

Citation: van Eeden LM, Eklund A, Miller JRB, López-Bao JV, Chapron G, Cejtin MR, et al. (2018) Carnivore conservation needs evidence-based livestock protection. PLoS Biol 16(9): e2005577. https://doi.org/10.1371/journal.pbio.2005577

Published: September 18, 2018

Copyright: © 2018 van Eeden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: National Science Foundation Couple Human and Natural Systems (grant number 115057). Received by JRBM. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Ramon & Cajal research contract from the Spanish Ministry of Economy, Industry and Competitiveness (grant number RYC-2015-18932). Received by JVLB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript, National Geographic Society (Grant WW-100C-17), and the George B. Storer Foundation, received by ADM. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Derse Foundation and US Fulbright program in Sweden. Received by AT. The funder had no role in study design, data collection and analysis, decision to publish, or

PERSPECTIVE

Carnivore conservation needs evidencebased livestock protection

Lily M. van Eeden¹[®]*, Ann Eklund²[®]*, Jennifer R. B. Miller^{3,4}[®]*, José Vicente López-Bao⁵, Guillaume Chapron², Mikael R. Cejtin^{6,7}, Mathew S. Crowther¹, Christopher R. Dickman¹, Jens Frank², Miha Krofel⁸, David W. Macdonald⁹, Jeannine McManus^{10,11}, Tara K. Meyer¹², Arthur D. Middleton³, Thomas M. Newsome^{1,13,14}, William J. Ripple¹⁴, Euan G. Ritchie¹⁵, Oswald J. Schmitz¹², Kelly J. Stoner¹⁶, Mahdieh Tourani¹⁷, Adrian Treves¹⁸[®]*

1 Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia, 2 Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden, 3 Department of Environmental Science, Policy, and Management, University of California–Berkeley, Berkeley, California, United States of America, 4 Center for Conservation Innovation, Defenders of Wildlife, Washington, DC, United States of America, 5 Research Unit of Biodiversity, Oviedo University, Gonzalo Gutiérrez Quirós, Mieres, Spain, 6 Department of Natural Sciences, Paul Smith's College, Paul Smiths, New York, United States of America, 7 Lake Placid Land Conservancy, Lake Placid, New York, United States of America, 8 Biotechnical Faculty, Department of Forestry, University of Ljubljana, Ljubljana, Slovenia, 9 Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, United Kingdom, 10 Research Department, Landmark Foundation, Riversdale, South Africa, 11 School of Animal, Plants and Environmental Sciences, University of Witwatersrand, Braamfontein, Johannesburg, South Africa, 12 Yale School of Forestry and Environmental Studies, New Haven, Connecticut, United States of America, 13 School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, United States of America, 14 Global Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America, 15 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia, 16 Wildlife Conservation Society Rocky Mountain Regional Program, Bozeman, Montana, United States of America, 17 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway, 18 Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin, United States of America

• These authors contributed equally to this work.

* lily.vaneeden@sydney.edu.au (LMVE); ann.eklund@slu.se (AE); jmiller@defenders.org (JRBM); atreves@wisc.edu (AT)

Abstract

Carnivore predation on livestock often leads people to retaliate. Persecution by humans has contributed strongly to global endangerment of carnivores. Preventing livestock losses would help to achieve three goals common to many human societies: preserve nature, protect animal welfare, and safeguard human livelihoods. Between 2016 and 2018, four independent reviews evaluated >40 years of research on lethal and nonlethal interventions for reducing predation on livestock. From 114 studies, we find a striking conclusion: scarce quantitative comparisons of interventions and scarce comparisons against experimental controls preclude strong inference about the effectiveness of methods. For wise investment of public resources in protecting livestock and carnivores, evidence of effectiveness should be a prerequisite to policy making or large-scale funding of any method or, at a minimum, should be measured during implementation. An appropriate evidence base is needed, and

preparation of the manuscript. Carnegie Corporation of New York associated to the Global Change Institute to the University of Witwatersrand, Development Bank South Africa, Green Fund, United Nations Environment Program, and the Global Environment Facility. Received by JSM. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Swedish Research Council Formas. Received by AE, GC, JF, JVLB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Provenance: Not commissioned; externally peer reviewed.

we recommend a coalition of scientists and managers be formed to establish and encourage use of consistent standards in future experimental evaluations.

Carnivores, such as lions and wolves, are killed in many regions over real or perceived threats to human interests. Combined with habitat loss and fragmentation, human-induced mortality has contributed to widespread carnivore population declines, along with declines of their important ecosystem functions [1]. Balancing the goals of nature preservation, livelihood protection, and welfare of carnivores and domestic animals depends on policies that foster coexistence between humans and carnivores in multiuse landscapes [2, 3]. Central to this aim is a need for rigorous scientific evidence that interventions are effective in preventing predation on livestock. Such policies should be based on strong inference [4, 5], otherwise, we risk wasting resources on ineffective interventions that might harm all involved.

Between 2016 and 2018, we independently published four reviews examining evidence for the effectiveness of interventions to reduce livestock predation by carnivores [6–9]. Here, we focus on the results for livestock losses or carnivore incursions into livestock enclosures (hereafter, "functional effectiveness" [8]). Since each review offered a unique perspective, we reconcile differences to synthesize three messages common to the reviews. First, despite the immense resources spent globally to protect livestock from carnivores, few peer-reviewed studies have produced strong inference about the functional effectiveness of interventions. Second, there was scant consistency of standards of evidence in our four reviews, hindering scientific consensus, and hence clear recommendations to policy-makers, about the relative functional effectiveness of different interventions. Finally, we identified several interventions that were found consistently effective, which deserve promotion in policy, even if only in the general conditions under which they have already been tested, as well as prioritization for further research under conditions in which evidence is lacking.

We suspect that the striking paucity of rigorous evaluation is due to the tendency for decisions about predator control to depend on factors other than evidence-based evaluation of whether a given intervention effectively protects livestock. These other factors-including ethics (should one implement the intervention?), feasibility (can one implement the intervention?), and perception (does one believe the intervention will work?)-might be important subsequent considerations in the implementation and decision-making processes. However, objective scientific evidence of an intervention's functional effectiveness must remain a foundational prerequisite on which subjective inquiries later build. The lack of scientific synthesis and consensus about functional effectiveness has allowed more subjective factors to dominate decision-making about predator control and likely wasted time and money on interventions that do not optimally protect livestock. Furthermore, shifting ethics and public values in some communities are enabling the return of carnivores to landscapes worldwide or leading to the increased use of nonlethal predator control interventions. We support these initiatives from the perspective of conserving carnivores but insist that scientific evidence for functional effectiveness be considered first to ensure that interventions intended to protect livestock accomplish that goal. This will prevent the inefficient—or worse yet, counterproductive—use of limited resources to protect animals long term.

Additionally, although our reviews collectively reveal a need for more evidence, scientists alone cannot fill this gap. Livestock owners, natural resource managers, and decision-makers each have an important role to play in research partnerships to collaboratively guide the testing of predator control interventions. Here, we appeal to these groups by summarizing the

advantages of evidence-based effective interventions, the best practices of scientific inference, and the role of policy in promoting effective predator control strategies. We start by synthesizing the results of our four independent reviews to provide scientific consensus on the evaluations of predator control interventions. We urge managers and policy decision-makers to use this discussion as a basis for creating policy that promotes evidence-based, effective strategies for protecting domestic animals from carnivore predation.

Synthesis of the science on functional effectiveness

Our four reviews [6–9] jointly screened >27,000 candidate studies. The four sets of inclusion criteria differed in geographic coverage, carnivore species, and standards of evidence and research design (see <u>S1 Table</u>), which limited overlap in the studies that passed screening (only 19% of studies were included in two or more of the four reviews; no study was included in all four, <u>S1 Fig</u>). The differing inclusion criteria also meant that it was not possible to conduct a quantitative comparison (meta-analysis) combining the data from our four reviews, but we suggest that such an analysis should be conducted in the future as evidence increases. None-theless, our reviews came to remarkably similar conclusions, irrespective of methods, suggesting that our conclusions are robust.

Among the 114 studies that passed screening in one or more reviews (S2 Table), representing >40 years of research, we found few that yielded strong inference about functional effectiveness. Surprisingly, many widely used methods have not been evaluated using controlled experiments. Also, few interventions have been compared side by side or tested singly under diverse conditions. These deficiencies in the literature are further compounded by disagreement among scientists, managers, and peer-reviewed journals about standards of evidence, such as which study designs produce strong inference [8]. We acknowledge the challenges of regional experiments amid dynamic, complex ecologies, publics, and jurisdictions. However, a handful of random-assignment experimental studies without bias ("gold standard") have proven that the obstacles are surmountable [8, 10, 11, 12].

We summarize our four sets of results by category of intervention in Fig 1. Our reviews agree that several methods have been tested numerous times with high standards of evidence and have been found effective: livestock guardian animals, enclosures for livestock, and a visual deterrent called fladry. Importantly, we should recognize that the effectiveness of different methods will vary under different contexts, and there is currently a bias among research toward certain geographic regions and predator types (Fig 2). Further, we agree that standards of evidence have been higher for nonlethal methods, and there remains a need to ensure data on all interventions are collected appropriately and consistently. As such, building on existing criticism of the lack of appropriate data collection in environmental management [13–16], our reviews collectively highlight the need to improve standards of evidence used in evaluating interventions. We need to develop a comprehensive evidence base that allows us to compare the effectiveness of interventions for reducing carnivore predation on livestock and inform consistent policy in any jurisdiction.

Importance of rigorous experimental design and evaluation

Societal values and, accordingly, policies for human–carnivore coexistence have changed over the millennia. The almost exclusive use of lethal interventions has given way to nonlethal interventions as important supplements to or replacements for prior lethal methods. Immense logistical and financial resources are invested in protecting livestock and carnivores, so the scarcity of rigorous scientific evidence for effectiveness should be a concern. We encourage governments to adopt proven methods from similar systems of carnivores and human

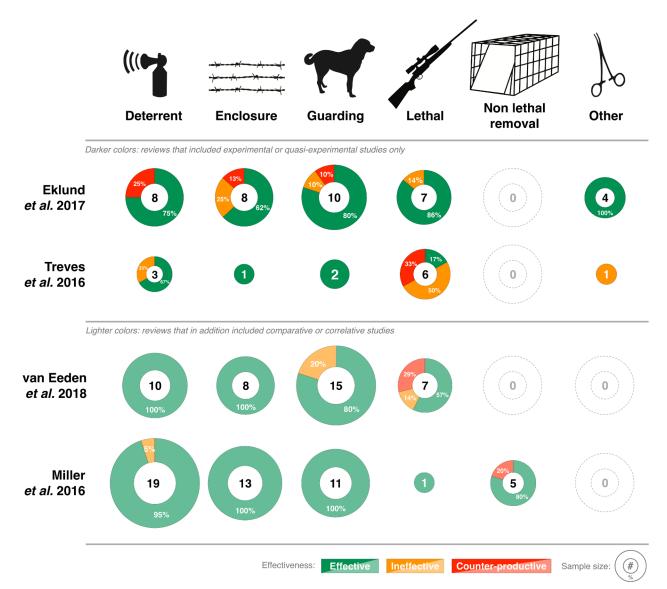
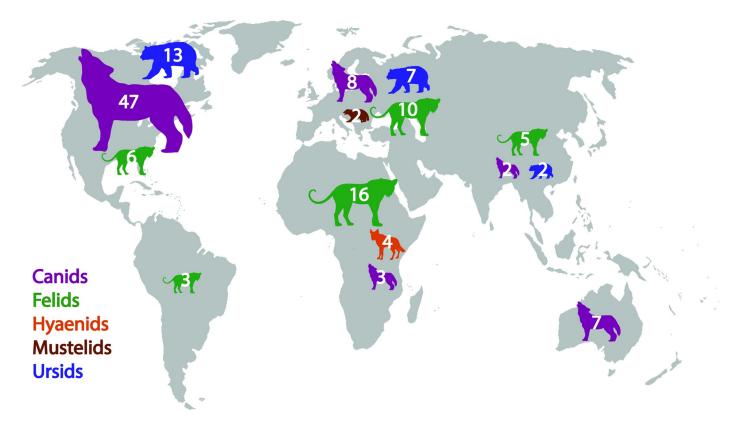



