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ORTHOGONAL POLYNOMIALS 

INTHODUC TION 

The subject of orthogonal polynomials finds a place in 

diverse branches of study in mathematics, pure and applied. 

Their properties make their use in typically modern problems 

in quantum mechanics, for example, fairly prevalent, while 

in the field of analysis they have proved to be of inestim- 

able value in the study of differential equations with 

boundary conditions. 

By definition, if we have a system 

P(x) 
:iii 

aX 
nO 

with the property 

b 

f 
Pm(X) P(x) O m 4 n, (m,n 0, 1, 2 - - 

then any two of the polynomials of different degrees are 

said to be mutually orthogonal over the interval (a,b). 

If we are granted the further hypotheses: 

(i) a weight function 

w(x) > O in (a,b). 
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(ii) all moments 

b 
mj 

f 
w(x) xidx exist; (j 0, 1, 2 - - -) 

(iii) m > O, 

then 
fb 

w(x) Pm(X) P(x) dx O (m + n) 

defines a unique system of polynomials which are mutually 

orthogonal with respect to 

If, further, the system be norma1izedwe have 

¡b 
Eq.1 / 

'a 
w(x) Pm(X) P(x) dx = S m,n 

where g is the Kronecker delta; 

i.e. m,n O mn 
l (mn. 

By analogy with the expansion of an arbitrary function 

f(x) in a Fourier Series, f(x) may be expanded in the form 

fP(x) 

where 
(b 

= 
f 

w(x) f(x) Pn(X) dx. 

Ja 

It is clear that the type of polynomials set up will 

depend on the choice of w(x) and on whether (a,b) is finite 

or infinite. The reader should bear in mind, too, that we 
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have here assumed for the independent variable the property 

of continuity. This is by no means necessary, and in many 

important applications is not even true. In problems of 

statistics, or probability, involving distribution aggre- 

gates, for instance, the independent variable assumes a set 

of discrete values, so that the defining equation, instead 

of being an integral proper, is a sum of a number of dis- 

crete terms. 

Thile this thesis is the outcome of an examination of 

orthogonal polynomials with certain chosen weight functions, 

no attempt has been made to unify the treatment of x as a 

continuous variable or as a set of discrete points by 

utilizing the convenient properties of Stieltjes integrals. 

For such a treatment the reader is referred to Szegd's 

"Orthogonal Polynomials." 



CHAPTER I 

CLASSICAL ORTHOGONAL POLYNOMIALS 

n / 
1. Fourier Series. The paper by Fourier, Theorie 

analytique de chaleur" (1822) wherein the assertion was 

first put forward that an arbitrary function, given in a 

fixed interval, could be expressed in a certain trigonometric 

series, may be taken as the starting point of the present 

study. 

Let 
1ir 

Sin mx Sin nx dx 

and let 

I' 

111fl ,'m,n 

denote the corresponding integrals with Gos mx Sin mc and 

Gos mx Gos ax respectively. We find 

'm,n O; m 4' 
n. 

Similarly, 

= O, . 

the former equation holding also for 

m - n. 

These equations express the fact that the system of trigono- 

metric functions 1, Gos x, Sin x, Gos 2x, Sin 2x - - - is 

orthogonal over the interval (7T 7T). 
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An arbitrary function f(x) may be expanded in the form 

a 

ZakCoskx+bkSiflkx 

where ak f(x) Ces kx dx, 

bk f(x) Sin kx dx 

are the Fourier coefficients. 

2. Tehebichef polynomials. In an analogous manner, if 

we substitute 

then 

X Cos e, 

Tn(x) Gos n O 

/ 
= i 

+ i (x) = Sin (n 4 
e, ì4i 

(nO,1,2---) 
are polynomials of degree n in x. (Tchebichef polynomiaiE 

n n n-2 
Gos n = 2 

n - i Co8 e - 2 - Gos e 
Tr 

+ ri(n - 3) n - 5 n - 4 
2 Ccs e 

2 

Sin (n 4 1) e- 
7Thine2mCosme_ n-1 n-2 n-2 

2 Cos O U 
C3) 

3. Properties of Orthogonal Polynomials. Properties of 

T(x) and U(x), of heuristic value when sets of orthogonal 



polynomials are being developed, are 

(a) 
-x2)* Tm(x) T(x) dx = O 

m4n 

¡ - x2) Um(X) U(x) dx = o 

6 

ie. Tm(X), T(x) are mutually orthogonal (-1, 1) with respect 

to the weight function (1 -x2). The same is true for 

Um(x), U(x) if we substitute (1 - x2) for (1 - x2)4 for 

the weight function. 

