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Introduction

The sustainable management of natural resources must
deal with several technical issues:

I Conflicting objectives: balancing the risk of resource
collapse versus the risk of forgone economic benefits.

I Taking into account the complexity of fisheries
dynamics.
⇒ Calling for moving toward an ecosystemic
approach of fisheries management (WSSD,
Johannesburg, 2002).

I Accounting for various sources of uncertainty:
I Stock estimation status.
I Dynamics of ecosystems.
I Disturbances: climatic hazard, technical progress, etc.
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Motivation

Emphasizing the importance of taking into account
disturbances likely to affect the dynamics of an ecosystem
when designing a management strategy.

I A management strategy is the rule governing the
practise of a regulatory instrument.
Ex: Setting the yearly harvest as a fixed fraction of
the exploited biomass.

I Approach: comparing the set of sustainable initial
states (viability kernel) given by a deterministic
strategy to that driven by strategies integrating
uncertainty.

I Case-study: the hake-anchovy couple in the
Peruvian up-welling ecosystem.
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The Viability Theory

I Seeks the set of states, for which there exist controls,
satisfying the dynamics of a system, and constraints,
describing given objectives, at the same time (J. P.
Aubin, 1991).

I Identifies a decisions sequence capable of maintaining
the system viable. Decisions (controls) are computed
by use of a dynamic programming equation.

I All constraints must be satisfied at all dates.
The approach can be softened by accepting constraint
violations with low probability in the stochastic case.
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Generic ecosystem model

I We consider a two-dimensional state model
y(t+ 1) = y(t)Ry

(
y(t), z(t)

)(
1− v(t)

)
z(t+ 1) = z(t)Rz

(
y(t), z(t)

)(
1− w(t)

)

I state vector (y, z) represents biomasses,

I control vector (v, w) is fishing effort of each species,
each lying in [0, 1]

I Ry and Rz are annual growth factors.

I catches are vyRy(y, z) and wzRz(y) (measured in
biomass)
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The Viability Kernel

I The viability kernel is the set of initial states
y(t0), z(t0) from which there exists, for t = t0, . . . , T ,
controls v(t), w(t) producing a trajectory y(t), z(t)
such that a priori conflicting requirements

I preservation (minimal biomass thresholds):

y(t) ≥ y[, z(t) ≥ z[

I economic/social requirements (minimal catch
thresholds):

v(t)y(t)Ry(y(t), z(t)) ≥ Y [,
w(t)z(t)Rz(y(t), z(t)) ≥ Z[

are satisfied for t = t0, . . . , T .
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The Viability Kernel

I If the thresholds y[, z[, Y [,Z[ are such that the
following expressions are satisfied

y[Ry
(
y[, z[

)
− Y [ ≥ y[ and z[Rz

(
y[, z[

)
− Z[ ≥ z[

I the viability kernel is

V(t0) =
{

(y, z) | y ≥ y[, z ≥ z[,
yRy

(
y, z
)
− Y [ ≥ y[, zRz

(
y, z
)
− Z[ ≥ z[

}
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The Peruvian hake-anchovy system

I Fitted by a discrete-time Lotka-Volterra system with
density-dependence (IMARPE):

y(t+ 1) = y(t)

Ry

(
y(t),z(t)

)︷ ︸︸ ︷(
R− R

κ
y(t)− αz(t)

) (
1− v(t)

)
z(t+ 1) = z(t)

(
L+ βy(t)

)︸ ︷︷ ︸
Rz

(
y(t),z(t)

)
(
1− w(t)

)

I y prey biomass: anchovy
I z predator biomass: hake

I The associated viability kernel

V(t0) =
{

(y, z) | y ≥ y[, z[ ≤ z ≤ 1
α [R− R

κ y −
y[+Y [

y ]
}
.



Robust
Management of
a Harvested
Ecosystem

Model

E. Regnier &
M. De Lara

Introduction

The Model

The
Deterministic
Viability
Kernel

The Stochastic
Viability
Kernel

Conclusion

The Viability Kernel
The annual objectives and calibration were set by IMARPE (taller
internacional sobre la anchoveta peruana), based on data from 1971
to 1981:

Figure: Viability Kernel for minimal biomass thresholds y[ =7000
kt (Anchovy) and z[ =200 kt (hake), and the minimal catches
thresholds Y [ =2000 kt (Anchovy) and Z[ =5 kt (hake)
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Accounting for uncertainty

(a) Anchovy (b) Hake

Figure: Observed and Simulated biomasses over 1971-1981
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Ecosystem model with uncertainty

I In the stochastic approach the model becomes:

y(t+ 1) = y(t)

Ry

(
y(t),z(t)

)︷ ︸︸ ︷(
R− R

κ
y(t)− αz(t)

) (
1− v(t)

)
+ εy(t)

z(t+ 1) = z(t)
(
L+ βy(t)

)︸ ︷︷ ︸
Rz

(
y(t),z(t)

)
(
1− w(t)

)
+ εz(t)

where εy(t) and εz(t) are additive disturbance terms.

I The targeted preservation and economic objectives
are kept equal.
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The uncertainties space S
I Defined by taking the difference between observed

and simulated biomasses
εy(t) = y(t)− ŷ(t); εz(t) = z(t)− ẑ(t).

Figure:
(
εy(t), εz(t)

)
over 1971-1981
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The Stochastic Viability approach

I S = [εminy , εmaxy ]× [εminz , εmaxz ]

I An uncertainty scenario is(
εy(·), εz(·)

)
= ((εy(t0), εz(t0)), . . . , (εy(T ), εz(T )))

I The set of uncertainty scenarios is Ω = ST−t0+1.

I Ω is equipped with probability distribution.

I We adopt the uniform distribution law to simulate
scenarios over S (of course results will be conditioned
by this choice).
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The Stochastic Viability approach

I The stochastic viability kernel of confidence level β is
the set of initial states y(t0), z(t0) from which there
exists, for t = t0, . . . , T, controls v(t), w(t) producing
a trajectory y(t), z(t) such that over all scenarios

I minimal biomass thresholds:

y(t) ≥ y[, z(t) ≥ z[

I minimal catch thresholds:

v(t)y(t)Ry(y(t), z(t)) ≥ Y [,
w(t)z(t)Rz(y(t), z(t)) ≥ Z[

are satisfied for t = t0, . . . , T with a probability≥ β.



Robust
Management of
a Harvested
Ecosystem

Model

E. Regnier &
M. De Lara

Introduction

The Model

The
Deterministic
Viability
Kernel

The Stochastic
Viability
Kernel

Conclusion

The Stochastic Viability Kernel

Figure: Viability Probability level curves



Robust
Management of
a Harvested
Ecosystem

Model

E. Regnier &
M. De Lara

Introduction

The Model

The
Deterministic
Viability
Kernel

The Stochastic
Viability
Kernel

Conclusion

Introduction

The Model

The Deterministic Viability Kernel

The Stochastic Viability Kernel

Conclusion



Robust
Management of
a Harvested
Ecosystem

Model

E. Regnier &
M. De Lara

Introduction

The Model

The
Deterministic
Viability
Kernel

The Stochastic
Viability
Kernel

Conclusion

Conclusion

I There are no robust viability kernel (100%
probability)

I The set of initial states included in the determinist
viability kernel are viable with a probability of about
70%

I We have developed a tool capable of attaching to a
potential initial state, a probability of achieving
conflicting objectives

I For a given confidence level, the approach provides a
corresponding control sequence
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