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THE EXPONENTIAL X~-RAY TRANSFORM
I. NOTATION AND BACKGROUND FROM COMPUTED TOMOGRAPHY

The set of all real numbers is denoted by IR, the set of all
complex numbers by €. The m~-dimensional real (complex) Euclidean
space is Dfn(Cm), i.e., if x € an(Cm) then x = (xl,...,xm)

where x ¢ IR(C). The FEuclidean inner product of

100 %y

X,V € Dfn(cm) where x = (xl,...,xm) and y = (yl,...,ym) is

m - - .

<X,y> = Zi=1 X ¥.50Yy denotes the complex conjugate of vy The

Euclidean norm of x ¢ Dfn(Cm) is le = vY<x,x>. The differential

a a

operator 3% =3 1 co. 9™ where o = (0, 540050 ) 1is a multi-index
X Xy X 1 m

with Apseresly non-negative integers and 9 = B/Bxi. The order

a m i m
of the operator ax is |a| = Zj’l aj. If Q@ 1is a subset of R

then C(R) denotes the space of all continuous functions on Q. For
2 =0,1,2,..., CQ(Q) is the space of all functions f on @ such
that aif € C(Q) for all Ial < 4. Note that CO(Q) = C(Q). The
subspace of CQ(Q) consisting of functions with compact support in

Q@ 1is denoted by Cé(Q). For 1 <p < =, Lp(ﬂfn) denotes the space of

all Lebesgue measurable functions on Dfn such that
llfilp = (flf(x)lpdx)l/p < w

For p = «, Lm(ﬂfn) .is the space of essentially bounded functions on
Dfn. The subspace of Lp(ﬂfn) consisting of all functions that
vanish outside  is denoted by LS(Q). The space of all functions

f so that



£ |Pan) /P < «
K

for all compact subsets K of R" is LEOC(HJB. The unit sphere

in B is "t ={xe B®: |x| =1}. For 8 e ST,

Gl = {xe R" : <x,8> = 0} 1is the subspace of R" orthogonal to 8.
If X is a vector space, X' will denote its dual space. For
x' ¢ X' and x € X we will write x'(x) as <x',x>.

In 1917, J. Radon [17}, proposed and solved the problem of
determining a function from its integrals over all hyperplanes in

r".

This is now known as Radon's problem. There were other inde-
pendent discoveries of Radon's problem prior to and after 1917 in such
fields as astronomy, probability and radiology. For more information
and references to these discoveries see [6]. Much research has been
done on the Radon problem as well as on applications of it in various
fields of science and technology. Appliéations to radiology will be
the standard example used in this work.

In classical radiology, one is interested in determining the
intensity loss of the X~ray beam when passing through an inhomogeneous
medium. Let up(x) be the X-ray attenuation coefficient of the tissue
at a point x with respect to photons at energy E. Let Io be the
initial intensity of the X-ray beam, I 1its intensity leaving the

body. Assuming that the photons are at a constant energy E, it has

been experimentally verified that

—f px)dx
I=1 el ' (1.1)



where L 1is the straight line along whichuthe X-ray beam, assumed to
be infinitely thin, travels.

In 1963 A. Cormack [4, 5] proposed the problem of determining
the X-ray attenuation coefficient u(x) in inhomogeneous media, a
problem that had received little attention till then. From (1.1) we
have

1n(Io/I) = f u(x)dx (1.2)

L

where 1n(Io/I) can be measured experimentally. So the problem pro-
posed by Cormack is determining u knowing the line integrals inter-
secting the region of interest. In the two-dimensional case this is the
Radon problem. In practice a cross section of the human body is
scanned by a very thin X-ray beam, the intensity loss is recorded and
a mathematical alogrithm is applied to the data to produce a two-
dimensional imagé of the cross section. This in fact is sufficient
because the body can be viewed as a succession of two-dimensional
layers.

This method of reconstructing two~dimensional cross sections is
known as Computed Tomography (CT), where "tomos" in Greek means slice.
The above is an example of Transmission Computed Tomography (TCT).
Another form of CT is Emission Computed Tomography (ECT). Here radio-
nuclides are injected into the body and upon decay emit photons, whose
intensity after leaving the body are recorded by a detector. These
photons emitted by sources inside the body are attenuated by the
amount of material present along the line joining the source to the

detector. TFor more detail on ECT see [2]. In ECT both the location



and the intensity of the emitted radiation are unknown. We will be
interested in one kind of ECT namely singie photon ECT, which can be
described mathematically as follows. Let f(x) be the intensity of
the photons emitted from a point x inside the body along a straight
line L, then assuming (1.1) still holds, the intensity of the ray

leaving the body is

where L(x) is the segment of L between the point x and the
detector. The cumulative intensity I of all sources on L will

then be

-[ u(y)dy
L(x)

I=[f(x)e dx. (1.3)

L
In single photon ECT one seeks to find f knowing the values of the
integrals in (1.3) for a finite set of lines intersecting the region
of interest. The attenuation coefficient u can be estimated by TCT
methods; see for instance [21] and [15]. Finding f in (1.3) with u
known is a generalized form of Radon's problem. We shall be interested
in solving integral equations of the kind in (1.3).

In practice the important dimensions are two and three. However,
it is of equal interest from a mathematical point of view to study
such integral equations in higher dimensions. Let n > 2., A straight
line L in R" can be parameterized by the pair (6,x) where

6 e Sn_1 and x € el so that

L=1L@,x) ={x+t6 :te R}



Using this parameterization, (1.2) becomes

(o]

In(I,/1) = [ u(x+te)de (1.4)

-0

and (1.3) becomes
- —f n(x+s6)ds
I=/ f(x+to) e © dt. (1.5)

-0

The expression in (1.4) is called the X-ray transform of u and the
expression in (1.5) the attenuated X-ray transform of f and it will
be denoted by Tuf.

Suppose in (1.5) f has support in a bounded set. Suppose also
that the attenuation u is known everywhere and is constant in a
convex set D containing the support of f, 1i.e., the emitter. The
attenuation can otherwise be arbitrary except that it be bounded,

measurable and have compact support. Let o be the constant value

that p takes on D and for 6 ¢ Sn_l, X € el let d = d(8,x) be

chosen so that x + d6 ¢ D. Define a real valued function eu on

1

{(8,x)[6 ¢ 8", x ¢ 6"} by

(o]

f p(x+s0)ds + od
d

e “if L(8,x) nD # &
eu(e,x) = {

1 otherwise.

Then it is not hard to see that

(o]

—f px+s8)ds
et = Ma,x) et | (1.6)



for all x+s8 € D. An important consequence of (1.6) is that

<0

¥ (0,01 £(8,%) = [ £(xtes) e®F dt. (1.7)

-0

The right hand side of (1.7) is called the exponential X-ray transform

of f and is denoted by Paf' All the above has been shown in

. Markoe [14]. Because of (1.7) many results on the attenuated X-ray

transform can be deduced from results on Pa’ when u satisfies the
conditions above. In [14], Markoe used (1.7) and analytic continua-
tion to develop an inversion method for TU'

The purpose of this work is to find inversion and approximate
inversion formulas for the operator Pa’ where o 1is a constant,
and a generalization of it; namely the éxponential X-ray transform
with variable attenuation‘ U, also denoted by Pu and defined for

functions £ on R" by

PLEO,X) = [ f(xree) H(OF ¢

-00

where 8 ¢ Sn-l, x € 61 and the attenuation TR Sn_1 -~ TR.

We wish to determine £, or an approximation of f from the
data Puf. In TCT there are methods used to solve integral equations
of the kind in (1.4) known as "convolution-backprojection'" algorithms;
see Smith [21] for general reference. Following along the same lines,
we choose E to be an approximate §-function; typically these are

integrable functions with f n E(x)dx = 1; and for p > 0 we set
R



Ep(x) = 0 E(x/p). Ep is called a point spread function. We look

for functions Kp, called convolution kernels, such that

%*
f x Ep = p—u(puf*Kp) (1.8)

where P: denotes the formal adjoint of Pu and will be defined in
the next chapter. The right hand side of (1.8) resembles the
convolution-backprojection algorithm of TCT, where (Puf*Kp) is the
convolution step and the action of Piu is the backprojection step.
With suitable conditions on E and f one can show that Ep * f > f
uniformly, in Lp norm, or pointwise almost everywhere; see for
instance Theorem 2, page 62 of Stein [22]. 1In practice, the data Puf
are incomplete and noisy and so one considers determining a smoothed
approximation of f from the data. Formula (1{8) provides a method
to achieve that.