(b) The zeros of T(x) and iJ(x) are all real, distinct, 

and lie within the interval (-1, 1). 

(e) Between any three successive polynomials a relation 

of recurrence exists. 

. 

j(x) = xT(x) - (1 - x2) U - i(x). 

Un(x) = xTJ 1(x) + T(x). n - 1, 2, 3 - - -. 

(d) The polynomials satisfy a second order linear differ- 

ential equation. 

(1 - x2) T(x) -xT(x) n2T(x) O 

(1 - x2) U1.' (x) -3xIJ(x) f n (n 4 2) U(x) O. 

If, in equation 1, we put (a,b) (-1, 1), 

w(x) = (1 - x) (1 + x), (e', 1), 

we have the Jacobi polynomials, of which the Tehebichef 
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polynomials form a subclass; 

while, if 

(O' Ç3 --*) 

0, 

the Legendre polynomials are formed. If the interval be 

infinite at one end, (0,00 ). w(x) x0e_X, 
( > -1), 

we have the Laguerre polynomials; if the irterval be infinite 

at both ends, 

(-cC ,oO), w(x) e2, the Hermite polynomials 

result. 

These four kinds of orthogonal polynomials constitute 

the Classical Orthogonal Polynomials, and a study of them 

should precede any investigation in the construction of a set 

of orthogonal polynomials. 



CHAPTER II 

CONTINUOUS VARIABLE 

1. Construction of Orthogonal Polynomials. We have 

defined the th moment; 

mj ...fbW(x) xi dx (j - 0, 1, 2 - - -) 

If we form 

and define P(x) 

m1--- m1 
m1 n2--- m 

[I 

m1 ma--- m2fl2 
i X X2--- X 

mO ml 

n1 n2 

LI 

- - - 

m1 in___ m21 
then 

i 'b 

Eq. 2 (a) D + / w(x) P(x) 



i b 

(b) 
D D ( 

w(x) Pm(X) P(x) dx m,n. 

"a 

For a detailed proof, the reader is referred to "Numerical 

Calculus" by W. E. Mime, p. 60, where the subject is treated 

in a theory of least squares, or to notes by the same author 

on Orthogonal Polynomials. The properties of the polynomials 

so constructed will be analogous with those of the Tchebichef 

polynomials discussed in the first chapter. 

2. Example. We will now consider 

= 11w(X) xdx 

with the given weight function defined as 

w(x) = i+x x<O 

l-x x>O. 
¡'o 1 

Then m / (1 + x) xdx f / (1 - x) xdx. 

'-1 '0 

Whence 

Eq. 3 m O n odd. 

1 n even. 

('' + i)(n + 2) 



'i o 

It is apparent that the interval of orthogonality is symmetric 

with repect to the origin, as is w(x). 

It follows that 
(_1)T1 P(-x) = 

I.e., P(x) contains only even (odd) powe±s of x for n 

even (odd). 

By definItion, 

P(x) 1 x - - - 

m0 ni1 - - -. -. 

jm1 - - - 

and any polynomial of this group, e.g. Pk(x) would, with the 

aid of Eq. 3, have the form 

= i x 

i 0 1/6 0 1/15 

o i/6 0 1/15 0 

1/6 0 1/15 0 1/28 

o 1/15 o 1/28 o 
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3. Evaluating Determinants Pivotal Condensation. 

