verma, S. K.; Turnbull, P.; Hernandez, C. R.; Moore, H. W. J. Org. Chem. 1999, 63, 6905. (c) Davies, H. M. L.; Doan, B. D. J. Org. Chem. 1999, 63, 657.
35. Berson, J. B.; Jones, M. J. Am. Chem. Soc. 1964, 86, 5019
36. Overman, L. E.; Knoll, F. M. J. Am. Chem. Soc. 1980, 102, 865.
37. Brown, J. M.; Golding, B. T.; Stofko, J. J. J. Chem. Soc., Chem. Commun., 1973, 319
38. Vogel, E. Justus Liebigs Ann. Chem., 1958, 615, 1.
39. Allin, S. M.; Button, M. A. C.; Shuttleworth, S. J. Synlett. 1997, 725.
40. Serckx-Poncin, B.; Hesbain-Frisque, A. -M.; Ghosez, L. Tetrahedron Lett. 1982, 23, 3261.
41. (a) Crimmins, M. T.; Reinhold, T. L. Org. React. 1993, 44, 297. (b) Horspool, W. M. In Photochemistry in Organic Synthesis; Coyle, J. D., ED.; Royal Society of Chemistry: London, 1986, 210.
42. Crimmins, M. T. Chem. Rev. 1988, 88, 1453.
43. Marchand, A. P.; Xing, D.; Wang, Y.; Bott, S. G. Tetrahedron: Asymmetry 1995, 6, 2709.
44. (a) Trost, B. M.; Romero, A. G. J. Org. Chem. 1986, 51, 2332. (b) Audia, J. E.; Boisvert, L.; Patten, A. D.; Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 3738.
45. (a) Srinivasan, R.; Carlough, K. H. J. Am. Chem. Soc. 1967, 89, 4932. (b) Liu, R. S. H.; Hammond, G. S. J. Am. Chem. Soc. 1967, 89, 4930.
46. Gariboldi, P.; Jommi, G.; Sisti, M. Gazz. Chim. Ital. 1986, 116, 291.
47. Martin, S. F.; Rueger, H.; Williamson, S. A.; Grzejszczak, S. J. Am. Chem. Soc. 1987, 109, 6124.
48. Yadav, J. S.; Barma, D. K. Tetrahedron 1996, 52, 4457.
49. Molander, G. A.; La Belle, B. E.; Hahn, G. J. Org. Chem. 1986, 51, 5259.
50. Kang, S. K.; Kim, S. G.; Park, D. C.; Lee, J. S. J. Chem. Soc. Perkin Trans. 1 1993, 9. 49.
51. Anthonsen, T.; McCabe, P. H.; McCrindle, R.; Murray, R. D. H. Tetrahedron. 1969, 25, 2233.
52. Erdik, E Tetrahedron, 1987, 43, 2203.
53. (a) Hauser, C. R.; Breslow, O. S. Org. Synth., Coll., Vol III, 1955, 408. (b) Bewman, M. S.; Arens, F. J. J. Am. Chem. Soc. 1955, 77, 946. (c) Kerdesky, F. A. J.; Ardecky, R. J.; Lakshmikanthan, M. V.; Cava, M. P. J. Am. Chem. Soc. 1981, 103, 1992.
54. Hartung, W. H.; Simonoff, R. Org. React. 1953, 7, 263.
55. Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett, 1977, 18, 4171.
56. McElvain, S. A.; Stevens, C. L. J. Am. Chem. Soc. 1946, 68, 1917.
57. (a) Cuerva, J. M.; Echavarren, A. M. Synlett. 1997, 173. (b) Villacampa, M.; Perez, J. M.; Avendano, C.; Menendez, J. C. Tetrahedron 1994, 50, 10047.
58. Tamion, R.; Mineur, C.; Ghosez, L. Tetrahedron Lett. 1995, 36, 8977.
59. Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767.
60. Magnus, P.; Rigollier, P.; Lacour, J.; Tobler, H. J. Am. Chem. Soc. 1993, 115, 12629.
61. Trost, B. M.; Salzmann, T.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887.
62. Mikolajczyk, M.; Midura, W. H. Synlett. 1991, 245.
63. Reich, H. J.; Willis, W. W.; Clark, P. D. J. Org. Chem. 1981, 46, 2775.
64. Sharpless, K. B.; Young, M. W.; Lauer, R. F. Tetrahedron Lett. 1973, 22, 1979.
65. Peterson, D. J. J. Org. Chem. 1968, 33, 780.
66. Petasis, N. A.; Lu, S. -P. Tetrahedron Lett. 1995, 36, 2393.
67. Scott, W. J.; Crips, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 4630.
68. Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 32, 6299.

Chapter IV. GENERAL CONCLUSION

The research described in this dissertation presents results on the synthesis of two natural products, (+)-byssochlamic acid and huperzine A.

Syntheses of both natural (+)- and nonnatural (-)-byssochlamic acid (3) were accomplished by a [2+2] photoaddition-cycloreversion strategy. An X-ray crystallographic analysis of the cyclohexylamine salt 99 unambiguously established the structure of $\mathbf{1 0 0}$ and 103 obtained from enzymatic hydrolysis of 44 and 82, respectively. The preferred cis configuration of the ethyl and n-propyl side chains was demonstrated by using racemic (\pm)-103 to access both enantiomers of byssochlamic acid (3)

In the approach to the synthesis of huperzine A, an intramolecular [2+2] photoaddition of the enantiopure enone 121 provided a direct route to the cyclobutane 122 with desired stereochemistry. The methoxypyridine moiety was synthesized by an intramolecular Michael addition followed by selenoxide elimination. The intended transformation of ketone 197 into a precursor of huperzine A by means of a [3.3] sigmatropic rearrangement of its enamine 202 was thwarted by difficulties which originate from poor overlap of the alkene termini.

Bibliography

Ahmad, S. R Lancet 1993, 342, 736.

Allin, S. M.; Button, M. A. C.; Shuttleworth, S. J. Synlett. 1997, 725.

Anthonsen, T.; McCabe, P. H.; McCrindle, R.; Murray, R. D. H. Tetrahedron. 1969, 25, 2233.

Arai, K.; Shimizu, S.; Miyajima, H.; Yamamoto, Y. Chem. Pharm. Bull. 1989, 37, 2870.

Armstrong, A.; Critchley, T. J.; Mortlock, A. A. Synlett 1998, 552.

Asano, M.; Kanematsu, T. Chem. Ber. 1932, 65.

Audia, J. E.; Boisvert, L.; Patten, A. D.; Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 3738.

Baldwin, J. E.; Barton, D. H. R.; Bloomer, J. L.; Jackman, L. M.; Rodriguez-Hahn, L.; Sutherland, J. K. Experientia 1962, 18, 345.

Baldwin, J. E.; Barton, D. H. R.; Sutherland, J. K. J. Chem. Soc. 1965, 1787.

Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett, 1977, 18, 4171.

Berson, J. B.; Jones, M. J. Am. Chem. Soc. 1964, 86, 5019

Bewman, M. S.; Arens, F. J. J. Am. Chem. Soc. 1955, 77, 946.

Bio, M. M.; Leighton, J. L. J. Am. Chem. Soc. 1999, 121, 890.

Birkinshaw, J. H.; Raistrick, H. Biochem. J. 1934, 28, 828

Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394.

