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For cell-like upper semicontinuous(usc) decompositions G of finite dimensional man-

ifolds M , the decomposition space M/G turns out to be an ANR provided M/G is finite

dimensional ([Dav07], page 129 ). Furthermore, if M/G is finite dimensional and has the

Disjoint Disks Property (DDP), then M/G is homeomorphic to M ([Dav07], page 181).

For an infinite dimensional M modeled on I∞, we can construct cell-like usc decomposi-

tions G associated with defining sequences. But it is more complicated to check whether

M/G is an ANR. We need an additional special property of the defining sequence. To

check whether or not M/G is homeomorphic to M is even more difficult. We need M/G

to be an ANR which has the DDP and which also satisfies the Disjoint Čech Carriers

Property. We give a specific cell-like decomposition X of the Hilbert Cube Q with the

following properties: The nonmanifold part N of X is complicated in the sense that it is

homeomorphic to a Hilbert Cube of codimension 1 in Q. X is still a factor of Q because

X × I2 ∼= Q. If A is any closed subspace of N of codimension ≥ 1 in N, then the decom-

position of Q over A is homeomorphic to Q. In particular, the nonmanifold nature of X is

not detectable by examining closed subsets of codimension ≥ 1. This example is produced

by combining mixing techniques for producing a nonmanifold space whose nonmanifold

part is a Cantor set, with decompositions arising from a generalized Cantor function.
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A THIN CODIMENSION-ONE DECOMPOSITION OF THE

HILBERT CUBE

1. OVERVIEW

1.1 Outline

To make it easier to navigate through the various sections, we start with an outline

of the material contained in this thesis.

Chapter 1: This chapter introduces the background and definitions needed in the

next chapters. The reader familiar with this terminology can skip this chapter and

go directly to the next chapter.

• Section 1.1: In this section we go over history and theorems that are well-

known and give motivation about this work.

• Section 1.2: In this section we summarize what we have in each chapter.

• Section 1.3: In this section we go over definitions, notation, and results related

to defining sequences, cellular sets, cell-like sets, and ANRs. These

will be needed in in the remaining chapters.

• Section 1.4: In this section we go over definitions and results related to ho-

mological codimension and the disjoint discs property. These will be

needed in Chapter 3 and Chapter 5.

• Section 1.5: In this section we go over definitions and results related to geo-

metric centrality. These will be needed in Chapter 2.
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• Section 1.6: In this section we go over definitions and results related to in-

verse limits and Čech homology. These will be needed in section 3.3 and

Chapter 5.

• Section 1.7: In this section we go over definitions and results related to infi-

nite codimension and Čech carriers. These will be needed in section 3.3

and Chapter 5.

Chapter 2: In this chapter we construct special Cantor sets in the Hilbert cube.

We generalize results from finite dimensions about detecting points in Cantor sets

with triadic rational coordinates to infinite dimensions. The results in this chapter

use definitions and theorems from sections 1.3, and1.6.

Chapter 3: In this chapter we construct a special decompostion of the Hilbert cube

with nonmanifold part a Cantor set. This will be used in the main results in Chapter

5. The results in this chapter use definitions and theorems from section 1.3, 1.4, 1.5,

1.7, 1.8. Also, we use results from Chapter 2.

Chapter 4: This chapter goes over details about the Cantor function in finite and

infinite dimensions. These are used to construct a decomposition that will be used

in the construction in Chatpter 5. The results in this chapter use definitions and

theorems from section 1.3.

Chapter 5: This chapter constructs the main example. The results in this chapter

use definitions and theorems from section 1.3, 1.4, 1.8. Also we use results from

chapter 3 and chapter 4.

Chapter 6: We summarize the results in the thesis and ask some questions about

generalizations.
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1.2 Historical Setting and Introduction

For the definitions of terms introduced in this section, see § 1.3. Let M and N be

closed n−manifolds with n 6= 3, 4. Let C (M,N) denote the set of all continuous maps from

M to N with the compact-open topology, Hom (M,N) denote the subset of C (M,N)

consisting all homeomorphisms from M to N, and CEL (M,N) denote the subset of

C (M,N) consisting all cell-like maps from M to N. Then CEL (M,N) is precisely the

closure of Hom (M,N) in C (M,N) , see [Lac77]. Hence after homeomorphisms, cell-like

maps are considered to be the next simplest kinds of maps on manifolds. The cell-like

concept has since been studied in great detail in finite dimensions. See Daverman’s book

[Dav07] for a large number of examples. One way to construct a cell-like map is using

decomposition theory. In general, if f : M → X is an onto cell-map from n−manifold M

to a topological space X, then M is not necessarily homeomorphic to X. For example, let

Wh be the Whitehead continuum in R
3. That is,

Wh = ∩∞i=1Ti

where Ti is defined by the following: Let T0 be a solid torus in R
3. For i ≥ 1, let Ti =

h (Ti−1) where h : R3 → R
3 is the homeomorphism taking T onto W in Figure1.1. Note

that Ti ⊂ Ti−1 for all i. Figure 1.1 demonstrates the first two stages of the construction

of Wh.

FIGURE 1.1: Whitehead Continuum
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Then the map π from R
3 to R

3/Wh is a cell-like map but R3/Wh 6∼= R
3 since any

meridional disc in the larger torus must intersect Wh [Dav07]. In higher dimensions, the

key property for determining when M/G ∼= M is the Disjoint Discs Property(DDP). The

Cell-like Approximation Theorem [Edw80] is important and is used to prove that if G

is a cell-like decomposition of an n−manifold M where n ≥ 5, then M/G ∼= M if and

only if M/G is an Absolute Neighborhood Retract(ANR) having the DDP. For a proof of

this theorem, see [Dav07]. Daverman [Dav81] also provides a proof that if G is a cell-like

decomposition of an n−manifold M then M/G × R
2 has the DDP, which implies that

M/G× R
2 ∼= M × R

2.

In the infinite dimensional setting, for a cell-like decomposition of an infinite dimen-

sional manifold M, it is more complicated to check whether the space M/G is an ANR

and even more complicated to check whether M/G ∼= M. Not only do we need the DDP,

but also the Disjoint Čech Carrier Property [DW81]. Thus, the motivation of this work

is to produce a specific decomposition of the Hilbert Cube Q in order to investigate and

to illustrate how complicated images of cell-like maps on Hilbert Cube Q can be.

The main goal of this work is to construct a specific cell-like, upper semi-continuous

decomposition of the Hilbert Cube Q which yield a quotient space X that is not homeo-

morphic to Q and that has the property that any closed subspace A of the nonmanifold

part N of X of codimension ≥ 1 induces a decomposition which is homeomorphic to Q.

The nonmanifold part N of X is complicated in the sense that it is homeomorphic to a

Hilbert Cube of codimension 1 in Q but X is still a factor of Q because X × I2 ∼= Q.

In 1983, McCauley and Woodruff [MW83] produced such examples satisfying the

above properties in R
3.

In 1990, Garity [Gar91] generalized these examples in higher finite dimensions (n ≥

5).

We produce an example which is an infinite dimensional version of the finite di-
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mensional example due to Garity,[Gar91]. In order to obtain this example in infinite

dimensions it is necessary to discuss properties of the Cantor set that will be used in the

construction of the examples and to express Cantor sets in Q as intersections in a special

way. This is done in Chapter 2. In Chapter 2, we also describe the Cantor set C∞ in Q in

terms of a defining sequence such that we can detect when points in C∞ have no triadic

rational coordinates. This was previously done only in the finite dimensional case.

In Chapter 3, we produce a special decomposition H of Hilbert Cube Q. The de-

composition, H has the non-manifold part of Q/H a Cantor set and has some additional

special properties that we list in Chapter 3.

In Chapter 4, we produce an additional decomposition G of the Hilbert Cube Q

using the generalized Cantor function.

In Chapter 5, we use the above decompositions G and H to construct the main

example.

In this first Chapter we will give the basic definitions and notation needed in the

remainder of the thesis.

1.3 Definitions and Notation

1.31 Topological Background

Throughout this thesis we assume all spaces X are separable metric spaces and the

word map refers to a continuous function. For the readers who are not familiar with

topology and algebraic topology, all basic topological terminology, notation, definitions,

and theorems can be found in [Mun00], [May72].

Let B2 be the unit disc in R
2, I be the interval [0, 1]. For each n ≥ 1, we write

In =
n∏

i=1

Ii, Qn+1 =
∞∏

i=n+1

Ii

where Ii = I. After suitable parametrization, the Hilbert Cube is a countable product
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of Ii where for ease of notation, I1 = [−3, 3], and Ii = [0, 1] for all i ≥ 2, and is denoted

by Q. That is,

Q =
∞∏

i=1

Ii

Also, for each n we can write the Hilbert Cube as

Q = In ×Qn+1.

We can define a metric ρ : Q×Q → R
+ ∪ {0} on Q by

ρ ((xi) , (yi)) =
∞∑

i=1

|xi − yi|

2i
for all (xi) , (yi) ∈ Q

where (xi) denotes the sequence of xi ∈ Ii.

This metric generates the product topology on Q. The pseudo interior of Q is

s =
∞∏

i=1

I0i ,

where I01 = (−3, 3) , I0i = (0, 1) for i ≥ 2, and Bd (Q) = Q − s is the pseudo boundary

of Q.

Let f, g : Q → Y , be maps, where Y is a metric space with a metric d. Then we

define Ψ (f, g) as

Ψ (f, g) = sup{d (f (x) , g (x)) |x ∈ Q}.

Definition 1.3.1. [Lac77] A Q−manifold is a space which is locally homeomorphic to

open subsets of Q.

The following lemma is one of the facts about the Hilbert Cube that we use to prove

some later theorems in this thesis.

Lemma 1.3.2. (Tube Lemma)[Dav07] Suppose S is a compact subset of Q and U is an

open subset of Q containing S. Then there exist an integer n and a ball Bn in In such

that

S ⊂ Bn ×Qn+1 ⊂ U.
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A decomposition G of a space X is a partition of X. Explicitly, G is a subset of

the power set of X, and its elements are pairwise disjoint nonempty sets that cover X.

Associated with any decomposition G of a space X is the decomposition space denoted

as X/G. Its topology is described by means of the decomposition map π : X → X/G

sending each q ∈ X to the unique element of G containing q. The topology on X/G is the

quotient space topology induced by π. For any decomposition G of a space X we use HG

to denote the set of non-degenerate elements (elements of cardinality greater than 1) of

G. We use NG to denote the union of the elements of HG. If π is the quotient map for

the decomposition G, then we write NG = Nπ.

Definition 1.3.3. The nonmanifold part of a decomposition space X/G where X is an n-

manifold (the Hilbert cube) consists of those points in X/G that do not have neighborhoods

homeomorphic to Rn ( homeomorphic to the Hilbert Cube).

Definition 1.3.4. [Dav07] A decomposition G of X is said to be upper semicontinu-

ous(usc) if every g ∈ G is compact and the quotient map

π : X → X/G

is a closed map.

A basic property of an usc decomposition G of X is: given g ∈ G, g ⊂ U where U

is an open set in X. Then

V =
⋃

{g ∈ G | g ⊂ U}

is open.

Given a decomposition G of X and a closed subset A of X/G, we use X/π−1 (A) to

denote the decomposition of X induced over A. X/π−1 (A) consists of all sets of the

form π−1 (a) , a ∈ A, and all singletons of X − π−1 (A) .

Theorem 1.3.5. [Dav07](Realization) Suppose G is an upper semicontinuous decom-

position of a space X and f is a closed map of X onto a space Y such that G =
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{f−1 (y | y ∈ Y )}. Then X/G is homeomorphic to Y.

Definition 1.3.6. [Dav07] A decomposition G of a space X is realized by a pseudo-

isotopy if there exists a pseudo-isotopy Ψt of X to X such that Ψ0 = IdX and G =

{Ψ−11 (x) | x ∈ X}. By a pseudo-isotopy Ψt of X to X we mean a homotopy Ψt : X →

X such that Ψt is a homeomorphism for each t ∈ [0, 1) and Ψ1 is a closed surjection.

Similarly, by an isotopy Ψt of X to X we mean a homotopy Ψt : X → X such that Ψt

is a homeomorphism for each t ∈ [0, 1].

1.32 Defining Sequences for Decompositions

We need the following definitions related to defining sequences for decompositions

before proceeding. Some of these definitions can be found in [Lay80] and [Dav07].

Definition 1.3.7. Let S = {Si} be a sequence of collections of subsets of the Hilbert cube

satisfying the following conditions:

(1) Disjointness criterion: For each i, Si is a finite collection of compact subsets of Q

with disjoint interiors.

(2) Nesting criterion: For every element A of Si and for every j < i there is a unique

element Pre (A) of Sj that contains A.

(3) Boundary size criterion: If A is an element of Si and x, y are elements in ∂A then

there is a j > i such that no element of Sj contains both of x and y.

(4) Null homotopy criterion: For each i > 1 and each A ∈ Si, the inclusion map A →

Pre (A) is null homotopic.

Then the sequence S = {Si} is called a defining sequence in Q.

Definition 1.3.8. Let Q be the Hilbert Cube and M a collection of subsets of Q, not

necessarily covering Q. Given an arbitrary set Z in Q, define its star in M as

St (Z,M) = Z
⋃(⋃

{M ∈ M | M ∩ Z 6= ∅}
)
,
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also written as St1 (Z,M) , and, recursively for any integer k > 1, its kth star in M as

Stk (Z,M) = St
(
Stk−1 (Z,M) ,M

)
.

When Z = {x}, we write Stk ({x},M) simply as Stk (x,M) .

Definition 1.3.9. Let S = {S1,S2, . . .} be a defining sequence in X. Then the decom-

position G associated with the defining sequence S is the relation prescribed by the

rule: for each x ∈ X,

G (x) =
⋂

i≥1

St2 (x,Si) .

Example 1.3.10. Consider X = R
2. Recall, in R, that the Cantor set can be described as

⋂
Si where Si is a set with 2i elements in it and each element is an interval of length 1

3i
.

For each i, and S = [a, b] ∈ Si, let US =
[
a− 1

3i+1 , b+
1

3i+1

]
. Then let

Ui =
{
US × [−1, 1] | S ∈ Si

}
.

It is easy to show that U =
{
U0,U1, . . .

}
is a defining sequence. Then the decomposition

G associated with the defining sequence U consists of A =
{
{c}× [−1, 1] | c ∈ C

}
and the

singletons from X −A.

Lemma 1.3.11. [Dav07] Let G be a decomposition of a space X associated with the

defining sequence S = {S1,S2, . . .}. If

x, y ∈ ∂S = ∪{∂A | A ∈ ∪iSi}

such that x 6= y, then π (x) 6= π (y) .

From this lemma, π is one-to-one on ∂S.

Before listing additional properties of X/G, we need to define cellularity and cell-

likeness.
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1.33 Cellular Sets and Cell-like Sets

Definition 1.3.12. A closed set C in R
n or in an n−dimensional manifold is said to

be cellular if there is a nested sequence C1, C2, ... of n cells with Ci+1 a subset of the

interior of Ci and C =
⋂∞

i Ci.

Example 1.3.13. The closure of the graph of the sin
(
1
x

)
curve, 0 < x ≤ 1, in R

2 is

a cellular set, see Figure 1.2. This example shows that cellular sets need not be path

connected.

FIGURE 1.2: The closure of sin
(
1
x

)
curve, 0 < x ≤ 1, in R

2.

Definition 1.3.14. A compact subset C of a manifold X is cell-like in X if for each

neighborhood U of C in X, C can be contracted to a point in U. A decomposition G of X

is cell-like if each g ∈ G is cell-like.

Definition 1.3.15. A mapping f : X → Y is cell-like if f−1 (y) is a cell-like space for

each y ∈ Y.

The next theorem is a technical property called approximate lifting needed in

what follows.

Theorem 1.3.16. [Dav07] Let G be a cell-like decomposition of a space X, and π : X →

X/G be a quotient map. Let K be a simplicial n−complex and L be a subcomplex of K.
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Let

f : K → X/G

and FL : L → X be a map such that π ◦ FL = f |L and let ǫ > 0 be given. Then there

exists a map F : K → X such that ρ (f, π ◦ F ) < ǫ and F |L = FL.

See § 1.35 for the definition of ANR.

Theorem 1.3.17. [Lac77] If X,Y, and Z are locally compact ANR’s and f : X → Y

and g : Y → Z are proper cell-like maps then g ◦ f is cell-like.

Definition 1.3.18. Let f : X → Y be a map. Then f is called proper if f is closed

map with compact point-inverses.

Definition 1.3.19. [Mun00] Two spaces X and Y are said to be homotopy equivalent,

if there are maps

f : X → Y and g : Y → X

such that g ◦ f ≃ iX and f ◦ g ≃ iY . The maps f and g are often called homotopy

equivalences.

Theorem 1.3.20. [Lac77] If f : X → Y is a proper map between locally compact ANR’s,

then the following are equivalent:

(a) f is cell-like;

(b) For every open set V ⊂ Y, the restriction f
∣∣∣
f−1(V )

: f−1 (V ) → V is a proper

homotopy equivalence.

Theorem 1.3.21. [Dav07] The decomposition G associated with with the defining se-

quence S = {S1,S2, . . .} with properties as in definition 1.3.7 is a cell-like usc.
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1.34 Cellularity in the Hilbert Cube Q

Recall that the definition of a cellular set for a finite dimensional manifold is a

nested intersection of n−cells [Dav07]. For an infinite dimensional manifold, the cellular

sets are more difficult to characterize which explains why so many complications arise in

attempts to find infinite dimensional analogues of some results about cellularity in finite

dimensional manifolds.

Lemma 1.3.22. ([Dav07], page 120) A cellular subset of an n-manifold M is cell-like.

Theorem 1.3.23. ([Dav07]) If g is cellular, then M/g is homeomorphic to M.

Definition 1.3.24. [Cha76] A closed subset A in a space X is said to be a Z−set in X

provided that for every open cover U of X there is a map f of X into X − A which is

U−close to the identity map. That is, for each x ∈ X, there exists some element of U

containing both x and f (x) .

The following lemma gives a condition for a subset of the pseudo interior of Q to be

a Z−set.

Lemma 1.3.25. [Cha76] Any compact subset A ⊂ Q with A ⊂ s, where s is the pseudo

interior of Q, is a Z−set.

Definition 1.3.26. [Čer80] A closed subset K of a space M is a normal cube in M

if K and the boundary Bd (K) of K in M are homeomorphic to the Hilbert cube Q and

Bd (K) is a Z−set in K.

Next we will define a cellularity in Q which is quite similar to the definition in finite

dimensional case. Here we replace the term n−cells by normal cubes.

Definition 1.3.27. [Čer80] Let X be a closed subset of Q. X is said to be a cellular

subset of Q if X = ∩∞i=1Ki where Ki+1 ⊂ int (Ki) and Ki is a normal cube for all i.
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Alternately, a closed subset X of Q is cellular provided it has arbitrarily small open

neighborhoods whose closures are normal cubes in Q.

Definition 1.3.28. [Cha76] Let X be a compact space and Y be an ANR containing

X. Then X is said to have trivial shape if for every neighborhood U of X in Y, X is

contractible in U.

It is obvious that every cell-like set has trivial shape.

Definition 1.3.29. Let X be a subset of the Hilbert cube Q. Then Q−X is S1−trivial

at ∞ provided for every open neighborhood U of X there is an open neighborhood V of X

such that every map f : S1 → V −X can be extended to a map from B2 to U −X.

The following lemma will be used to check whether or not a finite dimensional

non-degenerate decomposition element is cellular.

Lemma 1.3.30. [Čer80] Let A be a finite dimensional compactum in Q. Then the follow-

ings are equivalent.

1. A is cellular in Q.

2. A is a Z-set in Q and has trivial shape.

3. A has trivial shape and Q/A is a Q−manifold.

4. Q−A is S1−trivial at ∞.

5. Q/A ∼= Q.

1.35 ANRs

To later detect when Q/G is homeomorphic to Q we need to introduce ANRs. For

additional information on ANRs, see [Dav07].
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Definition 1.3.31. A metric space Y is said to be an absolute neighborhood re-

tract(ANR) if for every closed subset A of a metric space X and for every such map

f : A → Y, there is a continuous extension F : U → Y defined on some neighborhood U

of A in X.

Definition 1.3.32. Let f : X → Y be a map from a compact metric space X onto a

compact metric space Y. Then f is said to be Approximately Right Invertible (ARI)

if for each ǫ > 0, there is a map g : Y → X such that ρ (f ◦ g, IY ) < ǫ.

Definition 1.3.33. A defining sequence S = {S1,S2, . . .} is said to be sharp if ∂S =

∪i≥1{∂S : S ∈ Si} is embedded in the decomposition space by the quotient map.

Remark 1.3.34. The defining sequences we use in definition 1.3.7 are sharp.

The following theorem will be used to detect that certain decomposition spaces are

ANR’s.

Theorem 1.3.35. ([Koz81], page 21)Let f : X → Y be a cell-like map from a compact

metric ANR X onto a compact metric space Y. If f is ARI, then Y is an ANR.

The following theorem is from [Lay].

Theorem 1.3.36. [Lay] If S is a sharp defining sequence for a decomposition G of the

Hilbert Cube, then the quotient map is ARI and hence the space Q/G is an ANR.

Theorem 1.3.37. ([Lay80], page 22)Let G be a cell-like decomposition of Q such that

Q/G is an ANR. If A is a closed set in Q/G and π−1 (A) is the decomposition of Q

induced over A, then Q/π−1 (A) is an ANR.
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1.4 Homological Codimension and Disjoint Discs Property

Definition 1.4.1. Let A be a closed subset of Q. A is said to have codimension ≥ n in

Q if for every open subset U and for every i < n

Hi (U,U −A) ∼= 0

where Hi (A,B) is ith homology group of A modulo B and where i is an integer.

The subset A is said to have codimension equal to n if it has codimension ≥ n

but does not have codimension ≥ n + 1. In other words, a closed subset A of Q is said

to have codimension n if Hi (U,U −A) ∼= 0 for all open sets U and for all i < n, and

Hn (V, V −A) 6∼= 0 for some open set V of Q. An arbitrary subset X of the Hilbert Cube

Q is said to be of codimension n if any closed C ⊂ X in Q has codimension n. (See

[DW81].)

Example 1.4.2. We will show that F = {0} ×Q2 has codimension 1 in Q. First we will

show that F has codimension ≥ 1. That is, we will show that H0 (U,U − F ) ∼= 0 for all

open sets U in Q. To prove this, Without loss of generality, let U be an path connected open

set in Q. Note that U − F 6= ∅. Consider the long exact sequence of the pair (U,U − F ) :

· · · → H0 (U − F )
f
→ H0 (U)

g
→ H0 (U,U − F )

h
→ 0.