The evaluation of each determinant becomes increasingly 

laborious. Much time can be saved, however, by use of the 

theorem. (6)O) 

fi,jI 
- i Hai,i ai,d I a1 a1,3 lai,i ai,nl 
fi,i)r-21 

I 
I ' - - 

la2 a2 
21 

I a2,1 a2,31 1a2,l a2,nI 

a1,1 al,2I a1,1 a, rzJ a1,1 al,flI 

a3,i a3,2 a3,1 g33i a3,1 a3,n\ 

a1,1 a1,2 a1,1 al,3' a1,1 a1, 

a,1 an,2 a,1 a,3 a,1 

Each operation of this kind reduces the order of the deter- 

minant by one. 

Work can be simplified further by moving columns or 

rows, if necessary, so as to bring a simpler term (e.&. 1) 

to the leading element position. 

By these methods we find 

P0C) = i 

-x 

P2(x) 1/36(6x2 - 1) 

P3(x) - - 7/5400 (5x3 - 2x) 

P4(x) = 19 (490x4 - 310x2 + 19) 
4(6300)2 

P5(x) = -683 (798x5 - 700x3 + 109x) 
735(180 X 420)2 
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In working this problem, it had been hoped that, at 

least, a recursion formula might be found so that values of 

P(x) could be tabulated therefrom. Unlike the Legendre 

polynomials, whose coefficients are convenient to handle, 

those of the present problem became unmanageable. Nor was 

any luck experienced in finding a function which would gen- 

erate the polynomials. 

12. Roots of P(x), The graph of the polynomials given 

up to P5(x) should be compared with that of the Legendre 

polynomials. It will be observed that between every two 

zeros of F(x) a zero of P 
+ 

1(x) occurs. This is a prop- 

erty shared by all orthogonal polynomials in addition to 

those cited in the first chapter. 

Roots of P(x) up to P5(x) obtained algebraically are 

listed below. 

P(x) Roots 

P1(x) o 

P2(x) + .408 

P3(x) 0, + .632 

P4(x) 4 .262, + .751 

P5(x) 0, + .820, + .451 



4. Tables of P(x). 

x P1(x) 36 P2(x) 5400 po (630O)2 p(x) 

i.0 1.0000 5.0000 -3.0000 9.9500 
- .9 .9000 3.8600 -1.8450 4.8435 
- .8 .8000 2.8400 - .9600 1.0655 
- .7 .7000 1.9400 - .3150 - .7625 
- .6 .60o0 1.1600 .1200 -1.4548 
- .5 .5000 .5000 .3750 -1.4062 
- .4 .4000 - .0400 .4800 - .9028 
- .3 .3000 - .4600 .4.650 - .2466 
- .2 .2000 - .7600 .3600 .3692 
- .1 .1000 - .9400 .1950 .7974 
0.0 0 -1 0 .9500 
.1 - .1000 - .9400 - .1950 .7974 
.2 - .2000 - .7600 - .3600 .3692 
.3 - .3000 - .4600 - .4650 - .2466 
.4 - .4000 - .0400 - .4800 - .9028 
.5 - .5000 .5000 - .3750 -1.4062 
.6 - .6000 1.1600 - .1200 -1.4548 
.7 - .7000 1.9400 .3150 - .7625 
.8 - .8000 2.8400 .9600 1.0655 
.9 - .9000 3.8600 1.8450 4.8435 

1.0 -1.0000 5.0000 3.0000 9.9500 

L18O.420)2.7 
683 

P5(x 

10.3500 
2 .9600 

- .4855 
- 1.4800 
- 1.2874 
- .4032 

.3 485 

.6650 

.8228 

.5104 
o 

- .5104 
C'-' - .Ö. 

- .6650 

- .3485 

.4032 
1.2874 
1.4800 
.4855 

- 2.9600 
-10.3500 





CHAPTER III 

ORTHOGONAL POLYNOMIALS FOR DISCRETE POINTS 

1. Factorial x-olynomials. Mention was made in the 

introduction to this thesis that there is no need to treat 

the two cases separalely, provided that we use Stieltjes 

integrals, for the underlying principles and the resulting 

formulae are identical. Since we are not using that method, 

we propose instead to develop the case for discrete points. 