Brown, J. M.; Golding, B. T.; Stofko, J. J. J. Chem. Soc., Chem. Commun., 1973, 319.

Büchi, G.; Snader, K. M.; White, J. D.; Gougoutas, J. Z.; Singh, S. J. Am. Chem..Soc. 1970, 92, 6638.

Campiani, G.; Sun, L. -Q.; Kozikowski, A. P.; Aaraard, P.; McKinney, M. J. Org. Chem. 1993, 58, 7660.

Chassaing, C.; Haudrechy, A.; Langlois, Y. Tetrahedron Lett. 1999, 40, 8805.
Chen, C.; Layton, M. E.; Shair, M. D. J. Am. Chem. Soc. 1998, 120, 10784.
Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 32, 6299.

Corey, E. J.; Bock, M. Tetrahedron Lett. 1975, 3269.
Corn, R. S. E.; Lovell, A. V.; Karady, S.; Weinstock, L. M. J. Org. Chem. 1986, 51, 4710.

Crane, R. I.; Hedden, P.; MacMillan, J.; Turner, W. B. J. Chem. Soc. Perkin Trans 1 1973, 194.

Crimmins, M. T. Chem. Rev. 1988, 88, 1453.
Crimmins, M. T.; Reinhold, T. L. Org. React. 1993, 44, 297.
Cuerva, J. M.; Echavarren, A. M. Synlett. 1997, 173
Dabrah, T. T.; Kaneko, T.; Massefski, Jr., W.; Whipple, E. B. J. Am. Chem. Soc. 1997, 119, 1594.

Davies, H. M. L.; Calvo, R.; Ahmed, G. Tetrahedron Lett. 1997, 38, 1737.
Davies, H. M. L.; Doan, B. D. J. Org. Chem. 1999, 63, 657.

Davis, K. L.; Powchik, P. Lancet 1995, 345, 625.

Drapela, N. E. Synthetic Studies of nonadrides. 1998, 139.
Erdik, E Tetrahedron, 1987, 43, 2203.

Frontier, A. J.; Danishefsky, S. J.; Koppel, G. A.; Meng, D. Tetrahedron 1998, 54, 12721.

Gariboldi, P.; Jammi, G.; Sisti, M. Gazz. Chim. Ital. 1986, 116, 291.
Gerdes, J. M.; Wade, L. G. Tetrahedron Lett. 1979, 689.

Giacobini, E. Progress in Brain Res. 1990, 84, 321.
Gravel, D.; Deziel, R.; Bordeleau, L. Tetrahedron Lett. 1983, 24, 699.
Gravel, D.; Bordeleau, L.; Ladouceur, G.; Randcourt, J.; Thoraval, D. Can. J. Chem. 1984, 62, 2945.

Hamor, T. A.; Paul, I. C.; Monteath Robertson, J.; Sim. G. A. Experientia 1962, 18, 352.

Hartung, W. H.; Simonoff, R. Org. React. 1953, 7, 263.
Hauser, C. R.; Breslow, O. S. Org. Synth., Coll., Vol III, 1955, 408.
Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1988, 53, 113

He, X. -C.; Wang, B.; Bai, D. Tetrahedron Lett. 1998, 39, 411.

Horii, Z. -I.; Imanishi, T.; Kim, S. -W.; Ninomiya, I. Chem. Pharm. Bull. 1968, 16, 1918.

Horspool, W. M. In Photochemistry in Organic Synthesis; Coyle, J. D., ED.; Royal Society of Chemistry: London, 1986, 210.

Huang, Y.; Lu, X. Tetrahedron Lett. 1988, 29, 5663.

Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.

Ji, R.; Qian, L. Tetrahedron Lett. 1989, 30, 2089.

Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S. Tetrahedron. 1998, 54, 5471

Kang, S. K.; Kim, S. G.; Park, D. C.; Lee, J. S. J. Chem. Soc. Perkin Trans. 1 1993, 9. 49.

Karus, G. A.; Hamsen, H.; Vines, D. Synth. Commun. 1992, 22, 2625.

Kende, A. S.; Schneiderk, J. A. Syn. Comm. 1979, 9, 419.

Kende, A. S.; Ebetino, F. H.; Battista, R.; Boatman, R. J.; Lorah, D. P.; Lodge, E. Heterocycles. 1984, 21, 91.

Kerdesky, F. A. J.; Ardecky, R. J.; Lakshmikanthan, M. V.; Cava, M. P. J. Am. Chem. Soc. 1981, 103, 1992.

Kim, S.; Park, J. H. Tetrahedron Lett. 1987, 28, 439

Kozikowsk, A. P.; Reddy, E. R.; Miller, C. P. J. Chem. Soc., Perkin Trans. 1, 1990, 195.

Kozikowsk, A. P.; Xia, Y.; Reddy, E. R.; Hanin, I.; Tang, X. J. Org. Chem. 1991, 56, 4636.

Kozikowski, A. P.; Thiels, E.; Tang, X. -C.; Hanin, I. In Advances in Medicinal Chemistry, Maryanoff, B. E.; Maryanoff, C. A., Eds.; JAI Press: Greenwich, CT, 1992; Vol. 1, 175-205.

Kozikowski, A. P.; Campiani, G.; Sun, L. Q.; Wang, S.; Saxena, A.; Doctor, B. P. J. Am. Chem. Soc. 1996, 118, 11357.

Kozikowski, A. P.; Tuckmantel, W. Acc. Chem. Res. 1999, 32, 641.

Kraft, K.; Porsch, H. Just. Lieb. Ann. Chim. 1937, 527, 168.

Kraft, K. Just. Lieb. Ann. Chim. 1937, 530, 20.

Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 1877, 1880.

Lange, G. L.; Huggins, M.-A.; Neidert, E. Tetrahedron Lett. 1976, 4409.

Lange, G. L.; McCarthy, F. C. Tetrahedron Lett. 1978, 4749.

Laumen, K.; Schneider, M. P. J. Chem. Soc. Chem. Commun. 1986, 1248.

Leonard, D. M. J. Med. Chem. 1997, 40, 2971.

Limanto, J.; Snapper, M. L. J. Am. Chem. Soc. 2000, 122, 8071.
Liu, J. -S.; Zhu, Y. -L.; Zhou, Y. -z.; Han, Y. -Y.; Wu, F. -W.; Qi, B. -F. Can J. Chem. 1986, 64, 837.

Liu, J. -S.; Ayer, W.; Browne, L. M.; Orszanska, H.; Valenta, Z. Can. J. Chem. 1989, 67, 1538.

Liu, R. S. H.; Hammond, G. S. J. Am. Chem. Soc. 1967, 89, 4930.

MacDougall, J. M.; Santora, V. J.; Verma, S. K.; Turnbull, P.; Hernandez, C. R.; Moore, H. W. J. Org. Chem. 1999, 63, 6905.

Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767.

Magnus, P.; Rigollier, P.; Lacour, J.; Tobler, H. J. Am. Chem. Soc. 1993, 115, 12629.

Marchand, A. P.; Xing, D.; Wang, Y.; Bott, S. G. Tetrahedron: Asymmetry 1995, 6, 2709.

Martin, S. F.; Rueger, H.; Williamson, S. A.; Grzejszczak, S. J. Am. Chem. Soc. 1987, 109, 6124.