Fig 1. Percent of studies that measured interventions as "Effective," "Ineffective," or "Counter-productive" in reducing livestock loss to large carnivores, as measured by four independent reviews in 2016–2018. The sample sizes inside disks represent the number of studies or tests, as some studies reported more than one test of the same or different interventions. Darker colors represent reviews that included experimental or quasiexperimental controls; lighter colors represent reviews that also included comparative or correlative studies (see <u>S1 Table</u> for details). "Deterrents" include nonlethal interventions such as audio or visual deterrents, fladry, and livestock protection collars. "Enclosure/barrier" includes electrified and nonelectrified fencing and corralling. "Guarding" includes human shepherding and livestock guardian animals. "Lethal removal" includes human shepherding and livestock guardian animals. "Lethal removal" includes human diversionary feeding. Eklund and colleagues measured effectiveness using RR and classified Effective as RR < 0.90, Ineffective = 0.90–1.10, and Counterproductive RR > 1.10. Treves and colleagues measured effectiveness as significant change in livestock loss. Note that Treves and colleagues initially contained 12 studies with 14 separate tests using gold or silver standards, but one test was subsequently removed after review of the methods found it impossible to draw strong inference [17]. van Eeden and colleagues measured effectiveness as Hedges' *d* and classified Effective as d < -0.05, Ineffective -0.05 > d < 0.05, and Counterproductive d > 0.05. Miller and colleagues measured effectiveness as percentage change in livestock loss (or carnivore behavior change) and classified Effective as d > 0% change, Ineffective = 0%, and Counterproductive < 0%. RR, relative risk.

https://doi.org/10.1371/journal.pbio.2005577.g001

interests, with systems in place to review and adapt management actions as new evidence becomes available. When governments contemplate large-scale implementation or funding for interventions, scientific evidence of functional effectiveness deserves priority to avoid wasting

Fig 2. Number of studies included in four independent reviews published in 2016–2018, presented by carnivore family and continent. Canids include gray wolves and subspecies (*Canis lupus*), coyotes (*C. latrans*), dingoes (*C. dingo*), black-backed jackals (*C. mesomelas*), African wild dogs (*Lycaon pictus*), red foxes (*Vulpes vulpes*), and domestic dogs (*C. familiaris*). Felids include Eurasian lynx (*Lynx lynx*), cougars (*Puma concolor*), lions (*Panthera leo*), jaguars (*P. onca*), leopards (*P. pardus*), snow leopards (*P. uncia*), caracals (*Caracal caracal*), and cheetahs (*Acinonyx jubatus*). Hyaenids include spotted hyenas (*Crocuta crocuta*). Mustelids feature wolverines (*Gulo gulo*). Ursids include American black bears (*Ursus americanus*), Asiatic black bears (*U. thibetanus*), brown or grizzly bears (*U. arctos*), and polar bears (*U. maritimus*). Smaller carnivores (e.g., red foxes, hyenas, and caracals) are included in studies that investigated multiple carnivore species of varying sizes.

https://doi.org/10.1371/journal.pbio.2005577.g002

resources on ineffective methods, no matter if the latter are ethical or easy to implement. When no proven method is available, scientific evaluation of functional effectiveness should coincide with implementation.

Strong inference in any scientific field demands control over potentially confounding variables and testable claims about functional effectiveness of interventions [8]. In our context, all methods present opposable hypotheses, i.e., method X works or does not work. Several experimental design components are essential to strong inference about that hypothesis, and we focus here on the three of topmost priority for yielding strong inference about livestock protection interventions: controls, randomization, and replication.

The strongest inference results from experiments that achieve the "gold standard" through "random assignment to control and treatment groups without bias (systematic error) in sampling, treatment, measurement, or reporting" [8]. This requires that an intervention be used to protect a livestock herd (treatment) and that its effectiveness is compared against a livestock herd that is not exposed to the intervention (placebo control). Both treatment and control should be replicated using multiple independent herds of livestock that are distributed so that the effects of treatment on one herd do not confound the effects on another herd, which would eliminate independence. Random assignment of treatments avoids sampling or selection bias that is common in our field [8], as in others [18]. Implementing random assignment for actual

livestock herds can be challenging, but several studies have succeeded, such as those conducted by Davidson-Nelson and Gehring [10] and Gehring and colleagues [11]. In the Chilean altiplano, 11 owners of alpacas (*Vicugna pacos*) and llamas (*Lama glama*) joined a randomized reverse treatment (crossover) experiment to evaluate light devices in deterring carnivores [12]. Moreover, if large numbers of replicates are infeasible or replicates are unavoidably heterogeneous, then crossover, reverse treatment designs should help to increase the strength of inference about interventions [8, 12, S2 Table].

"Silver standard" designs provide weaker inference because of nonrandom assignment to treatment and then repeated measures of the replicate at two or more time points (before-andafter comparison of impact or quasiexperimental designs, also called case control). Both time passing and the treatment might explain changes in replicates, in addition to the extraneous "nuisance" variables present in agro-ecosystems at the outset [8].

The weakest standard of evidence is the correlative study, which compares livestock predation among herds that varied haphazardly in past protection or varied systematically if people intervened only where livestock had died. In correlational studies, confounding variables inevitably create selection or sampling bias. Although correlative studies may be useful as an initial exploratory step and help direct further research, confidence in their findings should be low, especially if there is large variation in the results. Correlative studies cannot substitute for the silver or gold standards described above.

Implementation of interventions must be consistent to avoid treatment bias. For example, the functional effectiveness of livestock-guarding dogs might vary with breed, individual, training, and maintenance of the dog. Likewise, tests of lethal methods have never controlled the simultaneous use of several methods of intervention (e.g., pooling shooting and trapping as one treatment), which is inadvisable for strong inference. Consistent maintenance of interventions throughout a study should also minimize treatment bias [18].

Well-designed experiments should incorporate evaluation along multiple dimensions. Was the intervention implemented as planned? Did attacks on livestock diminish? Measurement bias arises from systematic error in documenting implementation or losses in treatment or response variables. As in biomedical research, which sometimes uses patient self-reports as a subjective measure of effectiveness alongside objective measures of health outcomes, there are valid reasons to measure owners' perceptions of effectiveness of interventions. In human-wildlife interactions, people's attitudes can influence the adoption or rejection of interventions independently of scientific evidence [14,19]. Several of the reviews included metrics of perceived effectiveness among livestock owners, yet perception alone is not a reliable measure of functional effectiveness because of widespread placebo effects, whereby patients feel better simply because they have participated. Studies should therefore either "blind" their participants or use an independent, verifiable measure of effectiveness (i.e., livestock loss).

We recognize that gold or silver standards may be difficult to achieve. Systematic errors can be difficult to eliminate entirely, so we urge careful consideration of methods during the design process, including peer review prior to initiation. Ethical considerations about exposing animals to lethal risks may limit experimental designs. This inherent difficulty for controlled experiments may explain why some published experiments were completed in artificial settings (e.g., using captive carnivores or measuring bait consumption rather than livestock loss). Although most of our reviews omitted experiments for protecting property other than livestock, strong inference from such studies merit tests for livestock protection. Nonetheless, given that several examples of gold standard experiments overcame the complexities of people and wild ecosystems [5, 10, 11, 12], we urge greater effort and recommend government support and accolades for the highest standards of experimentation.

Incorporating science into conflict mitigation and conservation

Many governments have institutionalized support for livestock protection from predators and implemented various interventions at landscape scales. The European Council Directive 98/ 58/EC, concerning protection of animals kept for farming purposes, states that "animals not kept in buildings shall where necessary and possible be given protection from adverse weather conditions, predators and risks to their health." The Swedish Animal Welfare Act of 1988 mandates care should be given to injured animals as soon as possible. This obligation is in practice relevant subsequent to carnivore attacks. When trained field observers confirm livestock attacks by large carnivores, they also implement rapid response interventions, such as fladry and portable electric fences, to prevent recurrent attacks [20]. In the United States, in 2013 alone, the US Department of Agriculture killed >75,000 coyotes, 320 gray wolves (*Canis lupus*), and 345 cougars (*Puma concolor*) [21]. Similarly, in some Australian states, landowners and managers are required by law to actively control dingoes (*C. dingo*) on their property.

Given the weak state of current evidence about effectiveness, decisions to use interventions are most likely based on subjective factors (e.g., ethics, opinions, or perceptions) or nonscientific (and thus possibly biased) evidence. For example, many people have deeply rooted perceptions that an intervention is effective or not [19]. Therefore, research, promoted by policy, is needed to validate that perceptions align with measurable and scientifically defensible outcomes [14]. This is especially crucial in cases of lethal interventions, which entail multiple drawbacks, including ethical criticisms and the potential to hasten carnivore declines and impede population recoveries.

However, scientists alone cannot transform policies for implementation. The pursuit of science-based management must be truly interdisciplinary and involve carnivore ecologists, animal husbandry scientists, social scientists, natural resource managers, ethicists, and other scholars and practitioners. Political leaders can also play a role to prioritize, coordinate, and fund partnerships across government agencies and nongovernment organizations. Because we anticipate continued debate over the standards of effectiveness, we recommend a coalition be formed to clearly distinguish standards for evaluation and experimental protocols, which would be distinct from coalitions convened to consider local factors that affect decisions. Through collaboration, scientists, managers, and policy leaders can help to protect livestock within healthy ecosystems that include carnivores. Constituents worldwide increasingly support the restoration of carnivore populations and accordingly are calling for human–carnivore coexistence and minimizing conflicts [2]. Enabling coexistence through evidence-based solutions will give the public strong confidence in methods promoted by scientists and governments, particularly when implementation is difficult or the ethics are controversial.

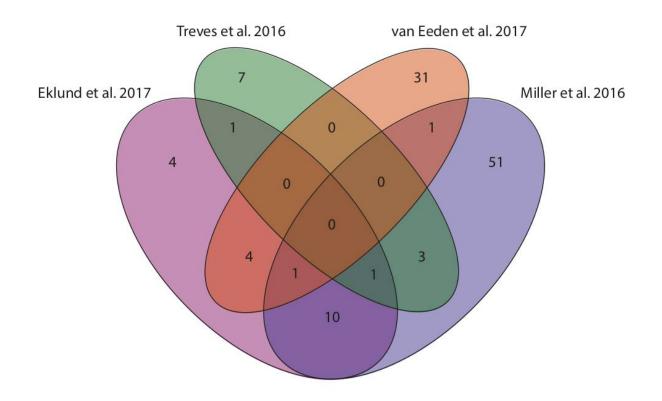
Supporting information

S1 Table. Methods used by authors' reviews. Methods have been simplified for comparison. Refer to the original articles for a full account of methods used and justification for the use of these methods.

(DOCX)

S2 Table. Studies included in the four reviews. (DOCX)

S1 Fig. Overlap of studies included in each of the four independent reviews that evaluated evidence of functional effectiveness of interventions in reducing carnivore attacks on live-stock. (TIF)