It will be convenient to recall some properties of 

factorial polynomials and some equations from the finite 

calculus. 

Eq. 4 

(a) x x(x - 1) - - - (x - n + 1) - nt(n) 

(b)LX(n) a (x 4 
)(n) (n) (n - 1) 

x nx 

___ 
n-1 

dx 

X 
(c) (n) = (x 4. 

)(fl 4 1) 

s:0 n+l 

"X 
c.f. / snlds xn4 i 

IO 
n+1 

Eq 5 

LxAy 
f(x,y) = f(x 4' 1, y) -L f(x,y) 

y y 

f(x 4' 1, y 4 1) - f(x 4. 1, y) - f(x, y 4. 1) 

4. f(x,y). 
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The analogy of factorial polynomials and the binomial co- 

efficients with permutations and combinations respectively, 

is noteworthy; 

e.. from 

3(a) () ; 
xPn 

3(b) 
x4lxX 

2. Example: Representation of Given Function. Consider 

The series __ 

I110zx 

is generated by the function (1 -z). We obtain, after n 

successive differentiations, 

n (l-z)1 :xzx_n 
whence 

cO -n--1 
fl Zn (1 - Z) / x(zx, xO 

a series which is convergent for all Z in the unit circle. 



Hence, put Z = and obtain 

- 

or 

Eq. 6 (n) 2-x 

We now construct Pk(x) 

where 

(') 

x.O 

= 2n. 

(1) (2) - - - (k) 

in0 in1 - - - 

in1 In2 mk+1 

I 

I 

inkl ink - - - m2k_1 

Iflj = 2j! 2 
x.J 

(from Eq. 6) 

17 



Thus, Pk(x) i (l) ,j2) 

2 2.11 2.2L 

2.l 2.2 2.3.1 

- - - 

- - - 2.k! 

- - - 2.(k4.l)! 

i 

2.(k-l) 2.kl a(kfl) - - - 2.(2k.-l) 

If we factor out all the elements of the first row and 

column and, in addition, divide each column by the factorial 

of the exponent of n heading that column, we will have 

n - i íx\Ix\ Ix 
Pk(X) a 

lT 2j(j f 1)i 1 kl)12) - - - Lk 

j=O 111---1 
i 

' 3 
_f'kfl 

\.1 

1 3 6 - - _(kf2 

(2k-i 
i 



For example, 

P4(x) i 
(2) (4) 

2 2.1! 2.2! 2.3! 2.4! 

2.1! 2.2! 2.3! 2.4! 2.5! 

2.2! 2.3' 2.41 2.5! 2.6! 

2.3! 2.4! 2.5! 2.6! 2.7! 

= 
2j(j + 1) 

(x\ (x\ (x\ (x 
i kj) .2) .3) 4 

11 1 1 1 

12 3 4 5 

1 3 6 10 15 

1 4 10 20 35 

We proceed to show that 

P(x) 
2j (j 4 1)1 

j-0 

or 

Eq. 7 

P(x) 211 L11 (x) (1)2 
n! o 

where L11(x) is the normalizedtt 

Eq. 8 

L x 
_L1 X 

( ) - (-l) 
(j)(i) ji0 

Before doing so, we discuss sorne properties of a special 

type of determinant. 
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3. Persymmetric Determinants If we write 

m0- - - 

Inn_ - - m2n 

There the m are given by q. 3, and factor out the 

terms of the first row and column, we may write 

In..' 
= 

2 + 

' 
(n 

)2 
K) () - - (o) 

n-1 

K 

(n41) 

The ttnormalizedtt determinant is persymmetric; i.e., all 

elements in any diagonal at right angles to aLt are alike. 

If we adopt the notation 

a ---a 0,0 n,0 

- - 
- 

) 

then aj,j aj 
. 



C.) 

Persynimetric determinants in general have the property of 

lending themselves to rapid evaluation by the successive 

operations 

row 1 = row 2 - row 1 

row i row 3 - row 2 + row 1, and so on. 

In practice, we subtract row 1 from row 2, row 2 from 

row 3, row 3 from row 4 - - -, row (n - i) from row n, then 

repeat the operation omitting row i, repeat again omitting 

row 2, then omitting row 3, and so on down the line. 

