

AN ABSTRACT OF THE THESIS OF

Anna Harutyunyan for the degree of Master of Science in Computer Science presented on

November 30, 2012.

Title: Maximum Flow in Planar Digraphs

Abstract approved:

Glencora Borradaile

Worst-case analysis is often meaningless in practice. Some problems never reach the

anticipated worst-case complexity. Other solutions get bogged down with impractical

constants during implementation, despite having favorable asymptotic running times. In

this thesis, we investigate these contrasts in the context of finding maximum flows in planar

digraphs. We suggest analytic techniques that adapt to the problem instance, and present

a structural property that concludes equivalence between shortest paths and maximum

st-flow in planar graphs.

The best known algorithm for maximum st-flow in directed planar graphs is an augmenting-

paths algorithm with O(n) iterations. Using dynamic trees, each iteration can be imple

mented in O(log n) time. Long before, Itai and Shiloach showed that when s and t are on

the boundary of a common face, the O(n)-iteration augmenting-paths algorithm is equiv

alent to Dijkstra’s algorithm in the graph’s dual: the max st-planar st-flow problem can

be solved with one single-source shortest-path computation. In this thesis we show that

(a) when s and t are separated by p faces, the max st-flow can be found with at most

2p single-source shortest-path computations, which, using the linear-time shortest-paths

algorithm for planar graphs, results in an O(np)-time algorithm, and (b) that the equiva

lence between augmenting-paths and Dijkstra’s extends to the most general non-st-planar

digraphs, using their half-infinite universal cover graph.

c©Copyright by Anna Harutyunyan
November 30, 2012
All Rights Reserved

Maximum Flow in Planar Digraphs

by

Anna Harutyunyan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented November 30, 2012

Commencement June 2013

Master of Science thesis of Anna Harutyunyan presented on November 30, 2012.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Anna Harutyunyan, Author

ACKNOWLEDGEMENTS

I am infinitely grateful to Cora Borradaile who taught me how to do research, for her

contagious enthusiasm, for the hours spent at the whiteboard together, and for being a

role model. I look forward to working with her in the future.

I would like to thank my committee members and former professors for their guidance,

assistance, and encouragement.

I am grateful to the department staff for making all formalities seem easy.

I also extend sincere thanks to friends and fellow graduate students who (sometimes

involuntarily) engaged in discussions and provided invaluable insights: Theresa, Boris,

Christophe, Mohamed, Behrouz, William, Ben and others. Lastly, I thank my family for

their enduring support.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Preliminaries 4

2.1 Background . 4

2.1.1 Graphs . 4

2.1.2 Flow . 4

2.1.3 Planar graphs . 5

2.2 Converting a pseudoflow into a feasible maximum flow 8

2.3 Hassin’s algorithm for maximum st-planar flow 9

2.4 Universal cover . 9

2.5 Leftmost-path algorithm . 11

3 Adaptive Analysis 12

3.1 MaxAdaptiveFlow Algorithm . 13

3.2 Analysis . 13

3.2.1 Properties of crossing paths . 14

3.2.2 Left to right progress . 15

3.2.3 Bounding the number of iterations of MaxAdaptiveFlow 16

4 Network Flow and Shortest Paths 17

4.1 Leftmost in the cover . 18

4.2 Maximum flow: there and back again . 19

4.3 Convergence . 20

4.3.1 When is the flow final? . 21

4.4 A note on implementation . 22

5 Conclusion 23

5.1 Discussion and future work . 23

Bibliography 24

LIST OF FIGURES

Figure	 Page

1.1	 Harris and Ross map of the Warsaw Pact rail network. The model graph
has 44 vertices and 105 directed edges, with the dotted line representing the
”bottleneck”. 2

2.1	 A planar graph and its dual: the primal graph is given by solid vertices and
solid arcs and the dual is given by open vertices and dotted arcs. 6

2.2	 The primal is given by solid edges and the dual by dotted edges. The dark
bold (directed) darts form a simple directed cycle in the dual and a directed
cut in the primal. 6

2.3	 (a) P crosses Q from right to left: P enters Q on the right at x, and P
leaves Q on the left at y. (b) P and Q are non-crossing 7

2.4	 (a) G embedded on a cylinder with s-to-t paths P and Q. (b) Embeddings
of G that correspond to “cutting” along P and Q. (c) The universal cover
graph of G: GP = GQ, with the labeling on t inherited from GP 10

3.1	 (a) Cycles C1 and C2 used in the proof of Theorem 3.2.1. (b) Case 1: C2 is
enclosed by C1. (c) Case 2: C1 is enclosed by C2 15

4.1	 (a) P is a counterclockwise cycle through t around s in G. (b) The universal
cover of G is given in grey, with dashed infinite-capacity edges. P maps to
an ∞-to-t0 path (black). Ci = P [ti+1, ti] ◦ tiT ◦ Tti+1, i ≥ 0 is a clockwise
cycle (dotted). The bold path corresponds to the super-imposed infinite
cycle C = P [∞, t0] ◦ t0T ◦ Tt∞. 19

4.2	 (a) G contains two counterclockwise cycles around s: C1 and C2, of capac
ities 1 and 2 respectively. Upon routing 1 unit of flow on the s-to-t path,
C1 ◦ vt ◦ tv and C2 ◦ ut ◦ tu are residual cycles through t around s. (b)
G’s half-infinite universal cover is given with grey dotted edges. Solid paths
correspond to augmentations to t0; the dashed path is an augmentation to
t1. Convergence occurs after s3, instead of s0. 21

LIST OF TABLES
Table Page

1.1 History of Planar Maximum Flow and Minimum Cut Algorithms 3

2.1 MaxLeftmostFlow Abstract Algorithm 11

3.1 MaxAdaptiveFlow Algorithm . 13

To my family,

and people I took coffee breaks with.

Chapter 1: Introduction

Recently, James Orlin announced an O(nm)-time1 algorithm for finding maximum flow

in general networks, solving a problem open for over 50 years. Maximum flow is moti

vated by a number of practical problems, with optimization of traffic, transportation and

communication networks being the classic ones. It is used in solving various algorithmic

problems, such as finding the maximum number of edge- or vertex-disjoint paths, mini

mum spanning trees, bipartite matchings and others [2], where max flow algorithms are

used as a black-box.

In general graphs, the first strongly polynomial-time algorithm was developed in 1972

by Edmonds and Karp [10]. This was followed by faster and faster algorithms with im

provements made nearly every few years, until King, Rao and Tarjan developed their

O(nm + n2+E) and O(nm logm/(n log n) n) algorithms in 1992 [29] and 1994 [30], respec

tively. These bounds match O(nm) except for sparse graphs. No better strongly poly

nomial algorithm for sparse graphs has been developed for 18 years, until Orlin’s recent

result. Orlin not only gets the O(nm) bound, but also an O(n2/ log n) bound for sparse

graphs (m = O(n)).

Planar graphs are very sparse. Sparseness and a number of planarity-induced proper

ties allow for faster algorithms and more efficient computation on the plane. These results

often generalize to more general graph families, such as graphs embeddable on bounded-

genus surfaces, or graphs with forbidden minors. Turns out, the real world is often flat;

planar (and nearly planar) graphs serve as a reasonably accurate model for a number of

applications, including road or cable networks, images and VLSI circuits.

Maximum flow in planar graphs can be found even quicker than in sparse graphs.

And in fact, the very origin of the maximum flow problem lies in planar graphs. In the

mid-1950s Air Force researchers Harris and Ross wrote a classified report showing the

rail network that connected the Soviet Union with its satellite countries of the Eastern

Block. Regions were represented by nodes with their connecting rail segments being the

edges. Each edge was assigned a weight that represented its “capacity”: the rate at which

it could transport materials between its endpoints. Experimentally, they determined the

maximum amount of goods that could be transported from Russia into Europe, and the

cheapest way to separate the network by removing links (or, in simpler terms, blowing

up the rails), which they called the “bottleneck” (Fig. 1.1). This information, being first

declassified in 1999 [34], is the first formulation of the Maximum Flow, Minimum Cut

problem.

In 1956, Ford and Fulkerson published their seminal work proving the Max Flow, Min

Cut Theorem: the value of maximum flow is equal to the value of the minimum cut. Their

1 n commonly denotes the number of vertices, and m - the number of edges in the input graph.