References

- Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, et al. Status and ecological effects of the world's largest carnivores. Science. 2014; 343(6167):1241484. https://doi.org/10.1126/ science.1241484 PMID: 24408439
- Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D, Andrén H, et al. Recovery of large carnivores in Europe's modern human-dominated landscapes. Science. 2014; 346(6216):1517–9. https://doi.org/10.1126/science.1257553 PMID: 25525247
- Treves A, Bruskotter J. Tolerance for predatory wildlife. Science. 2014; 344(6183):476–7. https://doi. org/10.1126/science.1252690 PMID: 24786065
- Sutherland WJ, Pullin AS, Dolman PM, Knight TM. The need for evidence-based conservation. Trends in Ecology & Evolution. 2004; 19(6):305–8. https://doi.org/10.1016/j.tree.2004.03.018 PMID: 16701275
- Platt JR. Strong inference. Science. 1964; 146:347–53. https://doi.org/10.1126/science.146.3642.347 PMID: 17739513
- Eklund A, López-Bao JV, Tourani M, Chapron G, Frank J. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Scientific Reports. 2017; 7(1):2097. https://doi.org/10.1038/s41598-017-02323-w PMID: 28522834
- Miller JRB, Stoner KJ, Cejtin MR, Meyer TK, Middleton AD, Schmitz OJ. Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores. Wildlife Society Bulletin. 2016; 40 (4):806–15. https://doi.org/10.1002/wsb.720
- Treves A, Krofel M, McManus J. Predator control should not be a shot in the dark. Frontiers in Ecology and the Environment. 2016; 14(7):1–9. https://doi.org/10.002/fee.1312
- van Eeden LM, Crowther MS, Dickman CR, Macdonald DW, Ripple WJ, Ritchie EG, et al. Managing conflict between large carnivores and livestock. Conservation Biology. 2018; 32(1):26–34. https://doi. org/10.1111/cobi.12959 PMID: 28556528
- Davidson-Nelson SJ, Gehring TM. Testing fladry as a nonlethal management tool for wolves and coyotes in Michigan. Human-Wildlife Interactions. 2010; 4(1):87–94. <u>https://digitalcommons.usu.edu/hwi/vol4/iss1/11</u>
- Gehring TM, VerCauteren KC, Provost ML, Cellar AC. Utility of livestock-protection dogs for deterring wildlife from cattle farms. Wildlife Research. 2010; 37(8):715–21. https://doi.org/10.1071/wr10023
- 12. Ohrens O, Bonacic C, Treves A. Non-lethal defense of livestock against predators: Flashing lights deter puma attacks in Chile. Frontiers in Ecology and Evolution. 2018 (in press). Available from: http://faculty.nelson.wisc.edu/treves/pubs/Ohrens%20et%20al%202018a.pdf
- Mitchell BR, Jaeger MM, Barrett RH. Coyote depredation management: current methods and research needs. Wildlife Society Bulletin. 2004; 32(4):1209–18. https://doi.org/10.2193/0091-7648(2004)032 [1209:CDMCMA]2.0.CO;2
- Ohrens O, Santiago-Âvila FJ, Treves A. The twin challenges of preventing real and perceived threats to livestock. In: Frank B, Marchini S, Glikman J, editors. Human-wildlife interactions: turning conflict into coexistence. Cambridge: Cambridge University Press; 2018. Available from: http://faculty.nelson.wisc. edu/treves/pubs/pre-proof_Ohrens_etal_2018b.pdf
- Romesburg HC. Wildlife science: gaining reliable knowledge. The Journal of Wildlife Management. 1981; 45(2):293–313. https://doi.org/10.2307/3807913
- Treves A, Naughton-Treves L. Evaluating lethal control in the management of human-wildlife conflict. In: Woodroffe R, Thirgood S, Rabinowitz A, editors. People and wildlife: conflict or coexistence? Conservation Biology. Cambridge, UK: Cambridge University Press; 2005. p. 86–106. Available from: http://faculty.nelson.wisc.edu/treves/pubs/Lethal_control_2005.pdf
- Santiago-Avila FJ, Cornman AM, Treves A. Killing wolves to prevent predation on livestock may protect one farm but harm neighbors. PLoS ONE. 2018; 13(1):e0189729. https://doi.org/10.1371/journal.pone. 0189729
- Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005; 2(8):e124. <u>https://doi.org/10.1371/journal.pmed.0020124</u> PMID: 16060722
- **19.** Treves A, Wallace RB, Naughton-Treves L, Morales A. Co-managing human-wildlife conflicts: a review. Human Dimensions of Wildlife. 2006; 11(6):383–96. https://doi.org/10.1080/10871200600984265
- López-Bao JV, Frank J, Svensson L, Åkesson M, Langefors Å. Building public trust in compensation programs through accuracy assessments of damage verification protocols. Biological Conservation. 2017; 213:36–41. https://doi.org/10.1016/j.biocon.2017.06.033
- 21. United States Department of Agriculture. 2016 Program Data Reports: Animal and Plant Health Inspection Service, United States Department of Agriculture; 2017 [cited 2017 6th December]. Available from: https://www.aphis.usda.gov/aphis/ourfocus/wildlifedamage/SA_Reports/SA_PDRs.

Supporting Information

Carnivore conservation needs evidence-based livestock protection

Lily M. van Eeden^{1*}†, Ann Eklund^{2*}†, Jennifer R. B. Miller^{3,4*}†, José Vicente López-Bao⁵, Guillaume Chapron², Mikael R. Cejtin^{6,7}, Mathew S. Crowther¹, Christopher R. Dickman¹, Jens Frank², Miha Krofel⁸, David W. Macdonald⁹, Jeannine McManus^{10,11}, Tara K. Meyer¹², Arthur D. Middleton³, Thomas M. Newsome^{1,13,14}, William J. Ripple¹⁴, Euan G. Ritchie¹⁵, Oswald J. Schmitz¹², Kelly J. Stoner¹⁶, Mahdieh Tourani¹⁷, Adrian Treves^{18*}† †Authors contributed equally

PLOS Biology 2018

Figure S2. Overlap of studies included in each of the four independent reviews that evaluated evidence of functional effectiveness of interventions in reducing carnivore attacks on livestock.

S1 Table. Methods used by authors' reviews. Methods have been simplified for comparison. Refer to the original articles for a full account of methods used and justification for the use of these methods.

	Miller et al. 2016 [6]	Treves et al. 2016 [7]	Eklund et al. 2017 [5]	Van Eeden et al. 2018 [8]
Databases searched and other sources	 Web of Science (All databases) Carnivore Ecology and Conservation database Snow-ball sampling 	 Google scholar Snow-ball sampling 	Zoological Record	 Web of Science (All databases) SCOPUS Google Scholar European LIFE Commission Project database Snow-ball sampling Contacted authors and organizations
Search methods and terms	 Compound search terms included the technique (e.g., deterrent) or a specific intervention (e.g., aversive stimuli or behavior conditioning) plus 1 of 7 general keywords related to livestock depredation conflict: Human–carnivore conflict, livestock depredation, human–carnivore coexistence, mitigation, depredation management, depredation prevention, or depredation control. Searches followed the formula: (technique or intervention) and (conflict keyword). 	 Repeated searches, followed by a snowball method using the reference lists of >100 articles identified in the search. Searched using key words: (Control, Damage, Depredation, Lethal, Non- lethal, Removal, or Livestock) AND (Predat*, Carnivor*). 	 Searched using the subject descriptors: Carnivora OR Canidae OR Felidae OR Hyaenidae OR Mustelidae OR Procyonidae OR Ursidae OR Viverridae These items were then refined using the following search string: "depredation OR stock OR poultry OR damage OR mitigation OR conflict OR control OR cull OR cow OR bull OR calf OR calves OR chicken OR hen OR ewe OR lamb OR pet OR cat OR hound OR pony OR ponies OR mule OR 	 Combinations of search terms from the following categories: Carnivore: Bear*, Canid*, <i>Canis</i>, Carnivore*, Cheetah*, Cougar or puma, Coyote*, <i>Crocuta</i>, Dingo*, Fox*, Hyena or hyaena, Jaguar*, Leopard*, Lion*, <i>Lycaeon</i> or <i>Lycaon</i>, Lynx*, <i>Panthera</i>, Predat*, Tiger*, <i>Uncia</i>, Wild dog*, Wildlife, Wolf, Wolves. Livestock: Beef, Calf, Calves, Cattle, Chicken, Cows, Farm*, Lamb*, Poultry, Sheep, Stock. Impact: Conflict, Damag*, Loss.

	Miller et al. 2016 [6]	Treves et al. 2016 [7]	Eklund et al. 2017 [5]	Van Eeden et al. 2018 [8]
	 Deterrents: Aversive stimuli, Behavior conditioning, Behavior modification, Disruptive stimuli, Repellent. Indirect management of land or prey: Buffer zone, Core zone, Grazing areas, Land use conflict, Wild prey, Wild ungulate. Predator removal: Contraception, Lethal control, Population control, Problem animal, Retaliation, Retaliatory killing, Translocation Preventive husbandry: Barrier, Grazing, Guard animal, Guard dog, Guards, Herd, Herder, Hotspot, Husbandry, Livestock breed, Penning, Sensory deterrent or repellent, Separation, Shepherd. 		reindeer OR llama OR yak OR buffalo OR livestock OR cattle OR sheep OR goat OR horse OR pig OR dog OR attack OR camel OR donkey".	 Intervention: 1080, Bait*, Chemical repellent, Compensation, Condition NEAR/2 aversion, Control, Cull, Denning, Dogging, Donkey, Farm*, Fenc*, Fladry, Guard* dog, Hunt*, Husbandry, Insurance, Livestock guard*, Livestock guard*, Livestock protect*, Llama, M-44, Management, Non\$lethal, Poison, Protection collar, Range rid*, Scaring, Shoot*, Sterili*, Translocat*, Trap* Excluded terms: Arthropod, Beetle*, Fish*, *flies, *fly, Hemiptera, Heteroptera, Insect*, Parasit*, Pesticide.
Publications	Peer-reviewed	Peer-reviewed	Peer-reviewed	Peer-reviewed, gray literature, and raw data
Languages	English	English and Slovenian	English	English search terms only; 3 non-English language studies were identified and included.
Time period	All years (through 2015).	All years (through 2016).	1990-2016	All years (through 2016).

	Miller et al. 2016 [6]	Treves et al. 2016 [7]	Eklund et al. 2017 [5]	Van Eeden et al. 2018 [8]
Geographic scope	Global	North America and Europe	Global	Global
Carnivore species considered	 Large carnivores with body mass >15 kg [1]. 28 species (all considered) 	 Free- ranging, native carnivores of North America and Europe > 5 kg. 6 species (final review) 	Terrestrial mammalian large carnivore species with body mass >15 kg (Ripple, Estes (1), plus coyotes and wolverines. • 30 species (all considered)	 Focused on large carnivores as defined by Ripple, Estes (1) but some studies considered small <i>and</i> large species (e.g. foxes, coyotes). 11 species (final review)
Definition of technique effectiveness	Change in livestock losses or the potential for an attack (e.g., percent reduction in livestock losses or carnivore visits to a pasture) after techniques were applied.	Whether intervention will protect property owners from future losses.	Change in livestock losses (number of livestock killed, the number of livestock units attacked) or the potential for an attack (manipulation of carnivore behaviour/movement in a way that is expected to reduce exposure of livestock to carnivore predation).	 Change in livestock loss (e.g., percent loss of stock, loss of stock per period, or financial loss) and carnivore incursions into corrals or bomas. Change in number of retaliatory killings of carnivores. Facilitation of coexistence measured as reduction in livestock loss or retaliatory killing of carnivores.
Inclusion criteria	 Primary literature that provided numeric metrics (or values for calculating numeric metrics) of effectiveness Reviews were omitted from analysis 	 Criteria for including studies: Studies used experimental or quasi- experimental control with a design that allowed strong inference; Studies occurred on working livestock 	 Included studies were: Included an empirical study of wild (i.e., not captive) carnivores; Included a quantitative evaluation of interventions to 	• Did not analyze changes in human tolerance or perceptions of carnivores; rather, included self- reported changes in livestock losses following introduction of a mitigation measure.

	Miller et al. 2016 [6]	Treves et al. 2016 [7]	Eklund et al. 2017 [5]	Van Eeden et al. 2018 [8]
	Correlative studies were included.	 operations with free-ranging, native carnivores, and 3. Studies verified livestock losses. Correlative studies were excluded, as well as those based only on unverified estimates of livestock loss (e.g. self- reported livestock losses or perceptions of effectiveness), and analyses in which n ≤ 4 subjects (farms or livestock herds) completed the test. 	 prevent/reduce depredation of livestock (excluding apiaries); Included a matched control to which the treatment was compared, i.e. have an experimental or quasi-experimental design. Experimental studies include a randomized case-control study design, quasi- experimental studies include a case-control study design that was not assigned randomly. Correlative studies were excluded. Included a description of the methods used to implement the intervention (treatment) and of a study design sufficient for replication 	 Studies had to be replicated with a before– after or control–impact (BACI) design. Studies had to be field trials on livestock and at least 2 months in duration. Excluded studies involving bait or captive carnivores Some studies that were included did not have strict control treatments; instead compared the effects of an improvement or change in management such as electrification of fences or implementing coordinated rather than ad hoc lethal control.
Data screening and harvesting	Recorded measures of effectiveness, amount of time techniques were effective, large carnivore species involved and country where the study occurred.	 Regarding criterion (1), described in the text why any test was deemed unreliable based on selection, treatment, measurement, or reporting biases (see above). Regarding criterion (2), 	 48,894 titles retrieved from primary search. Initial manual screening of titles reduced number to 27,781. Second manual screening (English language, depredation of domestic 	 Database searches returned 3146 records; 175 were added through less- structured sampling. Mitigation methods were grouped into 5 predefined categories for the meta- analysis: lethal control,

	Miller et al. 2016 [6]	Treves et al. 2016 [7]	Eklund et al. 2017 [5]	Van Eeden et al. 2018 [8]
		 operation as one in which livestock, land, and predators were managed in ways characteristic of a private livestock producer. That criterion excluded tests with captive predators [18]. Regarding criterion (3), excluded studies measuring self- reported livestock losses or perceptions of effectiveness from Table 1. After close reading, excluded >11 studies because they did not provide reliable inference. Several tests were excluded because they were not peer-reviewed, published descriptions of all methods and results. 	 carnivores) left 562 publications. Two authors read papers in full to identify correlational, quasi- experimental, or experimental studies, and identify quantitatively evaluated studies. 	 fencing, shepherding by humans, and deterrents (e.g. aversive conditioning, repellents, and protection devices. 40 papers describing financial incentives were discovered, including 3 that measured success, but these were not considered appropriate for comparison with other mitigation measures because the response variables were changes in farmer attitudes or retaliatory killing rather than livestock loss.
Statistical units	Measures of livestock loss	Livestock loss: number of	Mean number of animals or	• Measures of livestock loss,
of effectiveness	 (e.g. number or percent livestock stock killed) For studies reporting the effectiveness on a community of predators, reported the effectiveness for the predator community as a whole. 	livestock injured or killed by carnivores.	livestock units (e.g. herds) depredated by carnivores, or number of trespasses by carnivores.	e.g. percent loss of stock, loss of stock per period, or financial loss.