In Chapter III, the transform Pu is introduced formally and
some of its basic properties developed. Of these the most important

is the relationship

* *
f*xP K=P (P f*K) (1.9)
=u ol Y

Comparison of this formula with (1.8) suggests that we set Pqu = E
and solve for K. 1In Chapter IV we show that in two dimensions,

Pqu = E can be solved for a large class of approximate §-functions
E. Unfortunately we do not have an explicit expression for K in
terms of E 1in the general case. But in the case where the attenua-
tion is constant we do solve explicitly for K in n dimensions when

E dis radial. This is done in Chapter V.



Using the results of Chapter V, in Chapter VII we establish an
inversion formula for Pu, when uy 1s constant, for a large class of
functions £, by actually evaluating the limit
lim P* (P £+%K )

00 “u M P
with Kp as in (1.8).

Relationship (1.9) has also been observed by Tretiak and Metz
[24] for the constantly attenuated transform in two dimensions and has
been used to invert the transform. The approach used in [24] for
inverting the transform is different from the one used here. In [24]
they choose a convolution kernel K and then show the corresponding
E 1is an approximate &§-function. Our approach follows that of Madych
and Nelson [12] for the Radon transform.

In the course of the work an operator denoted by Au arises
naturally. Chapter VI studies some properties of this operator. 1In
Chapter VIII examples of point spread functions and computations of
corresponding convolution kernels are given. In Chapter IX we derive
formulas that can be used to check the extent to which the convolution-
backprojection algorithm accurately reconstructs £ £from the data
Puf, when f 1is the characteristic function of a disc in the plane.

In the next chapter some known results from analysis are presented.



II. BACKGROUND FROM ANALYSIS

Some known results on the Fourier transform and Sobolev spaces are
presented here. The material on Sobolev spaces is taken mainly from
Triebel [25], although the notation used here is different.

For f ¢ Ll(Dfn), the Fourier transform of f, denoted by E,

is defined by

-i<x, £>

£(z) = (2m) ™2 EACON dx.

R
The Fourier transform can be extended to functions in Lp(ﬂfn) for
1 <p < 2. In fact, the Fourier transform maps Lp(Dfm) continuously
into LY(®R™) for 1 <p<2 and 1l/p + 1/q =1. In particular for
p = 2 the Fourier transform is an isometry.
: . ©, _m

Let g/’ denote the space of all functions ¢ ¢ C (IR') such

that for all £, k non-negative integers

= max sup (1+|X|2)k|3i¢(x)l < o,

4]
bak lal<t x

i.e., the Schwartz space of rapidly decreasing functions. The

dual space of ,}0 , denoted by ;VQ' is the space of temperate
distributions on Dfn. Since Q99_5 Ll(Dfn) the Fourier transform is
defined on \>p . In fact the Fourier transform is a homeomorphism of
:%9 onto J¥9 and thus can be extended to a homeomorphism of Qy?'

onto uyo' by duality, i.e., for f£ € \90', its Fourier transform f

is given by

<f,4> = <f,¢> for all ¢ e P .
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The inverse Fourier transform of f denoted by £ is

i<x,&>

T = ™2 @) e gc.

R

Some properties of the Fourier transform that will be used are

a) (6) = £ (2.1)

b) (3xjf) &) = iEjf(E) (2.2)
A~ m/2A A~

c) (fxg) = (2n) ' £(&)g(®) (2.3)

where f * g denotes the convolution of f and g, i.e.,

fxg(x) = [  £x-y)gly)dy.
R

d) If F 1is radial and f is a function of one variable so that
F(x) = f(lxl), X € Dfn, then F is radial and
- _ 2-m)/2 m/2
F(g) = |g] é f(s)J(m_z)/z(slgl)s ds (2.4)

where Jv denotes the Bessel function of order wv.

For s ¢ IR, the Sobolev space HS(Dfn) is

B (rM

{f e ¥ f 1is a function and [1£ 1] ¢ <=}
H

where

[ a+eP®e@ | a

2
£ |
i T
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If k 1is a non-negative integer then there exist positive constants

ck and Ck such that

2 o 2 2
c [I£1]°, < o £ |l5 < ¢ HEllT - (2.5)
k Hk % Kk X 2 k Hk

<
For the proof see Theorem 2.3.3 of Triebel [25]. A Schwarz inequality

holds for this norm, namely
[Neglax < Nl£l]  Mlell _g (2.6)
. B H

for all s € IR.
Let Q={xeR": |x|] <r, r >0}, i.e., Q is a ball of

radius r in Dfn. For s ¢ IR, the Sobolev space HS(Q)\ is

HS(Q) = {f ¢ B°(R™) : support of f c Q}

m

Here O denotes the closure of Q in IR . The norm on HS(Q)

denoted by || Ii s is defined by

H,

Hell o= Hell o -
S S
Hy H

Remark 2.1. For s ¢ IR and Q an open ball in Dfn, C;(Q) is

dense in H;(Q).
The next remark is known as Rellich's Lemma.

Remark 2.2. For s < t the inclusionmap I : Hg(Q) - HS(Dfn)

is compact.



| The Sobolev space HS(Q) is defined by

B5(Q) = {f ¢ JVQ' : £ = g[g for some g ¢ HS(Dfn)}

The norm ol s on H®(Q) 1is defined by
H™(Q)
£ 1] = inf{ [|g || [ : gl, = £}.
B (R) u® f
Remark 2.3. The dual space of HS(Q) is H-S(Q) for all
s € 1R.
The above remark is Theorem 4.8.1 of Triebel [25].
let Z = S1 x R. Define the norm || || s by
H (Z)

, 2
£ || = [ "|lge,) ||°, do
uS(z) st H°

The Sobolev space associated with this norm is denoted by HS(Z).

Remark 2.4. The dual space of HS(Z) is H-S(Z) for all

s € IR.

The Sobolev spaces Hs(ﬂfB, H;(Q) and HS(Z) are Banach

spaces and hence so are their dual spaces.

12

2.7)
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IITI. PROPERTIES OF THE EXPONENTIAL X-RAY TRANSFORM

Definition 3.1. The exponential X-ray transform of a function f

in Hfh denoted by Puf’ is

P £(o,x) = [ £lcteo) (O 4

-—00

where 6 ¢ Sn—1 and 1y € C(Sn-l).

In this chapter some basic properties of PU will be developed.

First some notation is introduced. Let T = {(8,x):6 ¢ Sn—l, x e 8%}

T 1is known as the tangent bundle to Sn‘l. For 1 < p < =, Lp(T)

denotes the space of all measurable functions g on T such that
18112 = oy [, 150 [P axas < =

The inner integral will be denoted by Iig(@,*)iip For p = o,
L

Poly

Lm(T) is the space of all essentially bounded functions on T.

M
Proposition 3.2. Let M = max!u(e)!. If e ilee Ll(ﬂf5 then

for each 6 ¢ Sn.-1

< It ey <

[|P £¢o,*) |]
M Lt R

(eh)

Proof. Setting y = x + té and using Fubini's theorem gives
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[P E@,)|dx < [ [ [£Geree) [P (®F dedx
L ot oo

8

I A

[ lee gy,
R

Proposition 3.3. The transform Pu maps Lg(ﬂfB into LP(T).

Moreover if Q 1is a bounded open subset of R" then for f « Lg(Q)
[P (8, ] < cllell]
" LP(oh) P
where ¢ 1is a constant depending on Q, u and on p. Hence
Pu : Lg(Q) » LP(T) 1is continuous.

Proof. Let f ¢ Lg(Q) and let Xq be the characteristic function

of Q. Then for 1 < p <= and 1/p +1/q = 1, Holder's inequality

gives
P
gl lpuf(e,x)| dx
= [ e F ar|P ax
5] —00
=[] x Gt EGeree) e (E ae|P ax
ot = 8
i P 3 u(edtjq . \p/q
< lEGte) [P de ([ |xg(xteede 19 at)P’ 9 ax
G -0 00
£ (P
< e HEll
where c is a constant depending on Q, u and p. So

1
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SN P
1P £ (e, )lle(el).: ey eI

Integration over st gives
P P
1P, €112 < cllell®

and the continuity follows. The case p = « 1is similar but simpler

and is omitted.