2

Figure 1.1: Harris and Ross map of the Warsaw Pact rail network. The model graph has
44 vertices and 105 directed edges, with the dotted line representing the ”bottleneck”.

work also includes an analysis of an augmenting-paths algorithm for st-planar graphs

(graphs in which s and t are on the same face) [13]. They show that viewing the graph as

being embedded with s as the bottom vertex and t as the top vertex, repeatedly augmenting

the leftmost2 residual s-to-t path will find the max flow in O(n) iterations. Later, Itai and

Shiloach showed that this algorithm can be implemented by running Dijkstra’s algorithm

in the dual graph [21]. Borradaile and Klein showed that a generalization of leftmost

to planar graphs in which s and t are not on the same face admits an O(n)-iteration

augmenting paths algorithm; each iteration can be implemented in O(log n) time for an

O(n log n)-time algorithm [5].

The above results also, of course, apply to undirected planar graphs. Recently, faster

algorithms have been developed for undirected graphs. Kaplan and Nussbaum show that,

when s and t are separated by p faces, the minimum cut (but not the maximum flow) can

be computed in O(n log p) time [25], and Italiano, Nussbaum, Sankowski and Wulff-Nilsen

show that the maximum flow can be computed in O(n log log n) time [22]. The history of

maximum flow in planar graphs shows that maximum flow and minimum cut have been

inseparable in directed graphs but not in undirected graphs: Kaplan and Nussbaum’s

2Ford and Fulkerson viewed the graph as embedded with s on the left and t on the right and augmented
the uppermost path.

3

recent result for undirected graphs does not yield the flow (Table 1.1).

The Max Flow problem was and still is a fundamental algorithmic challenge, with a

rich history and continuously evolving solutions.

Year Restriction Year Reference
1956 st-planar O(n2) Ford and Fulkerson [13]
1979 st-planar O(n log n)√ Itai and Shiloach [21]
1982 flow of given value O(n n log n) Johnson and Venkatesan [23]
1983 value, undirected O(n log2 n) Reif [33]
1985 undirected O(n log2 n)√ Hassin and Johnson [18]
1987 st-planar O(n log n) Hassin [17] using Frederickson [14]
1997 st-planar O(n) Hassin [17] using Henzinger et al. [19]
1997 undirected O(n log n) Hassin and Johnson [18] using Henzinger

et al. [19]
2001 O(n log3 n log C) Miller and Naor [32] using Fakcharoenphol

and Rao [12]
2006 O(n log n) Borradaile and Klein [4]
2011 undirected O(n log log n) Italiano et al. [22]
2011 undirected, mini- O(n log p) Kaplan and Nussbaum [25]

mum cut

Table 1.1: History of Planar Maximum Flow and Minimum Cut Algorithms

Organization and Contributions

In Chapter 2, we give the background and preliminaries necessary to understand this

thesis.

In Chapter 3, we generalize the leftmost augmenting-path algorithm for max st-flow

in directed planar graphs. The algorithm finds the leftmost s-to-t residual path P , but,

instead of augmenting just that path, it augments all the s-to-t paths that do not cross

P . This is accomplished with a single shortest-path computation. We show that the

number of times these paths cross the band of p faces separating s from t is at most p in

each direction; the algorithm therefore takes O(p) shortest-path computations. Such an

algorithm is called adaptive since the running time measures to not just the input size,

but adapts to another parameter that captures the difficulty of the input instance.

In Chapter 4, we extend the equivalence between flow and shortest-paths to the most

general case of st-flow in planar graphs: graphs in which s and t are not on the same

face. We do this by augmenting paths in the half-infinite universal cover of the graph.

Contrary to the standard approach, we do not explicitly update the residual capacities in

the graph, instead moving forward in its cover. The correspondence concludes that any

planar maximum st-flow is witnessed by dual shortest paths.

4

Chapter 2: Preliminaries

We give the basic definitions and concepts necessary to understand this thesis. For more

detailed background on graphs, flow, and planarity please refer to [2] and [7]. We extend

any function or property on elements to sets of elements in the natural way.

2.1 Background

2.1.1 Graphs

An undirected graph is an ordered pair G = (V, E), where V is a set of vertices, and E is

a set of edges, where an edge is a pair of vertices. For two vertices u and v, we denote

the edge between them by uv. Despite finding flows in directed graphs throughout this

thesis, we refer to the underlying undirected graph G = (V, E). Each edge in E has two

corresponding oppositely-directed darts. We define rev (·) to be a function that takes each

dart to the corresponding dart in the opposite direction. The head and tail of a dart d in

G are vertices such that d is oriented from tail to head.

Walks are directed: they are ordered sets of darts with the head of a dart in the walk

being the tail of the next dart in the walk. We say that a vertex u comes before a vertex

v on a walk P , if the dart whose head is u comes before the dart whose head is v in P ;

the tail of the first dart of P is before all vertices on P . After is defined analogously. If P

and Q are two walks with the last vertex of P being the first vertex of Q, we denote the

concatenation of these walks by P ◦ Q. If P is a walk and u, v are a pair of vertices on it,

P [u, v] denotes the subset of P between the dart whose tail is u and the dart whose head

is v. P [·, v]/P [u, ·] corresponds to P [u, v], where u/v is the first/last vertex on P . A path

is a walk in which each dart is used at most once. A path is simple if each vertex is the

head of at most one dart in the path. A cycle is a path whose start and endpoints are the

same.

2.1.2 Flow

Let c be a capacity function on the darts of G. Capacities are directed: c(d) need not

be equal to c(rev (d)). A flow assignment f(·) is a function on the darts of G. The flow

assignment f(·) respects the capacity of dart d, if f(d) ≤ c(d). A flow assignment that

respects the capacities of all darts is a pseudoflow. For a given flow assignment f(·), the

net inflow (or just inflow) of a vertex v is the sum of the flow of darts whose head is

v less the sum of the flow on darts whose tail is v. Net outflow is defined analogously.

Vertices with positive inflow are excess vertices, and vertices with negative inflow are deficit

vertices. The flow assignment f(·) is conserved at a vertex v, if the net inflow is zero. A

5

pseudoflow that only contains vertices with non-negative inflow is a preflow1 . A pseudoflow

that only contains vertices with non-negative outflow is a postflow. A pseudoflow that is

conserved at all vertices is a feasible circulation. A feasible flow is a circulation that need

not be conserved at the source and sink vertices. The value of a flow is the sum of the

flow on darts whose tail is a source less the sum of the flow on darts whose head is source.

A maximum flow is a feasible flow of maximum value. A maximum preflow is a preflow

that maximizes the flow into the sinks. Similarly, a maximum postflow is a postflow that

maximizes the flow from the sources.

Given capacities c and a flow f , we define the residual capacities of c with respect to f

as c'(d) = c(d) − f(d) + f(rev (d)). We shorten this to residual capacities when c and f are

clear from context. In Chapter 3 we will be considering a sequence of capacities c0, c1, · · ·
where ci are the residual capacites of ci−1 with respect to some flow. We refer to the flow

that takes ci−1 to ci. A dart is residual with respect to capacities c if c(d) > 0. We shorten

this to residual when the capacities are clear from context.

We will use the following two lemmas that hold for general graphs. The forward

direction follows from the definition of maximum preflow (postflow). The reverse direction

follows from the Max Flow, Min Cut Theorem: if there are no residual paths from sources

or vertices with excess flow to sinks or vertices with deficit flow, then there is a saturated cut

separating the sources from the sinks and the preflow (postflow) cannot be increased [16].

Lemma 2.1.1. A preflow is maximum if and only if there is no residual path from a

source to a sink or from an excess vertex to a sink.

Lemma 2.1.2. A postflow is maximum if and only if there is no residual path from a

source to a sink or from a source to a deficit vertex.

2.1.3 Planar graphs

A planar graph is a graph for which there exists a planar embedding. A planar embedding

of a graph is the drawing of the graph on the plane (or the surface of a sphere), so that

vertices are mapped to distinct points, and edges are mapped to non-crossing curves. A set

of contiguous points in the plane/on the sphere that are not in the image of the vertices or

arcs is a face. For an embedding on the plane, there is one infinite face. For an embedding

on the sphere, an arbitrary face can be designated as the infinite face. We denote the

infinite face by f∞.