McElvain, S. A.; Stevens, C. L. J. Am. Chem. Soc. 1946, 68, 1917.

Mikolajczyk, M.; Midura, W. H. Synlett. 1991, 245.

Molander, G. A.; La Belle, B. E.; Hahn, G. J. Org. Chem. 1986, 51, 5259.

Moss, M. O. In Microbial Toxins; Ciegler, A., Ed.; Academic Press: New York \& London, 1971, 6, 381.

Narasaka, K.; Sakakura, T.; Uchimaru, T.; Guedin-Vuong, D. J. Am. Chem. Soc. 1984, 106, 2954.

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Choi, H.-S.; Yoon, W. H.; He, Y.; Fong, K. C. Angew. Chem. Int. Ed. Engl. 1999, 38, 1699.

Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Fong, K. C.; He, Y.; Yoon, W. H.; Choi, H-S. Angew. Chem. Int. Ed. Engl. 1999, 38, 1676.

Olliver, Smith, J. Bot. 1933 71, 196.

Overman, L. E.; Knoll, F. M. J. Am. Chem. Soc. 1980, 102, 865.

Overeem, J. C.; Mackor, A. Recl. Trav. Chim. Pays-Bos 1973, 92, 349.

Petasis, N. A.; Lu, S. -P. Tetrahedron Lett. 1995, 36, 2393.

Peterson, D. J. J. Org. Chem. 1968, 33, 780.

Prous, J.; Rabasseda, X.; Castaner, J.Drugs Future 1996, 19, 656.

Raistrick, H.; Smith, G. Biochem. J. 1933, 27, 1814.

Randall, M. L.; Lo, P. C-K.; Bonitatebus Jr., P. J.; Snapper, M. L. J. Am. Chem. Soc. 1999, 121, 4534.

Raphael, R. A.; Colvin, E.; Martin, J.; Parker, W. J. Chem. Soc., Chem. Commun., 1966, 596.

Reich, H. J.; Willis, W. W.; Clark, P. D. J. Org. Chem. 1981, 46, 2775.

Rhoads, S. J.; Raulins, N. R. Org. React. 1975. 22, 1.

Sabbioni, G.; Shea, M. L.; Jones, J. B. J. Chem. Soc. Chem. Commun. 1984, 236.

Schaumann, E.; Ketcham, R. Angew. Chem. Int. Ed. Engl. 1982, 21, 225.

Schorno, K. S.; Adolphen, G. H.; Eisenbraun, E. J. J. Org. Chem. 1969, 34, 2801.

Scott, W. J.; Crips, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 4630.

Serckx-Poncin, B.; Hesbain-Frisque, A. -M.; Ghosez, L. Tetrahedron Lett. 1982, 23, 3261.

Sgarbi, P. W. M.; Clive, D. L. J. Chem. Commun. 1997, 2157.

Sharpless, K. B.; Young, M. W.; Lauer, R. F. Tetrahedron Lett. 1973, 22, 1979.

Soai, K.; Yokoyama, S.; Mochida, Y. Synthesis 1987, 647.

Srinivasan, R.; Carlough, K. H. J. Am. Chem. Soc. 1967, 89, 4932.

Stein, K. A.; Toogood, P. L. J. Org. Chem. 1995, 60, 8110.

Stork, G.; Tabak, J. M.; Blount, J. F. J. Am. Chem. Soc. 1972, 94, 4735.
Sugimoto, H.; limurs, Y.; Yamanish, Y.;Yamatsu, K. J. Med. Chem. 1995, 38, 4821.

Sutherland, J. K. Fortschr. Chem. Org. Naturst. 1967, 25, 131.
Sutter, H.; Wijkman, N. Just. Lieb. Ann. Chim. 1933, 505, 248.

Sutter, H.; Wijkman, N. Just. Lieb. Ann. Chim. 1935, 519, 97.
Sutter, H.; Rottmayr, F.; Porsch H. Just. Lieb. Ann. Chim. 1936, 521, 189.

Tamion, R.; Mineur, C.; Ghosez, L. Tetrahedron Lett. 1995, 36, 8977.

Touchette, N. J. NIH Res. 1992, 4, 48.

Trost, B. M.; Salzmann, T.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887.

Trost, B. M.; Romero, A. G. J. Org. Chem. 1986, 51, 2332.

Villacampa, M.; Perez, J. M.; Avendano, C.; Menendez, J. C. Tetrahedron 1994, 50, 10047.

Vogel, E. Justus Liebigs Ann. Chem., 1958, 615, 1.
Waizumi, N.; Itoh, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 6015.
Wang, Y.-F.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. Am. Chem. Soc. 1984, 106, 3695.

Wender, P. A.; Lechleiter, J. C. J. Am. Chem. Soc. 1977, 99, 267.

Wender, P. A.; Hubbs, J. C. J. Org. Chem. 1980, 45, 365.

Wender, P. A.; Letendre, L. J. J. Org. Chem. 1980, 45, 367.

White, J. D.; Dillon, M. P.; Butlin, R. J. J. Am. Chem. Soc. 1992, 114, 9673.

Wiesner, K.; Valenta, Z.; Yoshimurs, H. Tetrahedron Lett, 1960, 12, 14.

Wijkman, N. Just. Lieb. Ann. Chim. 1931, 485, 61.

Williams, J. R.; Callahan, J. F. J. Chem. Soc. Chem. Commun. 1979, 405.

Williams, J. R.; Callahan, J. F. J. Org. Chem. 1980, 45, 4475, 4479.

Wilson, B. J.; Wilson, C.H. J. Bacteriol. 1962, 83, 693.

Wilson, S. R.; Phillips, L. R.; Pelister, Y.; Huffman, J. C. J. Am. Chem. Soc. 1979, 101, 7373.

Xia, Y.; Kozikowsk, A. P. J. Am. Chem. Soc. 1989, 111, 4116

Xu, S. -S.; Gao, Z. -X.; Du, Z. -M.; Xu, W. -A.; Yang, J. -S.;Zhang, M. -L.; Tong, Z. -H.; Fang, Y. -S.; Chia, Z. -S.; Li, S. -L. Acta Pharmacol. Sin. 1995, 16, 391

Yadav, J. S.; Barma, D. K. Tetrahedron 1996, 52, 4457.

Yamada, F.; Kozikowski, A. P.; Reddy, E. R.; Pang, Y. -P.; Miller, J. P.; Mckinney, M. J. Am. Chem. Soc. 1991, 113, 4695.