Let Ee be the orthogonal projection in R™ on the subspace

*
8~. The operator Pu is defined for functions g on T by

* u(e)<x,6>
Pug(x) = én_l 8(8,E x)e de . (3.1)

Proposition 3.4.

[ [, PLE@X08(8,%) dxdo = [ f(x)P:g(x) dx.
S 6 R

The equality holds when f and g are non-negative or when either

side of the equation is finite whemn f 1s replaced by |f| and g

by |egl.

Proof. In either case Fubini's theorem holds. Making the change

of variable y = x + t6 with x = Eey and using (3.1) gives
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[ [ P £6,x)g(8,x) dxdo
gl gt M

<0

([ faree)e? ) deyg(e,x) dxds

én—l gi

"

én—l gmn f(y)g(e,Eey)e“(e)<y’e> dyde

[ . P ey dy.
m u

*
Corollary 3.5. Pu is the formal adjoint of Pu' In particular

n
c(IR ).

for p>1 if g e LP(T) then P'g e LP
ug lo

The next result is the main motivation for all the work in this

thesis.
Theorem 3.6.

(£xP” ) (x) = PL (P £5K0 (). , (3.2)

The equality holds when f and K are non-negative or when either
side of the equation is finite when f is replaced by lfl and K

by |K]|.

Proof. The hypotheses allow the use of Fubini's theorem. With

y=y'+t8 where y'=Ey and (3.1) we have




P* *
(£xP_ K) (x) [ 4 £(y)P_ R(x-y) dy

R

f a f(y) én—l K(O,Ee(x-y))e-U(e)q{—y’6> dedy

R
= fn—l fl K(e,Eex_yv)e‘u(9)<x,6> [ f(y'+t6)eU(e)t
s g -
-p(6)<x,6>

-y! ' '
én-l fl K(6,E x-y')e Puf(e,y ) dy'de

8

'U(e)<xse>

1]

[oo1 (PE*K) (8,Egx)e a6
8

*
P_L (P E5K) ().

dtdy

17

'de

Relationship (3.2) will be used to show that the transforms can

be inverted. 1In the case of constant attenuation we use it to get an

exact inversion formula as described briefly in Chapter I.

The next theorem has been observed by Natterer [15] in two dimen-

sions for the constantly attenuated transform. It can easily be

extended to the exponential X-ray transform in higher dimensions.

Theorem 3.7. If 6 ¢ Sn-l, £ € el then

1/2;

<Puf)ﬂ<e,g) = (2m 1 2E(e+in(o)0)

where (Puf) is the Fourier transform of Puf with respect to the

second variable.

Proof. With y =x + t6, 6 € Sn"l and X € Gl
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P60 (0,6 = @0 D2 P e, ax
M elu

= (21r)'-(n-'1)/2 IL f f(x+t6)eu(e)t e-i<x’£> dtdx

8

00

(zﬂ)—(n-l)/z i . f(y)e—i<y,£+iu(e)e> ay
R

1/2£(g+iu(e)e).

1]

(2m)

An immediate consequence of this theorem and (2.3) is the follow-

ing.

C 11 3.8. P (f =P Ff Pg.
orollary 3.8 U( *g) y * P8

Theorem 3.7 can be used to extend the operator Pu to distribu-

tions with compact support. Let u be such a distribution. Then

u extends to an entire function on Cn, and Puu is defined by

setting
(P uw)"(8,8) = ulE+in(8)6) (3.3)
Lemma 3.9. Let V be an infinite subset of Sn_l. If g is

holomorphic on ¢® and g(E+inu(0)6) = 0 for 6 € V and £ ¢ e*

then g=0 on C.

The proof is almost identical to that given by Markoe in [14] for

the case pu constant and is omitted.

Theorem 3.10. Pu : Lé(IRn) > Ll(T) is one to ome.



Proof. If f ¢ Lé(ﬂf5 then f extends to a holomorphic
function on C". By the previous lemma, Theorem 3.8 and the unique-
ness of the Fourier transform we conclude that Pu : Lé(IRn) - Ll(T)

is one to one.

Similarly since the Fourier transform of a distribution with

. X n
compact support extends to a holomorphic function on € we have

Corollary 3.11. Pu is one to one on the space of distributions

with compact support.

In [14], Markoe has proved Theorem 3.10 for the constantly
attenuated X-ray transform in n dimensions. In [7], Finch and Hertle
used similar techniques to prove a uniqueness result for the variably
attenuated exponential Radon transform. (Apart from notation, the
exponential Radon transform and the exponential X-ray transform are

the same in two dimensions.)

19
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IV. AN EXISTENCE RESULT FOR THE EXPONENTIAL
X-RAY TRANSFORM IN TWO DIMENSIONS
Let E be an approximate §~function. With relationship (3.2)

in mind, we would like to find a solution K for
*
P K =E. (4.1)

While we have not been able to find an explicit solution for K
(unless u 1is constant), we have been able to establish the existence
of and regularity results for solutions of (4.1) in two dimensions.

Throughout this chapter we let

Z= S1 x IR,
B={x¢ R : x| < 2r, r > 0},
Q=1{xe R : x| < r, r> 0}.

Before proceeding a short comment on notation is needed. For

¢ e [0,21), let 6 = (cos ¢,sin ¢) € Sl. The subspace 8 of IR
is spanned by the vector (-sin ¢,cos ¢) which we will also denote
by el. If x = s68, 6 ¢ Sl, s eR, we let x = sel. In such a case
we will write Puf(e,s) for Puf(e,xl).

Most of the work in this chapter is devoted to proving the

following theorem.

Theorem 4.1. Let £ ¢ HS(Q), u € Cm(Sl). Then for each s € IR

there exists constants cS,CS > 0 depending only on s such that
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collfll g2 IPEl gy <cgllEl g

A consequence of this theorem is the following result which

establishes the existence and regularity of solutioms to (4.1).

s+1/2

*
Theorem 4.2. TFor all s ¢€IR, the map Pu : HS(Z) -~ H Q)
is onto.
-s-1/2 -s
Proof. For s ¢ IR, Pu : Ho (Q) -~ H “(Z) by Theorem 4.1.
*
Then by Remarks 2.3 and 2.4, Pu : HS(Z) - HS+1/2(Q). From Theorem
4.1 we conclude that PU and P;l are continuous., By the closed
*
graph theorem Pu has closed range. Since Pu is one to omne Pu
s+1/2 .
has dense range in H (). And since PU has closed range so

* *
does Pu; see [18] or [19]. Thus Pu is onto.

Having established the existence of convolution kernels K for
a large class of point spread functions E we get the following

inversion result for Pu.

Corollary 4.3. For s > 1/2 let E e HS(Q) with E(x) > 0

and fE(x)dx = 1. For p > 0 let Ep(x) = o “E(x/p). Let

Hs-1/2

M= maXIu(G)I and f(-)eMI'l € Ll(nfb. If Kp € (Zz) 1is such

*
that P_qu = Ep then for almost every x

*
iig P—U(Puf*Kp)(X) = f(x)

Proof. By Theorem 3.6,
*
P

-u(Puf*Kp)(X) = Ep * f(x),
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and Ep * f(x) > £(x) for almost ever x by Theorem 2, page 62 of

Stein [22].

To prove Theorem 4.1 we introduce next a slightly modified
operator which preserves data from Pu on certain Sobolev spaces, but

allows us to use results on pseudo~differential operators.

Definition 4.4, The transform P of a function f on BRZ

is defined by

[+ o]

Pu Yf(e,s) = [ £(to+sotIM(to+so™,0) dt

4 -C0

for 0 € Sl and s € IR and where for x ¢ ]R2

M(x,8) = et (B)<¥8> L0y (4.2)

with u e C(Sl), Y € CE(B) and y =1 in a neighborhood of Q.

Clearly Pu and PU’Y agree for functions with support in Q.
OQur aim now is to show that inequalities similar to those in Theorem
4.1 are satisfied by PU,Y and consequently by Pu for £ € H;(Q).
The method used follows closely that of Heike [10] for the attenuated
X~ray transform.

As in [10], we start by defining two operators A+ and A_ for

functions £ on IR2 by

s
4,0 Y =2 [, N0 M e/ e E) ax (4.3)
R ‘
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. 1
A_D D =5 [, THE?
R

M(x,-£/|g])£(x) dx (4.4)

where M 1is as in (4.2). Many properties for Pu will be deduced

from those for A+ and A_. The next theorem gives a Fourier trans-

form relationship between Pu y and A+, A .

