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ORTHOGONAL POLYNOMIALS

INTRODUCTION

The subject of orthogonal polynomials finds a place in
diverse branches of study in mathematics, pure and applied.
Their properties make their use in typically modern problems
in quantum mechanics, for example, fairly prevalent, while
in the field of analysis they have proved to be of inestim-
able value in the study of differential equations with
boundary conditions.

By definition, if we have a system

Pn(x) = Zn anx?
ns=0
with the property
b
/ Pm(X) Pn(x)oﬂé O, m $ n, (myn =0, 1, 2 - - =),
a

then any two of the polynomials of different degrees are

sald to be mutually orthogonal over the interval (a,b).
If we are granted the further hypotheses:

(1) a weight function

wix) > O in (a,b).




(1i1) all moments

b
mj =£ w(x) x-’dx exist; (j =0, 1, 2 - - =)

(111) my > o0,
then

b
/ w(x) Pp(x) Pp(x) dx = 0 (m 4 n)
a

defines a unlque system of polynomials which are mutually
orthogonal with respect to w(x).(q')

If, further, the system be nomalized?)we have

b
Eg.. 1
w(x) Pp(x) P (x) ax = d m,n
a
where S is the Kronecker delts;
e S e
=1 (m= n.

By analogy with the expansion' of an arbiltrary function

f(x) in a Fourier Series, f(x) may be expanded in the form

E T (x)

n=20

where

b
£, = / w(x) £(x) P,(x) ax.
a

It is clear that the type of polynomials set up will

depend bn the cholice of w(x) and on whether (a,b) 1s finite

or infinite. The reader should bear in mind, too, that we
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have here assumed for the independent variable the property
of continuity. This 1s by no means necessary, and in many
important applications is not even true. In problems of
statistics, or probability, involving distribution aggre-
gates, for instance, the independent variasble assumes a set
of discrete values, so that the defining equation, instead
of being an integral proper, 1s a sum of a number of dis-
crete terms.

While this thesis is the outcome of an examination of
orthogonal polynomials with certalin chosen weight functions;
no attempt has been made to unify the treatment of x as a
continuous variable or as a set of discrete points by
utilizing the convenient properties of Stleltjes integrals.

For such a treatment the reader is referred to Szego's

"orthogonal Polynomials."



CHAPTER I
CLASSICAL ORTHOGONAL POLYNOMIALS

1. Fourier Series. The paper by Fourler, "Theorie

analytique de chaleur" (1822) wherein the assertion was
first put forward that an arbitrary function, given in a
fixed interval, could be expressed in a certain trigonometric

series, may be taken as the starting point of the present

study.
Let T
Im,n = j/;in mx Sin nx dx
-
and let

/ “«
In,n , Im,n
denote the corresponding integrals with Cos mx Sin nx and

Cos mx Cos nx respectively. We find

m ¢ n.

-e

Im,n'-'o

Similaerly,

/ o

Im’n = 0, Im,n = 0,

the former equation holding also for

m = N,
These equations express the fact that the system of trigono-
metric functions 1, Cos x, Sin x, Cos 2x, Sin 2x - - - is

orthogonal over the interval (-7, 77 ).
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An arbitrary function f(x) may be expanded in the form

o
A S
Aid L e Cos kx 4 by Sin lx

where &, = f(x) Cos kx dx,

by = f(x) Sin kx dx

are the Fourier coefficients.

2. Tchebichef polynomials. In an analogous manner, if

we substitute

then

Th(x) = Cos n 6

/

U(X)-l 3 i -
n /41 n+ 1 (x) Sin(n+l%e’

ey

n

(n's OF B s 0

are polynomials of degree n in x. (Tehebichef polynomialéss

20 g_-

Cos n6 = 2 B2~ 1 cos o - % 2 Cos e

- n -4 e
+ lié%_l—ﬁ) 2 2w N @ F

Sin (n 4+ 1) © & %
Sin 6 = 2™ cos™ o - _ET;_l &8 g Cos © ;. =

s (3)

3. Properties of Orthogonal Polynomials. Properties of

T,(x) and Up,(x), of heuristic value when sets of orthogonal




polynomials are being devéloped, are

(a) :
4 j/; (1 - xz)ﬂé‘ T (X) Th(x) dx = ©

e N et S S S e
E <
-
B

1
/(1-x2)% Up(x) Dp(x) ax = 0
-1

36 Tm(x), Tn(x) are mutually orthogonal (-1, 1) with respect
to the weight function (1 - xz)'%. The same is true for
Up(x), Upy(x) if we substitute (1 - x°)& for (1 - x°)-% for
the weight function.

