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1 INTRODUCTION

To see the interior of objects or patients without seeing inside or opening it up, we

need some experiment or certain test. During a CAT (Computerized Axial Tomography)

scan the patient will lie on the table that is attached to the scanner, which is a large

doughnut-shaped machine. The CT scanner sends x-rays through the body area being

studied. Each rotation of the scanner provides a picture of a thin slice of an organ or area

which can be saved and reassembled on a computer. The process of creating the image

of the patient’s interior from such x-ray measurements is modeled mathematically as the

problem of recovering a function from its line integrals.

In 2 dimensional space, the fan-beam tomography is introduced for examples in

[17, 24] which is a scanning method to reconstruct density functions. The process begin

by emitting x-rays from an x-ray source and the intensities are measured on a single row

of detectors. To continue, the x-ray sources and detectors are rotated to a new angle and

the x-rays are emitted and measured again. This process is repeated until the x-rays have

been measured over a sufficient number of angles. The object is supported in the plane

of rotation. Cone-beam tomography, basically uses the same methods as in the fan beam

case but is in dimensions 3 and the number of detector rows increases from the fan-beam

case.

Cone beam scalar tomography: The scalar cone beam transform has been thor-

oughly studied over the last three decades. Inversion formulas have been achieved by

Tuy [32], Finch [4], Smith [27], Grangeat [7], Katsevich [13, 11, 12, 10] for helical source

trajectory [12], and by Louis [15, 16] for general source orbits satisfying Tuy’s condition.

Tuy’s condition says that any plane intersecting the support of the object function f must

hit the trajectory a(λ) transversally at least once. This condition arose for the first time

in Tuy’s article [32] and was fundamental for his inversion formula.
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Vector tomography considers the reconstruction of vector fields from line integrals

of some components of the vector fields. Doppler tomography is one example of vec-

tor tomography which integrates the component parallel to the line. Thus the Doppler

transform Df of a vector field f can be defined by

Df(x, θ) =

∫ ∞
0

θ · f(x+ tθ)dt. (1.1)

The Helmholtz decomposition states that a vector field can be written as a sum of an

irrotational (or curl-free) vector field and a solenoidal (or divergence-free) vector field.

In 2D vector tomography, Norton [19] used the Helmholtz decomposition to show that

the irrotational part of a vector field cannot be imaged in acoustical time-of flight flow

imaging. He proposed that boundary measurements be made in order to recover the

irrotational component. Braun and Hauck called the standard acoustical time-of flight

measurements the longitudinal measurements, and proposed a new set of measurements,

which they called the transverse measurements, which would allow recovery of both the

solenoidal and irrotational components of a vector field.

Several authors have proposed extensions of vector tomography to 3D. Most of them

consider the Doppler tomography. Juhlin [9] proved that complete data are sufficient to

recover the solenoidal part of a vector field f , see also Sharafutdinov [26], Prince [21] and

Denisjuk [3]. Several stable solvers of filtered-back projection type can be found in Sparr

et al [31] and for a parallel slice-by slice scanning in Schuster [24]. An approximate in-

version approach for the cone beam setting that does not lead to an exact inversion has

been described and implemented in Schuster et al [25, 23]. It is known (Sharafutdinov

[26], Schuster [22] Denisjuk [3]) that only the solenoidal part of the vector field can be

reconstructed from the Doppler transform.

Cone beam vector Doppler tomography was presented recently by Katsevich and

Schuster in [13] describing the reconstruction of a smooth solenoidal vector field from its

Doppler transform cone beam data. They present an exact inversion formula for smooth
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solenoidal vector fields from the Doppler transform with cone beam data for a general

trajectory Γ fulfilling Tuy’s condition of order 3.

In this work, we study the transverse ray transform of a vector field, which inte-

grates over lines the component of the vector field perpendicular to the line. An object

with compact support is surrounded by a general curve satisfying Tuy’s condition of order

3. Our reconstruction procedure has two parts. The first one is to recover the solenoidal

part and the techniques we use are inspired by the work of Katsevich and Schuster. The

solenoidal part will be considered in two pieces according to the decomposition of the

Radon inversion formula into tangential and normal parts. The tangential part of the

Radon transform is obtained from the measured data. The second piece of the solenoidal

part can be recovered by using data from the first part. A procedure for recovering the po-

tential part uses the difference of the measured data and the reprojection of the solenoidal

part.

The organization of this dissertation is as follows:

Chapter 2 will mainly present mathematical background by first recalling the defini-

tions of x-ray and Radon transforms for real and vector-valued functions. The background

of quaternions also will be presented in this chapter including Clifford algebra which is

a generalization to higher dimension of quaternions. The Dirac operator ∂x which plays

an important role in quaternionic analysis and is closely related to the Cauchy-Riemann

operator in the complex analysis and the Laplace operator shall be described. Background

on quaternions and Clifford algebra will be used only in sections 4.1 and 4.2. However,

the essential part of this dissertation is section 4.3.

Furthermore, we shall present the definition of plane wave decomposition, definitions

of Clifford x-ray and Radon transforms established by F. Sommen in [1]. The Helmholtz-

Hodge decomposition of a vector field will be reviewed and at the end of this chapter we

shall talk about the surface gradient ∇η.
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In chapter 3 we present the x-ray and Radon decompositions of the Cauchy kernel

which again were introduced by Sommen [28, 30]. These decompositions use the plane

wave decomposition in Chapter 2 as the main ingredient. We include a proof that clari-

fies the x-ray decomposition. The definition of new transforms such as the quaternionic

Doppler transform and cone beam transform will be included as well. At the end of this

chapter we shall recall some facts about the spherical harmonics and Gegenbauer polyno-

mials. Also, some orthogonal expansions for vector fields in L2(B3) which were introduced

and explained in [14] in detail will be briefly reviewed.

Chapter 4 which presents our main results has 3 parts as follows:

Part 1 : We present a variation on the Radon inversion formula of the vector part

of a quaternionic-valued function in term of the Dirac operator as the following form:

f(x) = − 1

8π2
∂x

∫
S2

θR′f(θ · x, θ)dθ. (1.2)

We provide two derivations to verify the formula. The first derivation bases on the Lapla-

cian of the back-projection of the Radon transform. Using the fact that the Laplcian

is negative of the square of the Dirac operator gives (1.2). The second derivation uses

arguments involving the boundary values of the Cauchy transform and the plane wave

decomposition of the fundamental solution of the Dirac operator (Cauchy Kernel). The

second derivation is more complicated than the first one. We can see that, however, the

second one shows how the quaternions can be used for recovering functions. We remark at

the end of this section that the formula (1.2) is equivalent to well known Radon inversion

formulas for scalar case, for example see [17].

Part 2 : In this part we shall discuss a reconstruction formula for the cone beam

transform with sources on the sphere. This is one of the simplest cases for the cone beam

tomography.

Part 3 : This part contains the most substantial results of this thesis. We consider

the problem of reconstructing a smooth vector field f , supported in the open unit ball
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B3 = {x ∈ R3 : |x| < 1} from the transverse ray transform in cone beam geometry with

sources on a curve. We may occasionally use the notation for vector field f or f depending

on their contexts. We define the transverse ray transform with source a in direction θ is

given by

T f(a, θ) =

∫ ∞
0

(θ × f)(a+ tθ)dt. (1.3)

This transform has the property:

T f(a, θ)× θ = Eθ

∫ ∞
0

f(a+ tθ)dt (1.4)

where Eθ is the orthogonal projection on θ⊥. So we are able to call both (1.3) and (1.4)

transverse ray transforms. Moreover, knowing the transforms (1.3) and (1.4) is equivalent

to knowing the quantity, for example for fixed θ ∈ S2

η · T f(a, θ), for all η ∈ θ⊥.

We assume that we have sources lying on a regular curve Γ. Here, a = a(λ), λ ∈ Λ ⊂ R

denote the parametrization of a source trajectory Γ ⊂ (R3\B3) fulfilling a certain property

called Tuy’s condition of order 3.

To our knowledge, this work is the first to investigate the transverse ray transform

for sources on a curve. The Doppler transform (1.1) is an established mathematical model

of vector tomography. In this work, we hope that the transform (1.3-1.4) can also be a

useful mathematical model in vector tomography. The main purpose of this work is to

present mathematical framework leading to an inversion procedure of f .

We will first pay attention to the reconstruction of the solenoidal part fd and then

we shall discuss the reconstruction for the potential part using the data from the solenoidal

part. To recover fd, we follow the outlines in [14, 13] as we shall clearly point out along the

way. The 3 dimensional Radon inversion of the solenoidal part fd of f will be considered

as the starting point. In other words, we shall consider the inversion formula

fd(x) = − 1

8π2

∫
S2

∂2
sRfd(s, θ)|s=x·θdθ. (1.5)
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In [13] Katsevich and Schuster decomposed the solenoidal part fd of a vector field f into

two terms:

fd = fd1 + fd2 (1.6)

according to the tangential and normal parts of the Radon transform of f

Rtanf(s, η) =
∂

∂s
Rf(s, η)−Rnorf(s, η) (1.7)

Rnorf(s, η) = η(η · ∂
∂s
Rf(s, η)), s ∈ [−1, 1], η ∈ S2.

This means that equations (1.5-1.7) lead to

fd1(x) = − 1

8π2

∫
S2

∂2
sRtanfd(s, θ)|s=x·θdθ and fd2(x) = − 1

8π2

∫
S2

∂2
sRnorfd(s, θ)|s=x·θdθ.

(1.8)

The first was the determination of fd1. They showed that the integrand in the first integral

of (1.8) can be determined from the measured data. In other words, they obtained (1.8)

from the measured data. This step used an important relation in [13], theorem 5.1 de-

scribing the connection between the Doppler transform and the Radon transform called a

Grangeat type formula. The second part was the reconstruction of fd2. They showed that

the integrand of the second integral in (1.8) which is ∂2
sRnorfd could be recovered from

∂2
sRtanfd.

In this thesis, we shall recover fd by using the same decomposition as in (1.6) but

the integrands in relation (1.8) will be replaced by η ×Rtanfd(s, θ) and η ×Rnorfd(s, θ),

respectively. Therefore, as in the work of Katsevich and Schuster in [13] we have two parts

to reconstruct. Firstly, we shall modify theorem 5.1 in [14] to obtain η × ∂

∂s
Rtanfd(s, θ).

Using a technique in [13], η × ∂

∂s
Rtanfd(s, θ) can be written in the sum of products of

particular functions depending on source points and the quantities of the form∫
S2

δ′′(θ · η)

∫ ∞
0

θ · (η × f)(x+ tθ)dtdθ. (1.9)

We perhaps call it here a Grangeat-type formula. We shall work out the details in chapter

4.
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Secondly, we shall recover fd2 and of course we consider the procedures to obtain

η× ∂2

∂s2
Rnorfd. We follow techniques in the second part of [13] to recover

∂2

∂s2
Rnorfd from

∂2

∂s2
Rtanfd by the following formula

∂2

∂s2
Rnorfd(s, η) = η

∫
S2

∂2

∂s2
Rtanf(s, θ) · ∇θK(α · θ)dθ. (1.10)

Here K is a kernel whose explicit expression is given below

K(α · η) =
∑
n≥0

2n+ 3

4π(n+ 2)
Pn+1(α · η)

and

Pn(α · η) =
∑
|l|≤n+1

Yn,l(η)Y n,l(α).

To obtain (1.10), we shall follow framework in [14] where they heavily used the orthogonal

series expansions of vector fields. Using the fact that the product of two quaternions is -1

together with (1.10) give the second part :

fd2(x) = − 1

8π2

∫
S2

∂2

∂s2
Rnorfd(s, η)|s=x·ηdη

= −
∫
S2

η

∫
S2

θ

(
θ × ∂2

∂s2
Rtanf(s, θ)|s=x·θ

)
· ∇θK(α · η)dθdη

which we have known η × ∂2

∂s2
Rtanfd from the first part. This is done in section (4.3).

We note that computing the normal part of the Radon transform Rf from the tangential

part ignores the potential part of f see [14].

According to the Helmholtz-Hodge decomposition of f

f = ∇p+ fd0 +∇h

where fd0 +∇h is the solenoidal part and p = 0 on the boundary, we shall show that the

tangential part of the Radon transform of ∇p vanishes and so only its solenoidal part can

be reconstructed from such transverse ray transform. Another important thing left to be

presented is the reconstruction formula of the potential part ∇p of a vector field f . To do
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so, we begin with the Radon inversion formula of p and then use the Grangeat formula

on T f − T fd where T is the transverse ray transform.

In this last part of the introduction we shall present imaging models and methods for

2 and 3 dimensional flow fields as already explained by several authors, [24, 21, 2, 9, 31].

The 2 dimensional case was introduced by Norton [19] in 1988 and summarized by Schuster

[24]. We shall follow their presentation.

First we present physical motivation for the Doppler transform. It arises when fluid

velocity fields are investigated by ultrasonic time-of-flight measurements. Let Ω ⊂ R2 be a

convex, open, bounded domain of 2 dimension fluid flow with piecewise smooth boundary

∂Ω. The velocity flow is given by f(x) ∈ R2 having magnitude |f(x)|. The aim of 2

dimensional imaging is to recover f from the time-of-flight measurements which are taken

between two positions a and b located on ∂Ω. The local speed of sound is denoted by

c(x). We assume that the ultrasound beam is traveling from a to b along a straight line

L which is justified provided that the variations in c are small and the path length |L| is

short. The signal is the travel time t(a, b) needed for traveling from a to b and is given by

t(a, b) =

∫
L(a,b)

1

c(x) + f(x) · η
dl(x) (1.11)

where L(a, b) is the line connecting a and b, η is the unit vector of direction of the line

and dl is the 1-dimensional Lebesgue measure along L. Writing

1

c(x) + f(x) · η
=

1

c(x)(1 + (f(x)/c(x)) · η)
(1.12)

and considering the right-hand side as function of f/c, the first order Taylor-approximation

gives

t(a, b) '
∫
L(a,b)

(
1

c(x)
− f(x) · η

c(x)2

)
dl(x). (1.13)
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Transmitting the ultrasound signal in the opposite direction from b to a we get (1.10) with

η replaced by −η and compute

t(a, b) + t(b, a) = 2

∫
L(a,b)

1

c(x)
dl(x)

t(a, b)− t(b, a) = −2

∫
L(a,b)

f(x) · η
c(x)2

dl(x).

From (1.11) we obtain c(x) applying any inversion scheme for scalar 2D computerized

tomography. Assuming c(x) to be known in the interior of Ω we can define

g(x) = −2f(x)

c(x)2
.

Extending g by zero outside Ω gives the measured data the Doppler transform. More

precisely, for every a, b ∈ ∂Ω,

t(a, b)− t(b, a) = Dg(a, η)

where Dg is defined in (1.1).

Schlieren tomography is a method to measure temperature in gases using the change

of index of refraction due to heating. Braun and Hauck [2] show that the deflection of a

laser beam shining through the gas is proportional to∫ l

0
(∇η × t0)ds (1.14)

where t0 is the direction of the undeflected beam and η is the index of refraction. This is

the transverse ray transform of ∇η.
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2 MATHEMATICAL BACKGROUND

A complex number a + bi can be viewed as an element (a,b) ∈ R2 with a new al-

gebraic structure together with an imaginary number i with i = −1. More complicated

algebraic structure was introduced to R4 with imaginary units e2
1 = e2

2 = e2
3 = −1 where

ei, i = 1, 2, 3 are standard bases of R3 called Quaternions. In this sense, it can be consid-

ered as a higher dimensional generalization of complex numbers.

We begin this chapter by recalling the definition of x- ray and Radon transforms for

scalar case and also a vector-valued function.

Section 2 shall present the definition and elementary properties of quaternions and

the Dirac operator which play important role in quaternion analysis. The Dirac opera-

tor will be considered as the generalization of the Cauchy-Riemann operator in complex

analysis and also its fundamental solution or the Cauchy kernel will be introduced. The

null space of the Dirac operator are called the monogenic functions. The analogue of

quaternions in higher dimension is Clifford algebra which is briefly presented in Section 3.

In Section 4 we introduce the Cauchy transform of a quaternionic-valued function.

Its non-tangential boundary values provide the so called Plemelj-Sokhotski formula (The-

orem 2.2). Subsequently, the quaternion-(Clifford) Hilbert transform will be introduced.

The difference between the non-tangential limits of the Cauchy transform leads to the

function we are considering. Section 5 presents four families of distributions in quater-

nions. Section 6 shall introduce the plane wave decomposition of the Cauchy kernel. This

decomposition is in terms of the integral of the scalar product. The Clifford-Radon and x-

ray transforms of a quaternionic or Clifford-valued function already worked out in details

in [28, 30] will be described in section 7 and section 8, respectively. We also mentioned

that the classical Radon transform is a boundary value of the quaternions or Clifford one.

The x-ray transform, moreover, in the classical sense has closely related structure to the



11

quaternionic one.

The last part of this chapter will recall the Helmholtz-Hodge decomposition of a

vector field which is in section 9. The surface gradient is in section 10.

Throughout this work, we denote a real-valued function by a symbolic f and a

vector-valued function by a bold f . Furthermore, the quaternionic-valued function will

be denoted by f = f0e0 + f where f0 is a scalar-valued function, e0 = (1, . . . , 0) and f is

the vector part of f . Here, we are interested in functions on the Euclidean space R3 and

R4.

2.1 Real-Valued and Vector-Valued Radon and X-ray Transforms

The x-ray transform of a real-valued function f is defined by integrating over lines.

In detail, if f is a compactly supported on Rn, then the x-ray transform of f is the function

Xf defined on the set of all lines in Rn by

Xf(L) =

∫
L
f =

∫
R
f(x+ tθ)dt

where x is point on the line and θ is a unit vector giving the direction of the line L.

The Radon transform is an operator R defined on L1(Rn) whereby for any integrable

function f on Rn, the function Rf is defined for θ ∈ Sn−1 and s ∈ R by

Rf(s, θ) =

∫
<θ,x>=s

f(x)dx =

∫
y·θ=0

f(y + sθ)dy

whenever the integrals exist. The left hand side is read ”the value of the Radon transform

of a function f” on the hyperplane < θ, x >= s. Alternative expressions are

Rf(s, θ) =

∫
y∈θ⊥

f(y + sθ)dy or Rf(s, θ) =

∫
Rm

δ(< x, θ > −s)f(x)dx. (2.1)

In two dimensions, the x-ray and the Radon transform coincide up to notation because a

line is the same as a hyperplane.
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For a vector-valued function f , for example, f is a vector field, in Rn we define the

x-ray and Radon transforms of f by

Xf(L) =

∫
L

f =

∫
R

f(x+ tθ)dt (2.2)

and

Rf(s, θ) =

∫
<θ,y>=0

f(y + sθ)dy =

∫
Rm

δ(x · θ − s)f(x)dx (2.3)

where the integrals are understood componentwise. We would like to remark that by a

vector-valued function f we mean either a vector field or a Clifford (quaternion)-valued

function depending on the context. There are some crucial properties of both transforms

that we shall use for the inversion formulas, for example see [17].

During the last fifty years, Quaternion analysis has gradually developed into a com-

prehensive function theory offering a higher dimensional generalization of the theory of

holomorphic functions of one complex variable. We shall introduce the quaternions in the

following section.

2.2 Quaternions

In this section, we introduce the definition and elementary properties of quaternions

together with all the algebraic properties which are used throughout this work. We can

observe afterward that quaternions are generalization of complex numbers in R2 to higher

dimension which is exactly R4. This means that quaternions can be viewed as R4 with

certain structures similar to the case of complex numbers and R2.

Let R4 be the 4-dimensional Euclidean vector space and let

e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0) and e3 = (0, 0, 0, 1)
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be the standard orthonormal basis of R4. Hence, a vector x = (x0, x1, x2, x3) ∈ R4 can be

written as

x = x0e0 +

3∑
j=1

xjej

where x′js are scalars. Here scalars mean R or C and we will restrict our attention to R.

With the notation x =
∑3

j=1 xjej we obtain that for each x ∈ R4,

x = x0e0 + x.

We call x0 and x the real and the vector parts of x, denoted by Rex and Vecx respectively.

The product of any two elements x = x0e0 + x and y = y0e0 + y in R4 is given by the

multiplication law as:

xy = (x0y0 − x · y)e0 + x× y + x0y + y0x

= x0y0e0 + x0y + y0x+ xy (2.4)

where x·y and x×y are the scalar(inner) and the vector(cross) products in R3, respectively.

It is obvious to see that the product is not commutative. In this way the vector space R4

is furnished with the algebraic structure of a ring. It is denoted by H and will be named

The Quaternions.

We shall next present some significant properties of quaternions closely related to

properties of complex variables. Define the conjugate of x = x0e0 + x ∈ H by

x̄ = x0e0 − x.

From (2.4) it follows that

xx̄ = x̄x =

3∑
j=0

x2
j = |x|2.

and the product of two vectors x and y is given by

xy = −x · y + x× y. (2.5)
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By (2.4) and (2.5), it is straightforward to see that

Re(x) = x0e0 =
1

2
(x+ x̄), V ec(x) =

1

2
(x− x̄).