	Miller et al. 2016 [6]	Treves et al. 2016 [7]	Eklund et al. 2017 [5]	Van Eeden et al. 2018 [8]
Data Analysis	 Compared the effectiveness of techniques by calculating the magnitude of change between conditions before and after a technique was applied. Calculated the magnitude of change (D) as the percentage deviation from initial conditions following the formula (adapted from Jones and Schmitz (19): D = ([B – A]/B) x 100 where B represents a quantitative measure of conditions (the change in livestock losses or the potential for an attack; e.g., no. of livestock killed) before the mitigation technique was applied and A represents conditions after the technique was applied. This metric afforded a common basis for comparing different techniques by standardizing measures of change in terms of a proportion to facilitate data integration 	Counted tests in various categories. Did not perform a quantitative meta-analysis of effects, because there is no standard for consistent application of treatments and because the variety of methods used even within one category (e.g. different types of traps, or breeds of livestock- guarding dogs [LGDs]) would introduce uncontrollable variation. Furthermore, tests using the silver standard offer weaker inference than those using the gold standard but to an unknown degree.	 Relative risk (or risk ratio, RR) for carnivore depredation or incursions in treatment vs. control groups for each study [20]. RR defined as the ratio between the probability of depredation by large carnivores in the treatment group and the probability of livestock depredation by large carnivores in the control group: Relative Risk(RR) = d/(a + b)/c/(c + d) where <i>a</i> is the number of depredated animals/units in the treatment group, <i>b</i> is the number of unharmed animals/ units in the treatment group, <i>c</i> is the number of depredated animals/units in the control group, and <i>d</i> is the number of unharmed animals/units in the control group. With no difference in the risk of depredation 	 Sample sizes, means, and standard deviations were extracted from the text, tables, or figures from each article or calculated from the data provided. Calculated the standardized effect size as Hedges' <i>d</i> [22] with MetaWin version 2.1 [23]. Hedges' <i>d</i> is an estimate of the standardized mean difference between control and treatment and accounts for variation in study effort such that it is not biased by small sample size [22]. Negative values of <i>d</i> indicated the treatment successfully reduced conflict (e.g., livestock loss declined). Data were analyzed using a random-effects model except where pooled variance was 0 (fixed-effects model used). The mean effect size per category was weighted based on variance and sample size. Total heterogeneity (<i>Q</i>_T) was calculated for each category [23].

	Miller et al. 2016 [6]	Treves et al. 2016 [7]	Eklund et al. 2017 [5]	Van Eeden et al. 2018 [8]
	from different studies that used different units in their response metrics.		 between treatment and control, the relative risk is When RR > 1, the risk depredation is more likely to occur in the treatment group. When RR < 1 depredation risk is higher in the control group. For calculation of RR used the mean number of animals in treatment and control herds, as reported in the original studies (n = or calculated from the reported true numbers for several herds (n = 11), as well as the number of livestock units (n = 2). Reported odds-ratios were converted to RR using an online odds ratio to risk ratio calculator [21], and Hazards Ratio were report herd sizes; paper authors of two of these studies provided this data. 	• Summarized data on change in carnivore killing as a proxy for tolerance because killing suggested an unwillingness to coexist.
Number of studies included	67	12	21	37

References for Table S1

- 1. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, et al. Status and ecological effects of the world's largest carnivores. Science. 2014;343(6167):1241484. doi: 10.1126/science.1241484.
- 2. Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D, Andrén H, et al. Recovery of large carnivores in Europe's modern human-dominated landscapes. Science. 2014;346(6216):1517-9. doi: 10.1126/science.1257553.
- 3. Sutherland WJ, Pullin AS, Dolman PM, Knight TM. The need for evidence-based conservation. Trends in Ecology & Evolution. 2004;19(6):305-8. doi: http://dx.doi.org/10.1016/j.tree.2004.03.018.
- 4. Platt JR. Strong inference. Science. 1964;146:347-53.
- 5. Eklund A, López-Bao JV, Tourani M, Chapron G, Frank J. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Scientific Reports. 2017;7(1):2097.
- 6. Miller JRB, Stoner KJ, Cejtin MR, Meyer TK, Middleton AD, Schmidtz OJ. Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores. Wildlife Society Bulletin. 2016;40(4):806-15.
- 7. Treves A, Krofel M, McManus J. Predator control should not be a shot in the dark. Frontiers in Ecology and the Environment. 2016;14(7):1-9. doi: 10.002/fee.1312.
- 8. van Eeden LM, Crowther MS, Dickman CR, Macdonald DW, Ripple WJ, Ritchie EG, et al. Managing conflict between large carnivores and livestock. Conservation Biology. 2018;32(1):26-34. doi: 10.1111/cobi.12959.
- 9. Iomandis JP. Why most published research findings are false. PLoS Medicine. 2005;2:e124.
- 10. Davidson-Nelson SJ, Gehring TM. Testing fladry as a nonlethal management tool for wolves and coyotes in Michigan. Human-Wildlife Interactions. 2010;4(1).
- 11. Mukherjee S. The emperor of all maladies: a biography of cancer. New York: Scribner; 2010.
- 12. Treves A, Wallace RB, Naughton-Treves L, Morales A. Co-managing human-wildlife conflicts: a review. Human Dimensions of Wildlife. 2006;11(6):383-96. doi: http://dx.doi.org/10.1080/10871200600984265.
- 13. Wooldridge DR. Polar bear electronic derrent and detection systems. Bears: Their Biology and Management, A Selection of Papers from the Fifth International Conference on Bear Research and Management; February 1980; Madison WI, USA: International Assocation for Bear Research and Management; 1983. p. 264-9.
- 14. United States Department of Agriculture. 2016 Program Data Reports: Animal and Plant Health Inspection Service, United States Department of Agriculture; 2017 [cited 2017 6 December]. Available from: https://www.aphis.usda.gov/aphis/ourfocus/wildlifedamage/SA_Reports/SA_PDRs.
- 15. López-Bao JV, Frank J, Svensson L, Åkesson M, Langefors Å. Building public trust in compensation programs through accuracy assessments of damage verification protocols. Biological Conservation. 2017;213:36-41.
- 16. Scasta JD, Stam B, Windh JL. Rancher-reported efficacy of lethal and non-lethal livestock predation mitigation strategies for a suite of carnivores. Scientific Reports. 2017;7:14105. doi: 10.1038/s41598-017-14462-1.
- 17. Santiago-Avila FJ, Cornman AM, Treves A. Killing wolves to prevent predation on livestock may protect one farm but harm neighbors. PLOS One. in press.
- 18. Jaeger MM. Selective targeting of alpha coyotes to stop sheep depredation. Sheep & Goat Research Journal. 2004;19:80-4.
- 19. Jones HP, Schmitz OJ. Rapid recovery of damaged ecosystems. PLoS One. 2009:4x5653.
- 20. Higgins JPT, Green S. Cochrane handbook for systematic reviews of Intervetions 2011 [04/04/2011]. Available from: http://handbook.cochrane.org/front_page.htm.
- 21. Kane SP. Odds Ratio to Risk Ratio calculator 2016 [04/04/2017]. Available from: http://clincalc.com/Stats/ConvertOR.aspx.
- 22. Hedges LV, Olkin I. Statistical methods for meta-analysis. Orlando, Florida: Academic Press, Inc.; 1985. 369 p.
- 23. Rosenberg MS, Adams DC, Gurevitch J. MetaWin: statistical software for meta-analysis. 2 ed. Sunderland, Massachusetts: Sinauer Associates, Inc.; 2000.

S2 Table. Studies included in the four reviews.

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. <i>[3]</i>	van Eeden et al. [4]
						-7F-		Proceedings of	1-1	,	1-1	
								the 16th				
Acorn &		An evaluation of anti-coyote						Vertebrate Pest				
Dorrance [5]	1994	electric fences	Canada	Fencing	Coyote	Sheep	3 years	Conference				Х
		Wild dog control impacts on calf						Animal				
		wastage in extensive beef cattle						Production				
Allen [6]	2013	enterprises	Australia	Lethal control	Dingo	Cattle	3-4 years	Science				Х
		More buck for less bang: reconciling competing wildlife management interests in										
Allen [7]	2014	agricultural food webs	Australia	Lethal control	Dingo	Cattle	33 years	Food Webs				Х
	2014	The effect of dingo control on	/ susuana		Diligo	Cattle	55 years	Journal of		<u> </u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Allen &		sheep and beef cattle in				Sheep,		Applied				
Sparkes [8]	2001	Oueensland	Australia	Lethal control	Dingo	Cattle		Ecology		Х		
~		Effectiveness of livestock										
		guarding dogs for reducing	United					Wildlife				
Andelt [9]	1992	predation on domestic sheep	States	Guardian animals	Coyote	Sheep	1 year	Society Bulletin	Х			Х
		Relative effectiveness of			Coyotes, dogs,		ž					
		guarding-dog breeds to deter			mountain lions,							
		predation on domestic sheep in	United		black bears,		8 year	Wildlife				
Andelt [10]	1999	Colorado	States	Guardian animals	foxes, etc.	Sheep	comparison	Society Bulletin				Х
		Livestock guard dogs reduce						Journal of				
Andelt &		predation on domestic sheep in	United	Fencing, Guardian	American black			Range				
Hopper [11]	2000	Colorado	States	animals	bear	Sheep		Management		Х		
Anderson et		Grizzly bear-cattle interactions on two grazing allotments in	United	Lethal control, translocation, aversive								
al. [12]	2002	northwest Wyoming	States	conditioning	Grizzly bear	Cattle	2 years	Ursus		Х		
		Electric fencing of fallow deer						Carnivore				
		enclosures in Switzerland - a						Damage				
Angst [13]	2001	predator proof method	Switzerland	Fencing	Lynx	Deer	Avears	Prevention News				х
Augst [15]	2001	Übergriffe von Luchsen auf	Switzerland	Tenenig	Lyllx	Deei	4 years	INCWS	+	<u> </u>		Λ
		Kleinvieh und Gehegetiere in der										
Angst et al.		Schweiz, Teil II: Massnahmen				Sheep,						
[14]	2002	zum Schutz von Nutztieren	Switzerland	Shepherds	Lynx	Goats, Deer	8 years	Report: KORA				Х
[*]	2002	Translocation as a tool for	Switzerfulld	Shepherus	Lynx	50003, 2001	o years	Report. RORA		1		
		mitigating conflict with leopards										
Athreya et		in human-dominated landscapes				Goats,		Conservation				
al. [15]	2010	of India	India	Translocation	Leopard	Cattle		Biology		Х		

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. <i>[1]</i>	Miller et al. [2]	Treves et al. <i>[3]</i>	van Eeden et al. [4]
Azevedo & Murray [16]	2007	Evaluation of potential factors predisposing livestock to predation by jaguars	Brazil	Zoning, Land-use	Jaguar, Puma	Cattle, Water Buffalo, Goats, Fowl, Dogs, Cats	3 years	Journal of Wildlife Management		X		
Bagchi & Mishra [17]	2006	Living with large carnivores: predation on livestock by the snow leopard (<i>Uncia uncia</i>)	India	Zoning, Land-use	Snow leopard	Yak, Cattle, Cattle–yak hybrid, Horse, Donkey, Sheep, Goat	2 years	Journal of Zoology		X		
Bauer et al.	2015	Financial compensation for damage to livestock by lions on community rangelands in Kenya	Kenya	Financial Incentives	Lion	Cattle, Sheep, Goats, Donkeys	12 years	Oryx				X
Bauer et al. [19]	2010	Assessment and mitigation of human-lion conflict in West and Central Africa	Benin, Cameroon	Enclosure	Hyena, Lion	Cattle, Sheep, Goat	2 years	Mammalia	х	X		
Beckmann et al. [20]	2004	Evaluation of deterrent techniques and dogs to alter behavior or "nuisance" black bears	United States	Deterrents	American black bear		5 years	Wildlife Society Bulletin		X		
Bjorge & Gunson [21]	1985	Evaluation of wolf control to reduce cattle predation in Alberta		Lethal control	Wolf	Cattle	6 years	Journal of Range Management		Λ		x
Blejwas et al. [22]	2002	The effectiveness of selective removal of breeding coyotes in reducing sheep predation	United States	Lethal control	Coyote	Sheep	2.8	Journal of Wildlife Management	X			
Bradley & Pletscher [23]	2005	Assessing factors related to wolf depredation of cattle in fenced pastures in Montana & Idaho	United States	Preventive husbandry	Wolf	Cattle	8 years	Wildlife Society Bulletin		X		
Bradley et al. [24]	2004	An evaluation of wolf-livestock conflicts and management in the Northwestern United States (MS thesis)	United States		Wolf			MSc Thesis: University of Montana			X	
Bradley et al. [25]	2005	Evaluating wolf translocation as a nonlethal method to reduce livestock conflicts in the northwestern United States	United States	Translocation	Wolf	Unclear	13 years	Conservation Biology		х		
Bradley et al. [26]	2015	Effects of wolf removal on livestock depredation recurrence and wolf recovery in Montana, Idaho, and Wyoming	United States	Lethal control, Translocation	Wolf	Sheep, Cattle, Other	1850 days	Journal of Wildlife Management	X			