(b) The zeros of T,(x) and U,(x) are all real, distinct,
and lie within the interval (-1, 1).

(c) Between any three successive polynomials a relation
of recurrence exists.
5

Tn 4 1(x) = =xTp(x) - (1 - x Up - 1(x).

Un(x) = xU, _ 1(x) + Tp(x). n=1, 2, 3 - - =,

(d) The polynomials satisfy a second order linear differ-

. ential equation.
/4 /
(1 - x2) Ty (x) - xT,(x) + nTp(x) = 0
” /
(1 - x2) Up (x) - 3xU,(x) + n (n & 2) Uu(x) = O.
If, in equation 1, we put (a,b) = (-1, 1),

wix) = (1 -0 @+, (¢ >-1),

we have the Jacobi polynomials, of which the Tchebichef



polynomials form a subclass;

(ot =3 = - %)

while, if

d:%: 0
the Legendre polynomials are formed. If the interval be
infinite at one end, (0,<90 ), w(x) = xde-x, (x> =1),
we have the Laguerre polynomials; if the imlerval be infinite
at both ends,

(=00 ,00), w(x) = e'xz, the Hermite polynomials
result.
These four kinds of orthogonal polynomials constitute
the Classical Orthogonal Polynomials, and a study of them
should precede any investigation in the construction of a set

of orthogonal polynomials.



CHAPTER II
CONTINUOUS VARIABLE

1. Construction of Orthogonal Polynomials. We have

defined the J'B moment;

m4 u/bW(X) xJ ax (] =0, 1, 2 - = =)
a
IfWOfOMDn = mo ml—__mn;l
g { By o Ry

By -] By~~~ Bop .2

and define P,(x) = . 8 2 BN e g

m mp - == Wy

s s S e B el CTF 8

then

1 b
Bq. 2. (a) N / w(x) x® Pp(x) ax
a

(1]
o
Ly
= ]




9
< DAL
(b) % .k / w(x) Pp(x) Po(x) dx = gm,n.

a

For a detailed proof, the reasder is referred to "Numerical
Calculus" by W. E. Milne, p. 60, where the subject is treated
in a theory of least squares, or to notes by the same author
on Orthogonal Polynomials. The properties of the polynomials
so constructed will be analogous with those of the Tchebichef
polynomials discussed in the first chapter.

Pri Example. We will now consider

my, = ‘//lw(x) xPdx
L3

with the given weight function defined as

wix) = 14 x x <o
s X=X x,) Q.
0 1l
Then mp = (1 4+ x) xPax ¢ (1 - x) xPax.
-1 0
Whence
Eq. 3 : m, = 0 n odd.
- n even.

(n 4 1)(n+ 2)
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Tt is apparent that the interval of orthogonality is symmetric
with respect to the‘origin, as is w(x).
It follows that (51)n Pn(-x) = Pn(x);
i.e., Pn(x) contains only even (odd) powers of x for n
even (odd).

By definition,

Pn(x) = it S e L 3B
mo ml e Ame. e e mn
1
1
1
1
]
g T Wop Ll

and any polynomial of this group, e.g. Pu(x) would, with the
ald of Eq. 3, have the form

Pu(x) = 5 ) 4 x° %7 x4

1 0 e 0 1/15
0 1/6 0 1/15 0

‘ 1/6 0 1/15 © 1/28
0 1/15 o . XeB . @
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3. Evaluating Determinants by Pivotal Condensation.

The evaluation of each determinant becomes increasingly

lsborious. Much time can be saved, however, by use of the

theorem.“a):(ﬁhﬂ)
[0,5] - G2 "2
]
a2.1
21,1
a3l
al’l
129

al,j lal,l ®1,3  [s1,1 81,0
ag, ap 1 82,3 82,1 82,n
a),2 ‘81,1 e1,3  [|e1,1 &1,n
az 2 |283,1 83,3 23,159
p 5 S e 05 e 0 I i R
8n,2| 20,1 20,3 &n,1 &n,n| |

Each operation of this kind reduces the order of the deter-

minant by one.

Work can be simplified further by moving columns or

rows, if necessary, so as to bring a simpler term (e.g. 1)

to the leading element position.