To show that H0 (U,U − F ) ∼= 0, it suffices to show that the map H0 (U − F )
f
→ H0 (U) is

onto. Note that

H0 (U − F ) ∼= H̃0 (U − F )⊕ Z

H0 (U) ∼= Z since U is path connected.

It follows clearly that f is onto. This implies that

H0 (U) = Im (f) = ker (g)
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and so

{0} = Im (g) = ker (h) = H0 (U,U − F )

Therefore, F has codimension ≥ 1 in Q.

Next we will show that F does not have codimension ≥ 2. Consider

U = (−1, 1)×Q2.

Then U is an open set in Q. Consider the long exact sequence

· · · → H1 (U − F ) → H1 (U) → H1 (U,U − F )
f
→ H0 (U − F )

g
→ H0 (U)

h
→ 0.

Note that

H0 (U − F ) ∼= Z⊕ Z since U − F has 2 path components

H0 (U) ∼= Z since U is path connected.

Thus, H0 (U − F ) 6∼= H0 (U) which implies that ker (g) 6= 0. So, Im (f) 6= 0. Therefore,

H1 (U,U − F ) 6∼= 0. This completes the proof.

Definition 1.4.3. A closed subset A of Q is nowhere dense if for any nonempty open

set U of Q, U −A is not an empty set. That is every nonempty open set U is not a subset

of A.

The next result follows directly from the definitions. For completeness, we include

a proof.

Lemma 1.4.4. If A is a closed subset of Q which has codimension ≥ n, with n ≥ 1, then

A is nowhere dense in Q.

Proof. Let U be an non empty open set in Q. We will show that U − A 6= ∅. That is, we

will show that H0 (U −A) 6∼= 0. Clearly, H0 (U) 6∼= 0 since U is not empty. Since A has

codimension ≥ n with n ≥ 1, H0 (U,U −A) ∼= 0. Consider the long exact sequence of a

pair (U,U −A) :

· · · → H0 (U −A)
f
→ H0 (U)

g
→ H0 (U,U −A)

h
→ 0.
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Since

Im (f) = ker (g) , and Im (g) = ker (h) = H0 (U,U −A) ∼= 0,

this forces Im (f) = ker (g) = H0 (U) 6= 0. Therefore, H0 (U −A) 6= 0 and so U − A is

not empty. Since U is arbitrary, it implies that A is nowhere dense.

Definition 1.4.5. Let X be a metric space. Let f, g : Bn → X be any two maps. Then

the space X is said to have the disjoint n−disc property, abbreviated as DDnP , if for

each ǫ there exist maps f ′, g′ : Bn → X satisfying

ρ
(
f, f ′

)
< ǫ and ρ

(
g, g′

)
< ǫ

and

f ′ (Bn) ∩ g′ (Bn) = ∅.

1.5 Geometrical Centrality

Definition 1.5.1. [Dav07] Let N be an n−manifold with or without boundary and let

f : D2 → B2 × N with f
(
∂D2

)
⊂ ∂B2 × N. The map f is said to be interior

inessential(I−inessential) if there is a map g : D2 → ∂B2 × N such that f = g on

∂D2. Otherwise, f is said to be I−essential. Let H be a disc with holes, g : H → M be

a map with g (∂H) ⊂ ∂M. The map g is said to be virtually I-essential if g extends to

an I−essential map f : B → M with f (B \H) ⊂ ∂M where B is the unique 2-cell in B2

with H ⊂ B and with ∂B ⊂ ∂H.

We will use this definition of I−essential to test the geometric centrality of a subset

of a manifold. A subset A of B2 ×N is said to be geometrically central in B2 ×N if

f
(
D2
)
∩A 6= ∅ for every I−essential map f. A collection C of subsets of B2 ×N is called
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a geometrically central family in B2 × N if the union of elements of C is geometrically

central in B2 ×N. More details can be found in [DE87].

1.51 Standard Example of Geometrically Central Subset

Example 1.5.2. Let N be an n-manifold, and identify A as {0}×N in B2 ×N . Suppose

f : D2 → B2 ×N is an I-essential map with f
(
D2
)
∩A = ∅. Then ∂B2 ×N is a retract

of
(
B2 ×N

)
− A, so there is a map g : D2 → ∂B2 × N satisfying g|∂D2 = f |∂D2 . This

contradicts the fact that f was I-essential. This gives us that A is geometrically central

in B2 ×N .

1.52 Results on Geometric Centrality

In order to construct the special Cantor set in the Hilbert Cube needed in our

example, we need the following results.

Lemma 1.5.3. [DE87] Given B2 × I and given ǫ > 0. Then there is a family

{C1, C2, . . . , Ck}

of subsets of B2× I so that C1
∼= Ck

∼= B2× I and for i = 2, 3, . . . , k−1, Ci
∼= B2×S1, so

that the family is geometrically central in B2× I, and so that for each Ci, the diameter of

Ci is less than ǫ. Similarly, given B2×S1 and given ǫ > 0, there is a geometrically central

family

{C1, C2, . . . , Ck}

so that for all i = 1, 2, . . . , k, Ci
∼= B2 × S1 and the diameter of Ci is less than ǫ.

Figure 1.3 and 1.4 demonstrate Lemma 1.5.3 for B2 × I and B2 × S1, respectively.

For the proof of Lemma 1.5.3, see [DE87]. The proof of Lemma 1.5.3 relies on the

following Lemma. For completeness, we also state this result. For definition of bicollared,

see [Dav07].
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FIGURE 1.3: Geometrically Central Collection on B2 × I

FIGURE 1.4: Geometrically Central Collection on B2 × S1

Lemma 1.5.4. [Lay80] Let D2 be a disc with holes and f : D2 → B2 × I be a map,

and let P be a bicollared subset of D2 × I. Assume that K = f−1 (P ) is closed in D2. If

F : K × I → P is a homotopy with F0 = f |K and U is a neighborhood of F (K × I) in

B2× I, then there is a neighborhood V of K in D2 and a map g : D2 → B2× I such that:

1. g|D2−V = f |D2−V

2. g|K = F1

3. g (V −K) ⊂ (U − P ) .

We also need the following result, first proved in [Ghi07]. For completeness, and

because the proofs illustrate the concept of geometric centrality, we include the proof of

this lemma and the following two lemmas.

Lemma 1.5.5. [Ghi07] If N is a subset of an n−manifold M ∼= B2×X which is geomet-

rically central in M, then N ×I is geometrically central in M ×I ∼= B2×X×I. Similarly,
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if N is a subset of an n−manifold M ∼= B2 ×X which is geometrically central in M, then

N × S1 is geometrically central in M × I ∼= B2 ×X × S1.

Proof. Let D2 be a disc with holes. If possible, let f : D2 → M × I be an I-essential

map such thatf
(
D2
)
∩ N × I = ∅. Decompose f into two factors fM and fI from D2

to M and I respectively. We claim that fM is I-essential into M. If not, there is a map

g : D2 → ∂B2×X such that g = fM on ∂D2.We can then define a map h : D2 → ∂ (M)×I

by h = (g, fI), then f = g on ∂D2. That contradicts that f was I-essential. Similar

arguments prove that N × S1 is geometrically central in M × S1.

What happens if we iterate the process of placing geometrically central sets in our

construction? The following lemma from [Ghi07] shows how geometrical centrality is

preserved.

Lemma 1.5.6. [Ghi07] Let A ∼= B2 ×X1 ×X2 × · · · ×Xn, where each Xi is I or S1. Let

C = {Ci : Ci
∼= B2 × Yi1 × Yi2 × · · · × Yin}, where Yij is I or S1, be a finite collection of

pairwise disjoint subsets of A which is geometrically central in A. Also, assume that for

each Ci, there is a finite collection Di = {Dj : Dj
∼= B2 × Zj1 × Zj2 × · · · × Zjn}, where

each Zjk is I or S1, of disjoint subsets of Ci, which is geometrically central in Ci. Then

the collection D = ∪Di is geometrically central in A.

Proof. Let D2 be a disc with holes and f : D2 → B2 ×X1 ×X2 × · · · ×Xn be a virtually

I−essential map. After a slight adjustment of f, we may consider K = f−1{C} to be a 2-

manifold in D2 with a finite number of components. Hence f−1
(
∂B2 ×X1 ×X2 · · · ×Xn

)

is a finite collection of simple closed curves in D2. This implies that each component of

f−1 (Ci) is a disc with holes in D2. Then K must have a component H such that fH is a

virtually I−essential into Ci for some i. If not, let H be given and let f (H) ⊂ Ci for some

fixed i. Also note that f (∂H) ⊂ ∂B2×Yi1×× · · ·×Yin for some Yi1, Yi2, . . . , Yin. Since f |H

is not virtually I−essential, there is a map g : H → ∂B2 × Yi1 ×× · · · × Yin and g = f |H
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on ∂H and Ci ∩Cj = ∅ if i 6= j. Hence, we can push g (H) off of ∂B2 ×X1 ×X2 · · · ×Xn

without intersecting any other Cj . Now repeating the same process with other components

of K we can get a new map h : D2 → ∂B2 ×X1 ×X2 × · · · ×Xn that misses all Ci and

f = h on ∂D2. That contradicts the fact that C is geometrically central in A. Hence

f |H must be I−essential on some Ci for some component H and some i. But Di is also

geometrically central in Ci, and hence f |H must intersect some elements of Di, that is

f
(
D2
)
must intersect D. Therefore, D is geometrically central in A.

We now give the generalization of Lemma 1.5.3 from [Ghi07]. That is, we will

include more factors.

Lemma 1.5.7. [Ghi07] Given ǫ > 0 and A = B2×X1×X2×· · ·×Xn, where each Xi = I

or S1. Then there is a finite geometrically central collection C = {C1, C2, . . . , Cn}, where

Ci
∼= B2 × Y1 × Y2 × · · · × Yn with each Yj = I or S1, of disjoint subsets of A so that the

diameter of Ci is less than ǫ for all i and for each I−essential map f, and for each Ci

there is an I−essential map g with f |∂D2 = g|∂D2 and g
(
int
(
D2
))

∩ Ci 6= ∅.

Proof. We prove this lemma by induction over n. For n = 1, it holds by Lemma 1.5.3.

Suppose the lemma is true for n = k. Let A = B2 × X1 × X2 × · · · × Xk × Xk+1.

Consider B = B2 ×X1 ×X2 × · · · ×Xk. Then by assumption, there is a finite collection

C = {Ci : B2 × Xi1 × Xi2 × · · · × Xik} of disjoint subset of B, which is geometrically

central in B and Xij is I or S1 and the diameter of Ci < ǫ for all i. By Lemma 1.5.5,

the collection D = {Di : Di := Ci ×Xk+1} is geometrically central in A. Now switch the

kth and (k + 1)th components of Di and let Ei be such an element. Consider the first k

component of Ei. Then we will have a finite collection Fi such that Fi×Xk is geometrically

central in Ei. Now switching back the kth and (k + 1)th components of this collection and

applying Lemma 1.5.5 we will have another collection Gi which is geometrically central

in Di. Consider H to be the union of these collections Gi. Then by Lemma 1.5.6, H is
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geometrically central in A. We may take enough components so that the diameter of each

component is less than ǫ.

1.6 Inverse Limits and Čech Homology

Let (X,A) be a compact pair. Let Σ (X) be the set of all finite open covers of

X, and let G be a group. The only case we need is G ∼= Z, so we restrict to that case.

To define the Čech homology of a compact pair (X,A) , we begin with the concept of a

directed set. These definitions and results are taken from [May72] and [Mun84].

Definition 1.6.1. A directed set J is a set with a relation ≤ such that:

(1) α ≤ α for all α ∈ J.

(2) α ≤ β and β ≤ γ implies α ≤ γ.

(3) Given α, β, there exists γ such that α ≤ γ and β ≤ γ.

We will show that
∑

(X) is a directed set. Let ≤ be defined by: If U ,V ∈
∑

(X) ,

U ≤ V if and only if to every set U ∈ U there exists a set V ∈ V such that V ⊂ U. We can

see that (1) and (2) are trivially satisfied. To show that (3) holds, let the covers U and V

be given. Then the family W defined by

W = {U ∩ V | U ∈ U , V ∈ V}

satisfies the requirements.

Definition 1.6.2. An inverse system of abelian groups and homomorphisms, corre-

sponding to the directed set J, is an indexed family {Gα}α∈J of abelian groups, along with

a family of homomorphisms

fαβ : Gβ → Gα,

defined for every pair of indices such that α ≤ β, such that
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(1) For each α ∈ J there is a unique object Gα.

(2) For each pair α, β ∈ J there is a unique homomorphism

fαβ : Gβ → Gα.

(3) If α ≤ β ≤ γ, then fαγ = fαβ ◦ fβγ .

(4) For all α ∈ J, fαα is the identity.

The inverse limit of an inverse system {Gα}α∈J , denoted by G∞ = lim
←−

Gα, is the subset

∏
Gα defined by the condition

p = (pα) ∈ G∞ if fαβ (pβ) = pα

where pα is the αth component of the element p ∈
∏

Gα.

Example 1.6.3. [May72] Let D be the set of positive integers in their natural order and

for each n ∈ D, let Xn be the set of real numbers. For each m ≤ n, define fmn : Xn → Xm

by

fmn (x) = x− (n−m) .

Then X∞ = lim
←−

(Xn) consists of all sequences of the form

(x, x+ 1, x+ 2, . . .)

where x is real number.

After this preparation, we can define the following:

Definition 1.6.4. Let (X,A) be a compact pair and let Σ (X) be the family of finite open

covers of X. Then the inverse limit

Ȟp (X,A) = lim
←−

(Hp (U ,UA) ;Z)

is the pth Čech homology group of (X,A) over Z where U ∈ Σ (X) and UA is the

subfamily of U consisting of those sets which intersect A.
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1.7 Detecting Q−manifolds

In this section we discuss a characterization of Q−manifolds due to Daverman and

Walsh [DW81].We begin with definitions and notation. This will be needed in the Chapter

3 and Chapter 5.

1.71 Infinite Codimension

Definition 1.7.1. A closed subset F of an ANR X is said to have infinite codimension

(in X) provided Hq (U,U − F ) = 0 for all integers q ≥ 0 and for all open subsets U of

X. A set A in X is said to have infinite codimension if every closed subset of A has

infinite codimension.

The following result sets forth the basic characterization, a proof of which can be

found in [Kro74].

Proposition 1.7.2. A closed subset A of an ANR X is a Z−set if and only if A has

infinite codimension.

Example 1.7.3. For i ≥ 2, let Ji =
[
1
4 ,

1
2

]
⊂ Ii. Let A = {0} ×

∞∏

i=2

Ji. It is clear that A

is closed and compact in Hilbert cube Q. Also, A ⊂ s, where s is a pseudo interior of Q.

By Lemma 1.3.25 A is a Z−set and so by Proposition 1.7.2, A has infinite codimension.

Note that this is true even though A is infinite dimensional.

The following lemmas, taken directly from [DW81], concern infinite codimension.

Lemma 1.7.4. [DW81] If all points in an ANR have infinite codimension, then so do

finite dimensional subsets.

Lemma 1.7.5. [DW81] If F1, F2, . . . are closed subsets of an ANR Y such that each Fi

has infinite codimension, then F =
⋃

i≥1 Fi has infinite codimension.
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Lemma 1.7.6. [DW81] Let Y be an ANR in which points have infinite codimension and

let A be a closed subset of Y that can be expressed as the union of a finite dimensional set

B and a set F having infinite codimension in Y. Then A has infinite codimension in Y.

1.72 Čech Carriers

Definition 1.7.7. [DW81] Let X be an ANR, let U ⊃ V be open sets in X, and let q ≥ 0.

A Čech Carrier for an element z ∈ Hq (U, V ) is a compact pair C ⊃ ∂C with C ⊂ U

and ∂C ⊂ V such that

z ∈ Im{i∗ : Ȟq (C, ∂C) → Hq (U, V )}

where i∗ is the inclusion induced homomorphism. An ANR X is said to have the Disjoint

Čech Carriers Property provided for all open subsets V1 ⊂ U1 and V2 ⊂ U2 and

elements z1 ∈ Hp (U1, V1) and z2 ∈ Hq (U2, V2) and for integers p, q ≥ 0, there are Čech

carriers (C1, ∂C1) for z1 and (C2, ∂C2) for z2 with C1 ∩ C2 = ∅.

Example 1.7.8. Let z ∈ Hq (U, V ) . Then

z =

[
k∑

i=1

niσi

]
,

where each ni is nonzero and each σi : ∆q → U is a map of the standard q−simplex. Let

C =
k⋃

i=1

Im (σi) and ∂C =
k⋃

i=1

Im (∂σi) .

It is clear that (C, ∂C) ⊂ (U, V ) . Also, we can see that

w = (z, z, z, . . . , z, . . . , ) ∈ Ȟq (C, ∂C) = lim
←−

Hq (U ,U∂C)

and i∗ (w) = z. Thus,

z ∈ Im{i∗ : Ȟq (C, ∂C) → Hq (U, V )}

which implies that (C, ∂C) is a Čech carrier for z.
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Definition 1.7.9. Let X be an ANR. Then X has Čech carriers with infinite codi-

mension if each z ∈ Hq (U, V ) has a Čech carrier (C, ∂C) such that C has infinite

codimension in X.

The following Lemmas are taken from [DW81].

Lemma 1.7.10. [DW81] A closed subset F of an ANR Y has infinite codimension if and

only if, for each open pair V ⊂ U and each q ≥ 0, each element z ∈ Hq (U, V ) has a Čech

carrier (C, ∂C) with C ∩ F = ∅.

Lemma 1.7.11. [DW81] For an ANR X, the Disjoint Čech Carriers Property is equiva-

lent to X having Čech carriers with infinite codimension.

Definition 1.7.12. [Lay80] Let A ⊂ X. We say that X has disjoint Čech Carrier at A

if for all open sets U ⊃ V, U ′ ⊃ V ′, integers q, q′ ≥ 0, and z ∈ Hq (U, V ) , z′ ∈ Hq′ (U
′, V ′) ,

there exist Čech carriers (C, ∂C) for z and (C ′, ∂C ′) for z′ such that C ∩ C ′ ∩A = ∅.

The following Lemma and Proposition are taken from [Lay80].

Lemma 1.7.13. [Lay80] Let Y be an ANR and let A1, A2, . . . be a collection of subsets

of Y such that for each k ≥ 1, Y has disjoint Čech carriers at Ak. Then Y has disjoint

Čech carriers at A = ∪k≥1Ak.

Proposition 1.7.14. [Lay80] Let Y be an ANR and let A1, A2, . . . be a collection of closed

subsets of Y such that for each i ≥ 1, Y has disjoint Čech carriers at Ai. Then for each

open pair U ⊃ V and integer q ≥ 0, each z ∈ Hq (U, V ) has a Čech carrier (C, ∂C) such

that C ∩ (∪i≥1Ai) has infinite codimension in Y.

Lemma 1.7.15. [DW81] For an ANR X, the following statements are equivalent:

(1) X satisfies the Disjoint Čech Carriers Property;

(2) X has Čech carriers of infinite codimension;
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(3) X contains closed subsets F1, F2, . . . with each Fi having infinite codimension and

each closed subset of X − ∪Fi having infinite codimension;

(4) Points in X have infinite codimension and X has finite dimensional Čech carriers;

(5) X × I2 is a Q−manifold.

The following is the main theorem of this section. This powerful Theorem will be

needed to characterize whether or not an ANR space satisfying the Disjoint Discs Property

is Q−manifold. For more details, see [DW81], [Lay80].

Theorem 1.7.16. [DW81] Let X be an ANR satisfying the Disjoint Discs Property. Then

the following statements are equivalent:

(1) X satisfies the Disjoint Čech Carriers Property;

(2) X has Čech carriers of infinite codimension;

(3) X contains closed subsets F1, F2, . . . with each Fi having infinite codimension and

each closed subset of X − ∪Fi having infinite codimension;

(4) Points in X have infinite codimension and X has finite dimensional Čech carriers;

(5) X is a Q−manifold.
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2. A SPECIAL CANTOR SET IN THE HILBERT CUBE

2.1 Introduction

The standard Cantor set C in [0, 1] is obtained in the usual manner as ∩∞i=1Si where

Si = {S(σ1, . . . , σi)} is a set with 2i elements in it. The σi are used to index the sets in

Si. Here each S(σ1, . . . , σi) is an interval of length 1
3i

and each σj is either a 1 or a 2.

From this construction, each component at stage i has 2 components at stage i+1. Also,

one can prove the following well-known theorem [Gar91].

Theorem 2.1.1. If q is a point in C and q =
⋂

i

S(σ1, . . . , σi), then q =
∞∑

j=1

qj
3j

where

qj = 2(σj − 1). Consequently, if the σi are not eventually constant, then q is not a triadic

rational.

Note that a triadic rational is a rational number that can be expressed as a fraction

with denominator of the form 3n. Also note that Ck ⊂ Ik, the product of k copies of the

Cantor set is again a Cantor set.

In [Gar91], Garity showed a construction of a different sequence Si for the Cantor

set Ck ⊂ Ik for k ≥ 2.. In the construction, for technical reasons, he described a process

where each component at stage i has 4 components at stage i+1 instead of 2 components

and proved the following.

Theorem 2.1.2. [Gar91] There exists a sequence Si of collections of subsets of I
k so that

Ck =
⋂∞

i=1 Si and each component of Si contains exactly 4 components of Si+1. If a point

p in Ck is associated with a sequence (ǫ1, . . . , ǫi, . . .) where ǫn = (in, jn), for in and jn in

{1, 2} , and if there is N such that for all i > N the first coordinates of the ǫi alternate,

or the second coordinates of the ǫi alternate, then p has no triadic rational coordinates.

For the construction and the proof of Theorem 2.1.2, see § 2.21.
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Our main work in this Chapter is to generalize Theorem 2.1.2 to the infinite dimen-

sional case. That is, we will construct and prove the following Theorem, in § 2.22.

Theorem 2.1.3. There exists a sequence

M = {M1,M2,M3, . . .}

of collection subsets of Q satisfying the following properties:

•
⋂

M = C∞ where C∞ =
∏∞

i=1C and C is the Cantor set.

• Every point p ∈ C∞ is associated with a sequence (ǫ1, ǫ2, . . .) where ǫn = (in, jn), for

in and jn in {1, 2} ,

• If there is N such that for all i > N the first coordinates of the ǫi alternate, or the

second coordinates of the ǫi alternate, then p has no triadic rational coordinates.

Also, in the next Chapter, we need constructions of the Cantor set in [2, 3] × Q2

and in [−3,−2] × Q2. This will be combined with the construction of Cantor set in the

middle, [−1, 1]×Q2 to produce a decomposition of Q. We will show such constructions in

sections 2.3 and 2.4

2.2 Cantor set in the Middle

2.21 Construction of the generalized Cantor set: Ck

Fixed k, we will use the standard representation of C to specifying the k−cells

indexed as N(ǫ1, ǫ2, . . . , ǫi) used in the description of Ck and then in the next section, we

will generalize this idea to elements used in the description of C∞.

