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THE EXPONENTIAL X-RAY TRANSFORM

I. NOTATION AND BACKGROUND FROM COMPUTED TOMOGRAPHY

The set of all real numbers is denoted by AR, the set of all

complex numbers by C. The m-dimensional real (complex) Euclidean

space is MRm (Cm ), i.e., if x E Alm (Cm ) then x = (x 1,...,x)1"
where x

'xm
E AR(C). The Euclidean inner product of

x,y E Alin(Cm) where x = (x .,x) and y = (y .,y) is
m

<x,y> = Ei.1 xiyi; yi denotes the complex conjugate of yi. The

Euclidean norm of x E le(CM) is lx1 = 1-<75.-c7. The differential

a1 am
operator Da =3 ... where a = (a1,...,am) is a multi-index

X x/
xm

with al,... ,am non-negative integers and 3 = 3/ax. The order
x.

a
of the

operator3x
is la I

= E. , a.. If is a subset of
.3

Alin

=1

then C(0) denotes the space of all continuous functions on Q. For

k = 0,1,2,..., C (c) is the space of all functions f on Q such

that 3af E C(0) for all lal < Q. Note that C0(0) = C(). The

subspace of C(0) consisting of functions with compact support in

Q is denoted by C(0). For 1 < p < LP( niin) denotes the space of
0

all Lebesgue measurable functions on Alin such that

If Hp = (flf(X)113dX)1/P < W

in
For p = co, L (IR ) is the space of essentially bounded functions on

Alin. The subspace of LP( IRm) consisting of all functions that

vanish outside 2 is denoted by LI:1(Q). The space of all functions

f so that



(1 If(x)1Pdx)1/P < co

for all compact subsets K of IRDI is LP (IRm). The unit sphere
loc

in
IRm

is Sm-1 = (x E le : lx1 = 1}. For 6 Em-1,

6 = fx e le : <x,0> = 01 is the subspace of Me orthogonal to G.

If X is a vector space, X' will denote its dual space. For

x' E X' and x E X we will write x'(x) as <x',x>.

In 1917, J. Radon [17], proposed and solved the problem o

determining a function from its integrals over all hyperplanes in

le. This is now known as Radon's problem. There were other inde-

pendent discoveries of Radon's problem prior to and after 1917 in such

fields as astronomy, probability and radiology. For more information

and references to these discoveries see [6]. Much research has been

done on the Radon problem as well as on applications of it in various

fields of science and technology. Applications to radiology will be

the standard example used in this work.

In classical radiology, one is interested in determining the

intensity loss of the X-ray beam when passing through an inhomogeneous

medium. Let p(x) be the X-ray attenuation coefficient of the tissue

at a point x with respect to photons at energy E. Let 10 be the

initial intensity of the X-ray beam, I its intensity leaving the

body. Assuming that the photons are at a constant energy E, it has

been experimentally verified that

-f p(x)dx

I = 10 e

2



where L is the straight line along which the X-ray beam, assumed to

be infinitely thin, travels.

In 1963 A. Cormack [4, 5] proposed the problem of determining

the X-ray attenuation coefficient u(x) in inhomogeneous media, a

problem that had received little attention till then. From (1.1) we

have

ln(I /I) = f u(x)dx (1.2)

where
ln(I()

/I) can be measured experimentally. So the problem pro-

posed by Cormack is determining p knowing the line integrals inter-

secting the region of interest. In the two-dimensional case this is the

Radon problem. In practice a cross section of the human body is

scanned by a very thin X-ray beam, the intensity loss is recorded and

a mathematical alogrithm is applied to the data to produce a two-

dimensional image of the cross section. This in fact is sufficient

because the body can be viewed as a succession of two-dimensional

layers.

This method of reconstructing two-dimensional cross sections is

known as Computed Tomography (CT), where "tomos" in Greek means slice.

The above is an example of Transmission Computed Tomography (TCT).

Another form of CT is Emission Computed Tomography (ECT). Here radio-

nuclides are injected into the body and upon decay emit photons, whose

intensity after leaving the body are recorded by a detector. These

photons emitted by sources inside the body are attenuated by the

amount of material present along the line joining the source to the

detector. For more detail on ECT see [2]. In ECT both the location

3



and the intensity of the emitted radiation are unknown. We will be

interested in one kind of ECT namely single photon ECT, which can be

described mathematically as follows. Let f(x) be the intensity of

the photons emitted from a point x inside the body along a straight

line L, then assuming (1.1) still holds, the intensity of the ray

leaving the body is

-1 p(y)dy

f(x) e
L(x)

where L(x) is the segment of L between the point x and the

detector. The cumulative intensity I of all sources on L will

then be

-f 11(3)(13,

I = f f(x) e
L(x)

dx. (1.3)

In single photon ECT one seeks to find f knowing the values of the

integrals in (1.3) for a finite set of lines intersecting the region

of interest. The attenuation coefficient p can be estimated by TCT

methods; see for instance [21] and [15]. Finding f in (1.3) with

known is a generalized form of Radon's problem. We shall be interested

in solving integral equations of the kind in (1.3).

In practice the important dimensions are two and three. However,

it is of equal interest from a mathematical point of view to study

such integral equations in higher dimensions. Let n > 2. A straight

line L in le can be parameterized by the pair (0,x) where

n-1
8 E S and x E 8 so that

L = L(0,x) = + te : t E TR}.

4



Using this parameterization, (1.2) becomes

CO

ln(I0/I) = f p(x+te)dt (1.4)
_co

and (1.3) becomes

CO
p(x+se)ds

I = f f(x+te) e t dt. (1.5)

The expression in (1.4) is called the X-ray transform of p and the

expression in (1.5) the attenuated X-ray transform of f and it will

be denoted by T f.

Suppose in (1.5) f has support in a bounded set. Suppose also

that the attenuation p is known everywhere and is constant in a

convex set D containing the support of f, i.e., the emitter. The

attenuation can otherwise be arbitrary except that it be bounded,

measurable and have compact support. Let a be the constant value

that p takes on D and for e E Sn-1, x E e let d = d(0,x) be

chosen so that x + de E D. Define a real valued function on

f(e;X)le E Sn-1, x E ell by

CO

f p(x+se)ds + ad

e if L(e,x) nDi0
e(8,x) =

1 otherwise.

Then it is not hard to see that

CO

-f p(x+s8)ds

e
at

= e(8,x) e
t (1.6)

5



for all x+s6 E D. An important consequence of (1.6) is that

00

cP(8,x)T f(0,x) = f f(x+te) eat dt. (1.7)
MCO

The right hand side of (1.7) is called the exponential X-ray transform

of f and is denoted by Paf. All the above has been shown in

Markoe [14]. Because of (1.7) many results on the attenuated X-ray

transform can be deduced from results on
Pa,

when p satisfies the

conditions above. In [14], Markoe used (1.7) and analytic continua-

tion to develop an inversion method for T.

The purpose of this work is to find inversion and approximate

inversion formulas for the operator Pa, where a is a constant,

and a generalization of it; namely the exponential X-ray transform

with variable attenuation p, also denoted by P and defined for

functions f on le by

P f(0,x) f
Co

f(x+t8) eil(e)t dt
V

where e E Sn- , x E 8 and the attenuation p : Sn-1 + TR.

We wish to determine f, or an approximation of f from the

data P f. In TCT there are methods used to solve integral equations

of the kind in (1.4) known as "convolution-backprojection" algorithms;

see Smith [21] for general reference. Following along the same lines,

we choose E to be an approximate 6-function; typically these are

integrable functions with f E(x)dx = 1; and for p > 0 we set
utn

6



-
E (x) = p nE(x/p). E is called a point spread function. We look

for functions K called convolution kernels, such that
P

where P denotes the formal adjoint of P and will be defined in
IA 11

the next chapter. The right hand side of (1.8) resembles the

convolution-backprojection algorithm of TCT, where (P f*K ) is the
P

convolution step and the action of P is the backprojection step.
-P

With suitable conditions on E and f one can show that E * f f

uniformly, in LP norm, or pointwise almost everywhere; see for

instance Theorem 2, page 62 of Stein [22]. In practice, the data P f

are incomplete and noisy and so one considers determining a smoothed

approximation of f from the data. Formula (1.,8) provides a method

to achieve that.

In Chapter III, the transform P is introduced formally and

some of its basic properties developed. Of these the most important

is the relationship

Comparison of this formula with (1.8) suggests that we set P_IIK = E

and solve for K. In Chapter IV we show that in two dimensions,

P K = E can be solved for a large class of approximate 8-functions
-11

E. Unfortunately we do not have an explicit expression for K in

terms of E in the general case. But in the case where the attenua-

tion is constant we do solve explicitly for K in n dimensions when

E is radial. This is done in Chapter V.

7

f * E = P* (P f*K ) (1.8)
P IA P P

f * P* K= P* (P f*K) (1.9)
-P -V P



Using the results of Chapter V, in Chapter VII we establish an

inversion formula for P when p is constant, for a large class of

functions f, by actually evaluating the limit

lim P (P f*K )
p+0 -P P P

with K as in (1.8).

Relationship (1.9) has also been observed by Tretiak and Metz

[24] for the constantly attenuated transform in two dimensions and has

been used to invert the transform. The approach used in [24] for

inverting the transform is different from the one used here. In [24]

they choose a convolution kernel K and then show the corresponding

E is an approximate 6-function. Our approach follows that of Madych

and Nelson [12] for the Radon transform.

In the course of the work an operator denoted by A arises

naturally. Chapter VI studies some properties of this operator.

Chapter VIII examples of point spread functions and computations of

corresponding convolution kernels are given. In Chapter IX we derive

formulas that can be used to check the extent to which the convolution-

backprojection algorithm accurately reconstructs f from the data

P f, when f is the characteristic function of a disc in the plane.

In the next chapter some known results from analysis are presented.

