AN ABSTRACT OF THE THESIS OF

Aniruth Phon-On for the degree of Doctor of Philosophy in Mathematics presented on April 29, 2010.

Title: A Thin Codimension-one Decomposition of the Hilbert Cube

Abstract approved:
Dennis J. Garity

For cell-like upper semicontinuous(usc) decompositions G of finite dimensional manifolds M, the decomposition space M / G turns out to be an ANR provided M / G is finite dimensional ([Dav07], page 129). Furthermore, if M / G is finite dimensional and has the Disjoint Disks Property (DDP), then M / G is homeomorphic to M ([Dav07], page 181). For an infinite dimensional M modeled on I^{∞}, we can construct cell-like usc decompositions G associated with defining sequences. But it is more complicated to check whether M / G is an ANR. We need an additional special property of the defining sequence. To check whether or not M / G is homeomorphic to M is even more difficult. We need M / G to be an ANR which has the DDP and which also satisfies the Disjoint Čech Carriers Property. We give a specific cell-like decomposition X of the Hilbert Cube Q with the following properties: The nonmanifold part N of X is complicated in the sense that it is homeomorphic to a Hilbert Cube of codimension 1 in $Q . X$ is still a factor of Q because $X \times I^{2} \cong Q$. If A is any closed subspace of N of codimension ≥ 1 in N, then the decomposition of Q over A is homeomorphic to Q. In particular, the nonmanifold nature of X is not detectable by examining closed subsets of codimension ≥ 1. This example is produced by combining mixing techniques for producing a nonmanifold space whose nonmanifold part is a Cantor set, with decompositions arising from a generalized Cantor function.
${ }^{\circ}$ Copyright by Aniruth Phon-On
April 29, 2010
All Rights Reserved

A Thin Codimension-one Decomposition of the Hilbert Cube

by
Aniruth Phon-On

A THESIS

submitted to
Oregon State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

APPROVED:

Major Professor, representing Mathematics

Chair of the Department of Mathematics

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

ACKNOWLEDGEMENTS

There are many people to whom I owe gratitude. First and foremost I am indebted to my advisor, professor Dennis J. Garity. Without his careful attention, encouragement and guidance I could not have possibly succeeded. I am grateful that over the years he showed patience and confidence in my abilities. I count myself as being the most fortunate to be able to work with him.

Special thanks to the members of my Graduate committee, Professors William A. Bogley, Mary Flahive, Christine Escher, and Henri Jensen for their helpful comments and suggestions at all times during the preparation of this text. Through their constructive criticism they have made a significant contribution to the successful completion of this project.

Many faculty and administrative staff of the math department contributed to my growth and development as a mathematician. Thanks to Enrique Thomann, Ed Waymire, Juha Pohjanpelto, David Finch, Ed Waymire, Robert M. Burton, Vrushali A. Bokil who taught me various mathematical subjects throughout the years. Also thanks to Deanne Wilcox, Karen Guthreau, and Kevin Campbell who help me various kinds of troubles that I had over the years.

I would also like to thank Thai Government for giving me a great opportunity and financial support throughout the years while I was studying here.

I wish to thank my very dear math friends Jacob, Thilanka, Kim, and Fernando who made graduate school an unforgettable part of my life. Also, I would like to thank my very lovely friends, P.Tein, Hud, Suko, P.Ae, and P.Aue for their support.

Most of all I would like to thank my family that supported me through this long process and never gave up to believe in me. Their love helped me succeed.

TABLE OF CONTENTS

Page

1. OVERVIEW .. 1
1.1 Outline... 1
1.2 Historical Setting and Introduction ... 3
1.3 Definitions and Notation .. 5
1.31 Topological Background.. 5
1.32 Defining Sequences for Decompositions 8
1.33 Cellular Sets and Cell-like Sets . 10
1.34 Cellularity in the Hilbert Cube Q...................................... 12
1.35 ANRs .. 13
1.4 Homological Codimension and Disjoint Discs Property 15
1.5 Geometrical Centrality . 17
1.51 Standard Example of Geometrically Central Subset................ 18
1.52 Results on Geometric Centrality .. 18
1.6 Inverse Limits and Čech Homology 22
1.7 Detecting Q-manifolds.. 24
1.71 Infinite Codimension . 24
1.72 Čech Carriers . 25
2. A SPECIAL CANTOR SET IN THE HILBERT CUBE 28
2.1 Introduction.. 28
2.2 Cantor set in the Middle... 29
2.21 Construction of the generalized Cantor set: $C^{k} \ldots \ldots \ldots \ldots \ldots . .$.
2.22 Construction of the generalized Cantor set: $C^{\infty} \ldots \ldots \ldots \ldots \ldots . . .$.

2.31 Zero and First Stages of Construction: $k=2 \ldots \ldots \ldots \ldots \ldots \ldots$.

2.33 Construction of the Cantor set 47

TABLE OF CONTENTS (Continued)

Page
2.5 Modification of the Construction of the Cantor set in the Middle 48
2.51 Zero and First stage of Construction: $k=2$ 48
$2.52 \quad k^{\text {th }}$ Stage of Construction $: k \geq 3$ 49
3. A DECOMPOSITION WITH NONMANIFOLD PART A CANTOR SET 51
3.1 Introduction 51
3.11 Preview of Our Plan for Constructing the Decomposition H of Q 51
3.2 A Defining Sequence associated with the Decomposition H 52
3.21 Stage Zero of Construction 52
3.22 First Stage of Construction 54
$3.23 r^{\text {th }}$ Stage of Construction 55
3.3 Additional Properties of Q / H 65
4. A DECOMPOSITION FROM THE CANTOR FUNCTION 71
4.1 Product of Cantor Sets 71
4.2 Construction of the Decomposition G 87
5. MAIN RESULTS 91
5.1 Constructing the Decomposition GH 92
5.2 Properties of $Q / G H$. 96
5.3 Properties of $Q / \pi^{-1}(A)$ 99
5.4 Main Theorem 102
6. CONCLUSION 105
BIBLIOGRAPHY 107

LIST OF FIGURES

Figure Page
1.1 Whitehead Continuum 3
1.2 The closure of $\sin \left(\frac{1}{x}\right)$ curve, $0<x \leq 1$, in \mathbb{R}^{2}. 10
1.3 Geometrically Central Collection on $B^{2} \times I$ 19
1.4 Geometrically Central Collection on $B^{2} \times S^{1}$ 19
2.1 The element in A_{0}^{1} 35
2.2 elements in $A_{i}^{1}, i=1,2,3,4$ 36
2.3 Ramified copies of component of \mathcal{W}_{1} on $B^{2} \times I$ 43
3.1 Stage Zero of construction 53
3.2 First Stage of construction \mathcal{L} with 4 components 54
4.1 The graph of f_{n} for $n=0,1,2,3$. 75
4.2 The graph of f_{n} and f_{n-1} for $n=0, \ldots, 4$ on the same axis 78
4.3 The graph of function g_{n} for $n=1, \ldots, 4$. 81
4.4 The graph of f_{n} and f_{n-1} on interval $\Theta\left(k_{1}, \ldots, k_{n-1}\right)$ 82
4.5 The function f_{2}^{2}. 85
5.1 First Stage of construction \mathcal{R} with 4 components 96

A THIN CODIMENSION-ONE DECOMPOSITION OF THE HILBERT CUBE

1. OVERVIEW

1.1 Outline

To make it easier to navigate through the various sections, we start with an outline of the material contained in this thesis.

Chapter 1: This chapter introduces the background and definitions needed in the next chapters. The reader familiar with this terminology can skip this chapter and go directly to the next chapter.

- Section 1.1: In this section we go over history and theorems that are wellknown and give motivation about this work.
- Section 1.2: In this section we summarize what we have in each chapter.
- Section 1.3: In this section we go over definitions, notation, and results related to defining sequences, cellular sets, cell-like sets, and ANRs. These will be needed in in the remaining chapters.
- Section 1.4: In this section we go over definitions and results related to homological codimension and the disjoint discs property. These will be needed in Chapter 3 and Chapter 5.
- Section 1.5: In this section we go over definitions and results related to geometric centrality. These will be needed in Chapter 2.
- Section 1.6: In this section we go over definitions and results related to inverse limits and Čech homology. These will be needed in section 3.3 and Chapter 5.
- Section 1.7: In this section we go over definitions and results related to infinite codimension and Čech carriers. These will be needed in section 3.3 and Chapter 5.

Chapter 2: In this chapter we construct special Cantor sets in the Hilbert cube. We generalize results from finite dimensions about detecting points in Cantor sets with triadic rational coordinates to infinite dimensions. The results in this chapter use definitions and theorems from sections 1.3, and1.6.

Chapter 3: In this chapter we construct a special decompostion of the Hilbert cube with nonmanifold part a Cantor set. This will be used in the main results in Chapter 5. The results in this chapter use definitions and theorems from section 1.3, 1.4, 1.5, 1.7, 1.8. Also, we use results from Chapter 2.

Chapter 4: This chapter goes over details about the Cantor function in finite and infinite dimensions. These are used to construct a decomposition that will be used in the construction in Chatpter 5. The results in this chapter use definitions and theorems from section 1.3.

Chapter 5: This chapter constructs the main example. The results in this chapter use definitions and theorems from section 1.3, 1.4, 1.8. Also we use results from chapter 3 and chapter 4 .

Chapter 6: We summarize the results in the thesis and ask some questions about generalizations.

1.2 Historical Setting and Introduction

For the definitions of terms introduced in this section, see § 1.3. Let M and N be closed n-manifolds with $n \neq 3$, 4. Let $\mathcal{C}(M, N)$ denote the set of all continuous maps from M to N with the compact-open topology, $\operatorname{Hom}(M, N)$ denote the subset of $\mathcal{C}(M, N)$ consisting all homeomorphisms from M to N, and $\operatorname{CEL}(M, N)$ denote the subset of $\mathcal{C}(M, N)$ consisting all cell-like maps from M to N. Then $\operatorname{CEL}(M, N)$ is precisely the closure of $\operatorname{Hom}(M, N)$ in $\mathcal{C}(M, N)$, see [Lac77]. Hence after homeomorphisms, cell-like maps are considered to be the next simplest kinds of maps on manifolds. The cell-like concept has since been studied in great detail in finite dimensions. See Daverman's book [Dav07] for a large number of examples. One way to construct a cell-like map is using decomposition theory. In general, if $f: M \rightarrow X$ is an onto cell-map from n-manifold M to a topological space X, then M is not necessarily homeomorphic to X. For example, let $W h$ be the Whitehead continuum in \mathbb{R}^{3}. That is,

$$
W h=\cap_{i=1}^{\infty} T_{i}
$$

where T_{i} is defined by the following: Let T_{0} be a solid torus in \mathbb{R}^{3}. For $i \geq 1$, let $T_{i}=$ $h\left(T_{i-1}\right)$ where $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the homeomorphism taking T onto W in Figure1.1. Note that $T_{i} \subset T_{i-1}$ for all i. Figure 1.1 demonstrates the first two stages of the construction of $W h$.

FIGURE 1.1: Whitehead Continuum

Then the map π from \mathbb{R}^{3} to $\mathbb{R}^{3} / W h$ is a cell-like map but $\mathbb{R}^{3} / W h \not \approx \mathbb{R}^{3}$ since any meridional disc in the larger torus must intersect $W h$ [Dav07]. In higher dimensions, the key property for determining when $M / G \cong M$ is the Disjoint Discs Property(DDP). The Cell-like Approximation Theorem [Edw80] is important and is used to prove that if G is a cell-like decomposition of an n-manifold M where $n \geq 5$, then $M / G \cong M$ if and only if M / G is an Absolute Neighborhood Retract(ANR) having the DDP. For a proof of this theorem, see [Dav07]. Daverman [Dav81] also provides a proof that if G is a cell-like decomposition of an n-manifold M then $M / G \times \mathbb{R}^{2}$ has the DDP, which implies that $M / G \times \mathbb{R}^{2} \cong M \times \mathbb{R}^{2}$.

In the infinite dimensional setting, for a cell-like decomposition of an infinite dimensional manifold M, it is more complicated to check whether the space M / G is an ANR and even more complicated to check whether $M / G \cong M$. Not only do we need the DDP, but also the Disjoint Čech Carrier Property [DW81]. Thus, the motivation of this work is to produce a specific decomposition of the Hilbert Cube Q in order to investigate and to illustrate how complicated images of cell-like maps on Hilbert Cube Q can be.

The main goal of this work is to construct a specific cell-like, upper semi-continuous decomposition of the Hilbert Cube Q which yield a quotient space X that is not homeomorphic to Q and that has the property that any closed subspace A of the nonmanifold part N of X of codimension ≥ 1 induces a decomposition which is homeomorphic to Q. The nonmanifold part N of X is complicated in the sense that it is homeomorphic to a Hilbert Cube of codimension 1 in Q but X is still a factor of Q because $X \times I^{2} \cong Q$.

In 1983, McCauley and Woodruff [MW83] produced such examples satisfying the above properties in \mathbb{R}^{3}.

In 1990, Garity [Gar91] generalized these examples in higher finite dimensions ($n \geq$ 5).

We produce an example which is an infinite dimensional version of the finite di-
mensional example due to Garity,[Gar91]. In order to obtain this example in infinite dimensions it is necessary to discuss properties of the Cantor set that will be used in the construction of the examples and to express Cantor sets in Q as intersections in a special way. This is done in Chapter 2. In Chapter 2, we also describe the Cantor set C^{∞} in Q in terms of a defining sequence such that we can detect when points in C^{∞} have no triadic rational coordinates. This was previously done only in the finite dimensional case.

In Chapter 3, we produce a special decomposition H of Hilbert Cube Q. The decomposition, H has the non-manifold part of Q / H a Cantor set and has some additional special properties that we list in Chapter 3.

In Chapter 4, we produce an additional decomposition G of the Hilbert Cube Q using the generalized Cantor function.

In Chapter 5, we use the above decompositions G and H to construct the main example.

In this first Chapter we will give the basic definitions and notation needed in the remainder of the thesis.

1.3 Definitions and Notation

1.31 Topological Background

Throughout this thesis we assume all spaces X are separable metric spaces and the word map refers to a continuous function. For the readers who are not familiar with topology and algebraic topology, all basic topological terminology, notation, definitions, and theorems can be found in [Mun00], [May72].

Let B^{2} be the unit disc in \mathbb{R}^{2}, I be the interval $[0,1]$. For each $n \geq 1$, we write

$$
I^{n}=\prod_{i=1}^{n} I_{i}, \quad Q_{n+1}=\prod_{i=n+1}^{\infty} I_{i}
$$

where $I_{i}=I$. After suitable parametrization, the Hilbert Cube is a countable product
of I_{i} where for ease of notation, $I_{1}=[-3,3]$, and $I_{i}=[0,1]$ for all $i \geq 2$, and is denoted by Q. That is,

$$
Q=\prod_{i=1}^{\infty} I_{i}
$$

Also, for each n we can write the Hilbert Cube as

$$
Q=I^{n} \times Q_{n+1}
$$

We can define a metric $\rho: Q \times Q \rightarrow \mathbb{R}^{+} \cup\{0\}$ on Q by

$$
\rho\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\sum_{i=1}^{\infty} \frac{\left|x_{i}-y_{i}\right|}{2^{i}} \quad \text { for all }\left(x_{i}\right),\left(y_{i}\right) \in Q
$$

where $\left(x_{i}\right)$ denotes the sequence of $x_{i} \in I_{i}$.
This metric generates the product topology on Q. The pseudo interior of Q is

$$
s=\prod_{i=1}^{\infty} I_{i}^{0}
$$

where $I_{1}^{0}=(-3,3), I_{i}^{0}=(0,1)$ for $i \geq 2$, and $B d(Q)=Q-s$ is the pseudo boundary of Q.

Let $f, g: Q \rightarrow Y$, be maps, where Y is a metric space with a metric d. Then we define $\Psi(f, g)$ as

$$
\Psi(f, g)=\sup \{d(f(x), g(x)) \mid x \in Q\} .
$$

Definition 1.3.1. [Lac77] A Q-manifold is a space which is locally homeomorphic to open subsets of Q.

The following lemma is one of the facts about the Hilbert Cube that we use to prove some later theorems in this thesis.

Lemma 1.3.2. (Tube Lemma)[Dav07] Suppose S is a compact subset of Q and U is an open subset of Q containing S. Then there exist an integer n and a ball B^{n} in I^{n} such that

$$
S \subset B^{n} \times Q_{n+1} \subset U
$$

A decomposition G of a space X is a partition of X. Explicitly, G is a subset of the power set of X, and its elements are pairwise disjoint nonempty sets that cover X. Associated with any decomposition G of a space X is the decomposition space denoted as X / G. Its topology is described by means of the decomposition map $\pi: X \rightarrow X / G$ sending each $q \in X$ to the unique element of G containing q. The topology on X / G is the quotient space topology induced by π. For any decomposition G of a space X we use H_{G} to denote the set of non-degenerate elements (elements of cardinality greater than 1) of G. We use N_{G} to denote the union of the elements of H_{G}. If π is the quotient map for the decomposition G, then we write $N_{G}=N_{\pi}$.

Definition 1.3.3. The nonmanifold part of a decomposition space X / G where X is an n manifold (the Hilbert cube) consists of those points in X / G that do not have neighborhoods homeomorphic to R^{n} (homeomorphic to the Hilbert Cube).

Definition 1.3.4. [Dav07] A decomposition G of X is said to be upper semicontinuous(usc) if every $g \in G$ is compact and the quotient map

$$
\pi: X \rightarrow X / G
$$

is a closed map.

A basic property of an usc decomposition G of X is: given $g \in G, g \subset U$ where U is an open set in X. Then

$$
V=\bigcup\{g \in G \mid g \subset U\}
$$

is open.
Given a decomposition G of X and a closed subset A of X / G, we use $X / \pi^{-1}(A)$ to denote the decomposition of X induced over $A . X / \pi^{-1}(A)$ consists of all sets of the form $\pi^{-1}(a), a \in A$, and all singletons of $X-\pi^{-1}(A)$.

Theorem 1.3.5. [Dav07](Realization) Suppose G is an upper semicontinuous decomposition of a space X and f is a closed map of X onto a space Y such that $G=$
$\left\{f^{-1}(y \mid y \in Y)\right\}$. Then X / G is homeomorphic to Y.
Definition 1.3.6. [Dav07] A decomposition G of a space X is realized by a pseudoisotopy if there exists a pseudo-isotopy Ψ_{t} of X to X such that $\Psi_{0}=I d_{X}$ and $G=$ $\left\{\Psi_{1}^{-1}(x) \mid x \in X\right\}$. By a pseudo-isotopy Ψ_{t} of X to X we mean a homotopy $\Psi_{t}: X \rightarrow$ X such that Ψ_{t} is a homeomorphism for each $t \in[0,1)$ and Ψ_{1} is a closed surjection. Similarly, by an isotopy Ψ_{t} of X to X we mean a homotopy $\Psi_{t}: X \rightarrow X$ such that Ψ_{t} is a homeomorphism for each $t \in[0,1]$.

1.32 Defining Sequences for Decompositions

We need the following definitions related to defining sequences for decompositions before proceeding. Some of these definitions can be found in [Lay80] and [Dav07].

Definition 1.3.7. Let $\mathcal{S}=\left\{\mathcal{S}_{i}\right\}$ be a sequence of collections of subsets of the Hilbert cube satisfying the following conditions:
(1) Disjointness criterion: For each i, \mathcal{S}_{i} is a finite collection of compact subsets of Q with disjoint interiors.
(2) Nesting criterion: For every element A of \mathcal{S}_{i} and for every $j<i$ there is a unique element Pre (A) of \mathcal{S}_{j} that contains A.
(3) Boundary size criterion: If A is an element of \mathcal{S}_{i} and x, y are elements in ∂A then there is $a j>i$ such that no element of \mathcal{S}_{j} contains both of x and y.
(4) Null homotopy criterion: For each $i>1$ and each $A \in \mathcal{S}_{i}$, the inclusion map $A \rightarrow$ Pre (A) is null homotopic.

Then the sequence $\mathcal{S}=\left\{\mathcal{S}_{i}\right\}$ is called a defining sequence in \mathbf{Q}.
Definition 1.3.8. Let Q be the Hilbert Cube and \mathfrak{M} a collection of subsets of Q, not necessarily covering Q. Given an arbitrary set Z in Q, define its star in \mathfrak{M} as

$$
S t(Z, \mathfrak{M})=Z \bigcup(\bigcup\{M \in \mathfrak{M} \mid M \cap Z \neq \emptyset\}) \text {, }
$$

also written as $S t^{1}(Z, \mathfrak{M})$, and, recursively for any integer $k>1$, its k th star in \mathfrak{M} as

$$
S t^{k}(Z, \mathfrak{M})=S t\left(S t^{k-1}(Z, \mathfrak{M}), \mathfrak{M}\right)
$$

When $Z=\{x\}$, we write $S t^{k}(\{x\}, \mathfrak{M})$ simply as $S t^{k}(x, \mathfrak{M})$.
Definition 1.3.9. Let $\mathcal{S}=\left\{\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots\right\}$ be a defining sequence in X. Then the decomposition G associated with the defining sequence \mathcal{S} is the relation prescribed by the rule: for each $x \in X$,

$$
G(x)=\bigcap_{i \geq 1} S t^{2}\left(x, \mathcal{S}_{i}\right)
$$

Example 1.3.10. Consider $X=\mathbb{R}^{2}$. Recall, in \mathbb{R}, that the Cantor set can be described as $\cap \mathcal{S}_{i}$ where \mathcal{S}_{i} is a set with 2^{i} elements in it and each element is an interval of length $\frac{1}{3^{i}}$. For each i, and $S=[a, b] \in \mathcal{S}_{i}$, let $U_{S}=\left[a-\frac{1}{3^{i+1}}, b+\frac{1}{3^{2+1}}\right]$. Then let

$$
\mathcal{U}_{i}=\left\{U_{S} \times[-1,1] \mid S \in \mathcal{S}_{i}\right\} .
$$

It is easy to show that $\mathcal{U}=\left\{\mathcal{U}_{0}, \mathcal{U}_{1}, \ldots\right\}$ is a defining sequence. Then the decomposition G associated with the defining sequence \mathcal{U} consists of $A=\{\{c\} \times[-1,1] \mid c \in C\}$ and the singletons from $X-A$.

Lemma 1.3.11. [Dav07] Let G be a decomposition of a space X associated with the defining sequence $\mathcal{S}=\left\{\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots\right\}$. If

$$
x, y \in \partial \mathcal{S}=\cup\left\{\partial A \mid A \in \cup_{i} \mathcal{S}_{i}\right\}
$$

such that $x \neq y$, then $\pi(x) \neq \pi(y)$.

From this lemma, π is one-to-one on $\partial \mathcal{S}$.
Before listing additional properties of X / G, we need to define cellularity and celllikeness.

1.33 Cellular Sets and Cell-like Sets

Definition 1.3.12. A closed set C in \mathbb{R}^{n} or in an n-dimensional manifold is said to be cellular if there is a nested sequence C_{1}, C_{2}, \ldots of n cells with C_{i+1} a subset of the interior of C_{i} and $C=\bigcap_{i}^{\infty} C_{i}$.

EXAMPLE 1.3.13. The closure of the graph of the $\sin \left(\frac{1}{x}\right)$ curve, $0<x \leq 1$, in \mathbb{R}^{2} is a cellular set, see Figure 1.2. This example shows that cellular sets need not be path connected.

FIGURE 1.2: The closure of $\sin \left(\frac{1}{x}\right)$ curve, $0<x \leq 1$, in \mathbb{R}^{2}.

Definition 1.3.14. A compact subset C of a manifold X is cell-like in X if for each neighborhood U of C in X, C can be contracted to a point in U. A decomposition G of X is cell-like if each $g \in G$ is cell-like.

Definition 1.3.15. A mapping $f: X \rightarrow Y$ is cell-like if $f^{-1}(y)$ is a cell-like space for each $y \in Y$.

The next theorem is a technical property called approximate lifting needed in what follows.

Theorem 1.3.16. [Dav07] Let G be a cell-like decomposition of a space X, and $\pi: X \rightarrow$ X / G be a quotient map. Let K be a simplicial n-complex and L be a subcomplex of K.

Let

$$
f: K \rightarrow X / G
$$

and $F_{L}: L \rightarrow X$ be a map such that $\pi \circ F_{L}=\left.f\right|_{L}$ and let $\epsilon>0$ be given. Then there exists a map $F: K \rightarrow X$ such that $\rho(f, \pi \circ F)<\epsilon$ and $F \mid L=F_{L}$.

See $\S 1.35$ for the definition of ANR.

Theorem 1.3.17. [Lac77] If X, Y, and Z are locally compact ANR's and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are proper cell-like maps then $g \circ f$ is cell-like.

Definition 1.3.18. Let $f: X \rightarrow Y$ be a map. Then f is called proper if f is closed map with compact point-inverses.

Definition 1.3.19. [Mun00] Two spaces X and Y are said to be homotopy equivalent, if there are maps

$$
f: X \rightarrow Y \text { and } g: Y \rightarrow X
$$

such that $g \circ f \simeq i_{X}$ and $f \circ g \simeq i_{Y}$. The maps f and g are often called homotopy equivalences.

Theorem 1.3.20. [Lac77] If $f: X \rightarrow Y$ is a proper map between locally compact $A N R$'s, then the following are equivalent:
(a) f is cell-like;
(b) For every open set $V \subset Y$, the restriction $\left.f\right|_{f^{-1}(V)}: f^{-1}(V) \rightarrow V$ is a proper homotopy equivalence.

Theorem 1.3.21. [Dav07] The decomposition G associated with with the defining sequence $\mathcal{S}=\left\{\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots\right\}$ with properties as in definition 1.3.7 is a cell-like usc.

1.34 Cellularity in the Hilbert Cube Q

Recall that the definition of a cellular set for a finite dimensional manifold is a nested intersection of n-cells [Dav07]. For an infinite dimensional manifold, the cellular sets are more difficult to characterize which explains why so many complications arise in attempts to find infinite dimensional analogues of some results about cellularity in finite dimensional manifolds.

Lemma 1.3.22. ([Dav07], page 120) A cellular subset of an n-manifold M is cell-like.

Theorem 1.3.23. ([Dav07]) If g is cellular, then M / g is homeomorphic to M.

Definition 1.3.24. [Cha76] A closed subset A in a space X is said to be a Z-set in X provided that for every open cover \mathcal{U} of X there is a map f of X into $X-A$ which is \mathcal{U}-close to the identity map. That is, for each $x \in X$, there exists some element of \mathcal{U} containing both x and $f(x)$.

The following lemma gives a condition for a subset of the pseudo interior of Q to be a Z-set.

Lemma 1.3.25. [Cha'f6] Any compact subset $A \subset Q$ with $A \subset s$, where s is the pseudo interior of Q, is a Z-set.

Definition 1.3.26. [Čer80] A closed subset K of a space M is a normal cube in M if K and the boundary $B d(K)$ of K in M are homeomorphic to the Hilbert cube Q and $B d(K)$ is a $Z-$ set in K.

Next we will define a cellularity in Q which is quite similar to the definition in finite dimensional case. Here we replace the term n-cells by normal cubes.

Definition 1.3.27. [Čer80] Let X be a closed subset of $Q . X$ is said to be a cellular subset of Q if $X=\cap_{i=1}^{\infty} K_{i}$ where $K_{i+1} \subset$ int $\left(K_{i}\right)$ and K_{i} is a normal cube for all i.

Alternately, a closed subset X of Q is cellular provided it has arbitrarily small open neighborhoods whose closures are normal cubes in Q.

Definition 1.3.28. [Cha76] Let X be a compact space and Y be an ANR containing X. Then X is said to have trivial shape if for every neighborhood U of X in Y, X is contractible in U.

It is obvious that every cell-like set has trivial shape.

Definition 1.3.29. Let X be a subset of the Hilbert cube Q. Then $Q-X$ is S^{1}-trivial at ∞ provided for every open neighborhood U of X there is an open neighborhood V of X such that every map $f: S^{1} \rightarrow V-X$ can be extended to a map from B^{2} to $U-X$.

The following lemma will be used to check whether or not a finite dimensional non-degenerate decomposition element is cellular.

Lemma 1.3.30. [Čer80] Let A be a finite dimensional compactum in Q. Then the followings are equivalent.

1. A is cellular in Q.
2. A is a Z-set in Q and has trivial shape.
3. A has trivial shape and Q / A is a Q-manifold.
4. $Q-A$ is $S^{1}-$ trivial at ∞.
5. $Q / A \cong Q$.

1.35 ANRs

To later detect when Q / G is homeomorphic to Q we need to introduce ANRs. For additional information on ANRs, see [Dav07].

Definition 1.3.31. A metric space Y is said to be an absolute neighborhood re$\operatorname{tract}(A N R)$ if for every closed subset A of a metric space X and for every such map $f: A \rightarrow Y$, there is a continuous extension $F: U \rightarrow Y$ defined on some neighborhood U of A in X.

Definition 1.3.32. Let $f: X \rightarrow Y$ be a map from a compact metric space X onto a compact metric space Y. Then f is said to be Approximately Right Invertible (ARI) if for each $\epsilon>0$, there is a map $g: Y \rightarrow X$ such that $\rho\left(f \circ g, I_{Y}\right)<\epsilon$.

Definition 1.3.33. A defining sequence $\mathcal{S}=\left\{\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots\right\}$ is said to be sharp if $\partial \mathcal{S}=$ $\cup_{i \geq 1}\left\{\partial S: S \in \mathcal{S}_{i}\right\}$ is embedded in the decomposition space by the quotient map.

Remark 1.3.34. The defining sequences we use in definition 1.3.7 are sharp.

The following theorem will be used to detect that certain decomposition spaces are ANR's

Theorem 1.3.35. ([Koz81], page 21)Let $f: X \rightarrow Y$ be a cell-like map from a compact metric ANR X onto a compact metric space Y. If f is $A R I$, then Y is an ANR.

The following theorem is from [Lay].

Theorem 1.3.36. [Lay] If \mathcal{S} is a sharp defining sequence for a decomposition G of the Hilbert Cube, then the quotient map is ARI and hence the space Q / G is an $A N R$.

Theorem 1.3.37. ([Lay80], page 22)Let G be a cell-like decomposition of Q such that Q / G is an $A N R$. If A is a closed set in Q / G and $\pi^{-1}(A)$ is the decomposition of Q induced over A, then $Q / \pi^{-1}(A)$ is an $A N R$.

1.4 Homological Codimension and Disjoint Discs Property

Definition 1.4.1. Let A be a closed subset of Q. A is said to have codimension $\geq n$ in Q if for every open subset U and for every $i<n$

$$
H_{i}(U, U-A) \cong 0
$$

where $H_{i}(A, B)$ is ith homology group of A modulo B and where i is an integer.

The subset A is said to have codimension equal to n if it has codimension $\geq n$ but does not have codimension $\geq n+1$. In other words, a closed subset A of Q is said to have codimension n if $H_{i}(U, U-A) \cong 0$ for all open sets U and for all $i<n$, and $H_{n}(V, V-A) \not \approx 0$ for some open set V of Q. An arbitrary subset X of the Hilbert Cube Q is said to be of codimension n if any closed $C \subset X$ in Q has codimension n. (See [DW81].)