The inverse of the quaternion x 6= 0 is obtained as x−1 = x̄|x̄|−2. By using the multipli-

cation rule (2.4), the basis quaternions fulfill the following relations:

1. e2
0 = 1 = e0, e

2
i = −1 = −e0, i = 1, 2, 3,

2. eiej + ejei = 0, i, j = 1, 2, 3, i 6= j

3. e0 commutes with other basis vectors.

Therefore, we can put e0 = 1 which is the identity of the space. A straightforward

computation leads to the identities stating that for any quaternions x and y,

1. xy = y x,

2. |xy| = |yx|,

3. Re(xy) = Re(yx),

4. -2x · y = xy + yx, 2x× y = xy − yx.

The Euclidean space R3 is embedded in the Quaternions H by identifying a point (x1, x2, x3) ∈

R3 with the vector x = (0, x1, x2, x3) in H. In other word, R3 is embedded in R4 or H by

0× R3.

At the heart of Quaternion analysis is the Dirac operator, which is a direct and

elegant generalization to higher dimension of the Cauchy-Riemann operator in the com-

plex plane. This Dirac operator in R3 is the elliptic, rotation invariant, vector-valued

differential operator of first order defined by

∂x =
3∑
j=1

ej∂xj . (2.6)
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Its null space contains functions called the monogenic functions which are generalization

of the holomorphic functions in complex analysis. Also, its fundamental solution is given

by

E(x) = − 1

a3

x

|x|3
, x 6= 0 (2.7)

with a3 =
2π3/2

Γ(3/2)
= 4π the area of the unit sphere S2 in R3. This means that

1. E is vector valued and belongs to Lloc1 (R3)

2. lim|x|→∞E(x) = 0

3. ∂xE(x) = δ(x) in distributional sense, δ being the classical δ-distribution in R3, i.e,

for each test function φ defined on R3 and with values in H, one has < δ, φ >= φ(0).

We see that E(x) is not differentiable everywhere due to the singularity. So it makes

sense to define ∂xE(x) in distributional sense as the following, for any test function

ϕ on R3,

< ∂xE(x), ϕ >= − < E(x), ∂xϕ >= −E(x) ∗ ∂xϕ = ϕ(0)

where E(x) ∗ ∂xϕ is defined by

E(x) ∗ ∂xϕ = −∂xE(x) ∗ ϕ = −δ ∗ ϕ = −ϕ(0).

We shall see next that what can we say about the Dirac operator of the product of two

quaternionic-valued functions. Recall that in complex variables, the Cauchy-Riemann

operator is defined by

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
and for any complex-valued functions u and v, the operator satisfies the natural multipli-

cation law

∂

∂z̄
(uv) = (

∂

∂z̄
u)v + u(

∂

∂z̄
v).

In particular, it follows that the product of two analytic functions is again an analytic

function. Due to the non-commutativity of quaternions, the assertion cannot be true
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for the H-valued functions. The generalized Leibniz rule for H-valued functions is the

following theorem:

Theorem 2.1. For any two differentiable H-valued functions u and v,

∂x(uv) = (∂xu)v + ū(∂xv) + 2Re[(u)∂x)]v. (2.8)

For the proof see [23, 8].

As mentioned earlier we consider a quaternionic-valued function as a vector-valued

function so one can denote the quaternionic-valued function with domain in Rn by f =

f0e0 + f where f = f1e1 + f2e2 + f3e3, fi(x) ∈ R, i = 1, 2, 3.

2.3 Clifford Algebra

The Clifford algebra is a generalization of the quaternions to higher dimensions Rm.

For m ∈ N and p, q ∈ N0 such that p + q = m, let Rp,q be the real vector space Rm,

endowed with a non-degenerate quadratic form of signature (p, q), and let {e1, e2, . . . , em}

be an orthonormal basis for Rp,q. Then the linear, real and associative univeral Clifford

algebra Rp,q constructed over Rp,q has a non-commutative product governed by the rules:

e2
j = 1, j = 1, . . . , p

e2
p+j = −1, j = 1, . . . , q

ejek = −ekej , j 6= k, j, k = 1, . . . ,m.

For a set A = {j1, · · · , jh} ⊂ {1, 2, · · · ,m} = M with 1 ≤ j1 < j2 < . . . < jh ≤ m, let

eA = ej1ej2 . . . ejh . We put e0 = 1, the latter being the identity element of the algebra.

Then (eA : A ⊆ M) is a canonical basis for the 2m-dimensional Clifford algebra Rp,q.

Any Clifford number v ∈ Rp,q may thus be written as v =
∑

A⊆M eAvA with vA ∈ R or as

v =
∑m

k=0[v]k where [v]k =
∑
|A|=k eAvA is the so-called k-vector part of v (k = 0, 1, · · ·m).
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The Euclidean space Rm is embedded in the Clifford algebra R0,m by identifying

the point (x1, x2, · · · , xm) with the Clifford-vector variable x given by

x =
m∑
j=1

ejxj .

In particular, when m = 3, R0,3 has 23 = 8 dimensions with the basis

{e0, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3} where other notations for e1e2, e2e3, e1e3, e1e2e3 are

e12, e23, e23 and e123, respectively. H coincides the 4 dimensional subspace {e0, e12, e13, e23}

of R0,3. The Clifford product of any two vectors x and y is given by

xy = −x · y + x ∧ y

with the first term of the right-hand side is the usual inner product in Rm and

x ∧ y =
m∑
j=1

m∑
k=j+1

ejek(xjyk − xkyj)

being the 2-vector (also called bivector). Similar to the case of quaternions, the Dirac

operator in Rm is defined as

∂x =

m∑
j=1

ej∂xj .

Its fundamental solution is given by

E(x) = − 1

am

x

|x|m
, x 6= 0

where am =
2πm/2

Γ(m/2)
is the area of the unit sphere Sm−1 in Rm. Properties of E(x) in

Rm are similar to the ones in R3 as in (2.7). We shall focus on a Clifford valued function

f : L2(Rm)→ R0,m.
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2.4 The Distributions in Clifford analysis

A distribution on Rm is an element of continuous dual of C∞0 (Rm). More precisely,

a scalar-valued distribution u is a linear operator on C∞0 (Rm) defined by

u(ϕ) =

∫
R3

ϕ(x)u(x)dx, ϕ ∈ C∞0 (Rm).

We shall follow [1] to discuss about definitions, elementary properties of distributions in

Clifford analysis which have scalar and vector values. These distributions will be used in

a small portion in section 4.2.

2.4.1 The general spherical means operators Σ(0) and Σ(1).

Let φ be a scalar-valued test function defined on Rm; putting x = rω, r = |x|, ω ∈

Sm−1, the authors in [1] defined the generalized spherical means

Σ (0)[φ] =
1

am

∫
Sm−1

φ(rω)dS(ω)

and

Σ (1)[φ] =
∑

(0)[ωφ] =
1

am

∫
Sm−1

ωφ(rω)dS(ω).

To discuss the behaviors of the derivatives of the spherical means at the origin r = 0, we

introduce the constants

C(k) =
22kk!

(2k)!

(m
2

+ k − 1
)
. . .
(m

2

)
, k ∈ N0

in order to make the formula compact. The following 2 propositions proposed in [1] are

important properties of
∑(0) and

∑(1), respectively.

2.4.2 The distributions T ∗λ and U∗λ

Let λ be a complex parameter and let φ be a scalar-valued test function defined on

Rm. The authors in [1] defined the scalar-valued distribution Tλ and the vector-valued
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distribution Uλ by:

〈Tλ, φ〉 = am < Fprz+,Σ
(0)[φ] > (2.9)

and

〈Uλ, φ〉 = am < Fprz+,Σ
(1)[φ] > (2.10)

where they have put z = λ+m−1 and Fprz+ is a distribution finite part on the real line see

[1]. Both families of distributions inherit an infinite sequence of singular points from Fprz+,

namely, z = −n, n ∈ N. However, by the propositions 2.2 and 2.3 we notice that half of

those singularities disappear. More precisely, for k ∈ N0 the residue for λ = −m− 2k − 1

of (2.9) is

am

〈
Resz=−2k−2Fprz+,Σ

(0)[φ]
〉

= am

〈
(−1)2k+1

(2k + 1)!
δ(2k+1)(r),Σ (0)[φ]

〉
= 0

while the residue for λ = −m− 2k of the second one yields

am

〈
Resµ=−2k−1Fprz+,Σ

(1)[φ]
〉

= am

〈
(−1)2k

(2k)!
δ(2k)(r),Σ (1)[φ]

〉
= 0.

In [1] use the well-known technique which is the method of dividing an appropriate

Gamma-function to show the distributions can be normalized as the following formulas:

T ∗λ = π
λ+m

2
Tλ

Γ(λ+m
2 )

, λ 6= −m− 2k

T ∗−m−2k =
π
m
2
−k

22kΓ(m2 + k)
(−4)kδ(x), k ∈ N0

and

U∗λ = π
λ+m+1

2
Uλ

Γ(λ+m+1
2 )

, λ 6= −m− 2k

U∗−m−2k−1 = − π
m
2
−k

22k+1Γ(m2 + k + 1)
∂2k+1
x δ(x), k ∈ N0

For the last part of this section we shall briefly talk about that the Riesz potentials

Iα introduced in [17] can be written as one of these distribution. For a complex parameter
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α and scalar valued rapidly decreasing function f defined in Rm, they are defined by

Iα[f ](y) =
1

2απm/2
Γ((m− α)/2)

Γ(α/2)
Fp

∫
Rm
|x− y|α−mf(x)dx

=
1

2απm/2
Γ((m− α)/2)

Γ(α/2)
(Fp|x|α−m ∗ f(x))(y).

2.5 The Clifford-Hilbert Transform on R3

In this section, we shall present a vector-valued Hilbert transform on R3 using

Clifford algebra which is a generalization of a one-dimensional Hilbert transform called

Clifford-Hilbert transform. The first part of this section shall give its definition and some

properties. The second part of this section shall introduce the Cauchy kernel and the

Cauchy transform of a function f = f0 + f ∈ L2(R3). A significant property of the Cauchy

transform, for example the differences of the non-tangential boundary limits, leads to the

reconstruction formula of f by using the quaternionic x-ray and Radon transforms which

we shall discuss in Chapter 3.

2.5.1 Definition and properties

We introduce two open subspaces of R4 : the upper and lower half spaces R4
±,

respectively given by

R4
+ = {x = (x0, x) ∈ R4 : x0 > 0}

R4
− = {x = (x0, x) ∈ R4 : x0 < 0}.

Identifying the Euclidean space R3 with the hyperplane x0 = 0 in R4, we obtain that the

boundaries of the spaces R4
± are given by ∂R4

+ = ∂R4
− = R3.

Now, let f ∈ L2(R3); F. Sommen [1] provided the definition of the quaternionic-



21

Hilbert transform H[f ] of f on R3 which was defined by

H[f ](x) =
2

a4
P.V

∫
R3

x̄− ȳ
|x− y|4

f(y)dy

=
2

a4
lim
ε→0+

∫
R3\B(x,ε)

x̄− ȳ
|x− y|4

f(y)dy (2.11)

or for an appropriate distribution f , by means of the convolution

H[f ](x) = (H ∗ f)(x)

with H the convolution kernel given by the distribution

H(x) =
2

a4
P.V

w̄

r3
= − 2

a4
U∗−3,0.

Similar to the Hilbert transform in the real line, the Hilbert transform (2.11) then satisfies

the following properties. Again by am we denote the surface area of the unit sphere Sm−1.

Property 1 The Hilbert transform is a convolution operator, which is equivalent with

saying that the Hilbert transform commutes with translations, i.e,

τa[Hf ] = H[τa[f ]]

with τa[f ]] = f(x− a) , a ∈ R3.

Property 2 The Hilbert kernel H is a homogeneous distribution of degree -3, which,

for a convolution operator, is equivalent saying that the Hilbert transform commutes with

dilations,i.e.,

da[H[f ]] = H[da[f ]]

with da[f ](x) =
1

a3/2
f
(x
a

)
, a > 0.

Property 3 The Hilbert transform is a bounded linear operator on L2(R3) and it is a

norm preserving,i.e.,

‖H[f ]‖L2 = ‖f‖L2 .

More generally, it also preserves the inner product

< H[f ],H[g] >=< f ,g > .
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Property 4 The Hilbert transform H : L2(R3) → L2(R3) is an involution, i.e., it is

invertible with H−1 = H.

Property 5 The Hilbert transform H : L2(R3) → L2(R3) is unitary, its adjoint being

given by H∗ = H, i.e.,

< H[f ],g >=< f ,H[g] > f ,g ∈ L2(R3).

Property 6 The Hilbert transform anti-commutes with the Dirac operator, i.e., if f . And

∂xf are in L2(R3) or if f is an appropriate distribution, then

H[∂xf(x)](y) = −∂y[H[f ](y)].

2.5.2 The Cauchy Kernel and the Cauchy Transform

F. Sommen [1] defined The Cauchy Kernel

C(x) = C(x0, x) =
1

a4

x̄

|x|4
=

1

a4

x0 − x
|x0 − x|4

, x 6= 0. (2.12)

to be the fundamental solution of the Dirac operator ∂x in R4 being given by

∂x = ∂x0 + ∂x.

This means that

1. C(x) is ∂x-monogenic in R4 \ {0}

2. lim|x|→+∞C(x) = 0

3. ∂xC(x) = δ(x) in distributional sense.

Let f ∈ L2(R3), the Cauchy integral C[f ] is defined in R4 \ R3 by

C[f ](x0, x) = (C(x0, ·) ∗ f(·))(x) =

∫
R3

C(x0, x− y)f(y)dy
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where C(x) is the Cauchy Kernel (2.12).

On account of those properties, it may be clear that the Cauchy integral is ∂x -

monogenic in both the upper half space R4
+ and the lower half space R4

−. Further, for a

function f ∈ L2(R3), taking the supremun either in R4
+ or R4

− we also have that

sup
x0≥0,x0≤0

∫
R3

|C[f ](x0, x)|2dx < +∞.

The recovering of f proposed in [28, 30] made use of the non-tangential boundary limits

of the Cauchy integral C[f ]. Then we have the so-called Plemelj-Sokhotzki formulae.

Theorem 2.2 (Plemelj-Sokhotzki formulae). Let f ∈ L2(R3), then the non-tangential

boundary limits of the Cauchy integral C[f ] are given by

C+[f ](x) = lim
x0→0+

C[f ](x0, x) =
1

2
f(x) +

1

2
H[f ](x)

C−[f ](x) = lim
x0→0−

C[f ](x0, x) = −1

2
f(x) +

1

2
H[f ](x)

For a function f ∈ L2(R3), we then call C+[f ] and C−[f ] its Cauchy transforms and

they satisfy the following properties.

1. C+ and C− are bounded linear operators on L2(R3)

2. f = C+[f ]− C−[f ] and H[f ] = C+[f ] + C−[f ]

3. C+ and C− are orthogonal , i.e., < C+[f ], C−[f ] >= 0.

2.6 Plane wave decomposition

A plane wave is a function of scalar product < x, θ >, x, θ ∈ Rm. In [28] F. Sommen

has shown that the fundamental solution of the Dirac operator ∂x = ∂x0 + ∂x in Rm+1

admits the following plane wave decompositions :

for m even, we have that in Rm+1
±

1

am+1

x0 − x
|x0 − x|m+1

= ±(−1)m/2(m− 1)!

2(2π)m

∫
Sm−1

(< x, θ > −x0θ)
−mdθ ,
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whereas for m odd,

1

am+1

x0 − x
|x0 − x|m+1

= ±(−1)(m+1)/2(m− 1)!

2(2π)m

∫
Sm−1

(< x, θ > −x0θ)
−mθdθ. (2.13)

In particular for m = 3, the decomposition reduces to

x0 − x
|x0 − x|4

= ± 1

4π

∫
S2

(< x, θ > −x0θ)
−3θdθ. (2.14)

In Chapter 3, we shall see that the decomposition (2.13) will lead to the x-ray

and the Radon decompositions giving rise to the reconstruction of a quaternionic-valued

function. For the proof of decomposition (2.13) and (2.14) we will refer to [28, 30, 1] by

F. Sommen.

Let α ∈ N. The distributional boundary values of the plane wave powers, (< x, θ >

−0+θ)α and (< x, θ > −0−θ)α, defined in Rm, are the limits of (< x, θ > −x0θ)
α when

x0 → ±0 in the distributional sense as

lim
x0→±0

∫
< (< x, θ > −x0θ)

α, φ > dx =< (< x, θ > −0±θ)α, φ >

where φ is a Clifford-valued compactly supported function on Rn. We will read (< x, t >

−0±t)α the limits of the plane wave generalized powers from the upper and the lower half

spaces, respectively. The following lemma is one of important properties that we shall use

for the reconstruction formula of a function f .

Lemma 2.3. For any positive integer m, we have, for x, θ ∈ Rm,

(< x, θ > −0+θ)−(m−1) − (< x, θ > −0−θ)−(m−1) = 2πθ
(−1)m−2

(m− 2)!
δm−2(< x, θ >). (2.15)

For the proof we refer to [29].

2.7 The Quaternionic Radon Transform

As seen in section 2.1, we have defined the Radon transform of a vector-valued

function f , with values in R3. We shall next focus on a Clifford-valued function, with
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values in R0,3 and introduce a new type of Radon transform as seen in [28, 30], called the

Clifford Radon transform.

Definition 2.4. Let θ ∈ S2 and x0 6= 0. Then the Clifford Radon transform of f ∈ S(R3)

is given by

R(f)(s, θ, x0) =
1

2π

∫
R3

(< u, θ > −s+ x0θ)
−1θf(u)du. (2.16)

The Radon transform is a monogenic function as the following proposition

Proposition 2.5. If x0 6= 0, R(ϕ)(s, θ, x0) satisfies the Cauchy Riemann system

(
∂

∂x0
+ ∂x)(R(ϕ)(s, θ, x0)) = 0.

Here we use notation R for the quaternionic-valued Radon transform to distinguish

from the scalar-valued one denoted by R. The integral make sense because we assume

that x0 is non zero making the integrand is an integrable function.

In [28, 30], F. Sommen showed that the classical Radon transform Rf defined in R3

which was the transform

R(f)(s, θ) =

∫
R3

δ(< u, θ > − < x, θ >)f(u)du, (2.17)

was the boundary value of the quaternion-valued Radon transform defined in R4. More

precisely, by taking the non-tangential boundary limits and applying lemma (2.3) we then

have

R(f)(s, θ) = R(f)(s, θ, 0+)−R(f)(s, θ, 0−)

=
1

2π

∫
R3

(
(< x− u, θ > −0+θ)−1 − (< x− u, θ > −0−θ)−1

)
θf(u)du

=
1

2π
(2π)

∫
R3

δ(< u, θ > − < x, θ >)f(u)du.

In particular, the vector-valued Radon transform will be

R(f)(x · θ, θ) =

∫
R3

δ(< u, θ > − < x, θ >)f(u)du. (2.18)
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In section 4.1 we shall provide a different proof that the Cauchy transform of f can be

written as the following

C[f ](x0 + x) =
−1

8π
∂2
x

∫
S2

(< x, θ > −x0θ)
−1θdθ (2.19)

C[f ](x0 + x) = − 1

8π

∫
S2

∂2
x(< x, θ > −x0t)

−1θdθ. (2.20)

The reconstruction of f by using the Radon transform is contained by taking the non-

tangential boundary of its Cauchy transform as follows:

f(x) = C[f ](x+ 0)− C(f)(x− 0)

=
−1

8π
∂2
x

∫
S2

(Rf(0+, x, θ)−Rf(0−, x, θ))dθ

= − 1

8π
∂2
x

∫
S2

Rf(θ · x, θ)dθ. (2.21)

2.8 The Quaternionic X-Ray transform

Definition 2.6. Let θ ∈ S2 and x0 6= 0. Then the quaternionic x-ray transform or the

x-ray type transform of f ∈ S(R3) is given by

X (f)(x0, x, θ) =
−1

a3

∫
R3

x0θ − (x− u)× θ
|x0θ − (x− u)× θ|3

θf(u)du. (2.22)

Similar to the case of the quaternionic-valued Radon transform we shall use the

notation X to distinguish between the quaternionic-valued x-ray transform and the scalar-

valued one denoted by X. With the integral (2.2), Sommen [28] shows that

Xf(x, θ) = X f(0+, x, θ)−X f(0−, x, θ).

and that

Xf(x, θ) = X f(0+, x, θ)−X f(0−, x, θ)

= − 1

a3

∫
R3

(u− x)× θ
|(u− x)× θ|3

θf(u)du

= − 1

a3

∫
θ⊥

−(Eθx− u′)
|Eθx− u′|3

X f(u′, θ)du′, (2.23)
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where Eθx is the orthogonal projection of x on the plane θ⊥.

The next proposition tells that the Cauchy transform of a Clifford-valued function

can be written in term of back projection of the x-ray transform. This proposition and

the proof were proposed in [28, 30] and we just add more details in the existing proof.