8



II. BACKGROUND FROM ANALYSIS

Some known results on the Fourier transform and Sobolev spaces are

presented here. The material on Sobolev spaces is taken mainly from

Triebel [25], although the notation used here is different.

For f E L1 (IRm), the Fourier transform of f, denoted by f,

is defined by

f() = 2 -m/2/f(x) dx.m

The Fourier transform can be extended to functions in 1.1)(IR ) for

1 < p < 2. In fact, the Fourier transform maps LP( 1Rm) continuously

into Lq(JRm) for 1 < p < 2 and l/p + 1/q = 1. In particular for

p = 2 the Fourier transform is an isometry.

Let ...:749 denote the space of all functions 4) E C( 1R115 such

that for all R., k non-negative integers

2k a
1cHt k = max sup (1+1x1 ) lax(p(x)1 < co,

' x

i.e., the Schwartz space of rapidly decreasing functions. The

dual space of ,Y9, denoted by j749' is the space of temperate

distributions on Elin. Since Y c 1.1(e) the Fourier transform is

defined on Y . In fact the Fourier transform is a homeomorphism of

YIP onto Y and thus can be extended to a homeomorphism of J419'

onto jP'' by duality, i.e., for f its Fourier transform f

Is given by

= <f,4)> for all 4) Ej°

9



where

The inverse Fourier transform of f denoted by 7 is

7(x) = (20-m/2 f f(E) ei<x' dE.

IR

Some properties of the Fourier transform that will be used are

(6- = f

(a f) = iEf(E)
xj

/2^ ^
(f*g) = (2 ) ,f()g(E)

where f * g denotes the convolution of f and g,

f * g(x) = f f(x-y)g(y)dy.
IR

d) If F is radial and f is a function of one variable so that

F(x) = f(lx1), x E Blin, then F is radial and

F() l2 m)/2 f(s)T(m-2)/2(sIEI)sm/2 ds
(2-m)/2

0

where
Jv

denotes the Bessel function of order v.

For s E 1R, the Sobolev space Hs( IRm) is

Hs( IRm) = f EY1 : f is a function and hf II < c°1

1H12
f (1+102)sii(012 (lc

IRH

10

(2.3)

(2.4)

(2.1)

(2.2)



If k is a non-negative integer then there exist positive constants

ck
and

Ck
such that

ck lif H2k Haaf H2 < 'If!'2k
i(j<k x 2 k

for all s E IR.

I

Let = Ix EIRm : Ix1 < r, r > 0}, i.e., Q is a ball of

radius r in Me. For s E 11, the Sobolev space Ho(Q) is

Hs(Q) = {f e H(le) : support of f c
0

Here Q denotes the closure of Q in Re. The norm on Hs(0)
0

denoted by II II is defined by

Ho

Ilf II s'ilfils
Ho

M C.3

Remark 2.1. For s E IR and 1 an open ball in BR., Co(Q) is

dense in H(0).
0

The next remark is known as Rellich's Lemma.

Remark 2.2. For s < t the inclusion map I : Ht(0) Hs(IR )
0

For the proof see Theorem 2.3.3 of Triebel [25]. A Schwarz inequality

holds for this norm, namely

flfgldx Ilf H Ilg H -s
Hs H

11

(2.5)

(2.6)

is compact.



The Sobolev space Hs(Q) is defined by

HS(Q) = {f E 2/91 : f = gIQ for some g E HS(IRM)1

The norm H H on Hs(Q) is defined by
Hs(Q)

lif H = inf{ Hg H gic2 = f}.

H()

Remark 2.3. The dual space of Hs(Q) is H-s(Q) for all
0

S E IR.

The above remark is Theorem 4.8.1 of Triebel [25].

Let Z = S1 x 1R. Define the norm H H by
Hs(Z)

lif H s = fl'ilg(''') H2 de
(2.7)

H (Z) S Hs

The Sobolev space associated with this norm is denoted by Hs(Z).

Remark 2.4. The dual space of Hs(Z) is HS(Z) for all

S E IR.

soThe Sobolev spaces Hs(1Rn), H(c) u) and Hs(Z) are Banach

spaces and hence so are their dual spaces.

12



III. PROPERTIES OF THE EXPONENTIAL X-RAY TRANSFORM

Definition 3.1. The exponential X-ray transform of a function f

in Me, denoted by P f, is

P f(8,x) = f f(x+t8) eil(e)t dt

and 11 e C(Sn-1).where e E Sn-1

In this chapter some basic properties of P will be developed.

First some notation is introduced. Let T = {(0,x) : e E x E e 1;

P .T is known as the tangent bundle to Sn-1. For 1 < p < co, L (T)

denotes the space of all measurable functions g on T such that

lill=
fn-1 fel

lg(e,x)IP dxd8 < cc.
P S

The inner integral will be denoted by 11g(e9)1113 . For p =
LP(8)

L (T) is the space of all essentially bounded functions on T.

x
Proposition 3.2. Let M = maxi(0)I. If eMl IfE L1(IRn) then

for each 8 E Sn-1

HP f(0,) H 1 1L(0
If(y)leMIYI dy < cc.

Proof. Setting y = x + tO and using Fubini's theorem gives

13



00

f IP f(8,x)Idx < f f If(x+te)leP(8)t dtdx

e
1-1

Irtn /

< I If(v)lemlY1 dy.

Proposition 3.3. The transform P L(1R) into LP(T).

Moreover if Q is a bounded open subset of then for f E q(Q)

11P(°,-) IILP(el)< c Ilf
11P

where c is a constant depending on f2, p and on p. Hence

P : LP(2) LP(T) is continuous.
0

Proof. Let f E LP(Q) and let x be the characteristic function
0 0

of Q. Then for 1 < p <.0. and 1/p + 1/q = 1, Holder's inequality

gives

f IP f(0,x)IP dx
el 11

.flf03

f(x+t0e/1(8)t dtIP dx
6

= lc°X x+temx+toeP(e)t dtIP dx
e

<f f If(x+te)11) dt ( f I (x+te)eP(e)tlq dt)Piq dx
e

where
c1

is a constant depending on R, 11 and p. So

14



HP f(e,) HP < c If HP
Lp(6)

p

Integration over Sn-1 gives

IIf IIP <C II fp
and the continuity follows. The case p = co is similar but simpler

and is omitted.

Let E be the orthogonal projection in e on the subspace

. The operator P is defined for functions g on T by

P*g(x) = f
n-1

g(8,E x)e(6)x'8> de

s

Proposition 3.4.

f
n-1

f1 P f(6' x)g(0,x) dxd6 = f f(x)P g(x) dx.

s e MR

The equality holds when f and g are non-negative or when either

side of the equation is finite when f is replaced by Ifl and g

by Igl.

Proof. In either case Fubini's theorem holds. Making the change

of variable y = x + to with x = Eey and using (3.1) gives

15
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= fn-1 fi ( f f(x+te)e/l(e)t dt)g(0,x) dxdO
S 8 -00

11

= fri-1 f n f(Y)g(e,E Y)e
0)<y,e>

S

dyd0

= f f(y)P g(y) dy.

Corollary 3.5. P is the formal adjoint of P. In particular
V

for p > 1 if g E LP(T) then Pilg E LT0c(IRn).

The next result is the main motivation for all the work in this

thesis.

Theorem 3.6.

P f(0,x)g(8,x) dxdO
p

(f*P K)(x) = P (P f*K)(x).
-11 -11 11

The equality holds when f and K are non-negative or when either

side of the equation is finite when f is replaced by Ifl and K

by IKI.

Proof. The hypotheses allow the use of Fubini's theorem. With

y = y' + tO where y' = Key and (3.1) we have

16
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(f*P K)(x) = f f(y)P K(x-y) dy
-P IRn

-11

= f f(y) fn-1 K(e' Ee (x-y))e-p(e)<x-y,e> dedy
IR

f11-1 fl K(8,E0x-y')e-11(8)x'8> f f(y +t8)e/1(8)t dtdy'd8

S e

fK(8 E x-y')e-P(e)<x'e>P f(0,571) dy'd8'

= (Ppf*K)(e,Eex)e-/-1(6)x'e> de

= P (P f*K)(x).
-11

Relationship (3.2) will be used to show that the transforms can

be inverted. In the case of constant attenuation we use it to get an

exact inversion formula as described briefly in Chapter I.

The next theorem has been observed by Natterer [15] in two dimen-

sions for the constantly attenuated transform. It can easily be

extended to the exponential X-ray transform in higher dimensions.

Theorem 3.7. If 8 E Sn-1, E E el then

2-
(P (e,E) = (27) f(E+ip(e)e)

where (P f) is the Fourier transform of P f with respect to the

second variable.

Proof. With y = x + to, B E Sn-1 and x E 8

17



ing.

(P = (27)-(n-1)/2
f1 Ppf(e,x)e-i<x'E> dx

(20-(n-1)/2
r1

f
f(x+te)ep(e)t e-i<x,E> dtdx

J -co

= (2)-(n-1)/2 r f(oe dy
Rn

2^
(27) f(-1.1u(e)e).

An immediate consequence of this theorem and (2.3) is the follow-

Corollary 3.8. Pp(f*g) = Ppf * Pg.

Theorem 3.7 can be used to extend the operator P to distribu-

tions with compact support. Let u be such a distribution. Then

u extends to an entire function on Cn, and P u is defined by

setting

(P u)(8,) = u(E+ip(e)e) (3.3)

Lemma 3.9. Let V be an infinite subset of Sn-1. If g is

holomorphic on Cn and g(E+ip(e)e) = 0 for e E V and E E el

then g = 0 on Cn.

The proof is almost identical to that given by Markoe in [14] for

the case p constant and is omitted.

1 n
Theorem 3.10.

Pp
:

L0(IR
) + Li(T) is one to one.