Aside from this topological definition, one can also define embeddings combinatori

ally [9]. A combinatorial embedding, or a rotation system, is given by a permutation π,

such that for every dart d, π(d) is the dart e such that x = tail(d) = tail(e) and e is the

dart immediately after d in the counterclockwise ordering of the darts around x. While

this formulation is crucial in implementing planar graph algorithms, it will not be used

1Preflows were first introduced by Karzanov in 1974 [27], and popularized by Goldberg and Tarjan in
1988 [16].

6

explicitly in this thesis.

Planar graphs can also be characterized by the minors they do not contain: the

complete graph with 5 vertices, K5, and the complete bipartite graph with 6 vertices,

K3,3 [31, 37].

Duality. The dual graph of a planar graph G, is another planar graph G∗ whose vertices

are the faces of G and vice versa. Two vertices in G∗ are connected by an edge if and only

if their corresponding faces share an edge in G. Thus there is a one-to-one correspondence

between edges of G and edges of G∗ . See Fig. 2.1. We use the following classic result on

planar graphs, illustrated in Fig. 2.22 .

Figure 2.1: A planar graph and its dual: the primal graph is given by solid vertices and
solid arcs and the dual is given by open vertices and dotted arcs.

Theorem 2.1.3 (Cycle-Cut Duality [38]). In a connected planar graph, a set of darts

forms a simple directed cycle in the primal iff it forms a simple directed cut in the dual.

Figure 2.2: The primal is given by solid edges and the dual by dotted edges. The dark
bold (directed) darts form a simple directed cycle in the dual and a directed cut in the
primal.

2Both Figures 2.1 and 2.2 first appear in [3].

7

Q
Q

Entering and leaving. Suppose a, b, and d are darts such that head(a) = tail(b) =

head(d) = v: we say d enters a ◦ b at head(a). If the clockwise ordering of these darts

around v is a, b, d, then d enters a ◦ b from the right and rev (d) leaves a ◦ b from the right.

Likewise, if the clockwise ordering of these darts around v is a, d, b, then d enters a ◦ b

from the left and rev (d) leaves a ◦ b from the left.

Crossing. We say that P crosses Q at X if X is a maximal subpath of Q such that

either X or rev (X) is a subpath of P and:

•	 P enters Q from the right at start(X) and P leaves Q from the left at end(X) in

which case P crosses Q from right to left, or

•	 P enters Q from the left at start(X) and P leaves Q from the right at end(X) in

which case P crosses Q from left to right.

By definition, X cannot be a prefix or suffix of either P or Q. A crossing is simple if X

is a single vertex. If P and Q are paths that do not cross, then they are non-crossing. A

path/cycle is non-self-crossing if for every pair P and Q of its subpaths, P does not cross

Q. Note that, for any face f , the boundary of f is a non-self-crossing cycle. The notions

of entering and crossing are illustrated in the Figure 2.3.

(a) (b)

Figure 2.3: (a) P crosses Q from right to left: P enters Q on the right at x, and P leaves
Q on the left at y. (b) P and Q are non-crossing

Cutting. For a path P , left (P) is the set of edges whose darts enter or leave P from the

left (right (P) is defined analogously).
 G P is the graph G
 =
 (V, E \ left (P)).
 All the

vertices of P are on a common face of G P .

Clockwise and leftmost. We call φ a potential assignment, and φ[f] - the potential

of face f . Corresponding to every circulation in a planar graph, there is a potential

assignment such that the flow on a dart d is given by the difference between the face on

the left side and right side of d, and the potential of the infinite face is 0. A circulation is

clockwise if all the potentials are negative. A cycle is clockwise if the circulation that pushes

one unit of flow on each dart of the cycle is clockwise. The circulation (the flow) such

8

that every clockwise cycle is non-residual is leftmost. Khuller, Naor and Klein showed that

circulations in planar graphs form a finite distributive lattice, with the leftmost circulation

being its unique minimum [28].

A path (a walk) A is left of a path (a walk) B if A◦rev (B) is a clockwise circulation. A

path (a walk) is leftmost if there are no paths (walks) left of it. (Counterclockwise, right,

and rightmost are defined symmetrically.)

We use the following results implicitly throughout.

Lemma 2.1.4 (Lemma 4.4 [5]). Let G be a graph with no clockwise cycles. If P is a

leftmost walk, then P is a simple path.

Lemma 2.1.5 (Lemma 4.5 [5]). Every subpath of a leftmost path is a leftmost path.

Lemma 2.1.6 (Corollary 3.7 [5]). Leftmost flow is acyclic.

2.2 Converting a pseudoflow into a feasible maximum flow

We start by stating a property that will be used in the analysis of this section:

Lemma 2.2.1 (Lemma A.3 [6]). Let f be a pseudoflow in G with sink set X. Let A, B

be two disjoint sets of nodes. If there are no residual paths in G from A to B ∪ X, then

there are no residual paths in G from A to B w.r.t. to f .

We refer to the above lemma for node sets W , Y , Z as sinks lemma(W ,Y ,Z).

Let f be a pseudoflow in a planar graph G with node set V , sources S and sinks T . Let

V + denote the set of excess nodes, and let V − denote the set of deficit nodes. Suppose

there are no S ∪ V +-to-T ∪ V − residual paths. In this section, we show how to convert f
' into a maximum feasible flow f . This procedure was first described for planar graphs by

Johnson and Venkatesan [23], and then by Borradaile et al. [6]. The original description of

the procedure took O(n log n) time, but with the use of the flow-cycle canceling technique3

of Kaplan and Nussbaum [26], the running time is O(n).

Since f is acyclic, there exists a topological ordering on the nodes of the graph G.

Let v be the last member of V + in the topological ordering, and let d be an arbitrary

dart that carries flow into v. We reduce the flow on d by the amount of excess on v.

If v has more excess than c(d), we set f(d) = 0. f(rev (d)) is handled accordingly. The

flow assignment f maintains the invariant of no S ∪ V +-to-T ∪ V − residual paths by sinks

lemma(S ∪ V +, T ∪ V − , {v}).
As long as v is in V +, there must be a dart d which carries flow to v. By changing the

flow on d we cannot add to V + a new node that appears later than v in the topological

ordering. We repeat this process until V + is empty. Since we reduce the flow on each dart

at most once, this takes linear time. Next we handle V − in a symmetric way by repeatedly

fixing the first vertex of V − in the topological ordering.

3We note, however, that since we are concerned with leftmost flows, and leftmost flows are acyclic, this
initial step will not be needed.

9

The total running time is O(n) and, since V + and V − are both empty, we get from the

invariant of no residual S ∪ V +-to-T ∪ V − paths that the resulting pseudoflow is a feasible
' flow. This is the required maximum flow f .

2.3 Hassin’s algorithm for maximum st-planar flow

A graph G is st-planar if the source and the sink are on the boundary of the common

face. In this section, we give a brief description of Rafael Hassin’s algorithm for finding

maximum st-planar st-flow [17], since we refer to it liberally throughout this thesis.

Hassin’s algorithm starts by transforming the max flow problem into a max saturating

circulation problem: it embeds an extra infinite-capacity directed arc a from t to s. Let d

be the dart that corresponds to a and whose head is t. Let t ∗ be the head in G∗ of the dual

of d. In the dual graph G∗, compute a shortest-path tree rooted at t ∗, where the length

of a dual dart is defined as the capacity of the primal dart. Let φ[·] denote the shortest

path distances from t ∗ in G∗ . Consider the flow:

f [d '] = φ[headG∗ (d ')] − φ[tailG∗ (d ')], for all darts d ' .

After removing the artificial arc a from G, f is a maximum feasible flow from s to t in

G, and φ is the potential assignment that induces f .

2.4 Universal cover

We define the universal covering graph (or, simply, the universal cover) of G. This is an

instance of the more general universal covering map concept from topology [36], but our

use of it can be viewed independently via the definitions presented below.

The construction of our universal cover is similar to the one described in Section 2.4 of

Erickson’s analysis of the leftmost-path algorithm of Borradaile and Klein [11]. Erikson’s

cover was of the dual graph, whereas we remain in the primal.