Appendices

APPENDIX A

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION ON CYCLOHEXYLAMINE SALT 99

Table A. 1 Crystal data and structure refinement for 99

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4}$
Formula weight	297.39
Temperature	566(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	P-1 (\#2)
Unit cell dimensions	$a=5.999(2) \AA \quad \alpha=98.530(10)^{\circ}$.
	$b=11.212(2) \AA$ A $\quad \beta=91.64(2)^{\circ}$.
	$\mathrm{c}=13.274(3) \AA$ A $\quad \gamma=96.50(2)^{\circ}$.
Volume	876.3(4) \AA^{3}
Z	2
Density (calculated)	$1.127 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.649 \mathrm{~mm}^{-1}$
F(000)	324
Crystal size	$0.50 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	3.37 to 67.48°.
Index ranges	$0<=h<=1,-13<=k<=13,-15<=1<=15$
Reflections collected	1302
Independent reflections	$973[\mathrm{R}$ (int) $=0.0583]$
Completeness to theta $=67.48^{\circ}$	30.8 \%
Absorption correction	Empirical (Psi-scans)
Max. and min. transmission	0.9379 and 0.7372
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	973/139 / 191
Goodness-of-fit on F^{2}	1.780
Final R indices [$1>2$ sigma(1]]	$\mathrm{R} 1=0.0803, \mathrm{wR} 2=0.2339$
R indices (all data)	$R 1=0.0948, w R 2=0.2555$
Extinction coefficient	0.004(3)

Largest diff. peak and hole0.181 and -0.129 e. $\AA^{-}-3$

Table A. 2 Atomic coordinates ($x 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 99.
$U(e q)$ is defined as one third of the trace of the orthogonalized $U i j$ tensor.

	x	y	z	U(eq)
O(1)	18080(20)	5029(6)	1332(4)	134(8)
O(2)	16350(20)	4397(4)	2654(4)	164(8)
$\mathrm{O}(3)$	13036(18)	5822(4)	4089(3)	109(8)
$\mathrm{O}(4)$	10460(20)	6696(9)	3390(8)	166(10)
C(11)	16750(30)	5131(6)	2072(5)	119(10)
C(12)	15400(30)	6191(7)	2064(6)	112(10)
C(13)	13890(30)	6658(8)	2589(5)	119(10)
C(14)	12330(30)	6322(11)	3391(11)	105(12)
C(15)	13870(50)	7689(13)	1991(11)	242(13)
C(16)	15660(50)	7159(14)	1395(10)	214(13)
C(17)	16270(50)	7368(12)	701(12)	262(13)
C(10)	19270(40)	4067(11)	1295(6)	178(11)
C(18)	16400(50)	8473(15)	132(12)	276(13)
C(19)	18400(70)	9020(40)	-30(40)	410(30)
C(192)	16180(120)	8390(30)	-850(20)	230(20)
N(1)	7450(20)	6111(4)	4789(3)	133(9)
C(21)	7580(30)	7147(7)	5625(6)	119(11)
C(22)	7110(30)	8238(6)	5228(6)	158(10)
C(23)	7420(40)	9368(9)	6070(9)	207(12)
C(24)	9600(40)	9511(12)	6618(10)	200(13)
C(25)	10160(40)	8442(9)	6995(6)	181(11)
C(26)	9850(30)	7340(8)	6138(6)	145(11)

Table A. 3 Bond lengths [Å] and angles [${ }^{\circ}$] for 99.

$\mathrm{O}(1)-\mathrm{C}(11)$	1.285(12)	
$\mathrm{O}(1)-\mathrm{C}(10)$	1.353(15)	
$\mathrm{O}(2)-\mathrm{C}(11)$	$1.219(7)$	
$\mathrm{O}(3)-\mathrm{C}(14)$	1.240(12)	
$\mathrm{O}(4)-\mathrm{C}(14)$	1.243(17)	
$\mathrm{C}(11)-\mathrm{C}(12)$	1.514(16)	
C(12)-C(13)	1.27(2)	
$\mathrm{C}(12)-\mathrm{C}(16)$	1.500(13)	
C(12)-C(15)	2.02(2)	
$\mathrm{C}(13)-\mathrm{C}(15)$	1.497(12)	
C(13)-C(14)	1.50(2)	
C(15)-C(16)	1.48(3)	
$\mathrm{C}(16)-\mathrm{C}(17)$	1.049(17)	
$\mathrm{C}(17)-\mathrm{C}(18)$	1.540(16)	
C(18)-C(192)	1.30(3)	
C(18)-C(19)	1.32(3)	
$\mathrm{N}(1)-\mathrm{C}(21)$	1.477(9)	
C(21)-C(22)	1.454(10)	
C(21)-C(26)	1.482(18)	
C(22)-C(23)	1.550(12)	
C(23)-C(24)	1.46(2)	
C(24)-C(25)	1.435(13)	
C(25)-C(26)	1.541(11)	
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(10)$	114.1(9)	
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(1)$	125.8(10)	
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	121.2(11)	
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	112.4(7)	
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(16)$	94.9(12)	
C(13)-C(12)-C(11)	137.3(8)	
$\mathrm{C}(16)-\mathrm{C}(12)-\mathrm{C}(11)$	127.6(14)	
C(13)-C(12)-C(15)	47.9(7)	
$\mathrm{C}(16)-\mathrm{C}(12)-\mathrm{C}(15)$	47.1(10)	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	174.1(12)	

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	$93.1(12)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$137.7(9)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)$	$128.6(15)$
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{O}(4)$	$122.7(19)$
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	$119.4(14)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	$.117 .3(12)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(13)$	$86.9(14)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(12)$	$47.8(9)$
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(12)$	$39.0(8)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$128(2)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(12)$	$144(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(12)$	$85.1(13)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$136.1(19)$
$\mathrm{C}(192)-\mathrm{C}(18)-\mathrm{C}(19)$	$82(4)$
$\mathrm{C}(192)-\mathrm{C}(18)-\mathrm{C}(17)$	$124(2)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$118(2)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(1)$	$110.2(6)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	$110.1(11)$
$\mathrm{N}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	$109.6(11)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$111.7(8)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$112.3(13)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$114.7(15)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$110.5(8)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$112.9(12)$

Symmetry transformations used to generate equivalent atoms:

Table A. 4 Anisotropic displacement parameters ($\AA^{2} \mathbf{x} 10^{3}$) for 99.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 \mathrm{hka} \mathrm{a}^{*} \mathrm{U}^{12} \mathrm{j}$

	U^{11}	U^{22}	U33	u^{23}	U ${ }^{13}$	u^{12}
O(1)	110(30)	170(4)	120(3)	20(3)	5(6)	27(7)
$\mathrm{O}(2)$	200(30)	146(3)	162(3)	50(3)	39(7)	40(6)
O(3)	60(20)	151(3)	121(2)	49(2)	-8(6)	-6(5)
O(4)	150(30)	223(9)	127(4)	58(5)	7(10)	-4(11)
C(11)	100(30)	134(5)	113(4)	21(3)	-7(8)	-22(8)
C(12)	80(30)	137(5)	120(4)	35(4)	-23(9)	9(9)
C(13)	90(30)	146(5)	127(5)	49(4)	-13(10)	-6(10)
C(14)	50(40)	147(6)	120(5)	21(4)	17(13)	28(13)
C(15)	280(40)	239(11)	239(10)	144(9)	63(17)	18(16)
C(16)	230(40)	269(12)	190(8)	134(8)	48(14)	117(17)
C(17)	260(40)	284(13)	320(14)	183(12)	161(19)	162(17)
C(10)	200(30)	189(7)	158(6)	18(5)	25(11)	102(14)
C(18)	320(40)	266(12)	262(12)	137(10)	8(17)	-11(17)
N(1)	160(30)	124(3)	115(3)	$31(2)$	-20(7)	-9(6)
C(21)	90(30)	139(5)	124(4)	32(4)	-2(9)	8(10)
C(22)	150(30)	126(4)	189(6)	32(4)	-32(11)	-9(8)
C(23)	240(40)	138(7)	235(10)	16(7)	-35(17)	28(13)
C(24)	190(40)	168(8)	212(9)	-1(8)	-51(16)	-40(15)
C(25)	200(30)	175(7)	161(6)	11(5)	-38(11)	2(11)
C(26)	150(30)	151(5)	125(4)	22(4)	-30(10)	-4(10)