From now, let ǫn = (in, jn) where in, jn ∈ {1, 2} and

S[ǫ1, ǫ2, . . . , ǫn] = S(i1, j1, i2, j2, . . . , in, jn).
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Let
{
4S1 , 4S2 , 4S3 , . . .

}
be a sequence where Si =

∑i
j=1 knj and nj is an even integer . The

specific choice of k and nj will become clear later. We want to choose a defining sequence

N = {N1,N2, . . .} in Ik in such a way that:

1. Ni has 4
Si elements, each element of the form S[ǫ1, ǫ2, . . . , ǫi];

2.
⋂

N = Ck is a Cantor set;

3. Every point p in Ck is associated with a sequence (ǫ1, ǫ2, ǫ3, . . .);

4. If there is some stage past which either the first coordinates of the ǫn alternate, or

the second coordinates of the ǫi alternate, then p has no triadic rational coordinates.

To do this, let N0 =
{
Ik = I1 × I2 × . . .× Ik

}
. That is, N0 has a single element.

Let A1
0 =

{
Ik = I1 × I2 × . . .× Ik

}
. The set A1

1 will be obtained from A1
0 by sub-

dividing the first interval factor of each element into 4 equal subintervals. That is, each

component of A1
1 is of the form

N(ǫ1) = S[ǫ1]× I2 × I3 × . . .× Ik

Next, the set A1
2 will be obtained from A1

1 by subdividing the second interval factor into

4 equal subintervals. That is, each component of A1
2 is of the form

N(ǫ1, ǫ2) = S[ǫ1]× S[ǫ2]× I3 × . . .× Ik.

This process will continue until the first k factors have each been subdivided into 4 equal

subintervals. The process will then continue by subdividing the kth factor again and then
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working backwards towards the first factor. From this process, after 2k times, we have

N(ǫ1) = S[ǫ1]× I2 × I3 × . . .× Ik ∈ A1
1,

N(ǫ1, ǫ2) = S[ǫ1]× S[ǫ2]× I3 × . . .× Ik ∈ A1
2,

N(ǫ1, ǫ2, ǫ3) = S[ǫ1]× S[ǫ2]× S[ǫ1]× . . .× Ik ∈ A1
3,

N(ǫ1, ǫ2, . . . , ǫk) = S[ǫ1]× S[ǫ2]× . . .× S[ǫ1] ∈ A1
k,

N(ǫ1, . . . , ǫk, ǫk+1) = S[ǫ1]× . . .× S[ǫk, ǫk+1] ∈ A1
k+1,

N(ǫ1, . . . , ǫk, ǫk+1, ǫk+2) = S[ǫ1]× . . .× S[ǫk−1, ǫk+2]× S[ǫk, ǫk+1] ∈ A1
k+2,

N(ǫ1, . . . , ǫk, ǫk+1, . . . , ǫ2k) = S[ǫ1, ǫ2k]× . . .× S[ǫk−1, ǫk+2]× S[ǫk, ǫk+1] ∈ A1
2k

The process will be repeated again until we have A1
kn1

. That is, we will repeat this process

n1
2 times where n1 is even. Thus let N1 = A1

kn1
. In fact, each element of N1 is of the form

N(ǫ1, . . . , ǫS1) =
k∏

i=1

S[(ǫil)]

where (ǫil) is the subsequence of E = {ǫ1, ǫ2, . . . , ǫS1} , i = 1, 2, . . . , k, l = 1, 2, . . . , n1, and

for each i, the index

il =





2k − i+ 1 + (l − 2)k if l even

i+ (l − 1)k if l odd.

To get N2, we will consider A2
0 = N1. The set A2

1 will be obtained from A2
0 by

subdividing the first interval factor of each element into 4 equal subintervals. That is. the

element of the set A2
1 are of the form

N(ǫ1, . . . , ǫS1 , ǫS1+1) = S[(ǫil), ǫS1+1]×
k∏

i=2

S[(ǫil)]

Next, the set A2
2 will be obtained from A2

1 by subdividing the second interval factor into

4 equal subintervals. That is the element of the set A2
2 are of the form

N(ǫ1, . . . , ǫS1 , ǫS1+1, ǫS1+2) = S[(ǫ1l), ǫS1+1]× S[(ǫ2l), ǫS1+2]×
k∏

i=3

S[(ǫil)].
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This process will continue until each interval in the first k factors has been subdivided

into 4 equal subintervals. The process will then continue by subdividing the kth factor

again and then working backwards towards the first factor. For convenience, for each n,

let

ǫn =
(
ǫSn−1+1, ǫSn−1+2, . . . , ǫSn

)
,

Again, we can see from this process that, after 2k times,

N(ǫ1, ǫS1+1) = S[(ǫ1l), ǫS1+1]×
k∏

i=2

S[(ǫil)] ∈ A2
1,

N(ǫ1, ǫS1+1, ǫS1+2) = S[(ǫ1l), ǫS1+1]× S[(ǫ2l), ǫS1+2]×
k∏

i=3

S[(ǫil)] ∈ A2
2,

N(ǫ1, ǫS1+1, . . . , ǫS1+k) =
k∏

i=1

S[(ǫil), ǫS1+i] ∈ A2
k,

N(ǫ1, ǫS1+1 . . . , ǫS1+k, ǫS1+k+1) =
k−1∏

i=1

S[(ǫil), ǫS1+i]× S[(ǫkl), ǫS1+k, ǫS1+k+1] ∈ A2
k+1,

N(ǫ1, ǫS1+1, . . . , ǫS1+2k) =
k∏

i=1

S[(ǫil), ǫS1+i, ǫS1+2k−i+1] ∈ A2
2k.

The process will be repeated again until we have A2
kn2

. That is, we will repeat this

process n2
2 times. Then let N2 = A2

kn2
. Then N2 has 4S2 elements and each element is of

the form

N(ǫ1, . . . , ǫS2) =
k∏

i=1

S[(ǫil)]

where (ǫil) is the subsequence of E = {ǫ1, ǫ2, . . . , ǫS2} , i = 1, 2, . . . , k, l = 1, 2, . . . ,
∑2

i=1 ni,

and for each i, the index is given by

il =





2k − i+ 1 + (l − 2)k if l even

i+ (l − 1)k if l odd.

For m ≥ 3, we inductively define Nm as follows. Inductively assume we have Nm
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with 4Sm elements. And assume that each element of Nm is of the form

N(ǫ1, . . . , ǫSm) =
k∏

i=1

S[(ǫil)]

where (ǫil) is the subsequence of E = {ǫ1, ǫ2, . . . , ǫSm} , i = 1, 2, . . . , k, l = 1, 2, . . . ,
∑m

j=1 nj ,

and for each i, the index is given by

il =





2k − i+ 1 + (l − 2)k if l even

i+ (l − 1)k if l odd

.

To define Nm+1, let Am+1
0 = Nm. The set Am+1

1 will be obtained from Am+1
0 by

subdividing the first interval factor of each element into 4 equal subintervals. That is the

element of Am+1
1 is of the form

N(ǫ1, . . . , ǫm, ǫSm+1)

Next, the set Am+1
2 will be obtained from Am+1

1 by subdividing the second interval factor

into 4 equal subintervals. That is, the element of the set Am+1
2 are of the form

N(ǫ1, . . . , ǫm, ǫSm+1, ǫSm+2).

This process will continue until the first k factors have each been subdivided into 4 equal

subintervals. The process will then continue by subdividing the kth factor again and

then working backwards towards the first factor. After this, the process will be repeated

again until we have Am+1
knm+1

. That is, we will repeat this process nm+1

2 times. Thus, let

Nm+1 = Am+1
knm+1

which has 4Sm+1 elements, and each element of the set Nm+1 is of the

form

N(ǫ1, . . . , ǫSm+1) =
k∏

i=1

S[(ǫil)]

where (ǫil) is the subsequence of E =
{
ǫ1, ǫ2, . . . , ǫSm+1

}
, i = 1, 2, . . . , k, l = 1, 2, . . . ,

∑m+1
j=1 nj ,

and for each i, the index is given by

il =





2k − i+ 1 + (l − 2)k if l even

i+ (l − 1)k if l odd.
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From the above construction, we have the following facts:

Remark 2.2.1. 1. N = {N1,N2, . . .} is a defining sequence,

2.
⋂

iNi = Ck, and

3. each point p = (p1, . . . , pk) in Ck corresponds to a sequence, say E = (ǫ1, ǫ2, . . . , ǫi−1, ǫi, . . .).

4. for each 1 ≤ i ≤ k, πi(p) = pi corresponds to a subsequence of E, say Ei, where πi

is the projection onto the ith coordinate of p. Indeed, we can find the subsequence

Ei = (ǫil)
∞
l=1 from the Table 2.1.

ith coor. of p Ei = (ǫil)
∞
l=1

1 ǫ1 ǫ2k · · · ǫS1−2k+1 ǫS1 · · ·

2 ǫ2 ǫ2k−1 · · · ǫS1−2k+2 ǫS1−1 · · ·

3 ǫ3 ǫ2k−2 · · · ǫS1−2k+3 ǫS1−2 · · ·

...
...

...
...

...
... · · ·

k − 1 ǫk−1 ǫk+2 · · · ǫS1−k−1 ǫS1−k+2 · · ·

k ǫk ǫk+1 · · · ǫS1−k ǫS1−k+1 · · ·

TABLE 2.1: Subsequence of Ei corresponding to ith coordinate of p in Ik

From Table 2.1, the subsequence Ei can be written as: Ei = (ǫil)
∞
l=1 where the index

is given by

il =





2k − i+ 1 + (l − 2)k if l even

i+ (l − 1)k if l odd

.

5. The number of stages strictly between the consecutive elements in each Ei is even.
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Next, we will show some examples to illustrate certain elements in some stages of

this construction.

Example 2.2.2. Let k = 2. Then

A1
0 = {I1 × I2}(See Figure 2.1),

A1
1 = {S[ǫ1]× I2}( See Figure 2.2(a)),

A1
2 = {S[ǫ1]× S[ǫ2]}(See Figure 2.2(b))),

A1
3 = {S[ǫ1]× S[ǫ2, ǫ3]}(See Figure 2.2(c)),

A1
4 = {S[ǫ1, ǫ4]× S[ǫ2, ǫ3]}(See Figure 2.2(d)).

FIGURE 2.1: The element in A1
0

Also, if

p = (p1, p2) =
⋂

j

N(ǫ1, . . . , ǫSj
)

= N(ǫ1, ǫ2, . . . , ǫSj
, . . .)

= S[ǫ1, ǫ4, ǫ5, . . .]× S[ǫ2, ǫ3, ǫ6, . . .],

then

E1 = (ǫ1, ǫ4, ǫ5, . . .) = (i1, j1, i4, j4, i5, j5, . . .),

E2 = (ǫ2, ǫ3, ǫ6, . . .) = (i2, j2, i3, j3, i6, j6, . . .)

correspond to p1 and p2, respectively. Furthermore, assume there exists a positive integer

N so that: for all i ≥ 0, ǫN+2i = (1, jN+2i) and ǫN+2i+1 = (2, jN+2i+1), then the first

coordinates of the elements in each Ei after the stage N must alternate between ones and

twos. This implies that p has no triadic rational coordinates. Similarly, if there exists a
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(a) elements in A1
1 (b) elements in A1

2

(c) elements in A1
3 (d) elements in A1

4

FIGURE 2.2: elements in A1
i , i = 1, 2, 3, 4

positive integer N so that: for all i ≥ 0, ǫN+2i = (jN+2i, 1) and ǫN+2i+1 = (jN+2i+1, 2), p

then has no triadic rational coordinates.

From Example 2.2.2, we can generalize this to any k ≥ 1 so that the following

Theorem is true. See [Gar91] for more details.

Theorem 2.2.3. Let N = {N1,N2, . . .} be defined as above. Then N is a defining

sequence in Ik so that the Ck =
⋂
N is a Cantor set and if p =

⋂∞
i=1N(ǫ1, ǫ2, . . . , ǫSi

)

where Si =
∑i

j=1 knj and nj is even and if there is N so that: either for all i ≥ 0,

ǫN+2i = (1, jN+2i) and ǫN+2i+1 = (2, jN+2i+1), or for all i ≥ 0, ǫN+2i = (jN+2i, 1) and

ǫN+2i+1 = (jN+2i+1, 2), then p has no triadic rational coordinates.
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Proof. It is obvious that N is a defining sequence and

p =
∞⋂

i=1

N(ǫ1, ǫ2, . . . , ǫSi
)

is in Ck. Since either the first or the second coordinates of the ǫα from the sequence of

p alternate between ones and twos past stage N and the number of stages between the

consecutive elements in each Ei is even by the Remark 2.2.1(5), it follows that for each

1 ≤ i ≤ k, the first or the second coordinates of the ǫil also alternate between ones and

twos. This implies that each coordinate of p does not have a triadic expansion that is

eventually constant and hence p has no triadic rational coordinates.

2.22 Construction of the generalized Cantor set: C∞

Next we will use the idea of the previous section to construct a sequence {Mi} in

Q = I3 ×Q4 so that:

1. Each Mi has 4Si elements, where Si =
∑i

j=1(j + 1)nj and nj is even, and each

element of Mi is of the form {0}×S[ǫ1, ǫ2, . . . , ǫSi
]×Qi+3 where S[ǫ1, ǫ2, . . . , ǫSi

] ⊂

I2 × · · · × Ii+2;

2.
⋂

M = {0} × C∞ is a Cantor set;

3. Every point p in C∞ is associated with a sequence (ǫ1, ǫ2, ǫ3, . . .) ;

4. If there is some stage past which either the first coordinates of the ǫn alternate, or

the second coordinates of the ǫi alternate, then p has no triadic rational coordinates.

We start the construction viewing the copy of Q as B1 × I ′1 × I ′2 × Q4, where for

each i, I ′i = Ii+1. Let M0 = {{0} × I ′1 × I ′2}×Q4 be the starting element of the sequence.

To find M1, consider the set A1
0 = {I ′1 × I ′2} . The set A1

1k will be obtained from

A1
0 by subdividing the first interval factor into 4 equal subintervals. The set A1

2 will

be obtained from A1
1 by subdividing the second interval factor into 4 equal subintervals.
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This process will continue until the last interval factor has been subdivided into 4 equal

subintervals. The process will then continue by subdividing the last interval factor again

and then working backwards towards the first factor. We can see that, after 4 times, we

have

M(ǫ1) = S[ǫ1]× I ′2 ∈ A1
1,

M(ǫ1, ǫ2) = S[ǫ1]× S[ǫ2] ∈ A1
2,

M(ǫ1, ǫ2, ǫ3) = S[ǫ1]× S[ǫ2, ǫ3] ∈ A1
3,

M(ǫ1, ǫ2, ǫ3, ǫ4) = S[ǫ1, ǫ4]× S[ǫ2, ǫ3] ∈ A1
4,

The process will be repeated again until we have A1
2n1

. That is, we will repeat this process

n1
2 times. Thus, let

M1 = {{0} ×M(ǫ1, ǫ2, . . . , ǫ2n1)} ×Q4

where

M(ǫ1, . . . , ǫS1) =
2∏

i=1

S[(ǫil)]

where (ǫil) is a subsequence of E = {ǫ1, ǫ2, . . . , ǫS1} , i = 1, 2, l = 1, 2, . . . , n1, and for each

i, the index from Table 2.2 is given by

il =





2l − i+ 1 if l even

2l + i− 1 if l odd

.

So, we can see that there are 4S1 elements in M1.

For the element M2 of the sequence, we consider

A2
0 = A1

2n1
× I ′3 =

{
2∏

i=1

S[(ǫil)]× I ′3

}
,

where (ǫil) is the subsequence of E = {ǫ1, ǫ2, . . . , ǫS1} , i = 1, 2, l = 1, 2, . . . , n1, and for

each i,

il =





2l − i+ 1 if l even

2l + i− 1 if l odd

.
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The set A2
1 will be obtained from A2

0 by subdividing the first interval factor into

4 equal subintervals. The set A2
2 will be obtained from A2

1 by subdividing the second

interval factor into 4 equal subintervals. This process will continue until the last interval

factor has been subdivided into 4 equal subintervals. The process will then continue by

subdividing the last interval factor again and then working backwards towards the first

factor. So, after 6 times, we have

M(ǫ1, ǫS1+1) = S[(ǫ1l), ǫS1+1]× S[(ǫil)]× I ′3 ∈ A2
1,

M(ǫ1, ǫS1+1, ǫS1+2) = S[(ǫ1l), ǫS1+1]× S[(ǫ2l), ǫS1+2]× I ′3 ∈ A2
2,

M(ǫ1, ǫS1+1, . . . , ǫS1+3) =
2∏

i=1

S[(ǫil), ǫS1+i]× S[ǫS1+3] ∈ A2
3,

M(ǫ1, ǫS1+1 . . . , ǫS1+3, ǫS1+4) =
2∏

i=1

S[(ǫil), ǫS1+i]× S[ǫS1+3, ǫS1+4] ∈ A2
4,

M(ǫ1, ǫS1+1, . . . , ǫS1+5) = S[(ǫ1l), ǫS1+1]× S[(ǫ2l), ǫS1+2, ǫS1+5]× S[ǫS1+3, ǫS1+4] ∈ A2
5

M(ǫ1, ǫS1+1, . . . , ǫS1+6) =
2∏

i=1

S[(ǫil), ǫS1+i, ǫS1+7−i]× S[ǫS1+3, ǫS1+4] ∈ A2
5.

The process will be repeated again until we have A2
3n2

. That is, we will repeat this

process n2
2 times. Thus, let

M2 = {{0} ×M(ǫ1, . . . , ǫS1 , . . . , ǫS2)} ×Q5.

Then M2 has 4S2 elements and each element is of the form

{0} ×M(ǫ1, . . . , ǫS2)×Q5 = {0} ×
3∏

i=1

S
[
(ǫil)

∞
l>ni−2

]
×Q5

where (ǫil) is the subsequence of E = {ǫ1, ǫ2, . . . , ǫS2} , i = 1, 2, 3, l = 1, 2, . . . ,
∑2

i=1 ni,

and assume that n−1 = 0 = n0 and S0 = 0.
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If l = 1, . . . , n1, then the index for i = 1, 2

il =





2l − i+ 1 if l even

2l + i− 2 if l odd

and if l = n1 + 1, . . . , n1 + n2, then the indice for i = 1, 2, 3

il =





S1 + (l − n1)3− i+ 1 if l even

S1 + i+ 3(l − n1 − 1) if l odd

So, we can see that there are 4S2 elements in M2.

Using induction and the same process above to obtain the following Remark 2.2.4.

Remark 2.2.4. From this construction, we see that:

1. M = {M1,M2, . . .} is a defining sequence.

2.
⋂

iMi = {0} × C∞

3. Each point p = {0} × p′ where p′ = (p1, p2, . . . , pk, . . .) in {0} × C∞ corresponds to

a sequence, say E = (ǫ1, ǫ2, . . . , ǫi−1, ǫi, . . .). Furthermore, for each i ≥ 1 πi(p′) = pi

corresponds to a subsequence of E, say Ei Indeed, we can find the subsequence Ei =

(ǫil)
∞
l>ni−2

from the following table. From the table, we can write the subsequence Ei

into the general form: Ei = (ǫil)
∞
l>ni−2

where for all j ∈ N ∪ {0} , for nj < l ≤ nj+1

with n−1 = 0 = n0, S0 = 0, the indice

il =





Sj + (j + 2)(l − nj)− i+ 1 if l even

Sj + i+ (j + 2)(l − nj − 1) if l odd

.

4. The number of stages between the consecutive elements in each Ei is even. This

guarantees that if there exists an N so that: either for all r ≥ 0, ǫN+2r = (1, jN+2r)

and ǫN+2r+1 = (2, jN+2r+1), or for all r ≥ 0, ǫN+2r = (jN+2r, 1) and ǫN+2r+1 =
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ithco. of p′ Ei = (ǫil)
∞
l>ni−2

1 ǫ1 ǫ4 . . . ǫS1 ǫS1+1 ǫS1+6 · · · ǫS2−5 ǫS2 · · ·

2 ǫ2 ǫ3 . . . ǫS1−1 ǫS1+2 ǫS1+5 · · · ǫS2−4 ǫS2−1 · · ·

3 ǫS1+3 ǫS1+4 · · · ǫS2−3 ǫS1−2 · · ·

...

TABLE 2.2: Subsequence of Ei corresponding to ith coordinate of p in Q

(jN+2r+1, 2), then for each i ≥ 1 either the first coordinates of the ǫil in Ei must

alternate, or the second coordinates of the ǫil in Ei must alternate. This again

implies that p has no triadic rational coordinates. So, one has the following Theorem.

Theorem 2.2.5. Let M = {M1,M2, . . .} be defined as above. Then M is a defining

sequence in Q so that the
⋂
M = {0} × C∞ is a Cantor set and if p = {0} × p′ where

p′ = ∩∞i=1M(ǫ1, ǫ2, . . . , ǫSi
), Si =

∑i
j=1(j+1)nj , and nj is even and if there exists an N so

that: either for all i ≥ 0, ǫN+2i = (1, jN+2i) and ǫN+2i+1 = (2, jN+2i+1), or for all i ≥ 0,

ǫN+2i = (jN+2i, 1) and ǫN+2i+1 = (jN+2i+1, 2), then p′ has no triadic rational coordinates.

Proof. The point p is obviously in {0}×C∞. By assumption and by the Remark 2.2.4(4),

one can show that none of the coordinates of p′ have a triadic expansion that is eventually

constant. Thus, this implies that p′ has no triadic rational coordinates.

Remark 2.2.6. This result is new and generalizes a previous result about Cantor sets in

Ik to Cantor sets in Q.
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2.3 Cantor set on the top ([2, 3]×Q2 ⊂ Q)

Before proceeding with the construction in this section, we need some additional

results about geometric centrality that can be obtained by using a method known as

ramification. This is described below.

Let A = B2 × X1 × X2 × · · ·Xn, where Xi = I or S1. Let C = {C1, C2 . . . , Ck},

where each Ci
∼= B2 × Y1 × Y2 × · · ·Yn with Yi = I or S1, be a finite collection of disjoint

subsets of A such that C is geometrically central in A. For each i, in order to ramify

Ci = B2 × Y1 × Y2 × · · ·Yn, we take a finite number of subdiscs D1, D2, . . . , Dn on B2.

Then each ramified copy Dj×Y1×Y2×· · ·Yn of Ci is called a parallel interior manifold,

see [DG82]. We will use the following lemma about parallel interior manifolds in many

places.