Given an embedding of G = (V,E) on the sphere, consider the cylinder obtained by

deleting an arbitrary face adjacent to s and an arbitrary face adjacent to t in G. We

construct the universal cover with respect to a simple s-to-t path P . We will later show

that the universal cover does not depend on which s-to-t path we use. Intuitively, the

universal cover is obtained by cutting the cylinder along P into a rectangle, and pasting

copies of these rectangles along P , creating a doubly-infinite strip.

Formally, the universal cover is an infinite graph GP = (VP , EP) corresponding to a

doubly-infinite sequence of copies of G: . . . , G−1, G0 , GP
1 , . . . (or, simply, . . . , G−1, G0, G1, . . .,P P

if P is clear from context), where Gi−1 ∩ Gi = P i for all i. We define this more precisely P P

using the function λ(uv, P) that indicates when vertex u ∈ P and dart uv ∈ left (P).

VP = {vi|v ∈ V, i ∈ Z}

EP = {ui+λ(uv,P)vi+λ(vu,P)|uv ∈ E}

A set of edges X ∈ E maps to an infinite family XP = {. . . , X−1, X0 , XP
1 , . . .} (or,P P

10

simply, . . . , X−1, X0, X1, . . ., if P is clear from context) in GP .

Lemma 2.4.1. Let Q be a simple path starting and ending on P and sharing no darts

with P . Let a and b be the first and last, resp., darts of Q. Consider one copy Q ' of Q in

QP .

1. If a, b ∈ left (P), Q ' starts and ends on P j for some j.

2. If a, b ∈ right (P), Q ' starts and ends on P j for some j.

3. If a ∈ left (P), b ∈ right (P), Q ' starts on P j+1 and ends on P j for some j.

4. If a ∈ right (P), b ∈ left (P), Q ' starts on P j and ends on P j+1 for some j.

' Proof. Let a and b ' be the first and last darts of Q ' . Let tail(a ') = ui and head(b ') = vj .

The first case of the lemma is equivalent to showing that i = j. Since a, b ∈ left (P) and

u ∈ P , v ∈ P , λ(a, P) = λ(rev (b), P) = 1. The second case is similar. The third case is

equivalent to showing that i = j + 1. Since a ∈ left (P), b ∈ right (P) and u ∈ P , v ∈ P ,

λ(a, P) = 1, λ(rev (b), P) = 0. The last case is symmetric.

t0 t1 t2t-1t-2

s0 s1 s2s-1s-2

t t t t

t

s

s

s s s

P P P

P̄

Q
P

Q

Q

Q Q

P

Q̄

t0 t1 t2t-1t-2

s0 s1 s2s-1s-2

t t t t

t

s

s

s s s

P P P

P̄

Q
P

Q

Q

Q Q

P

Q̄

(a) (b)

t0 t1 t2t-1t-2

s0 s1 s2s-1s-2

t t t t

t

s

s

s s s

P P P

P̄

Q
P

Q

Q

Q Q

P

Q̄

(c)

Figure 2.4: (a) G embedded on a cylinder with s-to-t paths P and Q. (b) Embeddings
of G that correspond to “cutting” along P and Q. (c) The universal cover graph of G:
GP = GQ, with the labeling on t inherited from GP .

Note that due to the infinite structure of GP , the universal cover is independent of

the choice of P , up to labeling of vertices. In fact, their embeddings are the same by

inheritance from G. See Fig. 2.4. Formally:

11

Lemma 2.4.2. Let P and Q be arbitrary, simple s-to-t paths in G. GP is isomorphic to

GQ.

Proof. Consider the function f(uj vk) = This is auj−λ(uv,P)+λ(uv,Q)vk−λ(vu,P)+λ(vu,Q).

bijection between edge sets EP and EQ since edges in EP take the form ui+λ(uv,P)vi+λ(vu,P).

Therefore GP is isomorphic to GQ.

i+jiLet Q be an s-to-t path in G. There is a corresponding family of sP -to-t paths in P

GP for all i and some j that we define as the lift of Q. We refer to the unique particular

path in this family for which i + j = 0 as QP .

The above isomorphism implies:

Corollary 2.4.3. Consider universal covers GP and GQ. Let A and B be s-to-t paths in

G. If AP starts at sj and BP starts at sj+!, then if AQ starts at sjl , BQ must start at

sjl+!.

For a simple path Q, we can bound the index at which QP starts:

Lemma 2.4.4. Let P and Q be arbitrary simple s-to-t paths in G. QP in GP must start

at sj , s.t. |j| ≤ |P |.

Proof. For simplicity, assume j to be non-negative; the argument for when j is negative is

symmetric. By construction of GP , an sj -to-t0 path must cross each P j−1, . . . , P 1 at least

once in GP , and therefore Q must cross P at least j − 1 times in G. By the pigeonhole

principle, if j − 1 > |P | − 1, Q must cross P at some vertex u twice, creating a cycle.

Contradiction.

2.5 Leftmost-path algorithm

MaxLeftmostFlow
Designate a face adjacent to t as f∞.

Saturate the clockwise cycles.(LeftmostCirculation [5])

While there is a residual s-to-t path,

saturate the leftmost such path.(MaxFlow [5])

Table 2.1: MaxLeftmostFlow Abstract Algorithm

The leftmost-path algorithm of Borradaile and Klein is a direct generalization of the

uppermost-path algorithm for non-st-planar graphs [5]. It takes a leftmost flow of zero

value, and by way of repeatedly augmenting s-to-t residual paths obtains a leftmost max

imum flow. At an abstract level the algorithm is given in Table 2.1.

MaxLeftmostFlow runs in O(n log n) time. The crux of the analysis, the Unusabil

ity Theorem, states that each edge may only get saturated once in each direction, implying

a linear bound on the number of augmentations. Each augmentation can be implemented

in O(log n) time with the dynamic tree data structure, giving the stated running time.

12

Chapter 3: Adaptive Analysis

Worst-case analysis is often overly pessimistic. A classic example is the familiar Quicksort

algorithm: a sorting algorithm with worst-case running time of O(n2) and average-case

running time of O(n log n), that is the most efficient in practice [20]. Average-case analysis,

while being much more accurate, is often difficult and cumbersome to perform. Adaptive

analysis is an alternative.

Analysis is called adaptive when it “adapts” to some parameter that describes the

inherent difficulty or easiness of an instance. This is a natural generalization from output-

sensitive analysis, in which the running time is expressed in terms of the output. Output-

sensitive (and later: adaptive) analysis techniques have seen their iconic use in the context

of solving the Convex Hull problem: given a set of X points in the Euclidean plane (or

Euclidean space), find the smallest set of points Y whose convex hull contains X. Adaptive

techniques have advanced the running time from O(n log n) to O(nh), O(n log h), and,

eventually, O(nH(x1, . . . , xh)), where h is the size of the resulting envelope Y , xi is a

point on it, and H(x1, . . . , xh) denotes entropy. For more background and results on

adaptive techniques on problems in computational geometry, refer to [1].

A planar graph is “easy” in the context of finding flow, if s and t are on the same

face. Indeed, in this case the problem of finding maximum flow reduces to a single-source

shortest-path computation in the dual, which can be done in linear time [19]. What if s

and t are p faces apart? The parameter p was first introduced by Itai and Shiloach [21]

who gave an O(np log n) algorithm for finding the flow of a known value. Later, Johnson

and Venkatesan [24] gave an O(np log n) algorithm for finding the flow without knowing

its value in advance. This algorithm has two bottlenecks: single-source shortest-paths

and removing flow-cycles. The first bottleneck was addressed by Henzinger et al. [19]

and the second by Kaplan and Nussbaum [26], reducing the running time of Johnson and

Venkatesan’s algorithm to Θ(np). This beats Borradaile and Klein’s O(n log n) algorithm,

when p = o(log n).

Recently, Kaplan and Nussbaum generalized Reif’s divide and conquer techniques for

finding the minimum cut (or, rather, the shortest separating cycle in the dual) in undirected

planar graphs [25]. This led to an O(n log p)-time algorithm for finding the minimum cut

in undirected planar graphs. Obtaining the flow in matching running time remains an

open problem.