By these methods we find

- 7/5400 (5x% - 2x)

o (490x* - 310x% ¢ 19)

Pobx) = 1

Pl(x) = -X

Po(x) = 1/36(6x° - 1)
Pg(x) =

Pa(x) = %%3356)

Ps(x) = -683

o (798x° - 700x% + 109x)

735(180 x 420)
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In working this problem, it had been hoped that, at
least, a recursion formula might be found so that values of
Pp(x) could be tebulated therefrom. Unlike the Legendre
polynomials, whose coefficients are convenient to handle,
those of the present problem became unmanageable, Nor was
any luck experienced in finding a function which would gen-

erate the polynomials.

12. Roots gf_Pn(X). The graph of the polynomials given

up to Pg(x) shéuld be compared with that of the Legendre
polynomials. It will be observed that between every two
zeros of P,(x) a zero of P, 4 1(x) occurs. This is a prop-
erty shared by all orthogonal polynomials in addition to
those cited in the first chapter.

Roots of Pp(x) up to Pg(x) obtained algebraically are

listed below.

Ph(x) Roots

Py (x) 0

Po(x) + .408

Pz(x) 0, + .632

B, (k) $ .262, 4+ .751
Ps(x) 0, + .820, ¢ .451




4. Tables of Pp(x).

2
1 180.420)7.7
x P, (x) 36 Pp(x) - 242 py(x) 75(6300)% P, (x)55 : f——%ﬁ Ps(x)k
-1.0 1.0000 5.0000 -3 .0000 9.9500 10.3500
- 9 .9000 3.8600 ~1.8450 4.8435 2.9600
- .8 .8000 2.8400 - .9600 1.0655 - 4855
- 07 07000 1094'00 s 03150 e -7625 - 104800
- .6 .6000 1.1600 «1200 -1.4548 - 1.2874
=9 «5000 «5000 3750 =1.4062 - 4032
- o4 : « 4000 - .0400 +4800 - .9028 «3485
- 3 .3000 - 4600 <4650 - 2466 .6650
- .2 .2000 - 7600 .3600 3692 ‘ .8228
7 01 01000 i 09400 01950 -7974 05104
0.0 0 -1 0 9500 0
ol - .1000 = +9400 - .1950 7974 - 5104
o2 - .2000 - 7600 - 3600 3692 - .8228
3 - .3000 - 4600 - 4650 = 2466 - .6650
ok - +4000 - 0400 - 4800 - .9028 - 3485
5 - 5000 .5000 - 3750 -1.4062 <4032
.6 - .6000 1.1600 - .1200 -1.4548 1.2874
o7 - 7000 1.9400 3150 - .7625 1.4800
.8 - .8000 2.8400 .9600 1.0655 4855
9 - .5000 3.8600 1.8450 4.8435 - 2.9600

1.0 -1.0000 5.0000 3.0000 9.9500 -10.35C0
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CHAPTER III
ORTHOGONAL POLYNOMIALS FOR DISCRETE POINTS

1. Factorial Polynomials. Mention was made in the

introduction to this thesis that there is no need to treat
the two cases separately, provided that we use Stieltjes
integrals, for the underlying principles and the resulting
formulae are identical. Since we are not using that method,
we propose instead to develop the case for discrete points.

It will be convenient to recall some properties of
factorial polynomials and some equations from the finite
calculus.

Eq.-4
(a) x(n) =x(x-1) - --(x-nt1l) = n!(i)

(b)é)x(n) - {x ¥ 1)(n) & x(n) t ax(m = 1)

cf ax” = nx” ~ r
dax
(e) Z}_‘; ) G idaptE A Y
= (x 1)
s =0 i 1

Eq. ©
AXA‘Y f(X,y) =Ay f(x + l, y) -Ay f(x,y)

:f(X'l'l,Y*l)-f(X*l,Y)-f(x,Y'l'l)
+ £(x,y).
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The analogy of factorial polynomials and the binomial co-

efficients with permutations and combinations respectively,

is noteworthy;

€.8. from
X
3(a) an - (n> 3 xPn = x(n)
sb) T E e S

2. Examples Representation of Given Functlion. Consider

o>

% x(n)z-x

X =0

The series o0

is generated by the function (1 - Z)-l. We obtain, after n

successive differentiations,

o0
n ! iy gy B - 2 x(n) gx A
x =0
whence
n -1

nlzg® (1 -2)°

o
Aﬁ__/ x(n)zx’
X = 0

a series which is convergent for all Z in the unit circle.




