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While riding bicycles has been promoted for its health, economic, and environmental 

benefits, it also complements other modes to complete a safe, efficient, and reliable 

transportation system. However, the dramatic increase of bicycle usage in the U.S. is 

accompanied by a growth of bicycle crashes. The U.S. Department of Transportation, 

therefore, is focusing on providing safer riding environments. Providing a more 

bicycle friendly environment means more investment in (but not limited to) bicycle 

infrastructure. A correct prediction of bicycle crashes can increase the return on this 

investment. One useful tool to understand the causality and predict crashes is Safety 

Performance Functions (SPFs), but no sophisticated SPFs have been established for 

bicycles. Therefore, the objective of this thesis is to establish SPFs for microscopic 

(intersection) and macroscopic (corridor) scales in medium and large size cities using 

crowdsourced bicycle data, with a case study in the Portland and Eugene-Springfield 

metropolitan, which overcomes the challenge of insufficient bicycle volume data and 

crash data.  Specifically, in this research 1) bicycle SPFs are created for intersections 

and corridors that have not been sufficiently studied; 2) bicycle crash severity 

distributions are used the first time to predict the number of bicycle crashes with 



 

 

  

different crash severity levels; 3) affordable crowdsourced bicycle volume data – 

STRAVA® is chosen to solve the problem of limited data; 4) STRAVA® data was 

verified to be able to represent general bicyclists by comparison with automatic bike 

count station data; 5) a general framework for building SPFs was developed for 

jurisdictions. 
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1. Introduction  

As riding bicycles has been promoted for its health, economic and environmental 

benefits (Simmons et al., 2015),  more people are selecting it for commuting or 

recreation. Data show that the number of bicycle trips increased from 1.7 billion in 

2001 to 4 billion in 2009 in the U.S., according to National Household Travel Survey 

(League of Amercian Bicyclists, 2015). Figure 1-1 shows the increase of bicycle 

commuting in all states in the U.S. from 2005 to 2013. Portland, Oregon, with 408% 

percentage growth rate, has the fastest rate of increase of bicycle commuter share in 

the U.S. (League of Amercian Bicyclists, 2015). While the growth rate of bicycle 

usage is different from state to state, the general trend shows bicycles have become an 

important mode choice.  

Unfortunately, the dramatic increase of bicycle usage is accompanied with a growth 

of bicycle crashes (National Highway Traffic Safety Adminstriation, 2014; Wang et 

al., 2016). There were 726 people who lost their lives in bicycle crashes in 2014 and 

the percentage of total fatalities has increased from 2005 to 2014 in the U.S. (National 

Figure 1-1 The growth of bicycle commuting by state from 2005 to 2013 

(League of Amercian Bicyclists, 2015) 
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Highway Traffic Safety Adminstriation, 2016). In the past decades, engineers and 

researchers have focused more on designing and deploying countermeasures to 

mitigate motor-vehicle crashes, but less attention has been paid to bicycle safety until 

recently. Figure 1-2 demonstrates that the fatality rate for bicyclist per year in the 

U.S. has been increasing steadily since 2005. The increase in the percentage of 

bicycle fatalities results from two reasons: the increase bicycle usage and slight 

decrease of traffic fatalities of other modes (National Center for Statistics and 

Analysis, 2017). Even though bicycle trips only account for  one percent of total trips, 

more than two percent of total road fatalities are from bicycle trips (Nordback et al., 

2014). This trend drives an urgent need for engineers and planners to increase bicycle 

safety.  

 

Figure 1-2 The percentage bicycle fatalities out of the total traffic fatalities (data 

source: (National Highway Traffic Safety Adminstriation, 2016)) 

The goal of this thesis is to create crowdsourcing data-driven bicycle safety solutions 

for engineers and planners to improve bicycle safety specifically building a predictive 

bicycle crash tool – Safety Performance Function (SPF). This chapter provides the 

basic information of this work including problem definition, objectives, and thesis 

organization. 
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1.1 Problem Definition  

Bicycling is not only a healthy and environmental friendly transportation mode, it 

also complements other modes to complete a safe, efficient, and reliable 

transportation system (U.S. Department of Transportation, 2017). As previously 

mentioned, more bicycle crashes appear with increasing bicycle usage. The U.S. 

Department of Transportation therefore is focusing on providing safer riding 

environment (U.S. Department of Transportation, 2017). Providing a more bicycle 

friendly environment means more investment in bicycle infrastructure. Thus, 

improved understanding of the relationship between the number of crashes, crash 

severity, exposure to collision and other factors contributing to accidents can lead to 

more effective mitigation strategies and prioritize efficient investment to improve 

bicycle safety.  

This relationship is also known as Safety Performance Functions (SPFs).  SPFs are 

statistical regression models that can predict the crash frequency for one or more 

specific sites, such as intersections or two-way urban streets. SPFs describe the 

number of crash of various types of sites with different features. SPFs always include 

traffic volume AADT, but also may include other site features, such as lane width, 

horizontal curve, presence of turn lane, etc. Those models can be used in network 

safety screening, determining the safety impact of design changes, evaluating the 

effect of engineering treatments and so on (Federal Highway Administration, 2013; 

Wang et al., 2017). The misunderstanding of the relationship between crash number 

and bicycle volume can cause engineers to simply calculate the accidents per vehicle 

by using number of crash divided by the number of bicycles or vehicles (Hauer, 1995; 

Nordback et al., 2014).   

Only motor-vehicle SPFs were established in the first edition of Highway Safety 

Manual (HSM). This method provides an evidence-based tool to estimate motor 

vehicle crashes by traffic volume and other factors that could influence the results 

(American Association of State Highway and Transportation Officials, 2010; 

Nordback et al., 2014). However, there are few studies that address the SPFs for 

estimating bicycle crashes (Wang et al., 2017).  
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There are three interrelated challenges of establishing SPFs for bicycle transportation: 

1) there is a general lack of bicycle crash data (due to not enough crashes, missing 

data and the issue of under-reporting) and the sporadic nature of bicycle crashes; 2) 

there are no accurate bicycle volume data; 3) it is difficult to decide what statistical 

models should be used to establish SPFs due to insufficient data availability.  

1.2 Objectives 

To address the challenges of building SPFs for bicycle, this research uses 

crowdsourced data (i.e., STRAVA®) to establish bicycle SPFs at urban intersections 

and segments. Compared to previous studies, the unique contribution of this research 

includes:  

1. Establishing SPFs for intersections (micro scale) and corridors (macro scale) 

that have not been sufficiently studied; 

2. Bicycle crash severity distributions are used the first time to predict bicycle 

crash severity level in combination with crash frequency;  

3. Using affordable data resources – crowdsourced bicycle volume data – to 

solve the issue of  insufficient data;  

4. Embedding factors that could influence bicycle crash prediction model rather 

than building separate Crash Modification factors (CMFs);  

5. Establishing the model selection process when building SPFs for jurisdictions;  

6. Investigating the representativeness of crowdsourced data.  

Detailed explanations for the six points are presented as follow. Previous studies 

(Turner et al., 2011; Dolatsara, 2014; Nordback et al., 2014) built bicycle SPFs for 

intersections but not for segments. The main reason is that there is insufficient crash 

data for segments. To solve this issue, this present research establishes SPFs on a long 

corridor which contains multiple segments and intersections, termed “Macroscopic 

SPFs” here because the SPFs are built to predict crashes for the whole corridor from a 

larger scale rather than only focusing on one intersection. Transportation agencies can 

combine the micro and macro PSFs to predict bicycle crash frequency.  
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This paper uses STRAVA® bicycle count data as the bicycle exposure to build SPFs. 

STRAVA® count data, as a type of crowdsourced data, has advantages over 

traditional count data. For example, it is easier to access and affordable for small 

jurisdictions. The idea of using crowdsourced data to build SPFs comes from the 

PacTrans project (Wang et al., 2017) that the author involved. Further, the data is 

available for each city’s transportation network which means researchers can build 

SPFs on all roads with different functional classifications. The paper also investigates 

how STRAVA® represents the whole population of the studied area (Metropolitan 

Portland and Eugene-Springfield).  

Another highlight of this paper is that the author documents the procedure of 

establishing SPFs on crowdsourced data with a detail explanation of how to choose a 

correct model. Other jurisdictions could follow the process to build their own SPFs to 

obtain more accurate prediction results. 

The present study builds bicycle SPFs on both intersection (microscopic scale) and 

corridor (macroscopic scale) based on data collected from Portland, OR and Eugene-

Springfield Metropolitan area. Figure 1-3 demonstrates the difference between the 

ideas of macroscopic and microscopic SPFs. The idea of macro level SPFs is inspired 

by Wei and Lovegrove (2013) who built predictive models of collisions in Canada. 

This idea also matches the safety evaluation scope of DOTs in the U.S. For example, 

Kittelson & Associates, Inc. cooperated with Oregon Department of Transportation to 

create a pedestrian and bicycle safety implementation plan on macro (corridor) level 

in 2014 (Kittelson&Associates Inc and ODOT, 2014). Thus, the author decided to 

adopt this idea and create macro level SPFs to meet both research and practical needs. 

The data include: STRAVA® bicycle count data, traffic volume, road characteristics, 

geometric data, land-use data, crash data, etc. The results of this study can essentially 

provide a bicycle crash prediction tool to evaluate safety, determine the impact of 

changing design, and screen transportation networks to identify the most efficient 

investment regarding locations and means. Additionally, the repeatable procedure of 

building of bicycle SPFs on crowdsourced data is established. 
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Figure 1-3 The difference between microscopic SPFs and macroscopic SPFs. 

It should be noted that parts of this study (including a small proportion of data and 

documentation part) come from two projects and the author of the present paper is 

one of the main author of both projects: 1) PacTrans project: Bicycle Safety Analysis 

– Crowdsourcing Bicycle Travel Data to Estimate Risk Exposure and Create Safety 

Performance Functions in 2017 (unpublished), and 2) ODOT SPR 779 project: Risk 

Factors for Pedestrian and Bicycle Crashes in 2017 (unpublished). 

1.3 Paper Organization  

This paper presents the literature review, methodology, results, conclusion and 

recommendation. Chapter 2 reviews literature and provides a comprehensive 

recording and comparison of existing studies relating to present research; Chapter 3 

illustrates the methods that the author used to build the SPFs; Chapter 4 documents 

the data preparing process and analyses of the data; Chapter 5 discusses the details of 

results from bicycle SPFs in this research; Chapter 6 provides recommendations and 

conclusions for engineers and decision makers. 

Corrdior (Macroscopic)  

Intersection (Microscopic)  
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2. Literature Review 

This chapter provides a comprehensive record of existing SPFs studies, discusses a 

comparison and contrast of predictive models, a documentation of bicycle crash 

analyses and also a record of how others studies chose and collected data. Thus, the 

main purpose of this section is to review the suggestions and methods of building 

SPFs from other studies. 

2.1 Existing SPFs Studies and SPFs History  

SPFs are mathematical equations predicting the number of the crash at various sites. 

Traffic volume is always included in SPFs, yet they may also include other features, 

for example, the width of lanes, the number of lanes, intersection control, etc. Those 

equations can be applied to assess the effect of treatments, screen network safety, 

determine the safety impact of changing designs and so on (Federal Highway 

Administration, 2013). This predictive approach can provide crash estimates on sites 

that have not been constructed or have been constructed too recent to have crash data 

(American Association of State Highway and Transportation Officials, 2010).  

Other methods besides SPFs can be used to predict crashes. Tegge, Jo and Ouyang 

(2010) mentioned the method of Controlled Studies or Experiments can support 

accurate analysis to understand causal relation between variables and the number of 

crashes; however, due to a significant amount of variation involved, those methods 

are very difficult to apply. Specifically, this causality involves a combination of 

various factors, such as weather, road condition, drivers’ behaviors, etc. Therefore, 

the alternative method of Observational Studies has been the most practical method to 

explore the casual relationship rather than Controlled Studies. Statistical tools are 

used to analyze crash data in Observational Studies to discover the correlation 

between variables. With data from crash report, traffic volume, and geometric 

information, SPFs can provide a statistical relationship between expected yearly crash 

count and roadway features (Tegge et al., 2010).  

When Highway Safety Manual (HSM) in 2010 established sophisticated SPFs but 

only for vehicle, Nordback et al. 2014 applied this idea and created a basic SPFs for 

bicycle to Boulder city in Colorado. The authors used collision, AADT, AADB data 
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to build the function describing the relationship between traffic and bicycle volume 

with crash frequency in intersections. They found that with the bicycle and motor 

vehicle volume increase, the frequency of cyclist crash increases but the crash rate 

decreases. In other words, at intersections the cyclist crash frequency has a positive 

relationship; whereas the cyclist crash rate has a negative relationship with traffic and 

bicycle volume. This relationship previously studied by others has been found not 

linear and is called “safety in number” (Ekman, 1996; Jacobsen, 2003; Jonsson, 2005; 

Robinson, 2005; Nordback et al., 2014).  

Nordback et al. in 2014 established the process and method of creating SPFs for 

bicyclist by a negative binomial generalized linear model with a log link, and this 

model was based on data of Annual Average Daily Traffic (AADT) and Annual 

Average Daily bicycle (AADB). The authors compare negative binomial regression 

and Poisson regression, and they found that the former can fit the data better because 

of the collision datasets has the feature of variance triple the mean, in other words, the 

crash data is over-dispersed. In Poisson distribution, the mean equal to the variance, 

but when variance is larger than mean, the situation is called over-dispersion (Federal 

Highway Administration, 2013). Speaking about dataset, three peak hours count for 

both bicycle and traffic, provided by the city of Boulder (Boulder and Even, 2012) 

were adjusted to AADT and AADB by using daily and monthly factors (Ferrara C, 

2001). Negative binomial distribution was determined by Long (1997).  

The authors did a sensitivity analysis on change of AADB. The results show: with 

higher AADB, the corresponding parameter is still well under one which indicates the 

SPF is still sub-linear; whereas the parameter for lower AADB is closed to zero, 

which indicates the AADB is not a major factor in determining motorist-cyclist crash. 

Further analysis can investigate this observation. In addition, the estimations of 

parameters of AADT and AADB are at the same magnitude, indicating the collision 

is similar sensitive to both volumes; however, the AADT exponent is one or two 

orders of magnitude higher than AADB exponent, so the change of AADB has more 

critical influence on crash than same change of AADT. Thus getting accurate 

estimation of bicyclist volume is more important to analyze the SPF (Nordback et al., 
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2014). Future work can use larger dataset and more accurate AADB and include 

facility type into the analysis.  

This analysis only captures the connection between volume and crash but cannot 

reveal the causation between them. In other words, the reason between traffic & 

bicycle volume and crash frequency is not explained. The reasons can be: the 

increasing bicycle volume may lead safer behavior of motorists and bicyclists, or 

more bicyclist riding on safer facilities. Other studies state more bicyclists triggers 

changing the behavior of drivers, but it is based on logical speculation not empirical 

data analysis (Ekman, 1996). Another potential improvement is the accuracy of 

AADB. While there is not actual AADB available, the estimated from two-hour data 

can be not accurate. 

Furthermore, Nordback et al. 2014 did not consider other factors such as geometric 

data, road characteristics, land-use, etc. Therefore,  Dolatsara's (2014) study built 

SPFs for the intersections on crash data, the volume data and the road geometric data, 

as an improvement from previous work. Department of Transportation provided 

traffic and bicycle volume; the geometric data include different lane number, bike 

lane characters, post speed, bus stop and so on; the crash data collected in this study 

came from 164 intersections of four cities in Michigan and crashes happened within 

500 feet buffer of the center if intersection were collected (Dolatsara, 2014). 

Intersection traffic volume was collected by combining four directions of ADT in this 

study. The 500 feet was calculated by Stopping Sight Distance (SSD) by (Fambro et 

al., 1997). However, more practically, 250 feet has been used as a diameter to assign 

crashes into an intersection (Vogt and Bared, 1998; Dolatsara, 2014). 

The author also mentioned that the Poisson distribution could not capture the over-

dispersion of crash data (American Association of State Highway and Transportation 

Officials, 2010), so the negative binomial regression was employed (Dolatsara, 2014). 

The significant variables are included in the SPF are ADT, the number of the left turn 

lane, presence of bike lane, presence of bus stop (Dolatsara, 2014). This would 

suggest that this present study may include other factors besides traffic and bicycle 

volume into our SPF. Dolatsara (2014) conclude that 1) the higher exposure of bike 
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volume; 2) presence of bike lane; 3) presence of bus stop within 0.1 miles within an 

intersection; 4) increase number of left turn lane are associated with more bicycle 

crash. However, that does not mean the bike cause more crash because there are more 

bicycles attaching bike lane than without bike lane (Dolatsara, 2014). This finding is 

consistent with Nordback et al. (2014) paper. Others have also studied bicycle facility 

related studies. Reynolds et al. (2009) concluded that there was evidence support that 

the purpose-built bicycle-specific facilities can reduce bicycle collision. Street 

lighting, paved surfaces and low-angled grade are also the factors that can improve 

bicycle safety. This study also used manual bicycle count exposure data which may 

have same estimated error as Nordback et al.'s (2014) work.  