We see that since the first row (column) is a poly- 

nomial inn of degree O,()is of degree 1, (2 
1) 

of 

degree 2, or in general 4' - is of degree k in n, 

it follows, from the equations 

A (n 4. k - i') (n 4 k ('n 4. k - 1 

k J \kJ k 

(n4'k (n+k_i (nfk-1 
\k/) - k-1,,J k 

etc., that all the elements below the leading diagonal 

vanish, while 

i.e., 

au 1; 

ajj 
si,j i _> j, 

so that the determinant has the value 1. 



Ç ( 
r 

In fact, persymmetric determinants whose corresponding 

elements in each row (column) reduce to binomial coefficients 

of successive differences, may be shown to have the value i 

by premultiplying with a determinant whose elements are the 

binomial coefficients of successive order. For example, if 

we premultiply 

il i i 

12 3 4 

1 3 6 10 

1 4 10 20 

we obtain 

with 

i o o c 

o i o c 

o 0 1 C 

o o o i 

By either method, we find 

Eq. 9 

2nl 

i o o 0' 

-1 1 0 0 

1 -2 1 0 

1 331 

(n!)2 

We are now ready to prove that 

n 
(n\i'x 

4. L(x) "-1) 

j = o . If we subject the deter- 

minant L(x) to the operation, column i -(y) column 2 

column 3 - - - 
n 

l)i() 
column (1 + j), 

i 
n 

we obtair., for exaiple, ï 5. 



4. 

15\íx") 

(x) 

(x'\ (\ 
- 3A3) 5!5J 1) 3) 4) () 

o i i i i i 

o 2 3 4 5 6 

o 3 6 10 15 21 

0 4 10 20 35 56 

0 5 15 35 70 126 

Consistent with the notation which we have adopted for 

j if we write 

L(x) = a0, -1 
a1, 

-1 - 
- a, -1 

a0, O - - - a, 

a0, 
n - 1 - - 

- a, 
- 

23 

(j + f' we observe that the element a1 
) 

. The cofactor 
, 

of the leading element is composed of rows of differences 

of successive order. 

a1, 1 1 1 1 1 1 

012345 
.7 

¡ L) 

L a1 O O i O O O 

O 0 0 1 0 0 
i, 

a1, o o o o o i o 

000001 

:1 



Thus, the value of L5(x) Is 

a0, 
-1 

A0, 
-1 

and, in general, 

5 

= 

n 

(-1) 

1(Î) 
L(x) 

if we can show that our operation 

gives 

Since 

(i)i(n) 
column (1 + j) 

a0, 
k 

= O (k = 0, 1, 2, - - - n - 1). 

(i+j 
ai, j 

a1 
j = 

i. / 

it suffices to show that 

n 

I ) 
= 0. 

Let the generating function 

1) n 
j 

(t) (1 - t) 

(i.' 
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Differentiating i times, 

dLtL(___ ______ 'J fl\%íj 
4. J 

t)7 (-1) (ç t1 
dt1 

Apply Leibniz rule for the 1th derivative of a product and 

obtain 

ti)U + /i\ ti u 

+i) 
1 u 

l) (i - 1) (1) (1 - 2) (2) 

+---( I 

- 
Ui 

- i 
4. u 

where the suffxs indicate the order of the derivative. 

Putting t = i in the above expression, after differ- 

entiatirig, we get 

u (1 
)fl 

Q 
= 

21(1) (n)i J 

3=0 

5. Laguerre Polynomials for Finite Differences. It 

should be observed that since 

n 
2x, 

X 

the weight function 2X chosen is analogous to the weight 
function e"X of the Laguerre polynomials (defined on page 7 

with c= 0). 

We accordingly defIne the set of polynomials L(x) as 

Laguerre Polynomials for finite differences. 



6. Partial Difference Equation. From the equations 

/ L](x) L(x + 1) -L(x) 

nfl 

), 

we get 

I(x) [L(X + 1) -L(x)7 

Thus 

Eq. 10 

n41 
i)i 

n kfl(fl\Ix'\ 
:: =_(-i) ¼k)kJ = -L(x). 