Hence, put Z = 2 and obtain

o HE @) 2

(o =]
X =0

or
=
i B E x(n) =% l
X-_-O oo 21‘1-
We now construct Pp(x) = o x(1)
m, my
v Bigign
!
1
!
Me-1 e
where

SO

x(n) 7%

x62) - o L gk}
- - -y

M4l

T ey e

R LEEEE § L) ox
X =

(from Eq. 6)

17
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Thus, Pp(x) = S 5 x(1)  x(2) S ey :
2 2.1 2 8! - - - 2.k!
2.1! 2.2} 2.3! &= wiog syl
1
]
]
2(k-1)! 2.x! 2(k+1)l - - - 2(2k-1)! |

If we factor out all the elements of the first row and
column and, in addition, divide each column by the factorial

of the expenent of n heading that column, we will have

ol sl . .8

1 G e

L s TP e eE -
) TN RS o | o l>

{ 2.8 <1
136---(k+2)

2

EEY Ry
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For example,

L(1) 1(2) 4(3) (4)

P4(x) = 1 x( X
2 2.1l 2 gl 2.310 4]
2.1 2.2l 2, 86 g Ml 2uh

2.20 2,31 2540 2. 6! 8,6l

2.5 2,41 8.8 g8l 2.7l

OO

2 3
: UZJHJ + 1)
0 Jsscak Sl A& 1

2 3 4 5

8
1D 6. .0107°16 ‘
1

4 10 20 35

We proceed to show that

Pplx) = ﬁ o Z-l)j@ )

) =0

or
Eq. 7

23 2
Polx) o 8 LK) | (nl)
n! 0

where L,(x) is the "normalized"
Eq. 8

L () = %l'-’ﬁ(()-l)n@ (’;)

Before doing so, we discuss some properties of a special

type of determinant.
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3. Persymmetric Determinanté?) If we write
Dn 3 = e AL ST Y
1
1
1
L W M A

Where the my are given by Eq. 3, and factor out the

terms of the first row and column, we may write

e T e an? Q) (é) ""(3)

The "normalized" determinant is persymmetric; il.e., all
elements in any diagonal at right angles to ay4 are alike,
If we adopt the notation

Weo " e
1

then ai,j - ai } j
1

80,n = - - 8n,n
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Persymmetric determinants in general have the property of
lending themselves to rapid evaluation by the successive

operations

A rowl = row2 - rowl
zﬁs row 1

In practice, we subtract row 1 from row 2, row 2 from

row 3 - row 2 + row l, and so on.

row 3, row 3 from row 4 - - -, row (n - 1) from row n, then
repeat the operation omitting row 1, repeat again omitting
row 2, then omitting row 3, and so on down the line,.

We see that since the first row (column) is s poly-
nomial in n of degree O, (lil)is of degree 1, (ng" ]) is of
degree 2, or in general)(n tk- %) is of degree k in n,

k
it follows, from the equations

L) 1)
e ladis)) < OFY

etc., that all the elements below the leading diagonal
vanish, while

as3 = 15

Vv

w e D O i 3

e

so that the determinant has the value 1.
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In fact, persymmetric determinants whose corresponding
elements in each row (column) reduce to binomial coeffid&Mm
of successive differences, may be shown to have the value 1
by premultiplying with a determinant whose elements are the
binomial coefficients of successive order, For example, if

we premultiply

ok SR § 1 1 Qe 0
1 2 3 4 with -1 .00
158 6 10 w2 Y 0
1 4 10 20 1 - S R .
we obtain d 0 0 0
0 e O 0
0. 0O 1 0
0 0 0 :
By either method, we find
Eq. 9
ntl =
Pa i =12 —H (n!)2
8

We are now ready to prove that

4. Ln(x) =,§§;:%-1)j (?)(§)

minant Lp(x) to the operation, column 1 -(?) column 2 +(§)

If we subject the deter-

column 3 - - - &

:Z_Z‘l)j(?) column (1 ¢ j),

=0
we obtain, for example, n = 5.