Turner et al., (2011) used generalized linear model and before-after-control impact 

method to study the safety performance of intersections in New Zealand and 

Australia. Similar to the study from Dolatsara, (2014), the Turner et al. also 

considered geometric information in the model. However, the study considered fewer 

variables and used a simple model that may not completely capture the impact of 

factors. Again, they also used manual count data for bicycle volume which can raise 

the issue of misrepresenting the real bicycle volume. The manual count included 

turning movement which can be used to evaluate bicycle safety on each movement; 

however, this manual count requires much more effort input than automatic count 

loop or crowdsourced data.  

In 2002, Midwest Research Institute (MRI) developed a software tool to Federal 

Highway Administration (FHWA), called Safety Analyst, to analyze road safety. This 

tool includes four module: Network Screening, Diagnosis and countermeasure 

selection, Economic appraisal and priority-raking, and Evaluation. The first module 

used SPFs to estimate expected accident frequencies and developed the procedure of 

building SPFs for segment ramps and intersection. In addition, it combined SPFs and 

Empirical Bayes (EB) method together to predict crash rate (Midwest Research 

Institute et al., 2002). Later on, the combination of SPFs and EB method was included 

in HSM (American Association of State Highway and Transportation Officials, 

2010).  

 



11 

 

  

Table 2-1 SPFs developing history (Jo et al., 2009; Tegge et al., 2010) 

Study  Year Site  

Zegeer et al. 1987 segment 

Persaud 1992 segment 

Forkenbrock et al. 1994 segment 

Tarko et al. 1999 segment 

Harwood et al.  2000 segment 

Minnesota [Vogt and Bared] 1998 intersection  

Washington [Vogt and Bared] 1998 intersection  

IHSDM Model [Bauer and Harwood] 1999 intersection  

California, Michigan [Vogt] 1999 intersection  

Iowa [Harwood et al.] 2002 intersection  

Illinois [Harwood et al.] 2002 intersection  

Louisana, Nebrask, Virginia [Harwood et al.] 2002 intersection  

North Carolina [Harwood et al.] 2002 intersection  

Oregon [Harwood et al.] 2002 intersection  

Minnesota [Harwood et al.] 2002 intersection  

HSM  2010 Segment and intersection 

 

2.2  Crash Modification Factor  

Basic SPFs capture the relationship between traffic volume and frequency of different 

types of crash, but cannot predict crash frequency accurately for a specific condition. 

A CMF is a multiplicative factor that used to adjust the predicted mean crash 

frequency estimated by SPFs for a specific condition. Typically, each road feature has 

one CMF, such as CMF of the presence of bicycle buffer line. In addition, it can also 

be used to compute the expected number of the crashes after installing a treatment at 

a specific site. In other words, it also can be used to multiply the estimated crash 

frequency without treatment by basic SPFs (American Association of State Highway 

and Transportation Officials, 2010; Gross et al., 2010). 

CMFs are multiplicative based on one critical assumption that the feature which a 

CMF represent is independent of other features. However, there is little research 

existing justify the independence between these effects. The limited understanding 

the interrelationship between road characteristics or countermeasures installed on the 

street need to be addressed carefully when applying CMFs. It is possible to 



12 

 

  

overestimate the effect of a combination of countermeasures existing the same place 

on the street. For example, shown in Figure 2-1, increasing shoulder width, add 

rumble strips, and increasing reflection of marking can all reduce single vehicle 

crashes (hitting on roadside objects). The countermeasures’ effects are over-estimated 

when the three CMFs are multiplied by and estimate crash frequency at the same time 

due to the overlaps. Engineers should use engineering judgment to assess the 

interrelation or interdependence between elements or treatments (American 

Association of State Highway and Transportation Officials, 2010). The lack of 

knowledge of understanding the interrelationship between factors paly the main 

reason that author of this present paper decided not using CMF to build bicycle SPFs. 

 

Figure 2-1 The overlaps of CMFs 

There are various approaches to develop CMFs, for example, Before-After with 

Comparison Group method, Full Bayes, Cross-sectional study, Cohort method, etc. 

Using Empirical Bayes (EB) method can compensate the bias caused by 

interdependence between elements; however, this approach mainly estimates average 

crash frequency of past and feature either on a specific site or project level after 

calculating prediction from SPFs (American Association of State Highway and 

Transportation Officials, 2010). EB method provides a mean of a combination of 

prediction from SPFs and observed crashes data. Midwest Research Institute et al. 
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(2002) apply EB method after SPFs in a network screening tool called 

“SafetyAnalyst” to predict crash frequency. 

 

2.3  Bicycle Crash Type, Frequency, and Severity  

Bicycle crash is defined as an accident that bicyclist has a collision with the ground, 

objectives such as a vehicle, road facilities and others and causes damage property or 

human body (Lindman et al., 2015). Researchers have been studying crashes type, 

frequency and severity for a long time. The better understanding the bicycle crash 

types, the better engineers and decision makers can make enhancement of bicycle 

safety. A course on this topic was developed by Federal Highway Administration 

(FHWA) and described the crash rates, exposure, characteristics, and so forth. for 

engineers, planners, researchers to better clarify the reasons of crashed happening and 

how to avoid them (Hunter, 1996). Most bicycle crashes are involving single bicycle 

and are categorized into four types: infrastructure-related crashes, cyclist-related 

crashes, bicycle malfunction, other or unknown (Schepers et al., 2011). Table 2-2 

summarizes the crash types as below. 

Table 2-2 The Bicycle Crash Types (Wang et al., 2017) 

Crash Type Description 
Bicyclist or motorist rides through 

stop sign or red light 

The bicycle or the motorist fails to follow the rules of the road including 

obeying all signs and signals 

Wrong way riding The bicyclist ride on the road or sidewalk against the flow of traffic 

Bicyclist left turn in front of traffic  The motorist right turn  

Bicyclist enters road from a 
driveway, alley, curb or sidewalk 

The bicyclist fails to stop, slow and look before entering a roadway from a 
residential or commercial driveway 

Motorist passes a bicyclist  

A motorist fails to see and avoid it the bicyclist until it is too late to avoid a 

collision 
Motorist turns right or left into 

bicyclist 

The motorist takes a right or left turn and the bicyclist rides in either the 

same or opposing direction 

Motorist enters road from a 
driveway or alley The motorist fails to stop and look before entering a roadway 

Multiple threads The bicyclist fails to clear the intersection before the light turns red. 

 

 

Besides those studies (Turner et al., 2011; Dolatsara, 2014; Nordback et al., 2014) 

mentioned in the previous section, there are also other scholars has been focused on 

studying crash frequency. Count models are usually used to investigate the 

relationship. For example, Oh et al. (2008) use the Poisson model to analyze the 
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bicycle crash at intersections in the urban area. More other studies can be found in 

Section 2.1. 

According to Wang et al. (2017) and Reynolds et al. (2009), bicycle crash injury 

severity divided into four different levels: fatal injury, incapacitating injury, non-

incapacitating injury and possible/no injury. Previous researchers analyze the factors 

affecting the level of crash injury severity from various perspectives. Thompson et al. 

developed a regression model to investigate the impact of helmets on reducing the 

injury severity levels of bicycle crashes. The results indicated that bicycle helmet has 

a protective effect for reducing crash injury severity (Thomas et al., 2009). 

Yan et al., (2011) used a regression model to explore the factors that affect the injury 

severity of bicyclist in bicycle-motor vehicle accidents on police-reported crash data. 

The results showed that several factors doubled the probability of fatal injury in a 

bicycle-motor vehicle accident, including darkness with no street lights, inclement 

weather, peak hour in the morning, head-on and angle collision, speeding-involved, 

vehicle speeds about 48.3 km/h, truck involved, bicyclist age 55 or more, roads 

without median/division, running over bicyclist and etc. Klop and Khattak, (1999) 

studied the physical and environmental factors that influenced the injury severity 

level of bicycle crash on the two-lane and divided roadway. The author concluded the 

factors such as straight grades, curve grades, darkness, fog and speed limit might 

increase injury severity and the factors including higher AADT, lighting condition 

and speed limit at intersections and shoulder-width could lower injury severity level 

(Wang et al., 2017).  

2.4  Statistic model  

This section will demonstrate several useful count model that are widely used in 

safety research. Poisson, Negative Binomial (NB) and Zero-inflated Poisson (ZIP) 

and Zero-inflated Negative Binomial (ZINB) are introduced along with existing 

studies. In addition, some other potential methods are also reviewed regarding 

building SPFs. 
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2.4.1 Count model  

If the story documented in The role of intersection and street design on severity of 

bicycle-motor vehicle crashes by Todhunter (1865) is true, Pierre De Montmort firstly 

mentioned NB distribution in the contest in 1713. He mentioned it captured the 

number of failures before a number of success in a series of binary trials. Based on 

Negative Binomial distribution, the Poisson distribution first introduced by Simeon 

Poisson (1781-1840) in the study about cranial and civil matters in 1838 (Hilbe, 

2011). The Poisson distribution was also widely used to investigate variables that can 

influence the crash count.  Oh et al. (2008) used the Poisson distribution to analyze 

bicycle collisions at signalized intersections in the urban area. In this study, bicycle 

variables were considered and the authors mentioned there could be more risk factors 

found if driver characteristics had been considered.  The Poisson distribution also was 

used for analyzing the factors influence the risk level of bicyclists in the major cities 

in New Zealand (Tin Tin et al., 2013). 

Later on, NB was derived from Poisson distribution because of its capturing the over-

dispersed shape of data, which Poisson cannot. Poisson distribution has to have an 

assumption that the mean is equal to the variance. Therefore, NB distribution became 

a standard method of describing count data in most empirical data (Hilbe, 2011). 

Nordback et al. (2014) focused on finding (SPFs) for bicycles in cities in the United 

Stated and states that Poisson distribution can create a logical fit for the accident data 

but cannot capture the over-dispersed shape. Other studies analyzing crash count can 

be found in Figure 2-2 which shows part of the development of using models on crash 

data in transportation.  
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Figure 2-2 The development history of statistic model on crash count. 

Late on, more scholars have been found a phenomenon where an observation of zero 

events happened in a period can arise a new condition. For example, zero crash can 

be noticed at many intersections. This interesting phenomenon may result from two 

reasons: 1) failure to be observed; or 2) unable to ever experience an event. Mullahy 

in 1986 introduced the idea of modeling with zero and Lambert (1992) Greene, 

(1994) later on extend the zero model to ZIP and ZINB model. This model allows 

additional zero states where the model can estimate the zero count separately from 

other non-zero observation. Recently, Dong et al. (2014) used multivariate random-

parameters ZINB model to investigate the relationship between crash frequency with 

pavement condition, traffic factors, and geometric design. They found that this model 

has the ability to accommodate excess zero counts in crash data. Other researchers 

such as Miaou (1994), Shankar et al. (1997), Malyshkina and Mannering (2010) 

applied the zero-inflated model in the transportation field. 

2.4.2 Alternative Approaches 

Instead of the Poisson, NB, ZIP and ZINB models mentioned in the previous section, 

there are other statistical and mathematical methods available for predicting count 

data. Full Bayes method (FB) is one of them. FB is a modeling approach that can be 
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used the similar way as generalized modeling approach. Instead of using a point to 

predict the expected frequency and variance for a site, FB can provide a distribution 

of possible value, which can be combined with observed crash frequency to expected 

longer term crash frequency. FB has several advantages over other methods: 1) 

having the ability to specify complex models; 2) smaller sample size required; 3) 

having ability to consider spatial correlation; 4) having ability to incorporate prior 

knowledge, such as introducing previous reliable estimation in a new prediction 

model. However, it has disadvantages including very high statistical knowledge is 

needed and it is difficult to build a practical software based on FB (Gross et al., 

2010). Some researchers have proposed FB method in various topics regarding safety 

including crash rate, ranking sites and identifying high-risk sites in road segments 

(Carriquiry and Pawlovich, 2004). 

2.5  Data Collection Review 

This section reviews the data collection process, significant variables in other studies, 

the way to assign crash to sample sites. The purpose of this review is essentially 

giving engineers a reference of collection data. 

2.5.1 Sampling Process and Aggregating Crash Data 

The first step of collecting data is a sampling process. Random sample process is 

normal way in research. Some issues arise along with the random sampling process. 

For example, spatial correlation indicates that one location is proximity to other 

places resulting an impact on predicting crash frequency (Gross et al., 2010). In 2006, 

a county level crash study in Pennsylvania found the significance of spatial 

correlation (Aguero-Valverde and Jovanis, 2006; Gross et al., 2010). Those findings 

indicate the spatial correlation may influence this study. 

How to assign crashes to intersection sites is an critical step for building SPFs. One 

common and convenient way is to create a 2-dimensional buffer at an intersection 

within which crash will be assigned to the intersection. Fambro et al. (1997) first 

calculated 500 feet as Stopping Sight Distance (SSD) for intersection which can be 

the diameter for this buffer, but Dolatsara's (2014) demonstrated the 500 feet buffer is 

so large that it may cover crashes from adjacent intersections, shown in Figure 2-3. 
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Crash data, volume data and road geometric data are collected in Dolatsara's (2014) 

study. The crash data in this study were from 164 intersections in four cities in 

Michigan. The author used 250 feet buffer as a threshold to assign crash to 

intersection site. In other words, crashes happened within 250 feet buffer of the center 

point of an intersection were collected and assigned to the intersection (Dolatsara, 

2014). This 250 feet has been widely used as a diameter to assign crashes (Vogt and 

Bared, 1998; Bauer and Harwood, 2000; Dolatsara, 2014).  

 

Figure 2-3 500 feet buffer used to assign crashes into an intersection (Dolatsara, 

2014). 

Justifying which threshold of buffer can be used to assign the crashes is a critical step. 

Street blocks within both downtown Portland and Eugene are smaller than areas 

outside downtown, and the sample sites in this research locate in all area of Eugene 

and Portland metropolitans, so the threshold of the buffer should be various 

depending on different land use.  Therefore another way to avoid this error should be 

utilized in this present study. 

2.5.2 Micro Scale Variables 

Determining what data need to be collected for developing intersection SPF is critical 

since this step influences the data collection period, the final results, even the general 

research idea. Related researches and projects are reviewed in the section to provide 

engineer experience to make decisions on what variables are necessary.  
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Even though some of the bicycle researches or projects are not directly relating to 

building SPF, they still capture factors that may influence the bicycle risk or 

probability of bicycle crash. Monsere et al. (2016) analyzed the risk factors for 

pedestrian and bicycle crashes for Oregon. They collected the geometric data, 

STRAVA data, land use data and found several variables are significant, shown in 

Table 2-3. 

Table 2-3 Variables and their significance in Oregon bicycle and pedestrian risk 

factors project (Monsere et al., 2017) 

Data Element   Collection Method or Source Significance 

Traffic volume (AADT, factored 2014) ODOT Databases, Local files, other sources  

Estimated bicycle volume per day  (STRAVA) STRAVA Database × 

Functional class of roadway  ODOT Databases  

Number/presence of left-turn lanes Google Earth/ODOT Digital Video Log  

Number/presence of right turn lanes  Google Earth/ODOT Digital Video Log × 

Number of total traffic lanes  × 

Presence of bicycle lanes  Google Earth/ODOT Digital Video Log  

Number of total traffic lanes (including left 
and right turn lanes) on all approaches 

Google Earth/ODOT Digital Video Log  

Posted speed limit  Google Earth/ODOT Digital Video Log  

Presence of lighting by approach  Google Earth/ODOT Digital Video Log  

Number of total traffic lanes (including left 

and right turn lanes) on all approaches 

Google Earth/ODOT Digital Video Log  

Presence of school area within 1000 feet Google Earth  

Presence of green bicycle markings  Google Earth/ODOT Digital Video Log  

Number of bus stops within 1000 feet  Google Transit × 

Presence of median  Google Earth/ODOT Digital Video Log  

Functional class  × 

Neighborhood concepts GIS geodatabase Currans et al. 2014 
 

3-Leg Intersection Density Environmental Protection Agency (EPA)’s Smart 

Location Database 

 

4-Leg Intersection Density Environmental Protection Agency (EPA)’s Smart 
Location Database 

 

Retail Density Environmental Protection Agency (EPA)’s Smart 
Location Database 

 

Total Population Density Environmental Protection Agency (EPA)’s Smart 

Location Database 

 

Household Density Environmental Protection Agency (EPA)’s Smart 

Location Database 

 

Household Size Environmental Protection Agency (EPA)’s Smart 
Location Database 

 

 

FHWA developed Pedestrian and Bicyclist Intersection Safety Index (Ped ISI and 

Bike ISI) to help engineers, planner and other transportation agencies to prioritize the 
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intersection based on safety. The higher the score is, the higher priority the potential 

problem of corresponding intersection crosswalk and approaches need to be 

addressed. This bicycle analysis covered 67 intersection approaches from Gainesville, 

FL; Philadelphia, PA; Portland and Eugene, OR. Instead of taking intersection as a 

whole, this project evaluated the safety on crosswalks and each approach (through, 

left turn, right turn) in the intersection. Table 2-4 summarizes the variables required 

in this method. 