Theorem 4.5.

NPT N -1/2 . .
(A+f) (0867) = (27) (Pu Yf) (8,0) if o>0

/2

a_5"(oeh) = @R £ (8,-0) 1 o> 0.

where (Pu Yf)“ is the Fourier transform of P Yf with respect to

the second wvariable.

Proof. We prove the first equality. The proof of the second is

similar. Let & = 06° with o> 0 and 8 ¢ S'. Setting

X = t6 + sel and using (4.3) we get

-1 -io<x 61>
(27) f 5 € ? M(x,8)f(x) dx

o, L
(A+f) (067) &

[+ R [+
™l [ eI [ M(re+sot,0)f(to+so’) dtds

- -0

(o]

et e'iscrl L£(8,5) ds

[

-—00

-1/2

(2m) (Pu Yf)“(e,c)-
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Lemma 4.6. For all s ¢ IR, define S : mz\{O} ->Hs(le) by

, L
-i<x,&7>

S(E)(x) = e M(x, £/lg])

where M is as in (4.2). Then S 1is continuous and is bounded on

bounded subsets of IRZ\{O}.

Proof. Let s = m be a non-negative integer. Then by (2.5),

if € ¢ mz\{o}

2
Hs<s>HHmzc [EGION I

i la%:m
From (4.2) we have that for each o, the function Ga(E,x) = BiS(E)(x)
is continuous in x and \E and is bounded on bounded subsets of
BRZ\{O}. Moreover for each £, G has support in B. From the above
and the dominated convergence theorem the continuity and boundedness
of S follow. For any s ¢ IR if m 1is a non-negative integer such
that s <m the inclusion map Hm(IRz) - HS(IRZ) is continuous.
Hence for s ¢ IR, S :BRZ\{O} > HS(IRZ) is continuous as it is the

composition of two continuous functions. The boundedness also follows.

Lemma 4.7. If f ¢ C;(]Rz) then for each 's ¢ IR there exists

constants cS,CS > 0 such that

2 2
e l1Af Il o2 < "Pu,yf'|Hs(z)
(4.5)
2 2 2
< SR goaja + NAEN oy pp * eIl om1/2)
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Proof. Let f ¢ C;(IRn) and 6 = (cos ¢, sin ¢). Then Formula
(2.7), the polar coordinates formula in BRZ and Theorem 4.5 give
2x

2.8 ) 2
WY TS ) é {w (1+0%) i(Pu’Yf) (6,0)|° dod¢

21 » 2 2
[ [ Q3P _£)"(8,0)|" dod¢
0 0 H,Y

fv

2. s
[, S [, o lel,leh]® a

- £
>/, (1+]£|2)S'1/2I(Pu o ce/lel, leh|? g
R sY
=2 [, a+leD o @) a
R

.

112
2n ||Aa £ .
+ Hs—l/2
Similarly

1P, £l

| v

: 2
an f|a_£ [|°__
- ys 1/2

which gives the first inequality.

Now using Theorem 4.5 we get

2 - ® 2.8 R 2
i]pu,vfliﬂs(z) = gl [ aah® P, 00,0 dodo
2 o 2 s 9
=[ [ @57 (P _£)°(8,0)|° dodo
0 0 HyY

2 0 2. s 2
+ é [ @+ I(Pu’yf)A(e,c)l dod¢ =
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2r 9 )
=/ [ axH?| e, (58,0 % dodo
0 0 g
2r ® 2 9
+[ [ Qo )SI(Pu Yf)“(e,-c)l dod¢
0 0 g
2.8
-on [, BB a0 @] a
12}
2.s
+2n [ S 2 ) l(a_£)~(e)]| de. (4.6)
R
Now
2. s 2.s
ng = 2 L ja,n@)? a - {E’ 1(1+ 2 L a0 @)% a
< -
2. s
an UHED) a0 )] a
g]>1
(4.7)
and

2. s
{ | EHED @, 0@
g[>1
2,1/2
= ﬁ | |4, @) [P ]gH=H2 QHED g
gi>1

c { l 4,0 @] a+e|Hs2
g1>1

[

g

IA

2
clla |
+ Hs-1/2

where ¢ 1s a constant. Throughout this proof, g will be used to
denote a constant depending only on s. However it may take different

values in different places. Next we estimate the first integral on the
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right hand side of (4.7). Using (2.6) with M as in (4.2) gives

. L
[a, 0 EH1% = 1], 8 uex, g/ehimax|?
R

_i<o’

A

s
! 2
—'iifILs—l/Ziie & >M(', g/lgl)llﬂl/z—s .

—i(o’

s
For l&l <1, ”e & >M(-, E/i&l)l‘zl/z_sli Cq by Lemma 4.6, and
H

npedy 2
sovi(A+f) (g9 j_csllfllﬂs_l/z. Hence

/ (1+[gHS
le|<1 s

2.s
swp |40 @®]|* [ 551%%%—2—-da
el g]<1

2
s llEl s -

- 2
| a,£) (&) |" ag

| A

I A

We have shown that the first integral in (4.6)

2.8
1
f ) A+1e17)

\ 2 2
- 3 [, 0" (2)[dg < e ([laf ”Hs-l/Z + e HHs—l/Z)

Similarly we have an estimate for the second integral

2.8
1
f ) (A+1g17)

2 2
(A £)°(8)]dg < c_(||a £ + £ _1/5) -
R £ I - s - Hs—1/2 - 1/2

Thus establishing the second inequality.
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For f ¢ CE(Q) the inequalities in (4.5) continue to hold when
P is replaced by Pu. The inequalities in (4.5) resemble those of

u,Y

Theorem 4.1. In fact if for s ¢IR, A

+ and A_ extend to continu-

ous operators on HB(Q), the second inequality in Theorem 4.1 follows
immediately. While if A+ or A_ has a continuous inverse on
HS(Q), s ¢€IR, the first inequality follows.

In the remaining part of this chapter we show that A+ and A_
are continuous by showing they are pseudo-differential operators of
order O on C:(Q), and that A;l and A:l are continuous by
showing that A+ and A_ are semi-Fredholm operators.

Before proceeding some results on pseudo-differemtial operators
and semi-Fredholm operators will be presented mostly without proof.
The material on pseudo-differential operators is taken from Kohn and
Nirenberg [11]. The matérial on semi-Fredholm operators is from

Schechter [19].

Definition 4.8. A function a :BRZX BRZ\{O} +» IR is called a

symbol if
w, 2 2
1. ae C (R™ x R\{0});
2. a 1is positive homogeneous of degree 0 in the second
variable;

3. for any integer p and any o, 8 positive integers
(1+|x|p)aiag a(x,&) + 0

as |x| + « uniformly in £ for |£| = 1.
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To a is assigned an operator A called a pseudo-differential

operator defined by

-i<X,£>

(A£)~(E) = -zl—ﬂf g € a(x,E)f(x) dx (4.8)

R
and a 1is said to be the symbol of A.

Definition 4.9. A linear operator T : 5& > % is said to

have order r if for all s ¢IR there exists a constant cs >0

such that

HTull < e llull .
Hs s Hs+r

The infimum of all orders r of T is called the true order of T.

Remark 4.10. The composition of two operators has order equal

to the sum of their orders.

The following is a statement of Theorem 1 in [11].

Theorem 4.11. The pseudo-differential operator A, defined by

(4.8), has order O.

Let z e CT(R?) with 0 <z(g) <1, cz() =1 if |g| > 1

and vanishes for |g| < 1/2. Let C be the operator defined on
by

(CE)~(E) = C(E)E(E)

then C has order 0 and I - C has true order -», Here I
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denotes the identity operator. In what follows let a(x,§) by a
symbol and A its corresponding pseudo-differential operator as in
Definition 4.8. Let A' be the operator defined on P by
(A'£)" (&) = (&) (A£)"(§).
Remark 4.12. A - A' has true order -,
Proof. From the definition of A' we see that A' = C o A and

A=-A"= (I-C) o A. Since I - C has true order -~ and A has

order 0, A - A' has true order -~ by Remark 4.10.

