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Chapter 1: Introduction 

Recently, James Orlin announced an O(nm)-time1 algorithm for finding maximum flow 

in general networks, solving a problem open for over 50 years. Maximum flow is moti

vated by a number of practical problems, with optimization of traffic, transportation and 

communication networks being the classic ones. It is used in solving various algorithmic 

problems, such as finding the maximum number of edge- or vertex-disjoint paths, mini

mum spanning trees, bipartite matchings and others [2], where max flow algorithms are 

used as a black-box. 

In general graphs, the first strongly polynomial-time algorithm was developed in 1972 

by Edmonds and Karp [10]. This was followed by faster and faster algorithms with im

provements made nearly every few years, until King, Rao and Tarjan developed their 

O(nm + n2+E) and O(nm logm/(n log n) n) algorithms in 1992 [29] and 1994 [30], respec

tively. These bounds match O(nm) except for sparse graphs. No better strongly poly

nomial algorithm for sparse graphs has been developed for 18 years, until Orlin’s recent 

result. Orlin not only gets the O(nm) bound, but also an O(n2/ log n) bound for sparse 

graphs (m = O(n)). 

Planar graphs are very sparse. Sparseness and a number of planarity-induced proper

ties allow for faster algorithms and more efficient computation on the plane. These results 

often generalize to more general graph families, such as graphs embeddable on bounded-

genus surfaces, or graphs with forbidden minors. Turns out, the real world is often flat; 

planar (and nearly planar) graphs serve as a reasonably accurate model for a number of 

applications, including road or cable networks, images and VLSI circuits. 

Maximum flow in planar graphs can be found even quicker than in sparse graphs. 

And in fact, the very origin of the maximum flow problem lies in planar graphs. In the 

mid-1950s Air Force researchers Harris and Ross wrote a classified report showing the 

rail network that connected the Soviet Union with its satellite countries of the Eastern 

Block. Regions were represented by nodes with their connecting rail segments being the 

edges. Each edge was assigned a weight that represented its “capacity”: the rate at which 

it could transport materials between its endpoints. Experimentally, they determined the 

maximum amount of goods that could be transported from Russia into Europe, and the 

cheapest way to separate the network by removing links (or, in simpler terms, blowing 

up the rails), which they called the “bottleneck” (Fig. 1.1). This information, being first 

declassified in 1999 [34], is the first formulation of the Maximum Flow, Minimum Cut 

problem. 

In 1956, Ford and Fulkerson published their seminal work proving the Max Flow, Min 

Cut Theorem: the value of maximum flow is equal to the value of the minimum cut. Their 

1 n commonly denotes the number of vertices, and m - the number of edges in the input graph. 
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Figure 1.1: Harris and Ross map of the Warsaw Pact rail network. The model graph has 
44 vertices and 105 directed edges, with the dotted line representing the ”bottleneck”. 

work also includes an analysis of an augmenting-paths algorithm for st-planar graphs 

(graphs in which s and t are on the same face) [13]. They show that viewing the graph as 

being embedded with s as the bottom vertex and t as the top vertex, repeatedly augmenting 

the leftmost2 residual s-to-t path will find the max flow in O(n) iterations. Later, Itai and 

Shiloach showed that this algorithm can be implemented by running Dijkstra’s algorithm 

in the dual graph [21]. Borradaile and Klein showed that a generalization of leftmost 

to planar graphs in which s and t are not on the same face admits an O(n)-iteration 

augmenting paths algorithm; each iteration can be implemented in O(log n) time for an 

O(n log n)-time algorithm [5]. 

The above results also, of course, apply to undirected planar graphs. Recently, faster 

algorithms have been developed for undirected graphs. Kaplan and Nussbaum show that, 

when s and t are separated by p faces, the minimum cut (but not the maximum flow) can 

be computed in O(n log p) time [25], and Italiano, Nussbaum, Sankowski and Wulff-Nilsen 

show that the maximum flow can be computed in O(n log log n) time [22]. The history of 

maximum flow in planar graphs shows that maximum flow and minimum cut have been 

inseparable in directed graphs but not in undirected graphs: Kaplan and Nussbaum’s 

2Ford and Fulkerson viewed the graph as embedded with s on the left and t on the right and augmented 
the uppermost path. 
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recent result for undirected graphs does not yield the flow (Table 1.1). 

The Max Flow problem was and still is a fundamental algorithmic challenge, with a 

rich history and continuously evolving solutions. 

Year Restriction Year Reference 
1956 st-planar O(n2) Ford and Fulkerson [13] 
1979 st-planar O(n log n)√ Itai and Shiloach [21] 
1982 flow of given value O(n n log n) Johnson and Venkatesan [23] 
1983 value, undirected O(n log2 n) Reif [33] 
1985 undirected O(n log2 n)√ Hassin and Johnson [18] 
1987 st-planar O(n log n) Hassin [17] using Frederickson [14] 
1997 st-planar O(n) Hassin [17] using Henzinger et al. [19] 
1997 undirected O(n log n) Hassin and Johnson [18] using Henzinger 

et al. [19] 
2001 O(n log3 n log C) Miller and Naor [32] using Fakcharoenphol 

and Rao [12] 
2006 O(n log n) Borradaile and Klein [4] 
2011 undirected O(n log log n) Italiano et al. [22] 
2011 undirected, mini- O(n log p) Kaplan and Nussbaum [25] 

mum cut 

Table 1.1: History of Planar Maximum Flow and Minimum Cut Algorithms 

Organization and Contributions 

In Chapter 2, we give the background and preliminaries necessary to understand this 

thesis. 

In Chapter 3, we generalize the leftmost augmenting-path algorithm for max st-flow 

in directed planar graphs. The algorithm finds the leftmost s-to-t residual path P , but, 

instead of augmenting just that path, it augments all the s-to-t paths that do not cross 

P . This is accomplished with a single shortest-path computation. We show that the 

number of times these paths cross the band of p faces separating s from t is at most p in 

each direction; the algorithm therefore takes O(p) shortest-path computations. Such an 

algorithm is called adaptive since the running time measures to not just the input size, 

but adapts to another parameter that captures the difficulty of the input instance. 

In Chapter 4, we extend the equivalence between flow and shortest-paths to the most 

general case of st-flow in planar graphs: graphs in which s and t are not on the same 

face. We do this by augmenting paths in the half-infinite universal cover of the graph. 

Contrary to the standard approach, we do not explicitly update the residual capacities in 

the graph, instead moving forward in its cover. The correspondence concludes that any 

planar maximum st-flow is witnessed by dual shortest paths. 
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Chapter 2: Preliminaries 

We give the basic definitions and concepts necessary to understand this thesis. For more 

detailed background on graphs, flow, and planarity please refer to [2] and [7]. We extend 

any function or property on elements to sets of elements in the natural way. 