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. [3]	van Eeden et al. [4]
Breck et al.		A shocking device for protection of concentrated food sources	United					Wildlife				l l
[27]	2006	from black bears	States	Deterrents	Wolf	Sheep	3 years	Society Bulletin		Х		
Breck et al. [28]	2002	Non-lethal radio activated guard for deterring wolf depredation in Idaho: summary and call for research	United States	Deterrents	American black bear			Proceedings of the 20th Vertebrate Pest Conference		x		
Breck et al. [29]	2011	Domestic calf mortality and producer detection rates in the Mexican wolf recovery area: implications for livestock management and carnivore compensation schemes	United States	Calving time	Mexican wolf	Cattle	4 years	Biological Conservation		X		
Bromley & Gese [30]	2001	Surgical sterilization as a method of reducing coyote predation on domestic sheep	United States	Sterilization	Coyote	Lambs	5-23 days	Journal of Wildlife Management	X			
Ciucci & Boitani [31]	1998	Wolf and dog depredation on livestock in central Italy	Italy	Fencing	Wolf	Lamos	3-23 days	Wildlife Society Bulletin	Λ	x		
Conner et al. [32]	1998	Effect of coyote removal on sheep depredation in northern California	United States	Lethal control	Coyote	Sheep		Journal of Wildlife Management			X	
Davidson- Nelson & Gehring [33]	2010	Testing fladry as a nonlethal management tool for wolves and coyotes in Michigan	United States	Fladry	Wolves and Coyotes	Sheep, Cattle	75 days	Human- Wildlife Interactions	X		Х	
deCalesta & Cropsey [34]	1978	Field test of a coyote-proof fence	United States	Fencing	Coyote	Sheep	1 year	Wildlife Society Bulletin				х
Dorrance &		An evaluation of anti-coyote						Journal of Range				
Bourne [35] Edgar et al.	1980	electric fencing Efficacy of an ultrasonic device as a deterrent to dingoes (<i>Canis</i> <i>lupus dingo</i>): a preliminary	Canada	Fencing	Coyote	Sheep	5 years	Management Journal of				X
[36]	2007	investigation	Australia	Deterrents	Dingo	None (captiv	ve experiments)	Ethology		х		1
Ellins [37]	2005	Conditioned prey aversions (book chapter in Living with Coyotes)	United States	Deterrents	Coyote	Sheep	2 years	Book Chapter: Living with Coyotes				х
Espuno et al. [38]	2004	Heterogeneous response to preventive sheep husbandry during wolf recolonization of the French Alps	France	Guardian dogs and/or night time corralling	Wolf	Sheep	7 years	Wildlife Society B		X	X	
Gehring et al. [39]	2010	Utility of livestock-protection dogs for deterring wildlife from cattle farms	United States	LGDs	Wolf	Cattle	Multiple years	Wildlife Research	Х	Х	Х	

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. <i>[3]</i>	van Eeden et al. [4]
		Are viable non-lethal management tools available for reducing wolf-human conflict?						Proceedings of the 22nd				
Gehring et		Preliminary results from field	United			Sheep,		Vertebrate Pest				ĺ
al. [40]	2006	experiments	States	Deterrents, Fladry	Wolf	Cattle	2 years	Conference		Х		
Goodrich &		Translocation of problem Amur										
Miquelle	2005	tigers Panthera tigris altaica to	р ·	T 1	T .		Multiple	0		37		İ İ
[41]	2005	alleviate tiger-human conflicts	Russia	Translocation	Tiger		years	Oryx Journal of		X		
		Wolf depredation on domestic animals in the Polish Carpathian						Wildlife				
Gula [42]	2008	Mountains	Poland	None: correlative	Wolf	Sheep	6 years	Management		Х		ļ
		Human-wildlife conflict in northern Botswana: livestock										ĺ
Gusset et al.		predation by endangered African			African Wild							İ İ
[43]	2009	wild dog	Botswana	Enclosures	Dog			Orvx		х		İ İ
[]	,	A 3-year evaluation of taste						Journal of				
Gustavson		aversion coyote control in						Range				İ İ
et al. [44]	1982	Saskatchewan	Canada	Deterrents	Coyote	Sheep	4 years	Management				Х
		Livestock-guarding dogs in						Journal of				İ İ
Hansen &	1000	Norway Part II: different	NT	Counting on involu	Duran have	Chase	2	Range		v		İ İ
Smith [45]	1999	working regimes Effectiveness of lethal, directed	Norway	Guardian animals	Brown bear	Sheep Cattle,	3 months	Management Journal of		X		
Harper et al.		wolf-depredation control in	United			Sheep,		Wildlife				İ İ
[46]	2008	Minnesota	States	Lethal control	Wolf	Turkey	20 years	Management	Х	Х		İ İ
		Assessment of shock collars as						Journal of				
Hawley et		nonlethal management for	United					Wildlife				İ İ
al. [47]	2009	wolves in Wisconsin	States	Deterrents	Wolf	Bait	28 days	Management	Х	Х		
Hazzah et		Efficacy of two lion conservation		Financial incentives and				Conservation				
al. [48]	2014	programs in Maasailand, Kenya	Kenya	other	Lions	Cattle	11 years	Biology				Х
Herfindal et		Does recreational hunting of lynx reduce depredation losses of						Journal of Wildlife				
al. [49]	2005	domestic sheep?	Norway	Lethal control	Lynx	Sheep	6 years	Management		Х	Х	
			United									İ İ
Herrero &		Field use of capsicum spray as a	States and		American black	bear, brown						İ İ
Higgins [50]	1998	bear deterrent	Canada	Deterrents	bear		10 years	Ursus		X		┞────┦
Huygens &		Using electric bear fences to reduce Asiatic black bear										
Hayashi		depredation in Nagano			Asiatic black			Wildlife				
[51]	1999	prefecture, central Japan	Japan	Fencing	bear		5 years	Society Bulletin		Х		
		Relationships between Asiatic		<u> </u>			Í					
Huygens et		black bear kills and depredation			Asiatic black							
al. [52]	2004	costs in Nagano prefecture, Japan	Japan	Lethal control	bear			Ursus		Х		
Iliopolous et	2000	Wolf depredation on livestock in	G	G1 1 1	XX 10	Sheep,		Acta				
al. [53]	2009	central Greece	Greece	Shepherds	Wolf	Goats	21 months	Theriologica	Х	Х	l	

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. <i>[3]</i>	van Eeden et al. [4]
								Proceedings of the Western Section of the				
								American				
Jankovsky		Field trials of coyote repellents in	United					Society of				
et al. [54]	1974	western Colorado	States	Deterrents	Coyote	Sheep	4 months	Animal Science				X
Jelinski et		Coyote predation on sheep, and control by aversive condition in						Journal of				i
al. [55]	1983	Saskatchewan	Canada	Deterrents	Coyote	Sheep	2 years	Range Management				х
ai. [55]	1965	Patterns of human-wildlife	Callada	Night watching,	Coyole	Sheep	2 years	wanagement				Λ
1		conflicts and compensation:		fencing, scare								i
Karanth et		insights from Western Ghats		devices, guard	Tiger, Leopard,			Biological				1
al. [56]	2013	protected areas	India	animals	Fox		2 years	Conservation		Х		1
		Supplemental feeding with										
		carrion is not reducing brown										i
Kavcic et al.		bear depredations on sheep in		Supplementary								i
[57]	2013	Slovenia	Slovenia	feeding	Brown bear			Ursus			Х	
Kolowski &		Spatial, temporal, and physical characteristics of livestock										i
Holecamp		depredation by large carnivores						Biological				1
[58]	2006	along a Kenyan reserve border	Kenya	Enclosure	Hyena, Leopard	Goat, Sheep	14 months	Conservation	х	х		1
[50]	2000	Effectiveness of wolf (<i>Canis</i>	Renya	Eliciosure	Hyena, Ecopara	Goat, blieep	14 montuis	Conservation				
Krofel et al.		<i>lupus</i>) culling as a measure to						Acta Silvae et				1
[59]	2011	reduce livestock depredations	Slovenia	Lethal control	Wolf			Ligni			Х	1
		Protective measures against										
		depredation on sheep:										1
TT . 1 .		shepherding and use of livestock										1
Krogstad et	2000	guardian dogs in Lierne. Final	N		Lynx &	C1						v
al. [60]	2000	report - 2000. Biological, technical, and social	Norway	Guardian animals	wolverine	Sheep	4 years	Report: NINA				X
		aspects of applying electrified										1
Lance et al.		fladry for livestock protection	United					Wildlife				1
[61]	2009	from wolves (<i>Canis lupus</i>)	States	Fladry	Wolf	Cattle	49 days	Research	Х	Х		1
		Factors associated with						Journal of				
Landa et al.		wolverine Gulo gulo predation						Applied				1
[62]	1999	on domestic cheep	Norway	Change livestock	Wolverine	Sheep	3 years	Ecology	Х			l
		Age, sex, and relocation distance										i
		as predictors of return for										i i
· · · ·		relocated nuisance black bears						XX71 11:0				i i
Landriault et	2000	Ursus americanus in Ontario,	Cara 1	Trevente e d'	American black		15	Wildlife		37		i i
al	2009	Canada Efficacité des chiens de	Canada	Translocation	bear		15 years	Biology		X		
		protection contre la prédation du										i i
Landry &		lynx dans le Massif jurassien:						Report: Pôle				1
Raydelet		Présentation préliminaire des						Grands				i i
[63]	2010	résultats de l'enquête de terrain	France	Guardian animals	Lynx	Sheep	23 years	Prédateurs				Х

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. <i>[3]</i>	van Eeden et al. [4]
		Effects of aversive conditioning										
		behavior of nuisance Louisiana	United		American black			Louisiana State				
Leigh [64]	2007	black bears (Thesis)	States	Deterrents	bear			University		Х		'
		Evidence-based conservation:		Fencing (bomas		Cattle,	10 years					
Lichtenfeld		predator-proof bomas protect		and fortified		Shoats,	(9296 boma	Biodiversity &				
et al. [65]	2015	livestock and lions	Tanzania	bomas)	Lions	Donkeys	months)	Conservation	X			Х
			** •. •					Journal of				
Linhart et al.	1000	Electric fencing reduces coyote	United	_ .	<i>a</i>	<i></i>	Average	Range				
[66]	1982	predation on pastured sheep	States	Fencing	Coyote	Sheep	65.67 nights	Management				Х
***		Efficacy of light and sound	** *. *					D				
Linhart et al.	1004	stimuli for reducing coyote	United		<i>a</i>	<i></i>		Protection				
[67]	1984	predation upon pastured sheep	States	Deterrents	Coyote	Sheep	2 years	Ecology				Х
Linhart et al.		Electronic frightening devices for reducing coyote predation on domestic sheep: efficacy under range conditions and operational	United					Proceedings of the 15th Vertebrate Pest				
[68]	1992	use	States	Deterrents	Coyote	Sheep	5 years	Conference				Х
Maclennan et al. [69]	2009	Evaluation of a compensation scheme to bring about pastoral tolerance of lions	Kenya	Financial incentives	Lions	Cattle, Donkeys, Sheep, Goats	6 years	Biological Conservation				x
Mahoney & Charry [70]	2007	The use of alpacas as new-born lamb protectors to minimise fox predation	Australia	Guardian animals	Dingo and fox	Lambs	14 weeks	Extension Farming Systems Journal				х
Marker et al. [71]	2005	Survivorship and causes of mortality for livestock-guarding dogs on Namibian Rangeland	Namibia	Guardian animals	Cheetah		7 years	Rangeland Ecology and Management		X		
Martin and O'Brien [72]	2000	The use of bone oil (Renardine) as a coyote repellent on sheep farms in Ontario	Canada	Deterrents	Coyote	Sheep	4-5 years	Proceedings of the 19th Vertebrate Pest Conference				x
Mazzolli et		Mountain lion depredation in				Sheep,		Biological				
al. [73]	2002	southern Brazil	Brazil	Night enclosure	Puma	Swine	3 years	Conservation	Х	Х		
McManus et al. [74]	2014	Dead or alive? Comparing costs and benefits of lethal and non- lethal human-wildlife conflict mitigation on livestock farms	South Africa	Lethal control	Black-backed jac leopard	kal, caracal,	3 years	Oryx		X		
Meadows & Knowlton [75]	2000	Efficacy of guard llamas to reduce canine predation on domestic sheep	United States	Guardian animals	Coyote	Sheep	80 weeks	Wildlife Society Bulletin				X
Mech et al. [76]	2000	Assessing factors that may predispose Minnesota farms to wolf depredations on cattle	United States	Preventive husbandry	Wolf	Cattle		Wildlife Society Bulletin		X		