Table 2-4 The data required in bicycle ISI method (Carter et al., 2006) 

Variables Data type  
Bike lane presence Yes/no 
Cross street traffic volume ADT numerical  

Number of through lanes on cross street Numerical 

Number of traffic lanes for cyclists to cross to make a left turn Numerical  
Number, type, and configuration of traffic lanes on main street approach Numerical  

Street speed limit Numerical  

On-street parking on main street approach Yes/no  
Type of traffic control on the approach of interest (signal or no signal). Signal/stop control 

 

In 2012, Mekuria et al. developed Bicycle Level of Traffic Stress (BLTS) indirectly 

measured the stress of bicyclist based on cycling comfort level and surrounding 

environment. It has been an efficient tool to analyze bicycle behaviors, route choices 

and safety (Mekuria et al., 2012; Dill and McNeil, 2013). Based on the concept and 

content from Mekuria et al., a flow chart is created to demonstrate criteria and 

required data to evaluate BLTS in Figure 2-4 below. 
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Figure 2-4 The BLTS criteria and data requirements. 

Dolatsara (2014) built SPFs for non-motorized crashes in four Michigan cities. 

Besides traffic volume and bicycle volume, various geometric characteristics were 

collected in this study, and the significant variables in the final model are summarized 

in Table 2-5. 

Table 2-5 Variables collected and corresponding significances for developing bicycle 

intersection SPFs. 

Variables Significance 
ADT × 

Bicycle volume  × 

Number of Left Lanes × 
Number of Through Lanes  

Number of Right Lanes  

Total Number of Lanes  
Presence of Bike Lane × 

Presence of Median  
Width of Corridors  

Length of Unpainted Crossing  

Number of Access  
Presence of On-Street Parking  

Presence of Speed Sign  

Posted Speed  
Presence of Bus Stop within 0.1 mile × 
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In New Zealand, Turner et al. (2006) analyzed the prediction model for pedestrians 

and bicyclists. The variables include: intersection control types, intersection layout 

(four or three legs), and the number of traffic directions. Various geometric data turn 

out to play an important role in building intersection SPFs but not all. As one 

component of geometrics, horizontal curve tends to have an impact on segment safety 

(Findley et al., 2012). However, the horizontal curve is defined in segment rather than 

in intersection.  

Validating existing SPFs in different areas or different time is important, since there 

is possible that the prediction model may not be able to estimate crash as accurate 

under temporal and spatial changes. Dixon and Avelar (2015) used new data sets to 

validate the old segment arterial SPFs model in Oregon that was developed in 2012 

by ODOT. This function was designed to assess the safety performance of driveways 

located on arterial highways. Dixon and Avelar (2015) evaluated spatial 

transferability, spatial–temporal transferability, and individual coefficient stability 

and significance to verify the performance of old SPFs. The variables included in the 

2012 Oregon urban arterial SPFs model are shown in Table 2-6. The validation 

method can be used in the research to verify the model prediction ability after 

development. 

Table 2-6 The variables in 2012 ODOT arterial highway driveway SPFs (Dixon and 

Avelar, 2015) 

Variables Significance 
AADT (Ln transformed) × 
Segment length (Ln transformed) × 

Post speed over 35 mph × 

Two-way left turn lanes × 
Four travel lanes × 

Two-way left turn lanes for four lanes × 
number of commercial plus industrial driveways × 

driveways that are not commercial or industrial × 

 

El-basyouny and Sayed (2011) used traffic conflicts instead of traffic volume as a 

predictor to develop SPF. They compared the conflict-based and volume-based SPFs, 

and the results showed those two approaches have similar crash prediction capability. 

It comes from the high correlation between conflict count and crash count, shown in 
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Figure 2-5. This paper disclosed the traffic conflicts could be alternative measures of 

traffic crash while developing bicycle SPFs. 

 

Figure 2-5 A scatter plot of predicted accidents obtained from conflict-based and 

volume-based SPFs model (El-basyouny and Sayed, 2011) 

SPFs can also be developed for a specific area, such as land surrounding a school. 

McArthur et al. (2014) used NB model to establish pedestrian and bicycle SPFs for 

school, and the data collected are summary in Table 2-7: 

Table 2-7 Variables and their significances for building school pedestrian and bicycle 

SPFs (McArthur et al., 2014) 

Variables Significance 
Average Family Size × 

Children Ages 5 to 14 × 

Average Parents per Household × 
Median Family Income ($) × 

Population Density (1,000 per sq. mi.) × 
Proportion of Non-White Households × 

Local Roads (proportion) × 

Collectors (proportion)  
Arterials (proportion)  

Students Enrolled × 

 

Turner et al. (2011) developed bicycle crash SPFs for two major cities in New 

Zealand and Australia. Those SPFs were developed for each movement for every city 

rather than looking the intersection as a whole. Crash, traffic and bicycle volume, 

geometric layout data were collected for road segments and intersections, shown as 

below: 
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 Volume for each vehicle movement 

 Volume for each cycle movement 

 Cycle lane width in meters plus 1m 

 Depth of advanced cycle box in meters plus 1m 

 Width in meters of lane closest to curb 

 Presence of approach cycle facility 

 Presence of transition cycle facility on approach 

 Storage treatments present on approach 

 Colored treatments 

 Shared right-turn lane on motor vehicle movement approach 

 Shared LT lane on approach 

 Presence of free left turn on approach 

 Fully / partially protected phasing arrangement at intersection 

2.5.3 Macro Scale Variables 

The variables that are significant impacting on intersection safety may differ with that 

on segments or corridors. In 2014, Kittelson&Associates Inc. prepared a plan For 

ODOT to prioritize the high-risk corridor for pedestrian and bicycle. Instead of 

analyzing each short segment, this study summarized the risk factor and score for 

each corridor (includes multiple segments). They stated that the main challenges 

faced by them include few crash number and lack of exposure data. Therefore, in 

order to overcome them, engineers combined network screening method and risk-

based systemic safety planning process (identifying risk according to the roadway 

characteristics) to identify high-risk corridors. The variables included in the network 

screening method include:  

 Driveway density  

 Undivided 4-lane roadways in urban areas 

 Lack of bicycle facility on at least one side of the roadway 

 Presence of a traffic signal 

 Average daily traffic (ADT or AADT) 

 Posted speed limit 

 Crash frequency and severity 
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In 2012, Teschke et al. recruited 690 city residents injured from cycling in Toronto 

and Vancouver in Canada to compare bicycle risk factors of 14 route type 

infrastructure features. They found: no presence of on-street parking and presence of 

bicycle lane on the major roads have negative impacts on risk; local streets also have 

lower risk; public transit, trucks, downhill grades, and construction are associated 

with increased risks. 

Eluru et al. (2008) applied a mixed generalized ordered response logit (MGORL) on 

non-motorist crash severity using the 2004 crashes in the USA. The authors suggested 

that the general pattern of analyzing pedestrian and bicyclist crash were similar. In 

other words, there are some similarities between the impacts on bicycle crashes and 

pedestrian crashes. The significant variables include: gender, age, under the influence 

of alcohol, vehicle type, speed limit, time of day, traffic direction.  

Kim et al. (2007) investigated the factors impacting bicycle crash severities by using 

a multinomial logit model on police-reported accident data from 1997 to 2002 from 

North Carolina, USA. Significant results include: age, the influence of intoxication, 

using helmet, speed, truck, bicycle direction, turning movement, curved road, two-

way divided, land use type – institutional area, the weekend of week, time of day, 

weather, and lighting situation.  

Yan et al., (2011) used a multinomial logit model to analyze bicycle crash severities 

and binary logit model to analyze bicycle crash patterns in Beijing, China. The 

significant variables of crash severity analysis are: crash pattern, age, vehicle type, 

speed limit, lighting situation, peak traffic hour. 

Moore et al. (2011) used standard multinomial logit model and mixed logit model to 

estimate the influence of bicyclist, driver, motor vehicle, geometric, environmental, 

and crash type characteristics on bicycle injury severity for both intersection and non-

intersection location. Non-intersection mixed logit model suggests significant 

variables include: gender, age, the influence of drug, the influence of alcohol, speed, 

dry/wet, driveways, seasonal of a year. 

While researcher study bicycle safety on intersections (points) or segments (line), 

there are other engineers focus on macro level – spatial area unit (area). In 2015, Peng 
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Chen in the University of Washington used Poisson lognormal random effects model 

to analyze the correlation between building environment factor and motor vehicles 

involved bicycle crash frequency. He assembled datasets a rich source of datasets 

include road network, street elements, traffic controls, travel demand, land use, and 

socio-demographics. The significant variables with clear impacts (have either 

negative or positive influence on crash frequency, and can be determined simply by 

95% credible interval sign) in the model include: 

 3-way intersection density  

 4-way intersection density 

 On and off arterial bike lane 

 Bus stop density  

 Speed limits 

 Traffic signal  

 Number of automobile trips 

 Mixing land use 

 Household density 

Wei and Lovegrove, (2013) aggregated data into TAZ zone to build a macro level 

crash predictive tool using negative binomial regression in Okanagan Regional 

District of British Columbia, Canada. They concluded that total lane length in area, 

bus stop number, traffic signals, intersection density, arterial-local street intersection 

percentage were associated with an increase in bicycle-motor vehicle crashes; while it 

has a negative relationship with the driving commuter number in the area.  

2.6  Crowdsourced STRAVA data 

Traditional bicycle data count is typically calculated from manual bicycle count 

during peak hours (Jestico et al., 2016), and it was calculated by multiplying daily or 

seasonal factors. However, traditional manual count data could be problematic. The 

manual count has a significant level of error. Nordback et al. (2013) found that when 

AADB is obtained by manual count more than one week of the hourly manual count, 

the average error is 30%, but the error can be 54% when AADB is only estimated by 

one hour of bicyclist count. Roll in 2013 also found that two-hour manual count 
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produced significant error in Oregon unless there is 24-hour count to determine the 

factors that can produce the least amount of error. Furthermore, traditional count 

method lacks spatial detail and temporal coverage (Ryus et al., 2014; Jestico et al., 

2016). Global Positioning System (GPS) embedded in mobile devices allows people 

to track and map their locations and those data can be used for researchers to do 

analyses on bicycle behavior and route choice (Hood et al., 2011; Broach et al., 2012; 

Casello and Usyukov, 2014; Le Dantec et al., 2015; Jestico et al., 2016). 

Crowdsourced fitness app in mobile device provide a new source of data for 

transportation agencies and increase the temporal and spatial resolution of official 

counts (Jestico et al., 2016). 

STRAVA® as one crowdsourced data using GPS has been used in different bicycle 

projects and researches all over the world: Queensland, Australia used it to quantify 

how a new bicycle pathway changed bicyclist behaviors; Glasgow, Scotland analyze 

a corridor of bicycle activities to provide evidence for new bicycle infrastructure on a 

street; Austin, Texas combined STRAVA®  data with bike share data to explore the 

impact of its program on streets and on bike network; Oregon DOT used it to decide 

where to build bike counters and to adjust existing bike counter location to capture 

bicycle behavior better; Vermont Transportation used this data as their key layer for 

statewide planning designs; University of Victoria and University College London 

use it to model bicycling transportation in their area (Strava, 2016a). 

In 2014 STRAVA® user accumulate 2,700,000,000 km and 75,700,000 riders all over 

the world (Scott, 2015). When it seems like STRAVA® has been taken a large 

proportion of market share, it is very necessary to be careful when using this data. 

When Oregon DOT paid $20,000 dollar a year data, ODOT acknowledged a problem 

that STRAVA’s targeting demographic doesn’t represent all cyclists. It is built for 

cyclists who treat bicycle as a recreation tool but not for bicycle commuters (Hunt, 

2015). This paper warned us it is important to analyze how STRAVA® represent the 

real story before we fully believe it. 

There are some existing papers verifying the representation of STRAVA® data for all 

bicyclists. Jestico et al. (2016) compared STRAVA® data with manual counts data in 
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Victoria, British Columbia in their study. The authors compared those two type of 

data by hourly, AM and PM peak and peak period totals separated by season. They 

use Generalized Linear Model (GLM) to capture the relationship between STRAVA® 

data and traditional manual count data and the results showed that there is a linear 

association between them in which one STRAVA® count can represent 51 riders from 

manual counts. They said that the accuracy of categorical cycling volume can be 

62%, but they also mentioned STRAVA® fitness data are a biased sample of 

ridership; however, it can represent categories of ridership and map spatial variance 

in an urban area with high temporal and spatial resolution.  

Watkins et al., (2016) compared STRAVA® data with another transportation agency 

installing an app called “Cycle Atlanta.” They found that Cycle Atlanta only 

represented 3% of manual counts, and there are also differences between STRAVA® 

and Cycle Atlanta. The representation should be carefully analyzed because of it has a 

bias on gender users, racing or commuting users, age, and income. However, 

STRAVA® data provides an opportunity for agencies to obtain data without creating 

their own app. They concluded that data from STRAVA® should be compared to 

local data sources and weighted appropriately and it can be a supplement resources of 

bicycle count. Selala and Musakwa, (2016) stated in their studies that it is clear that 

STRAVA® data is a useful tool that can provide efficient information when it comes 

to decision making and formulation of policies for Non-Motorized transportation 

program. In their paper, they also mentioned that only 20% of the cycling trips are 

commuting whereas recreational trips account for the left 80% in the city of 

Johannesburg. It is obvious that there are some levels of bias in STRAVA® data, but 

conclusive decision should be made with more information. Speaking about trip time, 

cycling count from STRAVA® has a higher number in the morning, and the number 

decrease as it approaches midday, then start increasing after that, finally decline again 

after 16:00. They said that the number of recorded by STRAVA® are affected by the 

availability of gated communities, income levels, crime level and the provision of 

infrastructure (Selala and Musakwa, 2016). 
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3. Methodology  

This chapter documents the methodology used to build SPFs in this study. Poisson, 

NB, ZIP, ZINB models are applied and compared to find the best-fitted model. Crash 

distribution is utilized to estimate crash severity based on those model estimation. 

Different model assessment and goodness-of-fit measures are used to compare those 

models. 

Different from other existing studies that normally use one model, this study identify 

the best-fitted models for various regressions. Then the model assessment and 

goodness-of-fit tools are used to compare different models in order to choose the best 

model among the various regressions – Poisson, NB, ZIP, and ZINB. Jurisdictions 

can use the established process to identify the suitable model for local bicycle crash 

data to build SFPs. 

3.1  Poisson Model  

Poisson regression is one of the most popular methods for count data. It has been 

applied to a wide range of transportation count data. For instance, Poisson was used 

estimate rate-event count data – accident occurrence, failure in manufacturing or 

processing, and the number of vehicles waiting in the queue at an intersection. This 

model has an assumption that the mean equals to its variance, expressed in equation 

3.1.1. 

𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖]                                                      (3.1.1) 

where 𝑉𝐴𝑅 represents variance; 𝑦𝑖 represents site 𝑖 has 𝑦 time of event happens in a 

period of time; 𝐸 indicates the expected mean. The number of event 𝑦 has a Poisson 

distribution with a condition mean and depends on an individual’s characteristics.  

The expected value of 𝑦 and its relationship with independent variables are written as 

(Long, 1997): 

 

𝜇𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖)                                                        (3.1.2) 
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where 𝜇𝑖 represents the expected value of the response variable indicating the number 

of crash happens at a given site (an intersection or corridor) with characteristics; 𝐸𝑋𝑃 

is the exponential;  𝛽 is the estimated coefficient of independent variable 𝑋𝑖.  

The probability of a site 𝑖 having 𝑦𝑖 accidents in the study period is given by 

(Washington et al., 2011): 

𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜇𝑖)𝜇𝑖

𝑦𝑖

𝑦𝑖!
                                                  (3.1.3) 

where 𝑃(𝑦𝑖) is the probability of a site 𝑖 having 𝑦𝑖 accidents per year; 𝜇𝑖 indicates the 

Poisson parameter for this site, and it equals to the expected number of crash in the 

study period, 𝐸[𝑦𝑖]. The Poisson model is estimated by the specifying the Poisson 

parameter 𝜇𝑖 as a function of explanatory variables such as road geometry, land-use, 

or traffic and bicycle volume.  

Poisson model can be estimated by standard maximum likelihood function or log-

likelihood function. Log-likelihood function is easier to be solved (Long, 1997) and is 

given by: 

𝐿𝐿(𝛽) = ∑ [− exp(𝛽𝑋𝑖) + 𝑦𝑖𝛽𝑋𝑖 − 𝐿𝑛(𝑦𝑖!)]𝑛
𝑖=1                       (3.1.4) 

Where 𝐿𝐿 is log-likelihood;  𝛽 is the estimated coefficient of independent variable 𝑋𝑖; 

𝐿𝑛 indicates taking log value. 

3.2  Negative Binomial Model  

Crash count especially bicycle crash count data is often found to be over-dispersed 

which means the sample variance is larger than sample mean. Poisson regression has 

an assumption that the mean equals to the variance, mentioned in the previous 

section; whereas NB regression can address data with the over-dispersed feature. 