2.1 Background 

2.1.1 Graphs 

An undirected graph is an ordered pair G = (V, E), where V is a set of vertices, and E is 

a set of edges, where an edge is a pair of vertices. For two vertices u and v, we denote 

the edge between them by uv. Despite finding flows in directed graphs throughout this 

thesis, we refer to the underlying undirected graph G = (V, E). Each edge in E has two 

corresponding oppositely-directed darts. We define rev (·) to be a function that takes each 

dart to the corresponding dart in the opposite direction. The head and tail of a dart d in 

G are vertices such that d is oriented from tail to head. 

Walks are directed: they are ordered sets of darts with the head of a dart in the walk 

being the tail of the next dart in the walk. We say that a vertex u comes before a vertex 

v on a walk P , if the dart whose head is u comes before the dart whose head is v in P ; 

the tail of the first dart of P is before all vertices on P . After is defined analogously. If P 

and Q are two walks with the last vertex of P being the first vertex of Q, we denote the 

concatenation of these walks by P ◦ Q. If P is a walk and u, v are a pair of vertices on it, 

P [u, v] denotes the subset of P between the dart whose tail is u and the dart whose head 

is v. P [·, v]/P [u, ·] corresponds to P [u, v], where u/v is the first/last vertex on P . A path 

is a walk in which each dart is used at most once. A path is simple if each vertex is the 

head of at most one dart in the path. A cycle is a path whose start and endpoints are the 

same. 

2.1.2 Flow 

Let c be a capacity function on the darts of G. Capacities are directed: c(d) need not 

be equal to c(rev (d)). A flow assignment f(·) is a function on the darts of G. The flow 

assignment f(·) respects the capacity of dart d, if f(d) ≤ c(d). A flow assignment that 

respects the capacities of all darts is a pseudoflow. For a given flow assignment f(·), the 

net inflow (or just inflow) of a vertex v is the sum of the flow of darts whose head is 

v less the sum of the flow on darts whose tail is v. Net outflow is defined analogously. 

Vertices with positive inflow are excess vertices, and vertices with negative inflow are deficit 

vertices. The flow assignment f(·) is conserved at a vertex v, if the net inflow is zero. A 
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pseudoflow that only contains vertices with non-negative inflow is a preflow1 . A pseudoflow 

that only contains vertices with non-negative outflow is a postflow. A pseudoflow that is 

conserved at all vertices is a feasible circulation. A feasible flow is a circulation that need 

not be conserved at the source and sink vertices. The value of a flow is the sum of the 

flow on darts whose tail is a source less the sum of the flow on darts whose head is source. 

A maximum flow is a feasible flow of maximum value. A maximum preflow is a preflow 

that maximizes the flow into the sinks. Similarly, a maximum postflow is a postflow that 

maximizes the flow from the sources. 

Given capacities c and a flow f , we define the residual capacities of c with respect to f 

as c'(d) = c(d) − f(d) + f(rev (d)). We shorten this to residual capacities when c and f are 

clear from context. In Chapter 3 we will be considering a sequence of capacities c0, c1, · · · 
where ci are the residual capacites of ci−1 with respect to some flow. We refer to the flow 

that takes ci−1 to ci. A dart is residual with respect to capacities c if c(d) > 0. We shorten 

this to residual when the capacities are clear from context. 

We will use the following two lemmas that hold for general graphs. The forward 

direction follows from the definition of maximum preflow (postflow). The reverse direction 

follows from the Max Flow, Min Cut Theorem: if there are no residual paths from sources 

or vertices with excess flow to sinks or vertices with deficit flow, then there is a saturated cut 

separating the sources from the sinks and the preflow (postflow) cannot be increased [16]. 

Lemma 2.1.1. A preflow is maximum if and only if there is no residual path from a 

source to a sink or from an excess vertex to a sink. 

Lemma 2.1.2. A postflow is maximum if and only if there is no residual path from a 

source to a sink or from a source to a deficit vertex. 

2.1.3 Planar graphs 

A planar graph is a graph for which there exists a planar embedding. A planar embedding 

of a graph is the drawing of the graph on the plane (or the surface of a sphere), so that 

vertices are mapped to distinct points, and edges are mapped to non-crossing curves. A set 

of contiguous points in the plane/on the sphere that are not in the image of the vertices or 

arcs is a face. For an embedding on the plane, there is one infinite face. For an embedding 

on the sphere, an arbitrary face can be designated as the infinite face. We denote the 

infinite face by f∞. 

Aside from this topological definition, one can also define embeddings combinatori

ally [9]. A combinatorial embedding, or a rotation system, is given by a permutation π, 

such that for every dart d, π(d) is the dart e such that x = tail(d) = tail(e) and e is the 

dart immediately after d in the counterclockwise ordering of the darts around x. While 

this formulation is crucial in implementing planar graph algorithms, it will not be used 

1Preflows were first introduced by Karzanov in 1974 [27], and popularized by Goldberg and Tarjan in 
1988 [16]. 
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explicitly in this thesis. 

Planar graphs can also be characterized by the minors they do not contain: the 

complete graph with 5 vertices, K5, and the complete bipartite graph with 6 vertices, 

K3,3 [31, 37]. 

Duality. The dual graph of a planar graph G, is another planar graph G∗ whose vertices 

are the faces of G and vice versa. Two vertices in G∗ are connected by an edge if and only 

if their corresponding faces share an edge in G. Thus there is a one-to-one correspondence 

between edges of G and edges of G∗ . See Fig. 2.1. We use the following classic result on 

planar graphs, illustrated in Fig. 2.22 . 

Figure 2.1: A planar graph and its dual: the primal graph is given by solid vertices and 
solid arcs and the dual is given by open vertices and dotted arcs. 

Theorem 2.1.3 (Cycle-Cut Duality [38]). In a connected planar graph, a set of darts 

forms a simple directed cycle in the primal iff it forms a simple directed cut in the dual. 

Figure 2.2: The primal is given by solid edges and the dual by dotted edges. The dark 
bold (directed) darts form a simple directed cycle in the dual and a directed cut in the 
primal. 

2Both Figures 2.1 and 2.2 first appear in [3]. 
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Q
Q

Entering and leaving. Suppose a, b, and d are darts such that head(a) = tail(b) = 

head(d) = v: we say d enters a ◦ b at head(a). If the clockwise ordering of these darts 

around v is a, b, d, then d enters a ◦ b from the right and rev (d) leaves a ◦ b from the right. 

Likewise, if the clockwise ordering of these darts around v is a, d, b, then d enters a ◦ b 

from the left and rev (d) leaves a ◦ b from the left. 

Crossing. We say that P crosses Q at X if X is a maximal subpath of Q such that 

either X or rev (X) is a subpath of P and: 

•	 P enters Q from the right at start(X) and P leaves Q from the left at end(X) in 

which case P crosses Q from right to left, or 

•	 P enters Q from the left at start(X) and P leaves Q from the right at end(X) in 

which case P crosses Q from left to right. 

By definition, X cannot be a prefix or suffix of either P or Q. A crossing is simple if X 

is a single vertex. If P and Q are paths that do not cross, then they are non-crossing. A 

path/cycle is non-self-crossing if for every pair P and Q of its subpaths, P does not cross 

Q. Note that, for any face f , the boundary of f is a non-self-crossing cycle. The notions 

of entering and crossing are illustrated in the Figure 2.3. 