,L\ L(x) f L(x) = 0. 

26 

This equation affords a rapid means of tabulating the values 

L(n, x). Thus, 

or 

Eq. 11 

Ln(X) f L(x) . L 1(x f 1) 

- L 1(x) f 2 L(x) -L(x f 1) O 

Ln 1 
1(x) f Ln(x 4 1) - 2 L(x) L 

. 

1(x f 1). 
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L0(x) La(0) = 1, 

we tabulate values 

in accordance with Eq. 11; i.e., in any block 

a b 

b + c - 2a d, 

C d 

a relationship which must hold for every block of 4 cells. 

Eq. 12 

n L(x) - x [L(x) -L(x - l)J 

follows from the property of symmetry in x and n. 



7. Laguerre Polynomials for Finite Differences. Weight function 2X 

X Lp(x) x) L2(x) 113(x) Lj(x) L(x) c) Çx) 

o i i i i i i i i 1 1 1 
1 1 0 -1 -2 -3 -4 -5 -6 -7 -C -9 
2 1 -1 -2 -2 -1 1 4 1.3 19 26 
3 1 -2 -2 0 3 6 5 -2 -14 
4. 1 -3 -1 3 6 6 2 -6 -17 -29 -39 
5 1 -4 1 6 6 0 -10 -20 -25 -20 -1 

6 1 -5 4 8 2 -10 -20 -20 -5 25 64 
7 1 -6 8 8 -6 -20 -20 0 35 70 84 
8 1 -7 13 5 -17 -25 -5 35 70 70 14 
9 1 -8 19 -2 -29 -20 25 70 70 0 -126 

10 1 -9 26 -14 -39 -1 64 84 14 -126 -252 

II 1 -10 34 -32 -43 34 100 56 -98 -252 -252 
12 1 -U 43 -57 -36 84 116 -28 -238 -294 -42 
13 1 -12 53 -90 -12 144 92 -168 -350 -168 378 
14 1 -13 64 -132 204 8 -344 -358 174 888 
15 1 -14 76 -184 116 248 -152 -512 -182 708 1248 

16 1 -15 89 -247 237 253 -395 -603 239 1311 1142 
17 1 -16 103 -322 409 188 -713 -526 919 1752 273 
18 1 -17 118 -410 643 13 -1076 -176 1795 1709 -1522 
19 1 -18 134 -512 951 -322 -1424 552 2699 818 -4122 
20 1 -19 151 -629 1346 -878 -1658 1742 3337 -1243 -7001 

1 

2 

4 
8 

16 
32 

64 
128 
256 
512 

1024 

2048 
4096 
8192 

16384 
32768 

65536 
131072 
262144 
524288 

1048576 
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8. Difference quation. During the discussion of the 

series T(x) and IJ(x), (also known as Tchebichef poly- 

nomials of the first and second kinds respectively) we found 

that a relation of recurrence existed between any three suc- 

cessive polynomials; also that the polynomials satisfied a 

2nd order linear differential equation. With this in mind, 

if we set up a table for j = 0, 1, 2 from the relations 

already established, viz., 

n 
L(x) 1)3(fl\1X\ _ i) 

n 
X L(x) 

= (i) 
- 

1) 
3=0 

L(x - 1) =y_'(l)3( 
- 2), 

j-= o 

we will have 

2 ¿L(x) LxLn(x1) 

i fl( fl O 

2 
X (n(x [n 

\2/ 2) 2/l/ 

from which we find that the coefficients of L(x),/. L(x) 

andÌ L(x - 1) which will make the sum vanish are n, (1 -x) 

and 2x respectively. That is, we have established the 



difference equation 

Eq. 13 
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2x 4 L(x - 1) f (1 - x) Ln(x) + n L(x) 0. 

9. Recurrence Formula. The relation of symmetry, 

L(x, n) = L(n, x) 

conveniently establishes the recurrence formula as well. 