In the remainder of this chapter we present an O(np)-time algorithm for finding maxi

mum flow in directed planar networks. While offering only a small improvement compared

to the algorithm of Johnson and Venkatesan (with the use of modern results), it uses very

different techniques, and we believe that the algorithm and its analysis are of independent

interest, and have a potential of leading to a better running time.

13

Q

Q

Q

3.1 MaxAdaptiveFlow Algorithm

Starting with a directed graph with arc capacities c, we consider the underlying undirected

graph G and extend c to the darts of G. We take the embedding to have t on the external

face.

Our algorithm for max st-flow is presented in Table 3.1.

MaxAdaptiveFlow (G, s, t, c)

Let c0 be the residual capacities resulting from saturating

the clockwise residual cycles of G w.r.t. c.

For i = 0, 1, . . .

If there is an s-to-t residual path in G w.r.t. ci then,

let Ai be the leftmost of these paths.

Let ci+1 be the residual capacities resulting from saturating

the leftmost st-flow in G Ai w.r.t. ci.
Otherwise,

return the flow defined by f(d) = max{0, ci(d) − c(d)}.

Table 3.1: MaxAdaptiveFlow Algorithm

The clockwise saturating circulation required for the first step of MaxAdaptiveFlow

and the leftmost st-flows in G Ai can be found with a single-source shortest-path algo

rithm. See Sections 2.2 and 2.3.1 of Borradaile’s dissertation [3] and the work of Khuller,

Naor and Klein [28] for details. The leftmost paths can be found by a depth-first left-most

search [5].

Let ρ be the number of iterations of MaxAdaptiveFlow. The running time of the

algorithm is therefore O(ρ SP(n)) where SP(n) is the time for a single-source shortest-

path computation in a planar graph with n vertices; this is bounded by O(n) using the

algorithm of Henzinger et al. [19].

The algorithm is correct as it generalizes the augmenting-path algorithm of Ford and

Fulkerson [13] and does not complete until there is no residual s-to-t path. We spend the

remainder of this chapter bounding ρ in terms of the number of faces separating s from t.

3.2 Analysis

We bound the number of iterations of MaxAdaptiveFlow by showing that the paths

A0, A1, . . . first monotonically decrease and then increase in the number of times they cross

the shortest (in terms of number of edges) path Pc from s to t.

Notice that Ai must cross Ai−1 at least once: since Ai is residual in G w.r.t. ci, Ai

cannot be a path in G Ai−1 (for otherwise it would have been augmented in iteration

i − 1). We show that these crossings can only be from right to left; this will follow from

MaxAdaptiveFlow maintaining as an invariant the absence of clockwise residual cycles.

We relate the crossings between Ai and Ai−1 to Ai and Pc by viewing these paths in

the universal cover of G.

14

3.2.1 Properties of crossing paths

We begin by showing that leftmost residual paths cross other residual paths in a restricted

way when there are no clockwise cycles. We denote the sequence of crossings between P

and Q by P ⊗ Q with ordering inherited from Q. Although the ordering of P ⊗ Q and

Q ⊗ P may not be the same, we have that |P ⊗ Q| = |Q ⊗ P |.
While we only need part 2 of the following theorem, part 1 is used within the proof of

part 2 and may be of independent interest.

Theorem 3.2.1 (Leftmost Crossings). Consider capacities with no residual clockwise cy

cles. Let P be the leftmost residual s-to-t path, with t on the infinite face, and let Q be an

s-to-t path such that rev (Q) is residual. Then:

1. The order of crossings is the same along both	 P and Q. That is, either X = Y or

X = rev (Y) where X and Y are the ith crossing in P ⊗ Q and Q ⊗ P , respectively.

2.	 P crosses Q from right to left at X for all X ∈ P ⊗ Q.

Proof. If |P ⊗ Q| = 0, the theorem is trivially true.

Let P ⊗ Q = {X1, X2, . . . , X|P ⊗Q|} and define X0 = s, X|P ⊗Q|+1 = t. Likewise let

Q ⊗ P = {Y1, Y2, . . . , Y|Q⊗P |} and define Y0 = s, Y|Q⊗P |+1 = t. For a contradiction to

Part 1, let i be the smallest index such that Xi / Let j be the index such ∈ {Yi, rev (Yi)}.
that Yj ∈ {Xi+1, rev (Xi+1)}. Then j ≥ i by choice of i.

Let xi be any vertex in Xi. Since P [xi−1, xi+1] does not cross Q at xi, P [xi−1, xi+1]

does not cross Q[xi−1, xi+1]. Since P and rev (Q) are residual, C1 = P [xi−1, xi+1] ◦

rev (Q[xi−1, xi+1]) is a simple counterclockwise cycle.

Since there are no crossings in Q[xi, xi+1], C2 = Q[xi, xi+1]◦P [xi+1, xi] is a simple cycle.

Since P is leftmost residual, P [xi+1, xi] is left of rev (Q[xi, xi+1]) and C2 is clockwise.

Since P and Q are simple, C1 and C2 do not cross. Therefore it must be the case that

either C1 is enclosed by C2 or vice versa. See Fig. 3.1.

C2	 is enclosed by C1 Since P crosses Q at Xi+1, Q[xi+1, ·] must have a subpath in the

strict interior of C1. Then, a maximal such subpath forms a counterclockwise cycle

with a subpath of P , contradicting that P is a leftmost residual path.

C1	 is enclosed by C2 Since P crosses Q at Xi, P [xi, ·] must enter the strict interior

of	 C1. Since P [xi, ·] does not cross Q[xi, xi+1], P [xi, ·] is entirely enclosed by C1,

contradicting that t is on the infinite face.

This proves part 1 of the theorem. Since Q[xi, ·] does not cross P [xi, xi+1], Q[xi, ·] does
not enter the cycle P [xi, xi+1] ◦ rev (Q[xi, xi+1]). Since P [xi, xi+1] is right of Q[xi, xi+1], it

follows that P enters Q from the right at xi+1. Part 2 follows.

15

Q

Q
Q P

xi

xi-1

xi+1

C1
Q

xi

xi+1 P

C2
Q P

xi

xi-1

xi+1

Q P

xi

xi-1

xi+1

C2

C1

C2

C1

Q P

xi

xi-1

xi+1

C1
Q

xi

xi+1 P

C2
Q P

xi

xi-1

xi+1

Q P

xi

xi-1

xi+1

C2

C1

C2

C1

Q P

xi

xi-1

xi+1

C1
Q

xi

xi+1 P

C2
Q P

xi

xi-1

xi+1

Q P

xi

xi-1

xi+1

C2

C1

C2

C1

(a) (b) (c)

Figure 3.1: (a) Cycles C1 and C2 used in the proof of Theorem 3.2.1. (b) Case 1: C2 is
enclosed by C1. (c) Case 2: C1 is enclosed by C2

3.2.2 Left to right progress

Invariant 1. G has no clockwise residual cycles w.r.t. ci, for all 0 ≤ i ≤ ρ.

Proof by induction. If i = 0 the invariant holds trivially by definition of c0. For a contra

diction, assume that cj is clockwise non-residual, but cj+1 is not. Let C be a clockwise

cycle in G that is residual w.r.t. cj+1. Since G Aj is clockwise non-residual w.r.t. cj+1,

C must use a dart d of left (Aj) that enters Aj . By the inductive hypothesis, C is not

residual w.r.t. cj ; let a be its last non-residual arc w.r.t. cj . Let F be an s-to-t path in

the flow that takes cj to cj+1 and uses rev (a) and let x be the first vertex of F on C after

head(a). Then: F [·, x] ◦ C[x, head(d)] is residual w.r.t. cj and, since F does not cross Aj ,

F [·, x] ◦ C[x, head(d)] ◦ rev (Aj)[head(d), s] is a clockwise cycle, which contradicts Aj being

leftmost residual w.r.t. cj .

As a consequence of there being no clockwise residual cycles, we show that the paths

A0, A1, A2, . . . move from left to right.

Lemma 3.2.2. Ai is left of Ai−1. Ai crosses Ai−1 at least once and only from right to

left.

Proof. First we observe that rev (Ai−1) is residual w.r.t. ci. We find a leftmost maximum

flow in G Ai−1, an st-planar graph, and since Ai−1 is residual w.r.t. ci−1, the flow we

find is non-trivial. The leftmost of these flow paths must indeed by Ai−1.