Proposition 2.7. Let f ∈ S(R3). Then we have x ∈ R4
± ,

C(f)(x0 + x) =
1

2(2π)3
∂x

∫
S2

X f(x0, x, θ)dθ. (2.24)

Proof. Using the following x-ray decomposition of the Cauchy kernel introduced by F.

Sommen [30], for which we shall provide details in chapter 3 section 3.1,

x0 − x
|x0 − x|4

=
1

8π
(sgnx0)∂x

∫
S2

x0θ − x× θ
|x0θ − x× θ|3

θdθ

we have

C(f)(x0 + x) =
1

a4

∫
R3

x0 − x+ u

|x0 − x+ u|4
f(u)du

=

∫
R3

(sgnx0)∂x
2πa3a2

∫
S2

x0θ − (x− u)× θ
|x0θ − (x− u)× θ|3

θdθf(u)du

= − 1

2(2π)3
(sgnx0)∂x

∫
S2

∫
R3

x0θ − (x− u)× θ
|x0θ − (x− u)× θ|3

θf(u)du

=
1

2(2π)3
(sgnx0)∂x

∫
S2

X f(x0, x, θ)dθ.

Then f is obtained from the non-tangential boundary values of the Cauchy transform

as follows:

f(x) = C[f ](x+ 0)− C[f ](x− 0)

=
1

2(2π)3
∂x

∫
S2

((sgnx0)X f(0+, x, θ)− (sgnx0)X f(0−, x, θ))dθ

=
1

2(2π)3
∂x

∫
S2

∫
R3

(u− x)× θ
|(u− x)× θ|3

θf(u)dudθ

=
1

2(2π)3
∂x

∫
S2

∫
θ⊥

−(Eθx− u′)
|Eθx− u′|3

X f(u′, θ)du′dθ.
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2.9 Helmholtz-Hodge decomposition of a vector field f

We shall remind the reader of the well-known Helmholtz-Hodge decomposition of a

vector field by following [14, 13]. Denote B3 by the unit ball in R3. First of all, we will

recall the following subspaces of L2(B3): let

H1
0 (B3) = {p : H1(B3)→ C | p = 0 on S2}

be the subspace of H1(B3) with elements vanish on the boundary of the unit ball. The

norm of a scalar-valued function f in H1 is defined by

‖f‖H1 =

(∫
B3

(|f |2 + |∇f |2)

)1/2

.

Denote

∇H1
0 (B3) = {∇p | p ∈ H1

0 (B3)}

the space of potential fields with potentials that vanish on the boundary of the unit ball,

H(div;B3) = {f ∈ L2(B3) | < f ,∇p >= 0 for all p ∈ C∞0 (B3)}

the space of divergence-free vector fields with the subspace

H0(div;B3) = {f ∈ H(div;B3) | ξ · f(ξ) = 0, ξ ∈ ∂(B3)}

consisting of those vector fields in H(div;B3) that are tangential to the boundary and

finally the space of harmonic fields ∇H(B3) where

H(B3) = {h ∈ H1(B3) :

∫
B3

∇h(x) · ∇p(x)dx = 0} for all p ∈ C∞0 (B3)

is the space of harmonic functions. The Helmholtz-Hodge decomposition of a vector field

is the following theorem:

Theorem 2.8. Every vector field f ∈ L2(B3) can be uniquely decomposed into the form

f = ∇p+ fd0 + fh, (2.25)
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where the first part ∇p is called the irrotational part of f , the second and the third parts

fd = fd0 + fh are called solenoidal part with fd0 has a tangential flow at the boundary

∂B3 = S2 and a harmonic field fh = ∇h with a harmonic function h. In direct sum

notations, the space of square integrable vector fields L2(B3) is an orthogonal sum of three

subspaces

L2(B3) = ∇H1
0 (B3)⊕H0(div;B3)⊕∇H(B3).

Here ∇ denote the gradient in R3, respectively.

2.10 Surface Differential Operators

In this section we shall present the definition of the surface divergence operator

divη as a dual of a surface gradient operator ∇η where η ∈ S2. This definition is global

meaning that it is independent of local coordinates. We shall provide some calculations

to show how this global definition works for spherical coordinates on S2,

Definition 2.9. The surface divergence on S2 is defined by∫
S2

fdivηvdA = −
∫
S2

∇ηf · vdA , f ∈ C1
0 (S2) (2.26)

where v is tangential vector field. That is, for each η ∈ S2, v(η) ∈ η⊥.

We recall that the spherical coordinate for x ∈ R3 is defined by

x = rη, r > 0, η =


cosϕ sin θ

sinϕ sin θ

cos θ

 , ϕ ∈ [0, 2π], θ ∈ (0, π) (2.27)

We claim that divη has the following expression:

divηv =
1

sin θ

(
∂

∂θ
(sin θvθ) +

∂

∂ϕ
vϕ

)
(2.28)
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where η = η(ϕ, θ) is defined in (2.27) and

v = vϕe1(η) + vθe2(η) (2.29)

is a tangential vector on S2, supported away from poles. Here e1(η) and e2(η) are two

orthogonal vectors spanning the tangent plane η⊥,

e1(η) =
1

sin θ

∂

∂ϕ
η =


− sinϕ

cosϕ

0

 , e2(η) =
∂

∂θ
η =


cosϕ cos θ

sinϕ cos θ

− sin θ


The definition of surface gradient of a scalar function f(η) on the sphere S2 was reviewed

in [14] by Schuster and Kazantsev denoted by ∇ηf(η) and defined by

∇ηf =
1

sin θ

∂f

∂ϕ
e1(η) +

∂f

∂θ
e2(η). (2.30)

By using (2.26) and (2.29) and the formula for the integration on the sphere,∫
S2

f(α)dS(α) =

∫ π

0

∫ 2π

0
f(ϕ, θ) sin θdϕdθ, (2.31)

the right hand side of (2.26) in these coordinates becomes

−
∫ π

0

∫ 2π

0

(
∂f

∂ϕ

1

sin θ
vϕ +

∂f

∂θ
vθ

)
sin θdϕdθ. (2.32)

Integrating by parts in (2.32), the integral becomes∫ π

0

∫ 2π

0
f
∂vϕ
∂ϕ

dϕdθ +

∫ π

0

∫ 2π

0
f
∂

∂θ
(vθ sin θ)dθdϕ (2.33)

where we have used the periodicity of f . Simplifying (2.33) gives∫ π

0

∫ 2π

0
f

1

sin θ

(
∂vϕ
∂ϕ

+
∂

∂θ
(vθ sin θ)

)
sin θdϕdθ. (2.34)

Consequently, by (2.26) and (2.34) we have verified the claim (2.28).
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3 METHODS AND CONSTRUCTIONS

We shall begin this chapter by introducing x-ray and Radon decompositions of the

Cauchy kernel where the Cauchy kernel means the fundamental solution of the Dirac op-

erator. These decompositions were first introduced by Sommen [28, 30]. As in section 2.7

and 2.8 these give reconstruction formulas for a quaternionic-valued function. We briefly

describe and follow notations in [28, 30]. Furthermore, in this section we shall give a proof

of important expression leading to the x-ray decomposition of a Cauchy kernel. To do so,

we shall define the Dirac operator in a plane, say ∂x‖ where x = x‖ + θ < x, θ >, x‖ is on

the plane and θ is a unit vector normal to the plane.

In section 2 we define the quaternionic-Doppler transform which has real and vector

parts. The real part corresponds to the scalar Doppler transform which already exists

and widely used for many authors for reconstruction of vector fields [11, 12, 10, 4]. One

of the reasons why we are interested in this transform is to see how it contributes the

reconstruction formula for the vector part f of a quaternionic-valued function f . We shall

investigate this question in chapter 4.

Section 3 shall present cone-beam transform of a quaternionic-valued function f

which is defined componentwise of the scalar one. The Grangeat formula will be men-

tioned again in componentwise sense. We furthermore, shall present notations, properties

and conditions for a curve trajectory already described in [13] which we will use in Chapter

4. The vector part is a new term that we shall introduce in this work.

In section 4 we shall follow outline in [14] to describe the derivations of series ex-

pansions of a vector field in L2(B3). The first part shall give its orthogonal expansions

and the second part will present the orthogonal series expansion of its solenoidal part. We

also mention that a vector field can be viewed as a vector part f of a quaternionic-function

f and discuss that these expansions work for f as well.
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3.1 Radon and X-ray decompositions of the Cauchy Kernel

As in chapter 2 section 2.6, we see that the fundamental solution of the Dirac

operator (Cauchy kernel) can be decomposed as a plane wave integral and this leads to

the Radon and x-ray decompositions. The Radon decomposition was introduced and

explained in [28, 30] and the x-ray decomposition in [30]. With the Radon decomposition,

the reconstruction of a quaternion-valued function coincides with the classical one via the

filter back-projection of the Radon transform. The x-ray decomposition gives an inversion

formula for the vector part of a quaternionic-valued function with the Dirac operator

form instead of the lambda operator. Making use of the generalized Leibniz rule (2.8), we

obtain that, for x ∈ R3, θ ∈ S2,

for m odd

∂m−1
x (< x, θ > −x0θ)

−1 = (m− 1)!(−1)(m−1)/2(< x, θ > −x0θ)
−m, (3.1)

and for m even

∂m−1
x (< x, θ > −x0θ)

−1 = (m− 1)!(−1)m/2θ(< x, θ > −x0θ)
−m.

For dimension 3, by using the plane wave decomposition (2.14) and the equation

(3.1), one obtains the Radon decomposition of the Cauchy Kernel given by the following

theorem:

Theorem 3.1. For x = x0 + x, x0 6= 0,

x0 − x
|x0 − x|4

= −
∂2
x

8π

∫
S2

θ

< x, θ > −x0θ
dθ. (3.2)

See [28, 30] for the proof.

In particular for the x-ray decomposition of the Cauchy kernel, we introduce the

following two useful lemmas. They were first presented in [30]. The proof of the first one

is clear. The second one has been stated in [30]. However, the definition of the Dirac
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operator in a plane and the proof have not been treated yet. So here we shall introduce

the definition of the Dirac operator on a plane and provide the proof of the lemma.

Lemma 3.2. For any smooth function ϕ on S2 we have that∫
S2

ϕ(w)dw =
1

2π

∫
S2

∫
S2

δ(< ω, t >)ϕ(ω)dωdt

=
1

2π

∫
S2

∫
S2

δ(< ω, t >)dtϕ(ω)dω. (3.3)

Lemma 3.3. Let x ∈ R3, t ∈ S2. We decompose x in tangential and normal parts as

x = x‖ + t < t, x >. Then

∂x‖

∫
S2

δ(< ω, t >)

< x, ω > −x0ω
ωdω = 2π

x0t− x× t
|x0t− x× t|3

t (3.4)

where ∂x‖ is the Dirac operator on the plane θ⊥.

Proof. We write x‖ = a1ω1 +a2ω2 where a1 = r cos θ, a2 = r sin θ, ω1, ω2 is an orthonormal

basis and 0 ≤ θ < 2π, r > 0. We define the Dirac operator ∂x‖ on the plane t⊥ by

∂x‖ = ω1
∂

∂a1
+ ω2

∂

∂a2
.

This operator appears in [30] but was given no precise definition. So with the definition

just given we use it to prove the identity (3.4). Let

I =

∫
S2

δ(< ω, t >)

< x, ω > −x0ω
ωdω. (3.5)

Firstly, compute I.

I =

∫ 2π

0

cosϕω1 + sinϕω2

(r cos θ cosϕ+ r sinϕ sin θ)− x0(cosϕω1 + sinϕω2)
dϕ

=

∫ 2π

0

(cosϕω1 + sinϕω2)(r cos(θ − ϕ) + x0(cosϕω1 + sinϕω2))

[(r cos(θ − ϕ))− x0(cosϕω1 + sinϕω2)][(r cos(θ − ϕ)) + x0(cosϕω1 + sinϕω2)]
dϕ

=

∫ 2π

0

r cos(θ − ϕ) cosϕω1 − x0 cos2 ϕ+ r cos(θ − ϕ) sinϕω2 − x0 sin2 ϕ

r2 cos2(θ − ϕ)− x2
0(− cos2 ϕ− sin2 ϕ)

dϕ

=

∫ 2π

0

r cos(θ − ϕ) cosϕω1 + r cos(θ − ϕ) sinϕω2 − x0

r2 cos2(θ − ϕ) + x2
0

dϕ.
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=

∫ 2π

0

−x0 + r cos(θ − ϕ)(cosϕω1 + sinϕω2)

r2 cos2(θ − ϕ) + x2
0

dϕ.

Making the change of variable ψ = ϕ− θ gives

I =

∫ 2π

0

−x0 + r cosψ[cos(ψ + θ)ω1 + sin(ψ + θ)ω2]

r2 cos2(ψ) + x2
0

dψ. (3.6)

We claim next that the integrand in I is independent of the choice of bases in θ⊥ by

changing the orthogonal basis ω1, ω2 to ω̃1, ω̃2 as follows:

ω̃1 = cosβω1 + sinβω2

ω̃2 = − sinβω1 + cosβω2

ω1 = cosβω̃1 − sinβω̃2

ω2 = sinβω̃1 + cosβω̃2.

So x‖ can be written in new coordinates as

x‖ = r cos θω1 + r sin θω2

x‖ = r cos θ(cosβω̃1 − sinβω̃2) + r sin θ(sinβω̃1 + cosβω̃2)

= r cos θ cosβω̃1 − r cos θ sinβω̃2 + r sin θ sinβω̃1 + r sin θ cosβω̃2

= r cos(θ − β)ω̃1 + r sin(θ − β)ω̃2.

This means that if we change ω1, ω2 to ω̃1, ω̃2 by β, x‖ can be written in the new basis by

β. So

I =

∫ 2π

0

−x0 + r cosψ[cos(ψ + θ − β)ω̃1 + sin(ψ + θ − β)ω̃2]

r2 cos2(ψ) + x2
0

dψ.

The numerator of the integrand of I is

N of Integrand = −x0 + r cosψ[cos(ψ + θ) cosβω̃1 + sin(ψ + θ) sinβω̃1

+ sin(ψ + θ) cosβω̃2 − cos(ψ + θ) sinβω̃2]

= −x0 + r cosψ[cos(ψ + θ)(cosβω̃1 − sinβω̃2)

+ sin(ψ + θ)(sinβω̃1 + cosβω̃2)]

= −x0 + r cosψ[cos(ψ + θ)ω1 + sin(ψ + θ)ω2.]



35

Therefore, the claim has proved.

Next we shall evaluate I by considering term by term I1, I2 and I3 where they are

defined as the following :

I1 =

∫ 2π

0

−x0

r2 cos2(ψ) + x2
0

dψ,

I2 =

∫ 2π

0

r cosψ cos(ψ + θ)

r2 cos2(ψ) + x2
0

dψ,

I3 =

∫ 2π

0

r cosψ sin(ψ + θ)

r2 cos2(ψ) + x2
0

dψ.

Consider I1.

I1 = −x0

∫ 2π

0

1

r2 cos2 ψ + x2
0

dψ

= −x0

∫ 2π

0

1

r2(
cos 2ψ + 1

2
) + x2

0

dψ

= −x0

∫ 2π

0

2

r2(cos 2ψ + 1) + 2x2
0

dψ.

Making change of variable ω = 2ψ gives

I1 = −2x0

r2

∫ 2π

0

1

cosω + 1 +
2x2

0

r2

dω.

Let z = eiω and so cosω = z + z−1 and then

I1 = −2x0

r2

∫
S1

1

z + z−1

2
+A

dΩ

iz
, A = 1 +

2x2
0

r2
> 1

= −2x0

ir2

∫
S1

1

z2 + 1

2z
+A

dΩ

z
, A = 1 +

2x2
0

r2
> 1

= −4x0

ir2

∫
S1

1

z2 + 1 + 2Az
dΩ.
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z2 + 1 + 2Az = 0 gives z =
−2A±

√
(2A)2 − 4

2
= −A ±

√
A2 − 1. Let z+ = −A +

√
A2 − 1, z− = −A −

√
A2 − 1. We note that z+ lies in the unit circle and by using the

Residue theorem we get

I1 = −4x0

ir2

∫
S1

1

(z − z+)(z − z−)
dΩ

= −4x0

ir2
(2πi)Res(f, z+)

= −8x0π

r2

1

(z+ − z−)

= − 2π√
x2

0 + r2

= f1(r, θ, x0).

Next we will be considering

I2 =

∫ 2π

0

r cosψ cos(ψ + θ)

r2 cos2(ψ) + x2
0

dψ

=
1

r

∫ 2π

0

cosψ(cosψ cos θ − sinψ sin θ)

cos2 ψ +B
dψ, B = x2

0/r
2

=
1

r

∫ 2π

0

cos2 ψ cos θ − cosψ sinψ sin θ)

cos2 ψ +B
dψ,

=
1

r
cos θI21 −

1

r
sin θI22.
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The breaking factor I21 is given by

I21 =

∫ 2π

0

cos2 ψ

cos2 ψ +B
dψ

=

∫ 2π

0

cos 2ψ + 1

cos 2ψ + 1 + 2B
dψ

=
1

2

∫ 4π

0

cosω + 1

cosω +A
dω, , ω = 2ψ, A = 1 + 2B

=

∫ 2π

0

cosω + 1

cosω +A
dω

=

∫
S1

z2 + 2z + 1

z2 + 2Az + 1

dΩ

iz
, z = eiω

=
1

i

∫
S1

z2 + 2z + 1

z(z2 + 2Az + 1)
dΩ

=
1

i

∫
S1

z2 + 2z + 1

z(z − z+)(z − z−)
dz

where z+ = −A +
√
A2 − 1, z− = −A −

√
A2 − 1. Notice that z+ and z = 0 lie in the

unit circle and by the residue theorem we obtain

I21 =
1

i
(2πi)

(
z2 + 2z + 1

(z − z+)(z − z−)
|z=0 +

z2 + 2z + 1

z(z − z−)
|z=z+

)
= 2π

(
1

(z+)(z−)
+
z2

+ + 2z+ + 1

z+(z+ − z−)

)
= 2π

(
1 +

(A−
√
A2 − 1)(A− 1)

(−A+
√
A2 − 1)

√
A2 − 1

)

= 2π

(
1− x0√

x2
0 + r2

)
= f2(r, x0, θ).

The second integral I22 is given by

I22 =

∫ 2π

0

cosψ sinψ

cos2 ψ +B
dψ

= −1

∫
u

u2 +B
du, u = cosψ

=
−1

2

∫
1

v
dv v = u2 +B

=
−1

2
ln(cos2 ψ +B)|2π0 = 0.
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Hence,

I2 =
1

r
cos θf2(r, x0, θ).

Next we will be considering

I3 =

∫ 2π

0

r cosψ sin(ψ + θ)

r2 cos2(ψ) + x2
0

dψ

=
1

r

∫ 2π

0

cosψ(sinψ cos θ + cosψ sin θ)

cos2 ψ +B
dψ, B = x2

0/r
2

=
1

r

∫ 2π

0

cosψ sinψ cos θ + cos2 ψ sin θ)

cos2 ψ +B
dψ

=
1

r
sin θI31 +

1

r
cos θI32,

where

I31 =

∫ 2π

0

cos2 ψ

cos2 ψ +B
dψ, I32 =

∫ 2π

0

cosψ sinψ

cos2 ψ +B
dψ.

Thus

I3 =
1

r
sin θf2(r, x0, θ),

and so

I = f1(r, x0, θ) +
1

r
cos θf2(r, x0, θ)ω1 +

1

r
sin θf2(r, x0, θ)ω2

= − 2π√
x2

0 + r2
+

1

r
f2(r, x0, θ)(cos θω1 + sin θω2)

= − 2π√
x2

0 + r2
+

2π

r

(
1− x0√

x2
0 + r2

)
(cos θω1 + sin θω2).

Now, let’s compute

J =

∫
S1

1

(< x, t > −x0t)2
dt =

∫
S1

(< x, t > +x0t)
2

| < x, t >2 +x2
0|2
dt =

∫
S1

< x, t >2 +2x0 < x, t > t− x2
0

| < x, t >2 +x2
0|2

dt.