Thus, from equation 12, 

2x L(x 4 1) -2 Ln(x) + Ln(x - i)] 

+ (1 - x) [Ln(x f 1) - Lfl(x)] + n L(x) 0. 

Simplifying, we get 

(x + 1) L(x + 1) + (n - 3x - 1) L(x) + 2x Ln( X - 1) 

and using the symmetry relation mentioned, we have 

Ea. 14 

(n + 1) L 1(x) 4 (x - 3n -1) L(x) 

+ 2n L 1(x) 0. 

10. P(x). Llodification of Formula. An essential part 

of the proof of equations 2(a) and 2(b) is the fact that 

when the first row of the determinant Pn(X) is multiplied by 

dx and each element integrated from a to b, two rows 

become identical for m<n. For the Pn(x) which we are inte- 

:'rting, however, while no difficulty is experienced on 

account of a summation replacing the integration, we are 
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dealing by the nature of the case with a factorial polynorni 

Then, therefore, we multiply P(x) by 2 (n) and sum from 

O to, we do not obtain a row whih corresponds to the last 

one of and our equations 2 no longer hold. 

We make use of the relation 

(x + rn)m x (x + m)(m 
4 n) 

and replace 

(k) 2_x 
- ink 

x-O 

by 

(k (x+m) k 

xO 
If we let x + in s, then we obtain 

-7 
2 

4 n 

2m 

- 
5(k) 

2 

(k) 2s 
s m 

5(k) 2j 



But the last expression vanishes for 

S = 0, 1, 2 - - - k - 1, 

whence 

Eq. 15 

We accordin1y redefine 

where 

P(x) 

2_= 2m 2k12m41k1 

For k> m. 

i (1) (2) 
(ra) 

co co - - - - co 
o 1 n 

Ci - - - 

0n-1 n-1 
n-1 n - - 

- _C2n_1 

-7 
(k) 2m41k1 

= (x+m) 2-x 

This relation, then, supersedes the one established by 

equation 5. 

By factoring out elements in the first row and column, 

proceeding as for equation 6, that equation is now 



superseded by 

Eq. 16 

a ¡n P(x) = 2'' L(x) 
¡-j- 

11. Evaluation of _2X L(x). We proceed to 

obtain the formal equivalent of equation 2(b). 

If we multiply 

L(x) 
= 

3e0 

by 2 L(x), and sum on x from O toco, we get 

2 L(x) = (i)(n) 
(V2 L(x), x0 i=o x0 

and this, by virtue of the orthogonal property, vanishes 

for j 4 n. 

We obtain 

L(x) (_1)fl 
___ L(X), 

which for convenience we express ss 

(-i) + n) 2 L(x), 

which again we can do, because of the orthogonality of the 

L(x) polynomials. This permits us to write 



00 

2 
00 

___ - L (x) (-')' 211 + r,)2_X t'(-1)" (i),) x0 x0 n 

(_1)i (fl) 211(%x + n\fx\ 2-x 

j0 i x0 n 

n n 
(n4j) - (-1) 

(i)i 
()2I (x+ n) 2 

Ii n i! xO 
With the aid of equation 14, we write 

2 (n+j) 2 L(x) (_1)n 
(_1)i 

+ i 

n!j 
j =0 

i n 
= (-i) 2' 1)i(n)(n i) 

From the formu1a 

n 
F(x) 

4' i) 

i-0 

If we suppose 

F(x) 

we have 

F(- j - 1). 

(X) 
n 

i - 
n X 4 n 

= i J n - j) = (-1) 
- j 

(7)( j 
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by virtue of the relations9 

k ísfk-1 /fl\ ( 

n-k); 
(-1) 

k ) 

Let x n, then we will have 

whence 

n-j n 
(fl)(n4i" 

(-1) 
j 

1' 

j=o 

(1)fl n n n/nfj 
- = 

jX j 
Y; 

50 that 

2 L(x) (_1)fl 2n i (_1)fl, 

x:O 

and we finally emerge with 

Eq. 17 

L(x) 4 1 

As will presently be seen, this equation is of great impor- 

tance when we seek to expand an arbitrary function in the 

form 00 

ak Lk(x). 