Let b(x,£) be a symbol and B the corresponding pseudo-
differential operator. Let B' be the operator defined on 5%9 by
(B'£)"(&) = z(£)(Bf)"(§). Let P be the pseudo~differential operator
with symbol a(x,£)b(x,£) and P' the operator defined by
(P'£)~(E) = r(E)(Pf)"(£). The first lemma below is a special case of
Lemma 5.1 of [11], the second follows from the first and Remarks 4.10

and 4.12.
Lemma 4.13. A' o B' - P' has order -~l.
Lemma 4.14. A o B - P has order ~l.
Next some results on semi~-Fredholm operators are presented.

Definition 4.15. Let X, Y be Banach spaces. The continuous

linear operator A : X - Y is called a semi~Fredholm operator is
a) the range of A is closed in Y, and

b) the dimension of the nullspace of A 1is finite.

Definition 4.16. Let X be a Banach space with norm || [IX a

seminorm l-[ is said to be compact relative to (l ‘,X if whenever
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{xn} is a sequence of elements of X such that I{xnilx <c, a

constant, then it has a subsequence which is Cauchy in

The next result is Theorem 6.2, p. 127 of Schechter [19].

Theorem 4.17. Let X and Y be Banach spaces with norms

I I[x and || I[Y respectively. Then A : X > Y is a semi-

.

Fredholm operator if and only if there is a seminorm compact

relative to || IIX such that for all x ¢ X

lxlly < cllax]l, + Ixl.
The following is a corollary to Definition 4.8 and Theorem 4.11.

2

Corollary 4.18. Let u ¢ Cm(Sl). If V+,V_ : R ><IR2\{0} + IR

are defined by

v, (x,67) = M(x, *£/]g]) (4.9)

where M 1is as in (4.2), then V+ and V_ are symbols with A+
and A_ in (4.3) and (4.4) the corresponding pseudo-differential

operators. Moreover A+ and A_ have order 0.

Corollary 4.19. For all s ¢R, A_ extend to continuous maps

]
A : HS(BR‘) - HS(IRZ). Hence A _ : HS(Q) - HS(IRZ) are continuous.

1+

Proof. This is an immediate consequence of Definition 4.9 and

the fact that j¥9 is dense in HS(IRn) for all s.

By the above corollary the second inequality of Theorem 4.1

is established.
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Since C;(Q) is dense in H;(Q), the previous corollary and

Lemma 4.7 imply that for each s ¢ 1R, Pu y extends to a continuous
bl

s+1/2

map from HS(Q) to H (Z). Since Pu and P 0y agree on

CS(Q), Pu = PU,Y on HS(Q). Consequently we have

Corollary 4.20. For all s € R, the maps

+

A : HS(Q) > #85(rRY
are one to one.

Proof. Since P =P on HS(R), by Corollary 3.11 P
I u WY 0() y Lor 7 u

cannot vanish on an infinite subset of Sl. Hence by Theorem 4.5,

A+ are one to one.

We will next show that A+ and A_ have closed ranges by
showing that they are semi-Fredholm operators. This together with the
above implies that A;l and A:l are continuous, thus establishing
the first inequality of Theorem 4.1.

We define the functions W_,W_ : R mz\{O} -~ IR by

W, (x,Eh) = e/ leh Tl lel> oy (4.10)

Clearly W+, W_  are symbols. Let B+ and B_ be the corresponding
pseudo-differential operators respectively. Then B, and B_ have

order O. Note that for (x,£) € E'XIRZ\{O}
W, (x,8) = V'l(x £) (4.11)
£ £ V0

with V+ and V_ as in (4.9).
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Lemma 4.21. TFor f ¢ éfo,

(Bt o At)f = Ptf + th

where P+, P = identity map on CS(Q) and K_ have order -l.

Proof. Only one case will be shown. The proof of the second is

similar. Let p : R ]Rz\{O} be defined by

PGLED = W, (,EDY, (,EY) = i)

then p 1is a symbol. Let P+ be the corresponding pseudo-
differential operator. With f ¢ Cg(ﬂ), Formulas (4.11) and(4.8)
give

. 1 -i<x, -
CCHORS S ® £ ax = £(8).

So P+f = f. Let K+ = B+ ° A+ -P,.

+ By Lemma 4.14 K+ has order -l.

Theorem 4.22. A_: HS(Q) - Hs(nf5 are semi-Fredholm operators.

Proof. We prove it for A+. The proof for A_ 1is similar.

Let f ¢ C;(Q) then by Lemma 4.21

f = (B+°A+)f - K+f.

B+ has order 0, so

lell o=y liagll , +lell , - (4.12)
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Since K+ has order -1, it extends to a continuous map from HS(Q)
to HS(IRn). This and the continuity of A+ on H;(Q) implies that
(4.12) holds for all f e HJ(Q).

For f ¢ HS(Q) define

HERTEII

Then |+| is a seminorm. Let {fn} be a sequence in HS(Q) such

that Ilfnll g = ¢. We want to show that {fn} has a subsequence
H

Cauchy in *|. By Remark 2.2 the inclusion map HS(Q) > Hs-l(IRz)

is compact, hence there is a subsequence {fn } E_{fn} that is Cauchy
i

in Since K+ is of order ~1

1 ey

£ -f | = [|xf K £ [ <. £ ~£ ([ ;-
ni nj + ni + nj Hs K+ ni nj Hs 1

So {f } is Cauchy in | is compact with
i
respect to || || s Hence by Theorem 4.17 A+ is a semi~-Fredholm

H

By Definition 4.16,

operator,

We have thus completed the proof of Theorem 4.1.
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V. POINT SPREAD FUNCTIONS AND CONVOLUTION KERNELS
FOR THE EXPONENTIAL X~RAY TRANSFORM
WITH CONSTANT ATTENUATION
To the end of this thesis we will be dealing with the exponential -

X~ray transform with constant attenuation u. In this chapter an

explicit solution for
P K=E (5.1)

will be given. Recall that E 1is a point spread function and K the
corresponding convolution kernel. Some of the results developed in
this chapter appeared in Hazou and Solmon {9].

Let p > 0 and set Ep(x) = p_nE(x/p). Let Kp be the convo-
lution kernel corresponding to Ep. Suppose that there is an even
function k of one variable so that K(8,x) = k(lxl,u), for
9 € Sn—l, X € 6%, (In solving Pqu = E, K will depend on u. How-
ever, this dependence will be suppressed in the notation for K but
emphasized in that of k.) For such a kernel K, E = Pqu is also
radial. For let U be an orthogonal transformation on R" and let

Ut be its transpose, then

IEe(Ux)I = IE xl

ue

and a change of variable w = Ute gives,
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E(Ux)

P” R(Ux)

-u<iUx,6>

£n—l k(|E () [, w)e de

-U<X,Ww>

/ _ k(|E x|,u)e dw
Sn 1 w

E(x).

With the above as motivation, we choose E to be a radial
function and look for solutions K of (5.1) of the form
K(6,x) = k(ixi,u). To this end, let e be an even function of one
variable and let E(x) = e(lx]). Setting x =r¢ for r > 0,

d € Sn“1 (5.1) becomes

“Hr<$,0> 4o (5.2)

e(r) = £n_1 k(|E (xe) |, w)e
Throughout this section and to the end of the thesis we let the con-
stant Yoo = 2n(n-1)/2/F((n—l)/2), the (n-2)~dimensional surface

2

n-
area measure of S .

Theorem 5.1. Let n > 2. If e ¢ Cl(ﬂR\{ta}), a>0, and
if its first derivative e' have right and left hand limits at *a,

then (5.2) has a unique solution k ¢ C(IR\{*a}) given by

k(s,u) = (5.3)

ds

-2 % 0 [2,

2-n s /2 2
s d f tn-le(t) cos(uvs -t7) dt.
2 2
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Proof. Since Ee(r¢) =rd - <r$,8>9, (5.2) becomes

-ur<¢,6>

e(r) fn_l k(r|¢-<¢,8>8],u)e de
: S

[y k(r/i-<p,05% w)eHTH0 o,
S

Letting t = <¢,6> and then s = r2(1—t2) gives

1
() = v,/ k(e/1-t2 ) e T 12y WD /2 g,
-1

1
= Mpe2 [ k(r'l‘tz,u)cosh(prt)(1_t2)(nf3)/2 dt
0
2
i /2
- Yn—2r2-n f (/E)n—3k(/g;u) cosh(yvyr -s) de.
0 /57:;
Now let
Ky (s,0) = (/D" k(EW
and
e, (r) = (/D" Ze(/D)
to obtain

r

el(r) = Y9 f kl(s,u) cosh(uvr=s) ds. (5.4)
0

r—Ss

This is a generalized Abel integral equation. Assume for now that e
is bounded by a function of exponential growth. Then (5.4) can be

solved using Laplace transforms. Let L denote the Laplace transform.