Table A. 5 Hydrogen coordinates ($x 10^{4}$) and isotropic displacement

	x	y	z	U(eq)
H(15A)	12478	7684	1599	290
H(15B)	14338	8482	2385	290
H(16)	16899	7655	1816	256
$\mathrm{H}(17 \mathrm{~A})$	15516	6716	203	314
H(17B)	17823	7201	737	314
H(10A)	20210	4043	722	267
$\mathrm{H}(10 \mathrm{~B})$	18248	3331	1224	267
$\mathrm{H}(10 \mathrm{C})$	20179	4142	1912	267
H(18A)	15599	8217	-524	331
H(18B)	15580	9077	514	331
H(19A)	18232	9705	-365	608
H(19B)	19202	8455	-457	608
H(19C)	19229	9279	607	608
H(19D)	16176	9187	-1036	351
H(19E)	14791	7904	-1093	351
H(19F)	17409	8017	-1160	351
H(1A)	7763	5451	5038	199
H(1B)	8435	6278	4326	199
H(1C)	6070	5978	4499	199
H(21)	6465	6964	6122	142
H(22A)	5580	8123	4944	190
H(22B)	8109	8374	4684	190
H(23A)	7267	10088	5761	248
H(23B)	6239	9294	6550	248
H(24A)	10748	9755	6166	240
H(24B)	9618	10162	7189	240
H(25A)	9204	8281	7548	217
H(25B)	11706	8574	7259	217
H(26A)	10964	7456	5636	174
H(26B)	10109	6617	6424	174

APPENDIX B

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION ON

 CYCLOBUTANE 157

Table B. 1 Crystal data and structure refinement for Cyclobutane 157

Empirical formula	C 22 H 36 BrNO Si
Formula weight	470.52
Temperature	298(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P21/c (\#14)
Unit cell dimensions	$a=11.266(1) \AA \quad \alpha=90^{\circ}$.
	$b=10.731(1) \AA \quad \beta=106.13^{\circ}$.
	$c=19.674(1) \AA \quad \gamma=90^{\circ}$.
Volume	2284.9(3) \AA^{3}
Z	4
Density (calculated)	$1.368 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.126 \mathrm{~mm}^{-1}$
F(000)	992
Crystal size	$0.30 \times 0.17 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	4.10 to 57.34°.
Index ranges	$-9<=h<=9,-11<=k<=11,-21<=\mid<=21$
Reflections collected	6087
Independent reflections	$2885[\mathrm{R}(\mathrm{int})=0.0558]$
Completeness to theta $=57.34^{\circ}$	92.4 \%
Max. and min. transmission	0.7451 and 0.4540
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	2885 / 0/276
Goodness-of-fit on F^{2}	1.036
Final R indices [$1>2$ sigma(1]]	$R 1=0.0413, w R 2=0.1078$
R indices (all data)	$R 1=0.0507, w R 2=0.1160$
Extinction coefficient	0.00088(14)
Largest diff. peak and hole0.356	. 564 e. ${ }^{-1}{ }^{-3}$

Table B. 2 Atomic coordinates ($x 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Cyclobutane 157.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x		y	z
l				
		$\mathrm{U}(\mathrm{eq})$		
Br	$9261(1)$	$4541(1)$	$6142(1)$	$66(1)$
Si	$10639(1)$	$8247(1)$	$6621(1)$	$51(1)$
N	$6143(4)$	$6226(3)$	$4936(2)$	$60(1)$
$\mathrm{O}(1)$	$9381(2)$	$7393(2)$	$6472(1)$	$52(1)$
$\mathrm{O}(2)$	$6498(3)$	$4356(3)$	$5476(2)$	$65(1)$
$\mathrm{O}(3)$	$6219(3)$	$9457(2)$	$5550(2)$	$65(1)$
$\mathrm{C}(1)$	$7749(5)$	$8113(5)$	$7773(2)$	$86(2)$
$\mathrm{C}(2)$	$7402(4)$	$8371(4)$	$6985(2)$	$60(1)$
$\mathrm{C}(3)$	$6042(4)$	$8721(4)$	$6630(2)$	$66(1)$
$\mathrm{C}(4)$	$5844(5)$	$9846(4)$	$6156(2)$	$74(1)$
$\mathrm{C}(5)$	$5758(4)$	$8217(4)$	$5404(2)$	$59(1)$
$\mathrm{C}(6)$	$5934(4)$	$7609(4)$	$6120(2)$	$59(1)$
$\mathrm{C}(7)$	$7279(4)$	$7222(4)$	$6496(2)$	$51(1)$
$\mathrm{C}(8)$	$8188(4)$	$7104(3)$	$6053(2)$	$48(1)$
$\mathrm{C}(9)$	$7860(4)$	$7666(4)$	$5295(2)$	$53(1)$
$\mathrm{C}(10)$	$6466(4)$	$7554(4)$	$4966(2)$	$56(1)$
$\mathrm{C}(11)$	$6857(4)$	$5385(4)$	$5361(2)$	$54(1)$
$\mathrm{C}(12)$	$8191(4)$	$5836(4)$	$5658(2)$	$52(1)$
$\mathrm{C}(13)$	$8527(4)$	$6568(4)$	$5060(2)$	$57(1)$
$\mathrm{C}(21)$	$11121(4)$	$7027(4)$	$7962(2)$	$97(2)$
$\mathrm{C}(22)$	$11709(4)$	$7472(4)$	$7411(2)$	$70(1)$
$\mathrm{C}(23)$	$12873(5)$	$8226(5)$	$7744(3)$	$90(2)$
$\mathrm{C}(24)$	$11937(5)$	$6874(5)$	$5807(3)$	$83(2)$
$\mathrm{C}(25)$	$11343(4)$	$8148(4)$	$5857(2)$	$63(1)$
$\mathrm{C}(26)$	$12268(5)$	$9184(5)$	$5824(3)$	$85(2)$
$\mathrm{C}(27)$	$10175(5)$	$10325(5)$	$7487(3)$	$84(2)$
$\mathrm{C}(28)$	$10420(5)$	$9950(4)$	$6784(2)$	$65(1)$
$\mathrm{C}(29)$	$9520(5)$	$10601(4)$	$6159(3)$	$83(2)$

Table B. 3 Bond lengths [\AA] and angles [${ }^{\circ}$] for Cyclobutane 157.