18



Proof. If f E1(IRn) then f extends to a holomorphic
0

function on . By the previous lemma, Theorem 3.8 and the unique-

ness of the Fourier transform we conclude that P : L1(IRn) -4- L1(T)
0

Is one to one.

Similarly since the Fourier transform of a distribution with

compact support extends to a holomorphic function on Cn we have

Corollary 3.11. P is one to one on the space of distributions
P

with compact support.

In [14], Markoe has proved Theorem 3.10 for the constantly

attenuated X-ray transform in n dimensions. In [7], Finch and Hertle

used similar techniques to prove a uniqueness result for the variably

attenuated exponential Radon transform. (Apart from notation, the

exponential Radon transform and the exponential X-ray transform are

the same in two dimensions.)

19



IV. AN EXISTENCE RESULT FOR THE EXPONENTIAL
X-RAY TRANSFORM IN TWO DIMENSIONS

Let E be an approximate 6-function. With relationship (3.2)

in mind, we would like to find a solution K for

P* K = E. (4.1)

While we have not been able to find an explicit solution for K

(unless p is constant), we have been able to establish the existence

of and regularity results for solutions of (4.1) in two dimensions.

Throughout this Chapter we let

Z = Sl x Ht,

2
B = E IR : pc! < 2r, r > 01,

= fx E 2
: IX' < r, r > 01.

Before proceeding a short comment on notation is needed. For

E [0,27), let 6 = (cos 4,,sin 4) E Sl. The subspace 61 of IR2

is spanned by the vector (-sin 4,,cos ) which we will also denote

by 61. If x = se, 6 E S1 S EIR, we let x = s61. In such a case

we will write P f(6,$) for P f(6,x1).

Most of the work in this chapter is devoted to proving the

following theorem.

Theorem 4.1. Let f E Hs (Q), p E C(S1). Then for each s E Mk
0

there exists constants c ,C > 0 depending only on s such that
s s

20



csIlf s < IIP,f s+1/2 Cs Ilf s

(Z)

A consequence of this theorem is the following result which

establishes the existence and regularity of solutions to (4.1).

Theorem 4.2. For all s EIR, the map
p* HS(z)

HS+1/2(c2)

is onto.

Proof. For s E 1R, P :

n0
(n) H-8(Z) by Theorem 4.1.

u

Then by Remarks 2.3 and 2.4,
p: Hs(z) Hs4-1/20,.

) From Theorem

-1
4.1 we conclude that P and

Py
are continuous. By the closed

graph theorem P has closed range. Since P is one to one P*
P P P

has dense range in Hs+1/2(Q). And since P has closed range so
U

*
does

P*'
see [18] or [19]. Thus P is onto.

P P

Having established the existence of convolution kernels K for

a large class of point spread functions E we get the following

inversion result for P .

Corollary 4.3. For s > 1/2 let E E 4(c2) with E(x) > 0

and fE(x)dx = 1. For p > 0 let E (x) = p-nE(x/p). Let

M = max111(0)1 and f(-)eM1'1E Ll(IRn). If K E H5-1/2(Z) is such

that P K = E then for almost every x
-P P P

lim P* (P f*K )(x) = f(x)
p40 -P Ti P

Proof. By Theorem 3.6,

P* (P f*K )(x) = E * f(x),-P P P
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and E * f(x) f(x) for almost ever x by Theorem 2, page 62 of

Stein [22].

To prove Theorem 4.1 we introduce next a slightly modified

operator which preserves data from P on certain Sobolev spaces, but

allows us to use results on pseudo-differential operators.

Definition 4.4. The transform P of a function f on IR2
11,Y

is defined by

CO

P
1f(0,$)

= f f(te+s81)M(t6+s01,0) dt
11,

for 6 E S1 and s E 1R and where for x E IR2

M(x,e) = e/-1(6)`x0' y(x) (4.2)

with u E C(S1), y E Cm(B) and -y = 1 in a neighborhood of 727.

Clearly
Pu

and P agree for functions with support in -E
P,Y

Our aim now is to show that inequalities similar to those in Theorem

4.1 are satisfied by P and consequently by P for f E Hs(R).
P'Y P 0

The method used follows closely that of Heike [10] for the attenuated

X-ray transform.

As in [10], we start by defining two operators A+ and A_ for

functions f on IR2 by

4 r
)(Af(1) 1 f e-4.<1('l M(x,VIEI)f(x) dx

= 27 IR2

22
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(A f)-(E) = e-i<x,E1> M(x,-E/(EI)f(x) dx
27 2

TR

where M is as in (4.2). Many properties for
P1

will be deduced
1,Y

from those for
A+

and A_. The next theorem gives a Fourier trans-

form relationship between P and
A+' A-.1-1,Y

Theorem 4.5.

(A f)^(a01) =
(27)-1/2(P1.1,yf(0,a)

if a > 0

fr(a81) = (20-1/2(P
11,Yf)^(-0,-a)

if a > 0.

where (P 0^ is the Fourier transform of P f with respect to
11,1 1-1,Y

the second variable.

Proof. We prove the first equality. The proof of the second is

similar. Let eL = ael with a > 0 and e E S1. Setting

1
x = te + se and using (4.3) we get

(A4f)^(ae1) = (27)-1 f e-ia<x,0 > M(x,e)f(x) dx
IR2

-1 r -iSa f
co

22 (27) j e M(te+s01,0)f(te+sel dtds

(20-1 f e-isaP f(0,ss) ds
11,Y

= (2n)-112(P10^(8,a).
11,

23
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L

Lemma 4.6. For all s E 11, define S : 1R2\O} HS(1R2) by

r
S()(x) = e-1< M(x, vkl)

where M is as in (4.2). Then S is continuous and is bounded on

bounded subsets of 1R2\(01.

Proof. Let s = m be a non-negative integer. Then by (2.5),

if E E 1R2\{01

Hs(E) H < c lia:s(Ex.) H22 .

m lal<m

From (4.2) we have that for each a, the function Ga(C,x) = a:S(C)(x)

is continuous in x and ,C and is bounded on bounded subsets of

1R2\{0}. Moreover for each C, G has support in B. From the above

and the dominated convergence theorem the continuity and boundedness

of S follow. For any s E 11 if m is a non-negative integer such

that s < m the inclusion map Hm(IR2) 4- Hs(IR2) is continuous.

Hence for s E lk, S :IR2\{01 H5( 2)is continuous as it is the

composition of two continuous functions. The boundedness also follows.

.0
Lemma 4.7. If f e C (1R2 ) then for each s E Mk there exists

0

constants c ,Cs > 0 such that

2

cs HA+f
1Hs-1/2

11Pu,yf 112s
H (Z)

(4.5)

Cs( IIA+f
II + 11Af2s-l/2 - Hs-H21/2

+ 112s-1/2)
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Proof. Let f E C...(IRn) and 6 = (cos 0, sin 0). Then Formula
0

(2.7), the polar coordinates formula in 1R2 and Theorem 4.5 give

2n co

Hpf 112 f f
(1+012)si(p11,1fro,a)12 dadou,YHS(Z) 0 -co

27 co

> I I (l+c2)sl(P f)^(0,a)12 dad0
1-1,Y

0 0

= f 2 l(P40,0^(E/IE1,1012
Tk

f (11.1c12)s-1/2

ICP1-10,fr(EilE1/10)12 dE
1R2

= 2 c12)5-1/21(A+
0,()12 dcn

IR2
(1+1

= 2n Hy
112s-1/2

Similarly

lip f > 27 IA_f H2
" -1/211,1 Hs(Z) Hs

which gives the first inequality.

Now using Theorem 4.5 we get

IIP f II2ICo

(i+G2)slg fro,012 dad&

'Y Hs(Z) S -co
1.1 1 11,1

27 co

= I I (1+02 )s1(P f)^(0,012 dad0

0 0
11,Y

27 0

+ I I (1+02)s1(P f)-(6,012 dad 0 =

0 -Co 1-1,1(
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Now

and

(1+

2ff .

= f f (14132)s 1 (P f)^(0,a)12 ddd(1)

0 0

27r

+ f f (1+a2 sl(P f)^(0,-a)12 dadq)

0 0
11,Y

= 271 r (1+

R2

+271 r (14-

R2

2\s
I 1(A+f)"()1 dE

El2,s
) 1(A f)^(E)1 dE.

2 s 2 8

f 2 (111
2 dE f (1+1E

(A f)^(012 dE

kl<1

+ f (1+ E 2)s
- 1(A )^(E)12

1E1'1
+f

(4.7)

2,s

) 1(A+f)"(&)12 dE

26

(4.6)

1E1>1

1(A 0-MI2(1+1E12)s-1/2 (1+
1/2

dE

...s f
Ika
I,.

+r)
e,)12(lidE12)s-1/2 dE

lEl>1

clly 112
Hs-1/2

where c is a constant. Throughout this proof,
cs

will be used to

denote a constant depending only on s. However it may take different

values in different places. Next we estimate the first integral on the



right hand side of (4.7). Using (2.6) with M as in (4.2) gives

I(A.4.0^(1)
24

-j"<x''' M(x, E/10f(x)dx12= If 2 e

11f11-1/2He .

Hs
'E >14(., 00) H21/2-s

ci
For 'El < 1, >14(, E/IEI)H21/2-s cs

by Lemma 4.6, and

so 1 A+f)-(1)12 < csIlf 11Hence
Hs-1/2.

12
IR

(1+

2s
sup 1(A 0^(012 f (1+ ) d&

lEl<1

cs Hf H2s-1/2

We have shown that the first integral in (4.6)

2\s

1(A+f)^()* < cs(11A.012
s-1/2 11f 112s-1/2)+

H

Similarly we have an estimate for the second integral

I A+0^()12 dE

2s
1(A..f)^()1dE < cs( HA_f U2112

Hs-1 /2
11Hs-1/2)

Thus establishing the second inequality.
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co
For f E C(c2) the inequalities in (4.5) continue to hold when

0

1
is replaced by P. The inequalities in (4.5) resemble those of

11, 1-1

Theorem 4.1. In fact if for s EIR, A+ and A_ extend to continu-

ous operators on 11)(Q), the second inequality in Theorem 4.1 follows

immediately. While if or A_ has a continuous inverse on

Hg(0, s Ea, the first inequality follows.