Example 1.4.2. We will show that $F=\{0\} \times Q_{2}$ has codimension 1 in Q. First we will show that F has codimension ≥ 1. That is, we will show that $H_{0}(U, U-F) \cong 0$ for all open sets U in Q. To prove this, Without loss of generality, let U be an path connected open set in Q. Note that $U-F \neq \emptyset$. Consider the long exact sequence of the pair $(U, U-F)$:

$$
\cdots \rightarrow H_{0}(U-F) \xrightarrow{f} H_{0}(U) \xrightarrow{g} H_{0}(U, U-F) \xrightarrow{h} 0 .
$$

To show that $H_{0}(U, U-F) \cong 0$, it suffices to show that the map $H_{0}(U-F) \xrightarrow{f} H_{0}(U)$ is onto. Note that

$$
\begin{aligned}
H_{0}(U-F) & \cong \widetilde{H}_{0}(U-F) \oplus \mathbb{Z} \\
H_{0}(U) & \cong \mathbb{Z} \quad \text { since } U \text { is path connected. }
\end{aligned}
$$

It follows clearly that f is onto. This implies that

$$
H_{0}(U)=\operatorname{Im}(f)=\operatorname{ker}(g)
$$

and so

$$
\{0\}=\operatorname{Im}(g)=k e r(h)=H_{0}(U, U-F)
$$

Therefore, F has codimension ≥ 1 in Q.
Next we will show that F does not have codimension ≥ 2. Consider

$$
U=(-1,1) \times Q_{2} .
$$

Then U is an open set in Q. Consider the long exact sequence

$$
\cdots \rightarrow H_{1}(U-F) \rightarrow H_{1}(U) \rightarrow H_{1}(U, U-F) \xrightarrow{f} H_{0}(U-F) \xrightarrow{g} H_{0}(U) \xrightarrow{h} 0 .
$$

Note that

$$
\begin{aligned}
H_{0}(U-F) & \cong \mathbb{Z} \oplus \mathbb{Z} \text { since } U-F \text { has 2 path components } \\
H_{0}(U) & \cong \mathbb{Z} \text { since } U \text { is path connected. }
\end{aligned}
$$

Thus, $H_{0}(U-F) \not \not H_{0}(U)$ which implies that $\operatorname{ker}(g) \neq 0$. So, $\operatorname{Im}(f) \neq 0$. Therefore, $H_{1}(U, U-F) \not \approx 0$. This completes the proof.

Definition 1.4.3. A closed subset A of Q is nowhere dense if for any nonempty open set U of $Q, U-A$ is not an empty set. That is every nonempty open set U is not a subset of A.

The next result follows directly from the definitions. For completeness, we include a proof.

Lemma 1.4.4. If A is a closed subset of Q which has codimension $\geq n$, with $n \geq 1$, then A is nowhere dense in Q.

Proof. Let U be an non empty open set in Q. We will show that $U-A \neq \emptyset$. That is, we will show that $H_{0}(U-A) \not \equiv 0$. Clearly, $H_{0}(U) \not \not 二 0$ since U is not empty. Since A has codimension $\geq n$ with $n \geq 1, H_{0}(U, U-A) \cong 0$. Consider the long exact sequence of a pair $(U, U-A)$:

$$
\cdots \rightarrow H_{0}(U-A) \xrightarrow{f} H_{0}(U) \xrightarrow{g} H_{0}(U, U-A) \xrightarrow{h} 0 .
$$

Since

$$
\operatorname{Im}(f)=\operatorname{ker}(g), \text { and } \operatorname{Im}(g)=\operatorname{ker}(h)=H_{0}(U, U-A) \cong 0,
$$

this forces $\operatorname{Im}(f)=\operatorname{ker}(g)=H_{0}(U) \neq 0$. Therefore, $H_{0}(U-A) \neq 0$ and so $U-A$ is not empty. Since U is arbitrary, it implies that A is nowhere dense.

Definition 1.4.5. Let X be a metric space. Let $f, g: B^{n} \rightarrow X$ be any two maps. Then the space X is said to have the disjoint n-disc property, abbreviated as $D D^{n} P$, if for each ϵ there exist maps $f^{\prime}, g^{\prime}: B^{n} \rightarrow X$ satisfying

$$
\rho\left(f, f^{\prime}\right)<\epsilon \quad \text { and } \quad \rho\left(g, g^{\prime}\right)<\epsilon
$$

and

$$
f^{\prime}\left(B^{n}\right) \cap g^{\prime}\left(B^{n}\right)=\emptyset
$$

1.5 Geometrical Centrality

Definition 1.5.1. [Dav07] Let N be an n-manifold with or without boundary and let $f: D^{2} \rightarrow B^{2} \times N$ with $f\left(\partial D^{2}\right) \subset \partial B^{2} \times N$. The map f is said to be interior inessential(I-inessential) if there is a map $g: D^{2} \rightarrow \partial B^{2} \times N$ such that $f=g$ on ∂D^{2}. Otherwise, f is said to be I-essential. Let H be a disc with holes, $g: H \rightarrow M$ be a map with $g(\partial H) \subset \partial M$. The map g is said to be virtually I-essential if g extends to an I-essential map $f: B \rightarrow M$ with $f(B \backslash H) \subset \partial M$ where B is the unique 2-cell in B^{2} with $H \subset B$ and with $\partial B \subset \partial H$.

We will use this definition of I-essential to test the geometric centrality of a subset of a manifold. A subset A of $B^{2} \times N$ is said to be geometrically central in $B^{2} \times N$ if $f\left(D^{2}\right) \cap A \neq \emptyset$ for every I-essential map f. A collection \mathcal{C} of subsets of $B^{2} \times N$ is called
a geometrically central family in $B^{2} \times N$ if the union of elements of \mathcal{C} is geometrically central in $B^{2} \times N$. More details can be found in [DE87].

1.51 Standard Example of Geometrically Central Subset

Example 1.5.2. Let N be an n-manifold, and identify A as $\{0\} \times N$ in $B^{2} \times N$. Suppose $f: D^{2} \rightarrow B^{2} \times N$ is an I-essential map with $f\left(D^{2}\right) \cap A=\emptyset$. Then $\partial B^{2} \times N$ is a retract of $\left(B^{2} \times N\right)-A$, so there is a map $g: D^{2} \rightarrow \partial B^{2} \times N$ satisfying $\left.g\right|_{\partial D^{2}}=\left.f\right|_{\partial D^{2}}$. This contradicts the fact that f was I-essential. This gives us that A is geometrically central in $B^{2} \times N$.

1.52 Results on Geometric Centrality

In order to construct the special Cantor set in the Hilbert Cube needed in our example, we need the following results.

Lemma 1.5.3. [DE87] Given $B^{2} \times I$ and given $\epsilon>0$. Then there is a family

$$
\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}
$$

of subsets of $B^{2} \times I$ so that $C_{1} \cong C_{k} \cong B^{2} \times I$ and for $i=2,3, \ldots, k-1, C_{i} \cong B^{2} \times S^{1}$, so that the family is geometrically central in $B^{2} \times I$, and so that for each C_{i}, the diameter of C_{i} is less than ϵ. Similarly, given $B^{2} \times S^{1}$ and given $\epsilon>0$, there is a geometrically central family

$$
\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}
$$

so that for all $i=1,2, \ldots, k, C_{i} \cong B^{2} \times S^{1}$ and the diameter of C_{i} is less than ϵ.

Figure 1.3 and 1.4 demonstrate Lemma 1.5.3 for $B^{2} \times I$ and $B^{2} \times S^{1}$, respectively.
For the proof of Lemma 1.5.3, see [DE87]. The proof of Lemma 1.5.3 relies on the following Lemma. For completeness, we also state this result. For definition of bicollared, see [Dav07].

FIGURE 1.3: Geometrically Central Collection on $B^{2} \times I$

FIGURE 1.4: Geometrically Central Collection on $B^{2} \times S^{1}$

Lemma 1.5.4. [Lay80] Let D^{2} be a disc with holes and $f: D^{2} \rightarrow B^{2} \times I$ be a map, and let P be a bicollared subset of $D^{2} \times I$. Assume that $K=f^{-1}(P)$ is closed in D^{2}. If $F: K \times I \rightarrow P$ is a homotopy with $F_{0}=\left.f\right|_{K}$ and U is a neighborhood of $F(K \times I)$ in $B^{2} \times I$, then there is a neighborhood V of K in D^{2} and a map $g: D^{2} \rightarrow B^{2} \times I$ such that:

1. $\left.g\right|_{D^{2}-V}=\left.f\right|_{D^{2}-V}$
2. $\left.g\right|_{K}=F_{1}$
3. $g(V-K) \subset(U-P)$.

We also need the following result, first proved in [Ghi07]. For completeness, and because the proofs illustrate the concept of geometric centrality, we include the proof of this lemma and the following two lemmas.

Lemma 1.5.5. [Ghi07] If N is a subset of an n-manifold $M \cong B^{2} \times X$ which is geometrically central in M, then $N \times I$ is geometrically central in $M \times I \cong B^{2} \times X \times I$. Similarly,
if N is a subset of an n-manifold $M \cong B^{2} \times X$ which is geometrically central in M, then $N \times S^{1}$ is geometrically central in $M \times I \cong B^{2} \times X \times S^{1}$.

Proof. Let D^{2} be a disc with holes. If possible, let $f: D^{2} \rightarrow M \times I$ be an I-essential map such that $f\left(D^{2}\right) \cap N \times I=\emptyset$. Decompose f into two factors f_{M} and f_{I} from D^{2} to M and I respectively. We claim that f_{M} is I-essential into M. If not, there is a map $g: D^{2} \rightarrow \partial B^{2} \times X$ such that $g=f_{M}$ on ∂D^{2}. We can then define a map $h: D^{2} \rightarrow \partial(M) \times I$ by $h=\left(g, f_{I}\right)$, then $f=g$ on ∂D^{2}. That contradicts that f was I-essential. Similar arguments prove that $N \times S^{1}$ is geometrically central in $M \times S^{1}$.

What happens if we iterate the process of placing geometrically central sets in our construction? The following lemma from [Ghi07] shows how geometrical centrality is preserved.

Lemma 1.5.6. [Ghi07] Let $A \cong B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{n}$, where each X_{i} is I or S^{1}. Let $\mathcal{C}=\left\{C_{i}: C_{i} \cong B^{2} \times Y_{i 1} \times Y_{i 2} \times \cdots \times Y_{i n}\right\}$, where $Y_{i j}$ is I or S^{1}, be a finite collection of pairwise disjoint subsets of A which is geometrically central in A. Also, assume that for each C_{i}, there is a finite collection $\mathcal{D}_{i}=\left\{D_{j}: D_{j} \cong B^{2} \times Z_{j 1} \times Z_{j 2} \times \cdots \times Z_{j n}\right\}$, where each $Z_{j k}$ is I or S^{1}, of disjoint subsets of C_{i}, which is geometrically central in C_{i}. Then the collection $\mathcal{D}=\cup \mathcal{D}_{i}$ is geometrically central in A.

Proof. Let D^{2} be a disc with holes and $f: D^{2} \rightarrow B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{n}$ be a virtually I-essential map. After a slight adjustment of f, we may consider $K=f^{-1}\{\mathcal{C}\}$ to be a 2 manifold in D^{2} with a finite number of components. Hence $f^{-1}\left(\partial B^{2} \times X_{1} \times X_{2} \cdots \times X_{n}\right)$ is a finite collection of simple closed curves in D^{2}. This implies that each component of $f^{-1}\left(C_{i}\right)$ is a disc with holes in D^{2}. Then K must have a component H such that f_{H} is a virtually I-essential into C_{i} for some i. If not, let H be given and let $f(H) \subset C_{i}$ for some fixed i. Also note that $f(\partial H) \subset \partial B^{2} \times Y_{i 1} \times \times \cdots \times Y_{i n}$ for some $Y_{i 1}, Y_{i 2}, \ldots, Y_{i n}$. Since $\left.f\right|_{H}$ is not virtually I-essential, there is a map $g: H \rightarrow \partial B^{2} \times Y_{i 1} \times \times \cdots \times Y_{i n}$ and $g=\left.f\right|_{H}$
on ∂H and $C_{i} \cap C_{j}=\emptyset$ if $i \neq j$. Hence, we can push $g(H)$ off of $\partial B^{2} \times X_{1} \times X_{2} \cdots \times X_{n}$ without intersecting any other C_{j}. Now repeating the same process with other components of K we can get a new map $h: D^{2} \rightarrow \partial B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{n}$ that misses all C_{i} and $f=h$ on ∂D^{2}. That contradicts the fact that \mathcal{C} is geometrically central in A. Hence $\left.f\right|_{H}$ must be I-essential on some C_{i} for some component H and some i. But \mathcal{D}_{i} is also geometrically central in C_{i}, and hence $\left.f\right|_{H}$ must intersect some elements of \mathcal{D}_{i}, that is $f\left(D^{2}\right)$ must intersect \mathcal{D}. Therefore, \mathcal{D} is geometrically central in A.

We now give the generalization of Lemma 1.5.3 from [Ghi07]. That is, we will include more factors.

Lemma 1.5.7. [Ghi07] Given $\epsilon>0$ and $A=B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{n}$, where each $X_{i}=I$ or S^{1}. Then there is a finite geometrically central collection $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$, where $C_{i} \cong B^{2} \times Y_{1} \times Y_{2} \times \cdots \times Y_{n}$ with each $Y_{j}=I$ or S^{1}, of disjoint subsets of A so that the diameter of C_{i} is less than ϵ for all i and for each I-essential map f, and for each C_{i} there is an I-essential map g with $\left.f\right|_{\partial D^{2}}=\left.g\right|_{\partial D^{2}}$ and $g\left(\right.$ int $\left.\left(D^{2}\right)\right) \cap C_{i} \neq \emptyset$.

Proof. We prove this lemma by induction over n. For $n=1$, it holds by Lemma 1.5.3. Suppose the lemma is true for $n=k$. Let $A=B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{k} \times X_{k+1}$. Consider $B=B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{k}$. Then by assumption, there is a finite collection $\mathcal{C}=\left\{C_{i}: B^{2} \times X_{i 1} \times X_{i 2} \times \cdots \times X_{i k}\right\}$ of disjoint subset of B, which is geometrically central in B and $X_{i j}$ is I or S^{1} and the diameter of $C_{i}<\epsilon$ for all i. By Lemma 1.5.5, the collection $\mathcal{D}=\left\{D_{i}: D_{i}:=C_{i} \times X_{k+1}\right\}$ is geometrically central in A. Now switch the k th and $(k+1)$ th components of D_{i} and let E_{i} be such an element. Consider the first k component of E_{i}. Then we will have a finite collection \mathcal{F}_{i} such that $F_{i} \times X_{k}$ is geometrically central in E_{i}. Now switching back the k th and $(k+1)$ th components of this collection and applying Lemma 1.5.5 we will have another collection G_{i} which is geometrically central in D_{i}. Consider \mathcal{H} to be the union of these collections G_{i}. Then by Lemma 1.5.6, \mathcal{H} is
geometrically central in A. We may take enough components so that the diameter of each component is less than ϵ.

1.6 Inverse Limits and Čech Homology

Let (X, A) be a compact pair. Let $\Sigma(X)$ be the set of all finite open covers of X, and let G be a group. The only case we need is $G \cong \mathbb{Z}$, so we restrict to that case. To define the Čech homology of a compact pair (X, A), we begin with the concept of a directed set. These definitions and results are taken from [May72] and [Mun84].

Definition 1.6.1. A directed set J is a set with a relation \leq such that:
(1) $\alpha \leq \alpha$ for all $\alpha \in J$.
(2) $\alpha \leq \beta$ and $\beta \leq \gamma$ implies $\alpha \leq \gamma$.
(3) Given α, β, there exists γ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

We will show that $\sum(X)$ is a directed set. Let \leq be defined by: If $\mathcal{U}, \mathcal{V} \in \sum(X)$, $\mathcal{U} \leq \mathcal{V}$ if and only if to every set $U \in \mathcal{U}$ there exists a set $V \in \mathcal{V}$ such that $V \subset U$. We can see that (1) and (2) are trivially satisfied. To show that (3) holds, let the covers \mathcal{U} and \mathcal{V} be given. Then the family \mathcal{W} defined by

$$
\mathcal{W}=\{U \cap V \mid U \in \mathcal{U}, V \in \mathcal{V}\}
$$

satisfies the requirements.

Definition 1.6.2. An inverse system of abelian groups and homomorphisms, corresponding to the directed set J, is an indexed family $\left\{G_{\alpha}\right\}_{\alpha \in J}$ of abelian groups, along with a family of homomorphisms

$$
f_{\alpha \beta}: G_{\beta} \rightarrow G_{\alpha}
$$

defined for every pair of indices such that $\alpha \leq \beta$, such that
(1) For each $\alpha \in J$ there is a unique object G_{α}.
(2) For each pair $\alpha, \beta \in J$ there is a unique homomorphism

$$
f_{\alpha \beta}: G_{\beta} \rightarrow G_{\alpha} .
$$

(3) If $\alpha \leq \beta \leq \gamma$, then $f_{\alpha \gamma}=f_{\alpha \beta} \circ f_{\beta \gamma}$.
(4) For all $\alpha \in J, f_{\alpha \alpha}$ is the identity.

The inverse limit of an inverse system $\left\{G_{\alpha}\right\}_{\alpha \in J}$, denoted by $G_{\infty}=\underset{\leftarrow}{\lim } G_{\alpha}$, is the subset ΠG_{α} defined by the condition

$$
p=\left(p_{\alpha}\right) \in G_{\infty} \quad \text { if } \quad f_{\alpha \beta}\left(p_{\beta}\right)=p_{\alpha}
$$

where p_{α} is the α th component of the element $p \in \prod G_{\alpha}$.
Example 1.6.3. [May72] Let D be the set of positive integers in their natural order and for each $n \in D$, let X_{n} be the set of real numbers. For each $m \leq n$, define $f_{m n}: X_{n} \rightarrow X_{m}$ by

$$
f_{m n}(x)=x-(n-m)
$$

Then $X_{\infty}=\underset{\leftarrow}{\lim }\left(X_{n}\right)$ consists of all sequences of the form

$$
(x, x+1, x+2, \ldots)
$$

where x is real number.
After this preparation, we can define the following:
Definition 1.6.4. Let (X, A) be a compact pair and let $\Sigma(X)$ be the family of finite open covers of X. Then the inverse limit

$$
\check{H}_{p}(X, A)=\lim _{\leftarrow}\left(H_{p}\left(\mathcal{U}, \mathcal{U}_{A}\right) ; \mathbb{Z}\right)
$$

is the $p \mathbf{t h}$ Čech homology group of (X, A) over \mathbb{Z} where $\mathcal{U} \in \Sigma(X)$ and \mathcal{U}_{A} is the subfamily of U consisting of those sets which intersect A.

1.7 Detecting Q-manifolds

In this section we discuss a characterization of Q-manifolds due to Daverman and Walsh [DW81].We begin with definitions and notation. This will be needed in the Chapter 3 and Chapter 5.

1.71 Infinite Codimension

Definition 1.7.1. A closed subset F of an $A N R X$ is said to have infinite codimension (in X) provided $H_{q}(U, U-F)=0$ for all integers $q \geq 0$ and for all open subsets U of X. A set A in X is said to have infinite codimension if every closed subset of A has infinite codimension.

The following result sets forth the basic characterization, a proof of which can be found in [Kro74].

Proposition 1.7.2. A closed subset A of an $A N R X$ is a Z-set if and only if A has infinite codimension.

Example 1.7.3. For $i \geq 2$, let $J_{i}=\left[\frac{1}{4}, \frac{1}{2}\right] \subset I_{i}$. Let $A=\{0\} \times \prod_{i=2}^{\infty} J_{i}$. It is clear that A is closed and compact in Hilbert cube Q. Also, $A \subset s$, where s is a pseudo interior of Q. By Lemma 1.3.25 A is a Z-set and so by Proposition 1.7.2, A has infinite codimension. Note that this is true even though A is infinite dimensional.

The following lemmas, taken directly from [DW81], concern infinite codimension.

Lemma 1.7.4. [DW81] If all points in an ANR have infinite codimension, then so do finite dimensional subsets.

Lemma 1.7.5. [DW81] If F_{1}, F_{2}, \ldots are closed subsets of an $A N R Y$ such that each F_{i} has infinite codimension, then $F=\bigcup_{i \geq 1} F_{i}$ has infinite codimension.

Lemma 1.7.6. [DW81] Let Y be an $A N R$ in which points have infinite codimension and let A be a closed subset of Y that can be expressed as the union of a finite dimensional set B and a set F having infinite codimension in Y. Then A has infinite codimension in Y.

1.72 Čech Carriers

Definition 1.7.7. [$D W 81$] Let X be an $A N R$, let $U \supset V$ be open sets in X, and let $q \geq 0$. A Čech Carrier for an element $z \in H_{q}(U, V)$ is a compact pair $C \supset \partial C$ with $C \subset U$ and $\partial C \subset V$ such that

$$
z \in \operatorname{Im}\left\{i_{*}: \check{H}_{q}(C, \partial C) \rightarrow H_{q}(U, V)\right\}
$$

where i_{*} is the inclusion induced homomorphism. An ANR X is said to have the Disjoint Čech Carriers Property provided for all open subsets $V_{1} \subset U_{1}$ and $V_{2} \subset U_{2}$ and elements $z_{1} \in H_{p}\left(U_{1}, V_{1}\right)$ and $z_{2} \in H_{q}\left(U_{2}, V_{2}\right)$ and for integers $p, q \geq 0$, there are Čech carriers $\left(C_{1}, \partial C_{1}\right)$ for z_{1} and $\left(C_{2}, \partial C_{2}\right)$ for z_{2} with $C_{1} \cap C_{2}=\emptyset$.

Example 1.7.8. Let $z \in H_{q}(U, V)$. Then

$$
z=\left[\sum_{i=1}^{k} n_{i} \sigma_{i}\right]
$$

where each n_{i} is nonzero and each $\sigma_{i}: \Delta^{q} \rightarrow U$ is a map of the standard $q-$ simplex. Let

$$
C=\bigcup_{i=1}^{k} \operatorname{Im}\left(\sigma_{i}\right) \quad \text { and } \quad \partial C=\bigcup_{i=1}^{k} \operatorname{Im}\left(\partial \sigma_{i}\right) .
$$

It is clear that $(C, \partial C) \subset(U, V)$. Also, we can see that

$$
w=(z, z, z, \ldots, z, \ldots,) \in \check{H}_{q}(C, \partial C)=\lim _{\longleftarrow} H_{q}\left(\mathcal{U}, \mathcal{U}_{\partial C}\right)
$$

and $i_{*}(w)=z$. Thus,

$$
z \in \operatorname{Im}\left\{i_{*}: \check{H}_{q}(C, \partial C) \rightarrow H_{q}(U, V)\right\}
$$

which implies that $(C, \partial C)$ is a Čech carrier for z.

Definition 1.7.9. Let X be an $A N R$. Then X has Čech carriers with infinite codimension if each $z \in H_{q}(U, V)$ has a Čech carrier $(C, \partial C)$ such that C has infinite codimension in X.

The following Lemmas are taken from [DW81].

Lemma 1.7.10. [DW81] A closed subset F of an $A N R Y$ has infinite codimension if and only if, for each open pair $V \subset U$ and each $q \geq 0$, each element $z \in H_{q}(U, V)$ has a Čech carrier $(C, \partial C)$ with $C \cap F=\emptyset$.

Lemma 1.7.11. [DW81] For an $A N R X$, the Disjoint Čech Carriers Property is equivalent to X having Čech carriers with infinite codimension.

Definition 1.7.12. [Lay80] Let $A \subset X$. We say that X has disjoint Čech Carrier at A if for all open sets $U \supset V, U^{\prime} \supset V^{\prime}$, integers $q, q^{\prime} \geq 0$, and $z \in H_{q}(U, V), z^{\prime} \in H_{q^{\prime}}\left(U^{\prime}, V^{\prime}\right)$, there exist Čech carriers $(C, \partial C)$ for z and $\left(C^{\prime}, \partial C^{\prime}\right)$ for z^{\prime} such that $C \cap C^{\prime} \cap A=\emptyset$.

The following Lemma and Proposition are taken from [Lay80].

Lemma 1.7.13. [Lay80] Let Y be an $A N R$ and let A_{1}, A_{2}, \ldots be a collection of subsets of Y such that for each $k \geq 1, Y$ has disjoint Čech carriers at A_{k}. Then Y has disjoint Čech carriers at $A=\cup_{k \geq 1} A_{k}$.

Proposition 1.7.14. [Lay80] Let Y be an $A N R$ and let A_{1}, A_{2}, \ldots be a collection of closed subsets of Y such that for each $i \geq 1, Y$ has disjoint Čech carriers at A_{i}. Then for each open pair $U \supset V$ and integer $q \geq 0$, each $z \in H_{q}(U, V)$ has a Čech carrier $(C, \partial C)$ such that $C \cap\left(\cup_{i \geq 1} A_{i}\right)$ has infinite codimension in Y.

Lemma 1.7.15. [DW81] For an $A N R X$, the following statements are equivalent:
(1) X satisfies the Disjoint Čech Carriers Property;
(2) X has Čech carriers of infinite codimension;
(3) X contains closed subsets F_{1}, F_{2}, \ldots with each F_{i} having infinite codimension and each closed subset of $X-\cup F_{i}$ having infinite codimension;
(4) Points in X have infinite codimension and X has finite dimensional Čech carriers;
(5) $X \times I^{2}$ is a Q-manifold.

The following is the main theorem of this section. This powerful Theorem will be needed to characterize whether or not an ANR space satisfying the Disjoint Discs Property is Q-manifold. For more details, see [DW81], [Lay80].

Theorem 1.7.16. [DW81] Let X be an ANR satisfying the Disjoint Discs Property. Then the following statements are equivalent:
(1) X satisfies the Disjoint Čech Carriers Property;
(2) X has Čech carriers of infinite codimension;
(3) X contains closed subsets F_{1}, F_{2}, \ldots with each F_{i} having infinite codimension and each closed subset of $X-\cup F_{i}$ having infinite codimension;
(4) Points in X have infinite codimension and X has finite dimensional Čech carriers;
(5) X is a Q-manifold.

2. A SPECIAL CANTOR SET IN THE HILBERT CUBE

2.1 Introduction

The standard Cantor set C in $[0,1]$ is obtained in the usual manner as $\cap_{i=1}^{\infty} \mathcal{S}_{i}$ where $\mathcal{S}_{i}=\left\{S\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right\}$ is a set with 2^{i} elements in it. The σ_{i} are used to index the sets in \mathcal{S}_{i}. Here each $S\left(\sigma_{1}, \ldots, \sigma_{i}\right)$ is an interval of length $\frac{1}{3^{i}}$ and each σ_{j} is either a 1 or a 2 . From this construction, each component at stage i has 2 components at stage $i+1$. Also, one can prove the following well-known theorem [Gar91].
Theorem 2.1.1. If q is a point in C and $q=\bigcap_{i} S\left(\sigma_{1}, \ldots, \sigma_{i}\right)$, then $q=\sum_{j=1}^{\infty} \frac{q_{j}}{3^{j}}$ where $q_{j}=2\left(\sigma_{j}-1\right)$. Consequently, if the σ_{i} are not eventually constant, then q is not a triadic rational.

Note that a triadic rational is a rational number that can be expressed as a fraction with denominator of the form 3^{n}. Also note that $C^{k} \subset I^{k}$, the product of k copies of the Cantor set is again a Cantor set.

In [Gar91], Garity showed a construction of a different sequence \mathcal{S}_{i} for the Cantor set $C^{k} \subset I^{k}$ for $k \geq 2$.. In the construction, for technical reasons, he described a process where each component at stage i has 4 components at stage $i+1$ instead of 2 components and proved the following.

Theorem 2.1.2. [Gar91] There exists a sequence \mathcal{S}_{i} of collections of subsets of I^{k} so that $C^{k}=\bigcap_{i=1}^{\infty} \mathcal{S}_{i}$ and each component of \mathcal{S}_{i} contains exactly 4 components of \mathcal{S}_{i+1}. If a point p in C^{k} is associated with a sequence $\left(\epsilon_{1}, \ldots, \epsilon_{i}, \ldots\right)$ where $\epsilon_{n}=\left(i_{n}, j_{n}\right)$, for i_{n} and j_{n} in $\{1,2\}$, and if there is N such that for all $i>N$ the first coordinates of the ϵ_{i} alternate, or the second coordinates of the ϵ_{i} alternate, then p has no triadic rational coordinates.

For the construction and the proof of Theorem 2.1.2, see § 2.21.

Our main work in this Chapter is to generalize Theorem 2.1.2 to the infinite dimensional case. That is, we will construct and prove the following Theorem, in § 2.22.

Theorem 2.1.3. There exists a sequence

$$
\mathcal{M}=\left\{\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}, \ldots\right\}
$$

of collection subsets of Q satisfying the following properties:

- $\bigcap \mathcal{M}=C^{\infty}$ where $C^{\infty}=\prod_{i=1}^{\infty} C$ and C is the Cantor set.
- Every point $p \in C^{\infty}$ is associated with a sequence $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$ where $\epsilon_{n}=\left(i_{n}, j_{n}\right)$, for i_{n} and j_{n} in $\{1,2\}$,
- If there is N such that for all $i>N$ the first coordinates of the ϵ_{i} alternate, or the second coordinates of the ϵ_{i} alternate, then p has no triadic rational coordinates.

Also, in the next Chapter, we need constructions of the Cantor set in $[2,3] \times Q_{2}$ and in $[-3,-2] \times Q_{2}$. This will be combined with the construction of Cantor set in the middle, $[-1,1] \times Q_{2}$ to produce a decomposition of Q. We will show such constructions in sections 2.3 and 2.4

2.2 Cantor set in the Middle

2.21 Construction of the generalized Cantor set: C^{k}

Fixed k, we will use the standard representation of C to specifying the k-cells indexed as $N\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i}\right)$ used in the description of C^{k} and then in the next section, we will generalize this idea to elements used in the description of C^{∞}.

From now, let $\epsilon_{n}=\left(i_{n}, j_{n}\right)$ where $i_{n}, j_{n} \in\{1,2\}$ and

$$
S\left[\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right]=S\left(i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{n}, j_{n}\right)
$$

Let $\left\{4^{S_{1}}, 4^{S_{2}}, 4^{S_{3}}, \ldots\right\}$ be a sequence where $S_{i}=\sum_{j=1}^{i} k n_{j}$ and n_{j} is an even integer. The specific choice of k and n_{j} will become clear later. We want to choose a defining sequence $\mathcal{N}=\left\{\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots\right\}$ in I^{k} in such a way that:

1. \mathcal{N}_{i} has $4^{S_{i}}$ elements, each element of the form $S\left[\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i}\right]$;
2. $\bigcap \mathcal{N}=C^{k}$ is a Cantor set;
3. Every point p in C^{k} is associated with a sequence $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots\right)$;
4. If there is some stage past which either the first coordinates of the ϵ_{n} alternate, or the second coordinates of the ϵ_{i} alternate, then p has no triadic rational coordinates.