(a) (b) 

Figure 2.3: (a) P crosses Q from right to left: P enters Q on the right at x, and P leaves 
Q on the left at y. (b) P and Q are non-crossing 

Cutting. For a path P , left (P ) is the set of edges whose darts enter or leave P from the 

left (right (P ) is defined analogously).
 G P is the graph G
 =
 (V, E \ left (P )).
 All the
 

vertices of P are on a common face of G P .
 

Clockwise and leftmost. We call φ a potential assignment, and φ[f ] - the potential 

of face f . Corresponding to every circulation in a planar graph, there is a potential 

assignment such that the flow on a dart d is given by the difference between the face on 

the left side and right side of d, and the potential of the infinite face is 0. A circulation is 

clockwise if all the potentials are negative. A cycle is clockwise if the circulation that pushes 

one unit of flow on each dart of the cycle is clockwise. The circulation (the flow) such 
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that every clockwise cycle is non-residual is leftmost. Khuller, Naor and Klein showed that 

circulations in planar graphs form a finite distributive lattice, with the leftmost circulation 

being its unique minimum [28]. 

A path (a walk) A is left of a path (a walk) B if A◦rev (B) is a clockwise circulation. A 

path (a walk) is leftmost if there are no paths (walks) left of it. (Counterclockwise, right, 

and rightmost are defined symmetrically.) 

We use the following results implicitly throughout. 

Lemma 2.1.4 (Lemma 4.4 [5]). Let G be a graph with no clockwise cycles. If P is a 

leftmost walk, then P is a simple path. 

Lemma 2.1.5 (Lemma 4.5 [5]). Every subpath of a leftmost path is a leftmost path. 

Lemma 2.1.6 (Corollary 3.7 [5]). Leftmost flow is acyclic. 

2.2 Converting a pseudoflow into a feasible maximum flow 

We start by stating a property that will be used in the analysis of this section: 

Lemma 2.2.1 (Lemma A.3 [6]). Let f be a pseudoflow in G with sink set X. Let A, B 

be two disjoint sets of nodes. If there are no residual paths in G from A to B ∪ X, then 

there are no residual paths in G from A to B w.r.t. to f . 

We refer to the above lemma for node sets W , Y , Z as sinks lemma(W ,Y ,Z). 

Let f be a pseudoflow in a planar graph G with node set V , sources S and sinks T . Let 

V + denote the set of excess nodes, and let V − denote the set of deficit nodes. Suppose 

there are no S ∪ V +-to-T ∪ V − residual paths. In this section, we show how to convert f 
' into a maximum feasible flow f . This procedure was first described for planar graphs by 

Johnson and Venkatesan [23], and then by Borradaile et al. [6]. The original description of 

the procedure took O(n log n) time, but with the use of the flow-cycle canceling technique3 

of Kaplan and Nussbaum [26], the running time is O(n). 

Since f is acyclic, there exists a topological ordering on the nodes of the graph G. 

Let v be the last member of V + in the topological ordering, and let d be an arbitrary 

dart that carries flow into v. We reduce the flow on d by the amount of excess on v. 

If v has more excess than c(d), we set f(d) = 0. f(rev (d)) is handled accordingly. The 

flow assignment f maintains the invariant of no S ∪ V +-to-T ∪ V − residual paths by sinks 

lemma(S ∪ V +, T ∪ V − , {v}). 
As long as v is in V +, there must be a dart d which carries flow to v. By changing the 

flow on d we cannot add to V + a new node that appears later than v in the topological 

ordering. We repeat this process until V + is empty. Since we reduce the flow on each dart 

at most once, this takes linear time. Next we handle V − in a symmetric way by repeatedly 

fixing the first vertex of V − in the topological ordering. 

3We note, however, that since we are concerned with leftmost flows, and leftmost flows are acyclic, this 
initial step will not be needed. 
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The total running time is O(n) and, since V + and V − are both empty, we get from the 

invariant of no residual S ∪ V +-to-T ∪ V − paths that the resulting pseudoflow is a feasible 
' flow. This is the required maximum flow f . 

2.3 Hassin’s algorithm for maximum st-planar flow 

A graph G is st-planar if the source and the sink are on the boundary of the common 

face. In this section, we give a brief description of Rafael Hassin’s algorithm for finding 

maximum st-planar st-flow [17], since we refer to it liberally throughout this thesis. 

Hassin’s algorithm starts by transforming the max flow problem into a max saturating 

circulation problem: it embeds an extra infinite-capacity directed arc a from t to s. Let d 

be the dart that corresponds to a and whose head is t. Let t ∗ be the head in G∗ of the dual 

of d. In the dual graph G∗, compute a shortest-path tree rooted at t ∗, where the length 

of a dual dart is defined as the capacity of the primal dart. Let φ[·] denote the shortest 

path distances from t ∗ in G∗ . Consider the flow: 

f [d ' ] = φ[headG∗ (d ' )] − φ[tailG∗ (d ' )], for all darts d ' . 

After removing the artificial arc a from G, f is a maximum feasible flow from s to t in 

G, and φ is the potential assignment that induces f . 

2.4 Universal cover 

We define the universal covering graph (or, simply, the universal cover) of G. This is an 

instance of the more general universal covering map concept from topology [36], but our 

use of it can be viewed independently via the definitions presented below. 

The construction of our universal cover is similar to the one described in Section 2.4 of 

Erickson’s analysis of the leftmost-path algorithm of Borradaile and Klein [11]. Erikson’s 

cover was of the dual graph, whereas we remain in the primal. 

Given an embedding of G = (V,E) on the sphere, consider the cylinder obtained by 

deleting an arbitrary face adjacent to s and an arbitrary face adjacent to t in G. We 

construct the universal cover with respect to a simple s-to-t path P . We will later show 

that the universal cover does not depend on which s-to-t path we use. Intuitively, the 

universal cover is obtained by cutting the cylinder along P into a rectangle, and pasting 

copies of these rectangles along P , creating a doubly-infinite strip. 

Formally, the universal cover is an infinite graph GP = (VP , EP ) corresponding to a 

doubly-infinite sequence of copies of G: . . . , G−1, G0 , GP 
1 , . . . (or, simply, . . . , G−1, G0, G1, . . .,P P 

if P is clear from context), where Gi−1 ∩ Gi = P i for all i. We define this more precisely P P 

using the function λ(uv, P ) that indicates when vertex u ∈ P and dart uv ∈ left (P ). 

VP = {vi|v ∈ V, i ∈ Z}


EP = {ui+λ(uv,P )vi+λ(vu,P )|uv ∈ E}
 

A set of edges X ∈ E maps to an infinite family XP = {. . . , X−1, X0 , XP 
1 , . . .} (or,P P 
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simply, . . . , X−1, X0, X1, . . ., if P is clear from context) in GP . 