2 -(90)+(3)e) -6l + ()

o1 on
o T R e VU o VoM o S =

<>
B .

o LIS | o el v I

@ G & 6
2 ) 4 5
1 1 1 2 8
3 4 5 6
6 10 15 21
10 20 35 56
15 35 70 126

Consistent with the notation which we have

Dp 41, if we write

Ln(x) =

=, =1

%6, ©
1

a
O, n -1

5 R <

23

adopted for

- a

n, o B 1

we observe that the element a3, j‘z(} i J) . The cofactor .

of the leading element 1s composed of

of successive order.

g, (O o

ai,

rows

of differences

i
]




24

Thus, the value of Lg(x) is

5
bR B R T Aree
2; =07(13)

and, in general,

n

bR) o= n
e

if we can show that our operation

n
(-1)3 (n
[Z;:;j; (3) column (1 4 j)

gives

O (k:o’ l’ 2, _'—n-l).

g o (o S

o
w
n

Since

s S

it suffices to show that

) ivime).,

Let the generating function

Als) = L0 a5 (-1>J(n) g
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Differentiating i times,

di[ti,u(t)] R E (-1)9 (n)(i 4 3) 3
att T3

Apply Leibniz rule for the it® derivative of a product and

obtain

Hu + (1) o H(1) 41
(1) 1) (1 =2) (1) (2) *1.- 2 u(2)

e L i :
t (1-1)"1“1-1*“1,
where the suffixes indicate the order of the derivative.

Putting t = 1 in the above expression, after differ-
entiating, we get

n

PRl

o. Laguerre Polynomials for Finite Differences. It

n

i,

X

2%

the weight function 2% chosen is analogous to the weight
function e™* of the Laguerre polynomials (defined on page 7
with = 0).

We accordingly define the set of polynomials L,(x) as

should be observed that since
Laguerre Polynomials for finite differences.
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6. Partial Difference Equation. From the equations

Laile 4 1) = 5 la)

n+ 1l

220N,

[>x Lp(x)

we get
A T Ly(x) =4y [Ln(x $.1). - Ln(x)]
Z‘”j(J )1 731)
- zn (;-1)“ bR ).
Thus
Eq. 10

A A Inlx) # In(x) =o0.

This equation affords a rapid means of tabulating the values

L(n, x). Thus,
A, D, In(x) + Ln(x) = Ly 4 1(x 4+ 1)
- Lp 4 1(x) + 2 Lp(x) - In(x 4 1) =

or

Eq. 11

Lp 3 1(x) + Ly(x # 1) - 2 Lp(x) = Ly 4 1(x ¢ 1).
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Since
Lo(x) - Ln(o) - l’

we tabulate values

e

0 5 & 2
0 i 1 1 -
3 1 0 -1 -
2 2 -1 -2 -

b +c¢c - 2a O

a relationship which must hold for every block of 4 cells.
Eg. 12

n {Ln(x) P PO 1(x)] = X [Fn(x) - Lp(x - l)]

follows from the property of symmetry in x and n.




1™

5

OWVwRTIO0N MpWDLHO

)

7. Laguerre Polynomials for Finite Differences.

HFHHHE FHREPE HERRERE PREERRR

In(x)

Weight function 27X,

Lo(x) Ig(x) L,(x) Le(x)  Lg(x) Ly(x) Lg(x) Lo(x)

1 1 13 1 1 1 1 «
-1 -2 -3 =4 -5 -6 =7 -8
-2 -2 =1 1 4 8 13 19
=2 0 3 6 8 8 - -2
sl 3 6 6 2 -6 =17 -29
1 6 6 o) 210 e -25 -20
& 8 2 -10 -20 -20 -5 25

8 8 -6 =20 -20 0 35 70
13 5 -17 -25 -5 35 70 70
19 -2 -29 -20 25 70 70 0
26 -1 -39 -1 64 84 1 -126
34 -32 -43 34 100 56 -98 ~252
43 =57 =36 84 116 -28 -238 -294
53 90 12 144 92~ 168 =350 -168
6, =132 36 20/ 8 gk U aass 174
f LR | 116 248 <152 -512  -180 708
89 =247 237 253 -395 -603 239 1311
103 -322 409 188 -713 -526 919 1752
118 . 10 643 13 =1076 176 1795 1709
134  -512 951 =322  -1424 552 2699 818
151 - ~620. " 1346 -878 1658 1742 3337 < -1243

Lo(x)

~126
-252

=252

378
888

1248

1142
273
=1522
=4122
-7001

524288
1048576
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8. Difference Equation. During the discussion of the

series T,(x) and U,(x), (also known as Tchebichef poly-
nomials of the first and second kinds respectively) we found
that a relation of recurrence existed between any three suc-
cessive polynomials; also that the polynomials satisfied a
ond order linear differential equation. With this in mind,
if we set up a table for j = 0, 1, 2 from the relations

already established, viz.,

Ln(x) = Q;i:E_I)j(nX%>
e IN

n

B o oAt )