To do this, let $\mathcal{N}_{0}=\left\{I^{k}=I_{1} \times I_{2} \times \ldots \times I_{k}\right\}$. That is, \mathcal{N}_{0} has a single element.
Let $A_{0}^{1}=\left\{I^{k}=I_{1} \times I_{2} \times \ldots \times I_{k}\right\}$. The set A_{1}^{1} will be obtained from A_{0}^{1} by subdividing the first interval factor of each element into 4 equal subintervals. That is, each component of A_{1}^{1} is of the form

$$
N\left(\epsilon_{1}\right)=S\left[\epsilon_{1}\right] \times I_{2} \times I_{3} \times \ldots \times I_{k}
$$

Next, the set A_{2}^{1} will be obtained from A_{1}^{1} by subdividing the second interval factor into 4 equal subintervals. That is, each component of A_{2}^{1} is of the form

$$
N\left(\epsilon_{1}, \epsilon_{2}\right)=S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}\right] \times I_{3} \times \ldots \times I_{k}
$$

This process will continue until the first k factors have each been subdivided into 4 equal subintervals. The process will then continue by subdividing the k th factor again and then
working backwards towards the first factor. From this process, after $2 k$ times, we have

$$
\begin{aligned}
& N\left(\epsilon_{1}\right)=S\left[\epsilon_{1}\right] \times I_{2} \times I_{3} \times \ldots \times I_{k} \in A_{1}^{1}, \\
& N\left(\epsilon_{1}, \epsilon_{2}\right)=S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}\right] \times I_{3} \times \ldots \times I_{k} \in A_{2}^{1}, \\
& N\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}\right] \times S\left[\epsilon_{1}\right] \times \ldots \times I_{k} \in A_{3}^{1}, \\
& N\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right)=S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}\right] \times \ldots \times S\left[\epsilon_{1}\right] \in A_{k}^{1}, \\
& N\left(\epsilon_{1}, \ldots, \epsilon_{k}, \epsilon_{k+1}\right)=S\left[\epsilon_{1}\right] \times \ldots \times S\left[\epsilon_{k}, \epsilon_{k+1}\right] \in A_{k+1}^{1}, \\
& N\left(\epsilon_{1}, \ldots, \epsilon_{k}, \epsilon_{k+1}, \epsilon_{k+2}\right)=S\left[\epsilon_{1}\right] \times \ldots \times S\left[\epsilon_{k-1}, \epsilon_{k+2}\right] \times S\left[\epsilon_{k}, \epsilon_{k+1}\right] \in A_{k+2}^{1}, \\
& N\left(\epsilon_{1}, \ldots, \epsilon_{k}, \epsilon_{k+1}, \ldots, \epsilon_{2 k}\right)=S\left[\epsilon_{1}, \epsilon_{2 k}\right] \times \ldots \times S\left[\epsilon_{k-1}, \epsilon_{k+2}\right] \times S\left[\epsilon_{k}, \epsilon_{k+1}\right] \in A_{2 k}^{1}
\end{aligned}
$$

The process will be repeated again until we have $A_{k n_{1}}^{1}$. That is, we will repeat this process $\frac{n_{1}}{2}$ times where n_{1} is even. Thus let $\mathcal{N}_{1}=A_{k n_{1}}^{1}$. In fact, each element of \mathcal{N}_{1} is of the form

$$
N\left(\epsilon_{1}, \ldots, \epsilon_{S_{1}}\right)=\prod_{i=1}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right]
$$

where $\left(\epsilon_{i_{l}}\right)$ is the subsequence of $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{1}}\right\}, i=1,2, \ldots, k, l=1,2, \ldots, n_{1}$, and for each i, the index

$$
i_{l}= \begin{cases}2 k-i+1+(l-2) k & \text { if } l \text { even } \\ i+(l-1) k & \text { if } l \text { odd }\end{cases}
$$

To get \mathcal{N}_{2}, we will consider $A_{0}^{2}=\mathcal{N}_{1}$. The set A_{1}^{2} will be obtained from A_{0}^{2} by subdividing the first interval factor of each element into 4 equal subintervals. That is. the element of the set A_{1}^{2} are of the form

$$
N\left(\epsilon_{1}, \ldots, \epsilon_{S_{1}}, \epsilon_{S_{1}+1}\right)=S\left[\left(\epsilon_{i_{l}}\right), \epsilon_{S_{1}+1}\right] \times \prod_{i=2}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right]
$$

Next, the set A_{2}^{2} will be obtained from A_{1}^{2} by subdividing the second interval factor into 4 equal subintervals. That is the element of the set A_{2}^{2} are of the form

$$
N\left(\epsilon_{1}, \ldots, \epsilon_{S_{1}}, \epsilon_{S_{1}+1}, \epsilon_{S_{1}+2}\right)=S\left[\left(\epsilon_{1_{l}}\right), \epsilon_{S_{1}+1}\right] \times S\left[\left(\epsilon_{2_{l}}\right), \epsilon_{S_{1}+2}\right] \times \prod_{i=3}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right] .
$$

This process will continue until each interval in the first k factors has been subdivided into 4 equal subintervals. The process will then continue by subdividing the k th factor again and then working backwards towards the first factor. For convenience, for each n, let

$$
\bar{\epsilon}_{n}=\left(\epsilon_{S_{n-1}+1}, \epsilon_{S_{n-1}+2}, \ldots, \epsilon_{S_{n}}\right),
$$

Again, we can see from this process that, after $2 k$ times,

$$
\begin{aligned}
& N\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}\right)=S\left[\left(\epsilon_{1_{l}}\right), \epsilon_{S_{1}+1}\right] \times \prod_{i=2}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right] \in A_{1}^{2}, \\
& N\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}, \epsilon_{S_{1}+2}\right)=S\left[\left(\epsilon_{1_{l}}\right), \epsilon_{S_{1}+1}\right] \times S\left[\left(\epsilon_{2_{l}}\right), \epsilon_{S_{1}+2}\right] \times \prod_{i=3}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right] \in A_{2}^{2}, \\
& N\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}, \ldots, \epsilon_{S_{1}+k}\right)=\prod_{i=1}^{k} S\left[\left(\epsilon_{i_{l}}\right), \epsilon_{S_{1}+i}\right] \in A_{k}^{2}, \\
& N\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1} \ldots, \epsilon_{S_{1}+k}, \epsilon_{S_{1}+k+1}\right)=\prod_{i=1}^{k-1} S\left[\left(\epsilon_{i_{l}}\right), \epsilon_{S_{1}+i}\right] \times S\left[\left(\epsilon_{k_{l}}\right), \epsilon_{S_{1}+k}, \epsilon_{S_{1}+k+1}\right] \in A_{k+1}^{2}, \\
& N\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}, \ldots, \epsilon_{S_{1}+2 k}\right)=\prod_{i=1}^{k} S\left[\left(\epsilon_{i_{l}}\right), \epsilon_{S_{1}+i}, \epsilon_{S_{1}+2 k-i+1}\right] \in A_{2 k}^{2} .
\end{aligned}
$$

The process will be repeated again until we have $A_{k n_{2}}^{2}$. That is, we will repeat this process $\frac{n_{2}}{2}$ times. Then let $\mathcal{N}_{2}=A_{k n_{2}}^{2}$. Then \mathcal{N}_{2} has $4^{S_{2}}$ elements and each element is of the form

$$
N\left(\epsilon_{1}, \ldots, \epsilon_{S_{2}}\right)=\prod_{i=1}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right]
$$

where $\left(\epsilon_{i_{l}}\right)$ is the subsequence of $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{2}}\right\}, i=1,2, \ldots, k, l=1,2, \ldots, \sum_{i=1}^{2} n_{i}$, and for each i, the index is given by

$$
i_{l}= \begin{cases}2 k-i+1+(l-2) k & \text { if } l \text { even } \\ i+(l-1) k & \text { if } l \text { odd. }\end{cases}
$$

For $m \geq 3$, we inductively define \mathcal{N}_{m} as follows. Inductively assume we have \mathcal{N}_{m}
with $4^{S_{m}}$ elements. And assume that each element of \mathcal{N}_{m} is of the form

$$
N\left(\epsilon_{1}, \ldots, \epsilon_{S_{m}}\right)=\prod_{i=1}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right]
$$

where $\left(\epsilon_{i_{l}}\right)$ is the subsequence of $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{m}}\right\}, i=1,2, \ldots, k, l=1,2, \ldots, \sum_{j=1}^{m} n_{j}$, and for each i, the index is given by

$$
i_{l}= \begin{cases}2 k-i+1+(l-2) k & \text { if } l \text { even } \\ i+(l-1) k & \text { if } l \text { odd }\end{cases}
$$

To define \mathcal{N}_{m+1}, let $A_{0}^{m+1}=\mathcal{N}_{m}$. The set A_{1}^{m+1} will be obtained from A_{0}^{m+1} by subdividing the first interval factor of each element into 4 equal subintervals. That is the element of A_{1}^{m+1} is of the form

$$
N\left(\bar{\epsilon}_{1}, \ldots, \bar{\epsilon}_{m}, \epsilon_{S_{m}+1}\right)
$$

Next, the set A_{2}^{m+1} will be obtained from A_{1}^{m+1} by subdividing the second interval factor into 4 equal subintervals. That is, the element of the set A_{2}^{m+1} are of the form

$$
N\left(\bar{\epsilon}_{1}, \ldots, \bar{\epsilon}_{m}, \epsilon_{S_{m}+1}, \epsilon_{S_{m}+2}\right)
$$

This process will continue until the first k factors have each been subdivided into 4 equal subintervals. The process will then continue by subdividing the k th factor again and then working backwards towards the first factor. After this, the process will be repeated again until we have $A_{k n_{m+1}}^{m+1}$. That is, we will repeat this process $\frac{n_{m+1}}{2}$ times. Thus, let $\mathcal{N}_{m+1}=A_{k n_{m+1}}^{m+1}$ which has $4^{S_{m+1}}$ elements, and each element of the set \mathcal{N}_{m+1} is of the form

$$
N\left(\epsilon_{1}, \ldots, \epsilon_{S_{m+1}}\right)=\prod_{i=1}^{k} S\left[\left(\epsilon_{i_{l}}\right)\right]
$$

where $\left(\epsilon_{i_{l}}\right)$ is the subsequence of $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{m+1}}\right\}, i=1,2, \ldots, k, l=1,2, \ldots, \sum_{j=1}^{m+1} n_{j}$, and for each i, the index is given by

$$
i_{l}= \begin{cases}2 k-i+1+(l-2) k & \text { if } l \text { even } \\ i+(l-1) k & \text { if } l \text { odd }\end{cases}
$$

From the above construction, we have the following facts:

Remark 2.2.1. 1. $\mathcal{N}=\left\{\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots\right\}$ is a defining sequence,
2. $\bigcap_{i} \mathcal{N}_{i}=C^{k}$, and
3. each point $p=\left(p_{1}, \ldots, p_{k}\right)$ in C^{k} corresponds to a sequence, say $E=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i-1}, \epsilon_{i}, \ldots\right)$.
4. for each $1 \leq i \leq k, \pi^{i}(p)=p_{i}$ corresponds to a subsequence of E, say E_{i}, where π^{i} is the projection onto the $i^{\text {th }}$ coordinate of p. Indeed, we can find the subsequence $E_{i}=\left(\epsilon_{i_{l}}\right)_{l=1}^{\infty}$ from the Table 2.1.

$i^{t h}$ coor. of p	$E_{i}=\left(\epsilon_{i_{l}}\right)_{l=1}^{\infty}$					
1	ϵ_{1}	$\epsilon_{2 k}$	\cdots	$\epsilon_{S_{1}-2 k+1}$	$\epsilon_{S_{1}}$	\cdots
2	ϵ_{2}	$\epsilon_{2 k-1}$	\cdots	$\epsilon_{S_{1}-2 k+2}$	$\epsilon_{S_{1}-1}$	\cdots
3	ϵ_{3}	$\epsilon_{2 k-2}$	\cdots	$\epsilon_{S_{1}-2 k+3}$	$\epsilon_{S_{1}-2}$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\cdots
$k-1$	ϵ_{k-1}	ϵ_{k+2}	\cdots	$\epsilon_{S_{1}-k-1}$	$\epsilon_{S_{1}-k+2}$	\cdots
k	ϵ_{k}	ϵ_{k+1}	\cdots	$\epsilon_{S_{1}-k}$	$\epsilon_{S_{1}-k+1}$	\cdots

TABLE 2.1: Subsequence of E_{i} corresponding to $i^{t h}$ coordinate of p in I^{k}

From Table 2.1, the subsequence E_{i} can be written as: $E_{i}=\left(\epsilon_{i_{l}}\right)_{l=1}^{\infty}$ where the index is given by

$$
i_{l}= \begin{cases}2 k-i+1+(l-2) k & \text { if } l \text { even } \\ i+(l-1) k & \text { if } l \text { odd }\end{cases}
$$

5. The number of stages strictly between the consecutive elements in each E_{i} is even.

Next, we will show some examples to illustrate certain elements in some stages of this construction.

Example 2.2.2. Let $k=2$. Then
$A_{0}^{1}=\left\{I_{1} \times I_{2}\right\}($ See Figure 2.1),
$A_{1}^{1}=\left\{S\left[\epsilon_{1}\right] \times I_{2}\right\}($ See Figure 2.2(a) $)$,
$A_{2}^{1}=\left\{S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}\right]\right\}($ See Figure 2.2(b)) $)$,
$A_{3}^{1}=\left\{S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}, \epsilon_{3}\right]\right\}($ See Figure 2.2(c)),
$A_{4}^{1}=\left\{S\left[\epsilon_{1}, \epsilon_{4}\right] \times S\left[\epsilon_{2}, \epsilon_{3}\right]\right\}($ See Figure 2.2(d)).

FIGURE 2.1: The element in A_{0}^{1}

Also, if

$$
\begin{aligned}
p=\left(p_{1}, p_{2}\right) & =\bigcap_{j} N\left(\epsilon_{1}, \ldots, \epsilon_{S_{j}}\right) \\
& =N\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{j}}, \ldots\right) \\
& =S\left[\epsilon_{1}, \epsilon_{4}, \epsilon_{5}, \ldots\right] \times S\left[\epsilon_{2}, \epsilon_{3}, \epsilon_{6}, \ldots\right],
\end{aligned}
$$

then

$$
\begin{aligned}
& E_{1}=\left(\epsilon_{1}, \epsilon_{4}, \epsilon_{5}, \ldots\right)=\left(i_{1}, j_{1}, i_{4}, j_{4}, i_{5}, j_{5}, \ldots\right) \\
& E_{2}=\left(\epsilon_{2}, \epsilon_{3}, \epsilon_{6}, \ldots\right)=\left(i_{2}, j_{2}, i_{3}, j_{3}, i_{6}, j_{6}, \ldots\right)
\end{aligned}
$$

correspond to p_{1} and p_{2}, respectively. Furthermore, assume there exists a positive integer N so that: for all $i \geq 0, \epsilon_{N+2 i}=\left(1, j_{N+2 i}\right)$ and $\epsilon_{N+2 i+1}=\left(2, j_{N+2 i+1}\right)$, then the first coordinates of the elements in each E_{i} after the stage N must alternate between ones and twos. This implies that p has no triadic rational coordinates. Similarly, if there exists a

positive integer N so that: for all $i \geq 0, \epsilon_{N+2 i}=\left(j_{N+2 i}, 1\right)$ and $\epsilon_{N+2 i+1}=\left(j_{N+2 i+1}, 2\right), p$ then has no triadic rational coordinates.

From Example 2.2.2, we can generalize this to any $k \geq 1$ so that the following Theorem is true. See [Gar91] for more details.

Theorem 2.2.3. Let $\mathcal{N}=\left\{\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots\right\}$ be defined as above. Then \mathcal{N} is a defining sequence in I^{k} so that the $C^{k}=\bigcap \mathcal{N}$ is a Cantor set and if $p=\bigcap_{i=1}^{\infty} N\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{i}}\right)$ where $S_{i}=\sum_{j=1}^{i} k n_{j}$ and n_{j} is even and if there is N so that: either for all $i \geq 0$, $\epsilon_{N+2 i}=\left(1, j_{N+2 i}\right)$ and $\epsilon_{N+2 i+1}=\left(2, j_{N+2 i+1}\right)$, or for all $i \geq 0, \epsilon_{N+2 i}=\left(j_{N+2 i}, 1\right)$ and $\epsilon_{N+2 i+1}=\left(j_{N+2 i+1}, 2\right)$, then p has no triadic rational coordinates.

Proof. It is obvious that \mathcal{N} is a defining sequence and

$$
p=\bigcap_{i=1}^{\infty} N\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{i}}\right)
$$

is in C^{k}. Since either the first or the second coordinates of the ϵ_{α} from the sequence of p alternate between ones and twos past stage N and the number of stages between the consecutive elements in each E_{i} is even by the Remark 2.2.1(5), it follows that for each $1 \leq i \leq k$, the first or the second coordinates of the $\epsilon_{i_{l}}$ also alternate between ones and twos. This implies that each coordinate of p does not have a triadic expansion that is eventually constant and hence p has no triadic rational coordinates.

2.22 Construction of the generalized Cantor set: C^{∞}

Next we will use the idea of the previous section to construct a sequence $\left\{\mathcal{M}_{i}\right\}$ in $Q=I^{3} \times Q_{4}$ so that:

1. Each \mathcal{M}_{i} has $4^{S_{i}}$ elements, where $S_{i}=\sum_{j=1}^{i}(j+1) n_{j}$ and n_{j} is even, and each element of \mathcal{M}_{i} is of the form $\{0\} \times S\left[\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{i}}\right] \times Q_{i+3}$ where $S\left[\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{i}}\right] \subset$ $I_{2} \times \cdots \times I_{i+2} ;$
2. $\bigcap \mathcal{M}=\{0\} \times C^{\infty}$ is a Cantor set;
3. Every point p in C^{∞} is associated with a sequence $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots\right)$;
4. If there is some stage past which either the first coordinates of the ϵ_{n} alternate, or the second coordinates of the ϵ_{i} alternate, then p has no triadic rational coordinates.

We start the construction viewing the copy of Q as $B^{1} \times I_{1}^{\prime} \times I_{2}^{\prime} \times Q_{4}$, where for each $i, I_{i}^{\prime}=I_{i+1}$. Let $\mathcal{M}_{0}=\left\{\{0\} \times I_{1}^{\prime} \times I_{2}^{\prime}\right\} \times Q_{4}$ be the starting element of the sequence. To find \mathcal{M}_{1}, consider the set $A_{0}^{1}=\left\{I_{1}^{\prime} \times I_{2}^{\prime}\right\}$. The set $A_{1 k}^{1}$ will be obtained from A_{0}^{1} by subdividing the first interval factor into 4 equal subintervals. The set A_{2}^{1} will be obtained from A_{1}^{1} by subdividing the second interval factor into 4 equal subintervals.

This process will continue until the last interval factor has been subdivided into 4 equal subintervals. The process will then continue by subdividing the last interval factor again and then working backwards towards the first factor. We can see that, after 4 times, we have

$$
\begin{aligned}
& M\left(\epsilon_{1}\right)=S\left[\epsilon_{1}\right] \times I_{2}^{\prime} \in A_{1}^{1} \\
& M\left(\epsilon_{1}, \epsilon_{2}\right)=S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}\right] \in A_{2}^{1} \\
& M\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=S\left[\epsilon_{1}\right] \times S\left[\epsilon_{2}, \epsilon_{3}\right] \in A_{3}^{1} \\
& M\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}\right)=S\left[\epsilon_{1}, \epsilon_{4}\right] \times S\left[\epsilon_{2}, \epsilon_{3}\right] \in A_{4}^{1}
\end{aligned}
$$

The process will be repeated again until we have $A_{2 n_{1}}^{1}$. That is, we will repeat this process $\frac{n_{1}}{2}$ times. Thus, let

$$
\mathcal{M}_{1}=\left\{\{0\} \times M\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{2 n_{1}}\right)\right\} \times Q_{4}
$$

where

$$
M\left(\epsilon_{1}, \ldots, \epsilon_{S_{1}}\right)=\prod_{i=1}^{2} S\left[\left(\epsilon_{i_{l}}\right)\right]
$$

where $\left(\epsilon_{i_{l}}\right)$ is a subsequence of $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{1}}\right\}, i=1,2, l=1,2, \ldots, n_{1}$, and for each i, the index from Table 2.2 is given by

$$
i_{l}=\left\{\begin{array}{lc}
2 l-i+1 & \text { if } l \text { even } \\
2 l+i-1 & \text { if } l \text { odd }
\end{array}\right.
$$

So, we can see that there are $4^{S_{1}}$ elements in \mathcal{M}_{1}.
For the element \mathcal{M}_{2} of the sequence, we consider

$$
A_{0}^{2}=A_{2 n_{1}}^{1} \times I_{3}^{\prime}=\left\{\prod_{i=1}^{2} S\left[\left(\epsilon_{i_{l}}\right)\right] \times I_{3}^{\prime}\right\}
$$

where $\left(\epsilon_{i_{l}}\right)$ is the subsequence of $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{1}}\right\}, i=1,2, l=1,2, \ldots, n_{1}$, and for each i,

$$
i_{l}= \begin{cases}2 l-i+1 & \text { if } l \text { even } \\ 2 l+i-1 & \text { if } l \text { odd }\end{cases}
$$

The set A_{1}^{2} will be obtained from A_{0}^{2} by subdividing the first interval factor into 4 equal subintervals. The set A_{2}^{2} will be obtained from A_{1}^{2} by subdividing the second interval factor into 4 equal subintervals. This process will continue until the last interval factor has been subdivided into 4 equal subintervals. The process will then continue by subdividing the last interval factor again and then working backwards towards the first factor. So, after 6 times, we have

$$
\begin{aligned}
& M\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}\right)=S\left[\left(\epsilon_{1_{l}}\right), \epsilon_{S_{1}+1}\right] \times S\left[\left(\epsilon_{i_{l}}\right)\right] \times I_{3}^{\prime} \in A_{1}^{2} \\
& M\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}, \epsilon_{S_{1}+2}\right)=S\left[\left(\epsilon_{1_{l}}\right), \epsilon_{S_{1}+1}\right] \times S\left[\left(\epsilon_{2_{l}}\right), \epsilon_{S_{1}+2}\right] \times I_{3}^{\prime} \in A_{2}^{2} \\
& M\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}, \ldots, \epsilon_{S_{1}+3}\right)=\prod_{i=1}^{2} S\left[\left(\epsilon_{i_{l}}\right), \epsilon_{S_{1}+i}\right] \times S\left[\epsilon_{S_{1}+3}\right] \in A_{3}^{2} \\
& M\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1} \ldots, \epsilon_{S_{1}+3}, \epsilon_{S_{1}+4}\right)=\prod_{i=1}^{2} S\left[\left(\epsilon_{i_{l}}\right), \epsilon_{S_{1}+i}\right] \times S\left[\epsilon_{S_{1}+3}, \epsilon_{S_{1}+4}\right] \in A_{4}^{2}, \\
& M\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}, \ldots, \epsilon_{S_{1}+5}\right)=S\left[\left(\epsilon_{1_{l}}\right), \epsilon_{S_{1}+1}\right] \times S\left[\left(\epsilon_{2_{l}}\right), \epsilon_{S_{1}+2}, \epsilon_{S_{1}+5}\right] \times S\left[\epsilon_{S_{1}+3}, \epsilon_{S_{1}+4}\right] \in A_{5}^{2} \\
& M\left(\bar{\epsilon}_{1}, \epsilon_{S_{1}+1}, \ldots, \epsilon_{S_{1}+6}\right)=\prod_{i=1}^{2} S\left[\left(\epsilon_{i_{l}}\right), \epsilon_{S_{1}+i}, \epsilon_{S_{1}+7-i}\right] \times S\left[\epsilon_{S_{1}+3}, \epsilon_{S_{1}+4}\right] \in A_{5}^{2} .
\end{aligned}
$$

The process will be repeated again until we have $A_{3 n_{2}}^{2}$. That is, we will repeat this process $\frac{n_{2}}{2}$ times. Thus, let

$$
\mathcal{M}_{2}=\left\{\{0\} \times M\left(\epsilon_{1}, \ldots, \epsilon_{S_{1}}, \ldots, \epsilon_{S_{2}}\right)\right\} \times Q_{5}
$$

Then \mathcal{M}_{2} has $4^{S_{2}}$ elements and each element is of the form

$$
\{0\} \times M\left(\epsilon_{1}, \ldots, \epsilon_{S_{2}}\right) \times Q_{5}=\{0\} \times \prod_{i=1}^{3} S\left[\left(\epsilon_{i_{l}}\right)_{l>n_{i-2}}^{\infty}\right] \times Q_{5}
$$

where $\left(\epsilon_{i_{l}}\right)$ is the subsequence of $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{2}}\right\}, i=1,2,3, l=1,2, \ldots, \sum_{i=1}^{2} n_{i}$, and assume that $n_{-1}=0=n_{0}$ and $S_{0}=0$.

If $l=1, \ldots, n_{1}$, then the index for $i=1,2$

$$
i_{l}= \begin{cases}2 l-i+1 & \text { if } l \text { even } \\ 2 l+i-2 & \text { if } l \text { odd }\end{cases}
$$

and if $l=n_{1}+1, \ldots, n_{1}+n_{2}$, then the indice for $i=1,2,3$

$$
i_{l}= \begin{cases}S_{1}+\left(l-n_{1}\right) 3-i+1 & \text { if } l \text { even } \\ S_{1}+i+3\left(l-n_{1}-1\right) & \text { if } l \text { odd }\end{cases}
$$

So, we can see that there are $4^{S_{2}}$ elements in \mathcal{M}_{2}.
Using induction and the same process above to obtain the following Remark 2.2.4.

Remark 2.2.4. From this construction, we see that:

1. $\mathcal{M}=\left\{\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots\right\}$ is a defining sequence.
2. $\bigcap_{i} \mathcal{M}_{i}=\{0\} \times C^{\infty}$
3. Each point $p=\{0\} \times p^{\prime}$ where $p^{\prime}=\left(p_{1}, p_{2}, \ldots, p_{k}, \ldots\right)$ in $\{0\} \times C^{\infty}$ corresponds to a sequence, say $E=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i-1}, \epsilon_{i}, \ldots\right)$. Furthermore, for each $i \geq 1 \pi^{i}\left(p^{\prime}\right)=p_{i}$ corresponds to a subsequence of E, say E_{i} Indeed, we can find the subsequence $E_{i}=$ $\left(\epsilon_{i_{l}}\right)_{l>n_{i-2}}^{\infty}$ from the following table. From the table, we can write the subsequence E_{i} into the general form: $E_{i}=\left(\epsilon_{i_{l}}\right)_{l>n_{i-2}}^{\infty}$ where for all $j \in \mathbb{N} \cup\{0\}$, for $n_{j}<l \leq n_{j+1}$ with $n_{-1}=0=n_{0}, S_{0}=0$, the indice

$$
i_{l}=\left\{\begin{array}{lc}
S_{j}+(j+2)\left(l-n_{j}\right)-i+1 & \text { if } l \text { even } \\
S_{j}+i+(j+2)\left(l-n_{j}-1\right) & \text { if } l \text { odd }
\end{array}\right.
$$

4. The number of stages between the consecutive elements in each E_{i} is even. This guarantees that if there exists an N so that: either for all $r \geq 0, \epsilon_{N+2 r}=\left(1, j_{N+2 r}\right)$ and $\epsilon_{N+2 r+1}=\left(2, j_{N+2 r+1}\right)$, or for all $r \geq 0, \epsilon_{N+2 r}=\left(j_{N+2 r}, 1\right)$ and $\epsilon_{N+2 r+1}=$

TABLE 2.2: Subsequence of E_{i} corresponding to $i^{\text {th }}$ coordinate of p in Q
$\left(j_{N+2 r+1}, 2\right)$, then for each $i \geq 1$ either the first coordinates of the $\epsilon_{i_{l}}$ in E_{i} must alternate, or the second coordinates of the $\epsilon_{i l}$ in E_{i} must alternate. This again implies that p has no triadic rational coordinates. So, one has the following Theorem.

Theorem 2.2.5. Let $\mathcal{M}=\left\{\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots\right\}$ be defined as above. Then \mathcal{M} is a defining sequence in Q so that the $\bigcap \mathcal{M}=\{0\} \times C^{\infty}$ is a Cantor set and if $p=\{0\} \times p^{\prime}$ where $p^{\prime}=\cap_{i=1}^{\infty} M\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{S_{i}}\right), S_{i}=\sum_{j=1}^{i}(j+1) n_{j}$, and n_{j} is even and if there exists an N so that: either for all $i \geq 0, \epsilon_{N+2 i}=\left(1, j_{N+2 i}\right)$ and $\epsilon_{N+2 i+1}=\left(2, j_{N+2 i+1}\right)$, or for all $i \geq 0$, $\epsilon_{N+2 i}=\left(j_{N+2 i}, 1\right)$ and $\epsilon_{N+2 i+1}=\left(j_{N+2 i+1}, 2\right)$, then p^{\prime} has no triadic rational coordinates.

Proof. The point p is obviously in $\{0\} \times C^{\infty}$. By assumption and by the Remark 2.2.4(4), one can show that none of the coordinates of p^{\prime} have a triadic expansion that is eventually constant. Thus, this implies that p^{\prime} has no triadic rational coordinates.

Remark 2.2.6. This result is new and generalizes a previous result about Cantor sets in I^{k} to Cantor sets in Q.

2.3 Cantor set on the top $\left([2,3] \times Q_{2} \subset Q\right)$

Before proceeding with the construction in this section, we need some additional results about geometric centrality that can be obtained by using a method known as ramification. This is described below.

Let $A=B^{2} \times X_{1} \times X_{2} \times \cdots X_{n}$, where $X_{i}=I$ or S^{1}. Let $C=\left\{C_{1}, C_{2} \ldots, C_{k}\right\}$, where each $C_{i} \cong B^{2} \times Y_{1} \times Y_{2} \times \cdots Y_{n}$ with $Y_{i}=I$ or S^{1}, be a finite collection of disjoint subsets of A such that C is geometrically central in A. For each i, in order to ramify $C_{i}=B^{2} \times Y_{1} \times Y_{2} \times \cdots Y_{n}$, we take a finite number of subdiscs $D_{1}, D_{2}, \ldots, D_{n}$ on B^{2}. Then each ramified copy $D_{j} \times Y_{1} \times Y_{2} \times \cdots Y_{n}$ of C_{i} is called a parallel interior manifold, see [DG82]. We will use the following lemma about parallel interior manifolds in many places.

Lemma 2.3.1. [DG82] Let $M=B^{2} \times N$ be an m-manifold. Let $D_{1}, D_{2}, \ldots, D_{n}$ be disjoint subdiscs in B^{2}. Then each parallel manifold $D_{i} \times N$ of M is geometrically central in M.

We will modify the construction below of the Cantor set by ramifying the manifolds in the defining sequence and modifying the choice of factors so as to get a different and more useful way of determining when $p \in C^{\infty}$ has no triadic rational coordinates. This will be needed in the next Chapter.

We will construct a Cantor set in $[2,3] \times Q_{2} \subset Q$ by constructing a defining sequence, $\mathcal{T}=\left\{\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots\right\}$ in $[2,3] \times Q_{2} \subset Q$, in such a way that

$$
\begin{gathered}
\mathcal{T}_{1}, \mathcal{T}_{2} \subset[2,3] \times I^{2} \times Q_{4} \\
\mathcal{T}_{3}, \mathcal{T}_{4}, \mathcal{T}_{5} \subset[2,3] \times I^{3} \times Q_{5}
\end{gathered}
$$

and in general for $k>2$,

$$
\mathcal{T}_{\frac{k(k-1)}{2}+i} \subset[2,3] \times I^{k} \times Q_{k+2}
$$

for $i=0, \ldots, k-1$ and so that $\bigcap \mathcal{T}_{i}$ is a Cantor set.
2.31 Zero and First Stages of Construction: $k=2$
$\underline{\mathcal{T}_{0}}:$ Let $\mathcal{T}_{0}=\mathcal{W}_{0} \times Q_{4}$ where

$$
\mathcal{W}_{0}=\left\{W_{0}=B^{2} \times I_{2}\right\}
$$

and $B^{2} \subset[2,3] \times I_{3} \subset I_{1} \times I_{3}$.
$\underline{\mathcal{T}_{1}}$: By Lemma 1.5.7, there is a geometrically central family

$$
\mathcal{W}_{11}=\left\{W_{1}, W_{2}, \ldots, W_{2^{n_{1}}}\right\},
$$

and $W_{i} \cong B^{2} \times X_{1}$ with $X_{1} \cong I$ or S^{1}, are disjoint subsets of W_{0} such that the diameter of W_{i} in I^{3} is less than $\frac{1}{2}$ for every $i=1, \ldots, 2^{n_{1}}$ with $2^{n_{1}} \geq 4$.

Let $\mathcal{W}_{1}=W_{11}$ and ramify each component of $\mathcal{W}_{1} 2^{n_{1}}$ times and denote each ramified element by $T\left(\epsilon_{1}\right)$ where $\epsilon_{1}=\left(\sigma_{11}, \sigma_{12}\right)$ with

$$
\sigma_{1 i}=\left(i_{1}, i_{2}, \ldots, i_{n_{1}}\right) ; \quad i_{l} \in\{1,2\} .
$$

Then let

$$
\mathcal{T}_{1}=\mathcal{W}^{1} \times Q_{4},
$$

where $\mathcal{W}^{1}=\left\{T\left(\epsilon_{1}\right)\right\}$. Figure 2.3 demonstrates the zero stage and the first stage of construction in $[2,3] \times I^{2}$ in the case of 2 times ramification of a $B^{2} \times I$.