Lemma 2.4.1. Let Q be a simple path starting and ending on P and sharing no darts 

with P . Let a and b be the first and last, resp., darts of Q. Consider one copy Q ' of Q in 

QP . 

1. If a, b ∈ left (P ), Q ' starts and ends on P j for some j. 

2. If a, b ∈ right (P ), Q ' starts and ends on P j for some j. 

3. If a ∈ left (P ), b ∈ right (P ), Q ' starts on P j+1 and ends on P j for some j. 

4. If a ∈ right (P ), b ∈ left (P ), Q ' starts on P j and ends on P j+1 for some j. 

' Proof. Let a and b ' be the first and last darts of Q ' . Let tail(a ' ) = ui and head(b ' ) = vj . 

The first case of the lemma is equivalent to showing that i = j. Since a, b ∈ left (P ) and 

u ∈ P , v ∈ P , λ(a, P ) = λ(rev (b), P ) = 1. The second case is similar. The third case is 

equivalent to showing that i = j + 1. Since a ∈ left (P ), b ∈ right (P ) and u ∈ P , v ∈ P , 

λ(a, P ) = 1, λ(rev (b), P ) = 0. The last case is symmetric. 

t0 t1 t2t-1t-2

s0 s1 s2s-1s-2

t t t t

t

s

s

s s s

P P P

P̄

Q
P

Q

Q

Q Q

P

Q̄

t0 t1 t2t-1t-2

s0 s1 s2s-1s-2

t t t t

t

s

s

s s s

P P P

P̄

Q
P

Q

Q

Q Q

P

Q̄

(a) (b) 

t0 t1 t2t-1t-2

s0 s1 s2s-1s-2

t t t t

t

s

s

s s s

P P P

P̄

Q
P

Q

Q

Q Q

P

Q̄

(c) 

Figure 2.4: (a) G embedded on a cylinder with s-to-t paths P and Q. (b) Embeddings 
of G that correspond to “cutting” along P and Q. (c) The universal cover graph of G: 
GP = GQ, with the labeling on t inherited from GP . 

Note that due to the infinite structure of GP , the universal cover is independent of 

the choice of P , up to labeling of vertices. In fact, their embeddings are the same by 

inheritance from G. See Fig. 2.4. Formally: 
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Lemma 2.4.2. Let P and Q be arbitrary, simple s-to-t paths in G. GP is isomorphic to 

GQ. 

Proof. Consider the function f(uj vk) = This is auj−λ(uv,P )+λ(uv,Q)vk−λ(vu,P )+λ(vu,Q). 

bijection between edge sets EP and EQ since edges in EP take the form ui+λ(uv,P )vi+λ(vu,P ). 

Therefore GP is isomorphic to GQ. 

i+jiLet Q be an s-to-t path in G. There is a corresponding family of sP -to-t paths in P 

GP for all i and some j that we define as the lift of Q. We refer to the unique particular 

path in this family for which i + j = 0 as QP . 

The above isomorphism implies: 

Corollary 2.4.3. Consider universal covers GP and GQ. Let A and B be s-to-t paths in 

G. If AP starts at sj and BP starts at sj+!, then if AQ starts at sjl , BQ must start at 

sjl+!. 

For a simple path Q, we can bound the index at which QP starts: 

Lemma 2.4.4. Let P and Q be arbitrary simple s-to-t paths in G. QP in GP must start 

at sj , s.t. |j| ≤ |P |. 

Proof. For simplicity, assume j to be non-negative; the argument for when j is negative is 

symmetric. By construction of GP , an sj -to-t0 path must cross each P j−1, . . . , P 1 at least 

once in GP , and therefore Q must cross P at least j − 1 times in G. By the pigeonhole 

principle, if j − 1 > |P | − 1, Q must cross P at some vertex u twice, creating a cycle. 

Contradiction. 

2.5 Leftmost-path algorithm 

MaxLeftmostFlow 
Designate a face adjacent to t as f∞.
 
Saturate the clockwise cycles.(LeftmostCirculation [5])
 
While there is a residual s-to-t path,
 

saturate the leftmost such path.(MaxFlow [5]) 

Table 2.1: MaxLeftmostFlow Abstract Algorithm 

The leftmost-path algorithm of Borradaile and Klein is a direct generalization of the 

uppermost-path algorithm for non-st-planar graphs [5]. It takes a leftmost flow of zero 

value, and by way of repeatedly augmenting s-to-t residual paths obtains a leftmost max

imum flow. At an abstract level the algorithm is given in Table 2.1. 

MaxLeftmostFlow runs in O(n log n) time. The crux of the analysis, the Unusabil

ity Theorem, states that each edge may only get saturated once in each direction, implying 

a linear bound on the number of augmentations. Each augmentation can be implemented 

in O(log n) time with the dynamic tree data structure, giving the stated running time. 
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Chapter 3: Adaptive Analysis 

Worst-case analysis is often overly pessimistic. A classic example is the familiar Quicksort 

algorithm: a sorting algorithm with worst-case running time of O(n2) and average-case 

running time of O(n log n), that is the most efficient in practice [20]. Average-case analysis, 

while being much more accurate, is often difficult and cumbersome to perform. Adaptive 

analysis is an alternative. 

Analysis is called adaptive when it “adapts” to some parameter that describes the 

inherent difficulty or easiness of an instance. This is a natural generalization from output-

sensitive analysis, in which the running time is expressed in terms of the output. Output-

sensitive (and later: adaptive) analysis techniques have seen their iconic use in the context 

of solving the Convex Hull problem: given a set of X points in the Euclidean plane (or 

Euclidean space), find the smallest set of points Y whose convex hull contains X. Adaptive 

techniques have advanced the running time from O(n log n) to O(nh), O(n log h), and, 

eventually, O(nH(x1, . . . , xh)), where h is the size of the resulting envelope Y , xi is a 

point on it, and H(x1, . . . , xh) denotes entropy. For more background and results on 

adaptive techniques on problems in computational geometry, refer to [1]. 

A planar graph is “easy” in the context of finding flow, if s and t are on the same 

face. Indeed, in this case the problem of finding maximum flow reduces to a single-source 

shortest-path computation in the dual, which can be done in linear time [19]. What if s 

and t are p faces apart? The parameter p was first introduced by Itai and Shiloach [21] 

who gave an O(np log n) algorithm for finding the flow of a known value. Later, Johnson 

and Venkatesan [24] gave an O(np log n) algorithm for finding the flow without knowing 

its value in advance. This algorithm has two bottlenecks: single-source shortest-paths 

and removing flow-cycles. The first bottleneck was addressed by Henzinger et al. [19] 

and the second by Kaplan and Nussbaum [26], reducing the running time of Johnson and 

Venkatesan’s algorithm to Θ(np). This beats Borradaile and Klein’s O(n log n) algorithm, 

when p = o(log n). 

Recently, Kaplan and Nussbaum generalized Reif’s divide and conquer techniques for 

finding the minimum cut (or, rather, the shortest separating cycle in the dual) in undirected 

planar graphs [25]. This led to an O(n log p)-time algorithm for finding the minimum cut 

in undirected planar graphs. Obtaining the flow in matching running time remains an 

open problem. 