Therefore, NB model has been a popular generation of Poisson regression, especially 

for count data (Long, 1997; Hilbe, 2011; Washington et al., 2011).   The relationship 

between the independent variables and the dependent variable is given by: 

𝜇𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖 + 𝜀𝑖)                                              (3.2.1) 
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where 𝜀 is a random error that is assumed to be uncorrelated with 𝑋. It can be 

interpreted as unobserved variables omitted in model (Long, 1997); 𝐸𝑋𝑃(𝜀𝑖) is a 

Gamma-distributed disturbance term with mean 1 and variance 𝛼. This addition term, 

different from the Poisson regression, allows the variance not equal to the mean and 

can be expressed as: 

𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖][1 + 𝛼𝐸[𝑦𝑖]] = 𝐸[𝑦𝑖] + 𝛼𝐸[𝑦𝑖]
2                 (3.2.2) 

The Poisson model can be interpreted as when 𝛼 equals to 0 then the variance equals 

to mean plus zero. The parameter 𝛼 often infers as the overdispersoin parameter so 

the NB distribution has probability function: 

𝑃(𝑦𝑖|𝑋𝑖) =
Γ(𝑦𝑖+1/α)

𝑦𝑖!Γ(1/α)
(

1/α

1/α+𝜇𝑖
)

1/α

(
𝜇𝑖

1/α+𝜇𝑖
)

𝑦𝑖

                              3.2.3 

where Γ is the gamma distribution function. This formulation has the likelihood 

function: 

𝐿(𝛽) = ∏ 𝑃(𝑦𝑖|𝑋𝑖)𝑖 = ∏
Γ(𝑦𝑖+1/α)

𝑦𝑖!Γ(1/α)
(

1/α

1/α+𝜇𝑖
)

1/α

(
𝜇𝑖

1/α+𝜇𝑖
)

𝑦𝑖

𝑖              (3.2.4) 

where ∏ 𝑖 represent the production of 𝑖 individual likelihoods. 

 

3.3 Zero-inflated Poisson and Negative Binomial  

As mentioned in Literature Review Chapter, scholars have found a phenomenon that 

observations of zero events happened in a period can arise a new condition. In this 

case, zero crash is noticeable at many intersections or road segments and this 

interesting phenomenon is attributable to two primary reasons: 1) failure to observe; 

or 2) unable to ever experience an event. For instance, each state in the U.S. has a 

monetary threshold (i.e., $1000 in Oregon?) that requires users to report accidents to 

state, but the cost of accidents under the threshold will not be reported. This 

underreporting issue can cause “failure to be observed” because of not being reported. 

To solve the zero state issue, Mullahy in 1986 introduced the idea of modeling with 

zero and Lambert (1992) Greene (1994) later extended the zero model to ZIP and 
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ZINB model. This model allows additional zero state where the model can estimate 

the zero count separately from other non-zero observation. 

Zero-inflated model implies that the underlying data-generating process has two 

splitting regimes for two types of zero (Washington et al., 2011). In other words, 

counts are generated by two processes in the zero state model. The splitting process is 

assumed to follow either Probit (normal) or Logit (logistic) cumulative density 

function (Long, 1997).  

ZIP model assumes the events happening 𝑌 = (𝑦1, 𝑦2 … 𝑦𝑛) are independent and the 

model is given by (Washington et al., 2011): 

𝑦𝑖 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝𝑖 + (1 − 𝑝𝑖) exp(−𝑢𝑖) 

𝑦𝑖 = 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  
(1−𝑝𝑖)exp (−𝑢𝑖)𝑢𝑖

𝑦

𝑦!
                              (3.3.1) 

where 𝑝𝑖 is the probability of being in the zero state; 𝑦𝑖 is the number of event in 

study period, and it is bicycle crash number at intersections or segments here; 𝑢𝑖 =

exp (𝛽𝑋𝑖). The variance is given by: 

𝑉𝑎𝑟(𝑦𝑖|𝑋𝑖, 𝑍𝑖) =  𝜇𝑖(1 −  𝑝𝑖)(1 + 𝜇𝑖𝑝𝑖)                                (3.3.2) 

The ZINB model is given by equation: 

                  𝑦𝑖 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝𝑖 + (1 − 𝑝𝑖) (
1/α

1/α + 𝜇𝑖
)

1/α

 

𝑦𝑖 = 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝𝑖) [
Γ(𝑦𝑖+1/α)

𝑦𝑖!Γ(1/α)
(

1/α

1/α+𝜇𝑖
)

1/α

(
𝜇𝑖

1/α+𝜇𝑖
)

𝑦𝑖

]  (3.3.3) 

where Gamma-distributed disturbance term with the mean 1 and the variance 𝛼. The 

variance of ZINB can be written as: 

𝑉𝑎𝑟(𝑦𝑖|𝑋𝑖, 𝑍𝑖) =  𝜇𝑖(1 −  𝑝𝑖)(1 + 𝜇𝑖(𝑝𝑖 + 𝛼))                        (3.3.4) 

 

3.4 Crash Severity Distribution  

Crash severity is another importance component of SPFs. It provides the proportion 

of different severities for sites. For instance, if the proportion of fatal crash at an 
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intersection from last year is 5%, then the estimated fatal crash number by using SPFs 

is 5% multiplying the predicted total crash number at this intersection. HSM included 

the crash severity distribution of motor-vehicle crash but not the bicycle crash 

severity. This study uses crashes that occurred on sampled sites (either intersections 

or corridors) to create the crash severity distribution. 

3.5 Model Assessment 

This section provides several model evaluation tools to assess models within one type 

of regression or models between different types of regressions. Assessment tools can 

be used to compare the difference between regressions to find the best regression, 

such as comparing between Poisson and Negative Binomial models. Goodness-of-fit 

statistics, Vuong statistic, and over-dispersion test are documented in this section. 

3.5.1 Goodness-of-fit Statistics 

McFadden Pseudo R-squared and Likelihood Ratio Test (LRT) are used to compare 

models in this study. Normal R-square is defined as the proportion of the variance in 

dependent variable 𝑦 that can be explained by the 𝑥′𝑠 in a model. The R-square is 

given by: 

𝑅2 =
𝑆𝑆𝑇−𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (𝑦𝑖−𝑦̂𝑖)2𝑁
𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑁
𝑖=1

                                  (3.5.1.1) 

Where SSE is sum of squared errors; SSR is the sum of square; SST is the total sum 

of squares. When SSE=0 and 𝑅2 = 1, then all variances are explained by the model; 

if SSR = 0 and 𝑅2 = 0, then no association is found between independent variables 

and dependent variable (Washington et al., 2011). Therefore, the model is better when 

𝑅2 is closer to 1. 

McFadden Pseudo R-squared, also called 𝜌2, is given by: 

𝜌2 = 1 −
𝐿𝐿(𝛽)

𝐿𝐿(0)
                                                   (3.5.1.2) 

where 𝐿𝐿(𝛽) is the log-likelihood for fitted model with coefficient vector 𝛽; 𝐿𝐿(0) 

represents the log-likelihood of reduced mode with only constant as independent 

variable. The interpretation of McFadden Pseudo R-squared is slightly different from 

R-squared and the relationship can be found in Figure 3-1. It should be mentioned 
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that the McFadden Pseudo R-squared between 0.2 and 0.4 could be interpreted as 

perfect fit, so McFadden Pseudo R-squared is normally found to be low (Domencich 

and McFadden, 1975). 

 

Figure 3-1 the relationship between McFadden Pseudo R-squared and R-squared 

(Domencich and McFadden, 1975) 

LRT is a statistic hypothesis test used to compare two competing models based on the 

Chi-square distribution. It is used to compare the best-fitted model and the restricted 

model (only with constant as the independent variable). The test is given as: 

𝐿𝑅𝑇 =  −2[𝐿𝐿(0) − 𝐿𝐿(𝛽)] 

where 𝐿𝐿(𝛽) is the log-likelihood for fitted models with coefficient vector 𝛽; 𝐿𝐿(0) 

represents the log-likelihood of reduced models with only constant as the independent 

variable. 

3.5.2 Vuong Non-Nested Hypothesis Statistic 

Vuong (1989) proposed a statistic test for non-nested models to verify the 

appropriateness of using a zero-inflated model rather than a traditional model. This 

tool is mainly used to compare the Poisson, ZIP, NB, and ZINB models. The statistic 

calculation is given as: 

𝑚𝑖 = 𝐿𝑁(
𝑓1(𝑦𝑖|𝑥𝑖)

𝑓2(𝑦𝑖|𝑥𝑖)
)                                             (3.5.2.1) 
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Where 𝑓1(𝑦𝑖|𝑥𝑖) represents the estimated probability density function of model 1; 

whereas 𝑓2(𝑦𝑖|𝑥𝑖) represents the estimated probability density function of model 2; 

𝐿𝑁 indicates taking log value. Using the approach, Vuong statistic of model 1 versus 

model 2 is given by (Long, 1997; Washington et al., 2011): 

𝑉 =
√𝑛[(1/𝑛) ∑ 𝑚𝑖

𝑛
𝑖=1 ]

√(1/𝑛) ∑ (𝑚𝑖−𝑚̅)2𝑛
𝑖=1

=
√𝑛(𝑚̅)

𝑆𝑚
                               (3.5.2.2) 

Where 𝑚𝑖 represents the mean and 𝑆𝑚 is the standard deviation; 𝑛 is the number of 

observation. If V number is larger than critical value 1.96 (95% confidence level) 

then the first model is preferred; if the V is less than – 1.96 then the second model is 

favored; if the V is between -1.96 and 1.96, then the results is inconclusive and 

neither of two models is preferred (Washington et al., 2011). 

3.5.3 Over-dispersion Test  

Using Poisson regression or NB is based on whether the data is over-dispersed. A test 

for over-dispersion was introduced by Cameron and Trivedi (1990). This test relies 

on the assumption that under the Poisson model, the difference between the variance 

and the mean (𝑦𝑖 − 𝐸[𝑦𝑖])2 − 𝐸[𝑦𝑖], is zero; where 𝐸[𝑦𝑖] is predicted count. The null 

and alternative hypotheses are used to test the significance of over-dispersion: 

𝐻0 = 𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖] 

𝐻𝐴 = 𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖] + 𝛼𝑔(𝐸[𝑦𝑖])               (3.5.3.1) 

where 𝑔(𝐸[𝑦𝑖]) is a function of predicted count and it is given by 𝐸[𝑦𝑖] or (𝐸[𝑦𝑖])2. 

A t-statistic is used to justify the significance of null and alternative hypotheses. The 

absolute result of t-statistic larger than 1.96 indicate the appropriation of NB model 

and the rejection of Poisson; otherwise the Poisson is preferred (Washington et al., 

2011). 

The useful summary of over-dispersion parameter and Vuong-statistic is provided by 

Washington, Karlaftis and Mannering (2011) and is shown in Figure 3-2. 
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Figure 3-2 Vuong-statistic and Over-dispersion test 

3.6 Other Methods 

In the data collection process, the author found that not all intersections and corridors 

have AADT available, but the Average Daily Traffic (ADT) is available much more 

often than AADT. ADT is not an accurate representation of the traffic count as 

AADT. However, ADT can be converted to AADT by: 

𝐴𝐴𝐷𝑇 = 𝐴𝐷𝑇 × 𝐹𝑑  × 𝐹𝑚 × 𝐹𝑦                                           (3.6.1) 

where 𝐹𝑑 is the daily factor in transportation and is the ratio of the daily traffic 

volume to average daily traffic for the whole week; 𝐹𝑚 is the monthly factor and is 

calculated by the ratio of the average daily traffic in a certain month to the AADT for 

the year; 𝐹𝑦 is the yearly factor is calculated by the ratio of the average daily traffic in 

a study year to the average daily traffic for the data year. 

Another critical component of this study is to compare the crowdsourced STRAVA® 

data with actual AADB recorded by the automatic count stations or loops. The 

STRAVA® is compared with AADB from an existing count station (i.e., Eugene or 

Portland?) to get the representativeness proportion. More details can be found in 

section Data Preparation and Analyses. 
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4. Data Preparation and Analyses  

This chapter discusses the data collection process and data analyses results. This 

chapter presents the selection of sample sites, discussion of variables, 

representativeness and bias in data collected, data visualization and analyses. Several 

assumptions are made for the data collection process: 

 Road characteristics, geometric data, and land-use data keep constant in study 

period – 6 years from 2009 to 2014; 

 The change of AADT and AADB in study period is relatively small; 

 Data from sources are reasonably accurate. 

Each data has its features and bias and will be discussed in this section.  

4.1  Sample Sites Selection  

Samples were selected from Portland and Eugene-Springfield metropolitans in 

Oregon, because those two cities 1) have enough bicycle volume to justify the 

statistical model, and 2) represent different types of cities (Portland represents an 

economic center of Oregon and Eugene represents a medium size city with 

University).  

The statistically proved sample sites selection method is a random sampling process; 

however, issues arise when the author applied the random sampling process: 1) there 

is no intersection GIS ((Geographic Information System) files or other types of files 

available to conduct random sampling approach in Oregon; 2) the spatial correlation 

issue arises in downtowns with higher density of intersections and road segments in 

Portland and Eugene.  

In order to solve those two problems, a “random and systematic” sample selection 

approach is proposed. No intersection GIS files available motivate engineers to use 

segments as an alternative to select intersections: the random sampling process is 

conducted on segments (available in STRAVA® GIS file), and the closest intersection 

is selected as the sample. Furthermore, areas with high density of intersections and 

segments have higher probability to be selected, which can cause the spatial 

correlation issue (mentioned in Literature Review). Therefore, a systematic sampling 
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method is used to mitigate the spatial correlation issue: before an intersection is 

selected, Portland and Eugene metropolitans were divided into hexagons with a radius 

of 0.5 miles using ArcGIS®, shown in Figure 4-1. Intersections located near to the 

selected intersection were excluded from the sampling population. In other words, 

only one intersection will be chosen in one hexagon to mitigate the spatial correlation 

issue.   

 

Figure 4-1 Systematic and random sampling process in Portland using ArcGIS®. 

Different from selecting an intersection, a pure random sampling process is used to 

select corridor samples. Once a segment was selected, the nearest ADT or AADT 

point is selected, then the corridor on this ADT or AADT point was selected as a 

sample. The samples are shown in Figure 4-2 and Figure 4-3. 

  

 

One Intersection in one hexagon  
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Figure 4-2 Corridor samples selected in Portland, Oregon. 

 

Figure 4-3 Corridor samples selected in Eugene-Springfield, Oregon. 
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It should be noted that because of the lack of ADT or AADT on lower functional 

classification streets, the random sample was not chosen when traffic volume is not 

available. Thus the corridor samples selected have a potential of bias of over-

representing higher functional classification streets, such as major arterials or major 

collectors. Intersection samples have a similar issue. Additionally, intersection closed 

to or under the influence from freeway ramp are excluded. 

4.2 Independent and Dependent Variables 

The section documents the process of collecting and converting each variable in this 

study including traffic volume, bicycle volume, geometric data, land-use data, and 

other road characteristics.  

4.2.1 AADT 

AADT (or ADT) for intersection and corridor, as one of the most critical components 

of SPFs, is collected from ODOT (Oregon Department of Transportation, 2017), City 

of Portland (Portland Bureau of Transportation, 2016), and Eugene-Springfield MPO 

(Central Lane Metropolitan Planning Organization, 2017).  Most AADT data are 

from ODOT as GIS file; whereas other data sources only with ADT available are then 

converted into AADT using Equation 3.6.1. All ADT or AADT were converted into 

2014 using weekly and monthly or yearly factor from ODOT Traffic Volume Table 

2015 (Oregon Department of Transportation, 2016). 2014 is used because STRAVA® 

data is only available for this year. 

AADT for intersections contains two parts: major and minor road. A major road is 

defined having a higher functional classification or having higher traffic volume over 

the minor road. For example, in Figure 4-4, the intersection of Martin Luther King 

Rd. and NE Killingsworth St. is selected as a sample, and they both have functional 

classifications of major arterial. Martin Luther King Rd has AADT of 21800 versus 

NE Killingsworth St. has 14000. Therefore Martin Luther King Rd are collected as 

the major road and the other is the minor road at this intersection. If the AADT site is 

too far away from the selected intersection or a major arterial existing between an 

intersection and an AADT site, then engineers found another closer AADT site unless 

the arterial in between is believed to have negligible influence on the AADT.  
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Figure 4-4 Collecting AADTs for an intersection on both major and minor roads. 

The way to Collect AADT or ADT for a corridor is different. All available AADT 

sites on selected corridors are collected, and the average AADT is calculated as the 

AADT for the whole corridor. Shown in figure…, for instance, the Martin Luther 

King Rd is selected as a corridor sample, then AADT site 1 and AADT site 2 are both 

collected and average value of them is the AADT for the whole Martin Luther King 

Rd corridor.  

Major Road AADT 21800 veh/day 

Minor Road AADT 14000 veh/day 
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Figure 4-5 All available AADT on a corridor are used to calculated average AADT. 