FIGURE 2.3: Ramified copies of component of \mathcal{W}_{1} on $B^{2} \times I$

We observe the following Remark [Gar91] on the first construction:

Remark 2.3.2. If $f: H \rightarrow T=B^{2} \times I$ is any virtually I-essential map of a disc with holes H, then there exists an σ_{11}^{\prime} so that f is virtually I-essential with respect to all $T\left(\left(\sigma_{11}^{\prime}, \sigma_{12}\right)\right)$. Moreover, if $f: H \rightarrow T$ is any virtually I-essential map of a disc with holes H and the choice of σ_{11}^{\prime} is fixed, then there exists a map $g: H \rightarrow$ Tso that $\left.g\right|_{\partial H}=\left.f\right|_{\partial H}$ and $g(H) \cap T\left(\left(\sigma_{11}, \sigma_{12}\right)\right) \neq \emptyset$ if and only if $\sigma_{11}=\sigma_{11}^{\prime}$.

For \mathcal{T}_{2}, consider $T\left(\epsilon_{1}\right) \in \mathcal{W}^{1}$. By Lemma 1.5.7 there is a geometrically central family

$$
\mathcal{W}_{2 i}=\left\{W_{1 i}, W_{2 i}, \ldots, W_{2^{\left.n_{2}\right)}}\right\}
$$

where $W_{j i} \cong B^{2} \times X_{1}$ with $X_{1} \cong I$ or S^{1}, are disjoint subsets of W_{i} such that the diameter of $W_{j i}$ is less than $\frac{1}{2^{2}}$ in $[2,3] \times I^{2}$ for every $j=1, \ldots, 2^{n_{2}}$ with $2^{n_{2}} \geq 4$. Let $\mathcal{W}_{2}=\cup \mathcal{W}_{2 i}$.

Let us ramify each element in $\mathcal{W}_{2} 2^{n_{2}}$ times and denote each ramified element by $T\left(\epsilon_{1}, \epsilon_{2}\right)$ Thus, $\mathcal{T}_{2}=\mathcal{W}^{2} \times Q_{5}$, where $\mathcal{W}^{2}=\left\{T\left(\epsilon_{1}, \epsilon_{2}\right)\right\}$ and $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2}, \ldots, i_{n_{2}}\right) ; \quad l=1,2 ; i_{k}, i \in\{1,2\} ; i=1,2 .
$$

$2.32 \quad k^{\text {th }}$ Stage of Construction $: k \geq 3$

For $k \geq 3$, we use induction to describe $\mathcal{T}_{\frac{(k-1)(k)}{2}+i}$ for $i=0, \ldots, k-1$ as follows. Let $p=\frac{(k-1)(k)}{2}$. Assume that we have

$$
\mathcal{T}_{p-1}=\mathcal{W}^{p-1} \times Q_{k+1}=\left\{T\left(\epsilon_{1}, \ldots, \epsilon_{p-1}\right) \times Q_{k+1}\right\} \subset[2,3] \times I^{k-1} \times Q_{k+1}
$$

so that:

1. $T\left(\epsilon_{1}, \ldots, \epsilon_{p-1}\right)=B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{k-2} ; X_{j} \cong I$, or $X_{j} \cong S^{1}$
2. The diameter of $T\left(\epsilon_{1}, \ldots, \epsilon_{p-1}\right)$ is less than $\frac{1}{2^{p-1}}$ in $[2,3] \times I^{k-1}$.

We will define \mathcal{T}_{p+i} for $i=0, \ldots, k-1$ as follows: For $i=0$, let

$$
A=T\left(\epsilon_{1}, \ldots, \epsilon_{p-1}\right)=B^{2} \times X_{1} \times X_{2} \times \cdots \times X_{k-2} \in \mathcal{W}^{p-1}
$$

where $X_{j} \cong S^{1}$ or I and the diameter of A_{i} is less than $\frac{1}{2^{p-1}}$ in $[2,3] \times I^{k-1}$. Consider

$$
B_{1}=A_{i} \times I_{k+1}=\left\{B^{2} \times X_{1}\right\} \times C_{1}
$$

where $C_{1}=X_{2} \times \cdots \times X_{k-2} \times I_{k+1}$. Then by Lemma 1.5.7, there is a finite geometrically central family

$$
\mathcal{W}_{(p+1) i}=\left\{W_{1 i}, W_{2 i}, \ldots, W_{2^{n_{p}}}\right\}
$$

in $B^{2} \times X_{1}$ so that each $W_{j i}$ in $\mathcal{W}_{(p+1) i}$ is $B^{2} \times X_{11}$ with $X_{11} \cong S^{1}$ or I and the diameter of $W_{j i}$ is less than $\frac{1}{2^{p}}$ in $[2,3] \times I^{k}$ for all $j=1, \ldots, 2^{n_{p}}$ with $2^{n_{p}} \geq 4$. Now let

$$
\mathcal{W}_{p}=\cup\left(\mathcal{W}_{(p+1) i} \times C_{1}\right) .
$$

Ramify each element in $\mathcal{W}_{p} 2^{n_{p}}$ times and denote each ramified element by $T\left(\epsilon_{1}, \ldots, \epsilon_{p}\right)$.
Therefore, let $\mathcal{T}_{p}=\mathcal{W}^{p} \times Q_{k+2}$ where

$$
\mathcal{W}^{p}=\left\{T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{p}\right)\right\},
$$

for each $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2}, \ldots, i_{n_{p}}\right) \quad l=1, \ldots, p ; i_{m}, i \in\{1,2\} .
$$

Assume that for $i=i_{0}$, we have $T_{p+i_{0}}=W^{p+i_{0}} \times Q_{k+2}$ such that

1. $W^{p+i_{0}}=\left\{T\left(\epsilon_{1}, \ldots, \epsilon_{p+i_{0}}\right)\right\}$
2. $T=T\left(\epsilon_{1}, \ldots, \epsilon_{p+i_{0}}\right)=\left\{B^{2} \times X_{i_{0} 1}\right\} \times C_{i_{0}}$ where

$$
C_{i_{0}}=X_{11} \times \cdots \times X_{\left(i_{0}-1\right) 1} \times X_{i_{0}+1} \times \cdots \times X_{k-2} \times I_{k+1} \in \mathcal{W}^{p+i_{0}}
$$

with $X_{i} \cong S^{1}$ or I and the diameter of T is less than $\frac{1}{2^{p+i_{0}}}$ in $[2,3] \times I^{k}$.
To define $\mathcal{T}_{p+i_{0}+1}$, let $A_{i}=T \in \mathcal{T}_{p+i_{0}}$. Then $T=\left\{B^{2} \times X_{i_{0}+1}\right\} \times C_{i_{0}+1}$, where

$$
C_{i_{0}+1}=X_{11} \times \cdots \times X_{\left(i_{0}\right) 1} \times X_{i_{0}+2} \times \cdots \times X_{k-2} \times I_{k+1},
$$

satisfies the condition (2) above. Then by Lemma 1.5.7, there is a finite geometrically central family

$$
\mathcal{W}_{\left(p+i_{0}+1\right) i}=\left\{W_{1}, W_{2}, \ldots, W_{2^{n}{ }_{p+i_{0}+1}}\right\}
$$

in T so that each W_{j} is $B^{2} \times X_{\left(i_{0}+1\right) 1}$ with $X_{i} \cong S^{1}$ or I and the diameter of W_{j} is less than $\frac{1}{2^{p+i_{0}+1}}$ in $[2,3] \times I^{k}$ for all $j=1, \ldots, 2^{n_{p+i_{0}+1}}$ with $2^{n_{p+i_{0}+1}}$. Now let

$$
\mathcal{W}_{p+i_{0}+1}=\bigcup\left(\mathcal{W}_{\left(p+i_{0}+1\right) i}\right) \times C_{i_{0}+1} .
$$

Ramify each element in $\mathcal{W}_{p+i_{0}+1} 2^{n_{p+i_{0}+1}}$ times and denote each ramify element by $T\left(\epsilon_{1}, \ldots, \epsilon_{p+i_{0}+1}\right)$.

Therefore, let $\mathcal{T}_{p+i_{0}+1}=\mathcal{W}^{p+i_{0}+1} \times Q_{k+2}$ where

$$
\mathcal{W}^{p+i_{0}+1}=\left\{T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{p+i_{0}+1}\right)\right\},
$$

for each $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2}, \ldots, i_{n_{p+i_{0}+1}}\right) \quad l=1, \ldots, p+i_{0}+1 ; i_{m}, i \in\{1,2\} .
$$

This completes the inductive description of \mathcal{T}_{p+i} for $i=0,1, \ldots, k-1$ at stage k.

Remark 2.3.3. From the construction, $n_{p}, n_{p+1}, \ldots, n_{p+k-1}$ can be chosen to be equal.
Lemma 2.3.4. If $f: H \rightarrow T=T\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ is any virtually I-essential map of a disc with holes H, then there exists an $\sigma_{(n+1) 1}^{\prime}$ so that f is virtually I-essential with respect to all $L\left(\epsilon_{1}, \ldots, \epsilon_{1},\left(\sigma_{(n+1) 1}^{\prime}, \sigma_{(n+1) 2}\right)\right)$. Moreover, if $f: H \rightarrow T$ is any virtually I-essential map of a disc with holes H and the choice of $\sigma_{(n+1) 1}^{\prime}$ is fixed, then there exists a map $g: H \rightarrow T$ so that $\left.g\right|_{\partial H}=\left.f\right|_{\partial H}$ and $g(H) \cap T\left(\epsilon_{1}, \ldots, \epsilon_{n},\left(\sigma_{(n+1) 1}, \sigma_{(n+1) 2}\right)\right) \neq \emptyset$ if and only if $\sigma_{(n+1) 1}=\sigma_{(n+1) 1}^{\prime}$.

Proof. The proof can be found in [Gar91], [Dav07],[GD83].

2.33 Construction of the Cantor set

Let us recall some definitions and theorems concerning about the Cantor set.

Definition 2.3.5. A space X is totally disconnected if the only nonempty connected subsets of X are the one-point sets.

Definition 2.3.6. A set A in a space X is perfect in X if A is closed and dense in itself; i.e., each point of A is a limit point of A.

From these definitions, we have the following Theorem.

Theorem 2.3.7. [Wil70] A compact set X is homeomorphic to the standard Cantor set C if and only if X is totally disconnected and perfect.

From the construction above, we have the following theorem.

Theorem 2.3.8. Let $\mathcal{T}=\left\{\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \ldots\right\}$ be a sequence in Q such that $\mathcal{T}_{k}=\mathcal{W}^{k} \times Q_{k+3}$ where $\mathcal{W}^{k}=\left\{T\left(\epsilon_{1}, \ldots, \epsilon_{i}\right)\right\}$ defined as above. Then $C=\bigcap\left(\bigcup \mathcal{T}_{i}\right)$ is a Cantor set in Q.

Proof. Since the intersection is of closed and compact sets with the non-empty finite intersection property, the intersection itself is compact and since the size of the components is going to zero, this implies the total disconnectedness of the intersection. Also, since each component at stage i has more than 2 components at stage $i+1$, this implies that every point in C is a limit point. Hence C is perfect. Thus, by Theorem 2.3.7 C is a Cantor set in Q, completing the proof.

2.4 Cantor set on bottom $\left([-3,-2] \times Q_{2} \subset Q\right)$

By reflecting the construction of the defining sequence $\mathcal{T}=\left\{\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots\right\}$ about $\{0\} \times$ Q_{2}, we have a defining sequence $\mathcal{D}=\left\{\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \ldots\right\}$ which each \mathcal{D}_{i} is a homeomorphic
copy of \mathcal{T}_{i} contained in $[-3,-2] \times Q_{2} \subset Q$ so that $\mathcal{D}=\bigcap \mathcal{D}_{k}$ is a Cantor set, where $\mathcal{D}_{i}=\left\{D\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right)\right\} \times Q_{m(i)+2}$ where $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2}, \ldots, i_{n_{l}}\right) ; \quad l=1, \ldots, l ; i_{m}, i \in\{1,2\} .
$$

2.5 Modification of the Construction of the Cantor set in the Middle

We will modify the construction of the defining sequence in the middle so that each element in the new defining sequence is matched with an element on the top and an element on the bottom. To do this, we will find a sequence $\mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right\}$ in such a way that

$$
\begin{array}{r}
\mathcal{B}_{1}, \mathcal{B}_{2} \subset\{0\} \times I^{2} \times Q_{4} \\
\mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5} \subset\{0\} \times I^{3} \times Q_{5}
\end{array}
$$

and for $k>2$,

$$
\mathcal{B}_{\frac{k(k-1)}{2}+i} \subset\{0\} \times I^{k} \times Q_{k+2}
$$

for $i=0, \ldots, k-1$ and $\bigcap\left(\bigcup \mathcal{B}_{i}\right)$ is a Cantor set.

2.51 Zero and First stage of Construction: $k=2$

We start the construction viewing the copy of Q as $B^{1} \times I_{1}^{\prime} \times I_{2}^{\prime} \times Q_{4}$, where for each $i, I_{i}^{\prime}=I_{i+1}$. Let $\mathcal{B}_{0}=\left\{\{0\} \times I_{1}^{\prime} \times I_{2}^{\prime}\right\} \times Q_{4}$ be the starting element of the sequence.

To define \mathcal{B}_{1}, consider the set $B^{0}=\left\{I_{1}^{\prime} \times I_{2}^{\prime}\right\}$. The set B^{1} will be obtained from B^{0} by subdividing the first interval factor into $2^{2 n_{1}}$ equal subintervals. Denote each element in B^{1} by $M\left(\epsilon_{1}\right)$ where $\epsilon_{1}=\left(\sigma_{11}, \sigma_{12}\right)$ with

$$
\sigma_{1 i}=\left(i_{1}, i_{2} \ldots, i_{n_{1}}\right) ; \quad i_{l}, i \in\{1,2\} .
$$

Thus, $\mathcal{B}_{1}=B^{1} \times Q_{4}$
To define \mathcal{B}_{2}, the set B^{2} will be obtained from B^{1} by subdividing the second interval factor into $2^{2 n_{2}}$ equal subintervals. Denote each element in B^{2} by $B\left(\epsilon_{1}, \epsilon_{2}\right)$ where $\epsilon_{l}=$
$\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2} \ldots, i_{n_{l}}\right) ; \quad l=1,2 ; i_{l}, i \in\{1,2\}
$$

Thus, $\mathcal{B}_{2}=B^{2} \times Q_{4}$
Remark 2.5.1. n_{2} can be chosen to be equal n_{1} so that $I_{1}^{\prime}, I_{2}^{\prime}$ will be subdivided into same number of subintervals.

$2.52 \quad k^{\text {th }}$ Stage of Construction $: k \geq 3$

For $k \geq 3$, we use induction to describe $\mathcal{B}_{\frac{(k-1)(k)}{2}+i}$ for $i=0, \ldots, k-1$ as follows. Let $p=\frac{(k-1)(k)}{2}$. Assume that we have

$$
\mathcal{B}_{p-1}=\mathcal{B}^{p-1} \times Q_{k+1}=\left\{B\left(\epsilon_{1}, \ldots, \epsilon_{p-1}\right) \times Q_{k+1}\right\} \subset\{0\} \times I^{k-1} \times Q_{k+1}
$$

where $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2} \ldots, i_{n_{l}}\right) ; \quad i \in\{1,2\}, i_{r} \in\{1,2\}, r=1, \ldots, n_{l}
$$

We will define \mathcal{B}_{p+i} for $i=0, \ldots, k-1$ as follows: For $i=0$, let $B^{p-1}=\left\{B\left(\epsilon_{1}, \ldots, \epsilon_{p-1}\right)\right\}$. Then the set B^{p} will be obtained from B^{p-1} by subdividing the first interval factor into $2^{2 n_{p}}$ equal subintervals. Denote each element in B^{1} by $B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{p}\right)$ where $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2} \ldots, i_{n_{l}}\right) ; \quad i \in\{1,2\}, i_{r} \in\{1,2\}, r=1, \ldots, n_{l}
$$

Thus, $\mathcal{B}_{p}=B^{p} \times Q_{k+2}$. Assume that for $i=i_{0}$, we have $T_{p+i_{0}}=B^{p+i_{0}} \times Q_{k+2}$ where $B^{p+i_{0}}=\left\{B\left(\epsilon_{1}, \ldots, \epsilon_{p+i_{0}}\right)\right\}$. To define $\mathcal{T}_{p+i_{0}+1}$, let the set $B^{p+i_{0}+1}$ will be obtained from $B^{p+i_{0}}$ by subdividing the $i_{0}+1$ th interval factor into $2^{2 n_{p+i_{0}+1}}$ equal subintervals. Denote each element in $B^{p+i_{0}+1}$ by $B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{p+i_{0}+1}\right)$ where $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$ with

$$
\sigma_{l i}=\left(i_{1}, i_{2} \ldots, i_{n_{l}}\right) ; \quad i \in\{1,2\}, i_{r} \in\{1,2\}, r=1, \ldots, n_{l}
$$

Thus, $\mathcal{B}_{p+i_{0}+1}=B^{p+i_{0}+1} \times Q_{k+2}$.
This completes the inductive description of \mathcal{T}_{p+i} for $i=0,1, \ldots, k-1$ at the stage k.

Remark 2.5.2. each n_{i} can be chosen so that after this stage all factors $I_{1}^{\prime}, I_{2}^{\prime}, \ldots, I_{k}^{\prime}$ have same number of subintervals.

Using the induction and the same process above to obtain the following Remark 2.5.3.

Remark 2.5.3. From this construction,first let Let $\overline{1}$ and $\overline{2}$ represent the collections of all finite sequences of the form $(1,1, \ldots, 1)$ and $(2,2, \ldots, 2)$, respectively. Then we see that:

1. $\mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right\}$ is a defining sequence.
2. $\bigcap_{i} \mathcal{B}_{i}=\{0\} \times C^{\infty}$
3. Each point $p=\{0\} \times p^{\prime}$ where $p^{\prime}=\left(p_{1}, p_{2}, \ldots, p_{k}, \ldots\right)$ in $\{0\} \times C^{\infty}$ corresponds to a sequence, $E=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i-1}, \epsilon_{i}, \ldots\right)$. Furthermore, if there is some stage N so that for $i>n$ either all the first components or all the second components of $\epsilon_{i}=\left(\sigma_{i 1}, \sigma_{i 2}\right)$ are not in $\overline{1} \cup \overline{2}$, then $p \in\{0\} \times C^{\infty}$ has no triadic rational coordinates.

Theorem 2.5.4. Let $\mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \ldots\right\}$ be defined as above. Then \mathcal{B} is a defining sequence in Q so that the $\bigcap \mathcal{B}=\{0\} \times C^{\infty}$ is a Cantor set and if $p=\{0\} \times p^{\prime}$ where $p^{\prime}=\cap_{i=1}^{\infty} B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i}\right)$, and if there exists an N so that for all $i>N$, either all the first components or all the second components of ϵ_{i} are not in $\overline{1} \cup \overline{2}$, then $p \in\{0\} \times C^{\infty}$ has no triadic rational coordinates in C^{∞}.

Proof. The point p is obviously in $\{0\} \times C^{\infty}$. By assumption and by Remark 2.5.3(3), one can show that none of the coordinates of p^{\prime} has a triadic expansion that is eventually constant. Thus, this implies that p^{\prime} has no triadic rational coordinates.

3. A DECOMPOSITION WITH NONMANIFOLD PART A CANTOR SET

3.1 Introduction

The aim of this chapter is to construct a decomposition H of Q which satisfies the following properties:

- (P1) For each nondegenerate element h of H,

$$
h \cap\{0\} \times Q_{2}
$$

is a single point in $\{0\} \times C^{\infty}$.

- (P2) Let f_{1} and f_{2} be maps from B^{2} into Q / H and let A be any dense subset of C^{∞}. Then f_{1} and f_{2} are approximable by maps g_{1} and g_{2} satisfying:
(i) $g_{1}\left(B^{2}\right) \cap g_{2}\left(B^{2}\right) \subset \pi_{H}(A)$, and
(ii) if $p=\{0\} \times p^{\prime}$ is a point of $\{0\} \times C^{\infty}$ with $\pi_{H}(p) \in\left(g_{1}\left(B^{2}\right) \backslash g_{2}\left(B^{2}\right)\right) \cup$ $\left(g_{2}\left(B^{2}\right) \backslash g_{1}\left(B^{2}\right)\right)$, then p^{\prime} has no triadic rational coordinates.
- (P3) Q / H has nonmanifold part equal to $\pi_{H}\left(\{0\} \times C^{\infty}\right) \cong\{0\} \times C^{\infty}$.

3.11 Preview of Our Plan for Constructing the Decomposition H of Q

Recall from the previous Chapter,

$$
\begin{aligned}
\mathcal{T} & =\left\{\mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2}, \ldots,\right\}, \\
\mathcal{D} & =\left\{\mathcal{D}_{0}, \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots\right\}, \\
\mathcal{B} & =\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right\}
\end{aligned}
$$

are defining sequences in $[2,3] \times Q_{2},\{0\} \times Q_{2}$, and $[-3,-2] \times Q_{2}$, respectively. To produce the decomposition H, we will construct a defining sequence $\mathcal{L}=\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots,\right\}$ so that
each component of \mathcal{L}_{i} consists of a single component of $\left[-\frac{1}{2^{i}}, \frac{1}{2^{i}}\right] \times B \in\left[-\frac{1}{2^{i}}, \frac{1}{2^{i}}\right] \times \mathcal{B}_{i}$, a component of \mathcal{T}_{i}, a component of \mathcal{D}_{i}, together with tubes (regular neighborhoods of arcs) joining the top of $\left[-\frac{1}{2^{i}}, \frac{1}{2^{i}}\right] \times B,\left\{\frac{1}{2^{2}}\right\} \times B$, and the bottom of $\left[-\frac{1}{2^{i}}, \frac{1}{2^{i}}\right] \times B,\left\{-\frac{1}{2^{i}}\right\} \times B$ to these components.

3.2 A Defining Sequence associated with the Decomposition H

To construct the defining sequence

$$
\mathcal{L}=\left\{\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \ldots\right\}
$$

of Q, we will modify the defining sequences $\mathcal{T}, \mathcal{B}, \mathcal{D}$ constructed in the previous Chapter and we describe the construction inductively.

We start the construction viewing $Q=I^{3} \times Q_{4}$ where $I_{1}=[-3,3]$. We write $I^{k}=I_{1} \times I_{2} \times \cdots \times I_{k}$ and $B^{2}=I_{1} \times I_{3}$. Similarly, we write B^{n-1} as an embedded copy of $I_{2} \times \cdots \times I_{n}$. An n-tube is a homeomorphic copy of $B^{n-1} \times[0,1]$.

Let

$$
\begin{aligned}
\mathcal{T} & =\left\{\mathcal{T}_{0}, \mathcal{T}_{1}, \mathcal{T}_{2}, \ldots,\right\} \\
\mathcal{D} & =\left\{\mathcal{D}_{0}, \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots\right\} \\
\mathcal{B} & =\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right\}
\end{aligned}
$$

be defining sequences from the previous Chapter so that the diameter of $\left[-\frac{1}{2^{j}}, \frac{1}{2^{j}}\right] \times$ $B_{\frac{(j+2)(j+1)}{2}-1}$ is less than $\frac{1}{j}$ in I^{j+2} for $j>1$.

3.21 Stage Zero of Construction

Stage 0: \mathcal{L}_{0} has a single element $L_{0} \times Q_{4}$ where L_{0} consists of $[-1,1] \times B_{0}$ and 3 -tubes joining the top of $[-1,1] \times B_{0}$ to $T_{0}=D_{1} \times I_{2}$ and the bottom of $[-1,1] \times B_{0}$ to $D_{0}=D_{2} \times I_{2}$ where $D_{1} \subset[2,3] \times I_{2}$ and $D_{2} \subset[-3,-2] \times I_{2}$. This joining is done in such
a way that

$$
L_{0} \times Q_{4} \cap\left([-1,1] \times I^{2} \times Q_{4}\right)=[-1,1] \times B_{0} \times Q_{4}
$$

Figure 3.1 shows this stage of the construction in I^{3}.

FIGURE 3.1: Stage Zero of construction

Let D_{1}^{\prime} and D_{2}^{\prime} be slightly bigger discs in $I_{1} \times I_{3}$ containing D_{1} and D_{2}, respectively, as shown in Figure 3.1. Let $l_{1}=\partial\left(D_{1}^{\prime} \times\{p t\}\right)$ and $l_{2}=\partial\left(D_{2}^{\prime} \times\{p t\}\right)$ be loops and let $\epsilon>0$ be such that

$$
\rho\left(l_{1}, \partial\left(D_{1} \times I_{2}\right)\right)>\epsilon \quad \text { and } \quad \rho\left(l_{2}, \partial\left(D_{2} \times I_{2}\right)\right)>\epsilon
$$

We can assume that $l_{1} \times\{0\}$ and $l_{2} \times\{0\}$ in $I^{3} \times Q_{4}$ are loops in Q such that for any contraction f_{1} of l_{1} and f_{2} of l_{2}, in general position respect to the boundary component of \mathcal{L}_{0}, there exist discs with holes K_{1} and K_{2} so that $\left.f_{1}\right|_{K_{1}}$ is virtually I-essential in $D_{1} \times I_{2}$ and $\left.f_{2}\right|_{K_{2}}$ is virtually I-essential in $D_{2} \times I_{2}$, and so that for any maps $g_{1}, g_{2}: B^{2} \rightarrow Q$ in general position with respect to \mathcal{L}_{0} and

$$
\rho\left(l_{1}, g_{1}\left(\partial B^{2}\right)\right)<\frac{\epsilon}{2} \quad \text { and } \quad \rho\left(l_{2}, g_{2}\left(\partial B^{2}\right)\right)<\frac{\epsilon}{2}
$$

there are discs with holes H_{1} and H_{2} such that $\left.g_{1}\right|_{H_{1}}$ is virtually I-essential in $D_{1} \times I_{2}$ and $\left.g_{2}\right|_{H_{2}}$ is I-essential in $D_{2} \times I_{2}$. This follows from the geometric centrality argument earlier.

3.22 First Stage of Construction

Stage 1: Inside L_{0}, join the top of $\left[-\frac{1}{2}, \frac{1}{2}\right] \times B\left(\epsilon_{1}\right)$ to $T\left(\epsilon_{1}\right)$ and the bottom of $\left[-\frac{1}{2}, \frac{1}{2}\right] \times B\left(\epsilon_{1}\right)$ to $D\left(\delta_{1}\right)$ with 3 -tubes where $\delta_{n}=\left(\sigma_{n 2}, \sigma_{n 1}\right)$ if $\epsilon_{n}=\left(\sigma_{n 1}, \sigma_{n 2}\right)$. These tubes should run straight through the tube joining T_{0} and D_{0} from the previous stage. Let $L\left(\epsilon_{1}\right)$ be the resulting element. The joining should be done in such a way that

$$
L\left(\epsilon_{1}\right) \times Q_{4} \cap\left(\left[-\frac{1}{2}, \frac{1}{2}\right] \times I^{2} \times Q_{4}\right)=\left[-\frac{1}{2}, \frac{1}{2}\right] \times B\left(\epsilon_{1}\right) \times Q_{4} .
$$

Then

$$
\mathcal{L}_{1}=\left\{L\left(\epsilon_{1}\right)\right\} \times Q_{4} .
$$

Figure 3.2 demonstrates a representation of the construction with 4 components in \mathcal{L}_{1}. The four components in the cylinder at the top come from \mathcal{T}_{1}, The four components in the cylinder at the bottom come from \mathcal{D}_{1}, and the four components in the middle come from \mathcal{B}_{1}. The arrows indicate how some of the components are connected by tubes.

FIGURE 3.2: First Stage of construction \mathcal{L} with 4 components

We may observe the following facts about the first two constructions.

1. For every $x \in Q$, there is a $3-$ cell B^{3} in I^{3} such that

$$
s t\left(x, \mathcal{L}_{1}\right) \subset B^{3} \times Q_{4} \subset \mathcal{L}_{0} .
$$

2. For each element L of $\mathcal{L}_{i}, i=0,1$, we can get a $\frac{1}{i+1}$-map from L to a 1 -complex.
3. For any $x \in \partial \mathcal{L}_{0}$ with x not in $\left[-\frac{1}{2}, \frac{1}{2}\right] \times Q_{2}, x$ is not in L_{j} for every L_{j} in \mathcal{L}_{1}.
4. For every contraction f_{1} and f_{2} of any loops within ϵ of the loops l_{1} and l_{2}, respectively, there is a component $T\left(\epsilon_{1}, \epsilon_{2}\right)$ of \mathcal{W}^{2} and $D\left(\epsilon_{1}, \epsilon_{2}\right)$ of \mathcal{D}^{2} and discs D_{1}^{\prime} and D_{2}^{\prime} with holes such that $f_{1} \mid D_{1}^{\prime}$ is virtually I-essential on $T\left(\epsilon_{1}, \epsilon_{2}\right)$ and $f_{2} \mid D_{2}^{\prime}$ is virtually I-essential on $D\left(\epsilon_{1}, \epsilon_{2}\right)$.

For the higher dimensional construction, assume that $\mathcal{L}_{r-1}, r \geq 1$ has been constructed. We need the following inductive hypotheses to be true for $j=r-1$ in $I^{k} \times Q_{k+1}, k \geq 3$ as in [DG82].

IH1 For each element L of \mathcal{L}_{j} there is $\frac{1}{j+1}$-map from L to a 1-complex.
IH2 The diameter of each $\left[-\frac{1}{2^{j}}, \frac{1}{2^{j}}\right] \times B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{j}\right) \times Q_{j+3}<\frac{1}{j}$
IH3 If x is a point in Q in ∂L_{s} for some L_{s} in \mathcal{L}_{j-1} and not in $\left[-\frac{1}{2^{j-1}}, \frac{1}{2^{j-1}}\right] \times Q_{2}$, then x is not in L_{i} for every L_{i} in \mathcal{L}_{j}.

IH4 Let $\delta>0$. For any contraction f_{1} and f_{2} of any loops within δ of loops l_{1} and l_{2} into I^{k}, there is an element $B=\left[-\frac{1}{2^{j}}, \frac{1}{2^{j}}\right] \times B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{j}\right)$ and a component $T=T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{j}\right)$ of \mathcal{T}_{j} and a component $D=D\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{j}\right)$ of \mathcal{D}_{j} and discs D_{1} and D_{2} with holes such that B is connected to T and $\left.f_{1}\right|_{D_{1}}$ is virtually I-essential into T and B is connected to D and $\left.f_{2}\right|_{D_{2}}$ is virtually I-essential into D.

Next we will construct the $r^{\text {th }}$ state of construction.

$3.23 \quad r^{\text {th }}$ Stage of Construction

Stage $r-1$: In addition to the inductive hypotheses on the previous page, inductively assume:
(i) Each component $L=L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right) \times Q_{m(r-1)+3}$ of \mathcal{L}_{r-1} is a manifold so that $L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right)$ is composed of the $B=\left[-\frac{1}{2^{r-1}}, \frac{1}{2^{r-1}}\right] \times B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right)$, together with the tubes joining the top of B to $T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right)$ and the bottom of M to $D\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r-1}\right)$ where $\delta_{n}=\left(\sigma_{n 2}, \sigma_{n 1}\right)$ if $\epsilon_{n}=\left(\sigma_{n 1}, \sigma_{n 2}\right)$.
(ii)

$$
L \cap\left[-\frac{1}{2^{r-1}}, \frac{1}{2^{r-1}}\right] \times I^{r} \times Q_{m(r-1)+3}=\left[-\frac{1}{2^{r-1}}, \frac{1}{2^{r-1}}\right] \times B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right) \times Q_{m(r-1)+3} .
$$

Consider a component L of \mathcal{L}_{r-1}. Suppose

$$
\left.L=L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right) \times Q_{r+2}\right) .
$$

Then by $(i), L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right)$ consists of $B=\left[-\frac{1}{2^{r-1}}, \frac{1}{2^{r-1}}\right] \times B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right)$, together with the tubes joining B to $T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}\right)$ and the bottom of B to $D\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r-1}\right)$.

Let $L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}, \epsilon_{r}\right)$ be the element obtained by joining

$$
B_{1}=\left[-\frac{1}{2^{r}}, \frac{1}{2^{r}}\right] \times B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}, \epsilon_{r}\right),
$$

together with tubes joining the top of B_{1} to

$$
T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r-1}, \epsilon_{r}\right)
$$

and the bottom of M_{1} to

$$
D\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r-1}, \delta_{r}\right)
$$

where $\delta_{n}=\left(\sigma_{n 2}, \sigma_{n 1}\right)$ if $\epsilon_{n}=\left(\sigma_{n 1}, \sigma_{n 2}\right)$. The joining should be done in such a way that condition (ii) of the inductive hypothesis and IH4 are satisfied.