In the remaining part of this chapter we show that Al. and A_

are continuous by showing they are pseudo-differential operators of

co
order 0 on C (Q), and that A-1 and A-1 are continuous by

0

showing that A+ and A_ are semi-Fredholm operators.

Before proceeding some results on pseudo-differential operators

and semi-Fredholm operators will be presented mostly without proof.

The material on pseudo-differential operators is taken from Kohn and

Nirenberg [11]. The material on semi-Fredholm operators is from

Schechter [19].

Definition 4.8. A function a :]R2
2

x \{0} + 11 is called a

symbol if

1R2 ,212\01);
a C°3(

a is positive homogeneous of degree 0 in the second

variable;

for any integer p and any a, (3 positive integers

(1+1x1P)a:a: a(x,E) + 0

as lx1 + = uniformly in E for 1E1 = 1.



To a is assigned an operator A called a pseudo-differential

operator defined by

r

(Af)^() = J1112 -i<x'C> a(x,E)f(x) dx

then C has order 0 and I - C has true order -=. Here I

29

(4.8)

and a is said to be the symbol of A.

Definition 4.9. A linear operator T : ,.94) + Y9 is said to

have order r if for all s EIR there exists a constant cs > 0

such that

11Tu11 s_ C 1kIuHs+r

The infimum of all orders r of T is called the true order of T.

Remark 4.10. The composition of two operators has order equal

to the sum of their orders.

The following is a statement of Theorem 1 in [11].

Theorem 4.11. The pseudo-differential operator A, defined by

(4.8), has order 0.

Let C E Cco(IR2) with 0 < c(E) < 1, c(E) = 1 if 1E1 > 1

and vanishes for 1E1 < 1/2. Let C be the operator defined on

by

(Cfr(E) = C(Of(E)



denotes the identity operator. In what follows let a(x,E) by a

symbol and A its corresponding pseudo-differential operator as in

Definition 4.8. Let A' be the operator defined on Y9 by

(A'f)^(E) = C(E)(Af)^(E).

Remark 4.12. A - A' has true order

Proof. From the definition of A' we see that A' =C0A and

A - A' = (I-C) 0 A. Since I - C has true order -Co and A has

order 0, A - A' has true order -00 by Remark 4.10.

Let b(x,E) be a symbol and B the corresponding pseudo-

differential operator. Let B' be the operator defined on 349 by

(B'f)^(E) = c(E)(Bf)^(E). Let P be the pseudo-differential operator

with symbol a(x,E)b(x,E) and P' the operator defined by

(P'f)^(E) = c(E)(Pf)^(E). The first lemma below is a special case of

Lemma 5.1 of [11], the second follows from the first and Remarks 4.10

and 4.12.

Lemma 4.13. A' o B' - P' has order -1.

Lemma 4.14. A0B-P has order -1.

Next some results on semi-Fredholm operators are presented.

Definition 4.15. Let X, Y be Banach spaces. The continuous

linear operator A : X -* Y is called a semi-Fredholm operator is

the range of A is closed in Y, and

the dimension of the nullspace of A is finite.

30

Definition 4.16. Let X be a Banach space with norm H
11X

a

seminorm 1.1 is said to be compact relative to H if whenever



fxn1 is a sequence of elements of X such that 1Ixn 11X _< c, a

constant, then it has a subsequence which is Cauchy in H.

The next result is Theorem 6.2, p. 127 of Schechter [19].

Theorem 4.17. Let X and Y be Banach spaces with norms

ii Ilx and II II respectively. Then A : X Y is a semi-

Fredholm operator if and only if there is a seminorm 1.1 compact

relative to II 11X
such that for all x e X

Ilx 11 x c 1 I Ax I y + 1 1

The following is a corollary to Definition 4.8 and Theorem 4.11.

Corollary 4.18. Let i.i E C(S1). If
V+'V-

:IR2 x 1R2V{0} -4- 111

are defined by

V+(x,E1) = M(x, ±E/1E1) (4.9)

where M is as in (4.2), then V and V are symbols with A

and A in (4.3) and (4.4) the corresponding pseudo-differential

operators. Moreover
A+

and A have order 0.

Corollary 4.19. For all s E1R, A+ extend to continuous maps

A+
:
HS(1R2) 4 Hs(IR2). Hence

A+
: Hs(0) Hs(IR2) are continuous.

0

Proof. This is an immediate consequence of Definition 4.9 and

the fact that is dense in Hs(IRn) for all s.

By the above corollary the second inequality of Theorem 4.1

is established.
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Since C (0) is dense in Hs('Q) the previous corollary and
0 0

Lemma 4.7 imply that for each s EIR, P extends to a continuous
p,y

map from Hs(f2) to Hsf1/2(2). Since P and P agree on
0 p 11,Y

. s

C0(0)'
P = P on H(0). Consequently we have
P 11,Y

Corollary 4.20. For all s EP., the maps

A+ : Hg(Q) + Hs(IRn)

are one to one.

Proof. Since P = P on H5(0), by Corollary 3.11
P11,yP 11,1 0

cannot vanish on an infinite subset of S1. Hence by Theorem 4.5,

A+ are one to one.

We will next show that A+
and A have closed ranges by

showing that they are semi-Fredholm operators. This together with the

-1
above implies that

A+
and A-1 are continuous, thus establishing

the first inequality of Theorem 4.1.

We define the functions W+' W UR.2x IR2\{0} + BR by
-

144.(x,E1) = ell(±/k1)x'TE/lEi> y(x)

Clearly 144, W_ are symbols. Let 134. and B_ be the corresponding

pseudo-differential operators respectively. Then and B have

order 0. Note that for (x,E) E x]R2\{0}

W1.(x,) = V:1(x,E) (4.11)

with V and V as in (4.9).
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Lemma 4.21. For

(B Al.)f = 13.4.f + K+f

where
P+' P- =

identity map on C(c2) and
K+

have order -1.
0

Proof. Only one case will be shown. The proof of the second is

similar. Let p :IR2 X E2\CO} be defined by

p(x, ) = 101.4.(x, )V+(x,E ) = y2 (x)

then p is a symbol. Let P./. be the corresponding pseudo-

differential operator. With f E C7)(0, Formulas (4.11) and(4.8)

give

(P+f)^(E) = f(x) dx = f(0'

So P+f = f. Let K+ =+ 0
A+ - P+.

By Lemma 4.14
K+

has order -1.

Theorem 4.22.
A+

: Hs(Q) + H5(1R) are semi-Fredholm operators.
0

Proof. We prove it for A+. The proof for A_ is similar.

Let f E
Co

(c) then by Lemma 4.21

f = (84.0A+)f -

has order 0, so
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Since
K+

has order -1, it extends to a continuous map from Hs(0)
0

to Hs(IRn). This and the continuity of A on Hs(0) implies that
0

(4.12) holds for all f E 0(c).
0

For f E Hs(0) define
0

ifl Hic+fH .

Then I-I is a seminorm. Let {f} a sequence in H0(0) such

that llf Hc. We want to show that ifn1 has a subsequence
n s

Cauchy in 1.1. By Remark 2.2 the inclusion map Hg(Q) Hs-1(IR2)

is compact, hence there is a subsequence if 1 c if 1 that is Cauchy
ni

n

in H H s-1.
Since

K+
is of order -1

Ifnn.I f -K f H c Ilf -f H
-17 n

i
+ s K+ n n -1

i 3
nj H

j Hs

So
ifn

is Cauchy in N. By Definition 4.16, 1.1 is compact with

respect to II II s.
Hence by Theorem 4.17

A+
is a semi-Fredholm

operator.

We have thus completed the proof of Theorem 4.1.
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V. POINT SPREAD FUNCTIONS AND CONVOLUTION KERNELS
FOR THE EXPONENTIAL X-RAY TRANSFORM

WITH CONSTANT ATTENUATION

To the end of this thesis we will be dealing with the exponential

X-ray transform with constant attenuation p. In this chapter an

explicit solution for

P* K = E (5.1)

will be given. Recall that E is a point spread function and K the

corresponding convolution kernel. Some of the results developed in

this chapter appeared in Hazou and Solmon [9].

Let p > 0 and set E (x) = p-nE(x/p). Let K be the convo-

lution kernel corresponding to E. Suppose that there is an even

function k of one variable so that K(8,x) = k(lxi,p), for

,n-eE 1,XEU.(In solving P*pK = E, K will depend on p. How-

ever, this dependence will be suppressed in the notation for K but

emphasized in that of k.) For such a kernel K, E = P K is also
-P

radial. For let U be an orthogonal transformation on TRia and let

U be its transpose, then

Ux)I = IE t xl

ue

and a change of variable w = Ute gives,

35



E(Ux) = P*pK(Ux)

= fn-1 k(IEe(Ux)I,p)e<Ux,0> de

= fn-1 k(IEwx(,p)e-p<x,/.0> dw

= E(x).

With the above as motivation, we choose E to be a radial

function and look for solutions K of (5.1) of the form

K(e,x) = k(Ixl,p). To this end, let e be an even function of one

variable and let E(x) = e(IxI). Setting x = rcp for r > 0,

(1) E
n-1

S (5.1) becomes

e(r) = fn_i k(lEe(r)1,p)e<4)'8> de. (5.2)

Throughout this section and to the end of the thesis we let the con-

stant 1n-2 = 2r((n-12 the (n-2)-dimensional surface

area measure of Sn-2.