4.2.2 AADB: STRAVA® Data  

STRAVA®  is a mobile application that can track athletic activities including cycling 

and running through Global Positing System (STRAVA, 2017). STRAVA® app can 

record the detailed information, such as the speed, route, location and time, while 

athletes are doing exercises with the app active on their mobile devices. Bike count 

data is not widely available through Oregon, also the majority of cities in the U.S., so 

an efficient and affordable way to collect bike data is necessary for this study. Since 

STRAVA® has social network features by which users can communicate and involve 

with other users and groups, it attracts lots of people to use this mobile application. 

Thus it creates an opportunity for researchers to use STRAVA® bicycle count to 

represent the bike volume in building SPFs. 

STRAVA® Metro is created through the cooperation with various Department of 

Transportation and STRAVA®. This tool aggregates all the cycling records from 

STRAVA® members into GIS files. ODOT purchased STRAVA® Metro product of 

Oregon in 2014 for research and project purposes. In this data, locations and time 

frames are aggregated into the street network and compiled to shapefiles that can be 

Corridor sample  
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used in Geographic Information System.  The GIS map provides the information from 

cycling records for each segment, including location, time, month, year, week or 

weekend, gender, commuter or cyclist.  Figure 4-6 demonstrates the bike count on 

each link in Oregon. 

 

Similar to collect AADT, STRAVA® data on both major road and minor road are 

collected for intersections. One advantage of this type of crowdsourced data is that 

each segment has bicycle volume available. Therefore, the bicycle volume on each 

leg of intersection is known. For instance, shown in Figure 4-7, when the intersection 

of 5th St. and Alder St. in Portland Downtown is selected, then the bicycle volume on 

all four legs of the intersection can be obtained through STRAVA® data in ArcGIS. 

When bicycle volume is collected for all legs at an intersection, each bicyclist is 

actually counted twice, so the correct bicycle volume is using the total volume of all 

legs divided by two.   

Figure 4-6 STRAVA® cyclist count in Oregon (left) and in Portland Metropolitan 

area (right) (Strava, 2016b) 
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Figure 4-7 Example of collecting bicycle Volume for an intersection in Portland. 

One issue of STRAVA® data: more than one link are representing the same line at 

some segments, especially when the road is wide. For instance, Figure 4-8 shows that 

there are three count links (in red) on a bridge in Portland Downtown area, and each 

of them has bike count 3473 bike trip/year, 5264 bike trip/year, and 2983 bike 

trip/year from top to bottom, respectively. This issue results from the bike count 

assignment process. STRAVA® built buffers around GPS signal to assign bike counts 

to segments which causes the double counting problem when two parallel bicycle 

paths are close to each other (Monsere et al., 2017). Thus, to address the problem, the 

author manually collect and check each bicycle volume through STRAVA® GIS 

product, instead of building buffers to collect in GIS which may cause double 

counting issue. 
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Figure 4-8 Multiple bike links on the same road in Portland Downtown area in GIS. 

4.2.3 Geometric, Land-use, and Road Characteristic Data 

Geometric, land-use, and road characteristics data, such as lane number and posted 

speed, are collected from Google Earth street view, ODOT TransGIS®, City of 

Portland and Eugene-Springfield MPO. Those data collection method and sources for 

intersection and corridor are summarized in Table 4-1 and Table 4-2. 
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Table 4-1 Geometric and Road Characteristic Data for intersection 

Data Element for intersection  Collection Method or Source 

Volume 
Traffic volume (AADT, or ADT, factored 2014) 

ODOT TransGIS Databases; City of Portland 

ADT; Eugene MPO;  

STRAVA data 2014 (STRAVA) STRAVA Database 

Functional Class 
Major road Functional class 

ODOT TransGIS 
Minor road Functional class 

Intersection 

configuration for 
Major and Minor roads 

One/two way on Major 

Google Earth 

 

One/two way on Minor 

Presence of bicycle lanes on Major 

Presence of bicycle lanes on Minor 

Presence of left turn lanes on minor road 

Presence of right turn lanes on major road 

Number of total traffic lanes on Major 

Number of total traffic lanes on Minor 

Number of total traffic lanes (including left and right turn 

lanes) on all approaches 

Presence of on-street parking 

Presence of median 

Posted speed limit 
Major 

ODOT TransGIS/Google Earth 
Minor 

Type of traffic Control Signal, two-way/four-way stop Google Earth 

Number of transit 

stops within 5000 feet 
Number of transit stops within 500 feet Google Transit 

Land use 

3-Leg Intersection Density (per square mile) 
Environmental Protection Agency (EPA)’s 

Smart Location Database (D3bmm3) 

4-Leg Intersection Density (per square mile) 
Environmental Protection Agency (EPA)’s 

Smart Location Database (D3bmm4) 

Total Road network density (per square mile) 
Environmental Protection Agency (EPA)’s 

Smart Location Database (D3a) 

Population Density (per square mile) 
Environmental Protection Agency (EPA)’s 
Smart Location Database (D1b) 

 

 

 

 

 

 

 

 

 

 

Table 4-2 Geometric and Road Characteristic Data for corridor. 

Data Element for 

intersection 
 Collection method and sources  
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 Length (mile) 

Google Earth 

 

Geometric 

Functional classification 

One/two Way  

Presence of on-street Bicycle Lane 

Number of Total Traffic Lanes 

Presence of Median 

Presence of Two -way left turn lane 

Presence of On-street Parking 

Presence of Curve 

Percentage of Curve of segment  

speed limit 
ODOT TransGIS Databases; City of 

Portland ADT; Eugene MPO; 

intersection number Google Earth 

Operation 

bus stop number 
ODOT TransGIS 

 number of bus route on segment  

AADT on segment 
ODOT TransGIS Databases; City of 

Portland ADT; Eugene MPO; 

Average STRAVA on segment (STRAVA) STRAVA Database 

Number of intersection with Signal Control  Google Earth 

Land use 

3-Leg Intersection Density (per square mile) 

Environmental Protection Agency 
(EPA)’s Smart Location Database 

 

4-Leg Intersection Density (per square mile) 

Total Road Network Density (per square mile) 

Population Density (per square mile) 

household density  

 

 

4.3 Representativeness and Bias  

Every research based on samples must answer this question: how the samples 

represent the total population? This study provides the answer in this section. 

Representativeness is analyzed based on sample selection process and variables 

collected. Crowdsourced data -- STRAVA® is specifically analyzed regarding users 

and comparison with automatic count stations and loops. Some unobserved issues 

from crash data are also provided.    
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4.3.1 Representativeness of Samples 

Even though authors combined random sampling and systematic sampling 

approaches to avoid spatial correlation issue and to be as unbiased as possible, there 

are still some issues arising from the sampling process based on AADT availability. 

As aforementioned in the Sample Sites Selection section, the AADT availability 

influences the sampling process. Sample sites are generated randomly, but then would 

not be chosen if there is no traffic volume available at the intersection or on the 

corridor. In other words, the sample site location is somewhat correlating to AADT or 

ADT locations from data resources. Since most traffic volume sites are located on 

arterials and collectors, the samples represent more on roads with higher functional 

classifications. Figure 4-9 shows the percentage of functional classification for 

intersection and corridor samples. On corridors and major roads at intersections, the 

majority of samples are on arterials, and only 2-4% are local roads. Thus, it is 

reasonable that fewer minor roads than major roads are collected in data set.  
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Figure 4-9 Functional classification of intersection legs and corridors 

This functional classification distribution may indicate the results from SPFs of this 

study highly represent arterials and collectors. Since the data samples of local road 

may be limited, the predictive ability of SPFs on the local road may not be as accurate 

as that on the major roads. However, the overall predictive ability of SPFs may not be 

influenced because the equations are also built on traffic volume and other factors. 

Furthermore, there are more accidents and bicycle volume on the higher class road, so 

SPFs are still targeting on the majority of users on roads. 

4.3.2 Bias in STRAVA® 

As mentioned previously, STRAVA® is a mobile application that can track athletic 

activities including cycling and running through Global Positing System (STRAVA, 

2017). Since STRAVA® has social network features by which users can communicate 

and involve with other users and groups, it attracts lots of people to use this mobile 

application, and ODOT purchased 2014 STRAVA® Metro product of Oregon.  
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It is because only 2014 STRAVA® is available, the first bias appears because the 

study period is six years from 2009 to 2014. Bicycle crashes from 2009 to 2014 were 

collected for this study, and that assumes the STRAVA® would not change during the 

six years, but zero change is impossible in reality. Since the bicycle trip has been 

increasing recently, the STRAVA® from 2009 to 2014, if existing, have a high 

possibility to have an increasing trend. Therefore, only use 2014 data can result in 

over-represent bicycle volume of average bicycle volume in those six years. 

The second bias arises as using STRAVA® to represent all bicyclist population 

because the majority of STRAVA® users are biking for recreation than commuting. In 

other words, this type of data under-represent bicycle commuter population. 

However, this bias exists when bicyclists are divided into two groups: recreational 

bicyclists and bike commuters. Recreational bicyclists have higher biking skill and 

choose different route comparing to commuters.  

The STRAVA® bike count can roughly represent the bike volume for an percentage. 

STRAVA® has differentiated the commuting count and recreational count in the data 

set. To check what is the percentage of STRAVA® data is commuting count, a 

describe statistic test was done and showed in Figure 4-10 and Figure 4-11. The 

figures show that on average 30-40% of STRAVA® strips were done for commuting 

purpose in Portland and Eugene in 2014, but with a range of variance. 
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Figure 4-10 Commuters in total STRAVA count in Portland in 2014. 
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Figure 4-11 Commuters in total STRAVA count in Eugene-Springfield in 2014 
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Tow figures also show that the average commuter percentage in Portland (40%) is 

slightly different from that in Eugene-Springfield (33%). This indicates the difference 

in popularity of using STRAVA® and trip purpose in different cities. Even though 

STRAVA® provided commuting count in row data, the author investigated that this 

percentage should be utilized with caution, since STRAVA® does not mention how 

they differentiate commuters from other bicyclists in data user manual. It may form 

two approach: 1) embedded button in STRAVA® App.; 2) STRAVA® has an 

algorithm to calculate user types by different speed. However, there are concerns 

regarding both of the potentials. Shown in Figure 4-12, a button is existing for users 

to switch the trip is for the recreational or the commuting purpose. When it seems 

reasonable to differentiate user type from this button, there is no evidence support that 

a user knows or remember switching to “commute” option when they ride bikes for 

commuting.  

 

Figure 4-12 STRAVA App. Smartphone interface. 

The other possible method to separate user types – by using speed can raise an issue: 

it is difficult to use a speed threshold to decide whether a trip is for recreation or 

commuting. Cyclists with higher biking skill can ride with high speed but other 

ordinary users can also bike for recreation with lower speed.  
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Thus, when STRAVA® is used represent all types of users, it represents more 

recreational trips than commuting trips. The percentage of representativeness is on 

average from 30-40% but with variance and unobserved uncertainties. 

4.3.3 Comparing STRAVA® with Automatic Count Station  

Another critical assumption of this study is the STRAVA® can partially represent the 

total bicyclists. In order to justify this assumption, STRAVA® data is comparing with 

automatic bicycle counter on Hawthorne Bridge in Portland. The Hawthorne Bridge 

bicycle counter is a 24-hour automatic counter record bicycle volume since 2012, 

shown in Figure 4-13. 

 

Figure 4-13 Hawthorne Bridge bicycle counter (Haberman, 2017) 

To comprehensively understand the representativeness of STRAVA® of the different 

time in a year, bicycle volume of each month retrieved from STRAVA® are compared 

with month volume from Hawthorne Bridge. The result, demonstrated in Figure 4-14, 

shows that STRAVA® can generally represent 1.4% of the total bicyclists in on this 

bridge and also with similar percentage of each month. Even though the bridge may 

not represent all locations’ situation in Oregon, the stable percentage ratio between 

STRAVA® and auto-counter in each month justifies that STRAVA® can represent a 

certain proportion of the total bicyclists in Portland. 
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Figure 4-14 STRAVA count and Auto-counter volume 

 

4.3.4 Under-Reporting Issue in Bicycle Crash Data 

The reported bicycle crash data from Oregon is used in this study.  We understood 

that this dataset is limited in certain aspects (i.e., underreporting issue). Under-

reporting issue reduces the sample sizes which could affect the predictive power of 

the established SPFs. To understand the under-reporting issue in crash data in 

Oregon, the author has interviewed the staff members in Crash Analysis and 

Reporting Unit within  ODOT. The important factors learned from the interview that 

may influence the under-report issue are summarized below (more details can be 

found in Appendix A): 

 Oregon is a self-reporting state which means drivers must report; however, 

police are not required to investigate. This indicates it is possible that not all 

users would report the accident if the damage is low.  
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 Users must report only when Property Damage Only (PDO) accident with 

more than $1,500 damage to any vehicle, or there is an injury or death from 

the accident. Bicycle PDO crash often has damage lower than $1,500, which 

means a large portion  of PDO accident have not been reported to DMV.  

 Bicyclists, pedestrians, and owners of parked vehicles are not required to 

report, but information can be obtained from drivers involved in those 

accidents. This can also increase the under-reported PDO crashes for 

bicyclists.  

 Bicycle/vehicle crashes require no medical transport or emergency response 

may cause under-reporting issue as well.   

Thus, there could be a large part of PDO bicycle accidents which are not reported to 

DMV.  This could cause the crash severity distribution skewed, especially lacking 

PDO crashes. However, the injury and fatal crash data would be still accurate. 

 

4.4  Data Analyses 

This section visualizes the independent and dependent variables at intersections and 

on corridors. Over-dispersion issue is discussed which could influence the decision to 

choose the proper statistical models for SPFs. Then correlation between variables are 

also investigated. 

4.4.1 Data Visualization and distribution  

Visualization of independent and dependent variables can help engineers: 1) 

understanding the features of data by descriptive statistics (shape, mean, range, 

variance, etc.); 2) choosing proper models to build SPFs. Instead of analyzing every 

single variable, the section focus on variables that are found significant in the 

modeling process including crash frequency, bicycle volume, traffic volume, site 

characteristics of selected intersections and corridors. 
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Figure 4-15 Intersection crash frequency histogram. 

 Figure 4-15 shows the crash frequency of intersection samples as a histogram 

skewed to the right, an average of 0.77, the standard deviation of 1.21, and the 

variance of 1.46.  Figure 4-16, as follow, demonstrates the bicycle volume and traffic 

volume of both major and minor road of intersections. Total intersection bicycle 

volume and traffic volume are also demonstrated. The author found that the more 

crashes are likely to happen when there is a large bicycle volume on minor road. 

Larger bicycle volume on the minor road indicates more conflicts at an intersection 

when bicycles on the minor road are crossing or turning. Therefore, to capture this 

factor, the author created two new variables: 1) the ratio of minor bicycle volume to 

major road AADT; 2) the ratio of the minor road bicycle volume to major road 

bicycle volume. The histograms of those two factors are also shown in Figure 4-16. 
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Figure 4-16 Bicycle and traffic volume at intersections as histograms. 

 

Figure 4-17 summarizes other dependent variables that are found to be significant. 

Not all geometric, land-use, and road characteristic variables that collected are 

converted to histograms. For binary variables, 0 represents that there is no presence of 

the feature, whereas 1 represents the presence of the feature at intersections.  
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Figure 4-17 Histograms of partial intersection characteristic variables. 

Figure 4-18 shows the histogram of crash frequency and crash number per mile on 

corridors. Even though the dependent variable is crash frequency, crash frequency per 

mile histogram is shown here to understand the crash rate. Crash frequency has the 

mean of 8.66, the standard deviation of 7.89 and variance of 62.31. 



60 

 

  

 
Figure 4-18 Histogram of corridor crash frequency. 

 

Figure 4-19 illustrates the histogram of average bicycle and traffic volume on 

corridor, and Figure 4-20 shows the histogram of road characteristic variables that are 

significant in models.  
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Figure 4-19 Histogram of bicycle and traffic volume on corridor samples. 
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Figure 4-20 Histograms of partial corridor characteristic variables. 

 

 

4.4.2 Dispersion of Dependent Variables 

Researchers care about the dispersion type of dependent variable because of its 

influence on model choices. There are three different types of dispersion: equal-

dispersion, under-dispersion and over-dispersion. Over-dispersion, meaning the mean 

equals to the variance, is the most common feature in crash count data. Over-

dispersion can be investigated from three steps:  

 Observing the data distribution; 
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 Calculating the mean and variance; 

 Running an over-dispersion test.  

Observing the data distribution, using histogram to plot crash count data, is the first 

step to identify  the existence of over-dispersion. When a histogram is skewed to the 

right, or when there are a larger amount of zero counts, it is likely to be over-

dispersed. Figure 4-15 and Figure 4-18 capture the shape of the crash count for 

intersections and corridors, respectively. A right-skewed shape is shown in the 

intersection histogram and there are many zero counts, which indicates that data may 

be over-dispersed. However, the range of crash count (0 to 10) is not large, which 

indicates the variance may not be significantly greater than the mean. For a histogram 

of corridor crash count, it shows the right-skewed shape and with a broad range of 

count (0 to 35), so the corridor data has high possibility to have over-dispersion 

feature. 