38

We get

cosh uv-e

Llep) (€)= vy pL0e) (£ LT ).

Using formula 29.3.77 in [1] we have

2
Jt -
L(k) (ean) = —22— ™ 748 ey ()
m Yn-2
Let
2 . 2
e.(a™+) = lim e, (1) and e.(a"=) = 1lim e, (1).
1 1 1 2 1
r-+a r->a
r>a r<a
. . 2
Since e has a jump discontinuity at a ,
2 2 —a2t
N = —-— - —-— -
L(el)(t) tL(el)(t) el(O) (el(a +) - e (@ -))e
where e! is the derivative of e, on [O,m)\{az}. Taking inverse

1 1

Laplace transforms and using formula 29.3.76 of [1] we get

s P — e.(0)cos uvs
ki (s,w) = — L [ / e; (r) cos(urs=r) 4p 4 4 + h(s,u)}
Yn-2 0 - Vs-r Vs
where
0 if s < a2
h(S’U) = )

(e,(a%H) - e (al-y) So8Wfsma)  4p o ;2

1 1 5

s-a

Substituting back for k, and e, and then setting t = 3 gives

1 1
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3-n s )
k(s,u) = 2 [f (-2t Pe(e) + ¥ %er(r)) 25WIs £ 4
n-2 0 82_t2
+ el(O) Eo—z——EE + h(Sz,u)J (5.5)

Now if s < a

2—n s £L. n-2 ) us cos(uVSZ—tz)

e

k(s,u) dt + uel(O)cos u%}

2-n s
_ d d_ 02 .2 2
= E;§_—-'[E§ é E? e(t))sin(uvs -t™) dt + uel(o)cos u;}

Integration by parts gives (5.3) for s < a.

For s > a we write the integral in (5.5) as

a
Ts [I L (™ 2e(e))sin(u/si-t?) de
0

+ f é% n"ze(t))sin(u 52_t2) dt]
a

Integration by parts and the fact that

S /
g(s) = [ ¢ o=l py cosuvs ) dt
0 /Sz_tz

is continuous on [0,») and belongs to Cl([O,w)\{a}) give us (5.3)
for s > a. Thus (5.3) provides a solution to (5.2) when e 1is
bounded by a function of exponential growth. For the general case,
one can check a posteriori that (5.3) provides a continuous solution

and the uniqueness can be deduced from results on generalized Abel
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integral equations, §41 of Yosida [26].

As a consequence of the proof one can easily see that the
theorem continues to hold if e 1is piecewise continuously differen-
tiable.

With E and K as before, the following proposition gives a
relationship between their Fourier transforms. The Fourier transform
of K(8,x) 1is taken with respect to the second variable, i.e., it is

the (n-l1l)-dimensional Fourier transform on el.

Proposition 5.2. If in addition E is integrable on R" then

le]3 (/e 2uB)n?

~ van Yn-2
K(8,&) = ' (5.6)

£/e|%-u% £/]€]) when 0 < [u| < |g]

0 when Iul > |g]

Proof. Since K 1is radial, (2.4) and (5.3) give

. T -(n-3)/2 d
K(e,8) = “Yn-z é (Je]sy~ D/ I a-3)/2¢1E19) 35
s /2 2
x [ P lo(py cosBYs =) g4,
0 2 2

s -t

Integration by parts and formula 3.1.1, page 67 of [13] give
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© 8 cos(uVs %

Iz(e,g) = t

dt)

I
'—l
O
S
A

ds

-(n-3)/2
x ((g]sy~ D/ J a3y /2C1El8)) ds

(o]

.n.Yl f tn_le(t)
n-2 0

© /2
cos(uvs -t2)|€128(‘€ls)-(n—1)/2J

/—2'—2 (n-1)/2
s -t

(|g|s) dsdt.

o

Letting r2 = 52 - t2, using Fubini's theorem and then applying

formula 6.726, no. 2, p. 756 of [8] gives

R(E, ) = ——'——l— Le(t)

™n-2 0

(cos ur)(/ -(n- 1)/2|€!—(n—1)/2J

(g} r2+t2)drdt
0 (

n-1)/2

le 32 (/g | 2-p2y 2

( V2m Yoo
. ¥ on-1 -(n-2)/2 72
< x(j; e(t)(t Igl J(n—2)/2(t lg|“=u")dt
when O < |u| < g
) when |u] > |g]

Now using (2.4) again for E gives (5.6) and the proof is complete.

In particular when n = 2
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del é(/lglz_uz g/|le]) when 0 < |u| < [g]
2v2m

R(8,£) = (5.7)

0 when [u| > [g]

and taking inverse Fourier transforms

k(s,u) =-§? fm qé( 02_u2 8) cos sodo (5.8)
u

where 0 € Sl.

For p > 0 and Ep(x) = p_nE(x/p) let ep be the even function
of one variable so that Ep(x) = ep(lx[) then for r ¢ IR,
ep(r) = p~ne(r/p). 1f Kp is the convolution kernel corresponding to
Ep and kp the even function of one variable so that

Kp(e,x) = kp(lxl,u) then

k(1) 0 "k(r/p,0n) (5.9)

For by (5.3)

i
[a ]
=]
[}
N
H'&
O
[a ]
"
=]
.—l
7~
"
-
(2]
o]
)]
NI
[a ]
(]
i
"
o
a3

kp(rsU) =

Substituting p_ne(t/p) for ep(t) and making the change of variable

s = t/p gives

k (r,u) = D-n(r/p)2~n d fr/p sn-le(s) COS(upV(r/p)z-sz)ds
R Y d(r/p)
n? 0 V(r/p)z-sz

o Mk(x/p,on).



In practice with a suitable choice of E and p, K and hence
Kp can be calculated say by (5.3). Then one applies the algorithm
Pfu(Puf*Kp) to the data Puf to reconstruct an approximation of f.
See Corollary 4.3.

In Chapter VIII, we will give examples of point spread functions
and corresponding convolution kernels that may be used in recovering
the function f from the data Puf' Formula (5.3) will also be used
to obtain an exact inversion formula for PU when u is constant.
In doing so we encounter an operator which will be denoted by AU
and the purpose of the next chapter is to introduce this operator and

study some of its properties.

43
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VI. THE OPERATOR Au

In finding an exact inversion formula for Pu, U constant, the
operator Au plays an important role. In the next chapter we estab-
lish an exact inversion formula for Pu when Puf belongs to certain
potential spaces. This chapter is devoted to introducing these poten-
tial spaces and the operator Au as well as studying some properties
of Au on these spaces. The material on potential spaces is taken

from Stein [22].

Definition 6.1. For 1 < p < «, the potential spaces :f?i(]Rm)

are defined by
fi(IRm) = {f ¢ P(R™ : £ =6 % g, for some g ¢ Lp(IRm)}

where G 1is given by

ce) = (+|g|%)L?

The norm || || of feZP(R") 1is defined by

p,1l

el = el

where g ¢ Lp(ﬂfn) and f =G * g,

Definition 6.2. The space Li(Iﬂm) consists of all f ¢ Lp(Iﬂm)

such that for each j, j=1,...,m there is g ¢ Lp(Iﬂm) for which

<f,8xj¢> = —<g,$>
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for all ¢ € C;(IRm). This defines g almost everywhere and one

writes 9 f=g. Thenom || || of fe L?(R") is defined by
3 L
1

m
el = el + 1 s, €11 -
Li P j=l xj P

The spaces :Z?i and Li are complete in the given norms. An

important result relating the spaces in the above definitions is

Theorem 6.3. For 1 < p < =,
P,y _ (PRl
LM = M(r™

and the corresponding norms are equivalent. Moreover, if

f e Li(IRm) then for j = 1,2,...,m, Bx f(x) exists for almost every
h|

x in the usual sense and defines a function in Lp(Iﬂm).

A consequence of the above theorem which will be of importance in
inverting Pu is the fact that for 1 < p < «» the spaces Li(Iﬂm)
are independent of the choice of orthogonal coordinates on Rr".