12. Expansion of an Arbitrary Function in Series of 

L(x). If we can assume that we may write the function 

1(x) = a0 L0(x) a, L, (x) 4 - - -, 

then, if we multiply by 2 Lk(x) and sum on x from O to 00, 
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we will have 
c'o 00 

f(x) L(x) A (x) 

x=O x0 
This is true because each sum on the right is zero except the 

2 
one containing Lk(x), by virtue of the orthogonality property. 

Thus 

Eq. 18 

Ak f(x) 2X Lk(x) 
x=O 

+ i 

We first give a few simple examples to illustrate and con- 

firm the results arrived at. 

Ex. i f(x) = X 

From eq. 17. a0 2:-_x 

2 

- x) 

- 

X2 = -1; 

f(x) = X - L0(x) - L1(x); 

a result which is readily verified. 



Ex. 2 

We have 

a0 = 

f(x) 
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Th_x X/ = 22_x [(2) x(')]/2 3 

a1 22_x x2(l - 
x,ì,/ 

_2_x + x3J/ - 

a2 = {_x x2 [i - 2x X( - 1) 
J 2 

2ï 
(2 - 

To convert the expression in parentheses on the right to 

factorial form, we make use of 

Eq. 19(10) (7) 

f(x) f(0) 4 
(x)2 f(0) 4. - - -+()Am Ç(0); 

and set up the table of differences 

x f(x) ¿f(x) df(x) Lf(x) 

o o 
-1 

1 -1 -6 
-7 3 

2 -8 -3 12 
-10 15 

3 -18 12 
2 

4 -16 



From equation 18 we now have 

(2) 
f(x) = _(1) - DX + 4 

i.e. 

a2 2II_x (_(1) 
(2) 1 (3)4 1(4)) -Óx 

i ( - 2 - 12 4 6 4 24) = 2, 

8 

and 
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f(x) = x2 = 3 L0(x) - 5 L1(x) 4 2 L2(x). 

As before, this result is easily substantiated. 

13. Biorthogonal ?unctions. The problem of expanding 

an arbitrary function Is much more complex when, instead 

of a polynomial, we have to deal with a nonterminating 

series. We do not propose to enter into the problem of 

exemining the series for convergence, and we leave open the 

question of the validity of the series as a representation 

of the function, since it would take us outside the scope 

of this thesis. That we do have bo take into account is the 

concept of biorthogonal functions, since we obtain thereby 

a new se of coefficients for our Ln(x) which give us a more 

rapidly convergent series for large values of x. 

By definition, if two sets of functions 

ui(x), Vj(X), (i = 0, 1, 2 - - -) 

bear the relation 

Uj Vj dx = 0, + 
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then the two systems of functions are said to be biorthogonal 

over the interval (a, b). In the case of the functions 

L0(x) , Li(x) - - -L(x) 

2 L(x) L(x) - - Ln(x), 

since we may write 
c'O 

____ 
2x L(x) L(x) = O m n, x0 

the L1(x), 2 L1(x) are two sets of mutually biorthogonal 

functions, for the case of discrete points. 

The aj given by equation 17 is now replaced by 

b1 L1(x), 

where the bk are given by 

Eq. 20 

bk 2(x) Lk(X) 
2k41 

Example. f(x) = Sech x. 

The expansion is of the form 

Sech x 22bk Lk(x). 
To calculate the coefficients 

5ech X L,(x) 

4 1 

We find it sufficient to take values for Xup to 10. 

(Sech lOa .0001.) We then compute 



k L Sedi X Sech x 2X 
Lk(X) 

0 2.0711 1.0355 1.000 1.002 

1 .3286 .0822 .648 .640 

2 -.3515 -.0438 .2b6 .273 

3 -.5809 -.0363 .099 .099 

4 -.6340 -.0198 .0366 .0360 

5 -.6188 -.0097 .0135 .0100 

6 -.4728 -.0037 .0050 .0051 

7 -.5105 -.0C20 .0018 .0030 

The accompanying graph shows how close an approximation to 

the given function we have obtained. 
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