Comparing the mean and variance is the second step to confirm the over-dispersion. 

In intersection crash data, shown in Figure 4-15, has a  mean of 0.77 and variance of 

1.46. The variance is larger than mean but not significantly. Therefore, the data may 

not be very over-dispersed. An over-dispersion test is needed to confirm existing of 

over-dispersion. Corridor data, shown in Figure 4-18, has the mean of 8.66 and 

variance of 62.31. Variance is eight times larger than mean which indicates the over-

dispersion is evident. Over-dispersion test results are shown in chapter 5 to confirm 

the speculation.  

4.4.3 Correlation between Variables 

Correlation in statistic indicates whether and how strong one variable relates to 

another variable (Creative Research Systems, 2016). If one variable has a high 

correlation with another, this often means the two variables have either positive or 

negative relationships and only one of them should be included in the model. 

Therefore, it is critical to test the variables’ correlations. Correlation matrix for 

intersection and corridor variables are created in MATLAB and are shown as follow. 
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Figure 4-21 Intersection variable correlation matrix 

 

Correlation between significant variables for intersection data are demonstrated in 

Figure 4-21 and the high correlation is highlighted (using 0.6 as the threshold). 

STRAVA® data has 0.65 correlation with the variable “minor road STRAVA/major 

road AADT.” The author expected the correlation between those two variables 

because the later variable is created from the former. Total traffic lanes number has a 

positive correlation with AADT, which makes sense because the more lanes a road 

have, the more traffics will appear. However, since the purpose of this study is 
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building SPFs to predict crash frequency, the two correlations are acceptable. 

Generally speaking, the correlation matrix shows the variables included in the model 

are reasonable.  

 

Figure 4-22 Correlation matrix of corridor variables. 

Similar with correlations in intersection variables, the correlation of corridor variables 

justifies those significant variables are reasonable. AADT has 0.51 correlation with 

corridor length. The possible reason is that roads with higher function classification  

usually have larger AADT, and engineers tend to keep those major road 

characteristics consistent. Again, the purpose of this study is to create SPFs to predict 

crash frequency, so the correlations are acceptable. 
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5. Results and Discussion 

The goal of this chapter is to present the results of this study and establish a 

repeatable process of building bicycle SPFs for transportation agencies. Specifically, 

this chapter discusses the results from modeling process including crash frequency 

predictive model for microscopic scale (intersections) and macroscopic scale 

(corridors).  Crash severity distribution is created based on crashes happened at 

sample sites and then used to combine with predictive crash frequency results to 

estimate crash severity. The chapter then will summarize the established SPFs and the 

process of building bicycle SPFs.  

5.1  Microscopic Model: Intersection Crash Frequency 

Poisson, NB, ZIP and ZINB models for intersections are all created and run in 

NLOGIT®. Over-dispersion parameter and Vuong statistic are used to determine the 

best model for the data set. The justification of best-fitted significant variables is 

through the Likelihood Ratio Test (LRT) and the model fitness is measured by the 

McFadden Pseudo R-squared.  The sign of coefficients and partial effects are used to 

discuss the impacts of explanatory variables on response variable – crash frequency.  

Previous results (Nordback et al., 2014) show that the increase in bicycle volume 

(estimated AADB) is associated with the increase in bicycle crashes but decrease 

bicycle crash rate. To justify this phenomenon, the study did similar analyses shown 

in Figure 5-1 and Figure 5-2. As shown in Figure 5-1, when the bicycle volume 

increases, so does the intersection bicycle crash number; however, the crash rate tells 

a different story. As shown in Figure 5-2, Poisson regressions were fitted for different 

levels of AADT and different STRAVA® counts. Indeed, the results show that the 

increase of STRAVA® bicycle count can decrease the crash rate. This phenomenon is 

called “Safety in Number.” The reasonable explanations of this phenomenon are that 

the increasing bicycle volume may lead to safer behavior of motorists and bicyclists, 

or more bicyclist riding on safer facilities (Nordback et al., 2014).   

However, our results show the impact of AADT change on crash rate is different 

from Nordback’s result. In the “High Risk” zone (STRAVA® <2000), the increase of 
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AADT can increase bicycle crash rate; in the “Moderate Risk” and “Low Risk” zones 

(STRAVA® >2000), the growth of AADT shows an opposite impact. A possible 

explanation is that when AADT is very high, the average traffic speed is low (due to 

congestion), and drivers can stop vehicles easier to avoid accidents.  

 

Figure 5-1 The relation between intersection bicycle crash count and STRAVA 

bicycle count 
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Figure 5-2 Poisson regression: more bicycle volume can increase bicycle crashes but 

decrease crash rate. 
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Table 5-1 Intersection Crash Frequency Poisson Model Results. 

Poisson Regression 

Dependent variable         Crash Frequency 2009-2014  N=209 

Log likelihood function      -206.51824 

Restricted log likelihood    -268.02298 
Chi squared     123.00948    Significant Level   0.00000 

McFadden Pseudo R-squared      .2294756 

Variables Coefficient z 

Prob. 

|z|>Z* 

95% Confidence 

Interval 

Partial 

Effect 

Constant -7.17456*** 

-

5.54 0.0000 -9.71095 -4.63818 - 

Total STRAVA (100) .02351*** 7.87 0.0000 0.01765 0.02937 0.01811 

Total AADT(K) .01269* 1.65 0.0999 -0.00243 0.02781 0.00978 

Network Density .02792*** 3.01 0.0026 0.00972 0.04611 0.0215 

Minor Directions(1:two-way; 0:one-way) 1.59389*** 2.88 0.0039 0.51048 2.67729 0.67368 

Minor Bike Lane(1: bike lane; 0:no Bike 

Lane) .56335*** 3.15 0.0016 0.21283 0.91388 0.4721 

Minor STRAVA/Major AADT -.01559*** -3.2 0.0014 -0.02513 -0.00605 -0.01201 

Total Lanes .13755** 2.42 0.0156 0.02604 0.24906 0.10596 

Signal(1:signal; 0:non-signal)  .50249** 1.96 0.0496 0.00092 1.00406 0.33634 

Leg Number .68367*** 2.72 0.0065 0.19118 1.17616 0.52665 

Partial effect for Binary variable is E[y| x, d=1] - E[y| x, d=0] 

Note: ***, **, * represent Significance at 1%, 5%, 10% level. 

 

When other variables are added to the model, the scenario becomes complicated. A 2-

D figure cannot capture the relationships anymore. Thus, Poisson model results for 

intersection crash frequency are summarized in Table 5-1. LRT with a significant 

level of <0.0000 indicates there is significant difference between this fitted model and 

the model only with constant. McFadden Pseudo R-squared of 0.229 indicates the 

model is greatly fitted, according to Domencich and McFadden (1975). Those two 

tests, in other words, suggest the model performs very well regarding the explanation 

of the crash data set.  

Variable “Total STRAVA (100)” with a partial effect of 0.01811 and a positive 

coefficient indicates an increase in every 100 STRAVA count will increase the 

intersection crash count by 0.01811 on average. Similarly, variable “Total AADT 

(K)” with a partial effect of 0.00978 means an increase in every 1000 AADT will 

result in the intersection crash count increasing by 0.00978 on average. Nordback, 

Marshall and Janson (2014) found  similar results that the increase of AADT and 

AADB can cause crash count to increase, but crash rate decreases. It should be noted 

that even though the impact seems small, such as 0.01811 crashes for every 100 
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STRAVA® count change, but the difference of STRAVA® count can be several 

thousand in some intersections, and same as AADT. 

The author found an interesting phenomenon while collecting data: there is a trend 

that fewer bicycle crashes occurred when bicycle STRAVA® volume on the minor 

road increase. In order to justify this finding, the author defined a new variable for the 

model by using STRAVA® on the minor street divided by traffic volume on the major 

road and it is called “Minor STRAVA/Major AADT.” Indeed, the model results 

justified the phenomenon that “Minor STRAVA/Major AADT” has a negative impact 

on crash frequency at intersections. With every unit increase in the ratio, the crash 

frequency decreases by 0.01201. This result makes logical sense, because the more 

bicycle volume on the minor roads, drivers on the major roads could be increasingly 

aware of the crossing bicyclists from the minor roads. In other words, drivers expect 

more bicycles from the minor roads while driving and they would operate carefully to 

avoid collision with bicyclists. To the author’s best knowledge, this finding is the first 

time to be noticed and can be a new guide for engineering design and policy making, 

which will be discussed in chapter 6.  

“Network Density” with a partial effect of 0.0215 suggests  that for every 1 

mile/square mile increasing in Network Density, the crash frequency in intersections 

would increase by 0.0215 on average. That may result from higher  traffic and bicycle 

volume when the road density increases.  

Results from variable “Minor Directions” represent that the two-way direction can 

cause 0.67368 more crashes than the one-way direction on a minor road. One possible 

explanation is that there are more conflicts when there are more directions of traffic, 

especially bicycles conflicting with left turning vehicles, shown in Figure 5-3. 

According to FHWA, this type of accident results in 5.9% of the total crash and 24% 

of severe injuries and fatalities. Other studies also discovered the turning movement 

could increase the conflicts between bicycle and motor vehicle. According to 

Hurwitz, et al. (2015), the right-hook crashes represented over 500 of reported 

crashes related to bicycles from 2007 to 2011 in Oregon. Warner et al. (2017) states 

that one of the more prevalent bicycle-motor vehicle crash type at intersections is the 
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right-hook crash which is  caused by the conflicts between right turning vehicle and 

through bicyclists. Warner et al. (2017) analyzed the effectiveness of engineering 

treatments, such as signage and pavement marking, and found that those engineering 

treatments have positive effects  on improving safety. The decrease of conflicts 

between bicycles and vehicles can improve bicycle safety. Therefore, this thesis 

recommended low-cost engineering treatments to mitigate the conflicts in chapter 6.   

 

Figure 5-3 Bicyclists conflicts with upcoming left turning traffic (Federal Highway 

Administration, 2003). 

Another interesting finding is from variable “Minor Road Presence of Bike Lane”. 

The result indicates that the presence of bike lane on the minor road can increase the 

crash number at intersections by 0.4721. This finding violates the common 

understanding that bicycle lane is safer on bike lanes. However, the bike lane is 

designed for protecting the bicyclists from the high volume roads. In other words, 

bike lane normally appears on the major arterials or collectors with a higher traffic 

volume. Furthermore, the presence of bike lanes can attract more bicyclists to that 

road which will increase the bicycle volume and  crashes. Therefore, it is reasonable 

to observe more crashes on roads with bicycle lanes. Indeed, other researchers also 

found the association between bicycle crash and bike lane (Wei and Lovegrove, 2013; 

Dolatsara, 2014). This finding can be used to guide engineering design and policy 

making, and more details can be found in chapter 6. 

Total number of lanes, the presence of traffic signal, and more leg number at 

intersections all have positive impacts on bicycle crash frequency. The possible 

reason is that they are all associated with more conflicts between vehicles and 
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bicycles. Total number of lanes and the presence of signal can be interpreted together 

for engineers because the road with more lanes typically has a higher functional 

classification and more signal traffic controls. For leg number, this result is 

reasonable as well. Intersection with three legs has fewer conflicts between bicycles 

and traffic because bicycles on minor roads would not do crossing movements, shown 

in Figure 5-4.  

 

Figure 5-4 Bicycle movement are three-leg intersection. 

The next step is to compare the Poisson model with NB mode by using the over-

dispersion parameter to identify which one is preferred. Table 5-2 shows the results of 

NB model including over-dispersion test, LRT, and McFadden Pseudo R-squared. 

Dispersion parameter is not significant which indicates the over-dispersion is not 

significant in the data, and NB is rejected in favor of Poisson model. This result 

justifies the finding in data analyses that crash data from intersections may not be 

over-dispersed though the shape seems over-dispersed. Comparing LRT and 

McFadden Pseudo R-squared of NB and that of Poisson model in Table 5-1, it 

suggests that the Poisson model fits and predicts better than NB model. Thus, the 

Poisson is chosen between NB model and Poisson model. 
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Table 5-2, NB results of intersection crash frequency 

Negative Binomial Regression 

Dependent variable    Crash Frequency 2009-2014    N = 209 

Log likelihood function      -213.78906 

Restricted log likelihood    -216.79074 
Chi squared     6.00337      Significance level    .01428 

McFadden Pseudo R-squared      .0138460 

Variable Coefficient z Prob.|z|>Z* 95% Confidence Interval 

Constant -2.78070*** -5.93 0.000 -3.69944 -1.86196 

Total STRAVA (100) .02624*** 9.3 0.000 0.02071 0.03177 

Minor Bike Lane .40183* 1.78 0.0751 -0.04063 0.84429 

Minor STRAVA/Major AADT -.01556** -2.42 0.0154 -0.02813 -0.00298 

Total Lanes .19068*** 2.81 0.005 0.05749 0.32387 

Signal(1:signal; 0:non-signal)  .86770*** 2.78 0.0055 0.25497 1.48042 

Minor Parking(1: parking; 0:no parking) .39993* 1.71 0.0868 -0.05781 0.85768 

Dispersion parameter for count data model 

Alpha a 0.21551 1.45 0.1468 -0.07564 0.50666 

Partial effect for Binary variable is E[y| x, d=1] - E[y| x, d=0] 

Note: ***, **, * represent Significance at 1%, 5%, 10% level. 

 

Since Poisson model is better than NB model in this case, then Vuong-statistic is used 

to compare between Poisson and ZIP models. Vuong-statistic result shows the 

Vuong-statistic of -0.5149 which indicates the ZIP model is rejected in favor of 

Poisson model. The result table is not reported here because the model is rejected, but 

reported in Appendix B. Therefore, Poisson model is chosen reasonably to establish 

the SPFs for intersections.  

 

5.2  Macroscopic Model: Corridor Crash Frequency 

Similar to the development of the intersection crash frequency model, The Poisson, 

ZIP, NB and ZINB models are compared to identify which model is suitable for 

corridor crash frequency model. Poisson model and NB model results for corridor 

crash were created and summarized in Table 5-3 and Table 5-4, respectively. 

Dispersion parameter is significant which indicates that NB model is preferred. 

Another clue to reject Poisson is the McFadden Pseudo R-squared value of 0.44 in 

Poisson model. This value between 0.2 and 0.4 means the model is excellent fitted, 

and anything above 0.4 may involve unobserved issue (Domencich and McFadden, 

1975). The underserved issue could be over-dispersion. Vuong-statistic is then 
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applied to compare ZINB and NB models. Vuong-statistic shows a result of 1.0696 

which is under the 90% significant level. Therefore, NB is preferred than ZINB 

model.  

Table 5-3 Poisson model for corridor crash frequency. 

Poisson Regression 

Dependent variable     Crash Frequency 2009-2014     N=50 

Log likelihood function      -142.25440 

Restricted log likelihood    -257.89010 
Chi squared       231.27139     Significance level      .00000 

McFadden Pseudo R-squared      .4483914 

Variables Coefficient z Prob.|z|>Z* 

95% Confidence 

Interval 

Constant| 0.14516 0.81 0.4182 -0.20626 0.49657 

Length .81447*** 11.46 0 0.67512 0.95382 

Signal/Mile .09235*** 7.94 0 0.06956 0.11515 

Median -.49667** -2.46 0.014 -0.89292 -0.10043 

two-way Left Turn Lane(1:TWLT; 0:no 
TWLT) -.45303*** -3.1 0.002 -0.73986 -0.16619 

Bus Route Number .37679*** 5.26 0 0.23627 0.5173 

ON-street Parking (1:parking; 0:no parking) -.42164*** -3.47 0.0005 -0.65983 -0.18346 

Partial effect for Binary variable is E[y| x, d=1] - E[y| x, d=0] 

Note: ***, **, * represent Significance at 1%, 5%, 10% level. 

 

Table 5-4 NB model for corridor crash frequency. 

Negative Binomial Regression 

Dependent variable     Crash Frequency 2009-2014    N=50 
Log likelihood function      -133.58044 

Restricted log likelihood    -142.25440 

Chi squared    17.34793       Significance level       .00003 
McFadden Pseudo R-squared      .0609750 

Variables Coefficient z Prob.|z|>Z* 

95% Confidence 

Interval 

Partial 

Effect 

Constant| 0.09144 0.37 0.7128 -0.39551 0.57839 - 

Length .84148*** 5.28 0 0.52919 1.15378 7.38959 

Signal/Mile .09847*** 4.48 0 0.05535 0.14158 0.86472 

Median -.76336* -1.86 0.0632 -1.5688 0.04207 -5.16692 
two-way Left Turn Lane(1:TWLT; 0:no 

TWLT) -.66950*** -2.62 0.0088 -1.1701 -0.1689 -5.76652 

Bus Route Number .45500*** 2.89 0.0039 0.14611 0.76388 3.99561 

ON-street Parking (1:parking; 0:no 
parking) -.47638** -2.01 0.0441 -0.94028 -0.01248 -4.31573 

Dispersion parameter for count data model 
Alpha  .15458* 1.86 0.0633 -0.00858 0.31773  
Partial effect for Binary variable is E[y| x, d=1] - E[y| x, d=0] 

Note: ***, **, * represent Significance at 1%, 5%, 10% level. 
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Variable “Length” with a partial effect of 7.38959 indicates with one mile increasein 

corridor length, the number of crashes for six years increases by 7.40, holding other 

variables constant. This result is easy to understand because the longer the corridor is, 

the more crashes it is likely to have.   