With this as background we now turn to introducing the operator

Au . For x eIﬂm, let Hj . be defined for j =1,...,m as follows

_ I((mt1)/2) %
By o0 = @D /2| cos u|x| (6.1)

where xj is the j-th coordinate function. The Cauchy principle

value distribution v.p. Hj y is defined by
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<v.p. H, ,¢> = lim f H, &)¢(x) dx
Jsu ) lezp Jsu

for all ¢ € j%7. Note that for u = 0, Hj y is just the Riesz

kernel. For a function f on R" the operator Au is defined by

Af
H

[]
¥~

Bx.(v.p. H, u*f) | (6.2)

j=1 %3 I

where the derivative is a distribution derivative and the convolution

is a Cauchy principle value convolution, i.e.,

v.p. H, *f(x) = lim f H, (y)f(x-y) dy.
JsH p+0 IYIZO j’u

Lemma 6.4. For f e.Cé(Dfn) and 1 < p <

. v,
v.p. H * £(x) = lim f ——~J——-cos(u|y{)f(x—y) dy (6.3)
o o0 Iylze Iy|™

exists for every x, in P norm, and is continuous.

Proof. The proof is standard but is included here for complete-

ness; see §3.4, page 37 of Stein [22]. Let

y
K(y) = —_T%;_ cos uly|.
y

Then

a) |[R(y»)| < |y|™ for |y| >0

b) [ K(y)dy =0 for 0 <R <R, <« since K is odd.
R, <[y[<R,
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Using b) we can write

- K(y) £(x~y)dy = [ K(y) f(x~y)dy
|¥]>p ly|>1

+ [ K(y) [f(x~y)-£f(x)] dy.
1>|y|2p

For 1 < p<«, K 1is an L’ function for iYI.Z 1 as a result
of a) and f is an L1 function. 8o the first integral on the right
hand side of the equation exists for every x and is a continuous P
function since it is the convolution of continuous L1 and LP
functions.

Since f ¢ Cé(]Rn), the second integral will have compact
support in x and lf(x—y)-f(x)l_i Alyl by the mean value theorem.
So the second integral will converge uniformly in x as p =+ O.

Hence

lim [ K(y)f(x-y) dy
>0 |y|>p

exists for every x, converges in 1P and is continuous.

In fact we can show that for f ¢ Lp(]Rm), 1l < p <o the limit
in (6.3) exists in L’ norm and pointwise almost everywhere. To do
so we need a result of Chen [3], that will be stated here without

proof.

Theorem 6.5. For m > 2, let Q ¢ Lq(Sm—l) for q > 1 satisfy
the following

a) Q@ is homogeneous of degree 0
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b) [, 0de =0
S

Let h be any radial bounded function on R®. For 1 < P <® and

f e Lp( IRm), let

Tpf(x) = h(y) %‘% f(x-y) dy
ly|>0 |yl

then

f
Ilofgzm ITpf(x)Illp j_Ap‘ihllmll llp

where Ap is a constant depending only on p and m.

Theorem 6.6. For m > 2, 1 <p <=, if f ¢ Lp(]Rm), then the
limit
y

vop By * £00 = lm [ —Lo cosuly[)EGey) dy (6.4)
00 [yl20 |yl -

exists a) in P norm, b) for almost every Xx.

Proof. The proof is standard and is included here for complete~

ness; see §3.4, page 37 and §4.6.3, page 42 of [22]. Let

v,
T £(x) = [ —-i;fcos(ulyl)f(x-y) dy (6.5)
lyl>p |yl

With h(y) = cos u]y‘, Qy) = yj/lyl, the hypotheses of the above
théorem are satisfied, so there is a constant Ap, depending only on

p and the dimension, such that
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T el <a llEll, 1<p<e (6.6)

Now let f ¢ Lp(ﬂﬂm), and let € > 0, then f = f1 + f2 where

£ e cé(nﬁm) and ||£

1 2|!p

< €/3Ap. By the previous lemma Tpf1 con-

verges in Lp norm as p - 0, so there exists po > 0 such that if
P12Py < Py HTplfl-szflnp < e/3, but
T f-T £ = T f+T £.-T £ -T f
I PL Py Hp ] Pyl P2 eyl ey ZIlp
T £, ~-T £ + [T £ + ||T £
B I LA PR LAY

by the above and (6.6). So {Tpf} is Cauchy in Lp, hence converges
in the L? norm.

Next we want to show the existence of the limit almost every-

where. With £ f. + £ as before, let

1 2

Lf(x) llim sup Tpf(x) - 1lim inf Tpf(x)l.

00 o0

Then clearly

Lf (x) 2<suplTpf<x>l>
and (6.7)
Lf(x) = L(fl+f2)(x) Lfl(x) + sz(x).

A

| A

By the previous lemma Lfl(x) = 0. By (6.7) and (6.6)

llue, Il < % e,

P

so Lf2 = 0 almost eﬁerywhere, thus Lf = 0 almost everywhere, which
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gives the pointwise convergence almost everywhere of 1lim Tpf.
p>0

Remark 6.7. We are also interested in the existence of the limit

in (6.4) for the case m = 1. In this case (6.4) is

v.p. Hj‘u * £(x) = lim [ £08 WY £(x-y) dy

’ =0 |y|>p
= lim [ cos ulx=y) £(yy gy
p>0 |x-y|>p *
= (cos ux) lim f £os ¥y f(y) dy
050 |x-y|>0 77
+ (sin px) lim f sin by f(y) dy
00 |x-y|>p ¥

where the last two integrdls are just the Hilbert transforms of
cos u(+)f(*) and sin u(-)f(+) respectively and which for

fe Lp(ﬂfn), 1l <p < », exist in Lp norm and pointwise almost
everywhere [22].

Remark 6.8. Let Tf = 1im T £ with Tp as in (6.5) and m > 1,
p=+0

then it is easy to see that (6.6) holds for T too. So T maps
Lp(Dfn) continuously into Lp(Iﬂm). Note that
Tf = v.p. H, * f. 6.8
f=v.p IR (6.8)

With T as above, we have

Remark 6.9. For 1l <p <=, T: Li(Iﬂm) - Li(Iﬂm) is continu-

ous.
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Proof. Using Theorem 6.3 we replace Li(ﬂfn) by ﬁf?i(]mm).

If f e ;9’ then f = G x g for some g ¢ Lp(ﬂfm) and
Tf = T(G*g) = G * Tg.
The continuity of T on L? and the definition of I |ip 1 give

lrell y = Nlostsll , = Ntell, < cllell, = cll€ll, ;

The result now follows from the fact that JVQ is dense in

P, o
Ll(IR ).

Theorem 6.10.

2 2 (m-1)/2

-m/2
M2 el ™ el

i(2m)
a) (v.p. H )(E) ={
o .

b) For 1 < p < o, Au : Li(ﬂfm) - Lp(ﬂfm) is continuous, and if
p<2

2 2 (m—l)/zf(g) if igl > !UI

g2 (| e | %-
(A £)°(g) =
Lo 0

c) For g ¢ Ll(Dfn), f e Li(ﬂfm), l<p<wo then f * g ¢ Li(ﬂfn)

and

f = f .
Au * g Au( *xg)

Before proceeding with the proof we note that if Xe M denotes
H]

m
the characteristic function of {x ¢eIR : ¢ j_ix] <M, g,M > 0}, then

for all ¢ ¢ #



<v.p. Hj .