Ai must cross Ai−1 by the argument at the beginning of Section 3.2. Then, since Ai

is leftmost residual, we refer to the properties guaranteed by Theorem 3.2.1, proving the

second part of the lemma.

Let Ai ⊗ Ai−1 = {X1, X2, . . . , X|Ai⊗Ai−1|} and define X0 = s, X|Ai⊗Ai−1|+1 = t. Let

xj be any vertex in Xj . Consider the subpaths Ai[xj , xj+1] and Ai−1[xj , xj+1]. The

cycle Ai[xj , xj+1] ◦ rev (Ai−1[xj , xj+1]) is residual, and by Invariant 1 cannot be clockwise.

Therefore Ai[xj , xj+1] is left of Ai−1[xj , xj+1].

16

3.2.3 Bounding the number of iterations of MaxAdaptiveFlow

We are now ready to bound the number of iterations of MaxAdaptiveFlow.

Recall that Ai, 0 ≤ i ≤ ρ is the leftmost residual path w.r.t. ci, at iteration i of

MaxAdaptiveFlow. We will use the universal cover to obtain an upper bound on the

number of iterations of the algorithm.

We showed in Section 3.2.2 that Ai crosses Ai−1 at least once and from right to left.

Therefore there exists a subpath of Ai such that Y leaves Ai−1 from the left and enters

Ai−1 from the right and there is no subpath of Ai that leaves Ai−1 from the right and

enters Ai−1 from the left. Then by Lemma 2.4.1, Ai,Ai−1 (ie. the particular lift of Ai in
j+1 jthat ends at t0) must contain at least one subpath from A to A (and no GAi−1 Ai−1 i−1 i−1

j j+1Ai−1-to-A subpaths). Therefore we make progress in the following sense: i−1

Corollary 3.2.3. The lift of Ai in GAi−1 that ends at t
0 must start at a source with a Ai−1

strictly positive index.

From Lemma 2.4.4, we are able to bound how big the indices can get. Suppose s and

t are separated by p faces. Embed an additional zero capacity dart across each of these

faces, creating an s-to-t path Pc.

Consider GPc . By Lemma 2.4.4, every path APc corresponding to a simple path A (such

as A = Ai) must start at an sj , s.t. |j| < |Pc|. By Corollary 3.2.3, every Ai,Ai−1 must start

at a source with a strictly positive index in GAi−1 . Therefore by Corollary 2.4.3, if Ai,Pc

started at a source sj in GPc , Ai+1,Pc must start at a source sk, such that k > j. Therefore

i < 2|Pc| = 2p and:

Theorem 3.2.4. MaxAdaptiveFlow runs in O(np) time, where p is the number of

faces separating s from t.

We, however, note that 2p is a loose upper bound, and the realistic number of phases

is likely to be many fewer.

17

Chapter 4: Network Flow and Shortest Paths

Maximum flow and shortest paths are linked closely in planar graphs. In 1933, Whitney

discovered that a minimum cut in the primal corresponds to a shortest separating cycle

in the dual [38]. In 1979, Itai and Shiloach gave an O(n log n) algorithm to find that

cycle [21]. They, however, did not provide the flow function itself. Two years later, Rafael

Hassin proved that a shortest-path tree in the dual rooted at f∗
∞, is sufficient to construct

the maximum flow in an st-planar network, and that the construction can be done in linear

time [17].

Later algorithms, including Borradaile and Klein’s latest result, have diverged from

these dual techniques, and rely on a primal data structure developed by Sleator and

Tarjan in 1983 [35], called dynamic trees. While having desirable asymptotic running

times, dynamic trees are often less efficient in practice, due to difficulty to implement and

large constants.

In this section, we show that even the most general version of the planar st-flow

problem can be solved with a single shortest-paths computation, by way of viewing the

graph in its half-infinite cover. We start by discussing correspondence between notions of

leftmost in the original graph and its cover, and show that one may obtain a max flow

in the original graph, given the max leftmost flow in the cover. We then suggest running

the augmenting-paths algorithm to find this leftmost flow on the universal cover, and

show that it converges. This corresponds to computing shortest paths from left to right

throughout the copies of the graph until the convergence point. We note that contrary to

the commonly adopted intuition, we do not update the residual capacities of the network

for future augmentations.

Shortest paths and planarity

Dijkstra’s algorithm, published by a Dutch computer scientist Edsger Dijkstra in 1959,

solves the single-source shortest-path tree problem in graphs with no negative edge lengths [8].

Dijkstra’s original algorithm does not rely on min-priority queues and runs in O(|V |2) time.

The O(|E| + |V | log |V |) implementation based on a min-priority queue implemented by

a Fibonacci heap is due to Fredman and Tarjan [15]. Planar graphs are sparse, and this

amounts to a running time of O(n log n).

There exists a linear-time algorithm for computing shortest paths in planar graphs due

to Henzinger et al. that relies on planar separators [19]. While being asymptotically supe

rior to Dijkstra’s algorithm, the algorithm of Henzinger et al. has large hidden constants,

and is complicated enough to have never been implemented, to our knowledge. Dijkstra’s

algorithm is built entirely on simple primitives and remains the most efficient in practice.

18

4.1 Leftmost in the cover

Let L be the leftmost path in G after removing the clockwise cycles. Let G+ be the half-L

infinite universal covering graph of G w.r.t. L, defined in the same way as in Section 2.4,

but extending only in the positive direction.

Imagine embedding a super-source S and a super-sink T in a way that S connects to

si, i ≥ 0 with edges of infinite capacity in both directions, and ti, i ≥ 0 connect to T with

edges of infinite capacity in both directions. Call this new graph GST . Notice that GST isL L

st-planar.

We begin by describing the correspondence between notions of leftmost in G and GST .L

Lemma 4.1.1. Let G be clockwise-acyclic graph. The map of G in GST may contain L

clockwise cycles if and only if there is a counterclockwise cycle in G through t that encloses

s.

Proof. The absence of clockwise cycles in G immediately implies that there are no clockwise

cycles in G+, and any such cycle in GST must use a pair of infinite capacity edges Ssi andL L

sil S, or Tti and til T . Let C be such a cycle. There are two cases:

C uses Ssi and sil S C is of the form Ssi ◦ P ◦ sil S, where i ' > i, and P is a path. P is a

clockwise cycle in G through s, and since i ' > i, must be clockwise. Contradiction.

C uses Tti and til T C is of the form til T ◦ P ◦ Tti, where i > i ' , and P is a path. P

maps to a counterclockwise cycle through t in G that encloses s.

Let Co denote a counterclockwise cycle in G through t that encloses s. If there are

multiple such cycles sharing a boundary, we choose the smallest one (enclosing the fewest

faces). Co maps to an infinite right-to-left path P∞ in GST . Let C? be the clockwise L i

cycle in GST of the following form: C? = P∞[ti+1, ti] ◦ tiT ◦ Tti+1. Super-imposing the L i

clockwise cycles C?, C? = i+1, . . . gives an infinite clockwise cycle C? P∞[·, ti] ◦ tiT ◦ Tt∞.i i

See Fig. 4.1. We refer to P∞[·, tj] as an ∞-to-tj path for some sink tj .

Recall that a flow f is leftmost in a graph G, if there are no clockwise residual cycles in

G w.r.t. f . The following lemma gives an equivalent condition for the flow to be leftmost

in the cover of G.

Lemma 4.1.2. A flow in GST is leftmost iff there are no clockwise residual cycles in G,L

and no ∞-to-tj residual paths in GST .L

Proof. Let P∞ be an arbitrary ∞-to-tj path, with Co being its corresponding cycle in

G. Since tj T /Ttjl are of infinite capacity for any j, j ' > 0, saturating P∞ saturates its

corresponding infinite clockwise residual cycle C. We now show that saturating P∞ does

not introduce clockwise residual cycles in GL. Assume the contrary, and let such a cycle

be C. Since C must use a subpath of rev (P∞), and is clockwise, it follows that C must

19

s

t

P

T

si si+1 si+2s0 s1

C0 Cit0 ti ti+1

P

C1:(i-1)t1

(a) (b)

Figure 4.1: (a) P is a counterclockwise cycle through t around s in G. (b) The universal
cover of G is given in grey, with dashed infinite-capacity edges. P maps to an ∞-to-t0

path (black). Ci = P [ti+1, ti] ◦ tiT ◦ Tti+1, i ≥ 0 is a clockwise cycle (dotted). The bold
path corresponds to the super-imposed infinite cycle C = P [∞, t0] ◦ t0T ◦ Tt∞.

contain a u-to-v residual path R, s.t. u comes before v on P∞, and R is below P∞ in GL.