Signal per mile is an interesting variable that has a positive impact on corridor bicycle 

crash frequency. With one signalized intersection increase per mile on a corridor, the 

crash frequency increase by 0.86472 on average. This finding is consistent with the 

finding that more crashes are likely to happen at intersections (in Table 5-1) and also 

justified by other studies (Carter et al., 2006; Wei and Lovegrove, 2013; Chen, 2015).  

The presence of median and the presence of two-way left turn lane on corridor both 

can decrease the crash frequency. They can be interpreted using the same logic: the 

presence of median provides a barrier to isolate the traffic from two different 

directions, which not only decreases the conflicts between bicycles and vehicles, but 

also prevents bicycles from illegal crossing the street; presence of two-way left turn 

lane provide more space for bicycles and vehicles to avoid collision. 

With one more bus route operating on a corridor, there are on average 3.99561 more 

crashes occurring  on the corridor for 6 years. The possible reason is that the bus stop 

along the road by occupying the bike lane, which could force bicycles to use the 

traffic lanes instead of the bike lane to pass the stopped bus. Wei and Lovegrove 

(2013) and Teschke et al. (2012) also discovered that more bus stops are associated 

with more bicycle crashes. 

Interestingly, the presence of on-street parking is found to have a negative impact on 

crash number. The possible explanation is that  on-street parking is typically present 

on a low functional class road, such as a local road, where there are less vehicular 

traffic and bicycles. However, this phenomenon can also result from the insufficient 

sample size (50 corridors). Generally, the more sites are collected the more accurate 

the model result will be. Future work needs to justify this finding.  
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5.3  Crash Severity Distribution 

Crash severity distribution (percentage) is used to predict the number of different 

crash severities (PDO, Injury, and Fatal). The crash severity percentages were 

calculated based on the crashes happened at intersections and on corridors that 

collected in samples. The results are summarized in Figure 5-5 that shows the 

corridor severity distribution keeps consistent with intersection crash severity. 

Therefore, the combination of both is applied to simply the prediction process.   

 

Figure 5-5 Crash severity distribution for intersections and corridors. 

The percentage of PDO crash – 2% of all crashes – indicates under-report issue may 

exist in the data set, which has been explained in section 4.3.4. Therefore, the 

distribution could underestimate the number of actual PDO crash in reality. However, 

the results can be interpreted to infer “reported” crashes instead of actual bicycle 

crashes. We could also assume the damage is low and could be ignored, if an accident 

is not reported. Thus, the distribution is still useful in this case. 
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5.4  SPFs Summary 

Since the objective is predicting the crash frequency for intersections and corridors, it 

is more important to the use the predictive functions. Therefore, SPFs for 

intersections from this study is created as in Equation 5.4.1, and SPFs for the 

corridors is established in Equation 5.4.2. 

 

Micro Scale SPFs for Intersections 

𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝑪𝒓𝒂𝒔𝒉𝒕𝒐𝒕𝒂𝒍 = 𝐸𝑋𝑃(−7.17456 + 0.02351𝑋1 + 0.01269𝑋2 + 0.02792𝑋3 +

1.59389𝑋4 + 0.56335𝑋5 + (−0.01559)𝑋6 + 0.13755𝑋7 + 0.50249𝑋8 + 0.68367𝑋9)            

𝑪𝒓𝒂𝒔𝒉𝑷𝑫𝑶 = 0.02 × 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑟𝑎𝑠ℎ𝑡𝑜𝑡𝑎𝑙                

𝑪𝒓𝒂𝒔𝒉𝑰𝑵𝑱 = 0.97 × 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑟𝑎𝑠ℎ𝑡𝑜𝑡𝑎𝑙           

𝑪𝒓𝒂𝒔𝒉𝑭𝒂𝒕𝒂𝒍 = 0.01 × 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑟𝑎𝑠ℎ𝑡𝑜𝑡𝑎𝑙                                                                                    (5.4.1) 

Where: 

𝑋1 Total STRAVA (100) 

𝑋2 Total AADT(K) 

𝑋3 Network Density 

𝑋4 Minor Directions(1:two-way; 0:one-way) 

𝑋5 Minor Bike Lane(1: bike lane; 0:no Bike Lane) 

𝑋6 Minor STRAVA/Major AADT 

𝑋7 Total Lanes 

𝑋8 Signal(1:signal; 0:non-signal)  

𝑋9 Leg Number 
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Macro Scale SPFs for Corridors 

𝑪𝒐𝒓𝒓𝒊𝒅𝒐𝒓 𝑪𝒓𝒂𝒔𝒉𝒕𝒐𝒕𝒂𝒍 = 𝐸𝑋𝑃(0.09144 + 0.84148 𝑋1 + 0.09847𝑋2 + (−0.76336)𝑋3 +

(−0.66950)𝑋4 + 0.455𝑋5 + (−0.47638)𝑋6)                                           

 𝑪𝒓𝒂𝒔𝒉𝑷𝑫𝑶 = 0.02 × 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 𝐶𝑟𝑎𝑠ℎ𝑡𝑜𝑡𝑎𝑙                

𝑪𝒓𝒂𝒔𝒉𝑰𝑵𝑱 = 0.97 × 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 𝐶𝑟𝑎𝑠ℎ𝑡𝑜𝑡𝑎𝑙           

𝑪𝒓𝒂𝒔𝒉𝑭𝒂𝒕𝒂𝒍 = 0.01 × 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 𝐶𝑟𝑎𝑠ℎ𝑡𝑜𝑡𝑎𝑙                                                                                      (5.4.2) 

Where:  

𝑋1 Length 

𝑋1 Signal/Mile 

𝑋1 Median 

𝑋1 Two-way Left Turn Lane(1:TWLT; 0:no TWLT) 

𝑋1 Bus Route Number 

𝑋1 On-street Parking (1:parking; 0:no parking) 

𝜀𝑖 

Can be calculated by a Gamma-distribution with mean 1 and variance 𝛼.The over-

dispersion parameter𝛼, in this model, is 0.15458. 

 

 

To simplify the difference of microscopic and macroscopic SPFs, the process of using 

those two SPFs to diagnose high-risk sites are summarized in Figure 5-6. 
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Figure 5-6 The process of using macroscopic and microscopic SPFs 

5.5  Establishing SPFs Procedure  

A repeatable procedure of building bicycle SPFs is another goal of this research. 

Bicycle SPFs procedure is created based on the procedure from Safety Performance 

Function Development Guide: Developing Jurisdiction-Specific SPFs (Federal 

Highway Administration, 2013), but adopted to bicycle and using crowdsourced data. 

The process are summarized below: 

Step 1: Determine facility type to build SPFs 

Firstly, engineers need to identify the use and facility type of SPFs. The scale 

difference will influence other steps, labor requirement, and time requirement. The 

facility types for bicycle include but not limited to intersections, segments of non-

highway, corridors, ramps, etc. For instance, in this study, urban non-freeway 

corridors and intersections are facility types.  

Step 2: Identify necessary data  

Depending on the uses of SPF and facility types, the required data will be different. 

The differences include sample size and corresponding datasets. The guidance on the 
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minimum sample size can be found in SPF Decision Guide (Srinivasan et al., 2013). 

Generally, more data sets are required when the scale is larger. Statewide SPFs 

require much larger data set than local project level SPF. In this present study, 209 

samples with 161 crashes from 6-year study period were collected for intersection; 50 

sites with 417 crash from six years were collected for corridor SPFs. However, in 

some studies, due to the labor and time limitation, engineers can slightly change the 

original requirements to be practical. 

Step 3: Identify crowdsource data 

After determining necessary data, another critical step is to identify the appropriate 

crowdsourced data. Depending on project scale, sample size, data set requirements, 

specific crowdsourced data need to be found to meet the purposes. Crowdsourced 

data can be retrieved from online open sources, provided by DOTs, purchased from 

agencies, or adopted from other projects. Some of the crowdsourced data, only 

include a small proportion of actual data and cannot represent overall population. For 

example, BIKEMAP accident self-report data (BikeMaps.org, 2017) only have few 

data point for some small cities, which cannot be a proper data choice.  In this project, 

STRAVA® data is chosen as an alternative of annual average daily bicycle count.  

Step 4: Verify and clean-up crowdsource data 

It is necessary to justify  the representativeness and accuracy of crowdsourced data. 

Crowdsourced data provides emerging opportunities to represent the general 

population in a project and the sources are becoming more reliable to meet 

engineering project needs. In this study, STRAVA® is chosen because it is highly 

reliable and representative. User types of bicyclists should be clarified while verifying 

the representativeness. For example, bicyclists can be divided into two groups: 

cyclists for recreation and commuters. In this study, only a portion  of all cyclists and 

commuters in Portland and Eugene are using the STRAVA® application, so the 

author verified how well the STRAVA® can represent the cycling population. 

Additionally, since crowdsourced data includes plenty of information, unnecessary 

data details and confidential personal information should be removed. STRAVA® 
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bicycle data contains detailed information about each user which was not useful to 

this project scope and was cleaned by the author.  

Step 5: Data analysis 

This step provides engineers a sense of how the data look like in order to make 

decisions on modeling. The mean, variance, scatter plot, histogram graph, etc. are 

general ways to analyze collected data. An example can be found section 4.4. 

Step 6: Model Comparison 

Different models should be considered as potential options for bicycle crash dataset 

since bicycle crashes are sporadic.  The occurrence of a bicycle crash on one location 

is generally not a great indicator of future crashes.  . The best models are chosen from 

potential model options to fit the dataset best. For example, in this study, around 110 

zero crash intersections are in the data set, which can influence the choice of models. 

Poisson, NB, ZIP and ZINB models are potential options for count models. Over-

dispersion test and Vuong-statistic are used to identify which model should be 

chosen, and detailed examples can be found in Section 3.5. 

Step 7: Develop bicycle crash severity distribution  

The crash severity distribution is used to estimate the number of crashes with 

different crash types. It provides the percentage of types of crashes of total crashes. In 

this study, it was calculated based on the crashes happened at intersections and 

corridors that are collected in the samples. 

Step 8: Develop the SPFs  

SPFs are established based on the model regression from step 7 and severity 

distribution from step 8. Frequency and severity predictive equations (SPFs) should 

be created in this step. In this way, transportation agencies only need to calculate the 

predictive crashes from equations rather than run the model in statistical tools. An 

example could be found in section 5.4. 

Step 9: Interpret the SPFs  
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Besides building SPFs for jurisdictions, understanding the impacts of variables on the 

crash frequency and severity can help engineers and decision makers to change 

designs and policies accordingly. Engineering and policy recommendations are 

provided based on the results and discussion. The example can be found in chapter 6. 

 

6. Recommendation and Conclusion  

Engineering and policy recommendations for building SPFs in the U.S. and what has 

been learned from this study are provided in this chapter. In addition, the author 

concludes the overall study with major findings and discusses the potential research 

directions in the future work. 

6.1  Engineering Recommendation of Bicycle Safety  

The results from SPFs for intersections and corridors provide evidence of how factors 

are impacting bicycle safety. The identified major influencing factors that affect 

bicycle crash frequency can be further used to facilitate the future road design, 

especially for the cities that have the similar scale as Portland and Eugene, OR. The 

general rule is that engineers could consider mitigating the factors that have positive 

effects on bicycle crash frequency and could also promote the designs that have 

negative impacts on bicycle crash frequency. Positive coefficient of a variable for 

intersection Poisson model (see Table 5-1) and corridor NB model (see Table 5-4) 

implies a positive impact, and vice versa. The recommendations of bicycle safety 

design at intersections include: 

1. Engineers may build more bicycle buffers on one-way roads rather two-way 

roads since the one-way roads decrease the crash frequency at intersections, 

according to the model results in section 5.1.  

2. Countermeasures are necessary for intersections with more legs or signal 

traffic control to help bicyclists mitigating the conflicts with motor vehicles, 

such as bicycle traffic lights and median at 5-leg intersections.  

3. The ratio of minor street AADB to major street AADT is negative suggesting 

that when drivers are aware of more bicycles crossing a street, fewer bicycle 
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crashes happen. A vertical sign is an option to influence on the driver 

expectancy and warn drivers that bicycles are crossing. 

4. Bicycle traffic lights could be installed at intersections to mitigate the 

conflicts between bicycles and vehicles. Figure 6-1 shows a bicycle priority 

traffic light that decreases the bicycle risk in Portland, Oregon.  

 

Figure 6-1 Bicycle traffic light in Portland, Oregon (Maus, 2011). 

5. Dedicated bicycle buffer lanes and bicycle buffer lane with vertical structure 

could be implemented near intersections with more traffic lanes to mitigate 

the conflicts between two modes of traffic. 

When the intersection SPFs inspect safety performance from a microscopic scale, the 

corridor SPFs results provide different perspectives from a macroscopic level. The 

difference between the two levels of scale could lead to different interpretations. The 

engineering recommendation of bicycle safety design on the corridors are 

summarized as below: 

1. Engineers may consider isolating bicycles from buses while designing bus 

stops since the number of bus routes has a positive impact on corridor bicycle 

crash frequency. A bus stop island could be the potential option to mitigate the 

conflicts between bus and bicycle (National Association of City 

Transportation Officials, 2013), shown in Figure 6-2. 
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Figure 6-2 Bus island to mitigate the conflicts with bicycles (National 

Transport Authority, 2011). 

2. Median could be a countermeasure to increase bicycle safety, especially when 

a road has multiple lanes, it was found to have negative impact on bicycle 

crash frequency in Portland and Eugene in this thesis. 

3. The increase of intersections with signal control on corridors result in more 

bike crashes. Therefore, strategies need to implement to attract bicyclists 

riding on the roads with fewer signal controlled intersections. Bike lanes could 

be eliminated on the roads with a large number of intersections with signal 

control, because of its attraction of bicyclists. 

6.2  Policy Recommendation of Bicycle Safety  

Similar to the recommendation for engineers, some decision makers could also learn 

strategies to improve bicycle safety based on the SPFs but at a higher level. The 

recommendations of bicycle safety policy for intersections and corridors include: 

1. The ratio between minor street STRAVA and major street AADT having a 

negative impact on bicycle crashes suggests that policy strategies could focus 

on aggregating bicyclists crossing the same intersection when they have to.  

2. Higher functional classed roads with more lanes and signal control are found 

to be associated with more bicycle crashes. Strategies could target attracting 

bicyclists riding on streets with lower functional classifications.  

3. When public transit and bicycle transportation have been promoted as more 

sustainable modes, city planners need to consider the relationship between 
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them as they are operating on roads. It seems plausible that building bike lanes 

on roads where buses operate can connect the modes; however, it was found 

to increase the bicycle crash frequency.  

4. Investing in building median barrier (e.g. trees and concrete barriers) and two-

way left turn lanes, especially on streets with multiple lanes, could help 

improving overall bicycle safety. The overall improvement is larger than other 

variables in this study. 

 

6.3  Recommendation of Building SPFs by Using Crowdsourced Data  

Building bicycle SPFs by using crowdsourced data is an affordable and efficient way 

for of jurisdictions of any size. This study discussed what was learned by building 

bicycle SPFs and these findings are summarized below: 

 Different affordable crowdsourced data need to be compared to choose the 

best one that can represent most types of bicycle users; 

 STRAVA®, representing a small proportion of users, is an affable and 

efficient crowdsourced data; 

 Raw crowdsourced data is normally including plenty of additional information 

that should be cleaned before use; 

 Errors in crowdsourced data, especially double count issue, should be taken 

care before use; 

 Reported bicycle crash data from DOTs has under-report issue, especially on 

PDO crash; 

 Building bicycle SPFs on segments suffers insufficient crash data, so SPFs on 

corridors (multiple homogenous segments with same features) are 

recommended as an alternative; 

 Multiple statistical models could be compared to find the best-fitted 

regression; 
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 When data sample site increase, model shows better fitted. A recommendation 

sample size is more than 200 sites for building SPFs in the urban area. More 

sample may be needed for the rural area due to fewer bicycle crashes. 

6.4  Conclusion 

This study established microscopic scale (intersection) and macroscopic scale 

(corridor) bicycle Safety Performance Functions for medium and large size cities by 

using crowdsourced data, with a case study in Portland and Eugene-Springfield 

metropolitans, which overcame the challenges of no sufficient bicycle volume data 

and crash data.  Specifically, in this research 1) bicycle SPFs is built for intersections 

and corridors that have not been sophistically studied; 2) bicycle crash severity 

distributions are used the first time to predict the number of bicycle crashes with 

different crash severity levels; 3) an affordable crowdsourced bicycle volume data – 

STRAVA® is chosen to solve the problem of limited data; 4) STRAVA® data was 

verified to be able to represent general bicyclists by comparison with automatic bike 

count station data; 5) a general framework of building SPFs for was created for 

jurisdictions.  