Lemma 2.3.1. [DG82] Let M = B2 × N be an m−manifold. Let D1, D2, . . . , Dn be

disjoint subdiscs in B2. Then each parallel manifold Di ×N of M is geometrically central

in M.

We will modify the construction below of the Cantor set by ramifying the manifolds

in the defining sequence and modifying the choice of factors so as to get a different and

more useful way of determining when p ∈ C∞ has no triadic rational coordinates. This

will be needed in the next Chapter.

We will construct a Cantor set in [2, 3]×Q2 ⊂ Q by constructing a defining sequence,

T = {T1, T2, . . .} in [2, 3]×Q2 ⊂ Q, in such a way that

T1, T2 ⊂ [2, 3]× I2 ×Q4

T3, T4, T5 ⊂ [2, 3]× I3 ×Q5

and in general for k > 2,

T k(k−1)
2

+i
⊂ [2, 3]× Ik ×Qk+2

for i = 0, . . . , k − 1 and so that
⋂
Ti is a Cantor set.
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2.31 Zero and First Stages of Construction: k = 2

T0: Let T0 = W0 ×Q4 where

W0 =
{
W0 = B2 × I2

}

and B2 ⊂ [2, 3]× I3 ⊂ I1 × I3.

T1 : By Lemma 1.5.7, there is a geometrically central family

W11 = {W1,W2, . . . ,W2n1} ,

and Wi
∼= B2 ×X1 with X1

∼= I or S1, are disjoint subsets of W0 such that the diameter

of Wi in I3 is less than 1
2 for every i = 1, . . . , 2n1 with 2n1 ≥ 4.

LetW1 = W11 and ramify each component ofW1 2
n1 times and denote each ramified

element by T (ǫ1) where ǫ1 = (σ11, σ12) with

σ1i = (i1, i2, . . . , in1) ; il ∈ {1, 2} .

Then let

T1 = W1 ×Q4,

where W1 = {T (ǫ1)} . Figure 2.3 demonstrates the zero stage and the first stage of con-

struction in [2, 3]× I2 in the case of 2 times ramification of a B2 × I.

FIGURE 2.3: Ramified copies of component of W1 on B2 × I

We observe the following Remark [Gar91] on the first construction:
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Remark 2.3.2. If f : H → T = B2 × I is any virtually I−essential map of a disc

with holes H, then there exists an σ′11 so that f is virtually I−essential with respect to all

T ((σ′11, σ12)). Moreover, if f : H → T is any virtually I−essential map of a disc with holes

H and the choice of σ′11 is fixed, then there exists a map g : H → T so that g
∣∣∣
∂H

= f
∣∣∣
∂H

and g(H) ∩ T ((σ11, σ12)) 6= ∅ if and only if σ11 = σ′11.

For T2, consider T (ǫ1) ∈ W1. By Lemma 1.5.7 there is a geometrically central family

W2i =
{
W1i,W2i, . . . ,W2n2)i

}
,

where Wji
∼= B2×X1 with X1

∼= I or S1, are disjoint subsets of Wi such that the diameter

of Wji is less than
1
22

in [2, 3]× I2 for every j = 1, . . . , 2n2 with 2n2 ≥ 4. Let W2 = ∪W2i.

Let us ramify each element in W2 2n2 times and denote each ramified element by

T (ǫ1, ǫ2) Thus, T2 = W2 ×Q5, where W2 = {T (ǫ1, ǫ2)} and ǫl = (σl1, σl2) with

σli = (i1, i2, . . . , in2) ; l = 1, 2; ik, i ∈ {1, 2} ; i = 1, 2.

2.32 kth Stage of Construction :k ≥ 3

For k ≥ 3, we use induction to describe T (k−1)(k)
2

+i
for i = 0, . . . , k − 1 as follows.

Let p = (k−1)(k)
2 . Assume that we have

Tp−1 = Wp−1 ×Qk+1 = {T (ǫ1, . . . , ǫp−1)×Qk+1} ⊂ [2, 3]× Ik−1 ×Qk+1

so that:

1. T (ǫ1, . . . , ǫp−1) = B2 ×X1 ×X2 × · · · ×Xk−2; Xj
∼= I, or Xj

∼= S1

2. The diameter of T (ǫ1, . . . , ǫp−1) is less than
1

2p−1 in [2, 3]× Ik−1.

We will define Tp+i for i = 0, . . . , k − 1 as follows: For i = 0, let

A = T (ǫ1, . . . , ǫp−1) = B2 ×X1 ×X2 × · · · ×Xk−2 ∈ Wp−1,
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where Xj
∼= S1 or I and the diameter of Ai is less than

1
2p−1 in [2, 3]× Ik−1. Consider

B1 = Ai × Ik+1 =
{
B2 ×X1

}
× C1

where C1 = X2 × · · · ×Xk−2 × Ik+1. Then by Lemma 1.5.7, there is a finite geometrically

central family

W(p+1)i = {W1i,W2i, . . . ,W2np i}

in B2 ×X1 so that each Wji in W(p+1)i is B
2 ×X11 with X11

∼= S1 or I and the diameter

of Wji is less than
1
2p in [2, 3]× Ik for all j = 1, . . . , 2np with 2np ≥ 4. Now let

Wp = ∪(W(p+1)i × C1).

Ramify each element in Wp 2np times and denote each ramified element by T (ǫ1, . . . , ǫp).

Therefore, let Tp = Wp ×Qk+2 where

Wp = {T (ǫ1, ǫ2, . . . , ǫp)} ,

for each ǫl = (σl1, σl2) with

σli =
(
i1, i2, . . . , inp

)
l = 1, . . . , p; im, i ∈ {1, 2} .

Assume that for i = i0, we have Tp+i0 = W p+i0 ×Qk+2 such that

1. W p+i0 = {T (ǫ1, . . . , ǫp+i0)}

2. T = T (ǫ1, . . . , ǫp+i0) =
{
B2 ×Xi01

}
× Ci0 where

Ci0 = X11 × · · · ×X(i0−1)1 ×Xi0+1 × · · · ×Xk−2 × Ik+1 ∈ Wp+i0 ,

with Xi
∼= S1 or I and the diameter of T is less than 1

2p+i0
in [2, 3]× Ik.

To define Tp+i0+1, let Ai = T ∈ Tp+i0 . Then T =
{
B2 ×Xi0+1

}
× Ci0+1, where

Ci0+1 = X11 × · · · ×X(i0)1 ×Xi0+2 × · · · ×Xk−2 × Ik+1,
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satisfies the condition (2) above. Then by Lemma 1.5.7, there is a finite geometrically

central family

W(p+i0+1)i =
{
W1,W2, . . . ,W2

np+i0+1

}

in T so that each Wj is B2 ×X(i0+1)1 with Xi
∼= S1 or I and the diameter of Wj is less

than 1
2p+i0+1 in [2, 3]× Ik for all j = 1, . . . , 2np+i0+1 with 2np+i0+1 . Now let

Wp+i0+1 =
⋃(

W(p+i0+1)i

)
× Ci0+1.

Ramify each element in Wp+i0+1 2np+i0+1 times and denote each ramify element by

T (ǫ1, . . . , ǫp+i0+1).

Therefore, let Tp+i0+1 = Wp+i0+1 ×Qk+2 where

Wp+i0+1 = {T (ǫ1, ǫ2, . . . , ǫp+i0+1)} ,

for each ǫl = (σl1, σl2) with

σli =
(
i1, i2, . . . , inp+i0+1

)
l = 1, . . . , p+ i0 + 1; im, i ∈ {1, 2} .

This completes the inductive description of Tp+i for i = 0, 1, . . . , k − 1 at stage k.

Remark 2.3.3. From the construction, np, np+1, . . . , np+k−1 can be chosen to be equal.

Lemma 2.3.4. If f : H → T = T (ǫ1, . . . , ǫn) is any virtually I−essential map of a disc

with holes H, then there exists an σ′(n+1)1 so that f is virtually I−essential with respect

to all L(ǫ1, . . . , ǫ1, (σ
′
(n+1)1, σ(n+1)2)). Moreover, if f : H → T is any virtually I−essential

map of a disc with holes H and the choice of σ′(n+1)1 is fixed, then there exists a map

g : H → T so that g
∣∣∣
∂H

= f
∣∣∣
∂H

and g(H) ∩ T (ǫ1, . . . , ǫn, (σ(n+1)1, σ(n+1)2)) 6= ∅ if and

only if σ(n+1)1 = σ′(n+1)1.

Proof. The proof can be found in [Gar91], [Dav07],[GD83].
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2.33 Construction of the Cantor set

Let us recall some definitions and theorems concerning about the Cantor set.

Definition 2.3.5. A space X is totally disconnected if the only nonempty connected

subsets of X are the one-point sets.

Definition 2.3.6. A set A in a space X is perfect in X if A is closed and dense in itself;

i.e., each point of A is a limit point of A.

From these definitions, we have the following Theorem.

Theorem 2.3.7. [Wil70] A compact set X is homeomorphic to the standard Cantor set

C if and only if X is totally disconnected and perfect.

From the construction above, we have the following theorem.

Theorem 2.3.8. Let T = {T1, T2, T3, . . .} be a sequence in Q such that Tk = Wk ×Qk+3

where Wk = {T (ǫ1, . . . , ǫi)} defined as above. Then C =
⋂
(
⋃
Ti) is a Cantor set in Q.

Proof. Since the intersection is of closed and compact sets with the non-empty finite

intersection property, the intersection itself is compact and since the size of the components

is going to zero, this implies the total disconnectedness of the intersection. Also, since

each component at stage i has more than 2 components at stage i + 1, this implies that

every point in C is a limit point. Hence C is perfect. Thus, by Theorem 2.3.7 C is a

Cantor set in Q, completing the proof.

2.4 Cantor set on bottom ([−3,−2]×Q2 ⊂ Q)

By reflecting the construction of the defining sequence T = {T1, T2, . . .} about {0}×

Q2, we have a defining sequence D = {D1,D2,D3, . . .} which each Di is a homeomorphic
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copy of Ti contained in [−3,−2] × Q2 ⊂ Q so that D =
⋂
Dk is a Cantor set, where

Di = {D(ǫ1, ǫ2, . . . , ǫk)} ×Qm(i)+2 where ǫl = (σl1, σl2) with

σli = (i1, i2, . . . , inl
) ; l = 1, . . . , l; im, i ∈ {1, 2} .

2.5 Modification of the Construction of the Cantor set in the Middle

We will modify the construction of the defining sequence in the middle so that each

element in the new defining sequence is matched with an element on the top and an

element on the bottom. To do this, we will find a sequence B = {B1,B2, . . .} in such a

way that

B1,B2 ⊂ {0} × I2 ×Q4

B3,B4,B5 ⊂ {0} × I3 ×Q5

and for k > 2,

B k(k−1)
2

+i
⊂ {0} × Ik ×Qk+2

for i = 0, . . . , k − 1 and
⋂

(
⋃
Bi) is a Cantor set.

2.51 Zero and First stage of Construction: k = 2

We start the construction viewing the copy of Q as B1 × I ′1 × I ′2 × Q4, where for

each i, I ′i = Ii+1. Let B0 = {{0} × I ′1 × I ′2} ×Q4 be the starting element of the sequence.

To define B1, consider the set B
0 = {I ′1 × I ′2} . The set B

1 will be obtained from B0

by subdividing the first interval factor into 22n1 equal subintervals. Denote each element

in B1 by M(ǫ1) where ǫ1 = (σ11, σ12) with

σ1i = (i1, i2 . . . , in1) ; il, i ∈ {1, 2} .

Thus, B1 = B1 ×Q4

To define B2, the set B
2 will be obtained from B1 by subdividing the second interval

factor into 22n2 equal subintervals. Denote each element in B2 by B(ǫ1, ǫ2) where ǫl =
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(σl1, σl2) with

σli = (i1, i2 . . . , inl
) ; l = 1, 2; il, i ∈ {1, 2} .

Thus, B2 = B2 ×Q4

Remark 2.5.1. n2 can be chosen to be equal n1 so that I ′1, I
′
2 will be subdivided into same

number of subintervals.

2.52 kth Stage of Construction :k ≥ 3

For k ≥ 3, we use induction to describe B (k−1)(k)
2

+i
for i = 0, . . . , k − 1 as follows.

Let p = (k−1)(k)
2 . Assume that we have

Bp−1 = Bp−1 ×Qk+1 = {B(ǫ1, . . . , ǫp−1)×Qk+1} ⊂ {0} × Ik−1 ×Qk+1

where ǫl = (σl1, σl2) with

σli = (i1, i2 . . . , inl
) ; i ∈ {1, 2} , ir ∈ {1, 2} , r = 1, . . . , nl.

We will define Bp+i for i = 0, . . . , k−1 as follows: For i = 0, let Bp−1 = {B(ǫ1, . . . , ǫp−1)} .

Then the set Bp will be obtained from Bp−1 by subdividing the first interval factor into

22np equal subintervals. Denote each element in B1 by B(ǫ1, ǫ2, . . . , ǫp) where ǫl = (σl1, σl2)

with

σli = (i1, i2 . . . , inl
) ; i ∈ {1, 2} , ir ∈ {1, 2} , r = 1, . . . , nl.

Thus, Bp = Bp × Qk+2. Assume that for i = i0, we have Tp+i0 = Bp+i0 × Qk+2 where

Bp+i0 = {B(ǫ1, . . . , ǫp+i0)} . To define Tp+i0+1, let the set Bp+i0+1 will be obtained from

Bp+i0 by subdividing the i0+1th interval factor into 22np+i0+1 equal subintervals. Denote

each element in Bp+i0+1 by B(ǫ1, ǫ2, . . . , ǫp+i0+1) where ǫl = (σl1, σl2) with

σli = (i1, i2 . . . , inl
) ; i ∈ {1, 2} , ir ∈ {1, 2} , r = 1, . . . , nl.

Thus, Bp+i0+1 = Bp+i0+1 ×Qk+2.

This completes the inductive description of Tp+i for i = 0, 1, . . . , k − 1 at the stage

k.



50

Remark 2.5.2. each ni can be chosen so that after this stage all factors I ′1, I
′
2, . . . , I

′
k

have same number of subintervals.

Using the induction and the same process above to obtain the following Remark

2.5.3.

Remark 2.5.3. From this construction,first let Let 1̄ and 2̄ represent the collections of all

finite sequences of the form (1, 1, . . . , 1) and (2, 2, . . . , 2), respectively. Then we see that:

1. B = {B1,B2, . . .} is a defining sequence.

2.
⋂

i Bi = {0} × C∞

3. Each point p = {0}× p′ where p′ = (p1, p2, . . . , pk, . . .) in {0}×C∞ corresponds to a

sequence, E = (ǫ1, ǫ2, . . . , ǫi−1, ǫi, . . .). Furthermore, if there is some stage N so that

for i > n either all the first components or all the second components of ǫi = (σi1, σi2)

are not in 1̄ ∪ 2̄, then p ∈ {0} × C∞ has no triadic rational coordinates.

Theorem 2.5.4. Let B = {B1,B2,B3, . . .} be defined as above. Then B is a defining

sequence in Q so that the
⋂

B = {0} × C∞ is a Cantor set and if p = {0} × p′ where

p′ = ∩∞i=1B(ǫ1, ǫ2, . . . , ǫi), and if there exists an N so that for all i > N, either all the first

components or all the second components of ǫi are not in 1̄ ∪ 2̄, then p ∈ {0} × C∞ has

no triadic rational coordinates in C∞.

Proof. The point p is obviously in {0} × C∞. By assumption and by Remark 2.5.3(3),

one can show that none of the coordinates of p′ has a triadic expansion that is eventually

constant. Thus, this implies that p′ has no triadic rational coordinates.
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3. A DECOMPOSITION WITH NONMANIFOLD PART A
CANTOR SET

3.1 Introduction

The aim of this chapter is to construct a decomposition H of Q which satisfies the

following properties:

• (P1) For each nondegenerate element h of H,

h ∩ {0} ×Q2

is a single point in {0} × C∞.

• (P2) Let f1 and f2 be maps from B2 into Q/H and let A be any dense subset of

C∞. Then f1 and f2 are approximable by maps g1 and g2 satisfying:

(i) g1(B
2) ∩ g2(B

2) ⊂ πH(A), and

(ii) if p = {0} × p′ is a point of {0} × C∞ with πH(p) ∈ (g1(B
2) \ g2(B

2)) ∪

(g2(B
2) \ g1(B

2)), then p′ has no triadic rational coordinates.

• (P3) Q/H has nonmanifold part equal to πH({0} × C∞) ∼= {0} × C∞.

3.11 Preview of Our Plan for Constructing the Decomposition H of Q

Recall from the previous Chapter,

T = {T0, T1, T2, . . . , },

D = {D0,D1,D2, . . .},

B = {B0,B1,B2, . . .}

are defining sequences in [2, 3]×Q2, {0}×Q2, and [−3,−2]×Q2, respectively. To produce

the decomposition H, we will construct a defining sequence L = {L1,L2, . . . , } so that
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each component of Li consists of a single component of
[
− 1

2i
, 1
2i

]
× B ∈

[
− 1

2i
, 1
2i

]
× Bi, a

component of Ti, a component of Di, together with tubes (regular neighborhoods of arcs)

joining the top of
[
− 1

2i
, 1
2i

]
× B, { 1

2i
} × B, and the bottom of

[
− 1

2i
, 1
2i

]
× B, {− 1

2i
} × B

to these components.

3.2 A Defining Sequence associated with the Decomposition H

To construct the defining sequence

L = {L0,L1,L2,L3, . . .}

of Q, we will modify the defining sequences T ,B,D constructed in the previous Chapter

and we describe the construction inductively.

We start the construction viewing Q = I3 × Q4 where I1 = [−3, 3] . We write

Ik = I1 × I2 × · · · × Ik and B2 = I1 × I3. Similarly, we write Bn−1 as an embedded copy

of I2 × · · · × In. An n−tube is a homeomorphic copy of Bn−1 × [0, 1] .

Let

T = {T0, T1, T2, . . . , },

D = {D0,D1,D2, . . .},

B = {B0,B1,B2, . . .}

be defining sequences from the previous Chapter so that the diameter of
[
− 1

2j
, 1
2j

]
×

B (j+2)(j+1)
2

−1
is less than 1

j
in Ij+2 for j > 1.

3.21 Stage Zero of Construction

Stage 0 : L0 has a single element L0 × Q4 where L0 consists of [−1, 1] × B0 and

3-tubes joining the top of [−1, 1]×B0 to T0 = D1 × I2 and the bottom of [−1, 1]×B0 to

D0 = D2 × I2 where D1 ⊂ [2, 3]× I2 and D2 ⊂ [−3,−2]× I2. This joining is done in such
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a way that

L0 ×Q4 ∩
(
[−1, 1]× I2 ×Q4

)
= [−1, 1]×B0 ×Q4.

Figure 3.1 shows this stage of the construction in I3.

FIGURE 3.1: Stage Zero of construction

Let D′1 and D′2 be slightly bigger discs in I1×I3 containing D1 and D2, respectively,

as shown in Figure 3.1. Let l1 = ∂(D′1 × {pt}) and l2 = ∂(D′2 × {pt}) be loops and let

ǫ > 0 be such that

ρ(l1, ∂(D1 × I2)) > ǫ and ρ(l2, ∂(D2 × I2)) > ǫ.

We can assume that l1 × {0} and l2 × {0} in I3 × Q4 are loops in Q such that for any

contraction f1 of l1 and f2 of l2, in general position respect to the boundary component of

L0, there exist discs with holes K1 and K2 so that f1

∣∣∣
K1

is virtually I−essential in D1×I2

and f2

∣∣∣
K2

is virtually I−essential in D2 × I2, and so that for any maps g1, g2 : B
2 → Q in

general position with respect to L0 and

ρ(l1, g1(∂B
2)) <

ǫ

2
and ρ(l2, g2(∂B

2)) <
ǫ

2
,

there are discs with holes H1 and H2 such that g1

∣∣∣
H1

is virtually I−essential in D1 × I2

and g2

∣∣∣
H2

is I−essential in D2 × I2. This follows from the geometric centrality argument

earlier.
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3.22 First Stage of Construction

Stage 1 : Inside L0, join the top of
[
−1

2 ,
1
2

]
× B(ǫ1) to T (ǫ1) and the bottom of

[
−1

2 ,
1
2

]
× B(ǫ1) to D(δ1) with 3−tubes where δn = (σn2, σn1) if ǫn = (σn1, σn2) . These

tubes should run straight through the tube joining T0 and D0 from the previous stage.

Let L(ǫ1) be the resulting element. The joining should be done in such a way that

L(ǫ1)×Q4 ∩
([

−
1

2
,
1

2

]
× I2 ×Q4

)
=

[
−
1

2
,
1

2

]
×B(ǫ1)×Q4.

Then

L1 = {L(ǫ1)} ×Q4.

Figure 3.2 demonstrates a representation of the construction with 4 components in L1.

The four components in the cylinder at the top come from T1, The four components in

the cylinder at the bottom come from D1, and the four components in the middle come

from B1. The arrows indicate how some of the components are connected by tubes.

FIGURE 3.2: First Stage of construction L with 4 components

We may observe the following facts about the first two constructions.

1. For every x ∈ Q, there is a 3−cell B3 in I3 such that

st(x,L1) ⊂ B3 ×Q4 ⊂ L0.
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2. For each element L of Li, i = 0, 1, we can get a 1
i+1−map from L to a 1−complex.

3. For any x ∈ ∂L0 with x not in
[
−1

2 ,
1
2

]
×Q2, x is not in Lj for every Lj in L1.

4. For every contraction f1 and f2 of any loops within ǫ of the loops l1 and l2, respec-

tively, there is a component T (ǫ1, ǫ2) of W
2 and D(ǫ1, ǫ2) of D

2 and discs D′1 and D′2

with holes such that f1

∣∣∣D′1 is virtually I−essential on T (ǫ1, ǫ2) and f2

∣∣∣D′2 is virtually

I−essential on D(ǫ1, ǫ2).

For the higher dimensional construction, assume that Lr−1, r ≥ 1 has been constructed.

We need the following inductive hypotheses to be true for j = r − 1 in Ik ×Qk+1, k ≥ 3

as in [DG82].

IH1 For each element L of Lj there is 1
j+1−map from L to a 1-complex.

IH2 The diameter of each
[
− 1

2j
, 1
2j

]
×B(ǫ1, ǫ2, . . . , ǫj)×Qj+3 <

1
j

IH3 If x is a point in Q in ∂Ls for some Ls in Lj−1 and not in
[
− 1

2j−1 ,
1

2j−1

]
×Q2, then

x is not in Li for every Li in Lj .