Theorem 5.1. Let n > 2. If e E Ci(IR\{±a}), a > 0, and

if its first derivative e' have right and left hand limits at ±a,

then (5.2) has a unique solution k e C(IR\{±a}) given by

2-n
d rs n-1 /7-71

cos(p s -t )
k(s,p) = 11.!j t e(t) dt.

ds
Yn-2 0 i7T-71

S t
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and

to obtain

cosh(i)
e1(r) = 1n-2

f
k1(s,p)

ds.

0

Proof. Since E0(r) = rO - <1.00>e, (5.2) becomes

e(r) = f k(r1(0-<0,0>el,p)e-Pr<4)'8> de

= In_l k(11-<(1),e>2,p)e-Pr`(1)°> de.

Letting t = <0,0> and then s = r2(1-t2) gives

1
ir-TT -prt 2 (n-3)/2

e(r) =
1n-2

f k(r 1-t dt
.4

1
(n-

= 21n-2 f k(r/17t7,p)cosh(prt)(1-t2 ) 32' dt
0

2
r

n-3 r- cosh(PICI7s-1)
= yn-2r2-n f 6/-s-) k(Ysip) ds.

0 yr-s

Now let

k1(s,p) = (G)n-3k(i;,p)

tr.\

37

(5.4)

This is a generalized Abel integral equation. Assume for now that e

is bounded by a function of exponential growth. Then (5.4) can be

solved using Laplace transforms. Let L denote the Laplace transform.



We get

L(e1)(t) = In_2L(ki)(t 0.)L(cosh 111/7)(0.

Using formula 29.3.77 in [1] we have

-p
L(k1 )(t, e

2/4t
p) -

L(e1
)(t)

17Yn-2

Let

where

e1
(a2+) = lim e1(r) and e1(a2-) = lim e (r).

r4e2 r4a2
r>a2 r<a2

Since
e1

has a jump discontinuity at a2,

2

L(e')(t)
=1)(t) - e1(0) - (e1(a2+) - e1(a2-))e-a

t

1

where e is the derivative of
e1

on [0,03)\{a2}. Taking inverse
1

Laplace transforms and using formula 29.3.76 of [1] we get

1 cos(p)G7i)
k1(s'p) = e(r) dr +

1
n-2 0

e (0)cos
+ h(s,p)]

Substituting back for kl and
e1

and then setting t = 1/..i7 gives
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0 if s < a2

h(s,p) =

te 1`te2.0
e

1`tJJe2_,N
cosas7aI) if >s2

`



((n-2)tn-3e(t) + tn-2e'(0)
c0s(5t2)

/s2 -t2

ldp dfttn-
us ds dt "

a

Integration by parts and the fact that

- --t

g(s) = f tn-le(t) cos(11472) dt

0 42-t2

is continuous on [0,.0) and belongs to CI([0,0.)\{a}) give us (5.3)

for s > a. Thus (5.3) provides a solution to (5.2) when e is

bounded by a function of exponential growth. For the general case,

one can check a posteriori that (5.3) provides a continuous solution

and the uniqueness can be deduced from results on generalized Abel

e(t))sin(ph -t) dt

rs d n-2
+ j (t e(t))sin(.042_t2) dt]
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+ e1(0) cos us+ h(s2,p).] (5.5)

Now if s < a

2-n s
r d n-2

k(s,p) - u:y [J dt (t e(t))
us cos

042-t2
dt + peI(0)cos us]

n-2 0 vri-71
s -t

s2-n
r

d

PITY2

n-2 /2f (t e(t))sin(pis -t dt + pe1(0)cos us
n-1. 0

dt

Integration by parts gives (5.3) for s < a.

For s > a we write the integral in (5.5) as



integral equations, §41 of Yosida [26].

As a consequence of the proof one can easily see that the

theorem continues to hold if e is piecewise continuously differen-

tiable.

With E and K as before, the following proposition gives a

relationship between their Fourier transforms. The Fourier transform

of K(0,x) is taken with respect to the second variable, i.e., it is

the (n-1)-dimensional Fourier transform on e1.

Proposition 5.2. If in addition E is integrable on le then

1 13-n(VIE12-11
2 n-2

Yn-2

K(e,)

V- VIEI) when 0 < 1111 < 1E1

(5.6)

when 1111 > 1E1

Proof. Since K is radial, (2.4) and (5.3) give

1K(8,0 . r (1"-(11-3)/2 ri l d
iry 0

J
(n-3)/2(L'is' ds

n-2 0

S
x f t e(t)

n-1 cos (p/s2_t2
' dtds.

0 i7F-7
s -t

Integration by parts and formula 3.1.1, page 67 of [13] give
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K(13,) 1 fs (tn-le(t) cos
(1142

_t2)dt)d
Tryn-2 0 0 iri--T ds

S -t

((lEl
/2s)-(n-3)J

n-3)/2(1E1s))
ds

1
f tn-1e(t)

ffyn-2 0

fm cos(pg------t7)
IEI2s(lE(s)-(n-1)/2j

t 17-7s -t
(1E1s) dsdt.

Letting r2 = s2 - t2, using Fubini's theorem and then applying

formula 6.726, no. 2, p. 756 of [8] gives

K(E,P) f tn-1e(t)
"n-2 0

)0424.t2)-(n-1)/21E1-(n-1)/2x f (cos pr (1E147C-2)drdt
0

(n-1)/2

I1,13-n-,/

2 2 n-2
( -P )( "

1177 Yn-2

0

J
(n-2)/2(tV1

E12_112)dt
. x f tn-le(t)(t4 2_112)-(n-2)/2

when 0 < 1P1 <

'PI > 1E1when

Now using (2.4) again for E gives 5.6) and the proof is complete.

In particular when n = 2
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and taking inverse Fourier transforms

k(s,p) =fw ai(42-p2 6) cos sada
2ff

1-t

where e E1.

UlEI) when 0 < IP' < If
2v2ff

K(0,0 = (5.7)

when 1111 > 1E1

For p > 0 and E (x) = p-nE(x/p) let e be the even function
P P

of one variable so that E (x) = e (Ix') then for r ElR,
P P

e(r) = p-ne(r/p). If K is the convolution kernel corresponding to
P P

E and k the even function of one variable so that
P P

K (0,x) = k (Ixl,p) then
P P

k (r,p) = p-nk(r/p,pp) (5.9)

For by (5.3)

n-2 r/2 2
n-1e (t)

cos(pyr
k (r,p) = r -r)dt

Tr
in-2 0 42-t2

Substituting p-ne(t/p) for e (t) and making the change of variable

S = t/p gives

-n 2-n dr/p sn-le(s) cos(pp4r/p)2-s2)
k (r,p) - P (r/P)

d(r/p)Try
n-2 0 4r/p)2 2

= P-nk(r/P,PP).
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In practice with a suitable choice of E and p, K and hence

K can be calculated say by (5.3). Then one applies the algorithm

P* (P f*K ) to the data P f to reconstruct an approximation of f.
-P P P

See Corollary 4.3.

In Chapter VIII, we will give examples of point spread functions

and corresponding convolution kernels that may be used in recovering

the function f from the data P f. Formula (5.3) will also be used

to obtain an exact inversion formula for P when p is constant.

In doing so we encounter an operator which will be denoted by A

and the purpose of the next chapter is to introduce this operator and

study some of its properties.

1.1
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The normII lip,1
of f &Poe

1

II II lig Hpp,l

where g E LP( iRM) and f = G * g.

Definition 6.2. The space LP( IRm) consists of all f E L (IRm)
1

such that for each j, j = 1,...,m there is g E LP(Jam) for which

<f,ax (1)> = -<g,(1)>

is defined by

44

VI. THE OPERATOR A
11

In finding an exact inversion formula for P, p constant, the

operator A plays an important role. In the next chapter we estab-

lish an exact inversion formula for P when P f belongs to certain

potential spaces. This chapter is devoted to introducing these poten-

tial spaces and the operator A as well as studying some properties

of A on these spaces. The material on potential spaces is taken

from Stein [22].

Definition 6.1. For 1 < p < 0., the potential spaces eP(IRm)

are defined by

= E 1RM) f = G * g, for some g e LP( In}

where G is given by

G()
(14.w2)-2



for all cp E C°30(IRm). This defines g almost everywhere and one

writes f = g. The norm II II of f.E LP( le) is defined by
x. p 1
3 L1

Ii ii = if 4- fit
LP P j=1 xj P
1

The spaces and LP are complete in the given norms. An
1 1

important result relating the spaces in the above definitions is

Theorem 6.3. For 1 < p < co,

P ( = LP ( IRm)
1 1

and the corresponding norms are equivalent. Moreover, if

f E LP( IRM) then for j = 1,2,...,m, f(x) exists for almost every
1

x in the usual sense and defines a function in LP(Iim).

A consequence of the above theorem which will be of importance in

inverting P is the fact that for 1 < p < co the spaces LP( IRm)

are independent of the choice of orthogonal coordinates on le.
With this as background we now turn to introducing the operator

A . For x elim, let H. be defined for j = 1,...,m as follows
P J,P
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r((m44)/2)
X.

H. (x)J,P (m+1)/2 ixlm7+1 c°s 111xl

where lc. is the j-th coordinate function. The Cauchy principle

value distribution v.p. H.J is defined by
,P

(6.1)



where the derivative is a distribution derivative and the convolution

is a Cauchy principle value convolution, i.e.,

v.p. H. *f(x) = lim f
30

P-4) 171>P H*LP(y)f(x-y)
dy.

1

1
Lemma 6.4. For f E Co(IRm) and 1 < p < 00

Yi
v.p. H. * f(x) = lim fcos(p IYI)f(x-v) dy (6.3)

3/P
P'° IYI>13 IYI1314.1

exists for every x, in norm, and is continuous.