$\mathrm{Br}-\mathrm{C}(12)$	$1.910(4)$
$\mathrm{Si}-\mathrm{O}(1)$	$1.644(3)$
$\mathrm{Si}-\mathrm{C}(22)$	$1.875(4)$
$\mathrm{Si}-\mathrm{C}(28)$	$1.883(4)$
$\mathrm{Si}-\mathrm{C}(25)$	$1.889(4)$
$\mathrm{N}-\mathrm{C}(11)$	$1.337(5)$
$\mathrm{N}-\mathrm{C}(10)$	$1.467(5)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.403(4)$
$\mathrm{O}(2)-\mathrm{C}(11)$	$1.220(5)$
$\mathrm{O}(3)-\mathrm{C}(5)$	$1.428(5)$
$\mathrm{O}(3)-\mathrm{C}(4)$	$1.432(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.515(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.543(6)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.547(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.505(6)$
$\mathrm{C}(3)-\mathrm{C}(6)$	$1.542(6)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.505(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.514(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.547(6)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.522(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.556(5)$
$\mathrm{C}(8)-\mathrm{C}(12)$	$1.568(5)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.528(5)$
$\mathrm{C}(9)-\mathrm{C}(13)$	$1.536(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.532(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.547(5)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.497(6)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.526(6)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.537(6)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.538(6)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.538(6)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.527(6)$
$\mathrm{O}(1)-\mathrm{Si}-\mathrm{C}(22)$	$102.96(16)$

$\mathrm{O}(1)-\mathrm{Si}-\mathrm{C}(28)$	115.12(19)
$\mathrm{C}(22)-\mathrm{Si}-\mathrm{C}(28)$	111.97(19)
$\mathrm{O}(1)-\mathrm{Si}-\mathrm{C}(25)$	110.99(16)
C(22)-Si-C(25)	108.6(2)
C(28)-Si-C(25)	107.1(2)
$\mathrm{C}(11)-\mathrm{N}-\mathrm{C}(10)$	122.0(4)
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{Si}$	150.0(2)
$\mathrm{C}(5)-\mathrm{O}(3)-\mathrm{C}(4)$	105.3(3)
$C(1)-C(2)-C(3)$	116.7(4)
$C(1)-C(2)-C(7)$	116.3(4)
$C(3)-C(2)-C(7)$	90.4(3)
$C(4)-C(3)-C(6)$	104.2(3)
$C(4)-C(3)-C(2)$	115.7(4)
$C(6)-C(3)-C(2)$	89.7(3)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	104.8(4)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(10)$	109.6(3)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	105.5(3)
$C(10)-C(5)-C(6)$	112.1(3)
$C(5)-C(6)-C(3)$	103.8(3)
$C(5)-C(6)-C(7)$	114.7(4)
$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	90.5(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	118.3(3)
$C(8)-C(7)-C(2)$	117.6(3)
$C(6)-C(7)-C(2)$	89.4(3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	109.5(3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	114.3(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.9(3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(12)$	110.4(3)
$C(7)-C(8)-C(12)$	116.8(3)
$C(9)-C(8)-C(12)$	83.9(3)
C(10)-C(9)-C(13)	110.1(3)
$C(10)-C(9)-C(8)$	108.5(3)
$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(8)$	89.2(3)
$\mathrm{N}-\mathrm{C}(10)-\mathrm{C}(5)$	108.5(3)
$\mathrm{N}-\mathrm{C}(10)-\mathrm{C}(9)$	108.0(4)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	111.5(3)

$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{N}$	$123.7(4)$
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$123.8(4)$
$\mathrm{N}-\mathrm{C}(11)-\mathrm{C}(12)$	$112.5(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$106.9(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(8)$	$109.0(3)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(8)$	$88.3(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Br}$	$112.2(3)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{Br}$	$119.6(3)$
$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{Br}$	$118.2(2)$
$\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{C}(12)$	$85.3(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$111.0(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{Si}$	$115.43(14)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{Si}$	$113.5(3)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$109.1(4)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{Si}$	$112.9(3)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{Si}$	$115.6(3)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$111.0(4)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{Si}$	$113.3(3)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{Si}$	$118.1(3)$

Symmetry transformations used to generate equivalent atoms:

Table B. 4 Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for
Cyclobutane 157.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} u^{11}+\right.$ $\ldots+2 \mathrm{hka} \mathrm{a}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Br	$63(1)$	$63(1)$	$71(1)$	$4(1)$	$19(1)$	$7(1)$
Si	$52(1)$	$56(1)$	$45(1)$	$-1(1)$	$13(1)$	$-4(1)$
N	$52(3)$	$65(2)$	$59(2)$	$0(2)$	$8(2)$	$-8(2)$
$\mathrm{O}(1)$	$47(2)$	$64(2)$	$46(1)$	$-4(1)$	$14(1)$	$-5(1)$
$\mathrm{O}(2)$	$57(2)$	$61(2)$	$75(2)$	$-1(1)$	$16(2)$	$-7(1)$
$\mathrm{O}(3)$	$65(2)$	$58(2)$	$72(2)$	$4(1)$	$20(2)$	$1(1)$
$\mathrm{C}(1)$	$93(4)$	$113(4)$	$57(3)$	$-11(3)$	$31(3)$	$10(3)$
$\mathrm{C}(2)$	$61(3)$	$69(2)$	$56(2)$	$-7(2)$	$26(2)$	$-2(2)$
$\mathrm{C}(3)$	$61(3)$	$76(3)$	$70(3)$	$-2(2)$	$32(2)$	$5(2)$
$\mathrm{C}(4)$	$71(4)$	$69(3)$	$84(3)$	$-8(2)$	$25(3)$	$10(2)$
$\mathrm{C}(5)$	$48(3)$	$63(2)$	$65(2)$	$4(2)$	$13(2)$	$0(2)$
$\mathrm{C}(6)$	$50(3)$	$69(3)$	$61(2)$	$2(2)$	$21(2)$	$-6(2)$
$\mathrm{C}(7)$	$51(3)$	$58(2)$	$49(2)$	$7(2)$	$21(2)$	$1(2)$
$\mathrm{C}(8)$	$47(3)$	$55(2)$	$44(2)$	$0(2)$	$14(2)$	$-5(2)$
$\mathrm{C}(9)$	$60(3)$	$55(2)$	$46(2)$	$5(2)$	$18(2)$	$-4(2)$
$\mathrm{C}(10)$	$56(3)$	$61(2)$	$49(2)$	$8(2)$	$10(2)$	$-3(2)$
$\mathrm{C}(11)$	$58(3)$	$57(2)$	$49(2)$	$-6(2)$	$18(2)$	$-2(2)$
$\mathrm{C}(12)$	$53(3)$	$58(2)$	$47(2)$	$-1(2)$	$16(2)$	$-3(2)$
$\mathrm{C}(13)$	$57(3)$	$68(3)$	$46(2)$	$-4(2)$	$18(2)$	$-6(2)$
$\mathrm{C}(21)$	$97(4)$	$125(4)$	$68(3)$	$33(3)$	$19(3)$	$9(3)$
$\mathrm{C}(22)$	$68(3)$	$80(3)$	$58(2)$	$2(2)$	$9(2)$	$0(2)$
$\mathrm{C}(23)$	$73(4)$	$101(4)$	$78(3)$	$-1(3)$	$-8(3)$	$-5(3)$
$\mathrm{C}(24)$	$78(4)$	$102(4)$	$75(3)$	$-18(3)$	$32(3)$	$1(3)$
$\mathrm{C}(25)$	$58(3)$	$75(3)$	$55(2)$	$-1(2)$	$15(2)$	$-7(2)$
$\mathrm{C}(26)$	$81(4)$	$107(4)$	$75(3)$	$-8(3)$	$35(3)$	$-26(3)$
$\mathrm{C}(27)$	$88(4)$	$80(3)$	$85(3)$	$-29(3)$	$28(3)$	$-4(3)$
$\mathrm{C}(28)$	$69(3)$	$58(2)$	$68(3)$	$-4(2)$	$19(2)$	$-12(2)$