Then, P∞[·, u] ◦ R ◦ P∞[v, tj] maps to a residual counterclockwise cycle in G that is smaller

than and shares a boundary with Co, contradicting the choice of Co .

4.2 Maximum flow: there and back again

Imagine mapping the maximum leftmost flow f in G into GST . A natural way to do this L

is to lift the non-crossing path decomposition of f in G into paths in GL and, since GST isL

only half-infinite, cutting the resulting map at L0. Let the resulting flow assignment be

F+ .

Lemma 4.2.1. F+ is a maximum preflow in GST . F+ may be converted into a maximum L

flow F by modifying flow in at most p copies, where p is the number of faces separating s

from t in G.

Proof. Every vertex, except for those on L0, is balanced in GST . Since f is leftmost, by L

Theorem 3.2.1 there are no flow paths that cross L0 from the left, and L0 only contains

vertices with excess flow. The cut-cycle induced by f in G∗ corresponds to an infinite path

in GST ∗ that guarantees for no si-to-tj residual paths. It remains to show that there are no L
+ +v -to-ti residual paths in GST , where v is an excess vertex on L0. Assume the contrary. L

A vertex can only have excess in GST , if it is on an s-to-t flow path in G. Let R be a L
+v -to-ti residual path in GL, and let F be the lift of the flow path through v+ to some sink

t−k. The path rev (F [t−k, v
+]) ◦ R is residual, and since −k < i, is oriented left-to-right,

mapping to a clockwise residual cycle that passes through v and t in G. Contradiction.

Section 2.2 describes the procedure of converting a maximum preflow1 into a maximum

flow in linear time. Since every excess vertex on L0 must be on an s-to-t flow path in G,

1A maximum preflow is a pseudoflow satisfying the invariant of no S ∪ V +-to-T ∪ V − residual paths,
for which V − is empty.

20

2

and flow paths are simple, it follows from Lemma 2.4.4 on GST that the number of copies Pc

such flow paths travel is at most p, and the conversion would modify at most p copies

.

By Lemma 4.1.2, F may not be leftmost, as there may be ∞-to-tj residual paths in

GST w.r.t. F . Saturating the ∞-to-tj residual paths in GST w.r.t. F produces a flow L L

assignment Fλ that is leftmost in GL
ST . While F is balanced at every vertex in GL

+ , Fλ

is a pseudoflow in a particular copy Gi: there may be both excess and deficit vertices on

Li and Li+1, due to saturating the ∞-to-tj paths. Let k be the first index, for which the

flow assignment w.r.t. F+ in Gk is maximum in G (k ≤ p + 1). Let the portion of GST
L

between L0 and Lk+1 be GST . The only misbalanced vertices in GST w.r.t. Fλ are on L0:k+1 L0:k+1

Lk+1. Note that all misbalanced vertices are on ∞-to-tj flow paths. There are two phases:

converting Fλ into a maximum postflow F− . Then, converting F− into a maximum flow

in Gk, and, consequentially, in G.

Lemma 4.2.2. The pseudoflow Fλ in GST can be converted into a maximum flow FL0:k+1

in GST .L0:k+1

Proof. We focus on the flow Fλ − F induced by augmenting the ∞-to-tj residual paths.

Since the flow is acyclic and all excess and deficit nodes are on flow paths that do not start

at the sources, we may apply the procedure from Section 2.2, stopping when there are no

more excess nodes. This produces a postflow F− .

We now show that F− is maximum. Let P∞ be an arbitrary ∞-to-tj residual path

w.r.t. F . Since every subpath of P∞ must be residual w.r.t. F , the minimum cut w.r.t.

in GST −F must be below P∞ L . Since all deficit nodes v are on some P∞, it follows that

there are no s-to-v− residual paths in GST , and F− is maximum. L0:k+1

Maximum flow F in GST may be obtained from maximum postflow3 F− by applying L0:k+1

the procedure of Section 2.2 directly.

The ST -cut induced by F+ persists in F . Therefore, by Lemma 4.2.1, Gp+1 contains

the maximum flow of G.

4.3 Convergence

GST We now suggest running the leftmost augmenting-paths algorithm on GL
ST . is st-L

planar, and the leftmost-path algorithm produces the leftmost max flow Fλ. By Lemma 4.2.2,

this flow maps to a pseudoflow in G after modifying at most p copies of the graph, and this

pseudoflow can be converted into a max flow. It remains to show that the augmenting-

paths algorithm on the infinite graph converges in a finite number of iterations.

The usual stopping condition for an augmenting-paths algorithm is to terminate when

there are no more residual paths from the source to the sink. The universal cover is infinite,
2Recall that Pc is a zero-length path of p darts corresponding to the shortest path of faces from s to t.
3A maximum postflow is a pseudoflow satisfying the invariant of no S ∪ V +-to-T ∪ V − residual paths,

for which V + is empty.

21

and so are the clones of s-to-t residual paths. We call the flow assignment fi in Gi is final

if all paths to ti have been augmented (alternatively, when running Dijkstra’s algorithm

in the dual graph, if all faces adjacent to t ∗ have been popped off the priority queue). i

We note that since GST is st-planar, flow never gets removed from edges, and fi persists L

through future augmentations to sinks i + 1, i + 2, . . .

We say that the algorithms has converged at Gk, if the maximum flow in G can be

recovered from the flow assignment in Gk. k is then the convergence index. Section 4.2

shows that an upper bound for the convergence index is p + 1. It follows that:

Theorem 4.3.1. The final flow assignment in Gp+1 can be converted to a maximum flow

in G.

4.3.1 When is the flow final?

s

t

5

1

v
2

1

2

u

C1
C2

s0 s1 s2 s3 s4

t0 t1

(a) (b)

Figure 4.2: (a) G contains two counterclockwise cycles around s: C1 and C2, of capacities
1 and 2 respectively. Upon routing 1 unit of flow on the s-to-t path, C1 ◦ vt ◦ tv and
C2 ◦ ut ◦ tu are residual cycles through t around s. (b) G’s half-infinite universal cover is
given with grey dotted edges. Solid paths correspond to augmentations to t0; the dashed
path is an augmentation to t1. Convergence occurs after s3, instead of s0.

It is left to show that we can obtain the final flow in Gp+1 in a finite amount of time.

For this, we must bound the index j, s.t. augmenting the last sp+1+j -to-tp+1 residual

path P p+1 isolates the sink tp+1. If P p+1 is simple, j must be bounded by p, by p+1+j p+1+j

Lemma 2.4.4. However, P p+1 need not be simple, due to the possible counterclockwise p+1+j

residual cycles through t around s in G w.r.t. the flow (Fig. 4.2). Then, the number of

copies Gi travelled by P p+1 may be offseted by at most U : the sum of the residual p+1+j

capacities of such counterclockwise residual cycles. This brings the bound for j to U + p,

and:

Theorem 4.3.2. The augmenting-paths algorithm converges in the universal cover of a

graph G in O(p + U) copies, where p is the number of faces separating s from t, and U is

the sum of capacities in G.

22

4.4 A note on implementation

The modified cover graph, GST is st-planar. Therefore augmenting-paths can be imple-L

mented with a single shortest-path tree computation in the dual, rooted at f∗
∞, growing

from left to right. This tree may be computed with Dijkstra’s algorithm that stops once the

face adjacent to tp+1 has been popped off the priority queue. This computation produces

a pseudoflow. Converting this pseudoflow into a maximum postflow, and the maximum

postflow into a maximum flow can both be done with the procedure from Section 2.2 that

may be implemented with a single traversal of the graph’s topological ordering.