In the remainder of this chapter we present an O(np)-time algorithm for finding maxi

mum flow in directed planar networks. While offering only a small improvement compared 

to the algorithm of Johnson and Venkatesan (with the use of modern results), it uses very 

different techniques, and we believe that the algorithm and its analysis are of independent 

interest, and have a potential of leading to a better running time. 
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Q

Q

Q

3.1 MaxAdaptiveFlow Algorithm 

Starting with a directed graph with arc capacities c, we consider the underlying undirected 

graph G and extend c to the darts of G. We take the embedding to have t on the external 

face. 

Our algorithm for max st-flow is presented in Table 3.1. 

MaxAdaptiveFlow (G, s, t, c)
 
Let c0 be the residual capacities resulting from saturating
 

the clockwise residual cycles of G w.r.t. c.
 
For i = 0, 1, . . .
 

If there is an s-to-t residual path in G w.r.t. ci then,
 
let Ai be the leftmost of these paths.
 
Let ci+1 be the residual capacities resulting from saturating 

the leftmost st-flow in G Ai w.r.t. ci. 
Otherwise, 

return the flow defined by f(d) = max{0, ci(d) − c(d)}. 

Table 3.1: MaxAdaptiveFlow Algorithm 

The clockwise saturating circulation required for the first step of MaxAdaptiveFlow 

and the leftmost st-flows in G Ai can be found with a single-source shortest-path algo

rithm. See Sections 2.2 and 2.3.1 of Borradaile’s dissertation [3] and the work of Khuller, 

Naor and Klein [28] for details. The leftmost paths can be found by a depth-first left-most 

search [5]. 

Let ρ be the number of iterations of MaxAdaptiveFlow. The running time of the 

algorithm is therefore O(ρ SP(n)) where SP(n) is the time for a single-source shortest-

path computation in a planar graph with n vertices; this is bounded by O(n) using the 

algorithm of Henzinger et al. [19]. 

The algorithm is correct as it generalizes the augmenting-path algorithm of Ford and 

Fulkerson [13] and does not complete until there is no residual s-to-t path. We spend the 

remainder of this chapter bounding ρ in terms of the number of faces separating s from t. 

3.2 Analysis 

We bound the number of iterations of MaxAdaptiveFlow by showing that the paths 

A0, A1, . . . first monotonically decrease and then increase in the number of times they cross 

the shortest (in terms of number of edges) path Pc from s to t. 

Notice that Ai must cross Ai−1 at least once: since Ai is residual in G w.r.t. ci, Ai 

cannot be a path in G Ai−1 (for otherwise it would have been augmented in iteration
 

i − 1). We show that these crossings can only be from right to left; this will follow from 

MaxAdaptiveFlow maintaining as an invariant the absence of clockwise residual cycles. 

We relate the crossings between Ai and Ai−1 to Ai and Pc by viewing these paths in 

the universal cover of G. 
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3.2.1 Properties of crossing paths
 

We begin by showing that leftmost residual paths cross other residual paths in a restricted 

way when there are no clockwise cycles. We denote the sequence of crossings between P 

and Q by P ⊗ Q with ordering inherited from Q. Although the ordering of P ⊗ Q and 

Q ⊗ P may not be the same, we have that |P ⊗ Q| = |Q ⊗ P |. 
While we only need part 2 of the following theorem, part 1 is used within the proof of 

part 2 and may be of independent interest. 

Theorem 3.2.1 (Leftmost Crossings). Consider capacities with no residual clockwise cy

cles. Let P be the leftmost residual s-to-t path, with t on the infinite face, and let Q be an 

s-to-t path such that rev (Q) is residual. Then: 

1. The order of crossings is the same along both	 P and Q. That is, either X = Y or 

X = rev (Y ) where X and Y are the ith crossing in P ⊗ Q and Q ⊗ P , respectively. 

2.	 P crosses Q from right to left at X for all X ∈ P ⊗ Q. 

Proof. If |P ⊗ Q| = 0, the theorem is trivially true. 

Let P ⊗ Q = {X1, X2, . . . , X|P ⊗Q|} and define X0 = s, X|P ⊗Q|+1 = t. Likewise let 

Q ⊗ P = {Y1, Y2, . . . , Y|Q⊗P |} and define Y0 = s, Y|Q⊗P |+1 = t. For a contradiction to 

Part 1, let i be the smallest index such that Xi / Let j be the index such ∈ {Yi, rev (Yi)}. 
that Yj ∈ {Xi+1, rev (Xi+1)}. Then j ≥ i by choice of i. 

Let xi be any vertex in Xi. Since P [xi−1, xi+1] does not cross Q at xi, P [xi−1, xi+1] 

does not cross Q[xi−1, xi+1]. Since P and rev (Q) are residual, C1 = P [xi−1, xi+1] ◦ 

rev (Q[xi−1, xi+1]) is a simple counterclockwise cycle. 

Since there are no crossings in Q[xi, xi+1], C2 = Q[xi, xi+1]◦P [xi+1, xi] is a simple cycle. 

Since P is leftmost residual, P [xi+1, xi] is left of rev (Q[xi, xi+1]) and C2 is clockwise. 

Since P and Q are simple, C1 and C2 do not cross. Therefore it must be the case that 

either C1 is enclosed by C2 or vice versa. See Fig. 3.1. 

C2	 is enclosed by C1 Since P crosses Q at Xi+1, Q[xi+1, ·] must have a subpath in the 

strict interior of C1. Then, a maximal such subpath forms a counterclockwise cycle 

with a subpath of P , contradicting that P is a leftmost residual path. 

C1	 is enclosed by C2 Since P crosses Q at Xi, P [xi, ·] must enter the strict interior 

of	 C1. Since P [xi, ·] does not cross Q[xi, xi+1], P [xi, ·] is entirely enclosed by C1, 

contradicting that t is on the infinite face. 

This proves part 1 of the theorem. Since Q[xi, ·] does not cross P [xi, xi+1], Q[xi, ·] does 
not enter the cycle P [xi, xi+1] ◦ rev (Q[xi, xi+1]). Since P [xi, xi+1] is right of Q[xi, xi+1], it 

follows that P enters Q from the right at xi+1. Part 2 follows. 
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Figure 3.1: (a) Cycles C1 and C2 used in the proof of Theorem 3.2.1. (b) Case 1: C2 is 
enclosed by C1. (c) Case 2: C1 is enclosed by C2 

3.2.2 Left to right progress 

Invariant 1. G has no clockwise residual cycles w.r.t. ci, for all 0 ≤ i ≤ ρ. 