This completes the construction.
Remark 3.2.1. Note that by the inductive construction, for each $L_{i} \in \mathcal{L}_{i}$, there exists $\operatorname{Pre}\left(L_{i}\right) \in \mathcal{L}_{i-1}$ such that $L_{i} \subset \operatorname{Pre}\left(L_{i}\right)$ and the inclusion map $L_{i} \rightarrow \operatorname{Pre}\left(L_{i}\right)$ is null homotopic. This implies that each element of the decomposition H associated with the defining sequence \mathcal{L} is cell-like.

Theorem 3.2.2. Let $\mathcal{L}=\left\{\mathcal{L}_{2}, \mathcal{L}_{5}, \mathcal{L}_{9}, \ldots\right\}$ be defined as above and satisfy all the conditions IH 1 through $\mathbf{I H} 4$. Then \mathcal{L} is a defining sequence. Let H be the decomposition associated with \mathcal{L}. Then H is an upper semicontinuous decomposition of Q, and for each nondegenerate element h of $H, h \cap\{0\} \times Q_{2}$ is a single point in $\{0\} \times C^{\infty}$.

Proof. From the construction, we clearly see that \mathcal{L} is a defining sequence, and hence by Theorem 1.3.21 the decomposition H is upper semicontinuous. Also the induction hypothesis IH2 implies that for each nondegenerate $h \in H, h \cap\{0\} \times Q_{2}$ is contained in $\{0\} \times C^{\infty}$.

Theorem 3.2.3. Let H be the decomposition associated with $\mathcal{L}=\left\{\mathcal{L}_{2}, \mathcal{L}_{5}, \mathcal{L}_{9}, \ldots\right\}$ in Theorem 3.2.2. Then H satisfies the following properties:
(1) If h is a non-degenerate decomposition element on H, and U is any open set in Q containing h, then there is a n-ball B^{n} such that $h \subset B^{n} \times Q_{n+1} \subset U$.
(2) Each non-degenerate element of H has dimension one.
(3) Let $\pi_{H}: Q \rightarrow Q / H$ be the quotient map. Let L be any element of \mathcal{L}_{r} for some r. Then π_{H} is one to one on the boundary of L.
(4) The set $\{0\} \times Q_{2}$ is mapped homeomorphically by the quotient map π_{H}.
(5) Every element of H is cellular.

Proof. For (1), this is true by the Tube Lemma from section 1, 1.3.2.
For (2), the connectedness of each non-generate element h of the decomposition H implies that the dimension of h is ≥ 1. Since by the condition IH1 for every L of \mathcal{L}_{n} there is a $\frac{1}{n}$-map from L to a 1 complex, by a result from dimension theory ([HW48], page 73) the dimension of h is ≤ 1. Hence, each non-degenerate element of H has dimension one.

Condition (3) follows from Lemma 1.3.11.

For (4), it suffices to show that π_{H} is one-to-one on $\{0\} \times Q_{2}$. Let $p=\{0\} \times p_{1}, q=$ $\{0\} \times q_{1} \in\{0\} \times Q_{2}$ be such that $\pi_{H}(p)=\pi_{H}(q)$. Then there is $h \in H$ so that $p, q \in h$. Thus, $p \in \cap S t^{2}\left(q, \mathcal{L}_{i}\right)$ and $q \in \bigcap_{i=1}^{\infty} S t^{2}\left(p, \mathcal{L}_{i}\right)$. Since elements P, Q in \mathcal{L}_{i} are pairwise disjoint, it follows that $p, q \in \cap_{i=1}^{\infty} S t\left(p, \mathcal{L}_{i}\right)$. If there is index i so that $p \notin L$ for all $L \in \mathcal{L}_{i}$, then $p=q$ since the map π_{H} is one-to-one on the complement of the elements of \mathcal{L}_{i}. Suppose that for each i there is $L_{i} \in \mathcal{L}_{i}$ such that $p \in L_{i}$. Then $q \in L_{i}$ for all i. Since $p, q \in\{0\} \times Q_{2}$, this forces $p, q \in\left[-\frac{1}{2^{i}}, \frac{1}{2^{i}}\right] \times B\left(\epsilon_{1}, \ldots, \epsilon_{\frac{(i)(i+1)}{2}-1}\right)$ for all i. Since the limit of diameter of each $\left[-\frac{1}{2^{2}}, \frac{1}{2^{2}}\right] \times B\left(\epsilon_{1}, \ldots, \epsilon_{\frac{(i)(i+1)}{2}-1}\right)$ is zero by $\mathbf{I H 2}$, this implies that $p=q$ and hence π_{H} is one-to-one on $\{0\} \times Q_{2}$.

For (5),(argument modified from [Ghi07]) let h be a nondegenerate decomposition element of H. We consider two cases.

Case 1: If h does not intersect any face of the Hilbert cube Q, then $h \subset s$, where s is the pseudo interior of Q. By Lemma 1.3.25, h is a Z-set and so by Lemma 1.3.30, h is cellular.

Case 2: Assume that h intersects the pseudo boundary of Q. To show that h is cellular, it suffices to show that $Q-h$ is S^{1}-trivial at ∞. Let U be a neighborhood of h and let $U=V$ and $f: S^{1} \rightarrow V-h$. Since h is compact and $f\left(S^{1}\right) \cap h=\emptyset$, there is a distance $\epsilon>0$ between $f\left(S^{1}\right)$ and h. By the tube lemma, there is an integer $n>0$ such that

$$
h \subset B^{n} \times Q_{n+1} \subset U \text { and } f\left(S^{1}\right) \subset U-B^{n} \times Q_{n+1} .
$$

Let F be any contraction of f in general position with respect to the boundary of I^{n}. Since h intersects the pseudo boundary of Q, this implies that B^{n} intersects ∂I^{n} in a finite number of disjoint components. Removing these components from $\partial I^{n} \cong S^{n-1}, n \geq 4$ leaves a simply connected component. Let us write the map F as $\left(F_{n}, F_{Q_{n+1}}\right)$ where $F_{n}: B^{2} \rightarrow B^{n}$ and $F_{Q_{n+1}}: B^{2} \rightarrow Q_{n+1}$. Consider $F_{n}^{-1}\left(\partial B^{n}\right)$. Notice that $F_{n}^{-1}\left(\partial B^{n}\right)$ is a
collection of a finite number of closed curves. That is,

$$
F_{n}^{-1}\left(\partial B^{n}\right)=\left\{J_{i} \mid J_{i} \text { is a closed curve in } B^{2}, i=1, \ldots, r\right\}
$$

Let $J \in F_{n}^{-1}\left(\partial B^{n}\right)$. Let H_{J} be a disc in B^{2} with boundary J. Then we can extend the map $\left.F_{n}\right|_{J}$ to a map $\left.F_{n}^{\prime}\right|_{H_{j}}$ on ∂B^{n}. Taking the innermost components of $F_{n}^{-1}\left(\partial B^{n}\right)$ one at a time, we can adjust the map F_{n} to a map G_{n} on ∂B^{n}. In this manner we can extend the map f to the map G from B^{2} to $U-h$. This shows that $Q-h$ is S^{1}-trivial at ∞. Then by Lemma 1.3.30, h is cellular in Q.

Lemma 3.2.4. Let $L=B \cup T \cup D$ together with the tubes joining these be a fixed element in \mathcal{L}_{r} for some r. Then for any virtually I-essential maps $f_{1}: D_{1} \rightarrow T$ and $f_{2}: D_{1} \rightarrow D$, there is an $\delta>0$ so that if $f_{1}^{\prime}, f_{2}^{\prime}$ are maps within δ of f_{1} and f_{2} respectively and in general position with respect to \mathcal{L}_{r+1}, then there is a component $L \supset L^{\prime}=B^{\prime} \cup T^{\prime} \cup D^{\prime}$ together with the tubes joining these and discs with holes $D_{1}^{\prime} \subset D_{1}, D_{2}^{\prime} \subset D_{2}$ such that f_{1}^{\prime} and f_{2}^{\prime} are virtually I-essential into T^{\prime} and D^{\prime} respectively.

Proof. This desired result follows inductively by the condition IH4. For more details, see [Gar91].

Corollary 3.2.5. Let f and g be maps from B^{2} to $[2,3] \times Q_{2}$ and B^{2} to $[-3,-2] \times Q_{2}$, respectively, with $f\left(\partial B^{2}\right)=l_{1}$ and $g\left(\partial B^{2}\right)=l_{2}$ and $\epsilon>0$. If f^{\prime} and g^{\prime} are such that $f^{\prime}\left(\partial B^{2}\right)$ and $g^{\prime}\left(\partial B^{2}\right)$ are ϵ approximations to $f\left(\partial B^{2}\right)$ and $g\left(\partial B^{2}\right)$, then both $f^{\prime}\left(\partial B^{2}\right)$ and $g^{\prime}\left(\partial B^{2}\right)$ intersect a common element h of H.

Proof. This follows from Lemma 3.2.4.

Lemma 3.2.6. (argument modified from [Gar91]) Let H be as in Theorem 3.2.2, and let A be a dense subset of $\{0\} \times C^{\infty}$. Let L be a fixed component of some \mathcal{L}_{k}. Let f and g be maps from B^{2} into Q, in general position with respect to \mathcal{L}_{k}, transverse to $\{0\} \times Q_{2}$, with
$\left.\left(f\left(B^{2}\right) \cup g\left(B^{2}\right)\right) \cap\{0\} \times Q_{2}\right)$ contained in the complement of \mathcal{L}_{k}. Then there exist maps f^{\prime} and g^{\prime} from B^{2} into Q with

$$
\left.f^{\prime}\right|_{B^{2} \backslash\left(f^{-1}(L)\right)}=\left.f\right|_{B^{2} \backslash\left(f^{-1}(L)\right)} \quad,\left.\quad g^{\prime}\right|_{B^{2} \backslash\left(g^{-1}(L)\right)}=\left.g\right|_{B^{2} \backslash\left(g^{-1}(L)\right)}
$$

and satisfying the following conditions:
(i) If $h \in H, h \subset L$ and both $g^{\prime}\left(B^{2}\right)$ and $f^{\prime}\left(B^{2}\right)$ intersect h, then $h \cap\{0\} \times C^{\infty} \in A$.
(ii) If $h \in H, h \subset L$ and $g^{\prime}\left(B^{2}\right)$ intersects h and $f^{\prime}\left(B^{2}\right)$ does not intersect h, then $h \cap\{0\} \times C^{\infty}$ has no triadic rational coordinates in C^{∞}.
(iii) If $h \in H, h \subset L$ and $f^{\prime}\left(B^{2}\right)$ intersects h and $g^{\prime}\left(B^{2}\right)$ does not intersect h, then $h \cap\{0\} \times C^{\infty}$ has no triadic rational coordinates in C^{∞}.

Proof. The result will be obtained by successively pushing f and g off certain components of \mathcal{L}_{i} for $i>k$. Note that in higher dimension, if maps f and g intersect an element $L \in \mathcal{L}_{i}$ where L consists of B joining T at the top and joining D at the bottom with regular tubes G_{1} and G_{2}, then the intersection of f with L and the intersection of g with L can be adjusted so as to miss the tubes G_{1} and G_{2}.

Let $L=L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right)$ be as in the construction above. The maps f^{\prime} and g^{\prime} will be inductively constructed.

If both $f\left(B^{2}\right)$ and $g\left(B^{2}\right)$ intersect L, replace f and g by maps f_{1} and g_{1} so that

$$
\left.f_{1}\right|_{B^{2} \backslash\left(f^{-1}(L)\right)}=\left.f\right|_{B^{2} \backslash\left(f^{-1}(L)\right)} \text { and }\left.g_{1}\right|_{B^{2} \backslash\left(g^{-1}(L)\right)}=\left.g\right|_{B^{2} \backslash\left(g^{-1}(L)\right)}
$$

and so that $f_{1}\left(B^{2}\right) \cap L$ is contained in
$(*) \bigcup T\left(\epsilon_{1}, \ldots, \epsilon_{k},\left(\sigma_{(k+1) 1}^{1}, \sigma_{(k+1) 2}\right)\right) \bigcup\left(\bigcup D\left(\delta_{1}, \ldots, \delta_{k},\left(\sigma_{(k+1) 1}^{1}, \sigma_{(k+1) 2}\right)\right)\right)$
and that $g_{1}\left(B^{2}\right) \cap M$ is contained in

$$
(* *) \bigcup T\left(\epsilon_{1}, \ldots, \epsilon_{k},\left(\sigma_{(k+1) 1}^{2}, \sigma_{(k+1) 2}\right)\right) \bigcup\left(\bigcup D\left(\delta_{1}, \ldots, \delta_{k},\left(\sigma_{(k+1) 1}^{2}, \sigma_{(k+1) 2}\right)\right)\right)
$$

where $\sigma_{(k+1) 1}^{m}=\left(m, \tau_{2}, \ldots, \tau_{n_{k+1}}\right) \notin \overline{1} \cup \overline{2}$ for $m, \tau_{i} \in\{1,2\}$.
(i) If both $f_{1}\left(B^{2}\right)$ and $g_{1}\left(B^{2}\right)$ intersect an element N of \mathcal{L}_{k+1} contained in L, with $N=L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k+1}\right)$, let $T_{1}=T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k+1}\right)$, and $D_{1}=D\left(\delta_{1}, \delta_{2}, \ldots, \delta_{k+1}\right)$. By ($\left.{ }^{*}\right)$ and $\left({ }^{* *}\right)$, it then follows that either $f_{1}\left(B^{2}\right) \cap N$ is contained in T_{1} and $g_{1}\left(B^{2}\right) \cap N$ is contained in D_{1}, or $f_{1}\left(B^{2}\right) \cap N$ is contained in D_{1} and $g_{1}\left(B^{2}\right) \cap N$ is contained in T_{1}. At this point fix an element $h \in H$ contained in N with $h \cap\{0\} \times C^{\infty} \subset A$.

For each such N, maps f_{i} and $g_{i}, i \geq 2$, can be defined inductively so that at stage j, the only element of \mathcal{L}_{k+j} contained in N that both $f_{j}\left(B^{2}\right)$ and $g_{j}\left(B^{2}\right)$ intersect is the element containing h, so that

$$
\left.f_{j}\right|_{B^{2} \backslash\left(f_{j-1}^{-1}\left(\cup \mathcal{L}_{k+j-1}\right)\right)}=\left.f_{j-1}\right|_{B^{2} \backslash\left(f_{j-1}^{-1}\left(\cup \mathcal{L}_{k+j-1}\right)\right)}
$$

and so that

$$
\left.g_{j}\right|_{B^{2} \backslash\left(g_{j-1}^{-1}\left(\cup \mathcal{L}_{k+j-1}\right)\right)}=\left.g_{j-1}\right|_{B^{2} \backslash\left(g_{j-1}^{-1}\left(\cup \mathcal{L}_{k+j-1}\right)\right)}
$$

The fact that the diameters of the components of \mathcal{T}_{i} and \mathcal{D}_{i} go to zero allows one to define $f^{\prime \prime}$ and $g^{\prime \prime}$ as the limits of the maps f_{i} and g_{i} respectively. The maps thus obtained satisfy condition (i).
(ii) If at some stage $j \geq k, f^{\prime \prime}\left(B^{2}\right)$ intersects an element N of \mathcal{L}_{j}, and $g^{\prime \prime}$ does not, then a map f^{\prime} will be inductively constructed so that f^{\prime} and $g^{\prime \prime}$ satisfy both conditions (i) and (ii).

Case 1: If $f^{\prime \prime}\left(B^{2}\right)$ intersects the element N of \mathcal{L}_{j} both in $I_{+}^{n}=[0,3] \times I^{n-1}$ and in $I_{-}^{n}=[-3,0] \times I^{n-1}$ for all n, fix an element h of H so that $h \in N$ and so that $h \cap\{0\} \times C^{\infty}$ has no triadic rational coordinates in C^{∞}. The map $f^{\prime \prime}$ will be replaced by f^{\prime} so that if $f^{\prime}\left(B^{2}\right)$ intersects any element of H contained in N both in I_{+}^{n} and in I_{-}^{n} for all n, then this element must be in $H\left(f^{\prime \prime}\right)$. As a first approximation, define f_{1} so that

$$
\left.f_{1}\right|_{B^{2} \backslash\left(f^{-1}(N)\right)}=\left.f^{\prime \prime}\right|_{B^{2} \backslash\left(f^{-1}(N)\right)}
$$

and so that $f_{1}\left(B^{2}\right) \cap N$ is contained in

$$
\left(\bigcup T\left(\epsilon_{1}, \ldots, \epsilon_{j},\left(\sigma_{(j+1) 1}, \sigma_{(j+1) 2}\right)\right) \bigcup\left(\bigcup D\left(\delta_{1}, \ldots, \delta_{j},\left(\sigma_{(j+1) 1}^{\prime}, \sigma_{(j+1) 2}\right)\right)\right)\right.
$$

Here $\sigma_{(j+1) 1}$ and $\sigma_{(j+1) 1}^{\prime}$ are chosen to correspond to the element of \mathcal{L}_{j+1} that contains h. It then follows that the element of \mathcal{L}_{j+1} contained in N that f_{1} intersects both in I_{+}^{n} and in I_{-}^{n} for all n, is the element containing $h \in H\left(f^{\prime \prime}\right)$.

We can now continue inductively, defining maps $f_{i}, i \geq 2$, so that at stage p, the element of \mathcal{L}_{j+p} contained in N that $f_{p}\left(B^{2}\right)$ intersects both in I_{+}^{n} and in I_{-}^{n} for all n, is the element containing $h \in H\left(f^{\prime \prime}\right)$, and so that

$$
\left.f_{p}\right|_{B^{2} \backslash\left(f_{p-1}^{-1}\left(\cup \mathcal{L}_{j+p-1}\right)\right)}=\left.f_{p-1}\right|_{B^{2} \backslash\left(f_{p-1}^{-1}\left(\cup \mathcal{L}_{j+p-1}\right)\right)}
$$

The map f^{\prime} will be defined as the limit of the maps f_{i}.
Case 2: Suppose $f^{\prime \prime}\left(B^{2}\right)$ intersects the element N of \mathcal{L}_{j} only in I_{+}^{n} or in I_{-}^{n} for some n. For each such N, maps $f_{i}, i \geq 2$, can be defined inductively so that if $f_{i}\left(B^{2}\right)$ intersects an element $L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{j+i}\right)$ of \mathcal{L}_{j+i} contained in N, then the first components or the second components of $\epsilon_{j+i}=\left(\sigma_{(j+2 p) 1}, \sigma_{(j+2 p) 1}\right)$ are not in $\overline{1} \cup \overline{2}$. Moreover, we can require that

$$
\left.f_{i}\right|_{B^{2} \backslash\left(f_{i-1}^{-1}\left(\cup \mathcal{L}_{j+i-1}\right)\right)}=\left.f_{i-1}\right|_{B^{2} \backslash\left(f_{i-1}^{-1}\left(\cup \mathcal{L}_{j+i-1}\right)\right)}
$$

The fact that the diameters of the components of \mathcal{T}_{i} and \mathcal{D}_{i} is going to zero allows one to define f^{\prime} as the limits of the maps f_{i}. Theorem 2.5.4 implies that if f^{\prime} intersects an element h of H, then $h \cap\{0\} \times C^{\infty}$ has no triadic rational coordinates in C^{∞}.
(iii) A map g^{\prime} can be constructed just as f^{\prime} was constructed above, so that f^{\prime} and g^{\prime} satisfy conditions (i), (ii), and (iii). This completes the proof.

Theorem 3.2.7. The decomposition H described above is a cell-like decomposition of Q satisfying four properties, (P1), (P2), and (P3) listed as follows:

- (P1) For each nondegenerate element h of H,

$$
h \cap\{0\} \times Q_{2}
$$

is a single point in $\{0\} \times C^{\infty}$

- (P2) Let f_{1} and f_{2} be maps from B^{2} into Q / H and let A be any dense subset of C^{∞}. Then f_{1} and f_{2} are approximable by maps g_{1} and g_{2} satisfying:
(i) $g_{1}\left(B^{2}\right) \cap g_{2}\left(B^{2}\right) \subset \pi_{H}(A)$, and
(ii) if $p=\{0\} \times p^{\prime}$ is a point of $\{0\} \times C^{\infty}$ with

$$
\pi_{H}(p) \in\left(g_{1}\left(B^{2}\right) \backslash g_{2}\left(B^{2}\right)\right) \cup\left(g_{2}\left(B^{2}\right) \backslash g_{1}\left(B^{2}\right)\right)
$$

then p^{\prime} has no triadic rational coordinates.

- (P3) Q / H has nonmanifold part equal to $\pi_{H}\left(\{0\} \times C^{\infty}\right) \cong\{0\} \times C^{\infty}$.

Proof. Let h be a nondegenerate element of H. Then by Lemma 3.2.2

$$
h \cap\{0\} \times Q_{2}
$$

is a single point in $\{0\} \times C^{\infty}$. So (P1) is satisfied.
For (P2), let f_{1} and f_{2} be maps from B^{2} into Q / H and let A be any dense subset of $\{0\} \times C^{\infty}$. Then by approximate lifting there are lifts $f^{\prime \prime}$ and $g^{\prime \prime}$ from B^{2} to Q so that the following are satisfied:
(1) $f^{\prime \prime}\left(B^{2}\right) \cap g^{\prime \prime}\left(B^{2}\right)=\emptyset$;
(2) $f^{\prime \prime}$ and $g^{\prime \prime}$ are transverse with respect to $\{0\} \times Q_{2}$;
(3) $f^{\prime \prime}\left(B^{2}\right) \cap\{0\} \times C^{\infty}=\emptyset=g^{\prime \prime}\left(B^{2}\right) \cap\{0\} \times C^{\infty}$;
(4) $\rho\left(\pi_{H} \circ f^{\prime \prime}, f_{1}\right)<\frac{\epsilon}{3}$ and $\rho\left(\pi_{H} \circ g^{\prime \prime}, f_{2}\right)<\frac{\epsilon}{3}$.

Then by (2), there is a stage $\mathcal{L}_{r_{0}}$ in the defining sequence for H so that $\left(f^{\prime \prime}\left(B^{2}\right) \cup g^{\prime \prime}\left(B^{2}\right)\right) \cap$ $\{0\} \times Q_{2}$ is contained in the complement of $\mathcal{L}_{r_{0}}$ and so that the diameter of $\pi_{H}(L)$ is less than $\frac{\epsilon}{3}$ for all $L \in \mathcal{L}_{r_{0}}$. A further general position adjustment puts $f^{\prime \prime}$ and $g^{\prime \prime}$ in general position with respect to all elements of $\mathcal{L}_{r_{0}}$. By Lemma 3.2 .6 we can find maps f^{\prime} and g^{\prime} so that $\pi_{H} \circ f^{\prime}$ and $\pi_{H} \circ g^{\prime}$ are the desired approximations.

Finally, let p be any point of $\pi_{H}\left(\{0\} \times C^{\infty}\right)$ and U be an ϵ neighborhood of p. By (P1), it is clear that the image of the nondegenerate element of H is contained in $\pi_{H}\left(\{0\} \times C^{\infty}\right)$ and so it implies that the nonmanifold part of Q / H is contained in $\pi_{H}\left(\{0\} \times C^{\infty}\right)$. To complete the proof, it suffices to show that the disjoint discs property fails in U [Edw80]. Given $L=B \cup T \cup D$ together with the tubes joining these of some \mathcal{L}_{k} so that $\pi_{H}(L)$ is contained in the $\frac{\epsilon}{4}$ neighborhood of p. Choose $f_{1}, f_{2}: B^{2} \rightarrow Q$ so that f_{1} is an I-essential map into T and f_{2} is an I-essential into D. Let $f_{1}^{\prime}=\pi_{H} \circ f_{1}$ and $f_{2}^{\prime}=$ $\pi_{H} \circ f_{2}$. If $f_{1}^{\prime}\left(B^{2}\right) \cap f_{2}^{\prime}\left(B^{2}\right)=\emptyset$, then there are approximate lifts $f_{1}^{\prime \prime \prime}, f_{2}^{\prime \prime \prime}: B^{2} \rightarrow Q$ so that $\left.f_{1}^{\prime \prime \prime}\right|_{\partial B^{2}}$ and $\left.f_{2}^{\prime \prime \prime}\right|_{\partial B^{2}}$ are ϵ^{\prime} approximations to $\left.f_{1}\right|_{\partial B^{2}}$ and $\left.f_{2}\right|_{\partial B^{2}}$, and so that $\pi_{H} \circ f_{1}^{\prime \prime \prime}\left(B^{2}\right) \cap \pi_{H} \circ f_{2}^{\prime \prime \prime}\left(B^{2}\right)=\emptyset$. This leads to a contradiction by Lemma 3.2.4. Assume that $f_{1}^{\prime}\left(B^{2}\right) \cap f_{2}^{\prime}\left(B^{2}\right) \neq \emptyset$. Then there is a δ so that if $f_{1}^{\prime \prime}$ and $f_{2}^{\prime \prime}$ are lifts of $\frac{\delta}{2}$ approximations of f_{1}^{\prime} and f_{2}^{\prime} with $\pi_{H} \circ f_{1}^{\prime \prime}$ and $\pi_{H} \circ f_{2}^{\prime \prime}$ within δ of f_{1}^{\prime} and f_{2}^{\prime}, then $\left.f_{1}^{\prime \prime}\right|_{\partial B^{2}}$ and $\left.f_{2}^{\prime \prime}\right|_{\partial B^{2}}$ are within ϵ^{\prime} of $\left.f_{1}\right|_{\partial B^{2}}$ and $\left.f_{2}\right|_{\partial B^{2}}$. It follows by Lemma 3.2.4 that any $\frac{\delta}{2}$ approximations of f_{1}^{\prime} and f_{2}^{\prime} have a common point of U in their image.

Corollary 3.2.8. Let H be the decomposition of Hilbert Cube Q defined in theorem 3.2.2. Then Q / H does not satisfy the DDP, and hence $Q / H \neq Q$.

Proof. This follows from (P3).
In the next section we will investigate further properties of the decomposition Q / H.

3.3 Additional Properties of Q / H

Recall that [DW81] and [Lay80] contain information on Čech carriers. The construction of the decomposition space Q / H of the Hilbert cube associated with the defining sequence \mathcal{L} was done in the previous section, and at the end of section we showed that Q / H does not satisfy the DDP and so $Q / H \not \approx Q$. However, Q / H does satisfy the Disjoint Cech Carrier Property, see the Definition 1.7.7. Thus, the main goal of this section is to prove that the decomposition Q / H satisfies the following properties:

1. Q / H satisfies the Disjoint Cech Carrier Property.
2. Q / H is an ANR.
3. $Q / H \times I^{2} \cong Q$.

Lemma 3.3.1. Let $\mathcal{L}=\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \ldots\right\}$ be the defining sequence defined in Theorem 3.2.2. Then \mathcal{L} is sharp.

Proof. By properties (3) and (4) of Theorem 3.2.3, the defining sequence \mathcal{L} is sharp.

Lemma 3.3.2. Let H be the decomposition of Hilbert Cube Q defined in Theorem 3.2.2. Then Q / H is an $A N R$

Proof. By Lemma 3.3.1 and Lemma 1.3.36, Q / H is an ANR.
Lemma 3.3.3. [Lay80] Let \mathcal{L} be the defining sequence of Q defined as above. Let $k \geq 1$ be fixed and $L \in \mathcal{L}_{k}$. Then for each $j>k$, if W is compact subset of Q with $W \subset \operatorname{Int}(L)$, then

$$
W \cap \pi^{-1}(\pi(\partial L) \text { is } 1 \text {-dimensional. }
$$

Proof. (modified from [Lay80]) Fix $k \geq 1$ and $L \in \mathcal{L}_{k}$. Let $r>k$, then $L_{j}=L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r}\right) \times$ $Q_{m(r)+3}$ of \mathcal{L}_{r} is a manifold so that $L\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r}\right)$ is composed of the $B_{j}=\left[-\frac{1}{2^{r}}, \frac{1}{2^{r}}\right] \times$
$B\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r}\right)$, together with the tubes joining the top of B to $T_{j}\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{r}\right)$ and the bottom of B_{j} to $D_{j}\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right)$. That is,

$$
L_{j}=\left(T_{j} \cup B_{j} \cup D_{j} \cup B^{r+1} \times I\right) \times Q_{r+3}
$$

where $\operatorname{diam}\left(T_{j}\right)<\frac{1}{j}$ and $\operatorname{diam}\left(D_{j}\right)<\frac{1}{j}$. If $L_{j} \cap \partial L \neq \emptyset$, then

$$
\left(B_{j} \times Q_{m(r)+3}\right) \cap \partial L \neq \emptyset .
$$

Let W be a compact subset contained in $\operatorname{Int}(L)$. Note that

$$
\pi_{H}^{-1}\left(\pi_{H}(L)\right)=A_{1} \cup A_{2}
$$

where

$$
A_{1}=\left\{x \in \partial L \mid \pi_{H}^{-1}\left(\pi_{H}\right)(x)=\{x\}\right\}
$$

and

$$
A_{2}=\cup\left\{\pi_{H}^{-1}\left(\pi_{H}\right)(x) \mid \pi_{H}^{-1}\left(\pi_{H}\right)(x) \neq\{x\}, x \in \partial L\right\}
$$

Since $W \subset \operatorname{Int}(L)$, it follows that $W \cap A_{1}=\emptyset$. Thus, $W \cap \pi_{H}^{-1}\left(\pi_{H}(L)\right)=W \cap A_{2}$. Note also that for all $x \in \partial L \backslash A_{1}$,

$$
\pi_{H}^{-1}\left(\pi_{H}\right)(x)=\cap S t\left(x, \mathcal{L}_{i}\right) .
$$

Since elements in each \mathcal{L}_{i} are pairwise disjoint, for all $i, S t\left(x, \mathcal{L}_{i}\right)=L_{x i}$ for some $L_{x i} \in \mathcal{L}_{i}$. Since $W \cap \partial L=\emptyset$, it follows that there exists i_{0} so that for each $i>i_{0}$

$$
\pi_{H}^{-1}\left(\pi_{H}(\partial L)\right) \subset \cup_{x \in \partial L \backslash A_{1}} L_{x i}
$$

and

$$
W \cap \pi_{H}^{-1}\left(\pi_{H}(\partial L)\right)=W \cap A_{2} \subset \cup_{x \in \partial L \backslash A_{1}}\left(T_{x i} \cup D_{x i} \cup B^{r+1} \times I\right) \times Q_{m(r)+3}
$$

It is clear that $\left\{\left(T_{x i} \cup D_{x i} \cup B^{r+1} \times I\right)\right\}_{x \in \partial L \backslash A_{1}}$ is finite and each admits $\frac{1}{i+1}$ - map to a 1-complex. Therefore, $W \cap A_{2}$ is 1-dimensional.

Lemma 3.3.4. Let $\mathcal{L}=\left\{\mathcal{L}_{2}, \mathcal{L}_{5}, \mathcal{L}_{9}, \ldots\right\}$ be the defining sequence constructed in the previous section, let H be the decomposition associated with \mathcal{L}, and let $\pi_{H}: Q \rightarrow Q / H$ be the natural quotient map. Let $\partial \mathcal{L}=\cup_{i \geq 1}\left\{\partial L: L \in \mathcal{L}_{i}\right\}$. Then $\pi_{H}\left(N_{\pi_{H}}\right)-\pi_{H}(\partial \mathcal{L})$ is 0-dimensional.