IH4 Let δ > 0. For any contraction f1 and f2 of any loops within δ of loops l1 and

l2 into Ik, there is an element B =
[
− 1

2j
, 1
2j

]
× B(ǫ1, ǫ2, . . . , ǫj) and a component

T = T (ǫ1, ǫ2, . . . , ǫj) of Tj and a component D = D(ǫ1, ǫ2, . . . , ǫj) of Dj and discs D1

and D2 with holes such that B is connected to T and f1|D1 is virtually I-essential

into T and B is connected to D and f2|D2 is virtually I-essential into D.

Next we will construct the rth state of construction.

3.23 rth Stage of Construction

Stage r−1 : In addition to the inductive hypotheses on the previous page, inductively

assume:
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(i) Each component L = L(ǫ1, ǫ2, . . . , ǫr−1) × Qm(r−1)+3 of Lr−1 is a manifold so that

L(ǫ1, ǫ2, . . . , ǫr−1) is composed of theB =
[
− 1

2r−1 ,
1

2r−1

]
×B(ǫ1, ǫ2, . . . , ǫr−1), together

with the tubes joining the top of B to T (ǫ1, ǫ2, . . . , ǫr−1) and the bottom of M to

D(δ1, δ2, . . . , δr−1) where δn = (σn2, σn1) if ǫn = (σn1, σn2).

(ii)

L∩

[
−

1

2r−1
,

1

2r−1

]
×Ir×Qm(r−1)+3 =

[
−

1

2r−1
,

1

2r−1

]
×B(ǫ1, ǫ2, . . . , ǫr−1)×Qm(r−1)+3.

Consider a component L of Lr−1. Suppose

L = L(ǫ1, ǫ2, . . . , ǫr−1)×Qr+2).

Then by (i), L(ǫ1, ǫ2, . . . , ǫr−1) consists of B =
[
− 1

2r−1 ,
1

2r−1

]
×B(ǫ1, ǫ2, . . . , ǫr−1), together

with the tubes joining B to T (ǫ1, ǫ2, . . . , ǫr−1) and the bottom of B to D(δ1, δ2, . . . , δr−1).

Let L(ǫ1, ǫ2, . . . , ǫr−1, ǫr) be the element obtained by joining

B1 =

[
−

1

2r
,
1

2r

]
×B(ǫ1, ǫ2, . . . , ǫr−1, ǫr),

together with tubes joining the top of B1 to

T (ǫ1, ǫ2, . . . , ǫr−1, ǫr)

and the bottom of M1 to

D(δ1, δ2, . . . , δr−1, δr)

where δn = (σn2, σn1) if ǫn = (σn1, σn2). The joining should be done in such a way that

condition (ii) of the inductive hypothesis and IH4 are satisfied.

This completes the construction.

Remark 3.2.1. Note that by the inductive construction, for each Li ∈ Li, there exists

Pre(Li) ∈ Li−1 such that Li ⊂ Pre(Li) and the inclusion map Li → Pre(Li) is null

homotopic. This implies that each element of the decomposition H associated with the

defining sequence L is cell-like.
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Theorem 3.2.2. Let L = {L2,L5,L9, . . .} be defined as above and satisfy all the con-

ditions IH 1 through IH4. Then L is a defining sequence. Let H be the decomposition

associated with L. Then H is an upper semicontinuous decomposition of Q, and for each

nondegenerate element h of H, h ∩ {0} ×Q2 is a single point in {0} × C∞.

Proof. From the construction, we clearly see that L is a defining sequence, and hence

by Theorem 1.3.21 the decomposition H is upper semicontinuous. Also the induction

hypothesis IH2 implies that for each nondegenerate h ∈ H, h ∩ {0} × Q2 is contained in

{0} × C∞.

Theorem 3.2.3. Let H be the decomposition associated with L = {L2,L5,L9, . . .} in

Theorem 3.2.2. Then H satisfies the following properties:

(1) If h is a non-degenerate decomposition element on H, and U is any open set in Q

containing h, then there is a n−ball Bn such that h ⊂ Bn ×Qn+1 ⊂ U.

(2) Each non-degenerate element of H has dimension one.

(3) Let πH : Q → Q/H be the quotient map. Let L be any element of Lr for some r.

Then πH is one to one on the boundary of L.

(4) The set {0} ×Q2 is mapped homeomorphically by the quotient map πH .

(5) Every element of H is cellular.

Proof. For (1), this is true by the Tube Lemma from section 1, 1.3.2.

For (2), the connectedness of each non-generate element h of the decomposition H

implies that the dimension of h is ≥ 1. Since by the condition IH1 for every L of Ln there

is a 1
n
−map from L to a 1 complex, by a result from dimension theory ([HW48], page 73)

the dimension of h is ≤ 1. Hence, each non-degenerate element of H has dimension one.

Condition (3) follows from Lemma 1.3.11.
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For (4), it suffices to show that πH is one-to-one on {0}×Q2. Let p = {0}× p1, q =

{0} × q1 ∈ {0} × Q2 be such that πH(p) = πH(q). Then there is h ∈ H so that p, q ∈ h.

Thus, p ∈ ∩St2(q,Li) and q ∈
⋂∞

i=1 St
2(p,Li). Since elements P,Q in Li are pairwise

disjoint, it follows that p, q ∈ ∩∞i=1St(p,Li). If there is index i so that p 6∈ L for all L ∈ Li,

then p = q since the map πH is one-to-one on the complement of the elements of Li.

Suppose that for each i there is Li ∈ Li such that p ∈ Li. Then q ∈ Li for all i. Since

p, q ∈ {0} ×Q2, this forces p, q ∈
[
− 1

2i
, 1
2i

]
×B(ǫ1, . . . , ǫ (i)(i+1)

2
−1

) for all i. Since the limit

of diameter of each
[
− 1

2i
, 1
2i

]
×B(ǫ1, . . . , ǫ (i)(i+1)

2
−1

) is zero by IH2, this implies that p = q

and hence πH is one-to-one on {0} ×Q2.

For (5),(argument modified from [Ghi07]) let h be a nondegenerate decomposition

element of H. We consider two cases.

Case 1 : If h does not intersect any face of the Hilbert cube Q, then h ⊂ s, where

s is the pseudo interior of Q. By Lemma 1.3.25, h is a Z−set and so by Lemma 1.3.30, h

is cellular.

Case 2 : Assume that h intersects the pseudo boundary of Q. To show that h is

cellular, it suffices to show that Q − h is S1−trivial at ∞. Let U be a neighborhood of

h and let U = V and f : S1 → V − h. Since h is compact and f(S1) ∩ h = ∅, there is a

distance ǫ > 0 between f(S1) and h. By the tube lemma, there is an integer n > 0 such

that

h ⊂ Bn ×Qn+1 ⊂ U and f(S1) ⊂ U −Bn ×Qn+1.

Let F be any contraction of f in general position with respect to the boundary of In. Since

h intersects the pseudo boundary of Q, this implies that Bn intersects ∂In in a finite

number of disjoint components. Removing these components from ∂In ∼= Sn−1, n ≥ 4

leaves a simply connected component. Let us write the map F as (Fn, FQn+1) where

Fn : B2 → Bn and FQn+1 : B2 → Qn+1. Consider F
−1
n (∂Bn). Notice that F−1n (∂Bn) is a
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collection of a finite number of closed curves. That is,

F−1n (∂Bn) = {Ji | Ji is a closed curve in B2, i = 1, . . . , r}

Let J ∈ F−1n (∂Bn). Let HJ be a disc in B2 with boundary J. Then we can extend

the map Fn|J to a map F ′n|Hj
on ∂Bn. Taking the innermost components of F−1n (∂Bn)

one at a time, we can adjust the map Fn to a map Gn on ∂Bn. In this manner we can

extend the map f to the map G from B2 to U − h. This shows that Q − h is S1−trivial

at ∞. Then by Lemma 1.3.30, h is cellular in Q.

Lemma 3.2.4. Let L = B∪T∪D together with the tubes joining these be a fixed element in

Lr for some r. Then for any virtually I−essential maps f1 : D1 → T and f2 : D1 → D,

there is an δ > 0 so that if f ′1, f
′
2 are maps within δ of f1 and f2 respectively and in general

position with respect to Lr+1, then there is a component L ⊃ L′ = B′ ∪ T ′ ∪D′ together

with the tubes joining these and discs with holes D′1 ⊂ D1, D
′
2 ⊂ D2 such that f ′1 and f ′2

are virtually I−essential into T ′ and D′ respectively.

Proof. This desired result follows inductively by the condition IH4. For more details, see

[Gar91].

Corollary 3.2.5. Let f and g be maps from B2 to [2, 3] ×Q2 and B2 to [−3,−2] ×Q2,

respectively, with f(∂B2) = l1 and g(∂B2) = l2 and ǫ > 0. If f ′ and g′ are such that

f ′(∂B2) and g′(∂B2) are ǫ approximations to f(∂B2) and g(∂B2), then both f ′(∂B2) and

g′(∂B2) intersect a common element h of H.

Proof. This follows from Lemma 3.2.4.

Lemma 3.2.6. (argument modified from [Gar91]) Let H be as in Theorem 3.2.2, and let

A be a dense subset of {0}×C∞. Let L be a fixed component of some Lk. Let f and g be

maps from B2 into Q, in general position with respect to Lk, transverse to {0}×Q2, with



60

(f(B2)∪ g(B2))∩{0}×Q2) contained in the complement of Lk. Then there exist maps f ′

and g′ from B2 into Q with

f ′|B2\(f−1(L)) = f |B2\(f−1(L)) , g′|B2\(g−1(L)) = g|B2\(g−1(L))

and satisfying the following conditions:

(i) If h ∈ H,h ⊂ L and both g′(B2) and f ′(B2) intersect h, then h ∩ {0} × C∞ ∈ A.

(ii) If h ∈ H,h ⊂ L and g′(B2) intersects h and f ′(B2) does not intersect h, then

h ∩ {0} × C∞ has no triadic rational coordinates in C∞.

(iii) If h ∈ H,h ⊂ L and f ′(B2) intersects h and g′(B2) does not intersect h, then

h ∩ {0} × C∞ has no triadic rational coordinates in C∞.

Proof. The result will be obtained by successively pushing f and g off certain components

of Li for i > k. Note that in higher dimension, if maps f and g intersect an element L ∈ Li

where L consists of B joining T at the top and joining D at the bottom with regular tubes

G1 and G2, then the intersection of f with L and the intersection of g with L can be

adjusted so as to miss the tubes G1 and G2.

Let L = L(ǫ1, ǫ2, . . . , ǫk) be as in the construction above. The maps f ′ and g′ will

be inductively constructed.

If both f(B2) and g(B2) intersect L, replace f and g by maps f1 and g1 so that

f1|B2\(f−1(L)) = f |B2\(f−1(L)) and g1|B2\(g−1(L)) = g|B2\(g−1(L)),

and so that f1(B
2) ∩ L is contained in

(∗)
⋃

T
(
ǫ1, . . . , ǫk,

(
σ1
(k+1)1, σ(k+1)2

))⋃(⋃
D
(
δ1, . . . , δk,

(
σ1
(k+1)1, σ(k+1)2

)))

and that g1(B
2) ∩M is contained in

(∗∗)
⋃

T
(
ǫ1, . . . , ǫk,

(
σ2
(k+1)1, σ(k+1)2

))⋃(⋃
D
(
δ1, . . . , δk,

(
σ2
(k+1)1, σ(k+1)2

)))
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where σm
(k+1)1 = (m, τ2, . . . , τnk+1

) 6∈ 1̄ ∪ 2̄ for m, τi ∈ {1, 2}.

(i) If both f1(B
2) and g1(B

2) intersect an element N of Lk+1 contained in L, with

N = L(ǫ1, ǫ2, . . . , ǫk+1), let T1 = T (ǫ1, ǫ2, . . . , ǫk+1), and D1 = D(δ1, δ2, . . . , δk+1). By (*)

and (**), it then follows that either f1(B
2) ∩ N is contained in T1 and g1(B

2) ∩ N is

contained in D1, or f1(B
2) ∩N is contained in D1 and g1(B

2) ∩N is contained in T1. At

this point fix an element h ∈ H contained in N with h ∩ {0} × C∞ ⊂ A.

For each such N, maps fi and gi, i ≥ 2, can be defined inductively so that at stage

j, the only element of Lk+j contained in N that both fj(B
2) and gj(B

2) intersect is the

element containing h, so that

fj |B2\(f−1
j−1(∪Lk+j−1))

= fj−1|B2\(f−1
j−1(∪Lk+j−1))

and so that

gj |B2\(g−1
j−1(∪Lk+j−1))

= gj−1|B2\(g−1
j−1(∪Lk+j−1))

.

The fact that the diameters of the components of Ti and Di go to zero allows one to define

f
′′

and g
′′

as the limits of the maps fi and gi respectively. The maps thus obtained satisfy

condition (i).

(ii) If at some stage j ≥ k, f
′′

(B2) intersects an element N of Lj , and g
′′

does not,

then a map f ′ will be inductively constructed so that f ′ and g
′′

satisfy both conditions

(i) and (ii).

Case 1: If f
′′

(B2) intersects the element N of Lj both in In+ = [0, 3]× In−1 and in

In− = [−3, 0]×In−1 for all n, fix an element h of H so that h ∈ N and so that h∩{0}×C∞

has no triadic rational coordinates in C∞. The map f
′′

will be replaced by f ′ so that if

f ′(B2) intersects any element of H contained in N both in In+ and in In− for all n, then

this element must be in H(f ′′). As a first approximation, define f1 so that

f1|B2\(f−1(N)) = f
′′

|B2\(f−1(N))
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and so that f1(B
2) ∩N is contained in

(
⋃

T (ǫ1, . . . , ǫj ,
(
σ(j+1)1, σ(j+1)2

)
)
⋃

(
⋃

D(δ1, . . . , δj ,
(
σ′(j+1)1, σ(j+1)2

)
))

Here σ(j+1)1 and σ′(j+1)1 are chosen to correspond to the element of Lj+1 that contains h.

It then follows that the element of Lj+1 contained in N that f1 intersects both in In+ and

in In− for all n, is the element containing h ∈ H(f ′′).

We can now continue inductively, defining maps fi, i ≥ 2, so that at stage p, the

element of Lj+p contained in N that fp(B
2) intersects both in In+ and in In− for all n, is

the element containing h ∈ H(f ′′), and so that

fp|B2\(f−1
p−1(∪Lj+p−1))

= fp−1|B2\(f−1
p−1(∪Lj+p−1))

.

The map f ′ will be defined as the limit of the maps fi.

Case 2: Suppose f
′′

(B2) intersects the element N of Lj only in In+ or in In− for some

n. For each such N, maps fi, i ≥ 2, can be defined inductively so that if fi(B
2) intersects

an element L(ǫ1, ǫ2, . . . , ǫj+i) of Lj+i contained in N, then the first components or the

second components of ǫj+i = (σ(j+2p)1, σ(j+2p)1) are not in 1̄∪ 2̄. Moreover, we can require

that

fi|B2\(f−1
i−1(∪Lj+i−1))

= fi−1|B2\(f−1
i−1(∪Lj+i−1))

.

The fact that the diameters of the components of Ti and Di is going to zero allows one

to define f
′

as the limits of the maps fi. Theorem 2.5.4 implies that if f ′ intersects an

element h of H, then h ∩ {0} × C∞ has no triadic rational coordinates in C∞.

(iii) A map g′ can be constructed just as f ′ was constructed above, so that f ′ and

g′ satisfy conditions (i), (ii), and (iii). This completes the proof.

Theorem 3.2.7. The decomposition H described above is a cell-like decomposition of Q

satisfying four properties, (P1), (P2), and (P3) listed as follows:
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• (P1) For each nondegenerate element h of H,

h ∩ {0} ×Q2

is a single point in {0} × C∞

• (P2) Let f1 and f2 be maps from B2 into Q/H and let A be any dense subset of

C∞. Then f1 and f2 are approximable by maps g1 and g2 satisfying:

(i) g1(B
2) ∩ g2(B

2) ⊂ πH(A), and

(ii) if p = {0} × p′ is a point of {0} × C∞ with

πH(p) ∈ (g1(B
2) \ g2(B

2)) ∪ (g2(B
2) \ g1(B

2)),

then p′ has no triadic rational coordinates.

• (P3) Q/H has nonmanifold part equal to πH({0} × C∞) ∼= {0} × C∞.

Proof. Let h be a nondegenerate element of H. Then by Lemma 3.2.2

h ∩ {0} ×Q2

is a single point in {0} × C∞. So (P1) is satisfied.

For (P2), let f1 and f2 be maps from B2 into Q/H and let A be any dense subset

of {0} ×C∞. Then by approximate lifting there are lifts f
′′

and g
′′

from B2 to Q so that

the following are satisfied:

(1) f
′′

(B2) ∩ g
′′

(B2) = ∅;

(2) f
′′

and g
′′

are transverse with respect to {0} ×Q2;

(3) f
′′

(B2) ∩ {0} × C∞ = ∅ = g
′′

(B2) ∩ {0} × C∞;

(4) ρ(πH ◦ f
′′

, f1) <
ǫ
3 and ρ(πH ◦ g

′′

, f2) <
ǫ
3 .
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Then by (2), there is a stage Lr0 in the defining sequence for H so that (f
′′

(B2)∪g
′′

(B2))∩

{0}×Q2 is contained in the complement of Lr0 and so that the diameter of πH(L) is less

than ǫ
3 for all L ∈ Lr0 . A further general position adjustment puts f

′′

and g
′′

in general

position with respect to all elements of Lr0 . By Lemma 3.2.6 we can find maps f ′ and g′

so that πH ◦ f ′ and πH ◦ g′ are the desired approximations.

Finally, let p be any point of πH({0}×C∞) and U be an ǫ neighborhood of p. By (P1),

it is clear that the image of the nondegenerate element of H is contained in πH({0}×C∞)

and so it implies that the nonmanifold part of Q/H is contained in πH({0} × C∞). To

complete the proof, it suffices to show that the disjoint discs property fails in U [Edw80].

Given L = B ∪ T ∪ D together with the tubes joining these of some Lk so that πH(L)

is contained in the ǫ
4 neighborhood of p. Choose f1, f2 : B2 → Q so that f1 is an

I−essential map into T and f2 is an I−essential into D. Let f ′1 = πH ◦ f1 and f ′2 =

πH ◦ f2. If f
′
1(B

2) ∩ f ′2(B
2) = ∅, then there are approximate lifts f

′′′

1 , f
′′′

2 : B2 → Q

so that f
′′′

1

∣∣∣
∂B2

and f
′′′

2

∣∣∣
∂B2

are ǫ′ approximations to f1

∣∣∣
∂B2

and f2

∣∣∣
∂B2

, and so that

πH ◦ f
′′′

1 (B2) ∩ πH ◦ f
′′′

2 (B2) = ∅. This leads to a contradiction by Lemma 3.2.4. Assume

that f ′1(B
2)∩f ′2(B

2) 6= ∅. Then there is a δ so that if f
′′

1 and f
′′

2 are lifts of δ
2 approximations

of f ′1 and f ′2 with πH ◦ f
′′

1 and πH ◦ f
′′

2 within δ of f ′1 and f ′2, then f
′′

1 |∂B2 and f
′′

2 |∂B2 are

within ǫ′ of f1|∂B2 and f2|∂B2 . It follows by Lemma 3.2.4 that any δ
2 approximations of f ′1

and f ′2 have a common point of U in their image.

Corollary 3.2.8. Let H be the decomposition of Hilbert Cube Q defined in theorem 3.2.2.

Then Q/H does not satisfy the DDP, and hence Q/H 6∼= Q.

Proof. This follows from (P3).

In the next section we will investigate further properties of the decomposition Q/H.
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3.3 Additional Properties of Q/H

Recall that [DW81] and [Lay80] contain information on Čech carriers. The con-

struction of the decomposition space Q/H of the Hilbert cube associated with the defining

sequence L was done in the previous section, and at the end of section we showed that

Q/H does not satisfy the DDP and so Q/H 6∼= Q. However, Q/H does satisfy the Disjoint

Čech Carrier Property, see the Definition 1.7.7. Thus, the main goal of this section is to

prove that the decomposition Q/H satisfies the following properties:

1. Q/H satisfies the Disjoint Čech Carrier Property.

2. Q/H is an ANR.

3. Q/H × I2 ∼= Q.

Lemma 3.3.1. Let L = {L1,L2,L3, . . .} be the defining sequence defined in Theorem

3.2.2. Then L is sharp.

Proof. By properties (3) and (4) of Theorem 3.2.3, the defining sequence L is sharp.

Lemma 3.3.2. Let H be the decomposition of Hilbert Cube Q defined in Theorem 3.2.2.

Then Q/H is an ANR

Proof. By Lemma 3.3.1 and Lemma 1.3.36, Q/H is an ANR.

Lemma 3.3.3. [Lay80] Let L be the defining sequence of Q defined as above. Let k ≥ 1

be fixed and L ∈ Lk. Then for each j > k, if W is compact subset of Q with W ⊂ Int(L),

then

W ∩ π−1(π(∂L) is 1-dimensional.

Proof. (modified from [Lay80]) Fix k ≥ 1 and L ∈ Lk. Let r > k, then Lj = L(ǫ1, ǫ2, . . . , ǫr)×

Qm(r)+3 of Lr is a manifold so that L(ǫ1, ǫ2, . . . , ǫr) is composed of the Bj =
[
− 1

2r ,
1
2r

]
×
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B(ǫ1, ǫ2, . . . , ǫr), together with the tubes joining the top of B to Tj(ǫ1, ǫ2, . . . , ǫr) and the

bottom of Bj to Dj(δ1, δ2, . . . , δr). That is,

Lj = (Tj ∪Bj ∪Dj ∪Br+1 × I)×Qr+3

where diam(Tj) <
1
j
and diam(Dj) <

1
j
. If Lj ∩ ∂L 6= ∅, then

(Bj ×Qm(r)+3) ∩ ∂L 6= ∅.

Let W be a compact subset contained in Int(L). Note that

π−1H (πH(L)) = A1 ∪A2

where

A1 = {x ∈ ∂L | π−1H (πH)(x) = {x}}

and

A2 = ∪{π−1H (πH)(x) | π−1H (πH)(x) 6= {x}, x ∈ ∂L}.

Since W ⊂ Int(L), it follows that W ∩ A1 = ∅. Thus, W ∩ π−1H (πH(L)) = W ∩ A2. Note

also that for all x ∈ ∂L \A1,

π−1H (πH)(x) = ∩St(x,Li).

Since elements in each Li are pairwise disjoint, for all i, St(x,Li) = Lxi for some Lxi ∈ Li.

Since W ∩ ∂L = ∅, it follows that there exists i0 so that for each i > i0

π−1H (πH(∂L)) ⊂ ∪x∈∂L\A1
Lxi

and

W ∩ π−1H (πH(∂L)) = W ∩A2 ⊂ ∪x∈∂L\A1

(
Txi ∪Dxi ∪Br+1 × I

)
×Qm(r)+3.