Proof. The proof is standard but is included here for complete-

ness; see §3.4, page 37 of Stein [22]. Let

K(y) =
y.

cos PIYI.
1111+1

Then

a) IK(3)1 IYI-m for It > 0

<v.p. H. ,(1)>. = lim f H. (x)gx) dx
J/11 p4.0 lxl>p

for all (1) E 92. Note that for p = 0, H. is just the Riesz
3/1-1

kernel. For a function f on Dlin the operator A is defined by

A f = a (v.p. H. *f)
P . x. J3=1 3
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(6.2)

b) f K(y)dy = 0 for 0 < R, < R2 < ... since K is odd.

R1<lyl<R2



Using b) we can write

f Kcymxy)dy = I K(y)f(x-y)dy

lyl 1Y1>1

+ f K(y)[f(x-y)-f(x)] dy.
1>1y1>p

For 1 < p < co, K is an LP function for 1Y1 > 1 as a result

of a) and f is an LI function. So the first integral on the right

hand side of the equation exists for every x and is a continuous LP

function since it is the convolution of continuous L1 and LP

functions.

Since f E C1(IRn), the second integral will have compact
0

support in x and If(x-y)-f(x)1 .< AIY1 by the mean value theorem.

So the second integral will converge uniformly in x as p 4- 0.

Hence

lim f K(y)f(x-y) dy
p÷0 1y1>p

exists for every x, converges in LP and is continuous.

In fact we can show that for f E LP(e), 1 < p < co the limit

in (6.3) exists in LP norm and pointwise almost everywhere. To do

so we need a result of Chen [3], that will be stated here without

proof.

Theorem 6.5. For m > 2, let 2 E Lq(5m-1) for q > 1 satisfy

the following

a) Q is homogeneous of degree 0

47



then

b) f1 ode = o
sm-

Let h be any radial bounded function on le. For 1 < p < co and

f E LP(IRm), let

T f(x) = f h(y) LY1 f(x-y) dy

1371>P 1Y1m

H sup
0<p<

T fox) HI < A 111111II
P P P

where A is a constant depending only on p and m.

Theorem 6.6. For m > 2, 1 < p < co, if f E LP(IRm), then the

limit

Yi

V.P. H. * f(x) = lim f cos(plyl)f(x-y) dy (6.4)

P40 IYI>P 1Y1m+1

exists a) in LP norm, b) for almost every x.

Proof. The proof is standard and is included here for complete-

ness; see §3.4, page 37 and §4.6.3, page 42 of [22]. Let

Y.

Tpf(x) f
1371>p 137.1m+1 cos(plyl)f(x-y) (6.5)

With h(y) = cos plyl, = YOYI, the hypotheses of the above

theorem are satisfied, so there is a constant A, depending only on

p and the dimension, such that
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Now let f E LP(1Rm), and let e > 0, then f = fl + f2 where

1 m
fl E C(1R) and Hf2 Hp < e/3Ap. By the previous lemma Tpfl con-

verges in LP norm as p 0, so there exists po > 0 such that if

P1,P2 < P0' HTp f1-Tp f111p < e/3,
but

1 2

HT f-T fl IT fl p+T f2 p-T f.1 p-T f2Hp
P1 P

p1
2 2

HT
p f1 p-T fl Hp

+ IT f + IT f2
H <C

1 2
P
1

I) p
2

p

by the above and (6.6). So {Tpf} is Cauchy in LP, hence converges

in the LP norm.

Next we want to show the existence of the limit almost every-

where. With f = f1 + f2 as before, let

Lf(x) = Ilim sup T f(x) - lim inf T f(x)I.

p4.0P P-K) P

Then clearly

IT f <A Ilf
P P

Lf(x) < 2(suplTpf(x)I)

and

Lf(x) = L(f1+f2)(x) < Lfi(x) + Lf2(x).

By the previous lemma Lfi(x) = 0. By (6.7) and (6.6)

2
IlLf2 lip <

1 < p < 00 (6.6)
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so Lf2 = 0 almost everywhere, thus Lf = 0 almost everywhere, which



gives the pointwise convergence almost everywhere of lim T f.

P-*0 P

Remark 6.7. We are also interested in the existence of the limit

in (6.4) for the case in = 1. In this case (6.4) is

v.p. H.. * f(x) = lim f
p+0 lyl>p

= lim f
p,o lx-yl>p

cos uv
f(x-y) dy

= (cos px) lim f
p40 lx-yl>p

cos 1.1(X-7) f(y) dy
x-y

cos py f(y) dy
x-y

+ (sin px) lim
fsin py f(y) dy

p+0 ix-yl>p
x-y

where the last two integrals are just the Hilbert transforms of

cos 1.1(')f() and sin P(')f() respectively and which for

f E LP(e), 1 < p < co, exist in LP norm and pointwise almost

everywhere [22].

Remark 6.8. Let Tf = lim T f with T as in (6.5) and m > 1,

P4-0 P

then it is easy to see that (6.6) holds for T too. So T maps

LP( IRm) continuously into LP(IRm). Note that

Tf = v.p. H. (6.8)

With T as above, we have

Remark 6.9. For 1 < p < oo, T : LP( 1Rin) L(1R) is continu -
1 1
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Proof. Using Theorem 6.3 we replace LP1.(IRm) by 211(IRm).

If f E Y then f = G * g for some g E LP( Mill) and

Tf = T(G*g) = G * Tg.

The continuity of T on LP and the definition of H Hp,1 give

liTf Hpo. = HG*Tg Hpo. = HTg Hp CHg Hp = C Hf Hpo.

The result now follows from the fact that Z7 is dense in

LP( Hti
1

Theorem 6.10.

a) (v.p. H. )^() =
J,11

-m/2 f-m 2 2 (m2
-J(20 EilEI (1E1 -11 ) if lEi > 1111

if ki < 1111

For 1 < p.< co, A LP( Ulm) .4- L( 1R) is continuous, and if
p ' 1

p <2

w2-m(lE12-112)(m-1)/2i() if 'El >
(A f()

0 if 1E1 < 1111

For gEL( ,fELII(Ikm), 1 <p< co then f*gELII(e)

and

A f * g = A (f*g).

Before proceeding with the proof we note that if x6,14 denotes

the characteristic function of {x : e < lx1 < M, 6,M > 0}, then

for all
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<v.p. H. ,(1)> = lim f H. (x)gx) dx
J,11 c+0 E<(xl<M

M+0.

= lim f x (x)H (x)(/)(x) dx

c+0 c'M
j ,p

M-Ko

= lim<x H. ,(1).c,M j p
6,0
M-0.=

Proof of Theorem 6.10. a) By the above we need only evaluate

lim(X )".
3,11

We will denote it by (H. )-(E) to simplify notation. For each e
],u

and each M, xE,16,11 is integrable so using polar coordinates in

le with x = re, E = 1E10, 0,0 E SIM-1 and r > 0 we get

(H. )-(E) = (27)-11112 lim f x (x)H. (x)e-i<x'E> dx
3911 E40 le e'M j,p

= (21-)-m/2
r((m+1)/2)

lim f
(m+1)/2 co c

cos pr e-irW.<0,(0>x fm-1j r dedr

=-m/2 r((m+1)/2) cos prurnf
11.(m+1)/2 6.0 e

M4co

x f sin(r1 1<e,(1)>) dedr

'` 3
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sincee.is odd on 5m-1
If we first set t = <8,4p> and then let

8 = tep + /i_2 where w E 5m-2 and <w,p = 0, the inner inte-

gral becomes

f
m-1 8j

sin(rlEke,p) de
S

1

= f f e. sin(rIElt)(1-t2)-2 dedt
1 <e,(1».-t -3

1

= f firnSm--i (tcP4-4-1/7-j w.)dw sin(rIElt)(1-t2)(m-3)/2 dt

1 c J J

1
= y f t sin(rIElt)(1-t)(m-3)/2 dt,

m-2 j -1

since fm-1 w.dw = 0. For the last integral we use formula 3.771,
j

(I) nS

No. 10 of [8] and noting that t sin(rjElt) is even in t, we get

m-1
f- e. sin(riEke,P) de
s

1(m-2)/2 ITT r(m- )Y (riErf M/2 "=2
2 m-h

(m-2)/2j ( rid).

Substituting in (6.9) we have

(H, )^() =-m/22m/2 r((m+1)/2) e. lim
JOI IT3 6+0

Mco

x f (rIEI)-m cos(1r)Jm/2(rIEI) dr.
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The integral in the last expression can be evaluated by using the third

formula, p. 62 of [161 to get a).

The continuity in b) is clear. If p < 2 we get from a)

(Ayf() =
rn

(v.p. H *f) "(E)

j=1 xj

i(27)m/2E.(H. )"(E)f(E)
J 3,11j=1

2 2 (m-1)/2^
1E12-m(k1 -11 ) f(E) if 1E1 > 1111

1. 0 if 1E1 <

By continuity and denseness it suffices to show c) for f EY°. Then

(A (f*R))^(E) =

{102 002_112)(m-1)/2(f*gr(E) if ki > 10

0 ifki < IP'

(27)m/21E12-M0E12-
112)(M-1)/2i()i() if ki >

if k <

= A f * g.

Remark 6.11. A is formally self adjoint.

Proof. Let f LP(IRm), 1 < p < 00 then for all g
1

2 -m 2 2 On-1)/2"
1E1 (k1 -U ) f(E) if ki >Ei

if iEl <



in

<A f,g> = <9 (v.p. H. *f),g>
xj J ,Pj=1

= <v.p. H, *f, -3 g>
Pj=1 J, xj

= <f, v.p. H. *a g>3,11x.j=1 ,

=<f,/a(v.p.H.*g )
j=1 xj .3,11

since H. is odd, and we are done.
3,11

55



VII. INVERSION OF THE EXPONENTIAL X-RAY TRANSFORM
WITH CONSTANT ATTENUATION

In this chapter an inversion formula for the exponential X-ray

transform is derived in the case where the attenuation p is constant.