$\mathrm{C}(29) \quad 89(4) \quad 62(3) \quad 93(4) \quad 6(2) \quad 15(3) \quad 4(2)$

Table B. 5 Hydrogen coordinates ($\times 10 \quad 4$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Cyclobutane 157.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H	5460(40)	6120(40)	4820(20)	41(13)
H(1A)	8613	7914	7937	129(12)
H(1B)	7272	7423	7864	129(12)
$\mathrm{H}(1 \mathrm{C})$	7582	8837	8017	129(12)
H(2A)	7960(20)	8990(20)	6875(5)	52(3)
$H(3 A)$	5520(20)	8677(4)	6931(13)	52(3)
$\mathrm{H}(4 \mathrm{~A})$	4950(20)	10103(9)	6015(4)	52(3)
H(4B)	6360(13)	10567(19)	6399(7)	52(3)
$H(5 A)$	4930(40)	8237(4)	5164(10)	52(3)
H(6A)	5370(30)	7060(30)	6140(2)	52(3)
H(7A)	7283(4)	6520(30)	6746(11)	52(3)
H(9A)	8193(14)	8450(30)	5259(2)	52(3)
H(10A)	6251(10)	7888(14)	4505(19)	52(3)
$H(13 A)$	9360(20)	6688(5)	5129(2)	52(3)
H(13B)	8151(10)	6279(9)	4611(12)	52(3)
$\mathrm{H}(21 \mathrm{~A})$	11735(4)	6635(4)	8341(3)	113(5)
$H(21 B)$	10481(5)	6435(5)	7754(2)	113(5)
H(21C)	10768(4)	7724(4)	8144(3)	113(5)
H(22A)	11992(4)	6731(4)	7230(2)	63(7)
H(23A)	13395(15)	7767(13)	8140(11)	113(5)
H(23B)	12646(7)	9020(20)	7909(5)	113(5)
H(23C)	13319(13)	8371(7)	7395(10)	113(5)
H(24A)	12268(10)	6870(5)	5411(11)	113(5)
H(24B)	11330(17)	6238(18)	5750(3)	113(5)
H(24C)	12582(18)	6727(7)	6228(12)	113(5)
H(25A)	10740(30)	8221(5)	5477(19)	63(7)
H(26A)	12568(10)	9060(6)	5411(12)	113(5)
H(26B)	12960(20)	9157(5)	6249(12)	113(5)
H(26C)	11862(12)	9990(20)	5791(3)	113(5)

$\mathrm{H}(27 \mathrm{~A})$	$10094(6)$	$11220(30)$	$7504(3)$	$113(5)$
$\mathrm{H}(27 \mathrm{~B})$	$10850(20)$	$10055(9)$	$7875(12)$	$113(5)$
$\mathrm{H}(27 \mathrm{C})$	$9420(20)$	$9938(12)$	$7522(3)$	$113(5)$
$\mathrm{H}(28 \mathrm{~A})$	$11160(40)$	$10295(18)$	$6804(2)$	$63(7)$
$\mathrm{H}(29 \mathrm{~A})$	$9456(5)$	$11460(30)$	$6269(4)$	$113(5)$
$\mathrm{H}(29 B)$	$8730(20)$	$10219(12)$	$6068(4)$	$113(5)$
$\mathrm{H}(29 \mathrm{C})$	$9813(10)$	$10531(5)$	$5752(13)$	$113(5)$

APPENDIX C

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION ON

PYRIDONE 197

Table C. 1 Crystal data and structure refinement for Pyridone 197.

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$
Formula weight	257.33
Temperature	288(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P21/n (\#14)
Unit cell dimensions	$a=10.618(4) \AA \quad \alpha=90^{\circ}$.
	$b=8.024(3) \AA \quad \beta=107.44(2)^{\circ}$.
	$\mathrm{c}=17.216$ (7) $\AA \quad \gamma=90^{\circ}$.
Volume	1399.4(9) \AA^{3}
Z	4
Density (calculated)	$1.221 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.638 \mathrm{~mm}^{-1}$
F(000)	552
Crystal size	$0.30 \times 0.30 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	4.39 to 69.33°.
Index ranges	$-12<=h<=12,-8<=k<=9,-20<=1<=20$
Reflections collected	4696
Independent reflections	$2437[\mathrm{R}$ (int) $=0.0347]$
Completeness to theta $=69.33^{\circ}$	93.3\%
Max. and min. transmission	0.9688 and 0.8317
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	2437/0/174
Goodness-of-fit on F^{2}	1.034
Final R indices [$1>2$ sigma(1]]	$\mathrm{R} 1=0.0427, w R 2=0.1097$
R indices (all data)	$\mathrm{R} 1=0.0527, w R 2=0.1188$
Largest diff. peak and hole0.150	. 158 e. \AA^{-3}

Table C. 2 Atomic coordinates ($\mathrm{x} 1 \mathbf{1 0}^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Pyridone 197.
$U(e q)$ is defined as one third of the trace of the orthogonalized $U i j$ tensor.

	x			
	y	z	$\mathrm{y}(\mathrm{eq})$	
$\mathrm{O}(1)$	$3557(1)$	$3415(2)$	$9718(1)$	$58(1)$
N	$3448(1)$	$925(2)$	$10321(1)$	$43(1)$
$\mathrm{O}(2)$	$6806(1)$	$-853(2)$	$12617(1)$	$67(1)$
$\mathrm{C}(4)$	$5899(2)$	$1533(2)$	$11382(1)$	$47(1)$
$\mathrm{C}(5)$	$5255(1)$	$62(2)$	$11432(1)$	$41(1)$
$\mathrm{C}(2)$	$4100(2)$	$2287(2)$	$10287(1)$	$45(1)$
$\mathrm{C}(6)$	$4019(1)$	$-187(2)$	$10888(1)$	$41(1)$
$\mathrm{C}(9)$	$5249(2)$	$-2846(2)$	$11958(1)$	$48(1)$
$\mathrm{C}(3)$	$5335(2)$	$2662(2)$	$10808(1)$	$50(1)$
$\mathrm{C}(7)$	$3221(2)$	$-1659(2)$	$10951(1)$	$49(1)$
$\mathrm{C}(8)$	$4024(2)$	$-3200(2)$	$11245(1)$	$46(1)$
$\mathrm{C}(10)$	$5850(2)$	$-1177(2)$	$12050(1)$	$47(1)$
$\mathrm{C}(12)$	$4467(2)$	$-3356(2)$	$12539(1)$	$52(1)$
$\mathrm{C}(14)$	$2090(2)$	$-4370(2)$	$11724(1)$	$52(1)$
$\mathrm{C}(1)$	$2307(2)$	$3031(3)$	$9162(1)$	$64(1)$
$\mathrm{C}(13)$	$3524(2)$	$-4279(2)$	$11834(1)$	$48(1)$
$\mathrm{C}(16)$	$1541(2)$	$-3730(3)$	$12233(1)$	$69(1)$
$\mathrm{C}(15)$	$1319(2)$	$-5232(3)$	$10977(1)$	$80(1)$
$\mathrm{C}(11)$	$5165(2)$	$-4289(4)$	$13296(1)$	$89(1)$

Table C. 3 Bond lengths [\AA] and angles [${ }^{\circ}$] for Pyridone 197.