It is clear that
{(

Txi ∪Dxi ∪Br+1 × I
)}

x∈∂L\A1
is finite and each admits 1

i+1− map to a

1−complex. Therefore, W ∩A2 is 1-dimensional.
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Lemma 3.3.4. Let L = {L2,L5,L9, . . .} be the defining sequence constructed in the pre-

vious section, let H be the decomposition associated with L, and let πH : Q → Q/H be

the natural quotient map. Let ∂L = ∪i≥1{∂L : L ∈ Li}. Then πH(NπH
) − πH(∂L) is

0-dimensional.

Proof. We will show that πH(NπH
)−πH(∂L) is 0−dimensional at each point S ∈ πH(NπH

)−

πH(∂L). Let S ∈ π(NπH
)− πH(∂L) and U be an open neighborhood of S in Q/H. Then

V = π−1(U) is open in Q. Let

V ∗ = ∪{g ∈ H | g ⊂ V }.

Since H is upper semicontinuous, V ∗ is saturated open in Q. Then π(V ∗) is open in Q/H

which implies that W = π(V ∗) ∩
(
πH(NπH

) − πH(∂L)
)
is open in πH(NπH

) − πH(∂L).

Clearly, ∂W = ∅ and W ⊂ U. Then it follows that πH(Nπ)− πH(∂L) is 0−dimensional at

point S. Since S is arbitrary, πH(NπH
)− πH(∂L) is 0−dimensional.

Recall that H∗, Ȟ∗ denote the singular and Čech homology respectively with respect

to integer coefficients.

Corollary 3.3.5. For the decomposition H associated with the defining sequence L,

π−1(x) has infinite codimension in Q for every x ∈ Q/H.

Proof. Let x ∈ Q/H. If x 6∈ πH(NπH
), then π−1H (x) is a singleton in Q and hence it has

infinite codimension in Q. Assume that x ∈ πH(NπH
). It follows from Theorem 3.3.4 that

x is one dimensional. Then by Lemma 1.7.4[DW81], π−1H (x) has infinite codimension in

Q.

We will use the following theorem to show that points in Q/H have infinite codi-

mension.
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Theorem 3.3.6. [Beg50](Vietoris-Begle Mapping Theorem) Let X and Y be compact

metric spaces, and let f : X → Y be surjective and continuous. Suppose

H#
i (f−1(x)) ∼= 0, i = 0, 1, . . . , n− 1, for x ∈ Y.

Then H#
i (X) ∼= H#

i (Y ).

Note that this also can apply to the homology of pairs and the conditions on f−1(x)

are satisfied for cell-like sets.

Corollary 3.3.7. Points in Q/H have infinite codimension in Q/H.

Proof. The result follows from Corollary 3.3.5 and Theorem 3.3.6. For more details, see

[Lay80].

Lemma 3.3.8. [Lay80] For each i ≥ 1, let L ∈ Li. Q/H has disjoint Čech carriers at

πH(∂L). Consequently, Q/H has disjoint Čech carriers at πH(∂L).

Proof. (modified from [Lay80]) Let V1 ⊂ U1 and V2 ⊂ U2 be open pairs in Q/H. Let

q1, q2 ≥ 0 and let

z1 ∈ Hq1(U1, V1), z2 ∈ Hq2(U2, V2).

Then choose

z̄1 ∈ Hq1(πH)−1(U1), π
−1
H (V1)), z̄2 ∈ Hq2(π

−1
H (U2), π

−1
H (V2))

such that (πH)∗(z̄1) = z1 and (πH)∗(z̄2) = z2. Since Q is a Q−manifold, it follows

that there exist Čech carriers (C1, ∂C1) for z̄1 and (C2, ∂C2) for z̄2 such that C1 ∩

C2 = ∅. Let (W1, ∂W1) be a compact neighborhood of (C1, ∂C1) such that (W1, ∂W1) ⊂

(π−1H (U1), π
−1
H (V1)) and such that W1 ∩ C2 = ∅. Then by Lemma 3.3.3,

dim(π−1H (πH(C2 ∩ ∂L)) ∩W1) ≤ 1.

This implies that

π−1H (πH(C2 ∩ ∂L)) ∩W1
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has infinite codimension in Q. Consider (Int(W1), Int(∂W1)), then since π−1H (πH(C2 ∩

∂L)) ∩W1 has infinite codimension, we can choose a Čech carrier (C ′1, ∂C
′
1) for z̄1 with

(C ′1, ∂C
′
1) ⊂ (Int(W1), Int(∂W1))

and C ′1 ∩ π−1H (πH(C2 ∩ ∂L)) = ∅. By a similar argument, we can find a Čech carrier C ′2

such that

C ′2 ∩ π−1H (πH(C ′1 ∩ ∂L)) = ∅ = C ′1 ∩ π−1H (πH(C ′2 ∩ ∂L)).

Now obtain disjoint compact neighborhoods (W̄i, ∂W̄i) of (C ′i, ∂C
′
i), i = 1, 2, such that

(W̄i, ∂W̄i) ⊂ (π−1H (Ui), π
−1
H (Vi)) and such that

W̄1 ∩ π−1H (πH(W̄2 ∩ ∂L)) = ∅ = W̄2 ∩ π−1H (πH(W̄1 ∩ ∂R)).

The set

W = π−1H

(
πH(W̄1) ∩ πH(W̄2) ∩ πH(∂L)

)
∩ ∂L

is a compact set disjoint from W̄1 ∪ W̄2. Find Čech carriers (C̄i, ∂C̄i) for z̄i, i = 1, 2, such

that (C̄i, ∂C̄i) ⊂ (W̄i, ∂W̄i) and π−1H (πH(W )) ∩ C̄i = ∅. It follows that (πH(C̄i), πH(∂C̄i))

is a Čech carrier for zi, i = 1, 2, and that πH(C̄1) ∩ πH(C̄2) ∩ πH(∂A) = ∅. Thus, Q/H

has disjoint Čech carriers at πH(∂L). By Lemma 1.7.13, Q/H has disjoint Čech carriers

at πH(∂L).

Lemma 3.3.9. Let A be a closed subset in πH(Q−NπH
). Then Q/H has Disjoint Čech

carriers at A.

Proof. Let V1 ⊂ U1 and V2 ⊂ U2 be open pairs in Q/H. Let q1, q2 ≥ 0 and let

z1 ∈ Hq1(U1, V1), z2 ∈ Hq2(U2, V2).

Then choose

z̄1 ∈ Hq1(πH)−1(U1), π
−1
H (V1)), z̄2 ∈ Hq2(π

−1
H (U2), π

−1
H (V2))
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such that (πH)∗(z̄1) = z1 and (πH)∗(z̄2) = z2. Since Q is a Q−manifold, it follows that

there exist Čech carriers (C1, ∂C1) for z̄1 and (C2, ∂C2) for z̄2 such that C1 ∩ C2 = ∅.

Since A ⊂ πH(Q−NπH
) and πH is one-to-one on Q−NπH

, it follows that πHπ−1H (A) = A.

Thus consider W1 = πH(C1),W2 = πH(C2). Then W1 and W2 are Čech Carriers for z1

and z2 respectively, and W1 ∩ W2 ⊂ πH(Nπ) and so W1 ∩ W2 ∩ A = ∅. Therefore, Q/H

has Disjoint Čech Carriers at A.

Theorem 3.3.10. Q/H has the Disjoint Čech Carrier Property.

Proof. We will show that Q/H has Čech Carrier with inifinite codimension and then apply

Lemma 1.7.11. First note that

Q/H = π(∂L)
⋃(

πH(NπH
)− π(∂L)

)⋃
∪Ai

where ∪Ai = πH(Q−NpiH ) with Ai closed. By Lemma 3.3.8 and Lemma 3.3.9 Q/H has

Disjoint Čech Carriers at π∂L and Ai, respectively, and so at U = π(∂L)
⋃

∪Ai by Lemma

1.7.13. Then by Lemma 1.7.14,Q/H has Disjoint Čech Carrier C whose intersections with

the set U have infinite codimension. But we know that

C = (C ∩ U)
⋃(

C ∩ (πH(NπH
− π(∂L)

)

which is the union of a set with infinite codimension (in Q/H) and a finite dimensional

set, and so by Lemma 1.7.6, C has infinite codimension. Therefore, by Lemma 1.7.11,

Q/H has the Disjoint Čech Carriers Property, completing the proof.

To prove that Q/H × I2 is a Q−manifold, we use Lemma 1.7.15. Now we prove the

following theorem.

Theorem 3.3.11. Let H be a decomposition of Q defined as above. Then Q/H × I2 is a

Q−manifold.

Proof. First note that Q/H is an ANR. By Lemma 3.3.10, we have Q/H has Disjoint

Čech Carriers Property, and hence by Lemma 1.7.15, Q/H × I2 is a Q−manifold.
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4. A DECOMPOSITION FROM THE CANTOR FUNCTION

The aim of this chapter is to produce another decomposition that will be used in

obtaining the main results in the next section. This decomposition will be constructed

using the Cantor function.

4.1 Product of Cantor Sets

Definition 4.1.1. Let n ∈ Z
+. Define an interval Θ(k1, . . . , kn) by

Θ(k1, . . . , kn) =

[
i=n∑

i=1

ki
3i
,
i=n∑

i=1

ki
3i

+
1

3n

]
for ki ∈ {0, 1, 2}

Note: it is clear by the definition that the length of Θ (k1, . . . , kn) is
1
3n .

Let

Cn = {Θ(k1, k2, . . . , kn) | ki ∈ {0, 2}} .

Let Cc
1 = {Θ(1)} , and for n ≥ 2, define

Cc
n = {Θ(k1, . . . , kn−1, 1) | ki ∈ {0, 2}} .

Let ∂Cn be the set of all end points of the intervals in Cn. If we unravel the notation of

Cn, we see that

C1 = {Θ(0) ,Θ(2)] =

{[
0,

1

3

]
,

[
2

3
, 1

]}

C2 = {Θ(0, 0) ,Θ(0, 2) ,Θ(2, 0) ,Θ(2, 2)]

=

{[
0,

1

9

]
,

[
2

9
,
3

9

]
,

[
6

9
,
7

9

]
,

[
8

9
, 1

]}
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and

Cc
1 =

{[
1

3
,
2

3

]}

Cc
2 = {Θ(0, 1) ,Θ(2, 1)] =

{[
1

9
,
2

9

]
,

[
7

9
,
8

9

]}

Cc
3 = {Θ(0, 0, 1) ,Θ(0, 2, 1) ,Θ(2, 0, 1) ,Θ(2, 2, 1)]

=

{[
1

27
,
2

27

]
,

[
7

27
,
8

27

]
,

[
19

27
,
20

27

]
,

[
25

27
,
26

27

]}
.

Note that for each n

[0, 1] = ∪Cn ∪
(
∪n
j=1C

c
j

)

Definition 4.1.2. For each Θ = Θ(k1, . . . , kn) ∈ Cn ∪ Cc
n with n ≥ 2, define

J (Θ) =





3Θ if k1 = 0

3Θ− 2 if k1 = 2.

We can see from the definition that

3Θ (0, 1) = 3

[
1

9
,
2

9

]
=

[
1

3
,
2

3

]
∈ Cc

1

3Θ (2, 1)− 2 = 3

[
7

9
,
8

9

]
− 2 =

[
1

3
,
2

3

]
∈ Cc

1.

The following lemma tells us that this is true for all n ≥ 2.

Lemma 4.1.3. If Θ = Θ(k1, . . . , kn) ∈ Cn ∪ Cc
n with n ≥ 2, then J (Θ) ∈ Cn−1 ∪ Cc

n−1.

Proof. Let Θ ∈ Cn ∪ Cc
n.

Case I: Θ ∈ Cc
n. Assume that Θ = Θ(k1, . . . , kn−1, 1) ∈ Cc

n for some k1, . . . , kn−1 ∈

{0, 2} . If k1 = 0, then

J (Θ) = 3Θ

= 3Θ (k1, . . . , kn−1, 1)

=

[
3

(
i=n−1∑

i=1

ki
3i

+
1

3n

)
, 3

(
i=n−1∑

i=1

ki
3i

+
2

3n

)]

=

[
i=n−1∑

i=1

ki
3i−1

+
1

3n−1
,
i=n−1∑

i=1

ki
3i−1

+
2

3n−1

]

= Θ(k2, . . . , kn−1, 1) ∈ Cc
n−1.
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Similarly, if k2 = 2, then

J (Θ) = 3Θ− 2 = Θ (k2, . . . , kn−1, 1) ∈ Cc
n−1.

Case II: Θ ∈ Cn

Assume that Θ = Θ(k1, . . . , kn−1, kn) ∈ Cc
n for some k1, . . . , kn ∈ {0, 2} . If k1 = 0,

then

J (Θ) = 3Θ

= 3Θ (k1, . . . , kn−1, kn)

=

[
3

(
i=n∑

i=1

ki
3i

)
, 3

(
i=n∑

i=1

ki
3i

+
1

3n

)]

=

[
i=n∑

i=1

ki
3i−1

,
i=n∑

i=1

ki
3i−1

+
1

3n−1

]

= Θ(k2, . . . , kn−1, kn) ∈ Cn−1.

Similarly, if k2 = 2, then

J (Θ) = 3Θ− 2 = Θ (k2, . . . , kn−1, kn) ∈ Cn−1.

This completes the proof.

Now we will use the definition of Cn to define the Cantor set. That is, the Cantor

set defined as:

C =
∞⋂

n=0

⋃
Cn.

One can show that each element in C can be written as a ternary representation

consisting entirely of zeros or twos.

The standard Cantor map f : I → I is also defined as a constant on the closure of

each component of I \ C and on C is defined by:

f

(
∞∑

i=1

ai
3i

)
=
∞∑

i=1

ai
2i+1

,

where ai is either zero or two.
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Remark 4.1.4. Let D be the set of all dyadic rationals in the closed unit interval. That

is,

D = {
m

2n
∈ [0, 1] | m,n ∈ Z}

1. If d ∈ I, the

f−1 (d) =





1− cell if d ∈ D

singleton if d 6∈ D.

2. f |C is two-to-one over the dyadic rationals in D;

3. f |C is one-to-one over the complement of dyadic rationals D;

4. f itself is one-to-one over the complement of dyadic rationals D.

By Remark 4.1.4, for p ∈ C,

p is triadic rational if and only if f (p) is dyadic rational.

Thus, if f (p) = m
2n for some m,n, then by Remark 4.1.4(2), p = 2k

3n or p = 2k+1
3n for some

k.

In [Cha91], Chalice proved that there is a sequence of step functions that converges

to the Cantor function. Properties of the Cantor function as a limit of continuous func-

tion are also well known, see for example [Dob96]. Also see [DMRV06] for a survey of

results about the Cantor function. For completeness, below we define a sequence {fn} of

continuous functions on the unit interval that converges to the Cantor function and prove

the standard results about these functions.

Let f0 (x) = x. Then, for each n ∈ Z
+, the function fn+1 is defined in terms of

function fn as follows:

fn+1 =





1
2fn (3x) for 0 ≤ x ≤ 1

3

1
2 for 1

3 ≤ x ≤ 2
3

1
2 + 1

2fn (3x− 2) for 2
3 ≤ x ≤ 1.
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Because fn (0) = 0 and fn (1) = 1 for all n, by induction, the function fn is continuous.

Figure 4.1 below demonstrates the graphs of fn for n = 0, . . . , 3.

(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

FIGURE 4.1: The graph of fn for n = 0, 1, 2, 3.

Also, we have the following lemma.

Lemma 4.1.5. For each n, let Θ ∈ Cn ∪ ∪n
j=1C

c
j . Then we have the following:

1.

fn (Θ) =





fn−1 (Θ) if Θ ∈ ∪n−1
j=1C

c
j

∑n−1
i=1

ki
2i+1 + 1

2n if Θ ∈ Cc
n.

2. fn on Θ is a linear map joining (l, fn (l)) and (r, fn (r)) with slope
(
3
2

)n
if Θ ∈ Cn

and l, r are the left and the right end points of Θ.
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Proof. Let Θ ∈ Cn ∪ ∪n
j=1C

c
j . We consider two cases.

Case I: Θ ∈ ∪n
j=1C

c
j , corresponding to the statement 1. So, we will show the

statement 1 by induction on n.

For n = 1, Θ ∈ Cc
1 =

{[
1
3 ,

2
3

]}
. Thus,Θ = Θ (1) by definition of the function f1,

f1 (Θ) =
1

2

For n = 2,

f2 (Θ (0, 1)) =
1

4
=

0

4
+

1

22

f2 (Θ (2, 1)) =
3

4
=

2

4
+

1

22

f2 (Θ (1)) = f1 (Θ (1)) .

Next, assume that for n = k, for Θ ∈ ∪k
j=1C

c
j ,

fk (Θ) =





fk−1 (Θ) if Θ ∈ ∪k−1
j=1C

c
j

∑k−1
i=1

ki
2i+1 + 1

2k
if Θ = Θ (k1, . . . , kk−1, 1) ∈ Cc

k

Θ(k1, . . . , kk, 1) .

We will show that it is also true for n = k + 1. Let Θ ∈ ∪k+1
j=1C

c
j . If Θ ∈ ∪k

j=1C
c
j ,

then Θ = Θ(k1, . . . , kl−1, 1) ∈ Cc
l for some l ≤ k. So, J (Θ) ∈ Cc

l−1. By the definition of

fk and by the inductive hypothesis,

fk (Θ) =





1
2fk−1 (J (Θ)) = 1

2fk (J (Θ)) if k1 = 0

1
2 + 1

2fk−1 (J (Θ)) = 1
2 + 1

2fk (J (Θ)) if k1 = 2.

Then by the definition of fk+1 in either case we have

fk+1 (Θ) = fk (Θ)

Assume that Θ ∈ Cc
k+1. Then Θ = Θ(k1, . . . , kk, 1) for some k1, . . . , kk ∈ {0, 2} . So,

J (Θ) = Θ (k2, . . . , kk, 1) ∈ Cc
k. By the inductive hypothesis, we have

fk (J (Θ)) =





∑k
i=1

ki
2i

+ 1
2k

if k1 = 0

∑k
i=2

ki
2i

+ 1
2k

if k1 = 2.
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It follows that

fk+1 (Θ) =





1
2fk (J (Θ)) = 1

2

(∑k
i=1

ki
2i

+ 1
2k

)
=
∑k

i=1
ki

2i+1 + 1
2k+1 if k1 = 0

1
2 + 1

2fk (J (Θ)) = 1
2 + 1

2

(∑k
i=2

ki
2i

+ 1
2k

)
=
∑k

i=1
ki

2i+1 + 1
2k+1 if k1 = 2.

Case II: Θ ∈ Cn. We will show that fn is a linear map joining the left and the right end

points of Θ with the slope
(
3
2

)n
. Again we will prove this by induction on n.

For n = 1,

f1 (x) =
1

2
(3x) for all x ∈ Θ(0) =

[
0,

1

3

]

f1 (x) =
1

2
+

1

2
(3x− 2) for all x ∈ Θ(0) =

[
2

3
, 1

]
.

Assume that for n = k, if Θ ∈ Ck, then fk is a linear map joining the left and the right

end points of Θ with the slope
(
3
2

)n
. We will show that this statement in also true for

n = k + 1. Let Θ ∈ Ck+1. Then Θ = Θ(k1, . . . , kk+1) for some k1, . . . , kk+1 ∈ {0, 2} . So,

J (Θ) ∈ Ck. By the inductive hypothesis, fk is a linear function joining the right and left

end point of J (Θ) with the slope
(
3
2

)k
. Thus, by the definition of function fk+1, on Θ,

fk+1 (x) =





1
2fk (3x) if k1 = 0 and 3x ∈ J (Θ)

1
2 + 1

2fk (3x− 2) if k1 = 2 and 3x− 2 ∈ J (Θ) .

Since fk is a linear function on J (Θ) , it is clear that fk+1 is a linear function on Θ joining

the left and the right end points of I with the slope
(
3
2

)k+1
.

The following Figure 4.2 shows the graphs of fn and fn−1 on the same axis.

Let g : I → I be defined by

g (x) = lim
n→∞

fn (x) .

Later in Lemma 4.1.9 we will show that g exists by showing that fn is uniformly Cauchy

on [0, 1].
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(a) f0 and f1 (b) f1 and f2

(c) f2 and f3 (d) f3 and f4

FIGURE 4.2: The graph of fn and fn−1 for n = 0, . . . , 4 on the same axis

Lemma 4.1.6. Let TR be the set of all triadic rationals in the unit interval. That is,

TR =
{ m

3n
∈ [0, 1]

∣∣∣ m,n ∈ Z

}
.

Then f and g agree on the set TR.

Proof. If p = 0 or p = 1, then it is obvious that f (p) = g (p) . Next assume that p 6= 0, 1.

Let p = m
3n ∈ TR for some m,n. Then p ∈ Cn ∪

(
∪n
j=1C

c
j

)
.

Case I: p ∈ Cn. Then p ∈ Θ(k1, . . . , kn) ∈ Cn for some k1, . . . , kn ∈ {0, 2} . That is,

p ∈
[∑n

i=1
ki
3i
,
∑n

i=1
ki
3n + 1

3n

]
. Since Θ (k1, . . . , kn) has length 1

3n and p ∈ Θ(k1, . . . , kn) ,

this implies p =
∑n

i=1
ki
3i

or p =
∑n

i=1
ki
3i

+ 1
3n .
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Next we will show that p ∈ ∪n
j=1C

c
j . If p =

∑n
i=1

ki
3i
, then one can write p as

p =
∑l

i=1
ki
3i

where l ≤ n, kl 6= 0 but kj = 0 for j = l + 1, . . . , n. It follows that

p =
l−1∑

i=1

ki
3i

+
2

3l
∈ Θ(k1, . . . , kl−1, 1) ∈ Cc

l .

Thus, by Lemma 4.1.4,

fi+1 (p) = fi (p) =
l−1∑

i=1

ki
2i+1

+
1

2l
for all i ≥ l

and so

g (p) = lim
i→∞

fi (p) = fl (p) =
l−1∑

i=1

ki
2i+1

+
1

2l
= f

(
l−1∑

i=1

ki
3i

+
2

3l

)
= f (p) .

If p =
∑n

i=1
ki
3i

+ 1
3n , we consider two cases. For the first case, if kn = 0, then

p =
∑n−1

i=1
ki
3i

+ 1
3n ∈ Θ(k1, . . . , kn−1, 1) ∈ Cc

n. By Lemma 4.1.4,

fi+1 (p) = fi (p) =
n−1∑

i=1

ki
2i+1

+
1

2n
for all i ≥ n

and so

g (p) = lim
i→∞

fi (p) = fn (p) =
n−1∑

i=1

ki
2i+1

+
1

2n
= f

(
n−1∑

i=1

ki
3i

+
1

3n

)
= f (p) .