Transportation agencies, city planners, and engineers can use SPFs to evaluate 

bicycle safety for both microscopic and macroscopic levels, determine the impact of 

changing design, screen transportation network, and identify the most efficient 

investment regarding locations and means. Since the procedure of building bicycle 

SPFs by using crowdsourced data is established, other jurisdictions can also repeat 

the same process if they found new SPFs are necessary. 

6.5  Limitation and Future Work  

Even though several critical challenges have been overcome in this study, there are 

still some parts that future researcher can focus on. The author admits bicycle SPFs 

cannot draw the complete causality of bicycle crashes, and the interactions between 

variables are not clear studied in this research. However, bicycle SPFs established in 

this study are essential crash prediction tools, so improving the predictive ability is 

the most important future task. 
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 More corridor sample sites could be collected to improve the model predictive 

accuracy; 

 The availability of AADT impacts the sites selection process and only the 

sites having ADT or AADT were selected. Therefore, the prediction results 

may be biased. Since the majority of ADT or AADT are only existing on 

high-class roads (e.g. urban major arterials), the SPFs can predict more 

accurately on those roads rather than local roads. Future work can improve the 

random sampling process by using a more comprehensive traffic volume data. 

 Using other automatic bicycle count station data on different roads to verity 

how well the STRAVA® data can represent all bicycle population; 

 Other types of regressions type can be applied to improve model predictive 

ability; 

 Building bicycle SPFs for various types of cities with different biking 

cultures, such as a university town, a capital city, or a super large 

metropolitan.  
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Appendix B: Modeling Results  

Intersection Poisson Model 

|-> poisson 

    ;lhs= Crash 

    ;rhs= one, TT_STR2, TTAADT2, Net_D, MI_Dir2, MI_Bike, MiSMaA, TTLane, Signal, Legs 

    ;marginal effect$ 

 

----------------------------------------------------------------------------- 

Poisson Regression 

Dependent variable                CRASH 

Log likelihood function      -206.51824 

Restricted log likelihood    -268.02298 

Chi squared [   9 d.f.]       123.00948 

Significance level               .00000 

McFadden Pseudo R-squared      .2294756 

Estimation based on N =    209, K =  10 

Inf.Cr.AIC  =    433.0 AIC/N =    2.072 

Model estimated: May 20, 2017, 11:48:03 

Chi- squared =   199.17660  RsqP= .4969 

G  - squared =   188.20636  RsqD= .3953 

Overdispersion tests: g=mu(i)  :  -.559 

Overdispersion tests: g=mu(i)^2:  1.480 

--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

   CRASH|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

Constant|   -7.17456***     1.29410    -5.54  .0000    -9.71095  -4.63818 

 TT_STR2|     .02351***      .00299     7.87  .0000      .01765    .02937 

 TTAADT2|     .01269*        .00771     1.65  .0999     -.00243    .02781 

   NET_D|     .02792***      .00928     3.01  .0026      .00972    .04611 

 MI_DIR2|    1.59389***      .55277     2.88  .0039      .51048   2.67729 

 MI_BIKE|     .56335***      .17884     3.15  .0016      .21283    .91388 

  MISMAA|    -.01559***      .00487    -3.20  .0014     -.02513   -.00605 

  TTLANE|     .13755**       .05689     2.42  .0156      .02604    .24906 

  SIGNAL|     .50249**       .25591     1.96  .0496      .00092   1.00406 

    LEGS|     .68367***      .25127     2.72  .0065      .19118   1.17616 

--------+-------------------------------------------------------------------- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

 

----------------------------------------------------------------------------- 

Partial derivatives of expected val. with 

respect to the vector of characteristics. 

Effects are averaged over individuals. 

Observations used for means are All Obs. 

Sample average conditional mean     .7703 

Scale Factor for Marginal Effects   .7703 

--------+-------------------------------------------------------------------- 

        |     Partial      Standard            Prob.      95% Confidence 

   CRASH|      Effect        Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

 TT_STR2|     .01811***      .00271     6.69  .0000      .01280    .02342 

 TTAADT2|     .00978         .00599     1.63  .1027     -.00197    .02152 

   NET_D|     .02150***      .00735     2.93  .0034      .00710    .03591 

 MI_DIR2|     .67368***      .12215     5.52  .0000      .43426    .91310   # 

 MI_BIKE|     .47210***      .16545     2.85  .0043      .14783    .79638   # 

  MISMAA|    -.01201***      .00387    -3.11  .0019     -.01959   -.00443 

  TTLANE|     .10596**       .04462     2.37  .0176      .01851    .19340 

  SIGNAL|     .33634**       .15020     2.24  .0251      .04196    .63073   # 

    LEGS|     .52665***      .19796     2.66  .0078      .13865    .91466 

--------+-------------------------------------------------------------------- 

#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

 

 

 

Intersection ZIP model       

----------------------------------------------------------------------------- 

Zero Inflated Poisson      Regression Model 

Logistic distribution used for splitting model. 

ZIP term in probability is F[tau x ln LAMBDA] 

Comparison of estimated models 
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            Pr[0|means]       Number of zeros        Log-likelihood 

Poisson          .57580   Act.=   111 Prd.=   120.3      -215.95559 

Z.I.Poisson      .53434   Act.=   111 Prd.=   111.7      -218.32992 

Note, the ZIP log-likelihood is not directly comparable. 

ZIP model with nonzero Q does not encompass the others. 

Vuong statistic for testing ZIP vs. unaltered model is      -.5149 

Distributed as standard normal. A value greater than 

+1.96 favors the zero altered Z.I.Poisson model. 

A value less than -1.96 rejects the ZIP model. 

--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

   CRASH|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

        |Poisson/NB/Gamma regression model 

Constant|   -1.00080***      .34506    -2.90  .0037    -1.67710   -.32450 

 TT_STR2|     .01174***      .00148     7.93  .0000      .00884    .01464 

MA_RIGHT|    -.18092*        .09601    -1.88  .0595     -.36909    .00726 

 MI_BIKE|     .14957*        .08106     1.85  .0650     -.00930    .30843 

  MISMAA|    -.00622***      .00217    -2.87  .0041     -.01048   -.00197 

  TTLANE|     .05612**       .02429     2.31  .0209      .00851    .10374 

  SIGNAL|     .25395**       .10314     2.46  .0138      .05180    .45610 

    LEGS|     .13389*        .08045     1.66  .0961     -.02380    .29157 

        |Zero inflation model 

     Tau|   -7.26667***     2.45567    -2.96  .0031   -12.07969  -2.45364 

--------+-------------------------------------------------------------------- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

 

----------------------------------------------------------------------------- 

Partial derivatives of expected val. with 

respect to the vector of characteristics. 

Effects are averaged over individuals. 

Observations used for means are All Obs. 

Sample average conditional mean     .8326 

Scale Factor for Marginal Effects  1.8647 

--------+-------------------------------------------------------------------- 

        |     Partial      Standard            Prob.      95% Confidence 

   CRASH|      Effect        Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

 TT_STR2|     .02189***      .00459     4.77  .0000      .01290    .03087 

MA_RIGHT|    -.33735*        .17939    -1.88  .0600     -.68894    .01425   # 

 MI_BIKE|     .27890*        .15091     1.85  .0646     -.01688    .57467   # 

  MISMAA|    -.01161*        .00623    -1.86  .0623     -.02381    .00060 

  TTLANE|     .10465**       .04527     2.31  .0208      .01592    .19339 

  SIGNAL|     .47353**       .19204     2.47  .0137      .09715    .84991   # 

    LEGS|     .24965*        .14971     1.67  .0954     -.04378    .54308 

--------+-------------------------------------------------------------------- 

#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

Intersection NB model 

----------------------------------------------------------------------------- 

Negative Binomial Regression 

Dependent variable                CRASH 

Log likelihood function      -213.78906 

Restricted log likelihood    -216.79074 

Chi squared [   1 d.f.]         6.00337 

Significance level               .01428 

McFadden Pseudo R-squared      .0138460 

Estimation based on N =    209, K =   8 

Inf.Cr.AIC  =    443.6 AIC/N =    2.122 

Model estimated: May 20, 2017, 11:50:46 

NegBin form 2; Psi(i) = theta 

Tests of Model Restrictions on Neg.Bin. 

Model               Logl ChiSquared[df] 

Poisson(b=0)     -268.02  ******** [**] 

Poisson          -216.79     102.5 [ 6] 

Negative Bin.    -213.79       6.0 [ 1] 

--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

   CRASH|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

Constant|   -2.78070***      .46875    -5.93  .0000    -3.69944  -1.86196 

 TT_STR2|     .02624***      .00282     9.30  .0000      .02071    .03177 

 MI_BIKE|     .40183*        .22575     1.78  .0751     -.04063    .84429 
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  MISMAA|    -.01556**       .00642    -2.42  .0154     -.02813   -.00298 

  TTLANE|     .19068***      .06796     2.81  .0050      .05749    .32387 

  SIGNAL|     .86770***      .31262     2.78  .0055      .25497   1.48042 

 MI_PARK|     .39993*        .23355     1.71  .0868     -.05781    .85768 

        |Dispersion parameter for count data model 

   Alpha|     .21551         .14855     1.45  .1468     -.07564    .50666 

--------+-------------------------------------------------------------------- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 
 

Intersection ZINB model 
----------------------------------------------------------------------------- 

Zero Inflated Neg.Binomial Regression Model 

Logistic distribution used for splitting model. 

ZIP term in probability is F[tau x ln LAMBDA] 

Comparison of estimated models 

            Pr[0|means]       Number of zeros        Log-likelihood 

Poisson          .56849   Act.=   111 Prd.=   118.8      -219.04454 

Neg. Bin.        .75261   Act.=   111 Prd.=   157.3      -215.50139 

Z.I.Neg_Bin      .51741   Act.=   111 Prd.=   108.1      -220.63289 

Note, the ZIP log-likelihood is not directly comparable. 

ZIP model with nonzero Q does not encompass the others. 

Vuong statistic for testing ZIP vs. unaltered model is     -1.2708 

Distributed as standard normal. A value greater than 

+1.96 favors the zero altered Z.I.Neg_Bin model. 

A value less than -1.96 rejects the ZIP model. 

--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

   CRASH|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

        |Poisson/NB/Gamma regression model 

Constant|    -.41566**       .16248    -2.56  .0105     -.73412   -.09720 

 TT_STR2|     .01086***      .00211     5.15  .0000      .00673    .01498 

 MI_BIKE|     .13497*        .07986     1.69  .0910     -.02156    .29150 

  MISMAA|    -.00500**       .00235    -2.13  .0332     -.00961   -.00040 

  TTLANE|     .04251*        .02372     1.79  .0731     -.00398    .08900 

  SIGNAL|     .23502**       .10858     2.16  .0304      .02221    .44783 

        |Dispersion parameter 

   Alpha|     .11523         .21124      .55  .5854     -.29880    .52925 

        |Zero inflation model 

     Tau|   -8.25982**      3.93435    -2.10  .0358   -15.97100   -.54864 

--------+-------------------------------------------------------------------- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

 

 

Corridor Poisson model 

----------------------------------------------------------------------------- 

Poisson Regression 

Dependent variable                CRASH 

Log likelihood function      -142.25440 

Restricted log likelihood    -257.89010 

Chi squared [   6 d.f.]       231.27139 

Significance level               .00000 

McFadden Pseudo R-squared      .4483914 

Estimation based on N =     50, K =   7 

Inf.Cr.AIC  =    298.5 AIC/N =    5.970 

Model estimated: May 20, 2017, 11:53:17 

Chi- squared =   103.25974  RsqP= .7071 

G  - squared =   113.24771  RsqD= .6713 

Overdispersion tests: g=mu(i)  :  3.248 

Overdispersion tests: g=mu(i)^2:  2.462 

--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

   CRASH|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

Constant|     .14516         .17930      .81  .4182     -.20626    .49657 

  LENGTH|     .81447***      .07110    11.46  .0000      .67512    .95382 

 SIGMILE|     .09235***      .01163     7.94  .0000      .06956    .11515 

  MEDIAN|    -.49667**       .20217    -2.46  .0140     -.89292   -.10043 

    TWLT|    -.45303***      .14635    -3.10  .0020     -.73986   -.16619 

    BUSR|     .37679***      .07169     5.26  .0000      .23627    .51730 

 PARKING|    -.42164***      .12152    -3.47  .0005     -.65983   -.18346 

--------+-------------------------------------------------------------------- 
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Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

Corridor NB model 

----------------------------------------------------------------------------- 

Negative Binomial Regression 

Dependent variable                CRASH 

Log likelihood function      -133.58044 

Restricted log likelihood    -142.25440 

Chi squared [   1 d.f.]        17.34793 

Significance level               .00003 

McFadden Pseudo R-squared      .0609750 

Estimation based on N =     50, K =   8 

Inf.Cr.AIC  =    283.2 AIC/N =    5.663 

Model estimated: May 20, 2017, 11:53:17 

NegBin form 2; Psi(i) = theta 

Tests of Model Restrictions on Neg.Bin. 

Model               Logl ChiSquared[df] 

Poisson(b=0)     -257.89  ******** [**] 

Poisson          -142.25     231.3 [ 6] 

Negative Bin.    -133.58      17.3 [ 1] 

--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

   CRASH|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

Constant|     .09144         .24845      .37  .7128     -.39551    .57839 

  LENGTH|     .84148***      .15934     5.28  .0000      .52919   1.15378 

 SIGMILE|     .09847***      .02200     4.48  .0000      .05535    .14158 

  MEDIAN|    -.76336*        .41094    -1.86  .0632    -1.56880    .04207 

    TWLT|    -.66950***      .25541    -2.62  .0088    -1.17010   -.16890 

    BUSR|     .45500***      .15760     2.89  .0039      .14611    .76388 

 PARKING|    -.47638**       .23669    -2.01  .0441     -.94028   -.01248 

        |Dispersion parameter for count data model 

   Alpha|     .15458*        .08324     1.86  .0633     -.00858    .31773 

--------+-------------------------------------------------------------------- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

 

----------------------------------------------------------------------------- 

Partial derivatives of expected val. with 

respect to the vector of characteristics. 

Effects are averaged over individuals. 

Observations used for means are All Obs. 

Sample average conditional mean    8.7816 

Scale Factor for Marginal Effects  8.7816 

--------+-------------------------------------------------------------------- 

        |     Partial      Standard            Prob.      95% Confidence 

   CRASH|      Effect        Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

  LENGTH|    7.38959***     1.83070     4.04  .0001     3.80148  10.97769 

 SIGMILE|     .86472        1.75733      .49  .6227    -2.57959   4.30902 

  MEDIAN|   -5.16692        8.47571     -.61  .5421   -21.77901  11.44517   # 

    TWLT|   -5.76652        7.67868     -.75  .4527   -20.81645   9.28341   # 

    BUSR|    3.99561        3.79230     1.05  .2921    -3.43716  11.42837 

 PARKING|   -4.31573        3.60458    -1.20  .2312   -11.38058   2.74911   # 

--------+-------------------------------------------------------------------- 

#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 

Corridor ZINB model  
----------------------------------------------------------------------------- 

Zero Inflated Neg.Binomial Regression Model 

Logistic distribution used for splitting model. 

ZIP term in probability is F[tau x ln LAMBDA] 

Comparison of estimated models 

            Pr[0|means]       Number of zeros        Log-likelihood 

Poisson          .00153   Act.=     4 Prd.=      .1      -142.25440 

Neg. Bin.        .56105   Act.=     4 Prd.=    28.1      -133.58044 

Z.I.Neg_Bin      .01817   Act.=     4 Prd.=      .9      -132.40685 

Note, the ZIP log-likelihood is not directly comparable. 

ZIP model with nonzero Q does not encompass the others. 

Vuong statistic for testing ZIP vs. unaltered model is      1.0696 

Distributed as standard normal. A value greater than 

+1.96 favors the zero altered Z.I.Neg_Bin model. 

A value less than -1.96 rejects the ZIP model. 
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--------+-------------------------------------------------------------------- 

        |                  Standard            Prob.      95% Confidence 

   CRASH|  Coefficient       Error       z    |z|>Z*         Interval 

--------+-------------------------------------------------------------------- 

        |Poisson/NB/Gamma regression model 

Constant|     .18927         .23810      .79  .4267     -.27739    .65594 

  LENGTH|     .81493***      .14273     5.71  .0000      .53517   1.09468 

 SIGMILE|     .09429***      .02052     4.59  .0000      .05407    .13452 

  MEDIAN|    -.69641*        .39482    -1.76  .0778    -1.47024    .07742 

    TWLT|    -.62027**       .24470    -2.53  .0113    -1.09987   -.14067 

    BUSR|     .42443***      .14890     2.85  .0044      .13260    .71627 

 PARKING|    -.46520**       .21919    -2.12  .0338     -.89480   -.03560 

        |Dispersion parameter 

   Alpha|     .12912         .09005     1.43  .1516     -.04737    .30561 

        |Zero inflation model 

     Tau|   -2.46846**      1.05568    -2.34  .0194    -4.53755   -.39937 

--------+-------------------------------------------------------------------- 

Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

----------------------------------------------------------------------------- 

 