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. [3]	van Eeden et al. [4]
Michalski et al. [77]	2006	Human-wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredationon livestock	Brazil	Preventive husbandry	Jaguars & Pumas	Cattle	4 years	Animal Conservation		X		
ai. [77]	2000	Field tests of potential polar bear		nusbandry		Cattle	4 years	International Conference on Bear		Λ		
Miller [78]	1987	repellents	Canada	Deterrents	Polar Bear		2 months	Restoration		Х		
Mitchell et al. [79]	2004	Coyote depredation management: current methods and research needs	United State	s and Canada	Coyote			Wildlife Society Bulletin			Х	
Musiani et al. [80]	2003	Wolf depredation trends and the use of fladry barriers to protect livestock in western North America	Canada	Fladry	Wolf	Cattle/bait	60 days	Conservation Biology	X	X		
Nass & Theade [81]	1988	Electric fences for reducing sheep losses to predators	United States	Fencing	Coyotes and dogs	Sheep	Average 4.1 years treatment	Journal of Range Management				х
National Project Steering Committee [82]	2014	National Wild Dog Action Plan - Brindabella Wee Jasper case study	Australia	Lethal control	Dingo	Sheep	20 years	Report: National Wild Dog Action Plan				х
Obbard et al. [83]	2014	Relationships among food availability, harvest, and human- bear conflict at landscape scales in Ontario, Canada	Canada		American black			Ursus			Х	
Odden et al. [84]	2008	Vulnerability of domestic sheep to lynx depredation in relation to roe deer density	Norway	Wild prey availability	Lynx	Sheep	9 years	Journal of Wildlife Management		X		
Odden et al. [85]	2013	Density of wild prey modulates lynx kill rates on free-ranging domestic sheep	Norway	Wild prey availability	Lynx	Sheep	16 years	PLoS ONE		х		
Ogada et al. [86]	2003	Limiting depredation by African carnivores: the role of livestock husbandry	Kenya	Husbandry	Lions, leopards, cheetahs, spotted hyenas	Cattle, Sheep, Goats	1 year	Conservation Biology		х		
Otstavel et al. [87]	2009	The first experience of livestock guarding dogs preventing large carnivore damages in Finland	Finland	Guardian animals	Lynx, Brown bear, Wolf	Sheep, Cattle, Poultry, Horses, Alpaca, Donkey		Estonian Journal of Ecology		x		
Palmer et al. [88]	2010	Replication of a 1970s study on domestic sheep losses to predators on Utah's summer rangelands	United States	Guardian animals, Shepherds	Coyotes, cougars, black bears	Sheep	4 months	Rangeland Ecology and Management	Х			х

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. <i>[3]</i>	van Eeden et al. <i>[4]</i>
Peebles et		Effects of remedial sport hunting	United									
al. [89]	2013	on cougar complaints and livestock depredations	States	Lethal control	Cougar			PLoS ONE			Х	
ui. [09]	2013	Mitigating carnivore-livestock	States	Leular control	Cougai			TLOD OILL			24	
Rigg et al.		conflict in Europe: lessons from		Night enclosure,	Brown bear,							i i
[90]	2011	Slovakia	Slovakia	Guardian animals	wolf	Sheep	3 years	Oryx	Х	Х		
						Cattle,						
Rossler et		Shock collars as a site-aversive	United			Sheep,	_	Wildlife				i i
al. [91]	2012	conditioning tool for wolves	States	Deterrents	Wolf	Horse	2 years	Society Bulletin		Х		
		Perceived efficacy of livestock-				C1						i i
Rust et al.		guarding dogs in South Africa: implications for cheetah	South			Sheep, Goats,	2 years and 2	Wildlife				
[92]	2013	conservation	Africa	Guardian animals	Cheetah	Cattle	2 years and 2 months	Society Bulletin				х
[22]	2013	Compatibility of brown bear	111100	Sumarun uninuis	Sheetun	Cutto	monulo	Society Bulletill				~~~
Sagør et al.		Ursus arctos and free-ranging						Biological				i i
[93]	1997	sheep in Norway	Norway	Lethal control	Brown bear	Sheep	12 years	Conservation		Х	Х	
			Italy,			Bulls, cattle,						ĺ
			Spain,			goats,						i i
Salvatori &		Damage prevention methods in	Portugal,			sheep, bee-						
Mertens		Europe: experiences from LIFE	France,	Guardian animals,	Brown bear and	hives,						
[94]	2012	nature projects	Croatia	Fencing	wolf	orchards		Hystrix		Х		
						Not						i i
						specified (but						
						sponsored						
						by Missouri						
						Sheep and						
						Wool		The Journal of				
Sampson &		Missouri's program of extension	United			Growers		Wildlife				
Brohn [95]	1955	predator control	States	Lethal control	Coyotes	Association)	8 years	Management				Х
		Experimental use of dog-training										
Schultz et	2005	shock collars to deter depredation	United	Dist	XX7 10			Wildlife		37		
al. [96]	2005	by gray wolves	States	Deterrents	Wolf		4 years	Society Bulletin		Х		
Shivik et al.		Nonlethal techniques for managing predation: primary and	United					Conservation				
[97] Shivik et al.	2003	secondary repellents	States	Deterrents, Fladry	Wolf	None (baits)	2 months	Biology		х		
12/1	2005	The effect of removing lynx in	States	Deterrents, riddry	,, 011	Tione (build)	2 monuis	Diology				
Stahl et al.		reducing attacks on sheep in the					Average	Biological				1
[98]	2001	French Jura Mountains	France	Lethal control	Lynx	Sheep	7.22 months	Conservation		Х		Х
								Journal of				Í
Stahl et al.		Factors effecting lynx predation		Land-use, wild				Applied				1
[99]	2002	on sheep in the French Jura	France	prey	Lynx	Sheep	4 years	Ecology		Х		ļ
								South African				1
G(1		A suggested management		T 1				Journal of				1
Stander	1990	strategy for stock-raiding lions in	Namibia	Translocation, Lethal Control	Lions	Cattle	2 110000	Wildlife		х		
[100]	1990	Namibia	INAMIDIA	Lethal Control	Lions	Cattle	3 years	Research		Å		L

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. [3]	van Eeden et al. [4]
Suryawanshi et al. [101]	2013	People, predators and perceptions: patterns of livestock depredation by snow leopards and wolves.		Land-use	Snow leopard, wolf	Yak, Horse	5 years	Journal of Applied Ecology		X		
Swanson & Scott [102]	1973	Livestock protectors for sheep predator control	United States	Deterrents	Coyotes	Sheep	3 years	Proceedings of the Western Section of the American Society of Animal Science		Λ		x
Treves et al. [103]	2011	Forecasting environmental hazards and the application of risk maps to predator attacks on livestock	United States	Land-use	Wolf	Cattle	7 years	Bioscience		X		
Tumenta et al. [104]	2013	Livestock depredation and mitigation methods practised by resident and nomadic pastoralists around Waza National Park, Cameroon	Cameroon	Night enclosure	Lions	Cattle, Sheep, Goat		Огух		X		
Valeix et al. [105]	2012	Behavioural adjustments of a large carnivore to access secondary prey in a human- dominated landscape	Botswana	Wild prey availability	Lions	Cattle	2 years	Journal of Applied Ecology		Х		
van Bommel [106]	2013	Guardian dogs for livestock protection in Australia	Australia	Guardian animals	Dingo	Goats, calves, lambs and poultry	Varied (up to 30 years)	Thesis: The University of Tasmania				Х
van Bommel & Johnson [107]	2012	Good dog! Using livestock guardian dogs to protect livestock from predators in Australia's extensive grazing systems	Australia	Guardian animals	Dingo	Sheep, Goat	7 months	Wildlife Research		х		
van Bommel et al. [108]	2007	Factors affecting livestock predation by lions in Cameroon	Cameroon	Preventive husbandry	Lions	Cattle, Sheep, Goat	2 months	African Journal of Ecology		х		
van Liere et al. [109]	2013	Farm characteristics in Slovene wolf habitat related to attacks on sheep	Slovenia	Night enclosure	wolf	Sheep	5 months	Applied Animal Behaviour Science		Х		
Wagner & Conover [110]	1999	Effect of preventive coyote hunting on sheep losses to coyote predation	United States	Lethal control	Coyote	Lambs	3-6 months	The Journal of Wildlife Management	Х			Х
Walking for Lions [111]	2016	Quarterly Report	Botswana	Deterrents	Lions	Includes cattle	2 months	Report: Walking for Lions				Х

Author	Year	Title	Country	Intervention	Carnivore	Livestock type	Duration of study	Journal/Source	Eklund et al. [1]	Miller et al. [2]	Treves et al. [3]	van Eeden et al. [4]
		Natural landscape features, human-related attractants, and										
		conflict hotspots: a spatial				Cattle.						
Wilson et al.		analysis of human-grizzly bear	United			Sheep,						
[112]	2005	conflicts	States	Calving, fencing	Grizzly bear	Beehives	15 years	Ursus		Х		
						Cattle,						
		Livestock husbandry as a tool for		Shepherds,		sheep and						
		carnivore conservation in Africa's		Guardian animals,		goats,						
Woodroffe	2007	community rangelands: a case-	V	Scarecrows,	Lion, Leopard,	camels,	4.5	Biodiversity &	v	v		
et al. [113]	2007	control study	Kenya	Fencing	Hyena	donkeys	4.5 years	Conservation	X	X		
		Livestock predation by endangered African wild dogs		Land-use.		Goat,						
Woodroffe		(<i>Lycaeon pictus</i>) in northern		preventive	African Wild	Sheep,		Biological				
et al. [114]	2005	Kenya	Kenya	husbandry	Dog	Cattle	3 years	Conservation		Х		
ot un [111]	2005	Ronyu	Renyu	nusbundiy	Dog	Cuttie	5 years	Bears: Their				
Wooldridge		Polar bear electronic deterrent						Biology &				
[115]	1983	and detection systems	Canada	Deterrent	Polar bear		4 years	Management		Х		
Zarco-												
González &		Effectiveness of low-cost										
Monroy-		deterrents in decreasing livestock										
Vilchis		predation by felids: a case study			Puma and			Animal				
[116]	2014	in Central Mexico	Mexico	Deterrents	jaguar	Cattle, goats	2 months	Conservation	Х	Х		X

References for Table S2

- 1. Eklund A, López-Bao JV, Tourani M, Chapron G, Frank J. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Scientific Reports. 2017;7(1):2097. doi: 10.1038/s41598-017-02323-w.
- 2. Miller JRB, Stoner KJ, Cejtin MR, Meyer TK, Middleton AD, Schmidtz OJ. Effectiveness of contemporary techniques for reducing livestock depredations by large carnivores. Wildlife Society Bulletin. 2016;40(4):806-15. doi: 10.1002/wsb.720
- 3. Treves A, Krofel M, McManus J. Predator control should not be a shot in the dark. Frontiers in Ecology and the Environment. 2016;14(7):1-9. doi: 10.002/fee.1312.
- 4. van Eeden LM, Crowther MS, Dickman CR, Macdonald DW, Ripple WJ, Ritchie EG, et al. Managing conflict between large carnivores and livestock. Conservation Biology. 2018;32(1):26-34. doi: 10.1111/cobi.12959.
- 5. Acorn RC, Dorrance MJ. An evaluation of anti-coyote electric fences. Proceedings of the Sixteenth Vertebrate Pest Conference1994. p. 45-50.
- 6. Allen LR. Wild dog control impacts on calf wastage in extensive beef cattle enterprises. Animal Production Science. 2013;54(2):214-20. doi: 10.1071/AN12356.
- 7. Allen BL. More buck for less bang: Reconciling competing wildlife management interests in agricultural food webs. Food Webs. 2015;2:1-9. doi: 10.1016/j.fooweb.2014.12.001.
- 8. Allen LR, Sparkes EC. The effect of dingo control on sheep and beef cattle in Queensland. Journal of Applied Ecology. 2001;38(1):76-87. doi: 10.1046/j.1365-2664.2001.00569.x.
- 9. Andelt WF. Effectiveness of livestock guarding dogs for reducing predation on domestic sheep. Wildlife Society Bulletin (1973-2006). 1992;20(1):55-62.
- 10. Andelt WF. Relative effectiveness of guarding-dog breeds to deter predation on domestic sheep in Colorado. Wildlife Society Bulletin (1973-2006). 1999;27(3):706-14.
- 11. Andelt WF, Hopper SN. Livestock guard dogs reduce predation on domestic sheep in Colorado. Journal of Range Management. 2000;53(3):259-67. doi: 10.2307/4003429.