For the second case, assume that kn = 2. Since p 6= 1, then ki = 0 for some i ∈

{1, 2, . . . , n} . Pick i0 so that for all i > i0, ki = 2. Thus, we can write p as

p =

i0−1∑

i=1

ki
3i

+
1

3n−(n−i0)
=

i0−1∑

i=1

ki
3i

+
1

3i0

and we can see that p ∈ Θ(k1, . . . , ki0−1, 1) ∈ Cc
i0
. By Lemma 4.1.4,

fi+1 (p) = fi (p) =

i0−1∑

i=1

ki
2i+1

+
1

2i0
for all i ≥ i0

and so

g (p) = lim
i→∞

fi (p) = fi0 (p) =

i0−1∑

i=1

ki
2i+1

+
1

2i0
= f

(
i0−1∑

i=1

ki
3i

+
1

3i0

)
= f (p) .
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Case II: p ∈ ∪n
j=1C

c
j . Then

p ∈ Θ = Θ(k1, . . . , kl−1, 1) =

[
i=l−1∑

i=1

ki
3i

+
1

3l
,
i=l−1∑

i=1

ki
3i

+
2

3l

]

for some k1, k2, . . . , kl−1 ∈ {0, 2} . By Lemma 4.1.5,

fi+1 (p) = fi (p) =
l−1∑

i=1

ki
2i+1

+
1

2l
for all i ≥ l

and since p and
∑i=l−1

i=1
ki
3i

+ 1
3l

are in the same Θ, by the definition of the Cantor set f,

we have

g (p) = lim
i→∞

fi (p) = fl (p) =

l−1∑

i=1

ki
2i+1

+
1

2l
= f

(
l−1∑

i=1

ki
3i

+
1

3l

)
= f (p) .

For each n, define gn : I → I by

gn (x) = fn (x)− fn−1 (x) for all x ∈ I.

It is clear that gn is continuous.

The following Figure 4.3 illustrates the graph of gn for n = 1, 2, 3, 4.

Lemma 4.1.7. For each n ≥ 2,

max
x∈Θ(k1,...,kn−1)

|gn| =
1

3 · 2n
for all Θ(k1, . . . , kn−1) ∈ Cn−1.

Consequently,

max
x∈∪Cn−1

|gn| =
1

3 · 2n
.

Proof. Let n ∈ N. Let Θ (k1, . . . , kn−1) =
[∑n−1

i=1
ki
3i
,
∑n−1

i=1
ki
3i

+ 1
3n−1

]
∈ Cn−1. Denote

Θ1 =

[
n−1∑

i=1

ki
3i
,
n−1∑

i=1

ki
3i

+
1

3n

]
,

Θ2 =

[
n−1∑

i=1

ki
3i

+
1

3n
,

n−1∑

i=1

ki
3i

+
2

3n

]
,

Θ3 =

[
n−1∑

i=1

ki
3i

+
2

3n
,
n−1∑

i=1

ki
3i

+
1

3n−1

]
.
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(a) g1 (b) g2

(c) g3 (d) g4

FIGURE 4.3: The graph of function gn for n = 1, . . . , 4.

as shown in Figure 4.4. Clearly, Θ (k1, . . . , kn−1) = Θ1 ∪Θ2 ∪Θ3. Define

G1 (x) = gn|Θ1 , G2 (x) = gn|Θ2 , G3 (x) = gn|Θ3 .

By Lemma 4.1.5,

G1

(
n−1∑

i=1

ki
3i

)
= 0, G3

(
n−1∑

i=1

ki
3i

+
1

3n−1

)
= 0.

Also, the slope of G1 and G3 is 1
2

(
3
2

)n−1
. Thus, we can express the functions G1 and G3
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FIGURE 4.4: The graph of fn and fn−1 on interval Θ (k1, . . . , kn−1)

in the form:

G1 (x) =
1

2

(
3

2

)n−1
(
x−

n−1∑

i=1

ki
3i

)

G3 (x) =
1

2

(
3

2

)n−1
(
x−

(
n−1∑

i=1

ki
3i

+
1

3n−1

))
.

We can see that both G1 and G3 are increasing functions and for each x ∈ Θ3,

−G1

(
−x+ 2

(
n−1∑

i=1

ki
3i

)
+

1

3n−1

)
= −

1

2

(
3

2

)n−1
(
−x+ 2

(
n−1∑

i=1

ki
3i

)
+

1

3n−1
−

n−1∑

i=1

ki
3i

)

= −
1

2

(
3

2

)n−1
(
−x+

n−1∑

i=1

ki
3i

+
1

3n−1

)

=
1

2

(
3

2

)n−1
(
x−

(
n−1∑

i=1

ki
3i

+
1

3n−1

))

= G3.

On Θ2 the slope of G2 is −
(
3
2

)n−1
and so G2 is a decreasing function on Θ2. This implies

that

max
x∈Θ1

(|G2|) = G2

(
n−1∑

i=1

ki
3i

+
1

3n

)
= G1

(
n−1∑

i=1

ki
3i

+
1

3n

)
.

Thus,

max
x∈Θ3

(|G3|) = max
x∈Θ2

(|G2|) = max
x∈Θ1

(|G1|) = G1

(
n−1∑

i=1

ki
3i

+
1

3n

)
=

1

3 · 2n
.
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This shows that

max
x∈Θ(k1,...,kn−1)

(|gn|) =
1

3 · 2n
.

Consequently, maxx∈∪Cn−1 |gn| =
1

3·2n .

Corollary 4.1.8. For each n ≥ 2,

max
x∈[0,1]

|gn| =
1

3 · 2n
.

Proof. Let n ≥ 2. Let x ∈ ∪Cn−1. Then by Lemma 4.1.7,

max
x∈∪Cn−1

|gn| =
1

3 · 2n
.

On the other hand, for x 6∈ ∪Cn−1, by Lemma 4.1.5, fn (x) = fn−1 (x) , and so gn (x) = 0.

Therefore,

max
x∈[0,1]

|gn| = max
x∈[0,1]

|fn (x)− fn−1 (x) | =
1

3 · 2n
.

For each n, define

Dn =

{
b

2n

∣∣∣∣ b ∈ Z
+ and 0 ≤ b ≤ 2n − 1

}

and so

D = ∪∞n=0Dn.

Note that the following properties hold. Fix n.

1. If d ∈ Θ, the

f−1n (d) =





1− cell if d ∈ Dn

singleton if d 6∈ Dn.

2. fn|C is two-to-one over the dyadic rationals in Dn;

3. fn|C is one-to-one over the complement of dyadic rationals Dn;
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4. fn itself is one-to-one over the complement of dyadic rationals Dn.

The next lemma guarantees that the sequence {fn} converges to the Cantor function f.

Lemma 4.1.9. Let {fn} be the sequence of continuous functions defined as above. Then

{fn} converges uniformly to the Cantor function f.

Proof. Let g (x) = limn→∞ fn (x) . Claim that g = f. First we will prove that g is con-

tinuous by showing that fn converges uniformly to g. Given ǫ > 0. There is N such that

1
2N

< ǫ. By Lemma 4.1.8, for each n ≥ 0

max
x∈[0,1]

|fn+1 (x)− fn (x) | =
1

3 · 2n+1
≤

1

2n+1

Without loss of generality, assume that m > n > N. It follows that

max
x∈[0,1]

|fm (x)− fn (x) | ≤
k=m−n−1∑

k=n

max
x∈[0,1]

|fk+1 (x)− fk (x) |

≤
k=m−n−1∑

k=n

1

2k+1

=
1

2n+1
+

1

2n+2
+ . . .+

1

2m

=
1

2n

(
1

2
+

1

22
+ . . .+

1

2m−n

)

<
1

2n
< ǫ.

This implies that fn is a uniformly Cauchy sequence and hence the function g (x) =

limn→∞ fn (x) is well-defined. Also, by the Cauchy Criterion, fn converges uniformly on

[0, 1] which implies g is continuous. It remains to show that g = f. By Lemma 4.1.6, g

and f agree on the set TR. It follows that f and g agree on [0, 1] since TR is dense in

[0, 1]. This gives the desired result.

Let Ck ⊂ Ik be the product of k copies of C. For each n, let fk
n : Ik → Ik be defined by:

fk
n (x) = (fn (x1) , fn (x2) , . . . , fn (xk)) .
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Let fk : Ik → Ik be defined as the limit of a sequence fk
n . That is,

fk (x) = lim
n→∞

fk
n (x) for all x ∈ Ik

= (f (x1) , f (x2) , . . . , f (xk)) .

Note that fk is continuous since each component is continuous. For example f2
2 (x1, x2) =

(f (x1) , f (x2)) where f is the Cantor map. The following Figure 4.5 shows how the map

f2
2 sends certain squares to points.

FIGURE 4.5: The function f2
2 .

Lemma 4.1.10. Let n ∈ Z
+ and p ∈ Ik. Then

(
fk
n

)−1
(p) is either a point or a l−cell

where l corresponds to the number of dyadic rational coordinates that p has, and hence
(
fk
)−1

(p) is either a point or a l−cell.

Proof. Fix n and let p = (x1, . . . , xk) ∈ Ik. If p has no dyadic rational coordinates, then

each xi 6∈ D and so obviously xi 6∈ Dn. Thus, (fn)
−1 (xi) is just a point in I which

implies that
(
fk
n

)−1
(p) is a point in Ik. Next assume that the number of dyadic rational

coordinates of p is l. Denote each bi the dyadic rational coordinates of p for i = 1, . . . , l.

Then each (fn)
−1 (bi) is a 1-cell in I so

(
fk
n

)−1
(p) is a l−cell in Ik.
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We will generalize this idea to obtain the function f∞ : Q2 → Q2 where Q2 = {0} ×Q2.

First for each n and k define gkn : Q → Q by

gkn ((0, x2, . . . , xk, . . .)) = fk
n ((0, x2, . . . , xk))× IdQk+1

(xk+1, . . .) .

Thus, the function f∞ : Q2 → Q2 is defined by

f∞ (x) = lim
k→∞

(
lim
n→∞

gkn (x)
)

= (0, f (x2) , f (x3) , . . .) .

Since Q2 is compact, it is obvious that f∞ is a closed map.

Lemma 4.1.11. For each point p ∈ Q2, (f∞)−1 (p) is either a point, a cell or a copy of Q2

and the dimension of these sets corresponds to the number of dyadic rational coordinates

that p has.

Proof. If p has no dyadic rational coordinates, it is clear that (f∞)−1 (p) is just a point

in Q2. If p has l dyadic rational coordinates, then (f∞)−1 (p) is a l−cell in Q2. If p has

infinitely many dyadic rational coordinates, then (f∞)−1 (p) is a copy of Q2.

By Remark 4.1.4, it is clear that if p is a point of {0}×C∞ with no triadic rational

coordinates in C∞, then (f∞)−1 ◦ f∞ (p) = p.

Lemma 4.1.12. If A is a nowhere dense subset of Q2, then there exists a dense subset P

of {0} × C∞ so that f∞ (P ) ∩A = ∅ and (f∞)−1 (f∞ (d)) = d for each d in P.

Proof. Let E ≡
{
x ∈ {0} × C∞ | (f∞)−1 (f∞ (x)) = x

}
.

Let P ≡
(
{0} × C∞ \ (f∞)−1 (A)

)
∩E. We will show that P is dense in {0}×C∞. Given

any point c ∈ {0} × C∞ and U a neighborhood of c in Q2. Note that U = U ′ ×Qk+1 for

some k. Then f∞ (U ′ ×Qk+1) = fk (U ′)×Qk+1 contains an open set V ×Qk+1 in Q2. Since

A is nowhere dense, V ×Qk+1 contains an open setW×Qk+1 in Q2 withW×Qk+1∩A = ∅.

Choose a point p in V ×Qk+1 for which none of its coordinates is dyadic rational. Then
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(f∞)−1 (p) is a singleton, say {x} . We can see that x is in U ′ ×Qk+1 ∩ {0} × C∞ and so

it is in P.

Let B = {B1,B2, . . .} be the defining sequence in Q defined for the Cantor set in the

middle slice of Q in Chapter 2.

The following sets will be used in the chapter 5. For each j and M (ǫ1, . . . , ǫj) ∈ Mj ,

define

P =

[
−

1

2j
,
1

2j

]
× f

m(j)+1
N(j) (M)

where N (j) =

j∑

i=1

ni and each ni is defined in Chapter 2 and m (0) = 2 and for j ≥ 1

m (j) = k if there is an integer k such that j = k(k−1)
2 + i for some i ∈ {0, 1, . . . , k − 1}.

4.2 Construction of the Decomposition G

We now view f∞ as a map from Q2 → Q2. To construct a decomposition G on Q,

first we will use the function f∞ to define the decomposition Gf on Q2. Explicitly,

Gf =
{
{0} × (f∞)−1 (p) | p ∈ Q2

}
.

Theorem 4.2.1. The decomposition Gf defined as above is upper semicontinuous.

Proof. This follows from the fact that πGf
= {0} × f∞. Moreover, by the Lemma 4.1.11,

Gf is cellular.

Next will show that the decomposition Gf is realized by a pseudo-isotopy.

Lemma 4.2.2. The decomposition Gf is realized by a pseudo-isotopy.

Proof. Recall f∞ : Q2 → Q2 is a generalized Cantor function in which each component

is the Cantor function f : [0, 1] → [0, 1] . To show that the decomposition Gf is realized
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by a pseudo-isotopy, it suffices to show that there exists a pseudo-isotopy Ψt of I
∞ → I∞

such that Ψ0 is the identity IdI∞ and Gf =
{
Ψ−11 (c) | c ∈ I∞

}
. For t ∈ [0, 1] , define

Ψt : I∞ → I∞ by

Ψt (x) = (1− t)x+ tf∞ (x) .

It is clear that Ψ1 = f∞ which is a closed surjection. For t < 1, Ψt is onto since each

component is onto by the Intermediate Value Theorem. Also, it is continuous, and hence

Ψ−1t is continuous since Ψt is a closed map. It remains to show that for t < 1, Ψt is

one-to-one. Let x = (x1, x2, . . .) , y = (y1, y2, . . .) ∈ I∞ be such that Ψt (x) = Ψt (y) . Then

(1− t)x+ tf∞ (x) = (1− t) y + tf∞ (y)

which implies that (1− t) (x− y) = t (f∞ (y)− f∞ (x)) . If x 6= y, then there is i such that

xi 6= yi. Without loss of generality, assume that xi < yi. We know that (1− t) (xi − yi) =

t (f (yi)− f (xi)) Then the left hand side of equation is negative but the right hand side

of equation is non-negative since the Cantor function f is non-decreasing function. This

leads to a contradiction. Thus Ψt is one-to-one. Also, we can see that

Gf =
{
{0} ×Ψ−11 (p) | p ∈ Q2

}
.

The next lemma follows from the fact that Gf is realized by a pseudo-isotopy.

Lemma 4.2.3. Let Gf be the decomposition of Q2 = {0} × Q2 induced by the map f∞.

Then πGf
from {0} ×Q2 to ({0} ×Q2) /Gf is approximable by homeomorphisms.

Lemma 4.2.4. The decomposition Gf is cellular.

Proof. This follows from Lemma 4.1.11.

Next we will define a decomposition G on Q. Let G be the partition consisting of

Gf =
{
{0} × (f∞)−1 (c) | c ∈ Q2

}
and all singletons in Q−{0}×Q2. It is clear that G is
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a usc decomposition of Q by a similar idea as shown in Lemma 4.2.2. Next we also show

that G is realized by a pseudo-isotopy. First, define K1 : [0, 3]×Q2× → [0, 1]×Q2 by

K1 (s, x) =
(s
3
, x
)
,

and for each t ∈ [0, 1] , define K2
t : [0, 1]×Q2 → [0, 1]×Q2 by

K2
t (s, x) = (s, sx+ (1− s)Ψt (x)) where Ψt (x) = (1− t)x+ tf∞ (x) ,

and define K3 : [0, 1]×Q2 → [0, 3]×Q2 by

K3 (s, x) = (3s, x) .

We can see that K1 and K3 are homeomorphisms. Let

Kt (s, x) = K3 ◦K2
t ◦K1 : [0, 3]×Q2 → [0, 3]×Q2.

Claim that for t < 1, Kt is homeomorphism. Clearly, Kt is onto, continuous and K−1t is

continuous since K1,K2, and K3 are. It remains to show that Kt is one-to-one. Since

K1,K3 are one-to-one, it suffices to show that K2
t is one-to-one Suppose that K2

t (a, x) =

K2
t (b, y) for some (a, x) , (b, y) ∈ [0, 1] ×Q2. Then by the definition of K2

t we have a = b

which implies that

ax+ (1− a)Ψt (x) = ay + (1− a)Ψt (y) .

By simplifying, we have

Ψt(1−a) (x) = (1− t (1− a))x+ t (1− a) f∞ (x)

= ax+ (1− a)Ψt (x)

= ay + (1− a)Ψt (y)

= (1− t (1− a)) y + t (1− a) f∞ (y)

= Ψt(1−a) (y) .
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Since t (1− a) 6= 1, this yields Ψt(1−a) is one-to-one and hence x = y. Therefore, K2
t is

one-to-one. Moreover, we can see that for each (s, x) ∈ (0, 3]×Q2, K
−1
1 (s, x) is singleton

and if (s, x) ∈ {0} ×Q2, Kt (s, x) = {0} × (f∞)−1 (x) ∈ Gf . Thus,

G1 =
{
K−11 (c) | c ∈ [0, 3]×Q2

}
= S ∪Gf

where S is the set of all singleton in (0, 3]×Q2.

Similarly, we can define a pseudo-isotopy Lt : [−3, 0] × Q2 → [−3, 0] × Q2 by

Lt (s, x) = Kt (−s, x) so that

G2 =
{
L−11 (c) | c ∈ [−3, 0]×Q2

}
= R ∪Gf

where R is the set of all singleton in [−3, 0)×Q2. Therefore, we see that G = G1 ∪G2 is

realized by pseudo-isotopies K and L. Thus, we have the following lemma.

Lemma 4.2.5. The decomposition G is realized by pseudo-isotopy.

The result of Lemma 4.2.5 gives the following Theorem.

Theorem 4.2.6. Let G be the decomposition defined as above. Then πG from Q to Q/G

is approximable by homeomorphisms.

Lemma 4.2.7. The decomposition G is cellular.

Proof. This follows from Lemma 4.1.11.
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5. MAIN RESULTS

The main result of this chapter is Theorem 5.4.1 where we show that if GH is

the decomposition of Q associated with the defining sequence R, then GH satisfies the

following three properties:

• GH is cellular

• The nonmanifold part of Q/GH is homeomorphic to a copy of Q whose codimension

is 1.

• If A is any closed subspace ofX of codimension≥ 1 in π(Nπ), then the decomposition

of Q induced over A is shrinkable. That is, Q/π−1(A) ∼= Q.

Thus the manifold nature of Q/GH can not be detected by looking at finite dimensional

subsets or even at infinite dimensional subsets of codimension ≥ 2 in Q/GH.

We apply a characterization of Q−manifolds due to Daverman and Walsh in Theo-

rem 1.7.16[DW81]. Their results imply thatQ/π−1(A) is aQ−manifold providedQ/π−1(A)

is an ANR satisfying the Disjoint Discs Property(DDP) and Q/π−1(A) has Čech carriers

with infinite codimension. Since Q/GH is an ANR, by Theorem 1.3.37, Q/π−1(A) is an

ANR. Our discussion now mainly focuses on the Čech carriers property. Not only do we

need to show that Q/π−1(A) has Čech carriers with infinite codimension in order to apply

Daverman-Walsh characterization, but also we have to show that Q/π−1(A) satisfies DDP.

We will assume the notation and occasionally refer to certain steps and conditions

in the construction in the previous chapters.
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5.1 Constructing the Decomposition GH

To construct the decomposition GH, there are several approaches. One can con-

struct the decomposition GH by defining the equivalence relation generated by both de-

compositions G and H. Also, one can approach this construction by producing a defining

sequence and then generating that sequence to get the decomposition GH. We will start

with the first approach.

Let G be the cellular decomposition of Q induced by the map f∞ : Q2 → Q2

in Chapter 4 and πG be the quotient map. Let H be the cellular decomposition of Q

described in the Chapter 3 and πH be the quotient map. Let, for T ⊂ Q,

G∗(T ) = ∪{g ∈ G |g ∩ T 6= ∅}

H∗(T ) = ∪{h ∈ H |h ∩ T 6= ∅}

.

Before we define an equivalence relation on GH, we will list some properties induced

from both G and H in the following lemma.

Lemma 5.1.1. Fix h ∈ HH where HH is the set of all nondegenerate elements in H. Let

g0 ∈ HG be such that g0 ∩ h 6= ∅. Then if g ∩ h 6= ∅ and g ∈ HG, then g = g0.

Proof. Assume that g ∩ h 6= ∅. Suppose that g 6= g0. Then g ∩ g0 = ∅. We can see that

by Theorem 3.2.2, h ∩ {0} ×Q2 is a single point in {0} ×Q2. Let x0 be such an element.

Since g0 ⊂ {0} × Q2, it follows that g0 ∩ h = {x0}. Thus, if g ∩ h 6= ∅ and we know also

that g ⊂ {0}×Q2, then g∩h = {x0} which implies that g∩g0 6= ∅, a contradiction. Thus,

g ∩ h = ∅.

Lemma 5.1.1 has the following Corollaries.

Corollary 5.1.2. Let x ∈ Q. Then

G∗(H∗(G∗(H∗(x)))) = H∗(G∗(H∗(x))).
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Proof. Note that

H∗(x) = ∪{h ∈ HH | x ∈ h} ∪ {x}

G∗(H∗(x)) = ∪{g ∈ HG | g ∩H∗(x) 6= ∅} ∪H∗(x)

H∗(G∗(H∗(x))) = ∪{h ∈ HH | h ∩G∗(H∗(x)) 6= ∅} ∪G∗(H∗(x))

G∗(H∗(G∗(H∗(x)))) = ∪{g ∈ HG | g ∩H∗(G∗(H∗(x))) 6= ∅} ∪H∗(G∗(H∗(x))).

It is obvious that H∗(G∗(H∗(x))) ⊂ G∗(H∗(G∗(H∗(x)))). Next we will show that

G∗(H∗(G∗(H∗(x)))) ⊂ H∗(G∗(H∗(x))).

It suffices to show that T = {g ∈ G | g ∩H∗(G∗(H∗(x)))} is a subset of H∗(G∗(H∗(x))).