Proof. We will show that $\pi_{H}\left(N_{\pi_{H}}\right)-\pi_{H}(\partial \mathcal{L})$ is 0 -dimensional at each point $S \in \pi_{H}\left(N_{\pi_{H}}\right)-$ $\pi_{H}(\partial \mathcal{L})$. Let $S \in \pi\left(N_{\pi_{H}}\right)-\pi_{H}(\partial \mathcal{L})$ and U be an open neighborhood of S in Q / H. Then $V=\pi^{-1}(U)$ is open in Q. Let

$$
V^{*}=\cup\{g \in H \mid g \subset V\}
$$

Since H is upper semicontinuous, V^{*} is saturated open in Q. Then $\pi\left(V^{*}\right)$ is open in Q / H which implies that $W=\pi\left(V^{*}\right) \cap\left(\pi_{H}\left(N_{\pi_{H}}\right)-\pi_{H}(\partial \mathcal{L})\right)$ is open in $\pi_{H}\left(N_{\pi_{H}}\right)-\pi_{H}(\partial \mathcal{L})$. Clearly, $\partial W=\emptyset$ and $W \subset U$. Then it follows that $\pi_{H}\left(N_{\pi}\right)-\pi_{H}(\partial \mathcal{L})$ is $0-$ dimensional at point S. Since S is arbitrary, $\pi_{H}\left(N_{\pi_{H}}\right)-\pi_{H}(\partial \mathcal{L})$ is $0-$ dimensional.

Recall that H_{*}, \check{H}_{*} denote the singular and Čech homology respectively with respect to integer coefficients.

Corollary 3.3.5. For the decomposition H associated with the defining sequence \mathcal{L}, $\pi^{-1}(x)$ has infinite codimension in Q for every $x \in Q / H$.

Proof. Let $x \in Q / H$. If $x \notin \pi_{H}\left(N_{\pi_{H}}\right)$, then $\pi_{H}^{-1}(x)$ is a singleton in Q and hence it has infinite codimension in Q. Assume that $x \in \pi_{H}\left(N_{\pi_{H}}\right)$. It follows from Theorem 3.3.4 that x is one dimensional. Then by Lemma 1.7.4[DW81], $\pi_{H}^{-1}(x)$ has infinite codimension in Q.

We will use the following theorem to show that points in Q / H have infinite codimension.

Theorem 3.3.6. [Beg50](Vietoris-Begle Mapping Theorem) Let X and Y be compact metric spaces, and let $f: X \rightarrow Y$ be surjective and continuous. Suppose

$$
H_{i}^{\#}\left(f^{-1}(x)\right) \cong 0, \quad i=0,1, \ldots, n-1, \quad \text { for } \quad x \in Y
$$

Then $H_{i}^{\#}(X) \cong H_{i}^{\#}(Y)$.

Note that this also can apply to the homology of pairs and the conditions on $f^{-1}(x)$ are satisfied for cell-like sets.

Corollary 3.3.7. Points in Q / H have infinite codimension in Q / H.

Proof. The result follows from Corollary 3.3 .5 and Theorem 3.3.6. For more details, see [Lay80].

Lemma 3.3.8. [Lay80] For each $i \geq 1$, let $L \in \mathcal{L}_{i} . Q / H$ has disjoint Čech carriers at $\pi_{H}(\partial L)$. Consequently, Q / H has disjoint Čech carriers at $\pi_{H}(\partial \mathcal{L})$.

Proof. (modified from [Lay80]) Let $V_{1} \subset U_{1}$ and $V_{2} \subset U_{2}$ be open pairs in Q / H. Let $q_{1}, q_{2} \geq 0$ and let

$$
z_{1} \in H_{q_{1}}\left(U_{1}, V_{1}\right), z_{2} \in H_{q_{2}}\left(U_{2}, V_{2}\right)
$$

Then choose

$$
\left.\bar{z}_{1} \in H_{q_{1}}\left(\pi_{H}\right)^{-1}\left(U_{1}\right), \pi_{H}^{-1}\left(V_{1}\right)\right), \bar{z}_{2} \in H_{q_{2}}\left(\pi_{H}^{-1}\left(U_{2}\right), \pi_{H}^{-1}\left(V_{2}\right)\right)
$$

such that $\left(\pi_{H}\right)_{*}\left(\bar{z}_{1}\right)=z_{1}$ and $\left(\pi_{H}\right)_{*}\left(\bar{z}_{2}\right)=z_{2}$. Since Q is a Q-manifold, it follows that there exist Čech carriers $\left(C_{1}, \partial C_{1}\right)$ for \bar{z}_{1} and $\left(C_{2}, \partial C_{2}\right)$ for \bar{z}_{2} such that $C_{1} \cap$ $C_{2}=\emptyset$. Let $\left(W_{1}, \partial W_{1}\right)$ be a compact neighborhood of $\left(C_{1}, \partial C_{1}\right)$ such that $\left(W_{1}, \partial W_{1}\right) \subset$ $\left(\pi_{H}^{-1}\left(U_{1}\right), \pi_{H}^{-1}\left(V_{1}\right)\right)$ and such that $W_{1} \cap C_{2}=\emptyset$. Then by Lemma 3.3.3,

$$
\operatorname{dim}\left(\pi_{H}^{-1}\left(\pi_{H}\left(C_{2} \cap \partial L\right)\right) \cap W_{1}\right) \leq 1
$$

This implies that

$$
\pi_{H}^{-1}\left(\pi_{H}\left(C_{2} \cap \partial L\right)\right) \cap W_{1}
$$

has infinite codimension in Q. Consider $\left(\operatorname{Int}\left(W_{1}\right), \operatorname{Int}\left(\partial W_{1}\right)\right)$, then since $\pi_{H}^{-1}\left(\pi_{H}\left(C_{2} \cap\right.\right.$ $\partial L)) \cap W_{1}$ has infinite codimension, we can choose a Cech carrier $\left(C_{1}^{\prime}, \partial C_{1}^{\prime}\right)$ for \bar{z}_{1} with

$$
\left(C_{1}^{\prime}, \partial C_{1}^{\prime}\right) \subset\left(\operatorname{Int}\left(W_{1}\right), \operatorname{Int}\left(\partial W_{1}\right)\right)
$$

and $C_{1}^{\prime} \cap \pi_{H}^{-1}\left(\pi_{H}\left(C_{2} \cap \partial L\right)\right)=\emptyset$. By a similar argument, we can find a Čech carrier C_{2}^{\prime} such that

$$
C_{2}^{\prime} \cap \pi_{H}^{-1}\left(\pi_{H}\left(C_{1}^{\prime} \cap \partial L\right)\right)=\emptyset=C_{1}^{\prime} \cap \pi_{H}^{-1}\left(\pi_{H}\left(C_{2}^{\prime} \cap \partial L\right)\right) .
$$

Now obtain disjoint compact neighborhoods ($\bar{W}_{i}, \partial \bar{W}_{i}$) of ($\left.C_{i}^{\prime}, \partial C_{i}^{\prime}\right), i=1,2$, such that $\left(\bar{W}_{i}, \partial \bar{W}_{i}\right) \subset\left(\pi_{H}^{-1}\left(U_{i}\right), \pi_{H}^{-1}\left(V_{i}\right)\right)$ and such that

$$
\bar{W}_{1} \cap \pi_{H}^{-1}\left(\pi_{H}\left(\bar{W}_{2} \cap \partial L\right)\right)=\emptyset=\bar{W}_{2} \cap \pi_{H}^{-1}\left(\pi_{H}\left(\bar{W}_{1} \cap \partial R\right)\right) .
$$

The set

$$
W=\pi_{H}^{-1}\left(\pi_{H}\left(\bar{W}_{1}\right) \cap \pi_{H}\left(\bar{W}_{2}\right) \cap \pi_{H}(\partial L)\right) \cap \partial L
$$

is a compact set disjoint from $\bar{W}_{1} \cup \bar{W}_{2}$. Find Čech carriers $\left(\bar{C}_{i}, \partial \bar{C}_{i}\right)$ for $\bar{z}_{i}, i=1,2$, such that $\left(\bar{C}_{i}, \partial \bar{C}_{i}\right) \subset\left(\bar{W}_{i}, \partial \bar{W}_{i}\right)$ and $\pi_{H}^{-1}\left(\pi_{H}(W)\right) \cap \bar{C}_{i}=\emptyset$. It follows that $\left(\pi_{H}\left(\bar{C}_{i}\right), \pi_{H}\left(\partial \bar{C}_{i}\right)\right)$ is a Čech carrier for $z_{i}, i=1,2$, and that $\pi_{H}\left(\bar{C}_{1}\right) \cap \pi_{H}\left(\bar{C}_{2}\right) \cap \pi_{H}(\partial A)=\emptyset$. Thus, Q / H has disjoint Čech carriers at $\pi_{H}(\partial L)$. By Lemma 1.7.13, Q / H has disjoint Čech carriers at $\pi_{H}(\partial \mathcal{L})$.

Lemma 3.3.9. Let A be a closed subset in $\pi_{H}\left(Q-N_{\pi_{H}}\right)$. Then Q / H has Disjoint Čech carriers at A.

Proof. Let $V_{1} \subset U_{1}$ and $V_{2} \subset U_{2}$ be open pairs in Q / H. Let $q_{1}, q_{2} \geq 0$ and let

$$
z_{1} \in H_{q_{1}}\left(U_{1}, V_{1}\right), z_{2} \in H_{q_{2}}\left(U_{2}, V_{2}\right) .
$$

Then choose

$$
\left.\bar{z}_{1} \in H_{q_{1}}\left(\pi_{H}\right)^{-1}\left(U_{1}\right), \pi_{H}^{-1}\left(V_{1}\right)\right), \bar{z}_{2} \in H_{q_{2}}\left(\pi_{H}^{-1}\left(U_{2}\right), \pi_{H}^{-1}\left(V_{2}\right)\right)
$$

such that $\left(\pi_{H}\right)_{*}\left(\bar{z}_{1}\right)=z_{1}$ and $\left(\pi_{H}\right)_{*}\left(\bar{z}_{2}\right)=z_{2}$. Since Q is a Q-manifold, it follows that there exist Čech carriers $\left(C_{1}, \partial C_{1}\right)$ for \bar{z}_{1} and $\left(C_{2}, \partial C_{2}\right)$ for \bar{z}_{2} such that $C_{1} \cap C_{2}=\emptyset$. Since $A \subset \pi_{H}\left(Q-N_{\pi_{H}}\right)$ and π_{H} is one-to-one on $Q-N_{\pi_{H}}$, it follows that $\pi_{H} \pi_{H}^{-1}(A)=A$. Thus consider $W_{1}=\pi_{H}\left(C_{1}\right), W_{2}=\pi_{H}\left(C_{2}\right)$. Then W_{1} and W_{2} are Čech Carriers for z_{1} and z_{2} respectively, and $W_{1} \cap W_{2} \subset \pi_{H}\left(N_{\pi}\right)$ and so $W_{1} \cap W_{2} \cap A=\emptyset$. Therefore, Q / H has Disjoint Čech Carriers at A.

Theorem 3.3.10. Q / H has the Disjoint Čech Carrier Property.
Proof. We will show that Q / H has Čech Carrier with inifinite codimension and then apply Lemma 1.7.11. First note that

$$
Q / H=\pi(\partial \mathcal{L}) \bigcup\left(\pi_{H}\left(N_{\pi_{H}}\right)-\pi(\partial \mathcal{L})\right) \bigcup \cup A_{i}
$$

where $\cup A_{i}=\pi_{H}\left(Q-N_{p i_{H}}\right)$ with A_{i} closed. By Lemma 3.3.8 and Lemma 3.3.9 Q / H has Disjoint Čech Carriers at $\pi \partial \mathcal{L}$ and A_{i}, respectively, and so at $U=\pi(\partial \mathcal{L}) \cup \cup A_{i}$ by Lemma 1.7.13. Then by Lemma 1.7.14, Q / H has Disjoint Čech Carrier C whose intersections with the set U have infinite codimension. But we know that

$$
C=(C \cap U) \bigcup\left(C \cap \left(\pi_{H}\left(N_{\pi_{H}}-\pi(\partial \mathcal{L})\right)\right.\right.
$$

which is the union of a set with infinite codimension (in Q / H) and a finite dimensional set, and so by Lemma 1.7.6, C has infinite codimension. Therefore, by Lemma 1.7.11, Q / H has the Disjoint Čech Carriers Property, completing the proof.

To prove that $Q / H \times I^{2}$ is a Q-manifold, we use Lemma 1.7.15. Now we prove the following theorem.

Theorem 3.3.11. Let H be a decomposition of Q defined as above. Then $Q / H \times I^{2}$ is a Q-manifold.

Proof. First note that Q / H is an ANR. By Lemma 3.3.10, we have Q / H has Disjoint Čech Carriers Property, and hence by Lemma 1.7.15, $Q / H \times I^{2}$ is a Q-manifold.

4. A DECOMPOSITION FROM THE CANTOR FUNCTION

The aim of this chapter is to produce another decomposition that will be used in obtaining the main results in the next section. This decomposition will be constructed using the Cantor function.

4.1 Product of Cantor Sets

Definition 4.1.1. Let $n \in \mathbb{Z}^{+}$. Define an interval $\Theta\left(k_{1}, \ldots, k_{n}\right)$ by

$$
\Theta\left(k_{1}, \ldots, k_{n}\right)=\left[\sum_{i=1}^{i=n} \frac{k_{i}}{3^{i}}, \sum_{i=1}^{i=n} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right] \text { for } k_{i} \in\{0,1,2\}
$$

Note: it is clear by the definition that the length of $\Theta\left(k_{1}, \ldots, k_{n}\right)$ is $\frac{1}{3^{n}}$.
Let

$$
C_{n}=\left\{\Theta\left(k_{1}, k_{2}, \ldots, k_{n}\right) \mid k_{i} \in\{0,2\}\right\} .
$$

Let $C_{1}^{c}=\{\Theta(1)\}$, and for $n \geq 2$, define

$$
C_{n}^{c}=\left\{\Theta\left(k_{1}, \ldots, k_{n-1}, 1\right) \mid k_{i} \in\{0,2\}\right\} .
$$

Let ∂C_{n} be the set of all end points of the intervals in C_{n}. If we unravel the notation of C_{n}, we see that

$$
\begin{aligned}
C_{1} & =\{\Theta(0), \Theta(2)]=\left\{\left[0, \frac{1}{3}\right],\left[\frac{2}{3}, 1\right]\right\} \\
C_{2} & =\{\Theta(0,0), \Theta(0,2), \Theta(2,0), \Theta(2,2)] \\
& =\left\{\left[0, \frac{1}{9}\right],\left[\frac{2}{9}, \frac{3}{9}\right],\left[\frac{6}{9}, \frac{7}{9}\right],\left[\frac{8}{9}, 1\right]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
C_{1}^{c} & =\left\{\left[\frac{1}{3}, \frac{2}{3}\right]\right\} \\
C_{2}^{c} & =\{\Theta(0,1), \Theta(2,1)]=\left\{\left[\frac{1}{9}, \frac{2}{9}\right],\left[\frac{7}{9}, \frac{8}{9}\right]\right\} \\
C_{3}^{c} & =\{\Theta(0,0,1), \Theta(0,2,1), \Theta(2,0,1), \Theta(2,2,1)] \\
& =\left\{\left[\frac{1}{27}, \frac{2}{27}\right],\left[\frac{7}{27}, \frac{8}{27}\right],\left[\frac{19}{27}, \frac{20}{27}\right],\left[\frac{25}{27}, \frac{26}{27}\right]\right\} .
\end{aligned}
$$

Note that for each n

$$
[0,1]=\cup C_{n} \cup\left(\cup_{j=1}^{n} C_{j}^{c}\right)
$$

Definition 4.1.2. For each $\Theta=\Theta\left(k_{1}, \ldots, k_{n}\right) \in C_{n} \cup C_{n}^{c}$ with $n \geq 2$, define

$$
J(\Theta)= \begin{cases}3 \Theta & \text { if } k_{1}=0 \\ 3 \Theta-2 & \text { if } k_{1}=2\end{cases}
$$

We can see from the definition that

$$
\begin{aligned}
3 \Theta(0,1) & =3\left[\frac{1}{9}, \frac{2}{9}\right]=\left[\frac{1}{3}, \frac{2}{3}\right] \in C_{1}^{c} \\
3 \Theta(2,1)-2 & =3\left[\frac{7}{9}, \frac{8}{9}\right]-2=\left[\frac{1}{3}, \frac{2}{3}\right] \in C_{1}^{c}
\end{aligned}
$$

The following lemma tells us that this is true for all $n \geq 2$.
Lemma 4.1.3. If $\Theta=\Theta\left(k_{1}, \ldots, k_{n}\right) \in C_{n} \cup C_{n}^{c}$ with $n \geq 2$, then $J(\Theta) \in C_{n-1} \cup C_{n-1}^{c}$.
Proof. Let $\Theta \in C_{n} \cup C_{n}^{c}$.
Case I: $\Theta \in C_{n}^{c}$. Assume that $\Theta=\Theta\left(k_{1}, \ldots, k_{n-1}, 1\right) \in C_{n}^{c}$ for some $k_{1}, \ldots, k_{n-1} \in$ $\{0,2\}$. If $k_{1}=0$, then

$$
\begin{aligned}
J(\Theta) & =3 \Theta \\
& =3 \Theta\left(k_{1}, \ldots, k_{n-1}, 1\right) \\
& =\left[3\left(\sum_{i=1}^{i=n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right), 3\left(\sum_{i=1}^{i=n-1} \frac{k_{i}}{3^{i}}+\frac{2}{3^{n}}\right)\right] \\
& =\left[\sum_{i=1}^{i=n-1} \frac{k_{i}}{3^{i-1}}+\frac{1}{3^{n-1}}, \sum_{i=1}^{i=n-1} \frac{k_{i}}{3^{i-1}}+\frac{2}{3^{n-1}}\right] \\
& =\Theta\left(k_{2}, \ldots, k_{n-1}, 1\right) \in C_{n-1}^{c}
\end{aligned}
$$

Similarly, if $k_{2}=2$, then

$$
J(\Theta)=3 \Theta-2=\Theta\left(k_{2}, \ldots, k_{n-1}, 1\right) \in C_{n-1}^{c}
$$

Case II: $\Theta \in C_{n}$
Assume that $\Theta=\Theta\left(k_{1}, \ldots, k_{n-1}, k_{n}\right) \in C_{n}^{c}$ for some $k_{1}, \ldots, k_{n} \in\{0,2\}$. If $k_{1}=0$, then

$$
\begin{aligned}
J(\Theta) & =3 \Theta \\
& =3 \Theta\left(k_{1}, \ldots, k_{n-1}, k_{n}\right) \\
& =\left[3\left(\sum_{i=1}^{i=n} \frac{k_{i}}{3^{i}}\right), 3\left(\sum_{i=1}^{i=n} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right)\right] \\
& =\left[\sum_{i=1}^{i=n} \frac{k_{i}}{3^{i-1}}, \sum_{i=1}^{i=n} \frac{k_{i}}{3^{i-1}}+\frac{1}{3^{n-1}}\right] \\
& =\Theta\left(k_{2}, \ldots, k_{n-1}, k_{n}\right) \in C_{n-1} .
\end{aligned}
$$

Similarly, if $k_{2}=2$, then

$$
J(\Theta)=3 \Theta-2=\Theta\left(k_{2}, \ldots, k_{n-1}, k_{n}\right) \in C_{n-1} .
$$

This completes the proof.
Now we will use the definition of C_{n} to define the Cantor set. That is, the Cantor set defined as:

$$
C=\bigcap_{n=0}^{\infty} \bigcup C_{n} .
$$

One can show that each element in C can be written as a ternary representation consisting entirely of zeros or twos.

The standard Cantor map $f: I \rightarrow I$ is also defined as a constant on the closure of each component of $I \backslash C$ and on C is defined by:

$$
f\left(\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}\right)=\sum_{i=1}^{\infty} \frac{a_{i}}{2^{i+1}},
$$

where a_{i} is either zero or two.

Remark 4.1.4. Let D be the set of all dyadic rationals in the closed unit interval. That $i s$,

$$
D=\left\{\left.\frac{m}{2^{n}} \in[0,1] \right\rvert\, m, n \in \mathbb{Z}\right\}
$$

1. If $d \in I$, the

$$
f^{-1}(d)= \begin{cases}1-\text { cell } & \text { if } d \in D \\ \text { singleton } & \text { if } d \notin D .\end{cases}
$$

2. $\left.f\right|_{C}$ is two-to-one over the dyadic rationals in D;
3. $\left.f\right|_{C}$ is one-to-one over the complement of dyadic rationals D;
4. f itself is one-to-one over the complement of dyadic rationals D.

By Remark 4.1.4, for $p \in C$,
p is triadic rational if and only if $f(p)$ is dyadic rational.
Thus, if $f(p)=\frac{m}{2^{n}}$ for some m, n, then by Remark 4.1.4(2), $p=\frac{2 k}{3^{n}}$ or $p=\frac{2 k+1}{3^{n}}$ for some k.

In [Cha91], Chalice proved that there is a sequence of step functions that converges to the Cantor function. Properties of the Cantor function as a limit of continuous function are also well known, see for example [Dob96]. Also see [DMRV06] for a survey of results about the Cantor function. For completeness, below we define a sequence $\left\{f_{n}\right\}$ of continuous functions on the unit interval that converges to the Cantor function and prove the standard results about these functions.

Let $f_{0}(x)=x$. Then, for each $n \in \mathbb{Z}^{+}$, the function f_{n+1} is defined in terms of function f_{n} as follows:

$$
f_{n+1}=\left\{\begin{array}{lll}
\frac{1}{2} f_{n}(3 x) & \text { for } & 0 \leq x \leq \frac{1}{3} \\
\frac{1}{2} & \text { for } & \frac{1}{3} \leq x \leq \frac{2}{3} \\
\frac{1}{2}+\frac{1}{2} f_{n}(3 x-2) & \text { for } & \frac{2}{3} \leq x \leq 1
\end{array}\right.
$$

Because $f_{n}(0)=0$ and $f_{n}(1)=1$ for all n, by induction, the function f_{n} is continuous.
Figure 4.1 below demonstrates the graphs of f_{n} for $n=0, \ldots, 3$.

FIGURE 4.1: The graph of f_{n} for $n=0,1,2,3$.

Also, we have the following lemma.

Lemma 4.1.5. For each n, let $\Theta \in C_{n} \cup \cup_{j=1}^{n} C_{j}^{c}$. Then we have the following:
1.

$$
f_{n}(\Theta)= \begin{cases}f_{n-1}(\Theta) & \text { if } \Theta \in \cup_{j=1}^{n-1} C_{j}^{c} \\ \sum_{i=1}^{n-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{n}} & \text { if } \Theta \in C_{n}^{c}\end{cases}
$$

2. f_{n} on Θ is a linear map joining $\left(l, f_{n}(l)\right)$ and $\left(r, f_{n}(r)\right)$ with slope $\left(\frac{3}{2}\right)^{n}$ if $\Theta \in C_{n}$ and l, r are the left and the right end points of Θ.

Proof. Let $\Theta \in C_{n} \cup \cup_{j=1}^{n} C_{j}^{c}$. We consider two cases.
Case I: $\Theta \in \cup_{j=1}^{n} C_{j}^{c}$, corresponding to the statement 1 . So, we will show the statement 1 by induction on n.

For $n=1, \Theta \in C_{1}^{c}=\left\{\left[\frac{1}{3}, \frac{2}{3}\right]\right\}$. Thus, $\Theta=\Theta(1)$ by definition of the function f_{1},

$$
f_{1}(\Theta)=\frac{1}{2}
$$

For $n=2$,

$$
\begin{aligned}
f_{2}(\Theta(0,1)) & =\frac{1}{4}=\frac{0}{4}+\frac{1}{2^{2}} \\
f_{2}(\Theta(2,1)) & =\frac{3}{4}=\frac{2}{4}+\frac{1}{2^{2}} \\
f_{2}(\Theta(1)) & =f_{1}(\Theta(1)) .
\end{aligned}
$$

Next, assume that for $n=k$, for $\Theta \in \cup_{j=1}^{k} C_{j}^{c}$,

$$
f_{k}(\Theta)= \begin{cases}f_{k-1}(\Theta) & \text { if } \quad \Theta \in \cup_{j=1}^{k-1} C_{j}^{c} \\ \sum_{i=1}^{k-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{k}} & \text { if } \quad \Theta=\Theta\left(k_{1}, \ldots, k_{k-1}, 1\right) \in C_{k}^{c}\end{cases}
$$

$\Theta\left(k_{1}, \ldots, k_{k}, 1\right)$.
We will show that it is also true for $n=k+1$. Let $\Theta \in \cup_{j=1}^{k+1} C_{j}^{c}$. If $\Theta \in \cup_{j=1}^{k} C_{j}^{c}$, then $\Theta=\Theta\left(k_{1}, \ldots, k_{l-1}, 1\right) \in C_{l}^{c}$ for some $l \leq k$. So, $J(\Theta) \in C_{l-1}^{c}$. By the definition of f_{k} and by the inductive hypothesis,

$$
f_{k}(\Theta)=\left\{\begin{array}{ll}
\frac{1}{2} f_{k-1}(J(\Theta))=\frac{1}{2} f_{k}(J(\Theta)) & \text { if } \\
\frac{1}{2}=0 \\
\frac{1}{2}+\frac{1}{2} f_{k-1}(J(\Theta))=\frac{1}{2}+\frac{1}{2} f_{k}(J(\Theta)) & \text { if }
\end{array} k_{1}=2 .\right.
$$

Then by the definition of f_{k+1} in either case we have

$$
f_{k+1}(\Theta)=f_{k}(\Theta)
$$

Assume that $\Theta \in C_{k+1}^{c}$. Then $\Theta=\Theta\left(k_{1}, \ldots, k_{k}, 1\right)$ for some $k_{1}, \ldots, k_{k} \in\{0,2\}$. So, $J(\Theta)=\Theta\left(k_{2}, \ldots, k_{k}, 1\right) \in C_{k}^{c}$. By the inductive hypothesis, we have

$$
f_{k}(J(\Theta))= \begin{cases}\sum_{i=1}^{k} \frac{k_{i}}{2^{i}}+\frac{1}{2^{k}} & \text { if } k_{1}=0 \\ \sum_{i=2}^{k} \frac{k_{i}}{2^{i}}+\frac{1}{2^{k}} & \text { if } k_{1}=2\end{cases}
$$

It follows that

$$
f_{k+1}(\Theta)= \begin{cases}\frac{1}{2} f_{k}(J(\Theta))=\frac{1}{2}\left(\sum_{i=1}^{k} \frac{k_{i}}{2^{i}}+\frac{1}{2^{k}}\right)=\sum_{i=1}^{k} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{k+1}} & \text { if } k_{1}=0 \\ \frac{1}{2}+\frac{1}{2} f_{k}(J(\Theta))=\frac{1}{2}+\frac{1}{2}\left(\sum_{i=2}^{k} \frac{k_{i}}{2^{i}}+\frac{1}{2^{k}}\right)=\sum_{i=1}^{k} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{k+1}} & \text { if } k_{1}=2\end{cases}
$$

Case II: $\Theta \in C_{n}$. We will show that f_{n} is a linear map joining the left and the right end points of Θ with the slope $\left(\frac{3}{2}\right)^{n}$. Again we will prove this by induction on n.

For $n=1$,

$$
\begin{aligned}
& f_{1}(x)=\frac{1}{2}(3 x) \text { for all } x \in \Theta(0)=\left[0, \frac{1}{3}\right] \\
& f_{1}(x)=\frac{1}{2}+\frac{1}{2}(3 x-2) \text { for all } x \in \Theta(0)=\left[\frac{2}{3}, 1\right] .
\end{aligned}
$$

Assume that for $n=k$, if $\Theta \in C_{k}$, then f_{k} is a linear map joining the left and the right end points of Θ with the slope $\left(\frac{3}{2}\right)^{n}$. We will show that this statement in also true for $n=k+1$. Let $\Theta \in C_{k+1}$. Then $\Theta=\Theta\left(k_{1}, \ldots, k_{k+1}\right)$ for some $k_{1}, \ldots, k_{k+1} \in\{0,2\}$. So, $J(\Theta) \in C_{k}$. By the inductive hypothesis, f_{k} is a linear function joining the right and left end point of $J(\Theta)$ with the slope $\left(\frac{3}{2}\right)^{k}$. Thus, by the definition of function f_{k+1}, on Θ,

$$
f_{k+1}(x)= \begin{cases}\frac{1}{2} f_{k}(3 x) & \text { if } k_{1}=0 \text { and } 3 x \in J(\Theta) \\ \frac{1}{2}+\frac{1}{2} f_{k}(3 x-2) & \text { if } k_{1}=2 \text { and } 3 x-2 \in J(\Theta)\end{cases}
$$

Since f_{k} is a linear function on $J(\Theta)$, it is clear that f_{k+1} is a linear function on Θ joining the left and the right end points of I with the slope $\left(\frac{3}{2}\right)^{k+1}$.

The following Figure 4.2 shows the graphs of f_{n} and f_{n-1} on the same axis.
Let $g: I \rightarrow I$ be defined by

$$
g(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

Later in Lemma 4.1 .9 we will show that g exists by showing that f_{n} is uniformly Cauchy on $[0,1]$.

FIGURE 4.2: The graph of f_{n} and f_{n-1} for $n=0, \ldots, 4$ on the same axis

Lemma 4.1.6. Let $T R$ be the set of all triadic rationals in the unit interval. That is,

$$
T R=\left\{\left.\frac{m}{3^{n}} \in[0,1] \right\rvert\, m, n \in \mathbb{Z}\right\}
$$

Then f and g agree on the set $T R$.

Proof. If $p=0$ or $p=1$, then it is obvious that $f(p)=g(p)$. Next assume that $p \neq 0,1$.
Let $p=\frac{m}{3^{n}} \in T R$ for some m, n. Then $p \in C_{n} \cup\left(\cup_{j=1}^{n} C_{j}^{c}\right)$.
Case I: $p \in C_{n}$. Then $p \in \Theta\left(k_{1}, \ldots, k_{n}\right) \in C_{n}$ for some $k_{1}, \ldots, k_{n} \in\{0,2\}$. That is, $p \in\left[\sum_{i=1}^{n} \frac{k_{i}}{3^{i}}, \sum_{i=1}^{n} \frac{k_{i}}{3^{n}}+\frac{1}{3^{n}}\right]$. Since $\Theta\left(k_{1}, \ldots, k_{n}\right)$ has length $\frac{1}{3^{n}}$ and $p \in \Theta\left(k_{1}, \ldots, k_{n}\right)$, this implies $p=\sum_{i=1}^{n} \frac{k_{i}}{3^{i}}$ or $p=\sum_{i=1}^{n} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}$.