Proof by induction. If i = 0 the invariant holds trivially by definition of c0. For a contra

diction, assume that cj is clockwise non-residual, but cj+1 is not. Let C be a clockwise 

cycle in G that is residual w.r.t. cj+1. Since G Aj is clockwise non-residual w.r.t. cj+1, 

C must use a dart d of left (Aj ) that enters Aj . By the inductive hypothesis, C is not 

residual w.r.t. cj ; let a be its last non-residual arc w.r.t. cj . Let F be an s-to-t path in 

the flow that takes cj to cj+1 and uses rev (a) and let x be the first vertex of F on C after 

head(a). Then: F [·, x] ◦ C[x, head(d)] is residual w.r.t. cj and, since F does not cross Aj , 

F [·, x] ◦ C[x, head(d)] ◦ rev (Aj )[head(d), s] is a clockwise cycle, which contradicts Aj being 

leftmost residual w.r.t. cj . 

As a consequence of there being no clockwise residual cycles, we show that the paths 

A0, A1, A2, . . . move from left to right. 

Lemma 3.2.2. Ai is left of Ai−1. Ai crosses Ai−1 at least once and only from right to 

left. 

Proof. First we observe that rev (Ai−1) is residual w.r.t. ci. We find a leftmost maximum 

flow in G Ai−1, an st-planar graph, and since Ai−1 is residual w.r.t. ci−1, the flow we 

find is non-trivial. The leftmost of these flow paths must indeed by Ai−1. 

Ai must cross Ai−1 by the argument at the beginning of Section 3.2. Then, since Ai 

is leftmost residual, we refer to the properties guaranteed by Theorem 3.2.1, proving the 

second part of the lemma. 

Let Ai ⊗ Ai−1 = {X1, X2, . . . , X|Ai⊗Ai−1|} and define X0 = s, X|Ai⊗Ai−1|+1 = t. Let 

xj be any vertex in Xj . Consider the subpaths Ai[xj , xj+1] and Ai−1[xj , xj+1]. The 

cycle Ai[xj , xj+1] ◦ rev (Ai−1[xj , xj+1]) is residual, and by Invariant 1 cannot be clockwise. 

Therefore Ai[xj , xj+1] is left of Ai−1[xj , xj+1]. 
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3.2.3 Bounding the number of iterations of MaxAdaptiveFlow 

We are now ready to bound the number of iterations of MaxAdaptiveFlow. 

Recall that Ai, 0 ≤ i ≤ ρ is the leftmost residual path w.r.t. ci, at iteration i of 

MaxAdaptiveFlow. We will use the universal cover to obtain an upper bound on the 

number of iterations of the algorithm. 

We showed in Section 3.2.2 that Ai crosses Ai−1 at least once and from right to left. 

Therefore there exists a subpath of Ai such that Y leaves Ai−1 from the left and enters 

Ai−1 from the right and there is no subpath of Ai that leaves Ai−1 from the right and 

enters Ai−1 from the left. Then by Lemma 2.4.1, Ai,Ai−1 (ie. the particular lift of Ai in 
j+1 jthat ends at t0 ) must contain at least one subpath from A to A (and no GAi−1 Ai−1 i−1 i−1 

j j+1Ai−1-to-A subpaths). Therefore we make progress in the following sense: i−1 

Corollary 3.2.3. The lift of Ai in GAi−1 that ends at t
0 must start at a source with a Ai−1 

strictly positive index. 

From Lemma 2.4.4, we are able to bound how big the indices can get. Suppose s and 

t are separated by p faces. Embed an additional zero capacity dart across each of these 

faces, creating an s-to-t path Pc. 

Consider GPc . By Lemma 2.4.4, every path APc corresponding to a simple path A (such 

as A = Ai) must start at an sj , s.t. |j| < |Pc|. By Corollary 3.2.3, every Ai,Ai−1 must start 

at a source with a strictly positive index in GAi−1 . Therefore by Corollary 2.4.3, if Ai,Pc 

started at a source sj in GPc , Ai+1,Pc must start at a source sk, such that k > j. Therefore 

i < 2|Pc| = 2p and: 

Theorem 3.2.4. MaxAdaptiveFlow runs in O(np) time, where p is the number of 

faces separating s from t. 

We, however, note that 2p is a loose upper bound, and the realistic number of phases 

is likely to be many fewer. 
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Chapter 4: Network Flow and Shortest Paths 

Maximum flow and shortest paths are linked closely in planar graphs. In 1933, Whitney 

discovered that a minimum cut in the primal corresponds to a shortest separating cycle 

in the dual [38]. In 1979, Itai and Shiloach gave an O(n log n) algorithm to find that 

cycle [21]. They, however, did not provide the flow function itself. Two years later, Rafael 

Hassin proved that a shortest-path tree in the dual rooted at f∗ 
∞, is sufficient to construct 

the maximum flow in an st-planar network, and that the construction can be done in linear 

time [17]. 

Later algorithms, including Borradaile and Klein’s latest result, have diverged from 

these dual techniques, and rely on a primal data structure developed by Sleator and 

Tarjan in 1983 [35], called dynamic trees. While having desirable asymptotic running 

times, dynamic trees are often less efficient in practice, due to difficulty to implement and 

large constants. 

In this section, we show that even the most general version of the planar st-flow 

problem can be solved with a single shortest-paths computation, by way of viewing the 

graph in its half-infinite cover. We start by discussing correspondence between notions of 

leftmost in the original graph and its cover, and show that one may obtain a max flow 

in the original graph, given the max leftmost flow in the cover. We then suggest running 

the augmenting-paths algorithm to find this leftmost flow on the universal cover, and 

show that it converges. This corresponds to computing shortest paths from left to right 

throughout the copies of the graph until the convergence point. We note that contrary to 

the commonly adopted intuition, we do not update the residual capacities of the network 

for future augmentations. 

Shortest paths and planarity 

Dijkstra’s algorithm, published by a Dutch computer scientist Edsger Dijkstra in 1959, 

solves the single-source shortest-path tree problem in graphs with no negative edge lengths [8]. 

Dijkstra’s original algorithm does not rely on min-priority queues and runs in O(|V |2) time. 

The O(|E| + |V | log |V |) implementation based on a min-priority queue implemented by 

a Fibonacci heap is due to Fredman and Tarjan [15]. Planar graphs are sparse, and this 

amounts to a running time of O(n log n). 

There exists a linear-time algorithm for computing shortest paths in planar graphs due 

to Henzinger et al. that relies on planar separators [19]. While being asymptotically supe

rior to Dijkstra’s algorithm, the algorithm of Henzinger et al. has large hidden constants, 

and is complicated enough to have never been implemented, to our knowledge. Dijkstra’s 

algorithm is built entirely on simple primitives and remains the most efficient in practice. 
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4.1 Leftmost in the cover 

Let L be the leftmost path in G after removing the clockwise cycles. Let G+ be the half-L 

infinite universal covering graph of G w.r.t. L, defined in the same way as in Section 2.4, 

but extending only in the positive direction. 

Imagine embedding a super-source S and a super-sink T in a way that S connects to 

si, i ≥ 0 with edges of infinite capacity in both directions, and ti, i ≥ 0 connect to T with 

edges of infinite capacity in both directions. Call this new graph GST . Notice that GST isL L 

st-planar. 