- 12. Anderson CR, Ternent MA, Moody DS. Grizzly bear-cattle interactions on two grazing allotments in Northwest Wyoming. Ursus. 2002;13:247-56.
- 13. Angst C. Electric fencing of fallow deer enclosures in Switzerland predator proof method. Carnivore Damage Prevention News. 2001;3:8-9.
- 14. Angst C, Hagen S, Breitenmoser U. Übergriffe von Luchsen auf Kleinvieh und Gehegetiere in der Schweiz. Teil II: Massnahmen zum Schutz von Nutztieren. Muri, Switzerland: KORA; 2002. p. 65.
- 15. Athreya V, Odden M, Linnell JDC, Karanth KU. Translocation as a tool for mitigating conflict with leopards in human-dominated landscapes of India. Conservation Biology. 2010;25(1):133-41. doi: 10.1111/j.1523-1739.2010.01599.x.
- 16. Azevedo FCCD, Murray DL. Evaluation of potential factors predisposing livestock to predation by jaguars. Journal of Wildlife Management. 2007;71(7):2379-86. doi: 10.2193/2006-520.
- 17. Bagchi S, Mishra C. Living with large carnivores: predation on livestock by the snow leopard (*Uncia uncia*). Journal of Zoology. 2006;268(3):217-24. doi: doi:10.1111/j.1469-7998.2005.00030.x.
- 18. Bauer H, Müller L, Van Der Goes D, Sillero-Zubiri C. Financial compensation for damage to livestock by lions *Panthera leo* on community rangelands in Kenya. ORYX. 2015. doi: 10.1017/S003060531500068X.
- 19. Bauer H, de Iongh H, Sogbohossou E. Assessment and mitigation of human-lion conflict in West and Central Africa. Mammalia. 2010;74:363-7. doi: 10.1515/MAMM.2010.048.
- 20. Beckmann JP, Lackey CW, Berger J. Evaluation of deterrent techniques and dogs to alter behavior of "nuisance" black bears. Wildlife Society Bulletin. 2004;32(4):1141-6. doi: doi:10.2193/0091-7648(2004)032[1141:EODTAD]2.0.CO;2.
- 21. Bjorge RR, Gunson JR. Evaluation of wolf control to reduce cattle predation in Alberta. Journal of Range Management. 1985;(38):6.
- 22. Blejwas KM, Sacks BN, Jaeger MM, McCullough DR. The effectiveness of selective removal of breeding coyotes in reducing sheep predation. The Journal of Wildlife Management. 2002;66(2):451-62. doi: 10.2307/3803178.
- 23. Bradley EH, Pletscher DH. Assessing factors related to wolf depredation of cattle in fenced pastures in Montana and Idaho. Wildlife Society Bulletin. 2005;33(4):1256-65. doi: 10.2193/0091-7648(2005)33[1256:AFRTWD]2.0.CO;2.
- 24. Bradley EH. An evaluation of wolf-livestock conflicts and management in the Northwestern United States [Masters Thesis]. Missoula: The University of Montana; 2004.
- 25. Bradley EH, Pletscher DH, Bangs EE, Kunkel KE, Smith DW, Mack CM, et al. Evaluating wolf translocation as a nonlethal method to reduce livestock conflicts in the Northwestern United States. Conservation Biology. 2005;19(5):1498-508. doi: 10.1111/j.1523-1739.2005.00102.x.
- 26. Bradley EH, Robinson HS, Bangs EE, Kunkel K, Jimenez MD, Gude JA, et al. Effects of wolf removal on livestock depredation recurrence and wolf recovery in Montana, Idaho, and Wyoming. The Journal of Wildlife Management. 2015;79(8):1337-46. doi: 10.1002/jwmg.948.
- 27. Breck SW, Lance N, Callahan P. A shocking device for protection of concentrated food sources from black bears. Wildlife Society Bulletin. 2006;34(1):23-6. doi:10.2193/0091-7648(2006)34[23:ASDFPO]2.0.CO;2.
- 28. Breck SW, Williamson R, Niemeyer C, Shivik JA, editors. Non-lethal radio activated guard for deterring wolf depredation in Idaho: summary and call for research. Proceedings of the Vertebrate Pest Conference; 2002; Davis: University of California.
- 29. Breck SW, Kluever BM, Panasci M, Oakleaf J, Johnson T, Ballard W, et al. Domestic calf mortality and producer detection rates in the Mexican wolf recovery area: Implications for livestock management and carnivore compensation schemes. Biological Conservation. 2011;144(2):930-6. doi: 10.1016/j.biocon.2010.12.014.
- 30. Bromley C, Gese EM. Surgical sterilization as a method of reducing coyote predation on domestic sheep. Journal of Wildlife Management. 2001;65(3):510-9.
- 31. Ciucci P, Boitani L. Wolf and dog depredation on livestock in central Italy. Wildlife Society Bulletin (1973-2006). 1998;26(3):504-14.
- 32. Conner MM, Jaeger MM, Weller TJ, McCullough DR. Effect of coyote removal on sheep depredation in northern California. Journal of Wildlife Management. 1998;62(2):690-9. doi: 10.2307/3802345.
- 33. Davidson-Nelson SJ, Gehring TM. Testing fladry as a nonlethal management tool for wolves and coyotes in Michigan. Human-Wildlife Interactions. 2010;4(1):87-94.
- 34. deCalesta DS, Cropsey MG. Field test of a coyote-proof fence. Wildlife Society Bulletin. 1978;6(4):256-9.
- 35. Dorrance MJ, Bourne J. An evaluation of anti-coyote electric fencing. Journal of Range Management. 1980;33:385-7.
- 36. Edgar JP, Appleby RG, Jones DN. Efficacy of an ultrasonic device as a deterrent to dingoes (*Canis lupus dingo*): a preliminary investigation. Journal of Ethology. 2007;25(2):209-13. doi: 10.1007/s10164-006-0004-1.
- 37. Ellins SR. Living with coyotes: managing predators humanely using food aversion conditioning. Austin: University of Texas Press; 2005. 175 p.
- 38. Espuno N, Lequette B, Poulle M-L, Migot P, Lebreton J-D. Heterogeneous response to preventive sheep husbandry during wolf recolonization of the French Alps. Wildlife Society Bulletin. 2004;32(4):1195-208. doi: 10.2193/0091-7648(2004)032[1195:HRTPSH]2.0.CO;2.

- 39. Gehring TM, VerCauteren KC, Provost ML, Cellar AC. Utility of livestock-protection dogs for deterring wildlife from cattle farms. Wildlife Research. 2010;37(8):715-21. doi: 10.1071/wr10023.
- 40. Gehring TM, Hawley JE, Davidson SJ, Rossler ST, Cellar AC, Schultz RN, et al. Are viable non-lethal management tools available for reducing wolf-human conflict? Preliminary results from field experiments. Proceedings of the 22nd Vertebrate Pest Conference. 2006:2-6.
- 41. Goodrich JM, Miquelle DG. Translocation of problem Amur tigers *Panthera tigris altaica* to alleviate tiger-human conflicts. Oryx. 2005;39(04):454-7. doi: 10.1017/S0030605305001146.
- 42. Gula R. Wolf depredation on domestic animals in the Polish Carpathian Mountains. Journal of Wildlife Management. 2008;72(1):283-9. doi: 10.2193/2006-368.
- 43. Gusset M, Swarner MJ, Mponwane L, Keletile K, McNutt JW. Human-wildlife conflict in northern Botswana: livestock predation by Endangered African wild dog *Lycaon pictus* and other carnivores. Oryx. 2009;43(1):67-72. doi: 10.1017/s0030605308990475.
- 44. Gustavson CR, Jowsey JR, Milligan DN. A 3-year evaluation of taste aversion coyote control in Saskatchewan. Journal of Range Management. 1982;35(1):57-9.
- 45. Hansen I, Smith ME. Livestock-guarding dogs in Norway, Part II: different working regimes. Journal of Range Management. 1999;52:312-6. doi: 10.2307/4003539.
- 46. Harper EK, Paul WJ, Mech LD, Weisberg S. Effectiveness of lethal, directed wolf-depredation control in Minnesota. Journal of Wildlife Management. 2008;72(3):778-84. doi: 10.2193/2007-273.
- 47. Hawley JE, Gehring TM, Schultz RN, Rossler ST, Wydeven AP. Assessment of shock collars as nonlethal management for wolves in Wisconsin. Journal of Wildlife Management. 2009;73(4):518-25. doi: 10.2193/2007-066.
- 48. Hazzah L, Dolrenry S, Naughton L, Edwards CT, Mwebi O, Kearney F, et al. Efficacy of two lion conservation programs in Maasailand, Kenya. Conservation Biology. 2014;28(3):851-60. doi: 10.1111/cobi.12244.
- 49. Herfindal I, Linnell JDC, Moa PF, Odden J, Austmo LB, Andersen R. Does recreational hunting of lynx reduce depredation losses of domestic sheep? Journal of Wildlife Management. 2005;69(3):1034-42. doi: 10.2193/0022-541X(2005)069[1034:DRHOLR]2.0.CO;2.
- 50. Herrero S, Higgins A. Field use of capsicum spray as a bear deterrent. Ursus. 1998;10:533-7.
- 51. Huygens OC, Hayashi H. Using electric fences to reduce Asiatic black bear depredation in Nagano Prefecture, central Japan. Wildlife Society Bulletin (1973-2006). 1999;27(4):959-64.
- 52. Huygens OC, van Manen FT, Martorello DA, Hayashi H, Ishida J. Relationships between Asiatic black bear kills and depredation costs in Nagano Prefecture, Japan. Ursus. 2004;15(2):197-202.
- 53. Iliopoulos Y, Sgardelis S, Koutis V, Savaris D. Wolf depredation on livestock in central Greece. Mammal Research. 2009;54(1):11-22. doi: 10.1007/bf03193133.
- 54. Jankovsky MJ, Swanson VB, Cramer DA. Field trials of coyote repellents in Western Colorado. Proceedings, Western Section, American Society of Animal Science. 1974;25:74-6.
- 55. Jelinski DE, Rounds RC, Jowsey JR. Coyote predation on sheep, and control by aversive conditioning in Saskatchewan. Journal of Range Management. 1983;36(1):16-9. doi: 10.2307/3897972.
- 56. Karanth KK, Gopalaswamy AM, Prasad PK, Dasgupta S. Patterns of human–wildlife conflicts and compensation: Insights from Western Ghats protected areas. Biological Conservation. 2013;166:175-85. doi: 10.1016/j.biocon.2013.06.027.
- 57. Kavčič I, Adamič M, Kaczensky P, Krofel M, Jerina K. Supplemental feeding with carrion is not reducing brown bear depredations on sheep in Slovenia. Ursus. 2013;24(2):111-9. doi: 10.2192/URSUS-D-12-00031R1.1.
- 58. Kolowski JM, Holekamp KE. Spatial, temporal, and physical characteristics of livestock depredations by large carnivores along a Kenyan reserve border. Biological Conservation. 2006;128:529-41. doi: 10.1016/j.biocon.2005.10.021.
- 59. Krofel M, Černe R, Jerina K. Effectivness of wolf (*Canis lupus*) culling as a measure to reduce livestock depredations. Zbornik Gozdarstva in Lesarstva. 2011;(95).
- 60. Krogstad S, Christiansen F, Smith ME, Røste OC, Aanesland N, Tillung RH, et al. Protective measures against depredation on sheep: shepherding and use of livestock guardian dogs in Lierne. Final report 2000. 2000.
- 61. Lance NJ. Application of electrified fladry to desreask risk of livestock depredation by wolves (*Canis lupus*). Logan: Utah State University; 2009.
- 62. Landa A, Gudvangen K, Swenson JE, Røskaft E. Factors associated with wolverine *Gulo gulo* predation on domestic sheep. Journal of Applied Ecology. 1999;36(6):963-73. doi: 10.1046/j.1365-2664.1999.00451.x.
- 63. Landry J-M, Raydelet P. Efficacité des chiens de protection contre la prédation du lynx dans le Massif jurassien: Présentation préliminaire des résultats de l'enquête de terrain. Lons le Saunier: Pôle Grands Prédateurs, 2010 Juin 2010. Report No.
- 64. Leigh J. Effects of aversive conditioning on behavior of nuisance Louisiana black bears. Baton Rouge: Louisiana State University and Agricultural and Mechanical College; 2007.