Let x = r(cos θ, sin θ), t = (cosω, sinω). Then

J =

∫
< x, t >2 −x2

0

| < x, t >2 +x2
0|2
dt+ 2x0

∫
< x, t > t

| < x, t >2 +x2
0|2
dt

= J1 + 2x0J2.
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J1 =

∫
r2 cos2(θ − ω)− x2

0

(r2 cos2(θ − ω) + x2
0)2

dω

= 2

∫ π

0

r2 cos2(ω)− x2
0

(r2 cos2(ω) + x2
0)2

dω

= 2

∫ π

0

r2 (cos 2ω+1)
2 − x2

0

(r2 (cos 2ω+1)
2 + x2

0)2
dω

=

∫ 2π

0

r2 (cosϕ+1)
2 − x2

0

(r2 (cosϕ+1)
2 + x2

0)2
dϕ, ϕ = 2ω

= 2

∫ 2π

0

r2 cosϕ+ r2 − 2x2
0

(r2 cosϕ+ r2 + 2x2
0)2

dϕ

=
2

r2

∫ 2π

0

cosϕ+ α

(cosϕ+ β)2
dϕ, α = 1− 2x2

0

r2
, β = 1 +

2x2
0

r2

=
2

r2

∫
S1

z2+1
2z + α

( z
2+1
2z + β)2

dΩ

iz
, z = eiω

=
4

ir2

∫
S1

z2 + 1 + 2αz

(z2 + 1 + 2βz)2
dΩ

=
4

ir2

∫
S1

z2 + 1 + 2αz

((z − z+)(z − z−))2
dΩ

where

z± =
−2β ±

√
4β2 − 4

2
= −β ±

√
β2 − 1, β = 1 +

2x2
0

r2
> 1.
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Also, notice that z+ lies in the unit circle. By the residue theorem

J1 =
4

ir2
(2πi)

d

dz

(
z2 + 1 + 2αz

(z − z−)2

)
|z=z+

=
8π

r2

(z − z−)2(2z + 2α)− (z2 + 1 + 2αz)2(z − z−)

(z − z−)4
|z=z+

=
16π

r2

(z − z−)(z + α)− (z2 + 1 + 2αz)

(z − z−)3
|z=z+

=
16π

r2

−αz+ − 1− αz− − z+z−
(z+ − z−)3

=
16π

r2

(
−α(z+ + z−)− 2

(z+ − z−)3

)
=

16π

r2

(
−α(−2β)− 2

(2
√
β2 − 1)3

)

=
16π

r2

2

8

αβ − 1

(β2 − 1)
√
β2 − 1

=
4π

r2

(−4x4
0/r

4)

(β2 − 1)
√
β2 − 1

=
−2x0π

(x2
0 + r2)3/2

, β2 − 1 =
4x2

0

r2

(
x2

0

r2
+ 1

)

J2 =

∫ 2π

0

r cos(θ − ω)(cosωω1 + sinωω2)

(r2 cos2(θ − ω) + x2
0)2

dω

=

∫ 2π

0

r cosω cos(θ − ω)

(r2 cos2(θ − ω) + x2
0)2

dωω1 +

∫ 2π

0

r sinω cos(θ − ω)

(r2 cos2(θ − ω) + x2
0)2

dωω2

= J21ω1 + J22ω2

J21 =

∫ 2π

0

r cos(ϕ+ θ) cosϕ

(r2 cos2 ϕ+ x2
0)2

dϕ, ϕ = ω − θ

=
cos θ

r3

∫ 2π

0

cos2 ϕ

(cos2 ϕ+
x2

0
r2 )2

dϕ− sin θ

r3

∫ 2π

0

cosϕ sinϕ

(cos2 ϕ+
x2

0
r2 )2

dϕ

=
cos θ

r3
A1 −

sin θ

r3
A2

.



41

A1 =

∫ 2π

0

cos2 ϕ

(cos2 ϕ+B)2
dϕ, B =

x2
0

r2

=

∫ 2π

0

cos 2ϕ+1
2

( cos 2ϕ+1
2 +B)2

dϕ = 2

∫ 2π

0

cos 2ϕ+ 1

(cos 2ϕ+ 1 + 2B)2
dϕ

=

∫ 4π

0

cosω

(cosω + C)2
dω, C = 1 + 2B

= 2

∫ 2π

0

cosω + 1

(cosω + C)2
dω =

∫
S1

z2+1
2z + 1

( z
2+1
2z + C)2

dΩ

iz

=
4

i

∫
S1

z2 + 1 + 2z

(z2 + 1 + 2Cz)2
dΩ =

4

i

∫
S1

z2 + 1 + 2z

(z − zc−)2(z − zc+)2
dΩ

= 8π
d

dz

(
z2 + 1 + 2z

(z − zc−)2

)
z=zc+

= 8π(2)

(
−(z+ + z−)− z+z− − 1

(z+ − z−)3

)
=

16π(C − 1)

(C2 − 1)3/2
=

r4

2x0(x2
0 + r2)3/2

.

To finish this proof, we need to compute J22.

J22 =

∫ 2π

0

r sinω cos(θ − ω)

(r2 cos2(θ − ω) + x2
0)2

dω

=

∫
r sin(ϕ+ θ) cosϕ

(r2 cosϕ+ x2
0)2

dϕ

=
cos θ

r3

∫
sinϕ cosϕ

(r2 cosϕ+B)2
dϕ+

sin θ

r3

∫
cos2 ϕ

(r2 cosϕ+B)2
dϕ, B =

x2
0

r2

=
cos θ

r3
A2 +

sin θ

r3
A1, A2 = 0.

So,

J2 =
A1

r3
(cos θω1 + sin θω2)

and so

J = J1 + 2x0J2 =
−2x0π

(x2
0 + r2)3/2

+ 2x0
A1

r3
(cos θω1 + sin θω2)

=
−2x0π

(x2
0 + r2)3/2

+
2x0

r3

r4

2x0(x2
0 + r2)3/2

(cos θω1 + sin θω2)

=
−2x0π

(x2
0 + r2)3/2

+
r

(x2
0 + r2)3/2

(cos θω1 + sin θω2)

=
−2πx0

|x0 − x|3
+

x

|x0 − x|3
.
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Let x‖ = a1ω1 + a2ω2 = r cos θω1 + r sin θω2.∂x‖ = ω1
∂

∂a1
+ ω2

∂

∂a2
, A = x2

0 + a2
1 + a2

2 =

x2
0 + r2. Recall that

I = − 2π√
x2

0 + r2
+

2π

r

(
1− x0√

x2
0 + r2

)
(cos θω1 + sin θω2)

∂

∂a1
I =

a1

A3/2
+

1

a2
1 + a2

2

(
1− x0

A1/2

)
ω1

(a1ω1 + a2ω2)

[
1

a2
1 + a2

2

(
(−x0)(−a1)

A3/2

)
+
(

1− x0

A1/2

) (−2a1)

(a2
1 + a2

2)2

]
=

a1

A3/2
+

ω1

a2
1 + a2

2

− x0

(a2
1 + a2

2)A1/2
ω1

+
a2

1x0

(a2
1 + a2

2)A3/2
ω1 −

2a2
1

(a2
1 + a2

2)2

(
1− x0

A1/2

)
ω1

+
x0a1a2

(a2
1 + a2

2)A3/2
ω2 −

2a1a2

(a2
1 + a2

2)2

(
1− x0

A1/2

)
ω2,

ω1
∂

∂a1
I =

a1ω1

A3/2
− 1

r2
+

x0

r2A1/2
− a2

1x0

r2A3/2
+

2a2
1

r4

(
1− x0

A1/2

)
+
x0a1a2

r2A3/2
(ω1 × ω2)− 2a1a2

r4

(
1− x0

A1/2

)
(ω1 × ω2)

∂

∂a2
I =

a2

A3/2
+

1

a2
1 + a2

2

(
1− x0

A1/2

)
ω2

(a1ω1 + a2ω2)

[
1

a2
1 + a2

2

(
(−x0)(−a2)

A3/2

)
+
(

1− x0

A1/2

) (−2a2)

(a2
1 + a2

2)2

]
=

a2

A3/2
+

ω2

a2
1 + a2

2

− x0

(a2
1 + a2

2)A1/2
ω2

+
a2

2x0

(a2
1 + a2

2)A3/2
ω2 −

2a2
2

(a2
1 + a2

2)2

(
1− x0

A1/2

)
ω2

+
x0a1a2

(a2
1 + a2

2)A3/2
ω1 −

2a1a2

(a2
1 + a2

2)2

(
1− x0

A1/2

)
ω1

ω2
∂

∂a2
I =

a2ω2

A3/2
− 1

r2
+

x0

r2A1/2
− a2

2x0

r2A3/2
+

2a2
2

r4

(
1− x0

A1/2

)
+
x0a1a2

r2A3/2
(ω2 × ω1)− 2a1a2

r4

(
1− x0

A1/2

)
(ω2 × ω1)
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ω1

∂

∂a1
+ ω2

∂

∂a2

)
I =

a1ω1 + a2ω2

A3/2
− 2

r2
+

2x0

r2A1/2

− x0(a2
1 + t22)

r2A3/2
+

2(a2
1 + a2

2)

r4

(
1− x0

A1/2

)
=

x‖

|x0 − x|3
− 2

r2
+

2x0

r2A1/2
− x0

|x0 − x|3
+

2

r2
− 2x0

r2A1/2

= −
x0 − x‖
|x0 − x|3

.

Proposition 3.4. For x = x0 + x ∈ R4, x0 6= 0. We have the X-ray decomposition of the

Cauchy Kernel in dimensions 3 as

x0 − x
|x0 − x|4

= ±
−(sgnx0)∂x

8π

∫
S2

x0θ − x× θ
|x0θ − x× θ|3

θdθ. (3.7)

Proof. We start from the Radon decomposition (3.3) and then use lemmas 3.2 and 3.3 as

follows

x0 − x
|x0 − x|4

= −
∂2
x

8π

∫
S2

(< x, ω > −x0ω)−1ωdω

= −
∂2
x

16π2

∫
S2

∫
S2

δ(< ω, θ >)

< x, ω > −x0ω
ωdθdω.

= −
∂2
x

16π2
∂2
x

∫
S2

∫
S2

δ(< ω, θ >)

< x, ω > −x0ω
ωdωdθ.

= −
∂2
x

16π
∂x

∫
S2

2π∂x‖

∫
S2

δ(< ω, θ >)

< x, ω > −x0ω
ωdωdθ, for each θ

=
−(sgnx0)∂x

8π

∫
S2

x0θ − x× θ
|x0θ − x× θ|3

θdθ. �

The integrals make sense because |x0θ − x× θ| does not vanish. Even though both

x0θ and x× θ are vector valued functions, the first one is a multiple of θ and the latter is

orthogonal to both x and θ.
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3.2 The quaternionic-Doppler transform

The 3 dimensional Doppler transform has been introduced in, for example [14, 13, 25,

24, 21] representing a mathematical model of vector tomography, this means the problem

of reconstructing velocity fields using the Doppler effect.

In concrete definition, the Doppler transform D maps a vector field f to the line

integral of the field component parallel to the line L, more precisely,

Df(L) =

∫
L
θ · f(x)ds (3.8)

where θ ∈ S2 denotes the direction of the line L. It is well-known that D has a non-trivial

null space and that only the solenoidal part of f can be recovered by Df . We refer to

Sharafutdinov [26] for proofs. Here any vector field f can be viewed as a quaternionic-

valued function f = f1e1 + f2e2 + f3e3, fi are scalar-valued functions, by identifying f =

f1e1 + f2e2 + f3e3. One of the differences between them is, for example, the product of

an element in R3 with f is defined according to the properties of quaternions while this is

undefined for a vector field.

Here we define a new transform in quaternions as the following:

Definition 3.5. Let L be an oriented line in R3, θ ∈ S2 and f be the vector part of

a quaternionic-valued function. The quaternionic-Doppler transform maps f to its line

integral in the following way:

Dqf(L) =

∫
L
θ fds = −

∫
L
θ · fds+

∫
L
θ × fds (3.9)

where θ is the direction of a line L and the integration is to be understood componentwise

in the vector part.

Alternatively, for a ∈ R3 and θ a unit vector in S2 ,

Dqf(a, θ) =

∫
R
θ f(a+ θt)dt.
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We think of a as the source of a ray with direction θ. We shall occasionally use the

notation Daf(θ) instead of Df(a, θ).

The following proposition is an inversion formula for the quaternionic-Doppler trans-

form.

Proposition 3.6. The quaternionic-Doppler transform in (3.9) contribute a reconstruc-

tion formula of f in parallel beam setting by using the X-ray transform:

f(x) = − 1

4π
∂x

∫
S2

∫
θ⊥

(Eθx− u′)× θ
|(Eθx− u′)× θ|3

D(f)(u′, θ)du′dθ. (3.10)

Proof. Applying Fubini’s theorem to

f(x) = − 1

4π
∂x

∫
S2

∫
R3

(u− x)× θ
|(u− x)× θ|3

θf(u)dudθ

in section 2.8 gives,

f(x) = − 1

4π
∂x

∫
S2

∫
θ⊥

∫
R

(x− (u′ + tθ))× θ
|(x− u)× θ|3

θf(u)dtdu′dθ

= − 1

4π
∂x

∫
S2

∫
θ⊥

∫
R

(x− u′)× θ
|(x− u′)× θ|3

θf(u′ + tθ)dtdu′dθ

= − 1

4π
∂x

∫
S2

∫
θ⊥

(x− u′)× θ
|(x− u′)× θ|3

θ

∫
R

f(u′ + tθ)dtdu′dθ

= − 1

4π
∂x

∫
S2

∫
θ⊥

(Eθx− u′)× θ
|(Eθx− u′)× θ|3

D(f)(u′, θ)du′dθ. (3.11)

Since we are recovering the vector part of f , its real part is zero and from the properties

of multiplication of the following quaternion terms

(x− u)× θ
|(x− u)× θ|3

θf(u) =
(x− u)× θ
|(x− u)× θ|3

(−θ · f(u) + (θ × f(u)))

= − (x− u)× θ
|(x− u)× θ|3

(θ · f(u))− (x− u)× θ
|(x− u)× θ|3

· (θ × f(u))

+
(x− u)× θ
|(x− u)× θ|3

× (θ × f(u))
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gives that the equation (3.10) becomes

f(x) = − 1

4π
∂x

∫
S2

∫
R3

− (x− u)× θ
|(x− u)× θ|3

· (θ × f(u))dudθ

− 1

4π
∂x ×

∫
S2

∫
R3

(x− u)× θ
|(x− u)× θ|3

(θ · f(u))dudθ

+
1

4π
∂x ×

∫
S2

∫
R3

(x− u)× θ
|(x− u)× θ|3

× (θ × f(u))dudθ.

3.3 Cone (divergent) beam transform of a quaternionic-valued function

The cone beam transform of a scalar-valued function f at source point a ∈ R3 and direction

θ ∈ S2, is defined by

Df(a, θ) =

∫ ∞
0

f(a+ tθ)dt. (3.12)

For this scalar cone beam transform, the recovery of a function by using (3.12) as a

data has been achieved by Tuy [32], Gel’fand and Goncharov [6], Sparr [31] Grangeat

[7], Katsevich[11, 12] and Louis [15, 16]. In the case of the cone beam transform of a

vector-valued function f or vector field, we define the transform as

Dcf(a, θ) =

∫ ∞
0

f(a+ tθ)dt. (3.13)

where the definition is to be understood componentwise. Katsevich and Schuster [13]

have an excellent paper describing an exact inversion formula for a vector field by using a

Doppler transform (3.8) where a cone beam transform (3.13) has been used with sources

on a particular curve.

One of the important ingredients for vector tomography is Grangeat’s formula pre-

senting a connection between the Radon transform and the cone beam transform. In the

scalar case, Grangeat formula is the following:
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Theorem 3.7. If f is compactly supported function defined in R3 and a ∈ R3 satisfies

a · θ = s, then

∂

∂s
Rf(s, θ) =

∫
S2∩θ⊥

∇θDf(a, ω)dω. (3.14)

An alternative formulation of (3.14)

∂

∂s
Rf(s, θ)|s=a·θ = −

∫
S2

δ′(θ · η)Df(a, η)dη. (3.15)

In a typical 3D tomographic set up, the object f of compact support would be

surrounded by a source curve Γ, and Df(a, θ) would be measured for a ∈ Γ and θ ∈ S2.

It is for this situation that we try to invert D. For this purpose, we give some relations

between D and Radon transform R, which in turn permit the inversion of D, provided

the source curve Γ satisfies certain conditions. We restrict the discussion to the 3D case.

Schuster [23] proved an extension of the formula of Grangeat for vector and tensor

fields for arbitrary rank. However, he pointed out that this formula could not be used to

derive an exact inversion formula similar to how it was done for scalar-valued functions in

[11, 12, 10]. Schuster et al [25] presented an inversion algorithm for D which was inexact

but demonstrated good performance for vector field with a particular structure.

A breakthrough was marked by Kazantsev and Schuster [14], where the authors

found another type Grangeat- type formula for a vector field,

∂2

∂s2
Rtanf(s, θ)|s=θ·a =

∑
a

φ(a, η)

∫
S2

δ′′(θ · η)η ·Df(a, η)dη (3.16)

where φ is a function depending on a source point a and a unit vector η, which, in turn

allowed Kazantsev and Schuster to obtain an asymtotic inversion formula for D.

For the rest of this section we shall present the properties, notations of a curve

established by Katsevich [11] which we will mainly use in chapter 4 for our main result

(section 4.3).

Let Γ be a finite union of C∞-curves in R3:

I :=

LΓ⋃
l=1

[al, bl]→ R3, I 3 λ→ a(λ) ∈ R3, |a′(λ)| 6= 0 on I,
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where −∞ < al < bl <∞ and a′(λ) = da/dλ. Also, let

β(λ, x) : =
x− a(λ)

|x− a(λ)|
, x ∈ R3 \ Γ, λ ∈ I;

be a unit vector in the direction from a(λ) to a point x and let

Π(x, ξ) : = {z ∈ R3 : (z − x) · ξ = 0}

be the plane passing through x with normal unit vector ξ. Katsevich begins by assuming

that f ∈ C∞0 (R3) and dist(Γ, suppf) > 0. Given x ∈ R3 and ξ ∈ R3 \ 0, let a(λj), where

λj = λj(ξ, ξ · x), j = 1, 2, · · · denote points of intersection of Π(x, ξ) with Γ. For β ∈ S2 ,

β⊥ denotes the great circle {η ∈ S2 : η · β = 0}. Introduce the sets

Crit(λ, x) : = {η ∈ β⊥(λ, x) : Π(x, η) is tangent to Γ

or Π(x, η) contains an endpoint of Γ},

Ireg(x) : = {λ ∈ I : Crit(λ, x) ( β⊥(λ, x)},

Crit(x) : =
⋃
λ∈I

Crit(λ, x).

If β(λ, x) is parallel to a′(λ), or the line through a(λ) ∈ Γ and x contains an endpoint of

Γ, then Crit(λ, x) coincides with β⊥(λ, x). In [6,7], it is shown that the set Crit(x) has

Lebesgue measure zero and the set Ireg is open.

The main assumptions for the curve trajectory curve Γ are the following properties,

for fixed any x ∈ R3 where f need to be computed,

Property 1 (completeness condition). Any plane through x intersects Γ in at least at

one point.

Property 2 The number of directions in Crit(λ, x) is uniformly bounded on Ireg(x).

Property 3 The number of points in Π(x, η) ∩ Γ is uniformly bounded on S2 \ Crit(x).

Property 1 is the most important from the practical point of view.

Remark 1 An important ingredient in the reconstruction formula is the weight function

w0(λ, x, η), λ ∈ Ireg(x) and η ∈ β⊥(λ, x) \ Crit(λ, x)
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Remark 2 The weight function w0 can be described as follows: x and η determine the

plane Π(x, η), and the weight w0 assigned to a(λ) ∈ Π(x, η) ∩ Γ depends on the location

of x. In view of this interpretation, w0(λ, x, η) = w0(λ, x,−η).

We denote
∑

j the sum over all λj such that a(λj) ∈ Γ ∩Π(x, η). Define

wΣ(x, η) :=
∑
j

w0(λj , x, η), λj = λj(η, η · x), η ∈ S2 \ Crit(x) (3.17)

w(λ, x, η) :=
w0(λ, x, η)

wΣ(x, η)
. (3.18)

The main assumptions about w0 are the following properties:

Property 4 wΣ(x, η) ≥ c a.e. on S2 for some c > 0;

Property 5 There exists finitely many C1− functions ηk(λ, x) ∈ β⊥(λ, x), λ ∈ Ireg(x),

such that w(λ, x, η) is locally constant in a neighborhood of any (λ, η) where λ ∈ Ireg(x)

and η ∈ β⊥(λ, x), η 6∈ (
⋃
k ηk(λ, x)) ∪ Crit(λ, x).

We also recall the following definitions:

Definition 3.8. A collection of subsets U = {Uα|α ∈ A} of a manifold M is called locally

finite, if for all m ∈M there is an neighborhood O of M with Uα ∩O 6= ∅ for only a finite

subset of A.

Definition 3.9. A partition of unity on a manifold M is a collection of a smooth functions

{φi : M → R : i ∈ I} such that

1. {the support of φi i ∈ I} is locally finite

2. φi(p) ≥ 0 for all p in M, i ∈ I and,

3.
∑

i∈I φi(p) = 1 for all p ∈M

Definition 3.10. A function f : A → B is bounded away from zero on the set C ⊆ A if

there exists ε > 0 such that

|f(c)| ≥ ε for all c ∈ C.
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3.4 Series expansions in subspaces of L2(B3)

In this section we shall talk about the fact that any vector field in L2(B3) can be

represented by the series of orthogonal functions where B3 is the unit ball in R3. We will

describe it in two parts by following outline in [14].