We begin by describing the correspondence between notions of leftmost in G and GST .L 

Lemma 4.1.1. Let G be clockwise-acyclic graph. The map of G in GST may contain L 

clockwise cycles if and only if there is a counterclockwise cycle in G through t that encloses 

s. 

Proof. The absence of clockwise cycles in G immediately implies that there are no clockwise 

cycles in G+, and any such cycle in GST must use a pair of infinite capacity edges Ssi andL L 

sil S, or Tti and til T . Let C be such a cycle. There are two cases: 

C uses Ssi and sil S C is of the form Ssi ◦ P ◦ sil S, where i ' > i, and P is a path. P is a 

clockwise cycle in G through s, and since i ' > i, must be clockwise. Contradiction. 

C uses Tti and til T C is of the form til T ◦ P ◦ Tti, where i > i ' , and P is a path. P 

maps to a counterclockwise cycle through t in G that encloses s. 

Let Co denote a counterclockwise cycle in G through t that encloses s. If there are 

multiple such cycles sharing a boundary, we choose the smallest one (enclosing the fewest 

faces). Co maps to an infinite right-to-left path P∞ in GST . Let C? be the clockwise L i 

cycle in GST of the following form: C? = P∞[ti+1, ti] ◦ tiT ◦ Tti+1. Super-imposing the L i 

clockwise cycles C?, C? = i+1, . . . gives an infinite clockwise cycle C? P∞[·, ti] ◦ tiT ◦ Tt∞.i i 

See Fig. 4.1. We refer to P∞[·, tj ] as an ∞-to-tj path for some sink tj . 

Recall that a flow f is leftmost in a graph G, if there are no clockwise residual cycles in 

G w.r.t. f . The following lemma gives an equivalent condition for the flow to be leftmost 

in the cover of G. 

Lemma 4.1.2. A flow in GST is leftmost iff there are no clockwise residual cycles in G,L 

and no ∞-to-tj residual paths in GST .L 

Proof. Let P∞ be an arbitrary ∞-to-tj path, with Co being its corresponding cycle in 

G. Since tj T /Ttjl are of infinite capacity for any j, j ' > 0, saturating P∞ saturates its 

corresponding infinite clockwise residual cycle C. We now show that saturating P∞ does 

not introduce clockwise residual cycles in GL. Assume the contrary, and let such a cycle 

be C. Since C must use a subpath of rev (P∞), and is clockwise, it follows that C must 



19 

s

t

P

T

si si+1 si+2s0 s1

C0 Cit0 ti ti+1

P

C1:(i-1)t1

(a) (b) 

Figure 4.1: (a) P is a counterclockwise cycle through t around s in G. (b) The universal 
cover of G is given in grey, with dashed infinite-capacity edges. P maps to an ∞-to-t0 

path (black). Ci = P [ti+1, ti] ◦ tiT ◦ Tti+1, i ≥ 0 is a clockwise cycle (dotted). The bold 
path corresponds to the super-imposed infinite cycle C = P [∞, t0] ◦ t0T ◦ Tt∞. 

contain a u-to-v residual path R, s.t. u comes before v on P∞, and R is below P∞ in GL. 

Then, P∞[·, u] ◦ R ◦ P∞[v, tj ] maps to a residual counterclockwise cycle in G that is smaller 

than and shares a boundary with Co, contradicting the choice of Co . 

4.2 Maximum flow: there and back again 

Imagine mapping the maximum leftmost flow f in G into GST . A natural way to do this L 

is to lift the non-crossing path decomposition of f in G into paths in GL and, since GST isL 

only half-infinite, cutting the resulting map at L0. Let the resulting flow assignment be 

F+ . 

Lemma 4.2.1. F+ is a maximum preflow in GST . F+ may be converted into a maximum L 

flow F by modifying flow in at most p copies, where p is the number of faces separating s 

from t in G. 

Proof. Every vertex, except for those on L0, is balanced in GST . Since f is leftmost, by L 

Theorem 3.2.1 there are no flow paths that cross L0 from the left, and L0 only contains 

vertices with excess flow. The cut-cycle induced by f in G∗ corresponds to an infinite path 

in GST ∗ that guarantees for no si-to-tj residual paths. It remains to show that there are no L 
+ +v -to-ti residual paths in GST , where v is an excess vertex on L0. Assume the contrary. L 

A vertex can only have excess in GST , if it is on an s-to-t flow path in G. Let R be a L 
+v -to-ti residual path in GL, and let F be the lift of the flow path through v+ to some sink 

t−k. The path rev (F [t−k, v
+]) ◦ R is residual, and since −k < i, is oriented left-to-right, 

mapping to a clockwise residual cycle that passes through v and t in G. Contradiction. 

Section 2.2 describes the procedure of converting a maximum preflow1 into a maximum 

flow in linear time. Since every excess vertex on L0 must be on an s-to-t flow path in G, 

1A maximum preflow is a pseudoflow satisfying the invariant of no S ∪ V +-to-T ∪ V − residual paths, 
for which V − is empty. 
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2 

and flow paths are simple, it follows from Lemma 2.4.4 on GST that the number of copies Pc 

such flow paths travel is at most p, and the conversion would modify at most p copies 

.
 

By Lemma 4.1.2, F may not be leftmost, as there may be ∞-to-tj residual paths in 

GST w.r.t. F . Saturating the ∞-to-tj residual paths in GST w.r.t. F produces a flow L L 

assignment Fλ that is leftmost in GL
ST . While F is balanced at every vertex in GL 

+ , Fλ 

is a pseudoflow in a particular copy Gi: there may be both excess and deficit vertices on 

Li and Li+1, due to saturating the ∞-to-tj paths. Let k be the first index, for which the 

flow assignment w.r.t. F+ in Gk is maximum in G (k ≤ p + 1). Let the portion of GST 
L 

between L0 and Lk+1 be GST . The only misbalanced vertices in GST w.r.t. Fλ are on L0:k+1 L0:k+1 

Lk+1. Note that all misbalanced vertices are on ∞-to-tj flow paths. There are two phases: 

converting Fλ into a maximum postflow F− . Then, converting F− into a maximum flow 

in Gk, and, consequentially, in G. 

Lemma 4.2.2. The pseudoflow Fλ in GST can be converted into a maximum flow FL0:k+1 

in GST .L0:k+1 

Proof. We focus on the flow Fλ − F induced by augmenting the ∞-to-tj residual paths. 

Since the flow is acyclic and all excess and deficit nodes are on flow paths that do not start 

at the sources, we may apply the procedure from Section 2.2, stopping when there are no 

more excess nodes. This produces a postflow F− . 

We now show that F− is maximum. Let P∞ be an arbitrary ∞-to-tj residual path 

w.r.t. F . Since every subpath of P∞ must be residual w.r.t. F , the minimum cut w.r.t. 

in GST −F must be below P∞ L . Since all deficit nodes v are on some P∞, it follows that 

there are no s-to-v− residual paths in GST , and F− is maximum. L0:k+1 

Maximum flow F in GST may be obtained from maximum postflow3 F− by applying L0:k+1 

the procedure of Section 2.2 directly. 