23

Chapter 5: Conclusion

In Chapter 3, we proposed a novel, yet conceptually simple algorithm for finding maximum

st-flow in directed planar graphs. Using Dijkstra’s algorithm at each iteration yields an

efficient and implementable algorithm for finding max flow that is especially fast for graphs

in which the source and the sink are separated by a sub-logarithmic number of faces.

The number of faces separating s and t is a natural parameter to consider for designing

adaptive algorithms, especially in the light of Kaplan and Nussbaum’s recent result, and

investigating it further seems hopeful.

Chapter 4 provides an interesting structural correspondence between augmenting paths

in a half-infinite universal cover of a planar graph and its maximum st-flow. While being

non-intuitive, this correspondence generalizes the st-planar case and affirms the historical

interweaving of flows and single-source dual shortest paths, even in the most general planar

graphs. The analysis of Chapter 4 also implies a peculiar property: contrary to the first

lesson about max flow algorithms, the capacity updating step is not necessary (given a

finite number of copies).

5.1 Discussion and future work

Tightening upper bounds. The number of iterations of MaxAdaptiveFlow and the

number of copies travelled in the augmenting-paths approach on the universal cover are

both loosely bounded by p on merely geometrical grounds. It may be possible to tighten

this bound by investigating the structure of the solutions further. For example, when

running Dijkstra’s on the dual graph, instead of stopping at a fixed point of t ∗
p+1, it may

be possible to pose a convergence condition to check for at each t ∗
i . It is also likely for it

to be possible to reduce the generous upper bound U from Theorem 4.3.2.

Toward an O(n log p) algorithm for max flow. In general, adaptive algorithms have

a tendency to follow the progression pointed out in Chapter 3: combining an existing

O(n log n)-time algorithm with an O(np)-time adaptive algorithm yields an O(n log p)-time

adaptive algorithm, and sometimes even produces an algorithm of a running time with an

entropy factor. However, in this thesis we did not utilize the techniques of Borradaile and

Klein’s O(n log n) algorithm. Specifically, their Unusability Theorem is a strong structural

result that may offer significant asymptotic improvements. Finding a way to integrate it

into the presented analysis may reduce the running time of MaxAdaptiveFlow from

O(np) to O(n log p), and give a max flow algorithm in directed planar graphs that beats the

current best time of O(n log n), and matches the running time of Kaplan and Nussbaum’s

algorithm for min cut in undirected planar graphs.

24

Implementing the O(n log n) max flow algorithm with priority queues. Utilizing

Unusability in the presented paradigm of computing shortest paths on the universal cover

may lead to an O(n log n)-time algorithm that relies entirely on simple primitives. In order

for Unusability to apply, one would need to non-trivially integrate the step of updating

residual capacities in consequent copies into the execution of Dijkstra’s algorithm. Such

an algorithm would break the spell of asymptotically efficient, but practically challenging

algorithms, and serve as a state-of-the-art algorithm for finding maximum flow that can

be implemented by a computer science amateur.

25

Bibliography

[1] P. Afshani, J. Barbay, and T. M. Chan.	 Instance-optimal geometric algorithms. In
FOCS, 2009.

[2] R. Ahuja, R. Magnanti, and J. Orlin.	 Network flows: theory, algorithms, and appli
cations. Prentice Hall, 1993.

[3] G. Borradaile.	 Exploiting Planarity for Network Flow and Connectivity Problems.
PhD thesis, Brown University, 2008.

[4] G. Borradaile and P. Klein. An O(n log n)-time algorithm for maximum st-flow in a
directed planar graph. In Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 524–533, 2006.

[5] G. Borradaile and P. Klein. An O(n log n) algorithm for maximum st-flow in a directed
planar graph. Journal of the ACM, 56(2):1–30, 2009.

[6] G. Borradaile, P. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen. Multiple-source
multiple-sink maximum flow in directed planar graphs in near-linear time. Technical
Report 1105:2228, arXiv, 2011. To appear in FOCS.

[7] Reinhard Diestel.	 Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, Heidelberg, third edition, 2005.

[8] E. W. Dijkstra.	 A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959. 10.1007/BF01386390.

[9] J. Edmonds.	 A combinatorial representation for polyhedral surfaces. Notices of the
American Mathematical Society, 7:646, 1960.

[10] J. Edmonds and R. Karp.	 Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[11] J. Erickson.	 Maximum flows and parametric shortest paths in planar graphs. In
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages
794–804, 2010.

[12] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths,
near linear time. In Proceedings of the 42th Annual Symposium on Foundations of
Computer Science, pages 232–241, 2001.

[13] C. Ford and D. Fulkerson.	 Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[14] G. Frederickson. Fast algorithms for shortest paths in planar graphs with applications.
SIAM Journal on Computing, 16:1004–1022, 1987.

[15] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, 1987.

26

[16] A. Goldberg and R. Tarjan. A new approach to the maximum-flow problem. Journal
of the ACM, 35(4):921–940, 1988.

[17] R. Hassin. Maximum flow in (s, t) planar networks. Information Processing Letters,
13:107, 1981.

[18] R. Hassin and D. B. Johnson. An O(n log2 n) algorithm for maximum flow in undi
rected planar networks. SIAM Journal on Computing, 14:612–624, 1985.

[19] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms
for planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997.

[20] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[21] A. Itai and Y. Shiloach. Maximum flow in planar networks.	 SIAM Journal on Com
puting, 8:135–150, 1979.

[22] G. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen.	 Improved algorithms
for min cut and max flow in undirected planar graphs. In Proceedings of the 43rd
annual ACM symposium on Theory of computing, STOC ’11, pages 313–322, New
York, NY, USA, 2011. ACM.

[23] D. B. Johnson and S. Venkatesan. Using divide and conquer to find flows in directed
planar networks in O(n3/2 log n) time. In Proceedings of the 20th Annual Allerton
Conference on Communication, Control, and Computing, pages 898–905, 1982.

[24] Donald B. Johnson and Shankar M. Venkatesan. Partition of planar flow networks. In
SFCS ’83: Proceedings of the 24th Annual Symposium on Foundations of Computer
Science, pages 259–264, Washington, DC, USA, 1983. IEEE Computer Society.

[25] H. Kaplan and Y. Nussbaum.	 Minimum st-cut in undirected planar graphs when
the source and the sink are close. In Proceedings of the 28th Int. Symp. Theoretical
Aspects Comput. Sci., pages 117–128, 2011.

[26] Haim Kaplan and Yahav Nussbaum. Maximum flow in directed planar graphs with
vertex capacities. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009,
volume 5757 of Lecture Notes in Computer Science, pages 397–407. Springer Berlin /
Heidelberg, 2009. 10.1007/978-3-642-04128-0-36.

[27] A. V. Karzanov.	 Determining the maximal flow in a network with the method of
preows. Soviet Math Dokl., 15:1277–1280, 1974.

[28] S. Khuller, J. Naor, and P.	 Klein. The lattice structure of flow in planar graphs.
SIAM Journal on Discrete Mathematics, 6(3):477–490, 1993.

[29] V. King, S. Rao, and R. Tarjan.	 A faster deterministic maximum flow algorithm.
In Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
SODA ’92, pages 157–164, Philadelphia, PA, USA, 1992. Society for Industrial and
Applied Mathematics.

[30] V. King, S. Rao, and R. Tarjan.	 A faster deterministic maximum flow algorithm.
Journal of Algorithms, 17(3):447 – 474, 1994.

[31] K. Kuratowski.	 Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15:271–283, 1930.

27

[32] G. L. Miller and J. Naor.	 Flow in planar graphs with multiple sources and sinks.
SIAM Journal on Computing, 24(5):1002–1017, 1995.

[33] J. Reif. Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM
Journal on Computing, 12:71–81, 1983.

[34] Alexander Schrijver. On the history of combinatorial optimization (till 1960).

[35] D. Sleator and R. Tarjan. A data structure for dynamic trees.	 Journal of Computer
and System Sciences, 26(3):362–391, 1983.

[36] E.H.	 Spanier. Algebraic Topology. McGraw-Hill series in higher mathematics.
Springer, 1994.

¨ [37] K. Wagner.	 Uber eine Eigenschaft der ebenen Komplexe. Mathematische Annalen,
114:570–590, 1937.

[38] H. Whitney. Planar graphs. Fundamenta mathematicae, 21:73–84, 1933.