3.4.1 Orthogonal expansions for vector fields in L2(B3)

We define the inner product of two vector fields f and g by

< f ,g >=

∫
B3

f(x) · g(x)dx.

Let
∏3
n be the space of polynomials on R3 of degree at most n. We denote by V 3

n

the orthocomplement in
∏3
n of

∏3
n−1

V 3
n = {P ∈

3∏
n

| < P,Q >L2(B3)= 0, ∀ Q ∈
3∏

n−1

}.

Then

dim
3∏
n

=

n+ 3

n

 , dim V 3
n =

n+ 2

n

 .

The Zernike polynomials

{Z(n)
n−2k,l(x) , k = 1, 2, . . . , [n/2], |l| ≤ n− 2k}, x ∈ B3,

form a basis in V 3
n . By [14], the Zernike polynomials can be written in term of Gegenbauer

polynomials as

Z
(n)
n−2k,l(x) =

1

4π

∫
S2

C(3/2)
n (x · ξ)Yn−2k,l(ξ)dξ, (3.19)

where Yn−2k,l are spherical harmonics of degree n−2k, k = 0, 1, . . . , [n/2], |l| ≤ n−2k, n =

0, 1, 2 . . . .
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The summation formulas for spherical harmonics are given by

C(3/2)
n (η · ξ) = 4π

[n/2]∑
k=0

∑
l

Yn−2k,l(η)Yn−2k,l(ξ), (3.20)

C(3/2)
n (x · ξ) = 4π

[n/2]∑
k=0

∑
l

Z
(n)
n−2k,l(x)Yn−2k,l(ξ). (3.21)

Furthermore two relationships for Gegenbauer polynomials are needed:∫
S2

C
(3/2)
n−2k(x · ξ)C

3/2
n (ξ · η)dξ = 4πC

3/2
n−2k(x · η), x ∈ B3, η ∈ S2, (3.22)

k = 0, 1, . . . , [n/2]∫
B3

C(3/2)
n (x · ξ)C3/2

n (x · η)dξ =
4π

2n+ 3
C3/2
n (ξ · η), ξ, η ∈ S2. (3.23)

The family {Z(n)
n−2k,l} forms an orthogonal basis of L2(B3). The norm is given by

‖Z(n)
n−2k,l‖L2(B3) =

1√
2n+ 3

.

Any f ∈ L2(B3) has a unique representation in Zernike polynomials

f(x) =
∞∑
n=0

[n/2]∑
k=0

∑
l

f
(n)
n−2k,lZ

(n)
n−2k,l(x). (3.24)

By applying (3.20) to (3.23) we then have,

f(x) =
∞∑
n=0

[n/2]∑
k=0

∑
l

f
(n)
n−2k,l

1

4π

∫
S2

Yn−2k,l(η)C3/2
n (x · η)dη

=

∞∑
n=0

1

4π

∫
S2

fn(η)C(3/2)
n (x · η)dη, (3.25)

where

fn(η) =

[n/2]∑
k=0

∑
l

f
(n)
n−2k,lYn−2k,l(η). (3.26)

By the virtue of (2.24), (2.26 ) and (2.27) we then have∫
B3

f(x)C3/2
n (x · η1)dx =

1

4π

∫
B3

∫
S2

fn(η)C3/2
n (x · η1)C3/2

n (x · η)dxdη

=
1

2n+ 3

∫
S2

fn(η)C3/2
n (η · η1)dη

=
4π

2n+ 3
fn(η1).
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This implies

fn(η) =
2n+ 3

4π

∫
B3

f(x)C3/2
n (x · η)dx. (3.27)

By using (3.26) we have

f(x) =

∞∑
n=0

∫
S2

2n+ 3

16π2

∫
B3

f(y)C(3/2)
n (x · η)C3/2

n (y · η)dydη

=
∞∑
n=0

∫
B3

f(y)Pn(x, y)dy,

with

Pn(x, y) =
2n+ 3

16π2

∫
S2

C(3/2)
n (x · η)C3/2

n (y · η)dydη. (3.28)

If one of the variables of Pn, say ξ ∈ S2, is a unit vector, then by using (3.23) we

have,

Pn(x, ξ) =
2n+ 3

16π2

∫
S2

C(3/2)
n (x · η)C3/2

n (ξ · η)dη =
2n+ 3

4π
C3/2
n (x · ξ). (3.29)

Combining equation (3.21) and definition (3.30), we then have

Pn(x, y) = (2n+ 3)

[n/2]∑
k=0

∑
l

Z
(n)
n−2k,l(x)Z

(n)
n−2k,l(y). (3.30)

Pn(x, .) is called the reproducing kernel of V 3
n .

Definition 3.11 (Reproducing kernel of V 3
n ). A function q(x, .) is called the reproducing

kernel of V 3
n if it satisfies

p(x) =

∫
B3

q(x, y)p(y)dy for all p ∈ V 3
n . (3.31)

The orthogonal expansion can be stated as

f(x) =

∞∑
n=0

[Projnf ](x) =

∞∑
n=0

fn(x), (3.32)

where

[Projnf ](x) =

∫
B3

f(y)Pn(x, y)dy = fn(x).
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Proposition 3.12. Each vector field f ∈ L2(B3) has a unique representation as a series

of orthogonal functions

f(x) =

∞∑
n=0

fn(x) =

∞∑
n=0

1

4π

∫
S2

fn(η)C3/2
n (x · η)dη

=
∞∑
n=0

∫
B3

f(y)Pn(x, y)dy. (3.33)

The coefficient functions are defined on the unit sphere as

fn(η) =
2n+ 3

4π

∫
B3

f(x)C3/2
n (x · η)dx (3.34)

and have the representation

fn(η) =

[n/2]∑
k=0

∑
l

f
(n)
n−2k,lYn−2k,l(η) =

1

4π

∫
S2

fn(ξ)C(3/2)
n (ξ · η)dξ. (3.35)

We also have the Parseval equality

‖ f ‖2L2(B3)=

∞∑
n=0

1

2n+ 3
‖fn‖2L2(S2).

3.4.2 Orthogonal expansion of the solenoidal part of a vector field

This section will present a unique representation of any vector field in term of series

of orthogonal bases of ∇H1
0 (B3),∇H(B3) and H0(div;B3). Once again, we will follow the

outline in [14] for notations and details to describe the procedures of the derivations.

We begin with spherical harmonics Yn,l ∈ L2(S2) and define vector spherical har-

monics

y
(1)
n,l (θ), y

(2)
n,l (θ), y

(3)
n,l (θ)

for θ ∈ S2 by

y
(1)
n,l (θ) = θYn,l(θ), y

(2)
n,l (θ) = ∇θYn,l(θ), y

(3)
n,l (θ) = θ × y(2)

n,l (θ)

where ∇θ denotes the surface gradient on S2 and × the cross product on R3. From the

definition of the three vectors, y
(i)
n,l, i = 1, 2, 3, it is clear that

θ × y(1)
n,l (θ) = 0, θ · y(2)

n,l (ξ) = 0, θ · y(3)
n,l (θ) = 0.
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Then the system {
y

(1)
0,0, y

(j)
n,l : n ∈ N, |l| ≤ n, j = 1, 2, 3

}
forms a complete orthogonal system in L2(S2). The vector spherical harmonics satisfy a

Funk-Hecke theorem which gives the following formulas :∫
S2

y
(1)
n−1−2k,l(θ)C

3/2
n (η · θ)dθ = 4πy

(1)
n−1−2k,l(η), k = 0, . . . , [(n− 1)/2], (3.36)∫

S2

y
(2)
n+1,l(θ)C

3/2
n (η · θ)dθ =

4π(n+ 2)

2n+ 3

(
(n+ 1)y

(1)
n+1,l(η) + y

(2)
n+1,l(η)

)
(3.37)∫

S2

y
(2)
n+1−2k,l(θ)C

3/2
n (η · θ)dθ = 4πy

(2)
n+1−2k,l(η), k = 1, . . . , [n/2], (3.38)∫

S2

y
(3)
n−2k,l(θ)C

3/2
n (η · θ)dθ = 4πy

(3)
n−2k,l(η), k = 0, . . . , [(n− 1)/2]. (3.39)

With the help of the vector valued functions y
(i)
n,l Kazantsev and Schuster report that it is

possible to generate orthogonal bases for ∇H1
0 (B3),∇H(B3) and H0(div;B3). Setting

A
(n)
n−1−2k,l(x) :=

∫
S2

y
(1)
n−1−2k,l(θ)C

3/2
n (x · θ)dθ, n ≥ 1 (3.40)

B
(0)
1,l (x) :=

∫
S2

y
(2)
1,l (θ)dθ, (3.41)

B
(n)
n+1−2k,l(x) :=

∫
S2

y
(2)
n+1−2k,l(θ)C

3/2
n (x · θ)dθ, n ≥ 1 (3.42)

C
(n)
n−2k,l(x) :=

∫
S2

y
(3)
n−2k,l(θ)C

3/2
n (x · θ)dθ, n ≥ 1, (3.43)

then {
A

(n)
n−1−2k,l : n ∈ N, k = 0, . . . , [(n− 1)/2], |l| ≤ n− 1− 2k

}
is an orthogonal basis of ∇H1

0 (B3),

{
B

(n)
n+1,l : n ∈ N0, |l| ≤ n+ 1

}
is an orthonormal basis of ∇H(B3) and

{
B

(n)
n+1−2k,l : n ∈ N, k = 1, . . . , [n/2], |l| ≤ n− 1− 2k

}
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∪
{
C

(n)
n−2k,l : n ∈ N, k = 0, . . . , [(n− 1)/2], |l| ≤ n− 2k

}
is an orthogonal basis of H0(div;B3).

Let f ∈ L2(B3) be a solenoidal field. Then f has a unique representation

f(x) =
∞∑
n=0

∑
l

b
(n)
n+1,lB

(n)
n+1,l(x)

+
∞∑
n=2

[n/2]∑
k=1

∑
l

b
(n)
n+1−2k,lB

(n)
n+1−2k,l(x) +

∞∑
n=1

[(n−1)/2]∑
k=1

∑
l

c
(n)
n−2k,lC

(n)
n−2k,l(x). (3.44)
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4 RESULTS

Any scalar-valued function is well known as the Laplacian or of the back-projection

of its Radon transform ; that is :

f(x) = − 1

8π2
4
∫
S2

Rf(x · θ, θ)dθ (∗).

Many authors have proposed derivations of the proof, for example in [17, 5, 20, 18].

The first part of this chapter will provide an extension to vector-valued or quaternionic-

valued functions. The form (4.7) is an alternative formulation of (*) in term of quaternion

notation. We provide two proofs for (4.7). The first proof use elementary calculations. The

second proof use the Cauchy kernel in term of the Dirac operator acting on a function in

R3. In other words, the second proof uses the Radon decomposition mentioned in chapter

3. The first proof is much simpler. This is one of many variations of Radon inversion

formulas and has both scalar and vector parts.

The second section (section 4.2) describes the cone beam reconstruction of the vector

part of a quaternionic-valued function with sources on the sphere considered as a complete

data type reconstruction. It requires the knowledge of the cone beam data for all sources

on the sphere of certain radius and for all directions. We have used the symmetry property

of the cone beam transform

Daf(
a− x
|a− x|

) +Daf(
x− a
|x− a|

) = Dxf(
a− x
|a− x|

) +Dxf(
x− a
|x− a|

) (4.1)

defined in [17] for a scalar case.

In the last part, which is section 4.3, we shall provide the reconstruction procedures

for a whole vector field f by using the transverse ray transform. We begin with the

procedure for its solenoidal part. Then use the reprojection of the solenoidal part to

recover the potential part according to the Helmholtz-Hodge decomposition (2.25). One

assume under the condition that sources will be a curve and the curve satisfies certain
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condition called Tuy’s condition of order three. Here we shall follow the outline in [14, 13].

The solenoidal part fd of f is given by the back projection of the second derivative of its

Radon transform. We split the Radon transform into the tangential and the normal parts.

Thus fd has two parts, say fd1 and fd2 . Both parts need the relation, for fixed η ∈ S2,

−
∫
S2

∫ ∞
0

η · (θ × f(x+ tθ))dtδ′′(η · θ)dθ = divη

(
η × ∂2

∂s2
Rtanf(s, η)

)
|s=η·x

+ x ·
(
η × ∂2

∂s2
Rtanf(s, η)

)
|s=η·x (4.2)

to obtain η × ∂sRtanf(s, η). We consider and define the inner integral on the left hand

side of (4.2): ∫ ∞
0

η · (θ × f(x+ tθ))dt

as the transverse ray transform.

To reach the reconstruction procedure, we shall use the framework in [13] by splitting

the solenoidal part fd into two parts, say fd1 and fd2 with

fd1(x) =

∫
S2

∂2
sRtanfd(s, η)dη, fd2(x) =

∫
S2

∂2
sRnorfd(s, η)dη. (4.3)

By using simple geometric knowledge or using an elementary property of quaternions,

both integrands in (4.3) can be replaced by η × ∂2
sRtanfd(s, η) and η × ∂2

sRtanfd(s, η),

respectively. Then we apply the measurements (4.2) to get the reconstruction procedure.

4.1 A variation on Radon inversion formula

Recall that, in section 2.6 equation (2.14), the plane wave decomposition of the funda-

mental solution of the Dirac operator ∂x0+x in R4 reads

1

a4

x0 − x
|x0 − x|4

=
1

(2π)3

∫
S2

(< x, t > −x0t)
−3tdt (4.4)
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where a4 is the surface area of the unit sphere S3 in R4. Also, by straightforward compu-

tation we have, for each i = 1, 2, 3,

ei
∂

∂xi
(< x, t > −x0t)

−1 = −ei(< x, t > −x0t)
−2ti.

Therefore, for ∂x = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
,

∂x(< x, t > −x0t)
−1 = (e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
)(< x, t > −x0t)

−1

= −t(< x, t > −x0t)
−2. (4.5)

To get ∂2
x(< x, t − x0t >)−1 we apply ∂x to both sides of (4.5) and use the generalized

Leibniz rule which leads to

−∂2
x(< x, t > −x0t)

−1 = ∂x[t(< x, t > −x0t)
−2]

= (∂xt)(< x, t > −x0t)
−2 − t∂x(< x, t > −x0t)

−2

+ 2(Re t∂x)(< x, t > −x0t)
−2

= −2(< x, t > −x0t)
−3

− 2(t1
∂

∂x1
+ t2

∂

∂x2
+ t3

∂

∂x3
)(< x, t > −x0t)

−2

= −2(< x, t > −x0t)
−3 + 4(t21 + t22 + t23)(< x, t > −x0t)

−3

= 2(< x, t > −x0t)
−3.

Hence we obtain the following lemma:

Lemma 4.1. For x = x0 + x ∈ R4/R3 = R4
±,

1

a4

x0 − x
|x0 − x|4

= − 1

2(2π)3
∂x

∫
S2

t(< x, t > −x0t)
−2tdt. (4.6)
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Proof.

1

a4

x0 − x
|x0 − x|4

=
1

(2π)3

∫
S2

(< x, t > −x0t)
−3tdt

= − 1

(2π)3

∫
S2

1

2
∂2
x(< x, t > −x0t)

−1tdt

= − 1

2(2π)3

∫
S2

∂2
x(< x, t > −x0t)

−1tdt

= − 1

2(2π)3
∂x

∫
S2

∂x(< x, t > −x0t)
−1tdt

= − 1

2(2π)3
∂x

∫
S2

t(< x, t > −x0t)
−2tdt.

We can interchange the integral and the Dirac operator because the integrand is bounded

away from zero.

In Chapter 3, we have seen that a quaternionic-valued function f is the differences

of the non-tangential boundary value of the Cauchy transform C[f ]. By applying Lemma

4.1 to C[f ] and interchanging the integrals we then have for f ∈ S(R3) and x ∈ R4
± ,

C[f ](x0 + x) =

∫
R3

x0 − x+ u

|x0 − x+ u|4
f(u)du

=

∫
R3

−2π2

2(2π)3
∂x

∫
S2

t(< x− u, t > −x0t)
−2tdtf(u)du

= − 1

8π
∂x

∫
S2

∫
R3

t(< x− u, t > −x0t)
−2tf(u)dudt.

The following theorem is the inversion formula in term of Dirac operator.

Theorem 4.2. For a quaternionic function f ∈ S(R3),

f(x) = − 1

8π2
∂x

∫
S2

θ Rf
′
(θ · x, θ)dθ. (4.7)

We shall provide two proofs for this theorem. The first one has a much simpler
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proof by using fact that ∂2
x = −∆ where ∆ is the Laplacian in a Euclidian space as follows

f(x) =
1

8π2
∆

∫
S2

Rf(x · θ, θ)dθ = − 1

8π2
∂2
x

∫
S2

Rf(x · θ, θ)dθ = − 1

8π2
∂x

∫
S2

∂xRf(x · θ, θ)dθ

(4.8)

=
1

8π2
∂x

∫
S2

∂x · Rf(x · θ, θ)dθ − 1

8π2
∂x

∫
S2

∂x ×Rf(x · θ, θ)dθ

=
1

8π2
∂x

∫
S2

θ · R′f(x · θ, θ)dθ − 1

8π2
∂x

∫
S2

θ ×R′f(x · θ, θ)dθ (4.9)

= − 1

8π2
∂x

∫
S2

θR′f(x · θ, θ)dθ. (4.10)

The second proof shall begin from the non-tangential boundary value of the Cauchy trans-

form of a function defined by the integration of convolution of Cauchy kernel and the

function. Then the equation (4.4) and Lemma 4.1 will be used, respectively.

Proof. The non-tangential boundary value of the Cauchy transform C[f ] gives f as follows:

f(x) = C[f ](x+ 0+)− C[f ](x− 0−)

= − 1

8π2
∂x

∫
S2

∫
R3

θ θ δ′(< x− u, θ >)θf(u)dudθ

=
1

8π2
∂x

∫
S2

∫
R3

δ′(< x− u, θ >)θf(u)dudθ

where we have applied lemma 3.2 in the second equation. Let y = x− u so u = x− y and

f(x) = − 1

8π2
∂x

∫
S2

∫
R3

δ′(< y, θ >)θf(x− y)dydθ

= − 1

8π2
∂x

∫
S2

∫
R3

δ′(< |y|
y

|y|
, θ >)θf(x− y)dydθ.

Apply polar coordinate in the inner integral by letting y = ρw where ρ > 0 and ω ∈ S2.

It follows that

f(x) = − 1

8π2
∂x

∫
S2

∫
S2

∫ ∞
0

δ′(< ρω, θ >)θf(x− ρω)ρ2dρdωdθ.

Since δ′ is a homogeneous function of degree -2, we then reach to the reconstruction
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formula as:

f(x) = − 1

8π2
∂x

∫
S2

∫
S2

∫ ∞
0

ρ−2δ′(< ω, θ >)θf(x− ρω)ρ2dρdωdθ

= − 1

8π2
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)

∫ ∞
0

f(x− ρω)dρdωdθ

= − 1

8π2
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)Df(x,−ω)dωdθ (4.11)

= − 1

8π2
∂x

∫
S2

θ Rf
′
(< θ, θ · x >)dθ

where we have applied the Grangeat’s formula to the third equation.

The theorem has an interesting special case as follows: if f = f1e1, then

f(x) = − 1

8π2
∂x

∫
S2

θ(Rf1)′e1(s, θ)|s=x·θdθ

= − 1

8π2
∂x

∫
S2

θ(Rf1)′(s, θ)|s=x·θdθe1

= − 1

8π2

[
∇ ·
∫
S2

θ(Rf1)′(s, θ)|s=x·θdθ
]
e1

= − 1

8π2

∫
S2

(Rf1)′′(< θ, x · θ >)dθe1

where we used the associative rule for quaternions and that f1 is real-valued.

In particular, if f is scalar, then Rf is real as well and the scalar part of f(x) is

f(x) = − 1

8π2
∇ ·
∫
S2

θ(Rf)′(θ, x · θ)dθ

= − 1

8π2

∫
S2

∑
θj

∂

∂xj
(Rf)′(θ, x · θ)dθ

= − 1

8π2

∫
S2

(Rf)′′(θ, x · θ)
∑

θ2
jdθ

= − 1

8π2

∫
S2

(Rf)′′(θ, x · θ)dθ.

We furthermore point out that f can be decomposed as from (4.9), one can see that any f

can be decomposed similarly to the Helmholtz decomposition in the case of vector fields
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as

f(x) = − 1

8π2
∂x

∫
S2

θ(Rf)′(s, θ)|s=x·θdθ

=
1

8π2
∂x

∫
S2

θ · (Rf)′(s, θ)|s=x·θdθ −
1

8π2
∂x ×

∫
S2

θ × (Rf)′(s, θ)|s=x·θdθ. (4.12)

Since f is a vector-valued function, the real part

∂x ·
∫
S2

θ × (Rf)′(s, θ)|s=x·θdθ

vanishes.