Next we will show that $p \in \cup_{j=1}^{n} C_{j}^{c}$. If $p=\sum_{i=1}^{n} \frac{k_{i}}{3^{2}}$, then one can write p as $p=\sum_{i=1}^{l} \frac{k_{i}}{3^{i}}$ where $l \leq n, k_{l} \neq 0$ but $k_{j}=0$ for $j=l+1, \ldots, n$. It follows that

$$
p=\sum_{i=1}^{l-1} \frac{k_{i}}{3^{i}}+\frac{2}{3^{l}} \in \Theta\left(k_{1}, \ldots, k_{l-1}, 1\right) \in C_{l}^{c} .
$$

Thus, by Lemma 4.1.4,

$$
f_{i+1}(p)=f_{i}(p)=\sum_{i=1}^{l-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{l}} \quad \text { for all } i \geq l
$$

and so

$$
g(p)=\lim _{i \rightarrow \infty} f_{i}(p)=f_{l}(p)=\sum_{i=1}^{l-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{l}}=f\left(\sum_{i=1}^{l-1} \frac{k_{i}}{3^{i}}+\frac{2}{3^{l}}\right)=f(p) .
$$

If $p=\sum_{i=1}^{n} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}$, we consider two cases. For the first case, if $k_{n}=0$, then $p=\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}} \in \Theta\left(k_{1}, \ldots, k_{n-1}, 1\right) \in C_{n}^{c}$. By Lemma 4.1.4,

$$
f_{i+1}(p)=f_{i}(p)=\sum_{i=1}^{n-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{n}} \quad \text { for all } i \geq n
$$

and so

$$
g(p)=\lim _{i \rightarrow \infty} f_{i}(p)=f_{n}(p)=\sum_{i=1}^{n-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{n}}=f\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right)=f(p) .
$$

For the second case, assume that $k_{n}=2$. Since $p \neq 1$, then $k_{i}=0$ for some $i \in$ $\{1,2, \ldots, n\}$. Pick i_{0} so that for all $i>i_{0}, k_{i}=2$. Thus, we can write p as

$$
p=\sum_{i=1}^{i_{0}-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n-\left(n-i_{0}\right)}}=\sum_{i=1}^{i_{0}-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{i 0}}
$$

and we can see that $p \in \Theta\left(k_{1}, \ldots, k_{i_{0}-1}, 1\right) \in C_{i_{0}}^{c}$. By Lemma 4.1.4,

$$
f_{i+1}(p)=f_{i}(p)=\sum_{i=1}^{i_{0}-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{i_{0}}} \quad \text { for all } i \geq i_{0}
$$

and so

$$
g(p)=\lim _{i \rightarrow \infty} f_{i}(p)=f_{i_{0}}(p)=\sum_{i=1}^{i_{0}-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{i_{0}}}=f\left(\sum_{i=1}^{i_{0}-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{i_{0}}}\right)=f(p) .
$$

Case II: $p \in \cup_{j=1}^{n} C_{j}^{c}$. Then

$$
p \in \Theta=\Theta\left(k_{1}, \ldots, k_{l-1}, 1\right)=\left[\sum_{i=1}^{i=l-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{l}}, \sum_{i=1}^{i=l-1} \frac{k_{i}}{3^{i}}+\frac{2}{3^{l}}\right]
$$

for some $k_{1}, k_{2}, \ldots, k_{l-1} \in\{0,2\}$. By Lemma 4.1.5,

$$
f_{i+1}(p)=f_{i}(p)=\sum_{i=1}^{l-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{l}} \quad \text { for all } i \geq l
$$

and since p and $\sum_{i=1}^{i=l-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{l}}$ are in the same Θ, by the definition of the Cantor set f, we have

$$
g(p)=\lim _{i \rightarrow \infty} f_{i}(p)=f_{l}(p)=\sum_{i=1}^{l-1} \frac{k_{i}}{2^{i+1}}+\frac{1}{2^{l}}=f\left(\sum_{i=1}^{l-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{l}}\right)=f(p) .
$$

For each n, define $g_{n}: I \rightarrow I$ by

$$
g_{n}(x)=f_{n}(x)-f_{n-1}(x) \text { for all } \quad x \in I .
$$

It is clear that g_{n} is continuous.
The following Figure 4.3 illustrates the graph of g_{n} for $n=1,2,3,4$.
Lemma 4.1.7. For each $n \geq 2$,

$$
\max _{x \in \Theta\left(k_{1}, \ldots, k_{n-1}\right)}\left|g_{n}\right|=\frac{1}{3 \cdot 2^{n}} \quad \text { for all } \Theta\left(k_{1}, \ldots, k_{n-1}\right) \in C_{n-1} .
$$

Consequently,

$$
\max _{x \in \cup C_{n-1}}\left|g_{n}\right|=\frac{1}{3 \cdot 2^{n}}
$$

Proof. Let $n \in \mathbb{N}$. Let $\Theta\left(k_{1}, \ldots, k_{n-1}\right)=\left[\sum_{i=1}^{n-1} \frac{k_{i} i}{3^{i}}, \sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n-1}}\right] \in C_{n-1}$. Denote

$$
\begin{aligned}
& \Theta_{1}=\left[\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}, \sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right], \\
& \Theta_{2}=\left[\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}, \sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{2}{3^{n}}\right], \\
& \Theta_{3}=\left[\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{2}{3^{n}}, \sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n-1}}\right] .
\end{aligned}
$$

FIGURE 4.3: The graph of function g_{n} for $n=1, \ldots, 4$.
as shown in Figure 4.4. Clearly, $\Theta\left(k_{1}, \ldots, k_{n-1}\right)=\Theta_{1} \cup \Theta_{2} \cup \Theta_{3}$. Define

$$
G_{1}(x)=\left.g_{n}\right|_{\Theta_{1}}, \quad G_{2}(x)=\left.g_{n}\right|_{\Theta_{2}}, \quad G_{3}(x)=\left.g_{n}\right|_{\Theta_{3}}
$$

By Lemma 4.1.5,

$$
G_{1}\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}\right)=0, \quad G_{3}\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n-1}}\right)=0 .
$$

Also, the slope of G_{1} and G_{3} is $\frac{1}{2}\left(\frac{3}{2}\right)^{n-1}$. Thus, we can express the functions G_{1} and G_{3}

FIGURE 4.4: The graph of f_{n} and f_{n-1} on interval $\Theta\left(k_{1}, \ldots, k_{n-1}\right)$
in the form:

$$
\begin{aligned}
& G_{1}(x)=\frac{1}{2}\left(\frac{3}{2}\right)^{n-1}\left(x-\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}\right) \\
& G_{3}(x)=\frac{1}{2}\left(\frac{3}{2}\right)^{n-1}\left(x-\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n-1}}\right)\right) .
\end{aligned}
$$

We can see that both G_{1} and G_{3} are increasing functions and for each $x \in \Theta_{3}$,

$$
\begin{aligned}
-G_{1}\left(-x+2\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}\right)+\frac{1}{3^{n-1}}\right) & =-\frac{1}{2}\left(\frac{3}{2}\right)^{n-1}\left(-x+2\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}\right)+\frac{1}{3^{n-1}}-\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}\right) \\
& =-\frac{1}{2}\left(\frac{3}{2}\right)^{n-1}\left(-x+\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n-1}}\right) \\
& =\frac{1}{2}\left(\frac{3}{2}\right)^{n-1}\left(x-\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n-1}}\right)\right) \\
& =G_{3} .
\end{aligned}
$$

On Θ_{2} the slope of G_{2} is $-\left(\frac{3}{2}\right)^{n-1}$ and so G_{2} is a decreasing function on Θ_{2}. This implies that

$$
\max _{x \in \Theta_{1}}\left(\left|G_{2}\right|\right)=G_{2}\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right)=G_{1}\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right)
$$

Thus,

$$
\max _{x \in \Theta_{3}}\left(\left|G_{3}\right|\right)=\max _{x \in \Theta_{2}}\left(\left|G_{2}\right|\right)=\max _{x \in \Theta_{1}}\left(\left|G_{1}\right|\right)=G_{1}\left(\sum_{i=1}^{n-1} \frac{k_{i}}{3^{i}}+\frac{1}{3^{n}}\right)=\frac{1}{3 \cdot 2^{n}}
$$

This shows that

$$
\max _{x \in \Theta\left(k_{1}, \ldots, k_{n-1}\right)}\left(\left|g_{n}\right|\right)=\frac{1}{3 \cdot 2^{n}}
$$

Consequently, $\max _{x \in \cup C_{n-1}}\left|g_{n}\right|=\frac{1}{3 \cdot 2^{n}}$.

Corollary 4.1.8. For each $n \geq 2$,

$$
\max _{x \in[0,1]}\left|g_{n}\right|=\frac{1}{3 \cdot 2^{n}}
$$

Proof. Let $n \geq 2$. Let $x \in \cup C_{n-1}$. Then by Lemma 4.1.7,

$$
\max _{x \in \cup C_{n-1}}\left|g_{n}\right|=\frac{1}{3 \cdot 2^{n}}
$$

On the other hand, for $x \notin \cup C_{n-1}$, by Lemma 4.1.5, $f_{n}(x)=f_{n-1}(x)$, and so $g_{n}(x)=0$. Therefore,

$$
\max _{x \in[0,1]}\left|g_{n}\right|=\max _{x \in[0,1]}\left|f_{n}(x)-f_{n-1}(x)\right|=\frac{1}{3 \cdot 2^{n}}
$$

For each n, define

$$
D_{n}=\left\{\left.\frac{b}{2^{n}} \right\rvert\, b \in \mathbb{Z}^{+} \quad \text { and } \quad 0 \leq b \leq 2^{n}-1\right\}
$$

and so

$$
D=\cup_{n=0}^{\infty} D_{n}
$$

Note that the following properties hold. Fix n.

1. If $d \in \Theta$, the

$$
f_{n}^{-1}(d)= \begin{cases}1-\text { cell } & \text { if } d \in D_{n} \\ \text { singleton } & \text { if } d \notin D_{n}\end{cases}
$$

2. $\left.f_{n}\right|_{C}$ is two-to-one over the dyadic rationals in D_{n};
3. $\left.f_{n}\right|_{C}$ is one-to-one over the complement of dyadic rationals D_{n};
4. f_{n} itself is one-to-one over the complement of dyadic rationals D_{n}.

The next lemma guarantees that the sequence $\left\{f_{n}\right\}$ converges to the Cantor function f.
Lemma 4.1.9. Let $\left\{f_{n}\right\}$ be the sequence of continuous functions defined as above. Then $\left\{f_{n}\right\}$ converges uniformly to the Cantor function f.

Proof. Let $g(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Claim that $g=f$. First we will prove that g is continuous by showing that f_{n} converges uniformly to g. Given $\epsilon>0$. There is N such that $\frac{1}{2^{N}}<\epsilon$. By Lemma 4.1.8, for each $n \geq 0$

$$
\max _{x \in[0,1]}\left|f_{n+1}(x)-f_{n}(x)\right|=\frac{1}{3 \cdot 2^{n+1}} \leq \frac{1}{2^{n+1}}
$$

Without loss of generality, assume that $m>n>N$. It follows that

$$
\begin{aligned}
\max _{x \in[0,1]}\left|f_{m}(x)-f_{n}(x)\right| & \leq \sum_{k=n}^{k=m-n-1} \max _{x \in[0,1]}\left|f_{k+1}(x)-f_{k}(x)\right| \\
& \leq \sum_{k=n}^{k=m-n-1} \frac{1}{2^{k+1}} \\
& =\frac{1}{2^{n+1}}+\frac{1}{2^{n+2}}+\ldots+\frac{1}{2^{m}} \\
& =\frac{1}{2^{n}}\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{m-n}}\right) \\
& <\frac{1}{2^{n}}<\epsilon
\end{aligned}
$$

This implies that f_{n} is a uniformly Cauchy sequence and hence the function $g(x)=$ $\lim _{n \rightarrow \infty} f_{n}(x)$ is well-defined. Also, by the Cauchy Criterion, f_{n} converges uniformly on $[0,1]$ which implies g is continuous. It remains to show that $g=f$. By Lemma 4.1.6, g and f agree on the set $T R$. It follows that f and g agree on $[0,1]$ since $T R$ is dense in $[0,1]$. This gives the desired result.

Let $C^{k} \subset I^{k}$ be the product of k copies of C. For each n, let $f_{n}^{k}: I^{k} \rightarrow I^{k}$ be defined by:

$$
f_{n}^{k}(x)=\left(f_{n}\left(x_{1}\right), f_{n}\left(x_{2}\right), \ldots, f_{n}\left(x_{k}\right)\right) .
$$

Let $f^{k}: I^{k} \rightarrow I^{k}$ be defined as the limit of a sequence f_{n}^{k}. That is,

$$
\begin{aligned}
f^{k}(x) & =\lim _{n \rightarrow \infty} f_{n}^{k}(x) \quad \text { for all } x \in I^{k} \\
& =\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{k}\right)\right)
\end{aligned}
$$

Note that f^{k} is continuous since each component is continuous. For example $f_{2}^{2}\left(x_{1}, x_{2}\right)=$ $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$ where f is the Cantor map. The following Figure 4.5 shows how the map f_{2}^{2} sends certain squares to points.

$$
f_{2}^{2}
$$

FIGURE 4.5: The function f_{2}^{2}.

Lemma 4.1.10. Let $n \in \mathbb{Z}^{+}$and $p \in I^{k}$. Then $\left(f_{n}^{k}\right)^{-1}(p)$ is either a point or a $l-c e l l$ where l corresponds to the number of dyadic rational coordinates that p has, and hence $\left(f^{k}\right)^{-1}(p)$ is either a point or a $l-c e l l$.

Proof. Fix n and let $p=\left(x_{1}, \ldots, x_{k}\right) \in I^{k}$. If p has no dyadic rational coordinates, then each $x_{i} \notin D$ and so obviously $x_{i} \notin D_{n}$. Thus, $\left(f_{n}\right)^{-1}\left(x_{i}\right)$ is just a point in I which implies that $\left(f_{n}^{k}\right)^{-1}(p)$ is a point in I^{k}. Next assume that the number of dyadic rational coordinates of p is l. Denote each b_{i} the dyadic rational coordinates of p for $i=1, \ldots, l$. Then each $\left(f_{n}\right)^{-1}\left(b_{i}\right)$ is a 1 -cell in I so $\left(f_{n}^{k}\right)^{-1}(p)$ is a $l-$ cell in I^{k}.

We will generalize this idea to obtain the function $f^{\infty}: Q^{2} \rightarrow Q^{2}$ where $Q^{2}=\{0\} \times Q_{2}$. First for each n and k define $g_{n}^{k}: Q \rightarrow Q$ by

$$
g_{n}^{k}\left(\left(0, x_{2}, \ldots, x_{k}, \ldots\right)\right)=f_{n}^{k}\left(\left(0, x_{2}, \ldots, x_{k}\right)\right) \times I d_{Q_{k+1}}\left(x_{k+1}, \ldots\right) .
$$

Thus, the function $f^{\infty}: Q^{2} \rightarrow Q^{2}$ is defined by

$$
\begin{aligned}
f^{\infty}(x) & =\lim _{k \rightarrow \infty}\left(\lim _{n \rightarrow \infty} g_{n}^{k}(x)\right) \\
& =\left(0, f\left(x_{2}\right), f\left(x_{3}\right), \ldots\right) .
\end{aligned}
$$

Since Q^{2} is compact, it is obvious that f^{∞} is a closed map.
Lemma 4.1.11. For each point $p \in Q^{2},\left(f^{\infty}\right)^{-1}(p)$ is either a point, a cell or a copy of Q^{2} and the dimension of these sets corresponds to the number of dyadic rational coordinates that p has.

Proof. If p has no dyadic rational coordinates, it is clear that $\left(f^{\infty}\right)^{-1}(p)$ is just a point in Q^{2}. If p has l dyadic rational coordinates, then $\left(f^{\infty}\right)^{-1}(p)$ is a l-cell in Q^{2}. If p has infinitely many dyadic rational coordinates, then $\left(f^{\infty}\right)^{-1}(p)$ is a copy of Q^{2}.

By Remark 4.1.4, it is clear that if p is a point of $\{0\} \times C^{\infty}$ with no triadic rational coordinates in C^{∞}, then $\left(f^{\infty}\right)^{-1} \circ f^{\infty}(p)=p$.

Lemma 4.1.12. If A is a nowhere dense subset of Q^{2}, then there exists a dense subset P of $\{0\} \times C^{\infty}$ so that $f^{\infty}(P) \cap A=\emptyset$ and $\left(f^{\infty}\right)^{-1}\left(f^{\infty}(d)\right)=d$ for each d in P.

Proof. Let $E \equiv\left\{x \in\{0\} \times C^{\infty} \mid\left(f^{\infty}\right)^{-1}\left(f^{\infty}(x)\right)=x\right\}$.
Let $P \equiv\left(\{0\} \times C^{\infty} \backslash\left(f^{\infty}\right)^{-1}(A)\right) \cap E$. We will show that P is dense in $\{0\} \times C^{\infty}$. Given any point $c \in\{0\} \times C^{\infty}$ and U a neighborhood of c in Q_{2}. Note that $U=U^{\prime} \times Q_{k+1}$ for some k. Then $f^{\infty}\left(U^{\prime} \times Q_{k+1}\right)=f^{k}\left(U^{\prime}\right) \times Q_{k+1}$ contains an open set $V \times Q_{k+1}$ in Q^{2}. Since A is nowhere dense, $V \times Q_{k+1}$ contains an open set $W \times Q_{k+1}$ in Q^{2} with $W \times Q_{k+1} \cap A=\emptyset$. Choose a point p in $V \times Q_{k+1}$ for which none of its coordinates is dyadic rational. Then
$\left(f^{\infty}\right)^{-1}(p)$ is a singleton, say $\{x\}$. We can see that x is in $U^{\prime} \times Q_{k+1} \cap\{0\} \times C^{\infty}$ and so it is in P.

Let $\mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right\}$ be the defining sequence in Q defined for the Cantor set in the middle slice of Q in Chapter 2.

The following sets will be used in the chapter 5 . For each j and $M\left(\epsilon_{1}, \ldots, \epsilon_{j}\right) \in \mathcal{M}_{j}$, define

$$
P=\left[-\frac{1}{2^{j}}, \frac{1}{2^{j}}\right] \times f_{N(j)}^{m(j)+1}(M)
$$

where $N(j)=\sum_{i=1}^{j} n_{i}$ and each n_{i} is defined in Chapter 2 and $m(0)=2$ and for $j \geq 1$ $m(j)=k$ if there is an integer k such that $j=\frac{k(k-1)}{2}+i$ for some $i \in\{0,1, \ldots, k-1\}$.

4.2 Construction of the Decomposition G

We now view f^{∞} as a map from $Q_{2} \rightarrow Q_{2}$. To construct a decomposition G on Q, first we will use the function f^{∞} to define the decomposition G_{f} on Q^{2}. Explicitly,

$$
G_{f}=\left\{\{0\} \times\left(f^{\infty}\right)^{-1}(p) \mid p \in Q_{2}\right\}
$$

Theorem 4.2.1. The decomposition G_{f} defined as above is upper semicontinuous.

Proof. This follows from the fact that $\pi_{G_{f}}=\{0\} \times f^{\infty}$. Moreover, by the Lemma 4.1.11, G_{f} is cellular.

Next will show that the decomposition G_{f} is realized by a pseudo-isotopy.

Lemma 4.2.2. The decomposition G_{f} is realized by a pseudo-isotopy.

Proof. Recall $f^{\infty}: Q_{2} \rightarrow Q_{2}$ is a generalized Cantor function in which each component is the Cantor function $f:[0,1] \rightarrow[0,1]$. To show that the decomposition G_{f} is realized
by a pseudo-isotopy, it suffices to show that there exists a pseudo-isotopy Ψ_{t} of $I^{\infty} \rightarrow I^{\infty}$ such that Ψ_{0} is the identity $I d_{I^{\infty}}$ and $G_{f}=\left\{\Psi_{1}^{-1}(c) \mid c \in I^{\infty}\right\}$. For $t \in[0,1]$, define $\Psi_{t}: I^{\infty} \rightarrow I^{\infty}$ by

$$
\Psi_{t}(x)=(1-t) x+t f^{\infty}(x)
$$

It is clear that $\Psi_{1}=f^{\infty}$ which is a closed surjection. For $t<1, \Psi_{t}$ is onto since each component is onto by the Intermediate Value Theorem. Also, it is continuous, and hence Ψ_{t}^{-1} is continuous since Ψ_{t} is a closed map. It remains to show that for $t<1, \Psi_{t}$ is one-to-one. Let $x=\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right) \in I^{\infty}$ be such that $\Psi_{t}(x)=\Psi_{t}(y)$. Then

$$
(1-t) x+t f^{\infty}(x)=(1-t) y+t f^{\infty}(y)
$$

which implies that $(1-t)(x-y)=t\left(f^{\infty}(y)-f^{\infty}(x)\right)$. If $x \neq y$, then there is i such that $x_{i} \neq y_{i}$. Without loss of generality, assume that $x_{i}<y_{i}$. We know that $(1-t)\left(x_{i}-y_{i}\right)=$ $t\left(f\left(y_{i}\right)-f\left(x_{i}\right)\right)$ Then the left hand side of equation is negative but the right hand side of equation is non-negative since the Cantor function f is non-decreasing function. This leads to a contradiction. Thus Ψ_{t} is one-to-one. Also, we can see that

$$
G_{f}=\left\{\{0\} \times \Psi_{1}^{-1}(p) \mid p \in Q_{2}\right\} .
$$

The next lemma follows from the fact that G_{f} is realized by a pseudo-isotopy.
Lemma 4.2.3. Let G_{f} be the decomposition of $Q^{2}=\{0\} \times Q_{2}$ induced by the map f^{∞}. Then $\pi_{G_{f}}$ from $\{0\} \times Q_{2}$ to $\left(\{0\} \times Q_{2}\right) / G_{f}$ is approximable by homeomorphisms.

Lemma 4.2.4. The decomposition G_{f} is cellular.
Proof. This follows from Lemma 4.1.11.

Next we will define a decomposition G on Q. Let G be the partition consisting of $G_{f}=\left\{\{0\} \times\left(f^{\infty}\right)^{-1}(c) \mid c \in Q_{2}\right\}$ and all singletons in $Q-\{0\} \times Q_{2}$. It is clear that G is
a usc decomposition of Q by a similar idea as shown in Lemma 4.2.2. Next we also show that G is realized by a pseudo-isotopy. First, define $K^{1}:[0,3] \times Q_{2} \times \rightarrow[0,1] \times Q_{2}$ by

$$
K^{1}(s, x)=\left(\frac{s}{3}, x\right),
$$

and for each $t \in[0,1]$, define $K_{t}^{2}:[0,1] \times Q_{2} \rightarrow[0,1] \times Q_{2}$ by

$$
K_{t}^{2}(s, x)=\left(s, s x+(1-s) \Psi_{t}(x)\right) \text { where } \Psi_{t}(x)=(1-t) x+t f^{\infty}(x) \text {, }
$$

and define $K^{3}:[0,1] \times Q_{2} \rightarrow[0,3] \times Q_{2}$ by

$$
K^{3}(s, x)=(3 s, x) .
$$

We can see that K^{1} and K^{3} are homeomorphisms. Let

$$
K_{t}(s, x)=K^{3} \circ K_{t}^{2} \circ K^{1}:[0,3] \times Q_{2} \rightarrow[0,3] \times Q_{2}
$$

Claim that for $t<1, K_{t}$ is homeomorphism. Clearly, K_{t} is onto, continuous and K_{t}^{-1} is continuous since K^{1}, K^{2}, and K^{3} are. It remains to show that K_{t} is one-to-one. Since K^{1}, K^{3} are one-to-one, it suffices to show that K_{t}^{2} is one-to-one Suppose that $K_{t}^{2}(a, x)=$ $K_{t}^{2}(b, y)$ for some $(a, x),(b, y) \in[0,1] \times Q_{2}$. Then by the definition of K_{t}^{2} we have $a=b$ which implies that

$$
a x+(1-a) \Psi_{t}(x)=a y+(1-a) \Psi_{t}(y) .
$$

By simplifying, we have

$$
\begin{aligned}
\Psi_{t(1-a)}(x) & =(1-t(1-a)) x+t(1-a) f^{\infty}(x) \\
& =a x+(1-a) \Psi_{t}(x) \\
& =a y+(1-a) \Psi_{t}(y) \\
& =(1-t(1-a)) y+t(1-a) f^{\infty}(y) \\
& =\Psi_{t(1-a)}(y) .
\end{aligned}
$$

Since $t(1-a) \neq 1$, this yields $\Psi_{t(1-a)}$ is one-to-one and hence $x=y$. Therefore, K_{t}^{2} is one-to-one. Moreover, we can see that for each $(s, x) \in(0,3] \times Q_{2}, K_{1}^{-1}(s, x)$ is singleton and if $(s, x) \in\{0\} \times Q_{2}, K_{t}(s, x)=\{0\} \times\left(f^{\infty}\right)^{-1}(x) \in G_{f}$. Thus,

$$
G_{1}=\left\{K_{1}^{-1}(c) \mid c \in[0,3] \times Q_{2}\right\}=S \cup G_{f}
$$

where S is the set of all singleton in $(0,3] \times Q_{2}$.
Similarly, we can define a pseudo-isotopy $L_{t}:[-3,0] \times Q_{2} \rightarrow[-3,0] \times Q_{2}$ by $L_{t}(s, x)=K_{t}(-s, x)$ so that

$$
G_{2}=\left\{L_{1}^{-1}(c) \mid c \in[-3,0] \times Q_{2}\right\}=R \cup G_{f}
$$

where R is the set of all singleton in $[-3,0) \times Q_{2}$. Therefore, we see that $G=G_{1} \cup G_{2}$ is realized by pseudo-isotopies K and L. Thus, we have the following lemma.

Lemma 4.2.5. The decomposition G is realized by pseudo-isotopy.

The result of Lemma 4.2.5 gives the following Theorem.

Theorem 4.2.6. Let G be the decomposition defined as above. Then π_{G} from Q to Q / G is approximable by homeomorphisms.

Lemma 4.2.7. The decomposition G is cellular.

Proof. This follows from Lemma 4.1.11.

5. MAIN RESULTS

The main result of this chapter is Theorem 5.4 .1 where we show that if $G H$ is the decomposition of Q associated with the defining sequence \mathcal{R}, then $G H$ satisfies the following three properties:

- $G H$ is cellular
- The nonmanifold part of $Q / G H$ is homeomorphic to a copy of Q whose codimension is 1 .
- If A is any closed subspace of X of codimension ≥ 1 in $\pi\left(N_{\pi}\right)$, then the decomposition of Q induced over A is shrinkable. That is, $Q / \pi^{-1}(A) \cong Q$.

Thus the manifold nature of $Q / G H$ can not be detected by looking at finite dimensional subsets or even at infinite dimensional subsets of codimension ≥ 2 in $Q / G H$.

We apply a characterization of Q-manifolds due to Daverman and Walsh in Theorem 1.7.16[DW81]. Their results imply that $Q / \pi^{-1}(A)$ is a Q-manifold provided $Q / \pi^{-1}(A)$ is an ANR satisfying the Disjoint Discs Property (DDP) and $Q / \pi^{-1}(A)$ has Čech carriers with infinite codimension. Since $Q / G H$ is an ANR, by Theorem 1.3.37, $Q / \pi^{-1}(A)$ is an ANR. Our discussion now mainly focuses on the Cech carriers property. Not only do we need to show that $Q / \pi^{-1}(A)$ has Čech carriers with infinite codimension in order to apply Daverman-Walsh characterization, but also we have to show that $Q / \pi^{-1}(A)$ satisfies DDP.

We will assume the notation and occasionally refer to certain steps and conditions in the construction in the previous chapters.

5.1 Constructing the Decomposition $G H$

To construct the decomposition $G H$, there are several approaches. One can construct the decomposition $G H$ by defining the equivalence relation generated by both decompositions G and H. Also, one can approach this construction by producing a defining sequence and then generating that sequence to get the decomposition $G H$. We will start with the first approach.

Let G be the cellular decomposition of Q induced by the map $f^{\infty}: Q_{2} \rightarrow Q_{2}$ in Chapter 4 and π_{G} be the quotient map. Let H be the cellular decomposition of Q described in the Chapter 3 and π_{H} be the quotient map. Let, for $T \subset Q$,

$$
\begin{aligned}
G^{*}(T) & =\cup\{g \in G \mid g \cap T \neq \emptyset\} \\
H^{*}(T) & =\cup\{h \in H \mid h \cap T \neq \emptyset\}
\end{aligned}
$$

Before we define an equivalence relation on $G H$, we will list some properties induced from both G and H in the following lemma.

Lemma 5.1.1. Fix $h \in H_{H}$ where H_{H} is the set of all nondegenerate elements in H. Let $g_{0} \in H_{G}$ be such that $g_{0} \cap h \neq \emptyset$. Then if $g \cap h \neq \emptyset$ and $g \in H_{G}$, then $g=g_{0}$.

Proof. Assume that $g \cap h \neq \emptyset$. Suppose that $g \neq g_{0}$. Then $g \cap g_{0}=\emptyset$. We can see that by Theorem 3.2.2, $h \cap\{0\} \times Q_{2}$ is a single point in $\{0\} \times Q_{2}$. Let x_{0} be such an element. Since $g_{0} \subset\{0\} \times Q_{2}$, it follows that $g_{0} \cap h=\left\{x_{0}\right\}$. Thus, if $g \cap h \neq \emptyset$ and we know also that $g \subset\{0\} \times Q_{2}$, then $g \cap h=\left\{x_{0}\right\}$ which implies that $g \cap g_{0} \neq \emptyset$, a contradiction. Thus, $g \cap h=\emptyset$.

Lemma 5.1.1 has the following Corollaries.

Corollary 5.1.2. Let $x \in Q$. Then

$$
G^{*}\left(H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)\right)=H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)
$$

Proof. Note that

$$
\begin{aligned}
H^{*}(x) & =\cup\left\{h \in H_{H} \mid x \in h\right\} \cup\{x\} \\
G^{*}\left(H^{*}(x)\right) & =\cup\left\{g \in H_{G} \mid g \cap H^{*}(x) \neq \emptyset\right\} \cup H^{*}(x) \\
H^{*}\left(G^{*}\left(H^{*}(x)\right)\right) & =\cup\left\{h \in H_{H} \mid h \cap G^{*}\left(H^{*}(x)\right) \neq \emptyset\right\} \cup G^{*}\left(H^{*}(x)\right) \\
G^{*}\left(H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)\right) & =\cup\left\{g \in H_{G} \mid g \cap H^{*}\left(G^{*}\left(H^{*}(x)\right)\right) \neq \emptyset\right\} \cup H^{*}\left(G^{*}\left(H^{*}(x)\right)\right) .
\end{aligned}
$$

It is obvious that $H^{*}\left(G^{*}\left(H^{*}(x)\right)\right) \subset G^{*}\left(H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)\right)$. Next we will show that

$$
G^{*}\left(H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)\right) \subset H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)
$$

It suffices to show that $T=\left\{g \in G \mid g \cap H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)\right\}$ is a subset of $H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)$. Let $g \in T$. If g is singleton, we are done. Assume that g is a nondegenerate element. We will show that $g \subset G^{*}\left(H^{*}(x)\right)$. Since $g \cap H^{*}\left(G^{*}\left(H^{*}(x)\right)\right) \neq \emptyset$, there is a nondegenerate element $h \in\left\{h \in H \mid h \cap G^{*}\left(H^{*}(x)\right) \neq \emptyset\right\}$ such that $g \cap h \neq \emptyset$. This implies that by Lemma 5.1.1 $g \in G^{*}\left(H^{*}(x)\right)$. Therefore,

$$
G^{*}\left(H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)\right)=H^{*}\left(G^{*}\left(H^{*}(x)\right)\right)
$$

Let \sim_{G} and \sim_{H} be equivalence relations on G and H. Then we can define the equivalence relation generated by $\sim_{G} \cup \sim_{H}$ as the smallest equivalence relation containing $\sim_{G} \cup \sim_{H}$, denoted by $\sim_{G H}$.

Lemma 5.1.3. Let $a, b \in Q$. Then $a \sim_{G H} b$ if and only if there exist $x_{1}, x_{2}, \ldots, x_{n} \in Q$ such that $x_{1}=a, x_{n}=b$ in Q and either $\left(x_{i-1}, x_{i}\right) \in \sim_{H}$ or $\left(x_{i-1}, x_{i}\right) \in \sim_{G}$.

Proof. This follows from the definition of an equivalence relation generated by the relations G and H.

Remark 5.1.4. Since \sim_{G} and \sim_{H} are equivalence relations, we can choose x_{i} such that if $\left(x_{i-1}, x_{i}\right) \in \sim_{H}$, then $\left(x_{i}, x_{i+1}\right) \in \sim_{G}$ or such that if $\left(x_{i-1}, x_{i}\right) \in \sim_{G}$, then $\left(x_{i}, x_{i+1}\right) \in \sim_{H}$.

Lemma 5.1.5. Let $a, b, c, d, e \in Q$. If $a \sim_{G} b \sim_{H} c \sim_{G} d$, then $c=d$. Consequently, If $a \sim_{H} b \sim_{G} c \sim_{H} d \sim_{G} e$, then $a \sim_{H} b \sim_{G} c \sim_{H} d$.

Proof. This follows from Lemma 5.1.1 and Theorem 3.2.2.

Next we will show that $\sim_{G H}$ is equivalent to an equivalence relation defined as follows:

Let $G H$ be the decomposition of Q given by

$$
\pi(x)=\pi(y) \text { if and only if } \pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H}(x) \bigcap \pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H}(y) \neq \emptyset .
$$

That is, we will show the following lemma.