=0

/N Ealx - 1) ?:-1)3(3‘)@ M)

0

we will have

3 gl AR Ak - 1)
0 18 0 0 4
1k -nx -n 0]

Fe e (3 (2

from which we find that the coefficients of Lp(x), L% Lp(x)

2 .
and % Ly(x - 1) which will make the sum vanish are n, (1 -x)

and 2x respectively. That is, we have established the
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difference equation

Eq. 13

2
2x.£§ Ln(x - 1) ¢+ (1 - x)1§k Lo(x) ¢+ n Ly(x) = O.

9. Recurrence Formula. The relation of symmetry,

L(x, n) = L(n, x)

conveniently establishes the recurrence formula as well.

Thus, from equation 12,
2x [Ln(x $ 1) -2 Lp(x) + Ly(x - 1)]
+ (1 - x) {?n(x + 1) - Ln(x)] + n Ly(x) = O.
Simplifying, we get
(x $1) L(x +1) + (n=-23x-1) Ip(x) ¢ 2x Ly( x - 1) =0,
and using the symmetry relation mentioned, we have

Eq. 14

(n 4 1) L, 4, 1(x) 4 (x - 3n - 1) In(x)
$ 2n L, . 1(x) = O.

10. Pp(x). Modification of Formula. An essential part

of the proof of equations 2(a) and 2(b) 1s the fact that
when the first row of the determinant Pn(x) is multiplied by
xM dx and each element integrated from a to b, two rowé
become identical for m<<n. For the P,(x) which we are inte-
grating, however, while no difficulty is experienced on

account of a summation replacing the integration, we are
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dealing by the nature of the case with a factorial polynomisdl
When, therefore, we multiply Pp(x) by 2°% x(1) and sum from
0 tooo, we do not obtain a row which corresponds to the last
one of D, 3 1, and our equations 2 no longer hold.‘

We make use of the relation

(x ¢+ m)™ x{n) _ (x + m)(m ¢ n)

pove)
% x(k) e S m
X = 0
o0
? (x+m)(k) ol Sl
X =0

If we let X $ m = s, then we obtain

and replace

by

o0

(o o)
E g(k) o-s ¢ m = ot % g(K) o-8
S =m S =m




32

But the last expression vanishes for

S=0,1, 2 ~---k -1,
whence
Eq. 15
(=)
5 (x ¢ m){K) g=x o oM ol _gm 41y
X =0
For k>/ m.
We accordingly redefine
P, (x) = . x(1) B ORI
0 0 0
C C - - = =C
0 1 -
A 1 1
C1 Cg Cn + 1
1
1
1
ch -1 n -1 n-1
n -1 Cn 3 S by CQn -1

where

o0
; X =

This relation, then, supersedes the one estsblished by
equation 5.
By factoring out elements in the first row and column,

proceeding as for equation 6, that equation is now
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superseded by
Eq. 16

Po(x) = 20! Lo(x) (%‘r (n1)?
n! 0

>0
11. Evaluation of _S_ . Lﬁ(x). We proceed to
x=0

obtain the formal equivalent of equation 2(b).
If we multiply

R >f o

by 27% Lp(x), and sum on x from O tooo, we get

S 2, x\om
iz Ln(x) jzi:b(_l)d(rjl) g(gt)zan(x),

X =0

and this, by virtue of the orthogonal property, vanishes
for j $ n.

We obtain
O

IS I ETLED T B PR

X =

which for convenience we express ss
0
(1B P (x t2) 2™ In(x),
X =0 n
which again we can do, because of the orthogonality of the

Ln(x) polynomials. This permits us to write
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3 A LN By S

x-O

-1)" 32?0(’1)3 (?) xz::i;(x & n)(zc) o-X

jZZ:f( 1)j n)zf:j (st n)(n+3) -x

With the aid of equation 14, we write

fz;:o 2% 1n(x) = (-1)" En s 2Bt Ve ol

= 0 3 il

= (-1)B 2P +1 n_ 3 ‘3
EZ;:%(-I) HC Y

From the formnla(s)

F(x) = gz:j(x 3 J) 4} s

If we suppose

o) <)

’

we have

somie Dl S N G
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by virtue of the relations(g)

@) (BBt (2 skeags

Let x = n, then we will have

et G,
whence
=138 n n, nyn ¢ j
(-1)" - f?o(-l) (j)( j );
so that s
ZOZ'X er,(x) ettt d Lop e
x =

and we finally emerge with

z :2'x Lﬁ(X) - 2n ‘1

Xx =0

Eq. 17

As will presently be seen, this equation is of great impor-
tance when we seek to expand an arbitrary function in the

form oR

go 8 I (x).