4.2 The Cone Beam Reconstruction With Sources on The Sphere

The simplest situation for the divergent beam transform occurs when we restrict our

attention to functions with support inside a sphere in R3. Similar to the reconstruction

in the case of scalar-valued function, the following lemma is crucial.

Lemma 4.3. Let Sr be an 2 sphere of radius r, let x be a point in R3 which is inside Sr

and let f be an integrable function on S2. Then∫
S2

f(θ)dθ =
1

r

∫
Sr

f

(
a− x
|a− x|

)
|a− x|−2| < a, a− x > |da (4.13)

where dθ is the Lebesgue measure on the unit sphere S2, da is the measure on the sphere

Sr and the integration is to be understood componentwise. The scalar case of this lemma

can be found in [17] and the proof of this lemma can be done easily by the componentwise

definition.

Theorem 4.4. For x ∈ R3, then

f(x) = − 1

16π
∂x

∫
S2

θ
1

r

∫
Sr

δ′(<
a− x
|a− x|

, θ >)

(
Daf(

a− x
|a− x|

) +Daf(
x− a
|x− a|

)

)
× |a− x|−2| < a, a− x > |dadθ (4.14)
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Proof. We start from theorem 4.2. Using the fact that δ′ is homogeneous of degree -2 and

for any (scalar-valued) quaternionic-valued function function g on S2,∫
S2

g(θ)dθ =

∫
S2

g(−θ)dθ (4.15)

we have the following equations:

f(x) = − 1

8π
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)Dxf(ω)dωdθ

= − 1

8π
∂x

∫
S2

θ

∫
S2

δ′(< −ω, θ >)Dxf(−ω)dωdθ

= − 1

8π
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)Dxf(−ω)dωdθ

since δ′(< ω, θ >) = δ′(− < ω, θ >). Therefore,

f(x) = − 1

16π
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)(Dxf(ω) +Dxf(−ω))dωdθ

= − 1

16π
∂x

∫
S2

θ
1

r

∫
Sr

δ′(<
a− x
|a− x|

, θ >)

(
Dxf(

a− x
|a− x|

) +Dxf(
x− a
|x− a|

)

)
× |a− x|−2| < a, a− x > |dadθ

= − 1

16π
∂x

∫
S2

θ
1

r

∫
Sr

δ′(<
a− x
|a− x|

, θ >)

(
Daf(

a− x
|a− x|

) +Daf(
x− a
|x− a|

)

)
× |a− x|−2| < a, a− x > |dadθ (4.16)

by the symmetry property of the line integral transform

Daf(
a− x
|a− x|

) +Daf(
x− a
|x− a|

) = Dxf(
a− x
|a− x|

) +Dxf(
x− a
|x− a|

). (4.17)

Furthermore, we have the reconstruction formula of f with sources on the sphere in

term of the Doppler transform as the following theorem:

Theorem 4.5. Assume that f has compact support in the unit ball B3. Then

f(x) =
1

12(2π)2
∂x

∫
S2

θ
1

r

∫
Sr

δ′(<
a− x
|a− x|

, θ >)ω

(
Daωf(

a− x
|a− x|

) +Daωf(
x− a
|x− a|

)

)
× |a− x|−2| < a, a− x > |dadθ.
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Proof. Recall that from (4.10) we obtain

f(x) = − 1

2(2π)2
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)Dxf(−ω)dωdθ

=
1

2(2π)2
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)ωDxωf(−ω)dωdθ. (4.18)

=
1

2(2π)2
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)ωDxωf(ω)dωdθ (4.19)

By combining (4.18) and (4.19) we have

f(x) =
1

12(2π)2
∂x

∫
S2

θ

∫
S2

δ′(< ω, θ >)ω(Dxωf(ω) +Dxωf(−ω))dωdθ

=
1

12(2π)2
∂x

∫
S2

θ
1

r

∫
Sr

δ′(<
a− x
|a− x|

, θ >)ω

(
Dxωf(

a− x
|a− x|

) +Dxωf(
x− a
|x− a|

)

)
× |a− x|−2| < a, a− x > |dadθ

=
1

12(2π)2
∂x

∫
S2

θ
1

r

∫
Sr

δ′(<
a− x
|a− x|

, θ >)ω

(
Daωf(

a− x
|a− x|

) +Daωf(
x− a
|x− a|

)

)
× |a− x|−2| < a, a− x > |dadθ. (4.20)

We can also mention that the lambda operator can be viewed as the operator H∂x

in the quaternion notation. Recall that for the scalar-valued function f ,

f = Λ(R1 ∗ f) where R1 is a Riesz potential (4.21)

and the Riesz potential is defined by

Rα(x) = ρα,n|x|α−n, ρα,n =
Γ((n− α)/2)

2απn/2Γ(α/2)
.

With the help of quaternion distributions one can see that

(R1 ∗ f) = ρα,n(T ∗1−mf).
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Then,

H∂x(R1 ∗ f) = H∂x(T ∗1−m ∗ f) = U∗−3 ∗ (∂x(T ∗1−m ∗ f))

= (U∗−m∂x) ∗ (R∗1−m ∗ f) = T ∗−m−1 ∗ (T ∗1−m ∗ f)

= (T ∗−m−1 ∗ T ∗1−m) ∗ f) = δ(x) ∗ f = f . (4.22)

4.3 The Cone Beam Reconstruction for the Transverse ray Transform
with Sources on a Curves Satisfying Tuy’s Condition of order 3

In this section we present the reconstruction formula of a vector field supported

in the unit ball with sources on any curve located outside an object, provided the curve

satisfies geometric conditions which state that any plane that passes through the unit

ball intersects the curve in at least three points that are not located on a line. We begin

by introducing the normal and the tangential parts of the first derivative of the Radon

transform as in [14, 13].

Define the normal part of the first derivative of the Radon transform of a vector

field f , denoted by Rnor[f ](s, η) as

Rnor[f ](s, η) = η

(
η · ∂

∂s
Rf(s, η)

)
(4.23)

and its tangential part as

Rtanf(s, η) =
∂

∂s
Rf(s, η)−Rnor[f ](s, η)

=
∂

∂s
Rf(s, η)− η

(
η · ∂

∂s
Rf(s, η)

)
=

(
η × ∂

∂s
Rf(s, η)

)
× η.

To reach reconstruction procedures, the following theorem is the main ingredient which

has not been introduced in any work and is new here.
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Theorem 4.6. Let η ∈ S2, x ∈ R3, and let f be a vector field. Then

divη(η×R(tan)f)(x · η, η) = (divη(η×R(tan)f)(s, η))|s=x·η + x ·
(
η × ∂

∂s
Rtanf(s, η)

)
|s=x·η

(4.24)

where divη is the surface divergence defined in (2.28).

We begin the proof of the theorem by observing that Rtanf(s, η) ∈ η⊥ and by

considering its expression with respect to an orthonormal basis of η⊥ as

Rtanf(s, η) = Xϕ(s, η)e1(η) +Xθ(s, η)e2(η) (4.25)

Rtanf(η · x, η) = Xϕ(η · x, η)e1(η) +Xθ(η · x, η)e2(η). (4.26)

Here e1(η), e2(η) are two orthogonal vectors spanning the tangent plane η⊥ and these

notations are defined to be different from the notations on orthonormal basis of the em-

bedded R3 in H in chapter 2. Xϕ(s, η) and Xθ(s, η) are real coefficients corresponding the

expression. Here

η =


cosϕ sin θ

sinϕ sin θ

cos θ

 where ϕ ∈ [0, 2π], θ ∈ (0, π),

e1(η) =
1

sin θ

∂

∂ϕ
η, e2(η) =

∂

∂θ
η.

The following two lemmas will be useful in the proof of the theorem 4.6. The first

one which is lemma 4.7 has been originally established in [14].

Lemma 4.7. For Rtanf(s, η) defined as above,

divηRtanf(s, η) =
∂

∂θ
Xθ(s, η) + cot θXθ(s, η) +

1

sin θ

∂

∂ϕ
Xϕ(s, η). (4.27)
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Proof. Applying the definition of surface divergence from (2.28) to Rtanf(s, η) gives

divηRtanf(s, η) =
1

sin θ

(
∂

∂θ
(sin θXθ(s, η))

)
+

1

sin θ

∂

∂ϕ
Xϕ(s, η)

=
1

sin θ

(
sin θ

∂

∂θ
Xθ(s, η) +Xθ(s, η) cos θ

)
+

1

sin θ

∂

∂ϕ
Xϕ(s, η)

=
∂

∂θ
Xθ(s, η) + cot θXθ(s, η) +

1

sin θ

∂

∂ϕ
Xϕ(s, η). (4.28)

Similarly,

divηRtanf(x · η, η) =
∂

∂θ
Xθ(x · η, η) + cot θXθ(x · η, η) +

1

sin θ

∂

∂ϕ
Xϕ(x · η, η). (4.29)

We also note that

x· ∂
∂s
Rtanf(s, η) |s=x·η=

∂

∂s
Xϕ(s, η) |s=x·η (x·e1(η))+

∂

∂s
Xθ(s, η) |s=x·η (x·e2(η)). (4.30)

By the chain rule

∂

∂θ
Xθ(x · η, η) =

∂

∂θ
Xθ(s, η)|s=x·η +

∂

∂s
Xθ(s, η)|s=x·η(x · e2(η)) (4.31)

and

∂

∂ϕ
Xϕ(x · η, η) =

∂

∂ϕ
Xϕ(s, η)|s=x·η +

∂

∂s
Xϕ(s, η)|s=x·η sin θ(x · e1(η)) (4.32)

where we have used that

∂

∂θ
(x · η) = x · e2(η) and

∂

∂ϕ
(x · η) = sin θ(x · e1(η)). (4.33)

By the virtue of the equations (4.28-4.33), the equation (4.27) can be recast as

divηR(tan)f(x · η, η) = (divηR(tan)f(s, η)) |s=x·η +x · ∂
∂s
Rtanf(s, η) |s=x·η (4.34)

where we have used the fact that R(tan)f(x · η, η) is a tangential vector field. Lemma 4.8

will be presented here for the first time which we slightly modify form lemma 4.7.
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Lemma 4.8.

divη(η ×R(tan)f)(s, η) = − cot θXϕ(s, η)− ∂

∂θ
Xϕ(s, η) +

1

sin θ

∂

∂ϕ
Xθ(s, η) (4.35)

and

divη(η×R(tan)f)(x·η, η) = − cot θXϕ(x·η, η)− ∂

∂θ
Xϕ(x·η, η)+

1

sin θ

∂

∂ϕ
Xθ(x·η, η). (4.36)

Proof. From the equation (4.25) and for each η ∈ S2 , we get

η ×Rtanf(s, η) = Xϕ(s, η)(η × e1(η)) +Xθ(s, η)(η × e2(η))

= Xθ(s, η)e1(η)−Xϕ(s, η)e2(η)

where we have used the fact

η × e1(η) = −e2(η) and η × e2(η) = e1(η). (4.37)

Use the definition of the surface divergence, we then have

divη(η ×Rtanf(s, η)) =
1

sin θ

(
∂

∂θ
(− sin θXϕ(s, η))

)
+

1

sin θ

∂

∂ϕ
Xθ(s, η)

Simplifying the above equation we get (4.36).

Proof of the theorem 4.6

In the same manner as (4.31) and (4.32) we obtain

∂

∂θ
Xϕ(x · η, η) =

∂

∂θ
Xϕ(s, η)|s=x·η +

∂

∂s
Xϕ(s, η)|s=x·η(x · e2(η)) (4.38)

and

∂

∂ϕ
Xθ(x · η, η) =

∂

∂ϕ
Xθ(s, η)|s=x·η +

∂

∂s
Xθ(s, η)|s=x·η sin θ(x · e1(η)). (4.39)
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Thus

divη(η ×R(tan)f)(x · η, η) = − cot θXϕ(x · η, η)− ∂

∂θ
Xϕ(s, η)|s=x·η

− ∂

∂s
Xϕ(s, η)|s=x·η(x · e2(η))

+
1

sin θ

∂

∂ϕ
Xθ(s, η)|s=x·η +

∂

∂s
Xθ(s, η)|s=x·η(x · e1(η))

= (divη(η ×R(tan)f)(s, η))|s=x·η

− ∂

∂s
Xϕ(s, η)|s=x·η(x · e2(η))

+
∂

∂s
Xθ(s, η)|s=x·η(x · e1(η)).

By using (4.30), we have that

divη(η ×R(tan)f)(x · η, η) = (divη(η ×R(tan)f)(s, η))|s=x·η

+
∂

∂s
Xϕ(s, η)|s=x·η(x · (η × e1(η)))

+
∂

∂s
Xθ(s, η)|s=x·η(x · (η × e2(η)))

= (divη(η ×R(tan)f)(s, η))|s=x·η

+ x ·
(
η × ∂

∂s
Rtanf(s, η)

)
|s=x·η.

�

Next, we shall show that divη(η × R(tan)f)(x · η, η) can be written as a function of the

divergent beam transform of f ,

g(x, ξ) = Df(x, ξ) =

∫ ∞
0

f(x+ tξ)dξ.

where x is located on a source trajectory Γ that surrounds the object B3 and the direction

θ are contained in a cone C ⊂ R3 and g(x) = g1(x)e1 +g2(x)e2 +g3(x)e3, gi(x) are scalar-

valued functions.

Theorem 4.9. Assume that f ∈ C2(B3). Then

divη(η ×R(tan)f)(x · η, η) =

∫
S2

δ′′(η · ξ)(η · (ξ × g))dξ. (4.40)
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Proof. Recall that ∇η is the surface gradient introduced in (2.30). In [13] Katsevich and

Schuster provide one of the following useful identities

divη(R(tan)f)(x · η, η) = −
∫
S2

divη([∇η(η · g(x, ξ)]δ′(η · ξ))dξ.

By the definition of surface gradient we obtain

∇η[η · g(x, ξ)] =
1

sin θ

∂

∂ϕ
(η · g(x, ξ))e1(η) +

∂

∂θ
(η · g(x, ξ))e2(η)

= (− sinϕg1(x, ξ) + cosϕg2(x, ξ))e1(η)

+ (cosϕ cos θg1(x, ξ) + sinϕ cos θg2(x, ξ)− sin θg3(x, ξ))e2(η)

and hence

([∇η(η · g(x, ξ)]δ′(η · ξ)) = Aϕ(x, ξ)e1(η) +Aθ(x, ξ)e2(η)

where

Aϕ(x, ξ, η) = (− sinϕg1(x, ξ) + cosϕg2(x, ξ))δ′(η · ξ),

Aθ(x, ξ, η) = (cosϕ cos θg1(x, ξ) + sinϕ cos θg2(x, ξ)− sin θg3(x, ξ))δ′(η · ξ).

So

divη([∇η(η · g(x, ξ)]δ′(η, ξ)) =
1

sin θ

∂

∂θ
(sin θAθ(x, ξ, η)) +

1

sin θ

∂

∂ϕ
(Aϕ(x, ξ, η))

and

divη(R
(tan)f)(x · η, η) = −

∫
S2

(
1

sin θ

∂

∂θ
(sin θAθ(x, ξ, η)) +

1

sin θ

∂

∂ϕ
(Aϕ(x, ξ, η))

)
dξ

= − ∂

∂θ

∫
S2

Aθ(x, ξ, η)dξ − cot θ

∫
S2

Aθ(x, ξ, η)dξ

− 1

sin θ

∂

∂ϕ

∫
S2

(Aϕ(x, ξ, η))dξ. (4.41)

Equating (4.29) and (4.41), we obtain that

Xϕ(x · η, η) = −
∫
S2

Aϕ(x, ξ, η)dξ and Xθ(x · η, η) = −
∫
S2

Aθ(x, ξ, η)dξ. (4.42)
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To get the conclusion, we will compute 3 terms in (4.36) where Xϕ(s, η) and Xθ(s, η) are

defined as in (4.42):

∂

∂ϕ
(Xθ(x · η, η)) =

∫
S2

(
[
cosϕ cos θg1(x, ξ) + sinϕ cos θg2(x, ξ)− sin θg3

]
δ′′(η · ξ)

× [− sinϕ sin θξ1 + cosϕ sin θξ2]

+ δ′(η · ξ)(− sinϕ cos θg1(x, ξ) + cosϕ cos θg2(x, ξ)))dξ

=

∫
S2

δ′′(η · ξ)[− sinϕ cosϕ sin θ cos θg1ξ1 + cos2 ϕ cos θ sin θg1ξ2

− sin2 ϕ sin θ cos θg2ξ1 + sin θ cos θ sinϕ cosϕg2ξ2]

+ sin2 θ sinϕg3ξ1 − sin2 θ cosϕg3ξ2]dξ

+

∫
S2

δ′(η · ξ)(− sinϕ cos θg1 + cosϕ cos θg2)dξ

1

sin θ

∂

∂ϕ
(Xθ(x · η, η)) =

∫
S2

δ′′(η · ξ)[− sinϕ cosϕ cos θg1ξ1 + cos2 ϕ cos θg1ξ2

− sin2 ϕ cos θg2ξ1 + cos θ sinϕ cosϕg2ξ2]

+ sin θ sinϕg3ξ1 − sin θ cosϕg3ξ2]dξ

+

∫
S2

δ′(η · ξ)(− sinϕ cot θg1 + cosϕ cot θg2)dξ

∂

∂θ
(Xϕ(x · η, η)) =

∫
S2

(− sinϕg1(x, ξ) + cosϕg2(x, ξ))δ′′(η · ξ)

×
[
cosϕ cos θξ1 + sinϕ cos θξ2 − sin θξ

3

]
dξ

=

∫
S2

δ′′(η · ξ)[− sinϕ cosϕ cos θg1ξ1 − sin2 ϕ cos θg1ξ2 + sinϕ sin θg1ξ3

+ cos2 ϕ cos θg2ξ1 + cosϕ sinϕ cos θg2ξ2 − sin θ cosϕg2ξ3]dξ

cot θXϕ(x · η, η) =

∫
S2

(− cot θ sinϕg1 + cot θ cosϕg2)δ′(η · ξ)dξ.
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By the virtue of the equations we just computed and (4.36), we have that

divη(η ×R(tan)f)(x · η, η) =

∫
S2

δ′′(η · ξ)[(g2ξ1 − g1ξ2) cos θ

− (g3ξ1 − g1ξ3) sinϕ sin θ

+ (g3ξ2 − g2ξ3) sin θ cosϕ]dξ

=

∫
S2

δ′′(η · ξ)(η · (ξ × g))dξ

since

η · e1 = cosϕ sin θ, η · e2 = sinϕ sin θ, η · e3 = cos θ (4.43)

where e1, e2 and e3 are defined in section 2.2.

The main purpose of this section is to reconstruct a function f from the transverse-

ray transform in R3 with source points on a curve. We shall begin in the case of the

solenoidal part fd of fd by using the ideas in [13]. The authors in [13] proposed the two

decompositions of fd by using the Radon inversion formula:

fd(x) = − 1

8π2

∫
S2

∂2

∂s2
Rfd(s, η)|s=η·xdη

= − 1

8π2

∫
S2

∂2

∂s2
Rtanfd(s, η)|s=η·xdη −

1

8π2

∫
S2

∂2

∂s2
Rnorfd(s, η)|s=η·xdη

= − 1

8π2

∫
S2

∂2

∂s2
Rtanf(s, η)|s=η·xdη −

1

8π2

∫
S2

∂2

∂s2
Rnorfd(s, η)|s=η·xdη

where we have used the fact that Rtanf(s, η) = Rtanfd(s, η). Subsequently, using the fact

that the product of unit quaternions is -1 or simple geometriy, we obtain

fd = − 1

8π2

∫
S2

ηη
∂2

∂s2
Rtanf(s, η)|s=η·xdη +

1

8π2

∫
S2

∂2

∂s2
Rnorfd(p, η)|s=η·xdη

= − 1

8π2

∫
S2

η(η × ∂2

∂s2
Rtanf(s, η))|s=η·xdη +

1

8π2

∫
S2

∂2

∂s2
Rnorfd(s, η)|s=η·xdη

= − 1

8π2

∫
S2

η(η × ∂2

∂s2
Rtanf(s, η)|s=η·xdη +

1

8π2

∫
S2

∂2

∂s2
Rnorfd(p, η)|s=η·xdη. (4.44)

We denote the first and the second term in (4.44) by fd1(x) and fd2(x), respectively.

Throughout this section, we shall assume that a curve Γ which we are considering
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has a function a(λ) : Λ ⊂ R→ Γ as its parametrization and it satisfies Tuy’s condition of

order three. For simplicity we assume furthermore that

B3 ⊂ a(λ) + C for all λ ∈ Λ

and that the support of f is contained in B3. Here C is a cone and η ∈ C. The statement

for the Tuy’s condition of order 3 is stated as follow:

Definition 4.10 (Tuy’s condition for vector tomography). A source trajectory Γ ⊂ R3\B3

satisfies a Tuy condition of order 3 if any plane that passes through B3 intersects the

trajectory Γ in at least 3 points that are not located on a line. That means to any s ∈

(−1, 1) and η ∈ S2 there exist at least 3 parameters λi ∈ Λ, i = 1, 2, 3, with

a1 · η = a2 · η = a3 · η = s = x · η, ai = a(λi(s, η)), i = 1, 2, 3

and a1 − a3 and a2 − a3 are not collinear.