Lemma 5.1.6. $x \sim_{G H} y$ if and only if $\pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H}(x) \cap \pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H}(y) \neq \emptyset$.
Proof. Assume that $x \sim_{G H} y$. Then there exist $a, b \in Q$ such that $x \sim_{H} a \sim_{G} b \sim_{H} y$. Note that $G^{*}\left(H^{*}(x)\right)=\pi_{G}\left(\pi_{H}^{-1}\left(\pi_{H}(x)\right)\right)$ and $G^{*}\left(H^{*}(y)\right)=\pi_{G}\left(\pi_{H}^{-1}\left(\pi_{H}(y)\right)\right)$. Since $a \sim_{G} b$, it follows that $\pi_{G}(a)=\pi_{G}(b)$. Since $a \sim_{H} x$ and $b \sim_{H} y$, it follows that $\pi_{G}(a) \subset G^{*}\left(H^{*}(x)\right)$ and $\pi_{G}(b) \subset G^{*}\left(H^{*}(y)\right)$. Therefore $G^{*}\left(H^{*}(x)\right) \cap G^{*}\left(H^{*}(y)\right) \neq \emptyset$ which implies that $\pi_{G} \circ$ $\pi_{H}^{-1} \circ \pi_{H}(x) \cap \pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H}(y) \neq \emptyset$.

Conversely, if $\pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H}(x) \cap \pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H}(y) \neq \emptyset$, then there exist $a, b \in Q$ such that $a \in \pi_{H}^{-1}\left(\pi_{H}(x)\right), b \in \pi_{H}^{-1}\left(\pi_{H}(y)\right)$ such that $\pi_{G}(a)=\pi_{G}(b)$. Hence $\pi_{H}(a)=\pi_{H}(x)$ and $\pi_{H}(b)=\pi_{H}(y)$ and so $x \sim_{H} a \sim_{G} b \sim_{H} y$ which implies that $x \sim_{G H} y$. This completes the proof.

Next we will define $\pi_{1}: Q / G \rightarrow Q / G H$ and $\pi_{2}: Q / H \rightarrow Q / G H$ such that the following diagram commutes. For $x, y \in Q / G$ define $\pi_{1}: Q / G \rightarrow Q / G H$ by

$$
\pi_{1}(x)=\pi_{1}(y) \text { if and only if } \pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H} \circ \pi_{G}^{-1}(x) \cap \pi_{G} \circ \pi_{H}^{-1} \circ \pi_{H} \circ \pi_{G}^{-1}(y) \neq \emptyset .
$$

For $x, y \in Q / H$ define $\pi_{2}: Q / H \rightarrow Q / G H$ by

$$
\pi_{2}(x)=\pi_{2}(y) \text { if and only if } \pi_{G} \circ \pi_{H}^{-1}(x) \cap \pi_{G} \circ \pi_{H}^{-1}(y) \neq \emptyset .
$$

Since $Q / G \cong Q$, to define a defining sequence in Q for $G H$ it suffices to construct a defining sequence in Q / G. From the above lemma, we can define a defining sequence for Q / G as follows:

Let $\mathcal{L}=\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots\right\}, \mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots\right\}$ be the defining sequences for H and for the Cantor set in the middle as defined as in Chapters 2 and 3 . Then define the sequence $\mathcal{R}=\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots\right\}$ for Q / G by

$$
\mathcal{R}_{i}=\left\{\pi_{G}\left(L_{j} \times Q_{m(i)+3}\right) \mid L_{j} \times Q_{m(i)+3} \in \mathcal{L}_{i}\right\}
$$

Note that $\pi_{G}\left(L_{j} \times Q_{m(i)+3}\right)$ can be viewed as $K_{j} \times Q_{m(i)+3}$ where $K_{j}=T_{j} \cup$ $P_{j} \cup D_{j}$ together with the tubes joining these where P_{j} is homeomorphic to $\left[-\frac{1}{2^{i}}, \frac{1}{2^{i}}\right] \times$ $\left.f_{N(j)}^{m(j)+1}\right)\left(B_{j}\right)$. Then \mathcal{R} is a defining sequence for Q / G. All inductive hypotheses IH1, .., IH4 in the construction of defining sequence \mathcal{L} from Chapter 3 are still true for the defining sequence \mathcal{R}. Figure 5.1 shows the first stage of construction with 4 components. The four components in the cylinder at the top come from \mathcal{T}_{1}. The four components in the cylinder at the bottom come from \mathcal{D}_{1}, and the four components in the middle come from \mathcal{P}_{1}. The tubes indicate how some of the components are connected.

Remark 5.1.7. Each $R_{i} \in \mathcal{R}_{i}$, there exists $\operatorname{Pre}\left(R_{i}\right) \in \mathcal{R}_{i-1}$ such that $R_{i} \subset \operatorname{Pre}\left(R_{i}\right)$ and the inclusion map $R_{i} \rightarrow \operatorname{Pre}\left(R_{i}\right)$ is null homotopic. This implies that each element of the decomposition $G H$ associated with defining sequence \mathcal{R} is cell-like.

Lemma 5.1.8. Let $R=T \cup P \cup D$ together with the tubes joining these be a fixed element in \mathcal{R}_{r} for some r. Then for any virtually I-essential maps $f_{1}: D_{1} \rightarrow T$ and $f_{2}: D_{1} \rightarrow D$,

FIGURE 5.1: First Stage of construction \mathcal{R} with 4 components
there is an $\delta>0$ so that if $f_{1}^{\prime}, f_{2}^{\prime}$ are maps within δ of f_{1} and f_{2} respectively and in general position with respect to \mathcal{R}_{r+1}, then there is a component $R^{\prime}=B^{\prime} \cup T^{\prime} \cup D^{\prime}$ together with the tubes joining these where $R^{\prime} \subset R$ and discs with holes $D_{1}^{\prime} \subset D_{1}, D_{2}^{\prime} \subset D_{2}$ such that f_{1}^{\prime} and f_{2}^{\prime} are virtually I-essential into T^{\prime} and D^{\prime} respectively.

Proof. This follows directly from condition IH4. For more details, see [Gar91].
Lemma 5.1.9. Let $\mathcal{R}=\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots\right\}$ of Q be the defining sequence defined as above. Then \mathcal{R} is sharp.

Proof. By Remark 1.3.34, the defining sequence \mathcal{R} is sharp.

5.2 Properties of $Q / G H$.

Lemma 5.2.1. Let $\mathcal{R}=\left\{\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots\right\}$ be the defining sequence constructed in the previous section, let $G H$ be the decomposition associated with \mathcal{R}, and let $\pi: Q \rightarrow Q / G H$ be the natural quotient map. Let $\partial \mathcal{R}=\cup_{i \geq 1}\left\{\partial R: R \in \mathcal{R}_{i}\right\}$. Then
(1) π is cell-like.
(2) Each non-degenerate element of GH has dimension one.
(3) $\pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})$ is 0-dimensional
(4) $Q / G H$ is an $A N R$
(5) If A is a closed subset in $Q / G H$, then $Q / \pi^{-1}(A)$ is an $A N R$.

Proof. Condition (1) holds by Remark 5.1.7 and Theorem 1.3.21.
For (2), the connectedness of each non-generate element h of the decomposition $G H$ gives the dimension of h is ≥ 1 and since for every R of \mathcal{R}_{n} there is a $\frac{1}{n}-\operatorname{map}$ from R to 1 complex by the condition IH1 for the defining sequence \mathcal{R}. Then by a result in dimension theory, [HW48], (page 73), the dimension of h is ≤ 1. Hence, each non-degenerate element of H has dimension one.

For (3), we will show that $\pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})$ is 0 -dimensional at each point $P \in$ $\pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})$. Let $P \in \pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})$ and U be an open neighborhood of P in $Q / G H$. Then $V=\pi^{-1}(U)$ is open in Q. Let

$$
V^{*}=\cup\{g \in G H \mid g \subset V\}
$$

Since $G H$ is upper semicontinuous, V^{*} is saturated and open in Q. Then $\pi\left(V^{*}\right)$ is open in $Q / G H$ which implies that $W=\pi\left(V^{*}\right) \cap\left(\pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})\right)$ is open in $\pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})$. Clearly, $\partial W=\emptyset$ and $W \subset U$. Then it follows that $\pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})$ is 0 -dimensional at the point P. Since P is arbitrary, $\pi\left(N_{\pi}\right)-\pi(\partial \mathcal{R})$ is $0-$ dimensional.

For (4), since $\pi(\partial \mathcal{R})$ contains the boundary of a basis for the topology of $\pi\left(N_{\pi}\right)$ and from Lemma 1.3.11 π is one-to-one on $\partial \mathcal{R}$, it follows from Theorem 1.3.36 that
$Q / G H$ is an ANR
since \mathcal{R} is sharp.

For (5), since $Q / G H$ is an ANR by (5), Theorem 1.3.37 from [Lay80] shows that for each closed set A in $Q / G H$,

$$
Q / \pi^{-1}(A) \quad \text { is an ANR. }
$$

The proof of Lemma 5.2.2 is similar to the arguments on page 36 and on page 41 in [Lay80]

Lemma 5.2.2. [Lay80] Let \mathcal{L} be the defining sequence of Q. Let $k \geq 1$ be fixed and $R \in \mathcal{R}_{k}$. Then for each $j>k$, if W is compact subset of Q with $W \subset \operatorname{Int}(R)$, then

$$
W \cap \pi^{-1}(\pi(\partial R) \quad \text { is 1-dimensional. }
$$

Proof. The proof is similar to Lemma 3.3.3

Now we will discuss the Cech Carrier Property of $Q / G H$

Corollary 5.2.3. For the decomposition $G H$ associated with the defining sequence \mathcal{R}, $\pi^{-1}(x)$ has infinite codimension in Q for every $x \in Q / G H$.

Proof. Let $x \in Q / G H$. If $x \notin \pi\left(N_{\pi}\right)$, then $\pi^{-1}(x)$ is a singleton in Q and hence it has infinite codimension in Q. Assume that $x \in \pi\left(N_{\pi}\right)$. It follows from Lemma 5.2.1 that x is one dimensional. Then by Lemma 1.7.4 [DW81], $\pi^{-1}(x)$ has infinite codimension in Q.

We will use Theorem 3.3.6 to show that points in Q / H have infinite codimension.

Corollary 5.2.4. Points in $Q / G H$ have infinite codimension in $Q / G H$.

Proof. The result follows from Theorem 3.3.6. For more details, see the argument in [Lay80].

This next argument is similar to that for Q / H in Chapter 3.

Lemma 5.2.5. [Lay80] For each $i \geq 1$, let $R \in \mathcal{R}_{i}$. Then $Q / G H$ has disjoint Čech carriers at $\pi(\partial R)$. Consequently, $Q / G H$ has disjoint Čech carriers at $\pi(\partial \mathcal{R})$.

Proof. The proof is similar to that for Q / H in Chapter 3.

In the next two Theorems, the proof is similar to that of previous argument in Chapter 3. So, we omit the proof here.

Lemma 5.2.6. Let A be a closed subset in $\pi\left(Q-N_{\pi}\right)$. Then $Q / G H$ has Disjoint Čech carrier at A.

Theorem 5.2.7. $Q / G H$ has Disjoint Čech Carriers Property.
Theorem 5.2.7 gives the following Corollary.
Corollary 5.2.8. If A is a closed subset of $Q / G H$, then $Q / \pi^{-1}(A)$ has Disjoint Čech Carriers Property.

Proof. This follows from Theorem 5.2.7.

5.3 Properties of $Q / \pi^{-1}(A)$

Let \mathcal{R} be the defining sequence defined above. Let $A \subset Q / G H$. Then the subdefining sequence $\mathcal{R}^{\prime}=\left\{\mathcal{R}_{1}^{\prime}, \mathcal{R}_{2}^{\prime}, \ldots\right\}$ of \mathcal{R} is defined as follows: For $i \geq 1$,

$$
\mathcal{R}_{i}^{\prime}=\left\{R \in \mathcal{R}_{i} \mid R \cap g \neq \emptyset \text { for some } g \in A\right\} .
$$

We now state and prove the main results of this section.

Theorem 5.3.1. Let A be a closed subset of $Q / G H$ where $A \subset \pi\left(N_{\pi}\right)$ has codimension ≥ 1 in $\pi\left(N_{\pi}\right)$. Then $Q / \pi^{-1}(A)$ satisfies the $D D P$.

Proof. We modified the proof from an argument in [Gar91]. Let A be a closed subset of $Q / G H$. To show that $Q / \pi^{-1}(A)$ satisfies the DDP, it suffices to show the following condition. For each $\epsilon>0$ and for each pair maps $f, g: B^{2} \rightarrow Q / G H$, there are approximating maps $\tilde{f}, \tilde{g}: B^{2} \rightarrow Q / G H$ such that

$$
d(f, \tilde{f})<\epsilon, \quad d(g, \tilde{g})<\epsilon
$$

with $\tilde{f}\left(B^{2}\right) \cap \tilde{g}\left(B^{2}\right) \cap A=\emptyset$.
First, by Lemma 4.1.12, we can choose a dense subset P in $\{0\} \times C^{\infty}$ so that $f^{\infty}(P) \cap A=\emptyset$ and $\left(f^{\infty}\right)^{-1}\left(f^{\infty}(p)\right)=p$ for each p in P.

Next, given ϵ, f and g as in the condition above, by Theorem 1.3.16 and since Q / G satisfying the DDP, we can choose approximate lifts $f_{1}, g_{1}: B^{2} \rightarrow Q / G$ of f and g respectively and $\delta>0$ so that $f_{1}\left(B^{2}\right) \cap g_{1}\left(B^{2}\right)=\emptyset$ and so that if $\tilde{f}, \tilde{g}: B^{2} \rightarrow Q / G$ satisfies

$$
\rho\left(f_{1}, \tilde{f}\right)<\delta \quad \text { and } \quad \rho\left(g_{1}, \tilde{g}\right)<\delta
$$

then

$$
\rho\left(\pi_{1} \circ \tilde{f}, f\right)<\frac{\epsilon}{3} \quad \text { and } \quad \rho\left(\pi_{1} \circ \tilde{g}, g\right)<\frac{\epsilon}{3},
$$

and $\tilde{f}\left(B^{2}\right) \cap \tilde{g}\left(B^{2}\right)=\emptyset$.
Next, by Theorem 1.3.16 again, we can choose approximate lifts $f_{2}, g_{2}: B^{2} \rightarrow Q$ of f_{1} and g_{1}, respectively so that $f_{2}\left(B^{2}\right) \cap g_{2}\left(B^{2}\right)=\emptyset$, so that f_{2} and g_{2} are transverse to $\{0\} \times Q_{2}$, with $\left(f_{2}\left(B^{2}\right) \cup g_{2}\left(B^{2}\right)\right) \cap\left(\{0\} \times Q_{2}\right)$ missing $\{0\} \times C^{\infty}$, and so that

$$
\rho\left(\pi_{G} \circ f_{2}, f_{1}\right)<\delta \quad \text { and } \quad \rho\left(\pi_{G} \circ g_{2}, g_{1}\right)<\delta .
$$

It follows that

$$
\rho\left(\pi \circ f_{2}, f\right)=\rho\left(\left(\pi_{1} \circ \pi_{G}\right) \circ f_{2}, f\right)=\rho\left(\pi_{1} \circ\left(\pi_{G} \circ f_{2}\right), f\right)<\frac{\epsilon}{3}
$$

and

$$
\rho\left(\pi \circ g_{2}, g\right)=\rho\left(\left(\pi_{1} \circ \pi_{G}\right) \circ g_{2}, g\right)=\rho\left(\pi_{1} \circ\left(\pi_{G} \circ g_{2}\right), g\right)<\frac{\epsilon}{3} .
$$

That is, $\pi \circ f_{2}$ and $\pi \circ g_{2}$ are $\frac{\epsilon}{3}$ approximations to f and g respectively. Finally, choose k so that if R is any component of \mathcal{R}_{k}, then $\operatorname{diam}(\pi(R))<\frac{\epsilon}{3}$, and so that $\left(f_{2}\left(B^{2}\right) \cup\right.$ $\left.\left.g_{2}\left(B^{2}\right)\right) \cap\{0\} \times Q_{2}\right)$ is contained in the complement of \mathcal{R}_{k}. After a small general position adjustment, by using Lemma 3.2.6, there are approximations $f_{3}, g_{3}: B^{2} \rightarrow Q$ to f_{2} and g_{2} respectively so that

$$
\left.f_{3}\right|_{B^{2} \backslash\left(f_{2}^{-1}(R)\right)}=\left.f_{2}\right|_{B^{2} \backslash\left(f_{2}^{-1}(R)\right)},\left.\quad g_{3}\right|_{B^{2} \backslash\left(g_{2}^{-1}(R)\right)}=\left.g_{2}\right|_{B^{2} \backslash\left(g_{2}^{-1}(R)\right)},
$$

and satisfying the following conditions:
(i) If $h \in H, h \subset R$ and both $g_{3}\left(B^{2}\right)$ and $f_{3}\left(B^{2}\right)$ intersect h, then $h \cap\{0\} \times C^{\infty} \in P$.
(ii) If $h \in H, h \subset R$ and $g_{3}\left(B^{2}\right)$ intersects h and $f_{3}\left(B^{2}\right)$ does not intersect h, then $h \cap\{0\} \times C^{\infty}$ has no triadic rational coordinates.
(iii) If $h \in H, h \subset R$ and $f_{3}\left(B^{2}\right)$ intersects h and $\left.g_{(} B^{2}\right)$ does not intersect h, then $h \cap\{0\} \times C^{\infty}$ has no triadic rational coordinates.

We claim that $F=\pi \circ f_{3}$ and $G=\pi \circ g_{3}$ are the required approximations to f and g. First we can see that

$$
\begin{aligned}
& \rho\left(\pi \circ f_{3}, f\right) \leq \rho\left(\pi \circ f_{3}, \pi \circ f_{2}\right)+\rho\left(\pi \circ f_{2}, f\right) \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}=\frac{2 \epsilon}{3} \\
& \rho\left(\pi \circ g_{3}, g\right) \leq \rho\left(\pi \circ g_{3}, \pi \circ g_{2}\right)+\rho\left(\pi \circ g_{2}, g\right) \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}=\frac{2 \epsilon}{3}
\end{aligned}
$$

Next we will show that

$$
F\left(B^{2}\right) \cap G\left(B^{2}\right) \cap A=\emptyset
$$

If $F\left(B^{2}\right) \cap G\left(B^{2}\right)=\emptyset$, then we are done. Now suppose that

$$
F\left(B^{2}\right) \cap G\left(B^{2}\right) \neq \emptyset
$$

Since $\pi_{G} \circ f_{3} \cap \pi_{G} \circ g_{3}=\emptyset$, the points in $F\left(B^{2}\right) \cap G\left(B^{2}\right)$ can arise in one of the following ways:
(a) Such points can arise from an element h of H that intersects both $f_{3}\left(B^{2}\right)$ and $g_{3}\left(B^{2}\right)$, or
(b) they can arise from the elements h_{1} of H that $f_{3}\left(B^{2}\right)$ intersects and h_{2} of H that $g_{3}\left(B^{2}\right)$ intersects where $\pi_{G}\left(h_{1}\right) \cap \pi_{G}\left(h_{2}\right) \neq \emptyset$.

Suppose elements of the second type exist, and let $\left(f^{\infty}\right)^{-1}(y) \in \pi_{G}\left(h_{1}\right) \cap \pi_{G}\left(h_{2}\right)$. That is, there are $x_{1} \in h_{1}$ and $x_{2} \in h_{2}$ with $x_{1} \neq x_{2}$ so that $f^{\infty}\left(x_{1}\right)=y=f^{\infty}\left(x_{2}\right)$ which implies that x_{1} and x_{2} have triadic rational coordinates. Since D consist only of points with no triadic rational, it follows that $x_{1}, x_{2} \notin D$. But by conditions (ii) and (iii) above, $x_{1}, x_{2} \in D$, So, this leads to a contradiction. Thus, there are no points of the latter type. The condition (i) above shows that any point of the first type lies in the complement of A. That is,

$$
F\left(B^{2}\right) \cap G\left(B^{2}\right) \cap A=\emptyset
$$

This completes the proof of the Lemma.

5.4 Main Theorem

Theorem 5.4.1. Let $G H$ be the decomposition of Q defined as the previous section. Then GH satisfies the following four properties:
(a) The nonmanifold part of $Q / G H$ is homeomorphic to a copy of Q whose codimension is 1 .
(b) $Q / G H \not \approx Q$
(c) If A is any closed subspace of X where $A \subset \pi\left(N_{\pi}\right)$ of codimension ≥ 1 in $\pi\left(N_{\pi}\right)$, then the decomposition of Q induced over A is shrinkable. That is, $Q / \pi^{-1}(A) \cong Q$.
(d) GH is cellular
(e) $Q / G H \times I^{2} \cong Q$

Proof. For (a), we can see that first the nonmanifold part of $Q / G H$ is contained in $\pi\left(Q^{2}\right)$ where $Q^{2}=\{0\} \times Q_{2}$. Note that Q^{2} has codimension 1 in Q by Example 1.4.2. Claim that $\pi\left(Q^{2}\right)$ also has codimension 1 . Let U be any open set in $Q / G H$. Consider $H_{0}\left(U, U-\pi\left(Q^{2}\right)\right)$. Since π is cell-like map and Q^{2} has codimension 1, by Theorem 1.3.20, it implies that

$$
H_{0}\left(U, U-\pi\left(Q^{2}\right)\right) \cong H_{0}\left(\pi^{-1}(U), \pi^{-1}(U)-Q^{2}\right) \cong 0
$$

Let U be a saturated open set such that $H_{1}\left(U, U-Q^{2}\right) \not \approx 0$. Note that $\pi(U)$ is open in $Q / G H$. Then again by Theorem 1.3.20,

$$
H_{1}\left(\pi(U), \pi(U)-\pi\left(Q^{2}\right)\right) \cong H_{1}\left(U, U-Q^{2}\right) \not \approx 0 .
$$

Therefore, we have $\pi\left(Q^{2}\right)$ has codimension 1 in $Q / G H$. It remains to show that $\pi\left(Q^{2}\right)$ is the nonmanifold part of $Q / G H$. Given $\epsilon>0$. Let $p \in \pi\left(Q^{2}\right)$ and U be a ϵ neighborhood of p in $\pi\left(Q^{2}\right)$. We will show that the disjoint disc property fails in U. Choose an element R of some \mathcal{R}_{k} so that $\pi(R)$ is contained in the $\frac{\epsilon}{4}$ neighborhood of p.

Given $R=P \cup T \cup D$ together with the tubes joining these of some element in \mathcal{R}_{k} so that $\pi_{H}(R)$ is contained in the $\frac{\epsilon}{4}$ neighborhood of p. Choose $f, g: B^{2} \rightarrow Q$ so that f is an I-essential map into T and g is an I-essential into D. Let $\pi \circ f, \pi \circ f: B^{2} \rightarrow Q / G H$. Then by Theorem 1.3.16, there is $\delta>0$ so that if $f^{\prime \prime}$ and $g^{\prime \prime}: B^{2} \rightarrow Q$ are approximate lifts of $\frac{\delta}{2}$ approximations of f^{\prime} and g^{\prime} respectively with

$$
\rho\left(\pi \circ f^{\prime \prime}, \pi \circ f\right)<\delta \quad \text { and } \quad \rho\left(\pi \circ g^{\prime \prime}, \pi \circ g\right)<\delta,
$$

then

$$
\rho\left(\left.f^{\prime \prime}\right|_{\partial B^{2}},\left.f\right|_{\partial B^{2}}\right)<\epsilon^{\prime} \quad \text { and } \quad \rho\left(\left.g^{\prime \prime}\right|_{\partial B^{2}},\left.g\right|_{\partial B^{2}}\right)<\epsilon^{\prime}
$$

It follows by Lemma 5.1.8 that if f_{1} and g_{1} are any $\frac{\delta}{2}$ approximations of $\pi_{H} \circ f$ and $\pi_{H} \circ g$ respectively, then

$$
f_{1}\left(B^{2}\right) \cap g_{1}\left(B^{2}\right) \neq \emptyset
$$

Thus U does not satisfy the DDP and hence the manifold part of $Q / G H$ is $\pi\left(Q^{2}\right)$.
For (b), this follows from (a).
For (c), notice that $Q / \pi^{-1}(A)$ is an ANR by Lemma 5.2.1(5) and has DDP by Lemma 5.3.1. By Corollary 5.2.8, $Q / \pi^{-1}(A)$ has Disjoint Čech Carriers Property. It follows that by Theorem 1.7.16, $Q / \pi^{-1}(A)$ is a Q-manifold. That is, $Q / \pi^{-1}(A) \cong Q$.

For (d), the map π is cell-like by Lemma 5.2.1(1). It implies that each nondegenerate element h has trivial shape. By the condition (c), for $h \in N_{\pi}, Q / \pi^{-1}(h) \cong Q$. Thus, by Theorem 1.3.30 h is cellular. That is, $G H$ is a cellular decomposition.

For (e), first note that $Q / G H$ is an ANR. By Lemma 5.2.7, we have $Q / G H$ has Disjoint Čech Carriers Property, and hence by Lemma 1.7.15, $Q / G H \times I^{2}$ is a Q-manifold.

6. CONCLUSION

The main results of this work is the existence of a cell-like decomposition $G H$ of the Hilbert Cube Q such that $Q / G H$ is nonmanifold. The nonmanifold part of $Q / G H$ is homeomorphic to a copy of Q whose codimension is 1 . Also, if A is any closed subspace of the nonmanifold part of codimension ≥ 1 in the nonmanifold part, then the decomposition of Q induced over A is shrinkable. That is, $Q / \pi^{-1}(A) \cong Q$. However, $Q / G H$ is still a factor of Q since $Q / G H \times I^{2} \cong Q$.

The principal new results in this thesis are:

- (Theorem 2.5.4) There exists a sequence

$$
\mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \ldots\right\}
$$

of collection subsets of Q satisfying the following properties:

1. $\bigcap \mathcal{B}=\{0\} \times C^{\infty}$ where $C^{\infty}=\prod_{i=1}^{\infty} C$ and C is the Cantor set.
2. Every point $p \in\{0\} \times C^{\infty}$ is associated with a sequence $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$ where $\epsilon_{l}=\left(\sigma_{l 1}, \sigma_{l 2}\right)$, and where $\sigma_{l 1}$ and $\sigma_{l 2}$ are n_{l}-tuples whose components are in $\{1,2\}$,
3. If there is N such that for all $i>N$ either all the first coordinates of the ϵ_{i} or all the second coordinates of the ϵ_{i} is not in $\overline{1} \cup \overline{2}$, then $p \in\{0\} \times C^{\infty}$ has no triadic rational coordinates.

- (Theorem 3.2.7) There exists a decomposition H of Q which satisfies the following properties:

1. For each nondegenerate element h of H,

$$
h \cap\{0\} \times Q_{2}
$$

is a single point in $\{0\} \times C^{\infty}$.
2. Let f_{1} and f_{2} be maps from B^{2} into Q / H and let A be any dense subset of C^{∞}. Then f_{1} and f_{2} are approximable by maps g_{1} and g_{2} satisfying:
(i) $g_{1}\left(B^{2}\right) \cap g_{2}\left(B^{2}\right) \subset \pi_{H}(A)$, and
(ii) if $p=\{0\} \times p^{\prime}$ is a point of $\{0\} \times C^{\infty}$ with
$\pi_{H}(p) \in\left(g_{1}\left(B^{2}\right) \backslash g_{2}\left(B^{2}\right)\right) \cup\left(g_{2}\left(B^{2}\right) \backslash g_{1}\left(B^{2}\right)\right)$,
then p^{\prime} has no triadic rational coordinates.
3. Q / H has nonmanifold part equal to $\pi_{H}\left(\{0\} \times C^{\infty}\right) \cong\{0\} \times C^{\infty}$.
4. $Q / H \times I^{2} \cong Q$.

- After combining the decomposition H in Chapter 3 and the decomposition G in Chapter 5, we have a decomposition GH satisfying the following three properties (Theorem 5.4.1):

1. $G H$ is cellular
2. The nonmanifold part of $Q / G H$ is homeomorphic to a copy of Q whose codimension is 1 .
3. $Q / G H \times I^{2} \cong Q$.
4. If A is any closed subspace of X of codimension greater than ≥ 1 in $\pi\left(N_{\pi}\right)$, then the decomposition of Q induced over A is shrinkable. That is, $Q / \pi^{-1}(A) \cong Q$.

Note that the example in this work yields the nonmanifold part of codimension 1. A question for further investigation is the following:

Question: Does there exist a similar example of a decomposition of the Hilbert cube having the nonmanifold part of codimension k for any positive integer k ?

BIBLIOGRAPHY

Beg50. Edward G. Begle. The vietoris mapping theorem for bicompact spaces. The Annals of Mathermatics, Second Series, 51:534-543, 1950.

Čer80. Zvonko Čerin. On cellular decompositions of Hilbert cube manifolds. Pacific J. Math., 91(1):47-69, 1980.

Cha76. T.A. Chapman. Lectures on hilbert cube manifolds. CBMS Regional Conference Series in Mathematics, 28, 1976.

Cha91. Donald R. Chalice. A characterization of the cantor function. The American Mathematical Monthly, 98:255-258, 1991.

Dav81. Robert J. Daverman. Detecting the disjoint disks property. Pacific Journal of Mathematics, 93:277-298, 1981.

Dav07. Robert J. Daverman. Decompositions of manifolds. AMS Chelsea Publishing, Providence, RI, 2007. Reprint of the 1986 original.

DE87. R. J. Daverman and R. D. Edwards. Wild cantor sets as approximations to codimension two manifolds. Topology Appl., 26(2):207-218, 1987.

DG82. Robert J. Daverman and Dennis J. Garity. Intrinsically ($n-2$) dimensional cellular decomposition of \mathbb{R}^{n}. Pacific Journal of Mathematics, 102:275-282, 1982.

DMRV06. O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen. The Cantor function. Expo. Math., 24(1):1-37, 2006.

Dob96. Jozef Doboš. The standard cantor function is subadditive. Proceedings of the American Mathematical Society, 124:3425-3426, 1996.

DW81. Robert J. Daverman and John J. Walsh. Čech homology characterizations of infinite-dimensional manifolds. Amer. J. Math., 103(3):411-435, 1981.

Edw80. R.D. Edwards. The topology of manifolds and cell-like maps. in : O. Letho, ed., Proceedings International Congress Mathematics, Helsinki, pages 111127, 1978(Acad. Sci. Fenn., Helsinki, 1980).

Gar91. Dennis J. Garity. Thin codimension-one decomposition of \mathbb{R}^{n}. Topology and its applications, 42:263-276, 1991.

GD83. Dennis J. Garity and Robert J. Daverman. Intrinsically ($n-1$) dimensional cellular decomposition of \mathbb{S}^{n}. Pacific Journal of Mathematics, 27:670-690, 1983.

Ghi07. Kailash C Ghimire. An intrinsic codimension two cellular decomposition of the hilbert cube. A Ph.D. Dissertation, 2007.

HW48. W. Hurewicz and H. Wallman. Dimension Theory. Princeton Univ. Press., 1948.

Koz81. G Kozlowski. Images of anr. Unpublished paper, 1981.
Kro74. N.S. Kroonenberg. Characterization of finite-dimensional z-sets. Proc. Amer. Math. Soc, 43:421-427, 1974.

Lac77. R. C. Lacher. Cell-like mappings and their generalizations. Bull. Amer. Math. Soc., 83(4):495-552, 1977.

Lay. T.L Lay. Defining sequence and decomposition of the hilbert cube.
Lay80. Terry Lay. Cell like totally non-cellular decomposition of hilbert cube manifold. A Ph.D. Dissertation, 1980.

May72. Joerg Mayer. Algebraic Topology. Prentice-Hall, Inc. Engglewood Cliffs, NJ, 1972.

Mun84. James R. Munkres. Elements of Algebraic Topology. The Benjamin/Cummings Publishing Company, Inc, 1984.

Mun00. J.R. Munkres. Topology. Prentice Hall, 2000.
MW83. L.F. McAuley and E.P. Woodruff. Rasing the dimension of 0-dimensional decompositions of \mathbb{R}^{3}. in: R.H. Bing, W.T. Eaton and M.P. Starbird, eds., Decomposition, Manifolds(Univ. of Texas Press, Austin, TX), pages 152-162, 1983.

Wil70. Stephen Willard. General Topology. Dover Publications, Inc. Mineola, NJ, 1970.