Using this formula we deduce a way for evaluating convolution kernels

from point spread functions that are not necessarily radial. Also

another approximate inversion formula for P is given.

First we need to extend the notion of potential spaces to

1
functions defined on T = {(0,x) : 8 E Sn-1, x E e }. For 1 < p < co,

the space L(T) consists of all functions g E LP(T) such that

liIIg , o.
Li(T) = isn-1

d0<

1

Here is as in Definition 6.1 with Me replaced by 81

LP

Thus for almost every 8, g(8,.) E LT.(81) and by Definition 6.2 and

Theorem 6.3 (with Me replaced by 81), the first order derivatives

of g(8,.) in the directions v1,...,v exist almost everywhere

and belong to LP(81), for any choice of orthonormal basis

Vl ...,Vn-1

of 01. In what follows, if g E
L1(T)

then for each
'

e, A acts on g as a function on 8 .

Throughout this chapter the constant cn = 1/(2Tryn_2) Recall

that
yn-2

is the (n-2)-dimensional surface area measure of

For the next theorem it is assumed that E, the point spread

function, is non-negative, continuous, radial and integrable on 1111
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and f E(x)dx = 1. For p > 0, E (x) = p-nE(x/p) and K is the
11

corresponding convolution kernel. For the main result of this chapter

we have

Theorem 7.1.

f(x) =cP APf(x).
n -p p p

Equality holds pointwise if f E C20(IRn) and pointwise almost every-

1
where if f E L (IRn ) and P f E LP(T) for some p > 1.

0 1

Proof. Let (I)E 1e), then for each x E3Rn

q5(x) = lim E (x)

p+0

= lim P (P OK )(x)
-P U Pp4.0

by Theorem 3.6. Now for each fixed 0 and x E 91

n-1)/2[(P 40^K (8,x)
P P 11 P

(P OK )(8,x) = (27r

where - denotes the inverse Fourier transform on 01. So using (5.6)

(P OK )(8,x) = c f ei<x' (P Y(0,)
P P

n W>1111

1E13-n(E12-112)(n-2)/2i
0/02-u ulodE.

P I

The integrand is bounded by

c IIE iiilE11(Pu(pr(e,)1.
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Since (I) E e0(IRn), P E
Co(T)

and 1(P 0-(e,)1 decays faster
1-1

than any power of 1E1, 1E11(10^(0,)1 is integrable on 01 and

also on T.

Now as p 0, E() -3- (27)-n/2. By the dominated convergence

theorem and Theorem 6.10 b) with m = n - 1

lim (P cp*K )(e,x)
V Pp+0

ei<x,E>(p
0.,(6,01E13-noW_u2)(n-2)/2dE

= (21T) 1h/'2 f
n lEl>1111

= cnApP1.14)(0,x).

Hence

gx) = c P* A P (x)n -p p p

which proves the theorem for functions q) E C (

Let

h(x) = cnP-pApPpf(x).

If f E C2(IRn), then, by the definition of
Ap

and Lemma 6.4, h
0

is continuous. If f E L1(IR1) and Ppf E L(T), for some p > 1,
0 1

then APfELP(T) and hELP (IRn). In either case to prove the
11 11 loc

theorem it suffices to show that h = f almost everywhere. Let

n
(1) E Co(IR ). Then

<h,p = <cnP-pApPpf,(1>)

= <f,cnPpATIP >
-p4)

=
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since the theorem holds for cPe C;(IRn). The proof is complete.

1
Remark 7.2. If E E Lo(IRn ) and PE E (T), p > 1, then

E(x) = P-p(cnApPpE)(x).

So we define the corresponding convolution kernel by

K =cAP E.nu

We thus have a formula for evaluating the convolution kernel, that

does not require that E be radial. In the case where E is radial

we have another formula for the unique solution k of (5.2).

Due to practical limitations such as finite sampling of and

noise in the data P f, the exact inversion formula (7.1) is not

very useful in practice. A smoothed approximation of f is what one

usually seeks to determine. We have already seen approximate inver-

sion formulas in Chapter III. Theorem 7.1 leads to another approxi-

mate inversion formula for P. which is given in the following

theorem.

Theorem 7.3. Suppose f E L( ]R'') then for E E Li(e) and
0 0

give

PE E LP(lRn), p > 1,
p 1

f*E=cP (P f*A P E).
n -P P pp

Proof. The previous theorem, Corollary 3.8 and Theorem 6.10 c)
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f * E = cnP-11 ApPp(f*E)

= c P A (P f*P E)
n-3131 u

= c P (P f*A P E).
fl 31 U 1131

For E an approximate 6-function, (7.2) gives an approximation

for f. An advantage that (7.2) has over (7.1) is that A31, which

involves differentiation and singular integration acts on P E rather

than on the data P f and E can be chosen a priori to suit the

needs of the problem at hand.
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VIII. EXAMPLES

In this chapter, we will give examples of point spread functions

E and calculations of convolution kernels K using formulas derived

in Chapter V. We do not claim that these kernels are the best suited

for use in the convolution-backprojection algorithm but they are

reasonable ones to use and demonstrate the use of the formulas. The

examples given are in two dimensions, as this is the space of interest

in practice. Here e, k, are as defined in Chapter V.

Example 8.1. We start here with a simple example where E is a

constant multiple of xi), the characteristic function of the unit disc

D = fx e IR2 : Ix' < 11, i.e.,

and so

1
if Iri < 1

e(r) =
0 otherwise.

Using (5.3) with n = 2 and setting t = 47:7 gives

1
E(x) = -Tr XD(x) =

if Ix' <1

otherwise

S
1 d r

2 ds
cos pt dt

27 0

k(s,p)

if Isl < 1

1 d rs
cos pt dt if Is' > 1

212 ds .1/

Is -
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and hence

k(s,p)

1

Example 8.2. Let

E(x) =
1

27

so the corresponding e

1 -r2/2
e(r) = e

By (5.3) with n = 2 we have after setting u = t2 and s2

17 d r° -u/2 cos(p,/;:71])

(27)

k(lE,p) = 2 --a-0-.je

0 /7-71

Integrating by parts and then setting t2 = a - u gives

a

-u,
/

417k(4p) =
d

(2 sin 114-0- - f e". sin(p)du)
p(27)2 da 0

1 cos pAT - fa e-u/2 cos(p)/371-J) du

(27)2 2(27)2 0 14771

1 r- AW, -a/2 f1 t2/2
cos pva

(210' (27)2

e

0

TT

Hence

if Is' <1

1
is[cosIslcos(pvP:1)] if Isl > 1.

272
is2-1

cos pt dt.
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2 s 2
1

k(s,p) = (cos ps - se-s
/2 f

et
/2

cos pt dt),

(27)2 0

2
--k1which is the kernel of Tretiak and Metz [24]. Since E(E) = e /2

the Fourier transform formula (5.7) gives

Example 8.3. For v > 0 let

E(x) =

v+1
ii

and so the corresponding e is

rle-(102-p2)/21 i

3/2
2(27)

(1-1x12)'

if lal < IPI.

if ixI <1

if Ix' > 1

if In _< 1

if In > 1.

replaced by 4- we get

if
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v+iv cos(u[s.7i) .ra + cos if 0< s< 1[-v/if (1-r) p

272 0

k(Irs-,p) =
1

v+1 -1 cos(pi;:i--) dr + cos[...vi (i_r)v pliT] if s>1
2\

27 0

e(r) =

v+1 2
)(l-r

'

It

0

Using (5.5) with n = 2 and s



Assuming v an integer we have

v-1 sfs (1_ v-lcos(u)';:-. )
dr - (-1)i(v-J-) f r3COS(II1S7i) dr.

0 VT-71 j=0 0

The integral in the left hand side is evaluated by Laplace transform.

Applying formulas 29.3.7, 29.3.76 and 29.3.80 of [1] we get

S ,
r coskpii7-7r)

r dr = IT
0

r(j+1)(../tE)0+1/2)/2Jj+1/2(p/;").2
/577-r

Hence

fs (i_r)v-lc05(uVS:5 dr

0 V;7=7"i7

v-1
= (_1).1 (v-1)! /.2,j+1/2 r-j+1/2

j=0
(v-l-j)! 'u' (vs) J(uV;)

which, for 0 < s < 1, evaluates the first integral appearing in (8.1).

Now

1(i_ov -icos(pV;=T)cos(pIT-70
dr - f dr

0 0 i;71-7

(1-r)"1
cos(u1c7i)

dr. (8.3)

The first integral in the right hand side is evaluated by (8.2). For

the second we first let x = r - 1 and then use Laplace transforms

and formulas 29.3.7, 29.3.76 and 29.3.80 of [1] we have
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fs (1-0v-1 cos(plq)
dr

Substituting back in (8.2) and using (8.3) we have for (8.1) with s

instead of /;"

v-1
2s j+1/2, , . v+1(v+1)s (..1)j+1 v!.

(ps, + cos ps
(v-1-3)! p

(2s)J+1/2J

then

if 0 < s < 1

(-1)v-1(v+1)v! 2

v-1/2sv-1/2Jv-1/2(1141:1)
if s > 1.

.

27/7

Example 8.4. For v > 0, let E(x) - 2ny ( 2 )
r((v+2)/2) lx1

-v12Jv/2(1x1),
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E(E) = (1/27) (1-1E12)(v-2)/2 if 1E1 < 1 and 0 otherwise.