Definition 4.11. For x ∈ R3and η ∈ S2, the transverse-ray transform T of f is defined

by

T f(x, θ) =

∫ ∞
0

(θ × f)(x+ tθ)dt, where , θ ∈ S2. (4.45)

Furthermore, we define a function G, an integration of the transverse- ray transform, as

G(x, η) = −
∫
S2

δ′′(η · θ)[η · (θ × g(x, θ)))]dθ (4.46)

= −
∫
S2

δ′′(η · θ)[(η · T f(x))(x, θ)dθ (4.47)

where g is defined by

g(x, θ) = Dcf(x, θ) =

∫ ∞
0

f(x+ tθ)dt, f is any vector-valued function. (4.48)

We also define another type on the transverse ray transform T̃ f(x, θ) as

T̃ f(x, θ) = η ·Dcf(x, θ), η ∈ θ⊥.
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Proposition 4.12. The distributional senses of t2δ′ are as follows : for any test function

ψ,

< t2δ′, ψ > =< δ′, t2ψ >= − d

dt
(t2ψ)|t=0 = 0.

By straightforward computation or induction, we obtain

< t2nδ′, ψ > = 0, where n ∈ N.

The following lemma is a general result for the operator appearing in the definition

of G. It is also useful for the reconstruction procedure.

Lemma 4.13. For any smooth scalar-valued function w on the unit sphere, we have the

identity for η ∈ S2

∫
S2

w(θ)δ′′(θ · η)dθ =

∫
S2

[−(η · ∇θw(θ))δ′(η · θ)]dθ (4.49)

=

∫
S2

[η · ∇θ(η · ∇θw(θ))δ(η · θ)]dθ. (4.50)

Proof. Straightforward computation of the surface gradient ∇θ in (2.30) applied to a

scalar-valued function f gives the following formulas:

∇θf(θ · η) = (η − (η · θ)θ)f ′(θ · η), (4.51)

∇θδ′(θ · η)) = (η − (η · θ)θ)δ′′(θ · η), (4.52)

η · ∇θδ′(θ · η)) = (1− (η · θ)2)δ′′(θ · η). (4.53)

Therefore, ∫
S2

w(θ)δ′′(θ · η)dθ =

∫
S2

w(θ)
1

(1− (η · θ)2)
(η · ∇θδ′(θ · η))dθ

= −
∫
S2

η · ∇θ
(
w(θ)

1

(1− (η · θ)2)

)
δ′(η · θ)dθ

= −
∫
S2

(η · ∇θw(θ))
1

(1− (η · θ)2)
δ′(η · θ)dθ. (4.54)
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The first line use the definition of G. The second line follows from (4.49). The third one

use the definition of distributions and the last one is the product rule of the operator ∇θ.

Using the geometric series, we have

1

1− (η · θ)2
δ′(η · θ) = [1 + (η · θ)2 +O((η · θ)4)]δ′(η · θ) (4.55)

= [1 + (η · θ)2 + (η · θ)4a(η · θ)]δ′(η · θ)

= δ′(η · θ) (4.56)

for some constant a(η · θ) and we have applied proposition 4.12 to the second equation.

So substituting (4.55) in (4.53) gives∫
S2

w(θ)δ′′(θ · η)dθ = −
∫
S2

(η · ∇θw(θ))δ′(η · θ)dθ. (4.57)

which proved (4.48). To reach (4.49), we need to simplify (4.48) by considering, for any

smooth scalar-valued function v,∫
S2

v(θ)δ′(η · θ)dθ =

∫
δ′(τ)

∫
η⊥
v(τη +

√
1− τ2ϕ)dϕ

√
1− τ2dτ

= − d

dτ

(∫
η⊥
v(τη +

√
1− τ2ϕ)dϕ

√
1− τ2

)
|τ=0

= − d

dτ

(∫
η⊥
v(τη +

√
1− τ2ϕ)dϕ

√
1− τ2

)
|τ=0 ·

√
1− τ2

τ=0

−

(∫
η⊥
v(ϕ)dϕ

)
(−τ)√
1− τ2

τ=0

= −
∫
S2

η · ∇θv(θ)δ(θ · η)dθ. (4.58)

Consequently, (4.49) is proved.

Theorem 4.14. Assume that f ∈ C2(B3) and it has the Helmholtz-Hodge decomposition

(2.25), f and fd0 have compact support in B3. We assume furthermore that the curve

surrounding f satisfies Tuy’s condition of order 3 and I is the interval that parametrized
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the curve. Then its first part fd1(x) according to the decomposition (4.44) reads

fd1(x) =

∫
I

1

|x− a(λ)|
[

∫ 2π

0

[
∂2
γ(η(γ)(Φ(η(γ)))) + η(γ)(Φ(η(γ)))

]
(4.59)

×
∫ 2π

0

1

cos2 α
H(α, γ, a)]dαdγdλ (4.60)

where η(γ) = (cos γ, sin γ, 0), β = (0, 0, 1), θ = cosαη⊥(γ) + sinαβ and

H(α, γ, a(λ)) = η(γ) ·
(
θ ×

∫ ∞
0

f(a(λ) + tθ)dt

)
.

Proof. Suppose that Γ satisfies Tuy’s condition of order 3. For x ∈ B3 and η ∈ S2, consider

the plane

Π(x, η) := {z ∈ R3 : z · η = x · η}

which passes through x and is perpendicular to η.

We shall use framework in [14, 13], theorem 4.6 and 4.9 to find η × ∂

∂s
Rfd as a

function of the transverse-ray transform (4.49). If there are three intersection points,

ai = a(λi), i = 1, 2, 3, i.e., then by taking account into equation (4.28) we obtain that for

s and η fixed,

divη[η ×Rtanf ](s, η) + a1 ·
(
η × ∂

∂s
[Rtanf ](s, η)

)
= G(a1, η) (4.61)

divη[η ×Rtanf ](s, η) + a2 ·
(
η × ∂

∂s
[Rtanf ](s, η)

)
= G(a2, η) (4.62)

divη[η ×Rtanf ](s, η) + a3 ·
(
η × ∂

∂s
[Rtanf ](s, η)

)
= G(a3, η). (4.63)

Then by subtracting (4.62) from (4.60) and (4.61) respectively, we get

(a1 − a3) ·
(
η × ∂

∂s
[Rtanf ](s, η)

)
= G(a1, η)−G(a3, η) (4.64)

(a2 − a3) ·
(
η × ∂

∂s
[Rtanf ](s, η)

)
= G(a2, η)−G(a3, η). (4.65)

Since η × ∂sRtanf(s, η) ∈ η⊥, there exist scalar A(s, η), B(s, η) ∈ R such that

η × ∂

∂s
[Rtanf ](s, η) = A(s, η)e1(η) +B(s, η)e2(η).
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Substituting the above expression into the systems (4.63) and (4.64) gives

A(s, η)(a1 − a3) · e1(η) +B(s, η)(a1 − a3) · e2(η) = G(a1, η)−G(a3, η)

A(s, η)(a2 − a3) · e1(η) +B(s, η)(a2 − a3) · e2(η) = G(a2, η)−G(a3, η).

By taking into account that a1 − a3 and a2 − a3 are not collinear, we have that the

determinant of the system matrix is non zero and this leads to the solution of the above

system is unique. By solving the system we have

A(s, η) =
[(a2 − a3) · e2]G(a1, η)− [(a1 − a3) · e2]G(a2, η)− [(a2 − a1) · e2]G(a3, η)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]

B(s, η) = −
[(a2 − a3) · e1]G(a1, η)− [(a1 − a3) · e1]G(a2, η)− [(a2 − a1) · e1]G(a3, η)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]
.

So

η × ∂

∂s
[Rtanf ](s, η)|s=η·x =

([(a2 − a3) · e2]e1 − [(a2 − a3) · e1]e2)G(a1, η)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]

− ([(a1 − a3) · e2]e1 + [(a1 − a3) · e1]e2)G(a2, η)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]

−
([(a2 − a1) · e2]e1 + [(a2 − a1) · e1]e2)G(a3, η)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]
.

Let λj = λj(x, η) be the parameters of intersection of the source of trajectory Γ and

Π(x, η). The authors in [13] also assume that there can be more than three intersection

points so in general, one can form multiple triples from these points. Denote those triples

by Lm = Lm(x, η), where the subscript m denotes the index of a triple. Therefore, we can

write

η × ∂

∂s
[Rtanf(s, η)]|s=η·x =

∑
λi∈Lm

φ(a(λi),Lm)G(a(λi), η)

where

φ(a(λ1),Lm) =
([(a2 − a3) · e2]e1 − [(a2 − a3) · e1]e2)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]

φ(a(λ2),Lm) = − ([(a1 − a3) · e2]e1 + [(a1 − a3) · e1]e2)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]

φ(a(λ3),Lm) = − ([(a2 − a1) · e2]e1 + [(a2 − a1) · e1]e2)

[(a2 − a3) · e2][(a1 − a3) · e1]− [(a1 − a3) · e2][(a2 − a3) · e1]
.
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Hence, we obtain the formula

fd1(x) = − 1

8π2

∫
S2

η(η × ∂2

∂s2
Rtanf(s, η))|s=η·xdη

= − 1

8π2

∫
S2

η

 ∑
all triple m

 ∑
λi∈Lm

φ(λi,Lm)G(a(λi), η)

wm(x, η)

 dη (4.66)

where wm(x, η) is the weight assigned to each triple and is precisely defined in (3.18).

η ∈ S2 \Crit(x). Using the technique in [13], the summation in the integral (4.65) can be

written in the form of the integral on the curve as the following

fd1(x) = − 1

8π2

∫
S2

η

∫
I
|η · a′(λ)|δ(η · (x− a(λ)))

 ∑
m,λ∈Lm

φ(λ,Lm)wm(x, η)

G(λ, η)dλ

 dη.

(4.67)

Let

β(λ, x) =
x− a(λ)

|x− a(λ)|
, Φ = |η · a′(λ)|

∑
m,λ∈Lm

φ(λ,Lm)wm(x, η).

By changing the order of integral and using the fact that the homogeneity of δ function

is -1, one can rewrite the equation (4.66) as

fd1(x) = − 1

8π2

∫
S2

η

(∫
I

1

|x− a(λ)|
δ(η · β(λ, x))Φ(λ, η)G(λ, η)dλ

)
dη

= − 1

8π2

∫
I

1

|x− a(λ)|

[∫
S2

η(Φ(λ, η)G(λ, η)δ(η · β(λ, x))dη)

]
dλ. (4.68)

Let us consider the inner integral of (4.67), where we have omitted λ for convenience,

hd1(β) =

∫
S2

η(Φ(η))G(η)δ(η · β)dη

The integral is over the plane β⊥ so we introduce γ to be an polar angle that describes

η(γ). Then

hd1(β) =

∫ 2π

0
η(γ)(Φ(η(γ))G(η(γ))δ(η(γ) · β)dγ. (4.69)
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We shall choose a coordinate system in which β = (0, 0, 1). It follows that

η(γ) = (cos γ, sin γ, 0) and η⊥(γ) = (− sin γ, cos γ, 0). (4.70)

To see hd1(β) it suffices to compute G(η). One can see that by lemma 4.13 when

w(θ) is replaced by η · (θ × g)) we then have,

G(η) =

∫
S2

η · ∇θ(η · ∇θ(η · (θ × g)))δ(η · θ)dθ. (4.71)

To reach the concrete formula for G(η), we shall see the precise form of ∇θ. We begin by

parametrizing θ in (4.70) which is a vector on η⊥(γ) as:

θ = cosαη⊥(γ) + sinαβ =


− cosα sin γ

cosα cos γ

sinα


where α ∈ [0, 2π) and we have used η(γ), η⊥(γ) in (4.69). Using the same process in [4],

the following two unit vectors are basis of θ⊥:

e1(θ) =
1

cosα

∂

∂γ
θ =


− cos γ

− sin γ

0

 , e2(θ) =
∂

∂α
θ =


sinα sin γ

− sinα cos γ

cosα

 .

In this case, we shall see the form of the surface gradient of a scalar function u(θ) on the

sphere S2 in the same manner of (2.30). Denote ∇θu(θ) by such surface gradient which

is defined as

∇θu =
1

cosα

∂u

∂γ
e1(θ) +

∂u

∂α
e2(θ).

Applying the dot product with η gives

η · ∇θu(θ) =
1

cosα

∂u

∂γ
(η · e1(θ)) +

∂u

∂α
(η · e2(θ)). (4.72)
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By applying the surface gradient operator to (4.71) we obtain

∇θ(η · ∇θu(θ)) =
1

cosα

∂

∂γ

[
1

cosα

∂u

∂γ
(η · e1) +

∂u

∂α
(η · e2)

]
e1

+
∂

∂α

[
1

cosα

∂u

∂γ
(η · e1) +

∂u

∂α
(η · e2)

]
e2

=
1

cos2 α

[
∂γu(η · ∂γe1) + (η · e1)∂2

γu
]
e1

+
1

cosα

[
∂αu(η · ∂γe2) + (η · e2)∂γ∂αu

]
e1

+
1

cosα

[
∂γu(η · ∂αe1) + (η · e1)∂γ∂αu

]
e2 +

sinα

cos2 α
∂γu(η · e1)e2

+
[
∂αu(η · ∂αe2) + (η · e2)∂2

αu
]
e2.

Thus

η · ∇θ(η · ∇θu(θ)) = (η · e1)

[
1

cos2 α
∂γu(η · ∂γe1) +

1

cosα
∂αu(η · ∂γe2)

]
+ (η · e1)2 1

cos2 α
∂2
γu+ (η · e2)2∂2

αu

+ (η · e1)(η · e2)

[
2

cosα
∂γ∂αu+

sinα

cos2 α
∂γu

]
+ (η · e2)

[
1

cosα
∂γu(η · ∂αe1) + ∂αu(η · ∂γe2)

]
.

Using the following identities

∂γe1 =


sin γ

− cos γ

0

 = e⊥1 , ∂αe1 = 0, ∂γe2 = − sinαe1, ∂αe2 = −θ

gives

η · ∇θ(η · ∇θu(θ)) = (η · e1)(η · e⊥1 )
1

cos2 α
∂γu+ (η · e1)2

[
1

cos2 α
∂2
γu− tanα∂αu

]
+ (η · e1)(η · e2)

[
2

cosα
∂γ∂αu+

sinα

cos2 α
∂γu

]
− (η · e2)(η · θ)∂αu+ (η · e2)2∂2

αu. (4.73)

Plugging in

η · e1 = 1, η · e⊥1 = η · e2 = 0
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to (4.72) gives

η · ∇θ(η · ∇θu(θ)) =

[
1

cos2 α
∂2
γu− tanα∂αu

]
. (4.74)

Substituting (4.73) into the equation (4.70) we have

G(η(γ)) =

∫ 2π

0

[
1

cos2 α
∂2
γ − tanα∂α

]
H(α, γ, a(λ))dα (4.75)

where

H(α, γ, a(λ)) = η · (θ × g) = (cos γ, sin γ, 0) · ((− cosα sin γ, cosα cos γ, sinα)× g).

Substituting (4.74) into (4.68) and integrating by part gives,

hd1(β) =

∫ 2π

0
η(γ)Φ(η(γ))

∫ 2π

0

[
1

cos2 α
∂2
γ − tanα∂α

]
H(α, γ, a(λ))dαdγ

=

∫ 2π

0

[
∂2
γ(η(γ)(Φ(η(γ)))) + η(γ)(Φ(η(γ)))

] ∫ 2π

0

H(α, γ, a)

cos2 α
dαdγ. (4.76)

To finish this we shall put (4.75) into (4.67) which gives the reconstruction formula

fd1(x)(x) =

∫
I

1

|x− a(λ)|
[

∫ 2π

0

[
∂2
γ(η(γ)(Φ(η(γ)))) + η(γ)(Φ(η(γ)))

]
×
∫ 2π

0

H(α, γ, a)

cos2 α
dαdγdλ.

The following theorem is the reconstruction formula for the second part of the

solenoidal part of f according to the decomposition (4.44).

Theorem 4.15. Assume that the assumptions in theorem 4.14 is true. Then second part

fd2 of the solenoidal part reads

fd2(x) =
1

8π2

∫
S2

η

∫
I

1

|x− a(λ)|
hd2(β, λ)dλdη (4.77)

where

hd2(β, λ) =

∫
S2

θΦ(λ, θ)G(λ, θ)δ(θ · β(λ(x))) · ∇θK(η · θ)dθ

where Φ(λ, θ), G(λ, θ) are defined in theorem 4.14.
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To reconstruct the second part fd2 of the solenoidal part fd of f , we shall use the

formula in [13] to recover ∂2
sRnorfd from ∂2

sRtanf as in the following form:

∂2
sRnorfd(s, η) = η

∫
S2

[∂2
sRtanf ](s, θ) · ∇θK(η · θ)dθ (4.78)

where

K(η · θ) =
∑
n≥0

2n+ 3

4π(n+ 2)
Pn+1(η · θ), (4.79)

Pn+1(η · θ) =
∑
|l|≤n+1

4π

(2n+ 3)
Yn+1,l(η)Y n+1,l(θ), (4.80)

see appendix B and Yn,l is a spherical harmonic as introduced in Chapter 3. We shall

briefly verify the formula (4.77) by following framework in [14, 13] but here we shall

provide details at some points. The authors in [14] proposed a unique representation of

the solenoidal part fd of f as

fd(x) =
∞∑
n=0

∑
|l|≤n+1

b
(n)
n+1,lB

(n)
n+1,l(x)

+

∞∑
n=2

[n/2]∑
k=1

∑
|l|≤n+1

b
(n)
n+1−2k,lB

(n)
n+1−2k,l(x) +

∞∑
n=1

[(n−1)/2]∑
k=0

∑
|l|≤n+1

c
(n)
n−2k,lC

(n)
n−2k,l(x)

(4.81)

where B
(n)
n,l (x) and C

(n)
n,l (x) are defined in (3.37-3.40) and b

(n)
k,l , c

(n)
k,l , k ∈ N are constants.

Then the second derivative of its Radon transform takes the form

∂2

∂s2
Rfd(s, η) =

∂2

∂s2

∫
B3

fd(x)δ(s− x · η)dx

=
∞∑
n=0

∑
|l|≤n+1

b
(n)
n+1,l

∂2

∂s2

∫
B3

∫
S2

y
(2)
n+1,l(ξ)C

3/2
n (x · ξ)dξδ(s− x · η)dx

+

∞∑
n=2

[n/2]∑
k=1

∑
|l|≤n+1

b
(n)
n+1−2k,l

∂2

∂s2

∫
B3

∫
S2

y
(2)
n+1−2k,l(ξ)C

3/2
n (x · ξ)dξδ(s− x · η)dx

+

∞∑
n=1

[(n−1)/2]∑
k=0

∑
|l|≤n+1

c
(n)
n−2k,l

∂2

∂s2

∫
B3

∫
S2

y
(3)
n−2k,l(ξ)C

3/2
n (x · ξ)dξδ(s− x · η)dx.

(4.82)
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By using (3.38), (3.39) and (3.40) stating that∫
S2

y
(2)
n+1,l(ξ)C

3/2
n (η · ξ)dξ =

4π(n+ 2)

2n+ 3

(
(n+ 1)y

(1)
n+1,l(η) + y

(2)
n+1,l(η)

)
∫
S2

y
(2)
n−2k+1,l(ξ)C

3/2
n (η · ξ)dξ = 4πy

(2)
n−2k+1,l(η), k = 1, . . . , [n/2]∫

S2

y
(3)
n−2k,l(ξ)C

3/2
n (η · ξ)dξ = 4πy

(3)
n−2k,l(η) , k = 0, . . . , [(n− 1)/2]

one claim that∫
B3

δ(s− x · η)C3/2
n (x · ξ)dx =

2π(1− s2)C
3/2
n (s)C

3/2
n (η · ξ)

(n+ 1)(n+ 2)
(4.83)

see appendix D. Substituting (4.82) in to (4.81) which is the second derivative of the

Radon transform of fd yields

∂2

∂s2
Rfd(s, η) =

∞∑
n=0

d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(n+ 1)(2n+ 3)

) ∑
|l|≤n+1

b
(n)
n+1,l

(
(n+ 1)y

(1)
n+1,l(η) + y

(2)
n+1,l(η)

)

+
∞∑
n=2

d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(n+ 1)(n+ 2)

)
[n/2]∑
k=1

∑
|l|≤n+1

b
(n)
n+1−2k,ly

(2)
n+1−2k,l(η)

+
∞∑
n=1

d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(n+ 1)(n+ 2)

)
[(n−1)/2]∑
k=0

∑
|l|≤n+1

c
(n)
n−2k,l4πy

(3)
n−2k,l(η). (4.84)

By using the decomposition together with the fact that for j ∈ N, y
(1)
j,l (η) is parallel to η

and y
(2)
j,l (η), y

(3)
j,l (η) are perpendicular to η, we then obtain

∂2

∂s2
Rnorfd(s, η) =

∞∑
n=0

d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(2n+ 3)

) ∑
|l|≤n+1

b
(n)
n+1,ly

(1)
n+1,l(η) (4.85)

and

∂2

∂s2
Rtanfd(s, η) =

∞∑
n=0

d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(n+ 1)(2n+ 3)

) ∑
|l|≤n+1

b
(n)
n+1,ly

(2)
n+1,l(η)

+
∞∑
n=2

d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(n+ 1)(n+ 2)

)
[n/2]∑
k=1

∑
l

b
(n)
n+1−2k,ly

(2)
n+1−2k,l(η)

+

∞∑
n=1

d2

ds2

(
8π2(1− p2)C

3/2
n (s)

(n+ 1)(n+ 2)

)
[(n−1)/2]∑
k=0

∑
l

c
(n)
n−2k,ly

(3)
n−2k,l(η). (4.86)



84

Applying dot product to (4.83) by y
(2)
n+1(η), integrating over S2 and using the fact that

y
(j)
n,l are orthogonal system gives

∫
S2

∂2

∂s2
Rfd(s, η) · y(2)

n+1,l(η)dη =
d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(n+ 1)(2n+ 3)

)
b
(n)
n+1,l‖y

(2)
n+1,l‖

2 (4.87)

see appendix D for the verification.