The ST -cut induced by F+ persists in F . Therefore, by Lemma 4.2.1, Gp+1 contains 

the maximum flow of G. 

4.3 Convergence 

GST We now suggest running the leftmost augmenting-paths algorithm on GL
ST . is st-L 

planar, and the leftmost-path algorithm produces the leftmost max flow Fλ. By Lemma 4.2.2, 

this flow maps to a pseudoflow in G after modifying at most p copies of the graph, and this 

pseudoflow can be converted into a max flow. It remains to show that the augmenting-

paths algorithm on the infinite graph converges in a finite number of iterations. 

The usual stopping condition for an augmenting-paths algorithm is to terminate when 

there are no more residual paths from the source to the sink. The universal cover is infinite, 
2Recall that Pc is a zero-length path of p darts corresponding to the shortest path of faces from s to t. 
3A maximum postflow is a pseudoflow satisfying the invariant of no S ∪ V +-to-T ∪ V − residual paths, 

for which V + is empty. 



21 

and so are the clones of s-to-t residual paths. We call the flow assignment fi in Gi is final 

if all paths to ti have been augmented (alternatively, when running Dijkstra’s algorithm 

in the dual graph, if all faces adjacent to t ∗ have been popped off the priority queue). i 

We note that since GST is st-planar, flow never gets removed from edges, and fi persists L 

through future augmentations to sinks i + 1, i + 2, . . . 

We say that the algorithms has converged at Gk, if the maximum flow in G can be 

recovered from the flow assignment in Gk. k is then the convergence index. Section 4.2 

shows that an upper bound for the convergence index is p + 1. It follows that: 

Theorem 4.3.1. The final flow assignment in Gp+1 can be converted to a maximum flow 

in G. 

4.3.1 When is the flow final? 

s

t

5

1

v
2

1

2

u

C1
C2

s0 s1 s2 s3 s4

t0 t1

(a) (b) 

Figure 4.2: (a) G contains two counterclockwise cycles around s: C1 and C2, of capacities 
1 and 2 respectively. Upon routing 1 unit of flow on the s-to-t path, C1 ◦ vt ◦ tv and 
C2 ◦ ut ◦ tu are residual cycles through t around s. (b) G’s half-infinite universal cover is 
given with grey dotted edges. Solid paths correspond to augmentations to t0; the dashed 
path is an augmentation to t1. Convergence occurs after s3, instead of s0. 

It is left to show that we can obtain the final flow in Gp+1 in a finite amount of time. 

For this, we must bound the index j, s.t. augmenting the last sp+1+j -to-tp+1 residual 

path P p+1 isolates the sink tp+1. If P p+1 is simple, j must be bounded by p, by p+1+j p+1+j 

Lemma 2.4.4. However, P p+1 need not be simple, due to the possible counterclockwise p+1+j 

residual cycles through t around s in G w.r.t. the flow (Fig. 4.2). Then, the number of 

copies Gi travelled by P p+1 may be offseted by at most U : the sum of the residual p+1+j 

capacities of such counterclockwise residual cycles. This brings the bound for j to U + p, 

and: 

Theorem 4.3.2. The augmenting-paths algorithm converges in the universal cover of a 

graph G in O(p + U) copies, where p is the number of faces separating s from t, and U is 

the sum of capacities in G. 
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4.4 A note on implementation 

The modified cover graph, GST is st-planar. Therefore augmenting-paths can be imple-L 

mented with a single shortest-path tree computation in the dual, rooted at f∗ 
∞, growing 

from left to right. This tree may be computed with Dijkstra’s algorithm that stops once the 

face adjacent to tp+1 has been popped off the priority queue. This computation produces 

a pseudoflow. Converting this pseudoflow into a maximum postflow, and the maximum 

postflow into a maximum flow can both be done with the procedure from Section 2.2 that 

may be implemented with a single traversal of the graph’s topological ordering. 
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Chapter 5: Conclusion 

In Chapter 3, we proposed a novel, yet conceptually simple algorithm for finding maximum 

st-flow in directed planar graphs. Using Dijkstra’s algorithm at each iteration yields an 

efficient and implementable algorithm for finding max flow that is especially fast for graphs 

in which the source and the sink are separated by a sub-logarithmic number of faces. 

The number of faces separating s and t is a natural parameter to consider for designing 

adaptive algorithms, especially in the light of Kaplan and Nussbaum’s recent result, and 

investigating it further seems hopeful. 

Chapter 4 provides an interesting structural correspondence between augmenting paths 

in a half-infinite universal cover of a planar graph and its maximum st-flow. While being 

non-intuitive, this correspondence generalizes the st-planar case and affirms the historical 

interweaving of flows and single-source dual shortest paths, even in the most general planar 

graphs. The analysis of Chapter 4 also implies a peculiar property: contrary to the first 

lesson about max flow algorithms, the capacity updating step is not necessary (given a 

finite number of copies). 

5.1 Discussion and future work 

Tightening upper bounds. The number of iterations of MaxAdaptiveFlow and the 

number of copies travelled in the augmenting-paths approach on the universal cover are 

both loosely bounded by p on merely geometrical grounds. It may be possible to tighten 

this bound by investigating the structure of the solutions further. For example, when 

running Dijkstra’s on the dual graph, instead of stopping at a fixed point of t ∗ 
p+1, it may 

be possible to pose a convergence condition to check for at each t ∗ 
i . It is also likely for it 

to be possible to reduce the generous upper bound U from Theorem 4.3.2. 

Toward an O(n log p) algorithm for max flow. In general, adaptive algorithms have 

a tendency to follow the progression pointed out in Chapter 3: combining an existing 

O(n log n)-time algorithm with an O(np)-time adaptive algorithm yields an O(n log p)-time 

adaptive algorithm, and sometimes even produces an algorithm of a running time with an 

entropy factor. However, in this thesis we did not utilize the techniques of Borradaile and 

Klein’s O(n log n) algorithm. Specifically, their Unusability Theorem is a strong structural 

result that may offer significant asymptotic improvements. Finding a way to integrate it 

into the presented analysis may reduce the running time of MaxAdaptiveFlow from 

O(np) to O(n log p), and give a max flow algorithm in directed planar graphs that beats the 

current best time of O(n log n), and matches the running time of Kaplan and Nussbaum’s 

algorithm for min cut in undirected planar graphs. 
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Implementing the O(n log n) max flow algorithm with priority queues. Utilizing 

Unusability in the presented paradigm of computing shortest paths on the universal cover 

may lead to an O(n log n)-time algorithm that relies entirely on simple primitives. In order 

for Unusability to apply, one would need to non-trivially integrate the step of updating 

residual capacities in consequent copies into the execution of Dijkstra’s algorithm. Such 

an algorithm would break the spell of asymptotically efficient, but practically challenging 

algorithms, and serve as a state-of-the-art algorithm for finding maximum flow that can 

be implemented by a computer science amateur. 
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