And by (5.8)

1
/1+p27

k(s,p) = f a(l+p2-a2)(v-2)/2 cos(s) da

47 4

(8.4)

Assume v is an even integer, v > 2. Near the origin expanding the

cosine in its Taylor series and integrating term by term we get

1
7,

(-1) 2k fA7-4771P
a2k+1(l+p2-a2)(v-22k(s,p) = do

2 L (2k)!
4n k=0

k(s,p) =
27/77 j=0 272

s-1
= (-1)v-1 f dx

0 i;17.717;

1

v-1A-T-0-1),(_) ors
v-1/2( vs-1)

2 v-1/2, 1/2j ,11 r---
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If v = 2y, y an integer, then integration by parts gives for s near

the origin

co k j

,

1 r (-1) s2k
k

1 7 a fk+1-2,
2(k-j)

k(s11) -
L (2k)! v .1" v Y+ i"4ff k=0 j=0 9, 1

For larger values of s, let in = (v-2)/2, a2 = 1 + p2 and

P2m+1(a) = a(a2-p2)m. Then using formula 2.634 of [8] we get for (8.4)

/1:17 a=4471.7

P2+1 (a)cos(sa)da = g(a)
sin(sa)

+ h(a) c°s(sa)]
a=1"

where

(-1)k d2k rafa22m)l
g(a)

= L 2k 2k L

k=0 s da

and

where

h(a) = 1-14-1
s da

It is not hard to see that g satisfies the differential equation

[1 1 d2 fc0 a(a2-(12)m

2 2'g' '
s da

whose solution is

g(a) = a 1 ak(a2-a2)k
k=0



am
= 1

2m(2m+1)
a -
m-1 2

and for k = 0,1,...,m-2

2(k+1)

ak
-

[(2k+3)(ak+1 -a2ak+2) -
a2

2 ak+2
.

And hence

h(a) =
in

1.

ck
(a2-a2)k

where

cm = (2m+1)am

and for k = 0,1,...,m-1

ck = (2k+l)ak - 2a2(k+l)ak+1 .
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IX. ESTIMATION OF ERRORS IN THE
CONVOLUTION-BACKPROJECTION ALGORITHM

To check to what extent algorithms in TCT accurately reconstruct

the desired attentuation coefficient of a cross section of the body,

Shepp and Logan [20] suggested reconstructing phantoms, i.e., simula-

tions of the object of interest. The data, in this case given by

(1.4), can be exactly computed. For instance, Shepp and Logan [20]

suggested as a simulation of the cross section of the human head a

superposition of ellipses with the attenuation coefficient p constant

on each ellipse. The same simulation of a cross section of the head

can be used in our case where the intensity of the radiation f is

assumed constant on each ellipse. Here we will be satisfied with

finding ways to check the convolution-backprojection algorithm for the

case f is the characteristic function of a disc in the plane.

Comparing the convolution-backprojection algorithm with the exact

inversion formula (7.1) we expect that for a suitable choice of point

spread function and p, the convolution step P f * K is a

smoothed approximation of
cnApPpf.

For the case where f is the

characteristic function of a disc in the plane we give explicit

formulas to evaluate (1/40A P f, P f * K and the difference
P P

between them. Also a formula that can be used to check the backpro-

jection step is given.

Let
Ta

denote translation in Me defined by Taf(x) = f(x-a).

Then direct consequences of the definition of P and the fact that

convolution and differentiation commute with translation are
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and

P (T 0(O,$) ep<a,e> (T
f)(e

p a 1.1

[A [A P (T f)](8,$) = e/1<a'e>

(T<a,81>ApPp0(O's)
pp a
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(9.1)

(9.2)

Lemma 9.1. Let
xa

be the characteristic function of a disc in

the plane with center a and radius 6 > 0. Then

1 A v
re s) =

ep<a,8>
cos p(s-<a,01>)-h(s-<a,01>)] (9.3)

47 "pipxa ' 27

where

if Iti < 6

h(t) -

I ticos(p/t

)42_62

(9.4)

if Iti > 6.

Proof. If a = 0 then

2 sinh(111477) if Is' < 6

PpX0(0,$) = (9.5)

0 if isl > 6

and is clearly in LIIOR if p < 2. Hence, by Remark 7.2,

(1/47)A P0x is just the convolution kernel corresponding to thep p
point spread function xo. A calculation identical to that done in

Example 8.1 gives (9.3) when a = 0. In general xa= Tax°, and by

(9.2) we get the desired result.



There is another way for getting (9.3) which involves complex

variable methods and the Hilbert transform. This way is sketched

briefly in the additional remark at the end of this chapter.

Let xa be as in Lemma 9.1. The result that relates the con-

volution step Ppxa * K with
(1/40ApPpxa

is a direct consequence

of the following theorem, and is given in Remark 9.3.

Theorem 9.2. Let e be an even function which is piecewise C1

on IR and is continuous at 0. For x E lk2, let E(x) = e(xl) and

let k be given by (5.3) with n = 2. If

M > max{1s7d-1 11,s+6+1a1} then

(k*Ppxa)(0,$)

= el-1<a°'J.[cos p(s-<a,0 >)- L(r,s-<a,(3 >)]re(r) dr
0

where

r<q),0>
L(r,$) = (20 f, h(s-r<q5,8 >)eu d(1)

Si

and h is as in (9.4).

Proof. It suffices to show (9.6) for a = 0, as the general case

follows from (9.1). So let a = 0. For fixed s, the convolution

(k*Ppx0)(0,$) depends only on the values of k on [s-6,s+6] and

hence on its values on [-M,M]. Let

E(x) if lx1 < M

SIN) =
0 if lx1 >M

70

(9.6)



and let km be the corresponding convolution kernel given by Remark

(7.2). Clearly km(t) = k(t) if Itl < M. Since e is piecewise

1
then PilEm(e,*) 6 L( ]R) if p < 2. Hence

(k*P0x )(0,$) = (km*Pux0)(8,$)
p

-1- (A P E.JcP x )(0,$)
47 upm 11 0

=
(PpEm*ATIPIlx0)(0,$)

Fubini's theorem and the polar coordinates formula in IR2 give for

any g

(P E1,g)(0,$) = f re(r) f1 g(8,s-r<q),81>)e/Ir<°°> dOdr.
La

0

With g = (1/47)AmPlIxo, and t = «0,8> we have from Theorem 9.1

f cos p(s-rq,01 )eurq,e>

sl

= cos us f cos(urq,e1,)eur<o,e>

1

cosh(pr4.7)dt= 4 cos us f cos(prt)

4-70-7
= 27r cos is,

where the last equality follows from p. 38 of [8]. Substituting back

in (9.7) and using (9.3) we get (9.6) for a = 0, and so we are done.
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Remark 9.3. If M < co is chosen in (9.6) so that

2Tr f re(r)dr = f E(x)dx = 1
0 lx124

then using (9.3) we can write (9.6) as

1
(k*Ppxa)(0,$) = A P x (8,$)

471- p p a

+ e1<a,0> fM[h(s-<a,e >) - L(r,s-<a,01>)]re(r)dr.
2Tr

0

where the second term on the right hand side of the equality can be

used to estimate the difference between k * Px and (1/4r)APpxpa p a.

Remark 9.4. In the special case when s - <a,01> = 0, L(r,O) = 0

if Irl < 6 and L(r,O) = 2Tr if In > 6. With M chosen as in

Remark 9.3

1 ApPpxa k*P X )(0,$) = e(e,$)-
p<a,Cs> f re(r) dr4irp a

6

ep<a,e>
27r

E(x) dx
6<lxl<M
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ep<a,e>
21T

[1 - f E(x) ds].

From the above results we see that, for a good choice of E,

k * Plixa should be a good approximation of (1/47)ApPpxa and hence

of the right hand side of (9.3). Remark 9.3 gives an exact formula



for the difference and allows one to check for errors in numerical

calculations of the convolution kernel and estimate errors in the

convolution computations.

As an immediate corollary to Lemma 4.1 and the inversion formula

(7.2) we get the following which can be used to check the backprojec-

tion step in the algorithm.

Corollary 9.5. Let g(e,$) be given by the right hand side of

(9.3). Then

P* g(x) = x a(x).

Additional Remark. As mentioned earlier Lemma 9.1 can be proved

using complex variable methods and the Hilbert transform. We give a

brief description of this method here. Again it suffices to consider

the case a = 0. For simplicity let (5 = 1. By (9.5) we have

0-411(11/F1575 if

P0'X (e s) =

0 if Isl > 1

Proceeding as in Remark 6.7 one has

2d
ApPpx0(0,$) =--d-s- [cos(us)(Hg1)(s) + sin(lis)(Hg2)(s)]

where

cos(u0sinh(p 1-t) if Itl < 1

g1(t) =
0 if Iti > 1,
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and

Hg = H1,0 * g

is the Hilbert transform of g with H1,0 as in (6.1).

A theorem in complex variables gives a method to evaluate the

Hilbert transform. The following is a statement of this theorem; see

for instance Theorem 93, p. 125 of [23].

Theorem. Let F be analytic on Imz > 0 and

liF II < My 2

where F (x) = F(x+iy), x,y Then if g is the real boundary

function of F on the real axis then Hg is the imaginary boundary

function of F.

To evaluate Hgl we pick F1 such that

F1(z) = sinh p(/ 1_z2 + iz)

and to evaluate Hg2 we pick F2 such that

F2(z) = -i[cosh(u117+ iuz)].

F1
and

F2
satisfy the hypothesis of the above theorem. The real

boundary function of
F1

on the real axis is
g1

and the imaginary

boundary function of
F1

is
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g2(t) =
0 if t

{sin(ut)sinh(111-.1j) if It! < 1



sin(pt + u)P--71.1) if

II(

h1(t) = sin(it)cosh(4) if

The real boundary function of F2 on the real axis is g2 and the

imaginary boundary function is

cos(ut + pit7-711) if t < -1

h2(0 = - cos(pt)cosh(p47.7) if It' < 1

cos(ut - u/t2_1)-1) if t > 1.

It is worth noting here that in the definitions of F1 and F2 we

use the analytic branch of the square root defined off of the negative

real axis. The verifications of the estimates and indicated boundary

functions are omitted.

sin(pt - pi42-711) if
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t < -1

iti < 1

t > 1
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