12. Expansion of an Arbitrery Function in Series of

Lo(x). If we can assume that we may write the function

f(X) = ao LO(X) 4 a, L, (x) ¢+ - - g

then, if we multiply by 27 L, (x) and sum on x from 0 to oo,
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we will have

(2] : [Za) o
E £(x) 27 Ly(x) = Ay E 2=% Ip(x).
x=0 x =0

This is true because each sum on the right 1s zero except the
one containing Lﬁ(x), by virtue of the orthogonality property
Thus '

Eq. 18

o0
§o E(x) 27% T(x)
X =

ok + 1

We first give a few simple examples to illustrate and con-
firm the results arrived at.

Ex ol f(x):x

"
5!
1
NN
[
bt

From eq. 17. ab

f(X) = X = Lo(x) - Ll(x);

a result which 1s readily verified.



S
Bx. 2 f(x) = x<

We have

Boie IR e [x(®) 4 x(l)]/z -3

8 = 2Z§-x x2(1 - x}z 2 -Zzg-x [éx(z) + X(Sﬂbﬁ - -5
" S .;_[Zg-xxz [1-2::4 X(x—l)]

3 g )
- — A *x
5. L2 A\
To convert the expression in parentheses on the right to

factorial form, we make use of
Bq. 19(10) (7)

f(x) = £(0) +(’{)A\f(o) 1 (%)Az i - - - +($)Am £ (03

and set up the table of differences

S i) coaatkr) o ARy L) Nt
0] 0
-1
1 -1 -6
=7 3
2 -8 -3 12
-10 LD
3 -18 12
2
4 -16
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From equation 18 we now have

£(x) o x(1) - 52?4 1 ,05) 4 1,04

1.8
=5k 2 ix (R CREs R) I (3) ity
= 1 (-2-12 +4 6 + 24) = 2,
8
and

£(x) = % = 3 Ly(x) - 5 L1(x) + 2 Lo(x).
As before, this result is easily substantiated.

13. Biorthogonal Functions. The problem of expanding

an arbltrary function is much more complex when, instead

of a polynomial, we have to deal with a nonterminating
series. We do not propose to enter into the problem of
éxamining the series for convergence, and we leave open the
question of the validity of the series as = representation
of the functibn, since it would take us outside the scope

of this thesis. What we do have to take into account is the
concept of biorthogonal functions, since we obtain thereby
a new set of coefficients for our Ln(x) which give us a more
rapidly convergent series for large values of x.

By definition, if two sets of functions

B X5(x), w071, B R

bear the relation

b
ko vviaxeo, 14y,
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then the two systems of functions are said to be biorthogonal

over the interval (a, b). In the case of the functions
LolZ) A dglE) e - = lgls)
2-X Lo(x) 2% Ly(x) - - - 27% Ly(x),

since we may write

=l
> 2% Ip(x) In(x) =0 m 4 n,

X = 0
the Ly(x), 27* L;(x) are two sets of mutually biorthogonal
functions, for the case of discrete points.

The aj given by equation 17 is now replaced by

where the by are given by

Eq. 20
by = ZS}(x) Ly (x)
2k 4 1 .
Example. f(x) = Sech x.

The expansion 1s of the form

Sech x = 2-xZ]’3k Ly (x).

To calculate the coefficients

by = 2 'Sech X Ly(x)
ok 4 1

We find it sufficient to take values for Xup to 10.

(Sech 10 s .0001.) We then compute
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k ZZTik Sech x by Sech x 2 ;Z:gk Ly (x)
0 22,0711 1.0355 1.000 1.002

1 . 3286 .0822 . 648 . 640

2 -.3518 -.0438 .266 273

) -.5809 -.0363 .099 .099

4 -.6340 -.0198 0366 .0360

5 -.6188 -.0097 .0135 .0100

6 -.4728 -.0037 .0050 .0051

7 -.5105 -.0020 .0018 .0030

The accompanylng graph shows how close an approximation to

the given function we have obtained.
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