- 65. Lichtenfeld LL, Trout C, Kisimir EL. Evidence-based conservation: predator-proof bomas protect livestock and lions. Biodiversity and Conservation. 2015;24(3):483-91. doi: 10.1007/s10531-014-0828-x.
- 66. Linhart SB, Roberts JD, Dasch GJ. Electric fencing reduces coyote predation on pastured sheep. Journal of Range Management. 1982;35:276-81.
- 67. Linhart SB, Sterner RT, Dasch GJ, Theade JW. Efficacy of light and sound stimuli for reducing coyote predation upon pastured sheep. Protection Ecology. 1984;6:75-84.
- 68. Linhart SB, Dasch GJ, Johnson RB, Roberts JD, Packham CJ, editors. Electronic frightening devices for reducing coyote predation on domestic sheep: efficacy under range conditions and operational use. Proceedings of the Fifteenth Vertebrate Pest Conference; 1992; Davis: University of California.
- 69. Maclennan SD, Groom RJ, Macdonald DW, Frank LG. Evaluation of a compensation scheme to bring about pastoralist tolerance of lions. Biological Conservation. 2009;142(11):2419-27. doi:10.1016/j.biocon.2008.12.003.
- 70. Mahoney S, Charry AA. The use of alpacas as new-born lamb protectors to minimise fox predation. Extension Farming Systems Journal. 2007;1(1):65-70.
- 71. Marker LL, Dickman AJ, Macdonald DW. Survivorship and causes of mortality for livestock-guarding dogs on Namibian rangeland. Rangeland Ecology & Management. 2005;58(4):337-43. doi: 10.2111/1551-5028(2005)058[0337:SACOMF]2.0.CO;2.
- 72. Martin J, O'Brien A. The use of bone oil (Renadine) as a coyote repellent on sheep farms in Ontario. Proceedings of the 19th Vertebrate Pest Conference. 2000:310-1.
- 73. Mazzolli M, Graipel ME, Dunstone N. Mountain lion depredation in southern Brazil. Biological Conservation. 2002;105(1):43-51. doi: 10.1016/S0006-3207(01)00178-1.
- 74. McManus JS, Dickman AJ, Gaynor D, Smuts BH, Macdonald DW. Dead or alive? Comparing costs and benefits of lethal and non-lethal human-wildlife conflict mitigation on livestock farms. Oryx. 2015;49(4):687-95. doi: 10.1017/S0030605313001610.
- 75. Meadows LE, Knowlton FF. Efficacy of guard llamas to reduce canine predation on domestic sheep. Wildlife Society Bulletin (1973-2006). 2000;28(3):614-22.
- 76. Mech LD, Harper EK, Meier TJ, Paul WJ. Assessing factors that may predispose Minnesota farms to wolf depredations on cattle. Wildlife Society Bulletin. 2000;28(3):623-9.
- 77. Michalski F, Boulhosa RLP, Faria A, Peres CA. Human–wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Animal Conservation. 2006;9(2):179-88. doi: 10.1111/j.1469-1795.2006.00025.x.
- 78. Miller GD. Field tests of potential polar bear repellents. Bears: Their Biology and Management, A Selection of Papers from the Seventh International Conference on Bear Research and Management; Williamsburg VA, USA, and Plitvice Lakes, Yugoslavia: International Assocation for Bear Research and Management; 1987. p. 383-90.
- 79. Mitchell BR, Jaeger MM, Barrett RH. Coyote depredation management: current methods and research needs. Wildlife Society Bulletin. 2004;32(4):1209-18. doi: 10.2193/0091-7648(2004)032[1209:CDMCMA]2.0.CO;2
- 80. Musiani M, Mamo C, Boitani L, Callaghan C, Gates CC. Wolf depredation trends and the use of fladry barriers to protect livestock in western North America. Conservation Biology. 2003;17(6):1238-547. doi: 10.1111/j.1523-1739.2003.00063.x.
- 81. Nass RD, Theade J. Electric fences for reducing sheep losses to predators. Journal of Range Management. 1988;41:251-2.
- 82. National Project Steering Committee. National wild dog action plan: promoting and supporting community-driven action for landscape-scale wild dog management. Barton, ACT: WoolProducers Australia, 2014.
- 83. Obbard ME, Howe EJ, Wall LL, Allison B, Black R, Davis P, et al. Relationships among food availability, harvest, and human–bear conflict at landscape scales in Ontario, Canada. Ursus. 2014;25(2):98-110. doi: 10.2192/URSUS-D-13-00018.1.
- 84. Odden J, Herfindal I, Linnell JDC, Andersen R. Vulnerability of domestic sheep to lynx depredation in relation to roe deer density. Journal of Wildlife Management. 2008;72(1):276-82. doi: 10.2193/2005-537.
- 85. Odden J, Nilsen EB, Linnell JDC. Density of Wild Prey Modulates Lynx Kill Rates on Free-Ranging Domestic Sheep. PLOS ONE. 2013;8(11):e79261. doi: 10.1371/journal.pone.0079261.
- 86. Ogada MO, Woodroffe R, Oguge NO, Frank LG. Limiting depredation by African carnivores: the role of livestock husbandry. Conservation Biology. 2003;17(6):1521-30. doi: 10.1111/j.1523-1739.2003.00061.x.
- 87. Otstavel T, Vuori K, A., Sims DE, Valros A, Vainio O, Saloniemi H. The first experience of livestock guarding dogs preventing large carnivore damages in Finland. Estonian Journal of Ecology. 2009;58(3):216. doi: 10.3176/eco.2009.3.06.
- 88. Palmer BC, Conover MR, Frey SN. Replication of a 1970s study on domestic sheep losses to predators on Utah's summer rangelands. Rangeland Ecology & Management. 2010;63(6):689-95. doi: 10.2111/REM-D-09-00190.1.
- 89. Peebles KA, Wielgus RB, Maletzke BT, Swanson ME. Effects of Remedial Sport Hunting on Cougar Complaints and Livestock Depredations. PLoS ONE. 2013;8(11):e79713. doi: 10.1371/journal.pone.0079713.

- 90. Rigg R, Find'o S, Wechselberger M, Gorman ML, Sillero-Zubiri C, Macdonald DW. Mitigating carnivore–livestock conflict in Europe: lessons from Slovakia. Oryx. 2011;45(02):272-80. doi: 10.1017/S0030605310000074.
- 91. Rossler ST, Gehring TM, Schultz RN, Rossler MT, Wydeven AP, Hawley JE. Shock collars as a site-aversive conditioning tool for wolves. Wildlife Society Bulletin. 2012;36(1):176-84. doi: 10.1002/wsb.93.
- 92. Rust NA, Whitehouse-Tedd KM, MacMillan DC. Perceived efficacy of livestock-guarding dogs in South Africa: implications for cheetah conservation. Wildlife Society Bulletin. 2013;37(4):690-7. doi:10.1002/wsb.352.
- 93. Sagør JT, Swenson JE, Røskaft E. Compatibility of brown bear *Ursus arctos* and free-ranging sheep in Norway. Biological Conservation. 1997;81(1):91-5. doi: 10.1016/S0006-3207(96)00165-6.
- 94. Salvatori V, Mertens AD. Damage prevention methods in Europe: experiences from LIFE nature projects. Hystrix, the Italian Journal of Mammalogy. 2012;23(1):73-9. doi: 10.4404/hystrix-23.1-4548.
- 95. Sampson FW, Brohn A. Missouri's program of extension predator control. The Journal of Wildlife Management. 1955;19(2):272-80. doi: 10.2307/3796863.
- 96. Schultz RN, Jonas KW, Skuldt LH, Wydeven AP. Experimental use of dog-training shock collars to deter depredation by gray wolves. Wildlife Society Bulletin. 2005;33(1):142-8. doi: 10.2193/0091-7648(2005)33[142:EUODSC]2.0.CO;2.
- 97. Shivik JA, Treves A, Callahan P. Nonlethal techniques for managing predation: primary and secondary repellents. Conservation Biology. 2003;17(6):1531-7. doi: 10.1111/j.1523-1739.2003.00062.x.
- 98. Stahl P, Vandel JM, Herrenschmidt V, Migot P. The effect of removing lynx in reducing attacks on sheep in the French Jura Mountains. Biological Conservation. 2001;101(1):15-22. doi: 10.1016/S0006-3207(01)00054-4.
- 99. Stahl P, Vandel JM, Ruette S, Coat L, Coat Y, Balestra L. Factors affecting lynx predation on sheep in the French Jura. Journal of Applied Ecology. 2002;39(2):204-16. doi: 10.1046/j.1365-2664.2002.00709.x.
- 100. Stander PE. A suggested management strategy for stock-raiding lions in Namibia. South African Journal of Wildlife Research 24-month delayed open access. 1990;20(2):37-43.
- 101. Suryawanshi KR, Bhatnagar YV, Redpath S, Mishra C. People, predators and perceptions: patterns of livestock depredation by snow leopards and wolves. Journal of Applied Ecology. 2013;50(3):550-60. doi: 10.1111/1365-2664.12061.
- 102. Swanson VB, Scott GE. Livestock protectors for sheep predator control. Proceedings, Western Section, American Society of Animal Science. 1973;24:34-6.
- 103. Treves A, Martin KA, Wydeven AP, Wiedenhoeft JE. Forecasting environmental hazards and the application of risk maps to predator attacks on livestock. BioScience. 2011;61(6):451-8. doi: 10.1525/bio.2011.61.6.7.
- 104. Tumenta PN, de Iongh HH, Funston PJ, Udo de Haes HA. Livestock depredation and mitigation methods practised by resident and nomadic pastoralists around Waza National Park, Cameroon. Oryx. 2013;47(2):237-42. Epub 2013/04/01. doi: 10.1017/S0030605311001621.
- 105. Valeix M, Hemson G, Loveridge AJ, Mills G, Macdonald DW. Behavioural adjustments of a large carnivore to access secondary prey in a human-dominated landscape. Journal of Applied Ecology. 2012;49:73-81. doi: 10.1111/j.1365-2664.2011.02099.x.
- 106. van Bommel L. Guardian dogs for livestock protection in Australia. Hobart: University of Tasmania; 2013.
- 107. van Bommel L, Johnson CN. Good dog! Using livestock guardian dogs to protect livestock from predators in Australia's extensive grazing systems. Wildlife Research. 2012;39(3):220-9. doi: 10.1071/WR11135.
- 108. van Bommel L, Bij de Vaate MD, De Boer WF, De Iongh HH. Factors affecting livestock predation by lions in Cameroon. African Journal of Ecology. 2007;45(4):490-8. doi: 10.1111/j.1365-2028.2007.00759.x.
- 109. van Liere D, Dwyer C, Jordan D, Premik-Banič A, Valenčič A, Kompan D, et al. Farm characteristics in Slovene wolf habitat related to attacks on sheep. Applied Animal Behaviour Science. 2013;144(1):46-56. doi: 10.1016/j.applanim.2012.12.005.
- 110. Wagner KK, Conover MR. Effect of preventive coyote hunting on sheep losses to coyote predation. The Journal of Wildlife Management. 1999;63(2):606-12. doi: 10.2307/3802649.
- 111. Walking for Lions. First quarterly report. Pandamatenga, Botswana: Walking for Lions: wild lion protection & survival, 2016.
- 112. Wilson SM, Madel MJ, Mattson DJ, Graham JM, Burchfield JA, Belsky JM. Natural landscape features, human-related attractants, and conflict hotspots: a spatial analysis of human-grizzly bear conflicts. Ursus. 2005;16(1):117-29. doi: 10.2192/1537-6176(2005)016[0117:NLFHAA]2.0.CO;2.
- 113. Woodroffe R, Frank LG, Lindsey PA, ole Ranah SMK, Romañach S. Livestock husbandry as a tool for carnivore conservation in Africa's community rangelands: a casecontrol study. Biodiversity and Conservation. 2007;16(4):1245-60. doi: 10.1007/s10531-006-9124-8.

- 114. Woodroffe R, Lindsey P, Romañach S, Stein A, ole Ranah SMK. Livestock predation by endangered African wild dogs (*Lycaon pictus*) in northern Kenya. Biological Conservation. 2005;124(2):225-34. doi: 10.1016/j.biocon.2005.01.028.
- 115. Wooldridge DR. Polar bear electronic derrent and detection systems. Bears: Their Biology and Management, A Selection of Papers from the Fifth International Conference on Bear Research and Management; February 1980; Madison WI, USA: International Assocation for Bear Research and Management; 1983. p. 264-9.
- 116. Zarco-González MM, Monroy-Vilchis O. Effectiveness of low-cost deterrents in decreasing livestock predation by felids: a case in Central Mexico. Animal Conservation. 2014;17(4):371-8. doi: 10.1111/acv.12104.