Since y
(2)
j,l is perpendicular to η,

y
(2)
n+1,l ·

∂2

∂s2
Rnorfd(s, η) = ∇ηYn,l(η) · ∂

2

∂s2
Rnorfd(s, η) = 0.

Consequently, the equation (4.86) can be replaced by∫
S2

∂2

∂s2
Rtanfd(s, η) · y(2)

n+1(η)dη =
d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(n+ 1)(2n+ 3)

)
b
(n)
n+1,l‖y

(2)
n+1,l‖

2. (4.88)

Multiplying (4.87) by
(n+ 1)

‖y(2)
n+1,l‖2

y
(1)
n+1,l(θ) and summing over n, l provides

∞∑
n=0

∑
|l|≤n+1

∫
S2

∂2

∂s2
Rtanf(s, η) · y(2)

n+1,l(η)dη
(n+ 1)

‖y(2)
n+1,l‖2

y
(1)
n+1,l(θ) (4.89)

=
∞∑
n=0

∑
|l|≤n+1

d2

ds2

(
8π2(1− s2)C

3/2
n (s)

(2n+ 3)

)
b
(n)
n+1,ly

(1)
n+1,l(θ) (4.90)

=
∂2

∂s2
Rnorfd(s, θ). (4.91)

The authors in [13], furthermore, provide the matrix form of the sum in (4.89) by using

the fact that y
(1)
n,l (θ) = θYn,l(θ), y

(2)
n,l (η) = ∇ηYn,l(η) and ‖y(2)

n+1,l‖
2 = (n+ 1)(n+ 2):

θ∇η

∑
|l|≤n

Yn+1(η)Y n+1,l(θ) =
2n+ 3

4π
θ∇ηPn+1(θ · η). (4.92)

By some calculations according to (4.90) and the operator ∇η, one can have

∂2

∂s2
Rnorfd(s, θ) = θ

∫
S2

∂2

∂s2
Rtanfd(s, η) · ∇η

∑
n≥0

2n+ 3

4π(n+ 2)
Pn+1(θ · η)

 dη. (4.93)
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In the same manner as the case of Rtanfd1, we obtain

fd2(x) = − 1

8π2

∫
S2

∂2

∂s2
Rnorfd(s, η)|s=η·xdη

= − 1

8π2

∫
S2

η

∫
S2

∂2

∂s2
Rtanf(s, θ)|s=θ·x · ∇θK(η · θ)dθdη

= − 1

8π2

∫
S2

η

∫
S2

(
θ[θ × ∂2

∂s2
Rtanf(s, θ)]

)
|s=θ·x · ∇θK(η · θ)dθdη

= − 1

8π2

∫
S2

η

∫
S2

θ ∑
λi∈L

φ(a(λi))G(a(λi), θ)

 · ∇θK(η · θ)dθdη

=
1

8π2

∫
S2

η

∫
I

1

|x− a(λ)|
hd2(β, λ)dλdη.

Combining theorem 4.14 and 4.15 gives the reconstruction procedure for the solenoidal

part of f by using the 3 dimensional transverse-ray transform with source points on a

curve. We would like to discuss an important remark:

Remark Only the solenoidal part of f can be recovered from such transverse-ray trans-

form. As mentioned in chapter 3, we consider the Helmholtz-Hodge decomposition (2.25)

of a vector field of the form

f = ∇p+ fd, fd = fd0 +∇h

where fd is the solenoidal part and ∇p is the potential part with p = 0 on S2. For fixed

η ∈ S2 and e1(η), e2(η) are defined in section 2.10, one can write ∇p in the form

∇p =< e1(η),∇ > pe1(η)+ < e2(η),∇ > pe2(η)+ < η,∇ > pη. (4.94)

Consider the Radon transform

R(< e1(η),∇p >)(s, η) =

∫
R3

(e1 · ∇p)(x)δ(s− x · η)dx

=

∫
R

∫
R

(e1 · ∇p)(re1 + te2 + sη)dtdr

=

∫
R

∫
R

∂p

∂r
(re1 + te2 + sη)drdt = 0



86

where we have used the fact that p = 0 on S2. Similarly,

R(< e1(η),∇p >)(s, η) = 0.

Therefore,

R(∇p)(s, η) = R(< η,∇p >)(s, η)η = η
(
η ·R∇p(s, η)

)
.

Substituting the previous equation in the decomposition of ∇p

Rtan∇p =
∂

∂s
R∇p(s, η)− η(η · ∂

∂s
R∇p)

= η(η · ∂
∂s
R∇p(s, η))− η(η · ∂

∂s
R∇p)(s, η)

gives

Rtan∇p = 0.

Consequently,

η ×Rtanf(s, η) = η ×Rtanfd(s, η)

and so the remark is clarified.

The last part of this section shall discuss about the recovering the potential part of

f by using a different type of transverse-ray transform.

Proposition 4.16. For a given measured data T̃ (f). Under the same assumptions as in

theorem 4.14, one can recover the potential from T̃ (f)− T̃ (fd).

Proof. By assumptions on the curve, for each η, there exist at least 3 points a(λi), i =
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1, 2, 3 on it such that a(λi) · η = x · η. The potential field can be viewed as:

p(x) = − 1

8π2

∫
S2

∂2

∂s2
Rp(s, η)|s=x·ηdη

= − 1

8π2

∫
S2

η · ∂
∂s
R(∇p)|s=x·ηdη

= − 1

24π2

∫
S2

∫
S2

δ′(θ · η)η ·
3∑
i=1

Da(λi)(∇p)(θ)dθdη

= − 1

24π

∫
S2

∫
S2

δ′(θ · η)

3∑
i=1

T̃a(λi)(∇p)(θ)dθdη

= − 1

24π

∫
S2

∫
S2

δ′(θ · η)

3∑
i=1

(T̃a(λi)f − T̃a(λi)f
d)(θ)dθdη

Using the technique in [13], we obtain that p can be written in the form of integral on the

curve as

p(x) =
1

24π

∫
S2

∫
I

1

|x− a(λ)|

∫
S2

δ′(θ · η)φ(λ)(T̃a(λ)f − T̃a(λ)f
d)(θ)dλdη

where φ(λ) is defined in theorem 4.14.
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5 DISCUSSION

Many physical phenomena can be described by quaternions rather than vector fields.

This is one of the reasons inspiring us to consider the reconstruction of the quaternionic-

valued function. We have paid attention to the vector part of a quaternionic-valued

function which is similar to the vector field in some sense. We presented the reconstructions

both in the parallel beam setting and cone beam setting. The formula for the former one

is,

f(x) = − 1

2(2π)2
∂x

∫
S2

θRf ′(< θ, θ · x >)dθ. (5.1)

The existence of such a formula might not be surprising since this formula is in the scalar

case, but we have seen that the quaternionic version gives new insight. The formula (5.1),

however, involved the quaternion arguments which is the non-tangential boundary values

of the Cauchy transform of f . This boundary value is analogue of the Riemann-Hilbert

problem in the complex analysis. We would like to remark that the Dirac operator is

related to the Laplacian or the lambda operator in Euclidean space. Moreover, this

formula can ensure that the vector part of a quaternionic-valued function also can be

decomposed as the divergence and the curl free parts in the Helmholtz decomposition for

the case of vector fields.

In the latter case, we presented the reconstruction formula both with sources on

the sphere and on a curve satisfying the Tuy’s condition of order 3. For the sources on

the sphere, we begin by using (5.1) and then use (4.18) which already proposed in the

scalar case in [17]. To get this reconstruction, we may begin with another form rather

than (5.1) but here we consider the equation (5.1) because it provides the orthogonality

or the transform θ → −θ in its arguments.

The certain property of a curve called Tuy’s condition of order 3 provides the data
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where sources are on the curve. More precisely, its properties make sense for the relation

−
∫
S2

Df(x, θ)δ′′(θ · η)dθ = (divη(η ×Rtanf)(s, η))|s=η·x + x ·
(
η × ∂

∂s
(Rtanf)(s, η)

)
|s=η·x

(5.2)

where

Df(x, θ) =

∫ ∞
0

η · (θ × f)(x+ tθ)dt. (5.3)

We followed the procedures in the paper of Katsevich and Schuster [13]. Their inversion

formula is exact. The obtained formula in this work, however, is indirect for the math-

ematical point of view. The transform (5.3) is the transverse-ray transform. Only the

divergence free part of a vector field can be reconstructed by the transform (5.3) together

with (5.2). However, the potential part can be recovered by using the measured data and

the reprojection of the solenoidal part.
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6 CONCLUSIONS

As in scalar 3D computerized tomography, the inversion of the cone beam transform

is a special interest from a practical point of view. The cone beam transform for vector

fields have been achieved recently Katsevich and Schuster. A number of quantities in

physics behave as some parts of quaternions rather than vector fields. We thus further

pay attention to the reconstructions of the quaternionic-valued functions. To see the

procedures of the reconstructions, we shall follow some work done in the vector field case

since vector fields and the vector parts of quaternions have some properties in common.

The reconstructions for the parallel beam setting has been discussed. This formula

is the Dirac operator acting on the back-projection of the first derivative of the Radon

transform weight with unit vectors on the sphere. This formula is closely related to a

well-known back-projection formula established in scalar case where the Laplacian and

the lambda operators have been used. In one of procedures, we have used the Grangeat’s

formula which we define in vector-valued case in componentwise sense.

For the simplest cone beam case where sources are on the sphere, we begin with the

previous result. Since this result contains the first of the Radon transform, we can use

Grangeat ’s formula to connect cone beam transform with sources on the sphere and the

data. For the last part which is the cone beam setting with sources on a curve fulfilling

Tuy’s conditions, we have obtained the indirect data by using the transverse-ray transform.

The whole vector field can be recovered by using this transverse-ray transform.
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A APPENDIX Gegenbauer polynomials

Gegenbauer polynomials C
(ν)
n (s) are orthogonal polynomials on the interval [-1,1]

with respect to the weight function (1 − s2)ν−1/2. Some of the characterizations of the

Gegenbauer polynomials are the following:

• They can be defined in terms of their generating function

1

(1− 2st+ t2)ν
=
∞∑
n=0

Cνn(s)tn;

• They are given as Gaussian hypergeometric series

Cνn(s)

[n/2]∑
k=0

(−1)k
Γ(n− k + ν)

Γ(ν)k!(n− 2k)!
(2s)n−2k.

They furthermore have the orthogonality and normalization : For fixed ν, the polynomials

are orthogonal on [-1,1] with respect to the weight function w(s) = (1 − s2)ν−1/2. More

precisely, , for m 6= n, ∫ 1

−1
Cνn(s)Cνm(s)(1− s2)ν−1/2ds = 0. (A.1)

They are normalized by∫ 1

−1
[Cνn(s)]2(1− s2)ν−1/2ds =

π21−2νΓ(n+ 2ν)

n!(n+ ν)[Γ(ν)]2
(A.2)

where

Γ(t+ 1) = tΓ(t), t > 0, Γ(1/2) =
√
π.

and for n ∈ N,

Γ(n+ 1) = n!.

B APPENDIX Spherical harmonics

Recall that spherical coordinate for x ∈ R3 is x = rη where

η = (cosϕ sin θ, sinϕ sin θ,− sin θ) ∈ S2, ϕ ∈ [0, 2π], θ ∈ (0, π).
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In obtaining the solutions to Laplaces equation in spherical coordinates, it is traditional

to introduce the spherical harmonics, Yn,l(θ, ϕ)

Yn,l(θ, ϕ) = (−1)l

√
(2n+ 1)(n− l)!

4π(n+ l)!
Pn,l(cos θ)eilϕ

= an,lPn,l(cos θ)eilϕ

for 
n = 0, 1, 2, 3, . . . ,

l = −n,−n+ 1, . . . , n− 1, n.

Here Pn,l(x) are Legendre polynomials with the property

Pn,−l(cos θ) = (−1)l
(n− l)!
(n+ l)!

Pn,l(cos θ).

This leads to

Yn,−l(θ, ϕ) = (−1)lYn,l(θ, ϕ).

A well-behaved function f of θ and ϕ can be written as

f(θ, ϕ) =

∞∑
n=0

n∑
l=−n

anlYn,l(θ, ϕ).

For example, we list a few low order spherical harmonics :

n = 0, Y0,0(θ, ϕ) =
1

4π

n = 1,


Y1,1(θ, ϕ) = −

√
3

8π
sin θeiϕ

Y1,0(θ, ϕ) =

√
3

4π
cos θ

n = 2,



Y2,1(θ, ϕ) = −
√

15

8π
sin θ cos θeiϕ

Y2,0(θ, ϕ) =
1

2

√
5

4π
(3 cos2 θ − 1)

Y2,2(θ, ϕ) =
1

4

√
15

2π
sin2 θe2iϕ.
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We next establish some relations involving yn,l from section 3.4.2. We claim that

∑
|l|≤n+1

y
(2)
n+1,l(η)y

(1)
n+1,l(α)

(n+ 2)
=

∑
|l|≤n+1

∇ηYn+1,l(η)αYn+1,l(α)

(n+ 2)
. (B.1)

Consider

∇ηYn,l(η) =
1

sin θ

∂

∂ϕ
(Yn,l)e1(η) +

∂

∂θ
(Yn,l)e2(η)

= an,lPn,l(cos θ)
1

sin θ

∂

∂ϕ
eilϕ + an,le

ilϕ ∂

∂θ
(Pn,l(cos θ))

= an,lPn,l(cos θ)
1

sin θ
(il)eilϕ + an,le

ilϕ ∂

∂θ
(Pn,l(cos θ)).

Thus,

∇ηYn,l(η) = −an,lPn,l(cos θ)
1

sin θ
(il)e−ilϕ + an,le

−ilϕ ∂

∂θ
(Pn,l(cos θ)).

On the other hand,

∇ηYn,l(η) = ∇η(an,lPn,l(cos θ)e−ilϕ)

= an,lPn,l(cos θ)
1

sin θ

∂

∂ϕ
e−ilϕ + an,le

−ilϕ ∂

∂θ
(Pn,l(cos θ))

= −an,lPn,l(cos θ)
1

sin θ
(il)e−ilϕ + an,le

−ilϕ ∂

∂θ
(Pn,l(cos θ)).

Thus,

∇ηYn,l(η) = ∇ηYn,l(η).

So (B.1) is equal to

∑
|l|≤n+1

y
(2)
n+1,l(η)y

(1)
n+1,l(α)

(n+ 2)
= α∇η

∑
|l|≤n+1

Yn+1,l(η)Yn+1,l(α)

(n+ 2)
. (B.2)

Equation (3.25) in [13] and (B.2)

2n+ 3

4π
Pn+1(α · η) =

∑
|l|≤n+1

Yn+1,l(η)Yn+1,l(α)

(n+ 2)
.
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C APPENDIX Reconstruction formula of scalar and vector fields

In an image processing context the original image f can be recovered from the

”sinogram” data Rf by applying a ramp filter (in s variable) and then back-projecting.

As the filtering step can be performed efficiently (for example usinf digital signal processing

techniques) and the back projection step is simply an accumulation of values in the pixel

of the image, this results in a highly efficient, and hence widely used, algorithm.

Explicitly

Definition 0.1 (Lambda operator). For any real number α and for any tempered distri-

bution u for which |ξ|αû(ξ) is also tempered distribution, define

Λαu = F−1(|ξ|αû(ξ)) (C.1)

Theorem 0.2. Let P be the k-plane transform, 0 < k < n. If f is an L1 function such

that |ξ|−αf̂(ξ) ∈ L1, then

1

(2π)k|Gk,n−1|
ΛαP ]Λk−αPf = f (C.2)
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D APPENDIX Formula for second derivative in term of series

Before we provide the proof of the Radon transform of a Gegenbauer polynomial

we shall recall lemma 2.3 in [15]

Lemma 0.3. Let Rf ∈ L2(R× S2, w−1
ν ), wν = (1− s2)ν−1/2 and φmkl = wνC

ν
mYlk. Then

Rf(s, w) = wν(s)
∞∑
m=0

Cνm(s)qm(w) (D.1)

with

qm(w) =
m∑

l=0m+l even

M(N,l)∑
k=1

dmklYlk(w) (D.2)

= h−1
mν

∫ 1

−1
Cνm(s)Rf(s, w)ds, (D.3)

dmlk = h−1
mν

∫
SN−1

Ylk(ω)

∫ 1

−1
Rf(s, ω)Cνm(s)dsdω (D.4)

and

hmν =

∫ 1

−1
wν(s)[Cνm(s)]2ds. (D.5)

Then we shall derive the following:

Lemma 0.4. The Radon transform of the Gegenbeaur polynomial of order 3/2, for ξ, η

are fixed: reads∫
B3

δ(s− x · η)C3/2
n (x · ξ)dx =

2π(1− s2)C
3/2
n (s)C

3/2
n (ξ · η)

(n+ 1)(n+ 2)
(D.6)

Proof. Since C
3/2
n (·) is real, taking conjugate in both sides of (3.22), we obtain

C3/2
n (x · ξ) = 4π

[n/2]∑
k=0

∑
|l|≤n−2k

Z
(n)
n−2k,l(x)Yn−2k,l(ξ). (D.7)

Then

RC3/2
n (< ·, ξ >)(s, η) = 4π

[n/2]∑
k=0

∑
l

Yn−2k,l(ξ)RZ
(n)
n−2k,l(·)(s, η). (D.8)
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From the lemma (0.3), n is fixed

RZ
(n)
n−2k,l(·)(s, η) = (1− s2)

∞∑
m=0

C3/2
m (s)qm(η) (D.9)

where

qm(η) = h−1
mν

∫ 1

−1
RZ

(n)
n−2k,l(s, η)C3/2

m (s)ds. (D.10)

By using the adjoint of the Radon transform∫ 1

−1
Rf(s, η)h(s)ds =

∫
B3

f(x)h(x · η)dx (D.11)

we then have

qm(η) = h−1
mν

∫
B3

Z
(n)
n−2k,l(x)C3/2

m (x · η)dx

= h−1
mν

∫
B3

Z
(n)
n−2k,l(x)4π

[m/2]∑
j=0

∑
|d|≤m−2j

Z
(m)
m−2j,d(x)Ym−2j,d(η)dx

= h−1
mν4π

[m/2]∑
j=0

∑
|d|≤m−2j

Ym−2j,d(η)

∫
B3

Z
(n)
n−2k,l(x)Z

(m)
m−2j,d(x)dx

= h−1
nν 4πYn−2k,l(η)

1

2n+ 3
(D.12)

where we have used the the orthogonality of the Zernike polynomials and that

‖Z(n)
n−2k,l‖

2
L2(B3) =

1

2n+ 3
.

To verify the last equation of (D.2) , we will consider in 2 cases, for m > n and m < n.

Thus by substituting D.12 into D.9 and D.9 into D.8 we then have,

RC3/2
n (< ·, ξ >)(s, η) = 4π

[n/2]∑
k=0

∑
l

Yn−2k,l(ξ)(1− s2)C3/2
n (s)h−1

nν 4πYn−2k,l(η)
1

2n+ 3
.

hnν =

∫ 1

−1
(Cνn)2(1− s2)ν−1/2ds

=
π2−2Γ(n+ 3)

n!(n+ 3/2)(π/4)
=

2(n+ 1)(n+ 2)

(2n+ 3)
.
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Hence,

RC3/2
n (< ·, ξ >)(s, η) =

2π(1− s2)C
3/2
n (s)

(n+ 1)(n+ 2)
4π

[n/2]∑
k=0

∑
l

Yn−2k,l(ξ)Yn−2k,l(η) (D.13)

=
2π(1− s2)C

3/2
n (s)C

3/2
n (η · ξ)

(n+ 1)(n+ 2)
. (D.14)

.