Let g ∈ T. If g is singleton, we are done. Assume that g is a nondegenerate element. We

will show that g ⊂ G∗(H∗(x)). Since g ∩ H∗(G∗(H∗(x))) 6= ∅, there is a nondegenerate

element h ∈ {h ∈ H | h ∩ G∗(H∗(x)) 6= ∅} such that g ∩ h 6= ∅. This implies that by

Lemma 5.1.1 g ∈ G∗(H∗(x)). Therefore,

G∗(H∗(G∗(H∗(x)))) = H∗(G∗(H∗(x))).

Let ∼G and ∼H be equivalence relations on G and H. Then we can define the

equivalence relation generated by ∼G ∪ ∼H as the smallest equivalence relation containing

∼G ∪ ∼H , denoted by ∼GH .

Lemma 5.1.3. Let a, b ∈ Q. Then a ∼GH b if and only if there exist x1, x2, . . . , xn ∈ Q

such that x1 = a, xn = b in Q and either (xi−1, xi) ∈∼H or (xi−1, xi) ∈∼G .

Proof. This follows from the definition of an equivalence relation generated by the relations

G and H.

Remark 5.1.4. Since ∼G and ∼H are equivalence relations, we can choose xi such that if

(xi−1, xi) ∈∼H , then (xi, xi+1) ∈∼G or such that if (xi−1, xi) ∈∼G, then (xi, xi+1) ∈∼H .
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Lemma 5.1.5. Let a, b, c, d, e ∈ Q. If a ∼G b ∼H c ∼G d, then c = d. Consequently, If

a ∼H b ∼G c ∼H d ∼G e, then a ∼H b ∼G c ∼H d.

Proof. This follows from Lemma 5.1.1 and Theorem 3.2.2.

Next we will show that ∼GH is equivalent to an equivalence relation defined as

follows:

Let GH be the decomposition of Q given by

π(x) = π(y) if and only if πG ◦ π−1H ◦ πH(x)
⋂

πG ◦ π−1H ◦ πH(y) 6= ∅.

That is, we will show the following lemma.

Lemma 5.1.6. x ∼GH y if and only if πG ◦ π−1H ◦ πH(x) ∩ πG ◦ π−1H ◦ πH(y) 6= ∅.

Proof. Assume that x ∼GH y. Then there exist a, b ∈ Q such that x ∼H a ∼G b ∼H y. Note

that G∗(H∗(x)) = πG(π
−1
H (πH(x))) and G∗(H∗(y)) = πG(π

−1
H (πH(y))). Since a ∼G b, it

follows that πG(a) = πG(b). Since a ∼H x and b ∼H y, it follows that πG(a) ⊂ G∗(H∗(x))

and πG(b) ⊂ G∗(H∗(y)). Therefore G∗(H∗(x)) ∩ G∗(H∗(y)) 6= ∅ which implies that πG ◦

π−1H ◦ πH(x) ∩ πG ◦ π−1H ◦ πH(y) 6= ∅.

Conversely, if πG ◦π−1H ◦πH(x)∩πG ◦π−1H ◦πH(y) 6= ∅, then there exist a, b ∈ Q such

that a ∈ π−1H (πH(x)), b ∈ π−1H (πH(y)) such that πG(a) = πG(b). Hence πH(a) = πH(x) and

πH(b) = πH(y) and so x ∼H a ∼G b ∼H y which implies that x ∼GH y. This completes

the proof.

Next we will define π1 : Q/G → Q/GH and π2 : Q/H → Q/GH such that the

following diagram commutes. For x, y ∈ Q/G define π1 : Q/G → Q/GH by

π1(x) = π1(y) if and only if πG ◦ π−1H ◦ πH ◦ π−1G (x) ∩ πG ◦ π−1H ◦ πH ◦ π−1G (y) 6= ∅.

For x, y ∈ Q/H define π2 : Q/H → Q/GH by

π2(x) = π2(y) if and only if πG ◦ π−1H (x) ∩ πG ◦ π−1H (y) 6= ∅.
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Since Q/G ∼= Q, to define a defining sequence in Q for GH it suffices to construct a

defining sequence in Q/G. From the above lemma, we can define a defining sequence for

Q/G as follows:

Let L = {L1,L2, . . .},B = {B1,B2, . . .} be the defining sequences for H and for the

Cantor set in the middle as defined as in Chapters 2 and 3. Then define the sequence

R = {R1,R2, . . .} for Q/G by

Ri = {πG(Lj ×Qm(i)+3) | Lj ×Qm(i)+3 ∈ Li}

Note that πG(Lj × Qm(i)+3) can be viewed as Kj × Qm(i)+3 where Kj = Tj ∪

Pj ∪ Dj together with the tubes joining these where Pj is homeomorphic to [− 1
2i
, 1
2i
] ×

f
m(j)+1
N(j) )(Bj). Then R is a defining sequence for Q/G. All inductive hypotheses IH1,. . . ,

IH4 in the construction of defining sequence L from Chapter 3 are still true for the defining

sequence R. Figure 5.1 shows the first stage of construction with 4 components. The four

components in the cylinder at the top come from T1. The four components in the cylinder

at the bottom come from D1, and the four components in the middle come from P1. The

tubes indicate how some of the components are connected.

Remark 5.1.7. Each Ri ∈ Ri, there exists Pre(Ri) ∈ Ri−1 such that Ri ⊂ Pre(Ri) and

the inclusion map Ri → Pre(Ri) is null homotopic. This implies that each element of the

decomposition GH associated with defining sequence R is cell-like.

Lemma 5.1.8. Let R = T∪P∪D together with the tubes joining these be a fixed element in

Rr for some r. Then for any virtually I−essential maps f1 : D1 → T and f2 : D1 → D,
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FIGURE 5.1: First Stage of construction R with 4 components

there is an δ > 0 so that if f ′1, f
′
2 are maps within δ of f1 and f2 respectively and in general

position with respect to Rr+1, then there is a component R′ = B′ ∪ T ′ ∪D′ together with

the tubes joining these where R′ ⊂ R and discs with holes D′1 ⊂ D1, D
′
2 ⊂ D2 such that f ′1

and f ′2 are virtually I−essential into T ′ and D′ respectively.

Proof. This follows directly from condition IH4. For more details, see [Gar91].

Lemma 5.1.9. Let R = {R1,R2, . . .} of Q be the defining sequence defined as above.

Then R is sharp.

Proof. By Remark 1.3.34, the defining sequence R is sharp.

5.2 Properties of Q/GH.

Lemma 5.2.1. Let R = {R1,R2, . . .} be the defining sequence constructed in the previous

section, let GH be the decomposition associated with R, and let π : Q → Q/GH be the

natural quotient map. Let ∂R = ∪i≥1{∂R : R ∈ Ri}. Then
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(1) π is cell-like.

(2) Each non-degenerate element of GH has dimension one.

(3) π(Nπ)− π(∂R) is 0-dimensional

(4) Q/GH is an ANR

(5) If A is a closed subset in Q/GH, then Q/π−1(A) is an ANR.

Proof. Condition (1) holds by Remark 5.1.7 and Theorem 1.3.21.

For (2), the connectedness of each non-generate element h of the decomposition GH

gives the dimension of h is ≥ 1 and since for every R of Rn there is a 1
n
−map from R to 1

complex by the condition IH1 for the defining sequence R. Then by a result in dimension

theory, [HW48], (page 73), the dimension of h is ≤ 1. Hence, each non-degenerate element

of H has dimension one.

For (3), we will show that π(Nπ) − π(∂R) is 0−dimensional at each point P ∈

π(Nπ)− π(∂R). Let P ∈ π(Nπ)− π(∂R) and U be an open neighborhood of P in Q/GH.

Then V = π−1(U) is open in Q. Let

V ∗ = ∪{g ∈ GH | g ⊂ V }.

Since GH is upper semicontinuous, V ∗ is saturated and open in Q. Then π(V ∗) is open

in Q/GH which implies that W = π(V ∗) ∩
(
π(Nπ)− π(∂R)

)
is open in π(Nπ)− π(∂R).

Clearly, ∂W = ∅ and W ⊂ U. Then it follows that π(Nπ) − π(∂R) is 0−dimensional at

the point P. Since P is arbitrary, π(Nπ)− π(∂R) is 0−dimensional.

For (4), since π(∂R) contains the boundary of a basis for the topology of π(Nπ) and

from Lemma 1.3.11 π is one-to-one on ∂R, it follows from Theorem 1.3.36 that

Q/GH is an ANR

since R is sharp.
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For (5), since Q/GH is an ANR by (5), Theorem 1.3.37 from [Lay80] shows that

for each closed set A in Q/GH,

Q/π−1(A) is an ANR.

The proof of Lemma 5.2.2 is similar to the arguments on page 36 and on page 41 in

[Lay80]

Lemma 5.2.2. [Lay80] Let L be the defining sequence of Q. Let k ≥ 1 be fixed and

R ∈ Rk. Then for each j > k, if W is compact subset of Q with W ⊂ Int(R), then

W ∩ π−1(π(∂R) is 1-dimensional.

Proof. The proof is similar to Lemma 3.3.3

Now we will discuss the Čech Carrier Property of Q/GH

Corollary 5.2.3. For the decomposition GH associated with the defining sequence R,

π−1(x) has infinite codimension in Q for every x ∈ Q/GH.

Proof. Let x ∈ Q/GH. If x 6∈ π(Nπ), then π−1(x) is a singleton in Q and hence it has

infinite codimension in Q. Assume that x ∈ π(Nπ). It follows from Lemma 5.2.1 that x

is one dimensional. Then by Lemma 1.7.4 [DW81], π−1(x) has infinite codimension in

Q.

We will use Theorem 3.3.6 to show that points in Q/H have infinite codimension.

Corollary 5.2.4. Points in Q/GH have infinite codimension in Q/GH.

Proof. The result follows from Theorem 3.3.6. For more details, see the argument in

[Lay80].

This next argument is similar to that for Q/H in Chapter 3.
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Lemma 5.2.5. [Lay80] For each i ≥ 1, let R ∈ Ri. Then Q/GH has disjoint Čech carriers

at π(∂R). Consequently, Q/GH has disjoint Čech carriers at π(∂R).

Proof. The proof is similar to that for Q/H in Chapter 3.

In the next two Theorems, the proof is similar to that of previous argument in

Chapter 3. So, we omit the proof here.

Lemma 5.2.6. Let A be a closed subset in π(Q − Nπ). Then Q/GH has Disjoint Čech

carrier at A.

Theorem 5.2.7. Q/GH has Disjoint Čech Carriers Property.

Theorem 5.2.7 gives the following Corollary.

Corollary 5.2.8. If A is a closed subset of Q/GH, then Q/π−1(A) has Disjoint Čech

Carriers Property.

Proof. This follows from Theorem 5.2.7.

5.3 Properties of Q/π−1(A)

Let R be the defining sequence defined above. Let A ⊂ Q/GH. Then the sub-

defining sequence R′ = {R′1,R
′
2, . . .} of R is defined as follows: For i ≥ 1,

R′i = {R ∈ Ri | R ∩ g 6= ∅ for some g ∈ A}.

We now state and prove the main results of this section.

Theorem 5.3.1. Let A be a closed subset of Q/GH where A ⊂ π(Nπ) has codimension

≥ 1 in π(Nπ). Then Q/π−1(A) satisfies the DDP.
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Proof. We modified the proof from an argument in [Gar91]. Let A be a closed subset of

Q/GH. To show that Q/π−1(A) satisfies the DDP, it suffices to show the following condi-

tion. For each ǫ > 0 and for each pair maps f, g : B2 → Q/GH, there are approximating

maps f̃ , g̃ : B2 → Q/GH such that

d(f, f̃) < ǫ, d(g, g̃) < ǫ

with f̃(B2) ∩ g̃(B2) ∩A = ∅.

First, by Lemma 4.1.12, we can choose a dense subset P in {0} × C∞ so that

f∞(P ) ∩A = ∅ and (f∞)−1(f∞(p)) = p for each p in P.

Next, given ǫ, f and g as in the condition above, by Theorem 1.3.16 and since Q/G

satisfying the DDP, we can choose approximate lifts f1, g1 : B2 → Q/G of f and g

respectively and δ > 0 so that f1(B
2) ∩ g1(B

2) = ∅ and so that if f̃ , g̃ : B2 → Q/G

satisfies

ρ(f1, f̃) < δ and ρ(g1, g̃) < δ,

then

ρ(π1 ◦ f̃ , f) <
ǫ

3
and ρ(π1 ◦ g̃, g) <

ǫ

3
,

and f̃(B2) ∩ g̃(B2) = ∅.

Next, by Theorem 1.3.16 again, we can choose approximate lifts f2, g2 : B2 → Q

of f1 and g1, respectively so that f2(B
2)∩ g2(B

2) = ∅, so that f2 and g2 are transverse to

{0} ×Q2, with (f2(B
2) ∪ g2(B

2)) ∩ ({0} ×Q2) missing {0} × C∞, and so that

ρ(πG ◦ f2, f1) < δ and ρ(πG ◦ g2, g1) < δ.

It follows that

ρ(π ◦ f2, f) = ρ((π1 ◦ πG) ◦ f2, f) = ρ(π1 ◦ (πG ◦ f2), f) <
ǫ

3

and

ρ(π ◦ g2, g) = ρ((π1 ◦ πG) ◦ g2, g) = ρ(π1 ◦ (πG ◦ g2), g) <
ǫ

3
.
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That is, π ◦ f2 and π ◦ g2 are ǫ
3 approximations to f and g respectively. Finally, choose

k so that if R is any component of Rk, then diam(π(R)) < ǫ
3 , and so that (f2(B

2) ∪

g2(B
2))∩ {0} ×Q2) is contained in the complement of Rk. After a small general position

adjustment, by using Lemma 3.2.6, there are approximations f3, g3 : B2 → Q to f2 and

g2 respectively so that

f3

∣∣∣
B2\(f−1

2 (R))
= f2

∣∣∣
B2\(f−1

2 (R))
, g3

∣∣∣
B2\(g−1

2 (R))
= g2

∣∣∣
B2\(g−1

2 (R))
,

and satisfying the following conditions:

(i) If h ∈ H,h ⊂ R and both g3(B
2) and f3(B

2) intersect h, then h ∩ {0} × C∞ ∈ P.

(ii) If h ∈ H,h ⊂ R and g3(B
2) intersects h and f3(B

2) does not intersect h, then

h ∩ {0} × C∞ has no triadic rational coordinates.

(iii) If h ∈ H,h ⊂ R and f3(B
2) intersects h and g(B

2) does not intersect h, then

h ∩ {0} × C∞ has no triadic rational coordinates.

We claim that F = π ◦ f3 and G = π ◦ g3 are the required approximations to f and

g. First we can see that

ρ(π ◦ f3, f) ≤ ρ(π ◦ f3, π ◦ f2) + ρ(π ◦ f2, f) ≤
ǫ

3
+

ǫ

3
=

2ǫ

3

ρ(π ◦ g3, g) ≤ ρ(π ◦ g3, π ◦ g2) + ρ(π ◦ g2, g) ≤
ǫ

3
+

ǫ

3
=

2ǫ

3
.

Next we will show that

F (B2) ∩G(B2) ∩A = ∅.

If F (B2) ∩G(B2) = ∅, then we are done. Now suppose that

F (B2) ∩G(B2) 6= ∅.

Since πG ◦ f3 ∩ πG ◦ g3 = ∅, the points in F (B2) ∩G(B2) can arise in one of the following

ways:
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(a) Such points can arise from an element h ofH that intersects both f3(B
2) and g3(B

2),

or

(b) they can arise from the elements h1 of H that f3(B
2) intersects and h2 of H that

g3(B
2) intersects where πG(h1) ∩ πG(h2) 6= ∅.

Suppose elements of the second type exist, and let (f∞)−1(y) ∈ πG(h1) ∩ πG(h2). That

is, there are x1 ∈ h1 and x2 ∈ h2 with x1 6= x2 so that f∞(x1) = y = f∞(x2) which

implies that x1 and x2 have triadic rational coordinates. Since D consist only of points

with no triadic rational, it follows that x1, x2 6∈ D. But by conditions (ii) and (iii) above,

x1, x2 ∈ D, So, this leads to a contradiction. Thus, there are no points of the latter type.

The condition (i) above shows that any point of the first type lies in the complement

of A. That is,

F (B2) ∩G(B2) ∩A = ∅.

This completes the proof of the Lemma.

5.4 Main Theorem

Theorem 5.4.1. Let GH be the decomposition of Q defined as the previous section. Then

GH satisfies the following four properties:

(a) The nonmanifold part of Q/GH is homeomorphic to a copy of Q whose codimension

is 1.

(b) Q/GH 6∼= Q

(c) If A is any closed subspace of X where A ⊂ π(Nπ) of codimension ≥ 1 in π(Nπ),

then the decomposition of Q induced over A is shrinkable. That is, Q/π−1(A) ∼= Q.
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(d) GH is cellular

(e) Q/GH × I2 ∼= Q

Proof. For (a), we can see that first the nonmanifold part of Q/GH is contained in π(Q2)

where Q2 = {0}×Q2. Note that Q
2 has codimension 1 in Q by Example 1.4.2. Claim that

π(Q2) also has codimension 1. Let U be any open set in Q/GH. ConsiderH0(U,U−π(Q2)).

Since π is cell-like map and Q2 has codimension 1, by Theorem 1.3.20, it implies that

H0(U,U − π(Q2)) ∼= H0(π
−1(U), π−1(U)−Q2) ∼= 0.

Let U be a saturated open set such that H1(U,U − Q2) 6∼= 0. Note that π(U) is open in

Q/GH. Then again by Theorem 1.3.20,

H1(π(U), π(U)− π(Q2)) ∼= H1(U,U −Q2) 6∼= 0.

Therefore, we have π(Q2) has codimension 1 in Q/GH. It remains to show that π(Q2) is

the nonmanifold part of Q/GH. Given ǫ > 0. Let p ∈ π(Q2) and U be a ǫ neighborhood

of p in π(Q2). We will show that the disjoint disc property fails in U. Choose an element

R of some Rk so that π(R) is contained in the ǫ
4 neighborhood of p.

Given R = P ∪ T ∪D together with the tubes joining these of some element in Rk

so that πH(R) is contained in the ǫ
4 neighborhood of p. Choose f, g : B2 → Q so that f is

an I−essential map into T and g is an I−essential into D. Let π ◦ f, π ◦ f : B2 → Q/GH.

Then by Theorem 1.3.16, there is δ > 0 so that if f ′′ and g′′ : B2 → Q are approximate

lifts of δ
2 approximations of f ′ and g′ respectively with

ρ(π ◦ f ′′, π ◦ f) < δ and ρ(π ◦ g′′, π ◦ g) < δ,

then

ρ
(
f ′′
∣∣∣
∂B2

, f
∣∣∣
∂B2

)
< ǫ′ and ρ

(
g′′
∣∣∣
∂B2

, g
∣∣∣
∂B2

)
< ǫ′,
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It follows by Lemma 5.1.8 that if f1 and g1 are any δ
2 approximations of πH ◦ f and πH ◦ g

respectively, then

f1(B
2) ∩ g1(B

2) 6= ∅.

Thus U does not satisfy the DDP and hence the manifold part of Q/GH is π(Q2).

For (b), this follows from (a).

For (c), notice that Q/π−1(A) is an ANR by Lemma 5.2.1(5) and has DDP by

Lemma 5.3.1. By Corollary 5.2.8, Q/π−1(A) has Disjoint Čech Carriers Property. It

follows that by Theorem 1.7.16, Q/π−1(A) is a Q−manifold. That is, Q/π−1(A) ∼= Q.

For (d), the map π is cell-like by Lemma 5.2.1(1). It implies that each non-

degenerate element h has trivial shape. By the condition (c), for h ∈ Nπ, Q/π−1(h) ∼= Q.

Thus, by Theorem 1.3.30 h is cellular. That is, GH is a cellular decomposition.

For (e), first note that Q/GH is an ANR. By Lemma 5.2.7, we have Q/GH has

Disjoint Čech Carriers Property, and hence by Lemma 1.7.15, Q/GH×I2 is a Q−manifold.
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6. CONCLUSION

The main results of this work is the existence of a cell-like decomposition GH of

the Hilbert Cube Q such that Q/GH is nonmanifold. The nonmanifold part of Q/GH is

homeomorphic to a copy of Q whose codimension is 1. Also, if A is any closed subspace of

the nonmanifold part of codimension ≥ 1 in the nonmanifold part, then the decomposition

of Q induced over A is shrinkable. That is, Q/π−1(A) ∼= Q. However, Q/GH is still a

factor of Q since Q/GH × I2 ∼= Q.

The principal new results in this thesis are:

• (Theorem 2.5.4) There exists a sequence

B = {B1,B2,B3, . . .}

of collection subsets of Q satisfying the following properties:

1.
⋂
B = {0} × C∞ where C∞ =

∏∞
i=1C and C is the Cantor set.

2. Every point p ∈ {0} × C∞ is associated with a sequence (ǫ1, ǫ2, . . .) where

ǫl = (σl1, σl2), and where σl1 and σl2 are nl−tuples whose components are in

{1, 2},

3. If there is N such that for all i > N either all the first coordinates of the ǫi or

all the second coordinates of the ǫi is not in 1̄ ∪ 2̄, then p ∈ {0} × C∞ has no

triadic rational coordinates.

• (Theorem 3.2.7) There exists a decomposition H of Q which satisfies the following

properties:

1. For each nondegenerate element h of H,

h ∩ {0} ×Q2
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is a single point in {0} × C∞.

2. Let f1 and f2 be maps from B2 into Q/H and let A be any dense subset of

C∞. Then f1 and f2 are approximable by maps g1 and g2 satisfying:

(i) g1(B
2) ∩ g2(B

2) ⊂ πH(A), and

(ii) if p = {0} × p′ is a point of {0} × C∞ with

πH(p) ∈ (g1(B
2) \ g2(B2)) ∪ (g2(B

2) \ g1(B2)),

then p′ has no triadic rational coordinates.

3. Q/H has nonmanifold part equal to πH({0} × C∞) ∼= {0} × C∞.

4. Q/H × I2 ∼= Q.

• After combining the decomposition H in Chapter 3 and the decomposition G in

Chapter 5, we have a decomposition GH satisfying the following three properties

(Theorem 5.4.1):

1. GH is cellular

2. The nonmanifold part of Q/GH is homeomorphic to a copy of Q whose codi-

mension is 1.

3. Q/GH × I2 ∼= Q.

4. If A is any closed subspace of X of codimension greater than ≥ 1 in π(Nπ), then

the decomposition of Q induced over A is shrinkable. That is, Q/π−1(A) ∼= Q.

Note that the example in this work yields the nonmanifold part of codimension 1. A

question for further investigation is the following:

Question: Does there exist a similar example of a decomposition of the Hilbert

cube having the nonmanifold part of codimension k for any positive integer k?
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