$\mathrm{O}(1)-\mathrm{C}(2)$	1.3317(19)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.418(2)
$\mathrm{N}-\mathrm{C}(2)$	1.304(2)
$\mathrm{N}-\mathrm{C}(6)$	1.328(2)
$\mathrm{O}(2)-\mathrm{C}(10)$	1.2074(19)
$C(4)-C(3)$	1.342(2)
$C(4)-C(5)$	1.379(2)
C(5)-C(6)	1.379(2)
$C(5)-C(10)$	$1.455(2)$
C(2)-C(3)	$1.381(2)$
C(6)-C(7)	1.477(2)
C(9)-C(10)	1.472(2)
C(9)-C(8)	1.523(2)
$C(9)-C(12)$	1.536(2)
C(7)-C(8)	1.501(2)
$\mathrm{C}(8)-\mathrm{C}(13)$	1.543(2)
$C(12)-C(11)$	$1.493(3)$
$C(12)-C(13)$	1.516(2)
$C(14)-C(16)$	1.296 (3)
C(14)-C(15)	$1.472(3)$
C(14)-C(13)	1.479(2)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	117.44(14)
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(6)$	117.64(13)
$C(3)-C(4)-C(5)$	120.19(15)
$C(6)-C(5)-C(4)$	118.08(15)
C(6)-C(5)-C(10)	120.88(15)
C(4)-C(5)-C(10)	121.04(14)
$\mathrm{N}-\mathrm{C}(2)-\mathrm{O}(1)$	118.90(14)
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(3)$	124.56(15)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	116.54(15)
$\mathrm{N}-\mathrm{C}(6)-\mathrm{C}(5)$	122.26(15)
$\mathrm{N}-\mathrm{C}(6)-\mathrm{C}(7)$	116.44(13)
C(5)-C(6)-C(7)	121.15(14)

$C(10)-C(9)-C(8)$	$119.63(14)$
$C(10)-C(9)-C(12)$	$118.28(15)$
$C(8)-C(9)-C(12)$	$88.71(12)$
$C(4)-C(3)-C(2)$	$117.26(16)$
$C(6)-C(7)-C(8)$	$113.74(13)$
$C(7)-C(8)-C(9)$	$112.32(14)$
$C(7)-C(8)-C(13)$	$114.26(14)$
$C(9)-C(8)-C(13)$	$87.40(12)$
$O(2)-C(10)-C(5)$	$121.31(16)$
$O(2)-C(10)-C(9)$	$121.04(16)$
$C(5)-C(10)-C(9)$	$117.65(14)$
$C(11)-C(12)-C(13) 119.37(18)$	
$C(11)-C(12)-C(9) 118.59(16)$	
$C(13)-C(12)-C(9)$	$87.92(12)$
$C(16)-C(14)-C(15) 122.14(19)$	
$C(16)-C(14)-C(13) 123.24(18)$	
$C(15)-C(14)-C(13) 114.61(17)$	
$C(14)-C(13)-C(12) 122.28(15)$	
$C(14)-C(13)-C(8) 119.19(14)$	
$C(12)-C(13)-C(8)$	$88.72(13)$

Symmetry transformations used to generate equivalent atoms:

Table C. 4 Anisotropic displacement parameters ($\AA^{2} \mathbf{x} 10^{3}$) for Pyridone 197.

The anisotropicdisplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\right.$ $\ldots+2 h k a^{*} b^{*} U^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$55(1)$	$50(1)$	$61(1)$	$14(1)$	$6(1)$	$-5(1)$
N	$41(1)$	$41(1)$	$46(1)$	$3(1)$	$9(1)$	$-3(1)$
$\mathrm{O}(2)$	$54(1)$	$63(1)$	$64(1)$	$2(1)$	$-13(1)$	$-1(1)$
$\mathrm{C}(4)$	$38(1)$	$48(1)$	$52(1)$	$-8(1)$	$8(1)$	$-4(1)$
$\mathrm{C}(5)$	$37(1)$	$41(1)$	$43(1)$	$-5(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(2)$	$47(1)$	$40(1)$	$47(1)$	$1(1)$	$13(1)$	$-1(1)$
$\mathrm{C}(6)$	$39(1)$	$39(1)$	$43(1)$	$-1(1)$	$10(1)$	$0(1)$
$\mathrm{C}(9)$	$42(1)$	$45(1)$	$54(1)$	$1(1)$	$11(1)$	$6(1)$
$\mathrm{C}(3)$	$47(1)$	$41(1)$	$59(1)$	$-4(1)$	$13(1)$	$-9(1)$
$\mathrm{C}(7)$	$43(1)$	$48(1)$	$51(1)$	$7(1)$	$4(1)$	$-8(1)$
$\mathrm{C}(8)$	$49(1)$	$42(1)$	$47(1)$	$-3(1)$	$15(1)$	$-2(1)$
$\mathrm{C}(10)$	$38(1)$	$51(1)$	$49(1)$	$-4(1)$	$7(1)$	$3(1)$
$\mathrm{C}(12)$	$50(1)$	$55(1)$	$48(1)$	$8(1)$	$9(1)$	$5(1)$
$\mathrm{C}(14)$	$53(1)$	$46(1)$	$56(1)$	$12(1)$	$16(1)$	$-2(1)$
$\mathrm{C}(1)$	$55(1)$	$69(1)$	$60(1)$	$15(1)$	$4(1)$	$-2(1)$
$\mathrm{C}(13)$	$50(1)$	$38(1)$	$54(1)$	$4(1)$	$15(1)$	$4(1)$
$\mathrm{C}(16)$	$61(1)$	$68(1)$	$84(1)$	$4(1)$	$32(1)$	$-3(1)$
$\mathrm{C}(15)$	$67(1)$	$99(2)$	$67(1)$	$3(1)$	$9(1)$	$-21(1)$
$\mathrm{C}(11)$	$78(1)$	$105(2)$	$69(1)$	$36(1)$	$-1(1)$	$-5(1)$

Table C. 5 Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for Pyridone 197.

	x	y	z	$U(\mathrm{eq})$
$H(4)$	6727	1742	11747	$62(2)$
$H(9)$	5924	-3688	11973	$62(2)$
$H(3)$	5757	3656	10762	$62(2)$
$H(7 A)$	2600	-1883	10420	$62(2)$
$H(7 B)$	2715	-1405	11321	$62(2)$
$H(8)$	4209	-3842	10807	$62(2)$
$H(12)$	4025	-2377	12678	$62(2)$
$H(1 A)$	2041	3912	8769	$101(3)$
$H(1 B)$	1668	2917	9452	$101(3)$
$H(1 C)$	2364	2005	8888	$101(3)$
$H(13)$	3856	-5416	11824	$62(2)$
$H(16 A)$	633	-3807	12133	$62(2)$
$H(16 B)$	2057	-3194	12699	$62(2)$
$H(15 A)$	1388	-4630	10510	$101(3)$
$H(15 B)$	410	-5287	10965	$101(3)$
$H(15 C)$	1657	-6340	10971	$101(3)$
$H(11 A)$	5816	-3580	13651	$101(3)$
$H(11 B)$	5588	-5252	13157	$101(3)$
$H(11 C)$	4539	-4633	13567	$101(3)$