»¢>

= 1lim f (x)¢(x) dx
e¥0 e<|x|<M J’
Moo

= lim [ _ X MOLANCOLICON

e¥0 IR €
Moo

= lim<)(€MHj s>
€+o t] ’u
Moo

Proof of Theorem 6.10. a) By the above we need only evaluate

11m(x MHj ",
M+m

We will denote it by

and each M, Xe MBj y

R® with x = r6, &

(Hj,u)“(é)

H,
¢ J»oH

)" (&) to simplify notation. For each
is ‘integrable so using polar coordinates in

|£|¢, 6,0 € Sm-l and r > 0 we get

—m/2 -i<x,&>

(2m) 112 &R M(X)Hj,u(x)e dx
Moo
M
/2 T((m+1)/2)
(2m) & LSS Lim
(m+l)/2 ev0 €
Mo
¢ [y 0, SO2UE HEIEI007 o,
S
M
, -m/2 T((m¥+l)/2) cos Ur
~1em (1) /2 e £ —
M->o
x fm-l ej sin(r|g(<0,¢>) dedr

S

52

€

(6.9)
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since ej is odd on Sm—l. If we first set t = <6,¢> and then let
8 = to + v‘l—t2 w, where w € Sm—2 and <w,9> = 0, the inner inte-

gral becomes

fm—l 8 sin(r|&|<8,¢>) d6
S
' 2,-1/2
=[] 6, sin(r|g|t) 1-t%)" dedt
-1 <6,¢>=t j
: 2 2, (m=3)/2
= f fl m-1 (t¢j+ 1-t wj)dw sin(rlglt)(l-t ) dt
-1 ¢ nS

1

= Yp-2%; [t sin(rlglt)(l_tz)(m-3)/2 dt
-1

since fi m-1 mj dw = 0. For the last integral we use formula 3.771,
% nS

No. 10 of [8] and noting that ¢t sin(r]&}t) is even in t, we get

foo1 0 sin(r|g|<6,4>) de
S

—(m~-2)/2

- 2D/ @y o leD Tus2(F1ED-

Substituting in (6.9) we have

-m/2,m/2 T((@1)/2) 4y

VT 3 e+¥0
Mo

(H u)”(&) = ~-i(27)

3

M -m/2
x £ (rle]) cos(ur)Jm/z(rIEI) dr.



54
The integral in the last expression can be evaluated by using the third
formula, p. 62 of [16] to get a).

The continuity in b) is clear. If p < 2 we get from a)

m
(A £)~(E) = ) 8. (v.p. H, *f) "“(&)
u j=1 %y Jsu
_ T . m/2 P
= jzl 12m™ e M, ) EIEE)
T2 2 2 (m-1)/27
I oejlel™del’- £) if |e] > |ul
i=1
0 if |g]| < |u
{'El Be)2d @ D2 16 [g] > [l
0 if |g] < |u|

By continuity and denseness it suffices to show ¢) for f£ e.&a. Then

112022y @D 2 gy~ ey 1f |g| > [u]
(A (£xg)) " (£) ={
* 0 i |g] < |ul
en™2|e|2 0|20 @D/ 2 gy e lg] > |u
0 if lgl < lul
= Auf * g.

Remark 6.11. Au is formally self adjoint.

Proof. Let f ¢ Li(ﬂfn), 1l < p <o then for all g €:y9



]

<A f.o>
uo8

<9 .p. H, *f),g>
xj(v’p 3,758

<v.p. H, *f, -3 >
P Jsu xjg

<f, v.p. Hj u*ax g>
’ 3

8 (v.p. H, *g)
1 Xj JsH

o~

3

since Hj is odd, and we are donme.

55
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VII. INVERSION OF THE EXPONENTIAL X-RAY TRANSFORM
WITH CONSTANT ATTENUATION

In this chapter an inversion formula for the exponential X-ray
transform is derived in the case where the attenuation u 1is constant.
Using this formula we deduce a way for evaluating convolution kernels
from point spread functions that are not necessarily radial. Also
another approximate inversion formula for Pu is given.

First we need to extend the notion of pptential spaces to
functions defined on T = {(8,x) : 6 ¢ Sn-l, X € 61}. For 1 < p < =,

the space LE(T) consists of all functions g € LP(T) such that

lle ll = [ e, )l deo <=
P n-1 P
LM s | L,
Here l] ll is as in Definition 6.1 with R replaced by ot.
P
1

Thus for almost every 6, g(6,+) ¢ Li(el) and by Definition 6.2 and
Theorem 6.3 (with Dfn replaced by 61), the first order derivatives

of g(8,*) in the directioms VyseresV exist almost everywhere

n-1
and belong to Lp(el), for any choice of orthonormal basis
VisesesVo g of 6. 1In what follows, if g ¢ LE(T) then for each
e, Au acts on g as a function on el.
Throughout this chapter the constant c, = 1/(2nyn_2). Recall
that Yn—2 is the (n-2)-dimensional surface area measure of Sn-Z.
For the next theorem it is assumed that E, the point spread

. s . s . . n
function, is non-negative, continuous, radial and integrable on IR



57

and f E(x)dx = 1. For p > 0, E (x) = p—nE(x/p) and K 1is the

IRn P P
corresponding convolution kernel. For the main result of this chapter
we have

Theorem 7.1.

*
£(x) = ¢ P_ AP EG. (7.1)

Equality holds pointwise if f ¢ Cé(]f5 and pointwise almost every-
where if f ¢ Lé(DfB and Puf € LE(T) for some p > 1.
Proof. Let ¢e cz(nfﬁ, then for each x € R®
$(x) = lim ¢ * E (x)
p>0 P
lim P (P $+K ) (x)
= *
LAY

p~>0

by Theorem 3.6. Now for each fixed 6 and Xx € ot
- (n=-1)/2 ™
(Pu¢*Kp)(6,X) (2m) [(Pu¢) Kp] (8,%)

where ~ denotes the inverse Fourier transform on ot. so using (5.6)

(P $+K )(8,x) = V27 c_ [ 15 (P )" (s,8)
beoe " el> |l !

x l€|3”“(|€|2—u2)(“'2)/2ﬁp(/lelz—u2 g/lg])dg.

The integrand is bounded by

cllENl, el 1P 9)"(8,8)].
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Since ¢ € C;(IRn), Pu¢ € C;(T) and [(Pu¢)A(6,£)l decays faster
than any power of |£], Igll(Pu¢)A(6,£)| is integrable on o' and
also on T,
Now as p - O, ép(&) - (Zﬁ)—nlz. By the dominated convergence
theorem and Theorem 6.10 b) with m =n -1

iig (Pu¢*Kp)(6,X) /

= (Zﬂ)’(n"l)/Zan’ ei<x,€>(P ¢)A(e’€)‘gl}'n('glz_uz)(n"z)/zdg
lel>ul ¥

= anuPu¢(6,x).

Hence

%
¢ (x) = cnP_uAuPu¢(X)

which proves the theorem for functions ¢ ¢ Cz(ﬂf5.

Let
h(x) P* AP £(x)
X c, P AP EG).

If f € Cé(ﬂfB, then, by the definition of Au and Lemma 6.4, h

is continuous. If f ¢ Lé(ﬂf5 and Puf € LE(T), for some p > 1,

loc

theorem it suffices to show that h = f almost everywhere. Let

then AuPuf € LP(T) and h ¢ Lp0 (Hf5. In either case to prove the

¢ e cz(nfb. Then

*
<h,¢> = <c P AP £f,¢>
¢ cn =y uu ¢

*
<f,e PAP ¢>
nuu-u

<f£,¢>,
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since the theorem holds for ¢e C;(HJB. The proof is complete.

Remark 7.2. If E ¢ Lé(ﬂf5 and PuE € LE(T), p > 1, then
E(x) = P° (c A P E)(
X) = - c, 2P X).

So we define the corresponding convolution kernel by
K=cAPE.
nyu

We thus have a formula for evaluating the convolution kernel, that
does not require that E be radial. 1In the case where E 1is radial

we have another formula for the unique solution k of (5.2).

Due to practical limitations such as finite sampling of and
noise in the data Puf, the exact inversion formula (7.1) is not
very useful in practice. A smoothed approximation of f 1is what one
usually seeks to determine. We have already seen approximate inver-
sion formulas in Chapter III. Theorem 7.1 leads to another approxi-
mate inversion formula for Pu’ which is given in the fpllowing

theorem.

Theorem 7.3. Suppose f ¢ Lé(IRn) then for E ¢ Lé(IRn) and

PE e L‘l’(mn), p>1,

fExE=cP (P fshPE). (7.2)
n -y u uou

Proof. The previous theorem, Corollary 3.8 and Theorem 6.10 c)

give
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rh
*

tx1
i

¢ P* A P (£+E)
n-uuy

¢ P* A (P £+P B)
n-uu 4§ U

c P* (P £xA P E).
n -y u U

For E an approximate §-function, (7.2) gives an approximation
for f. An advantage that (7.2) has over (7.1) is that Au’ which
involves differentiation and singular integration acts on PuE rather
than on the data Puf and E can be chosen a priori to suit the

needs of the problem at hand.
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VIII. EXAMPLES

In this chapter, we will give examples of point spread functions
E and calculations of convolution kernels K using formulas derived
in Chapter V. We do not claim that these kernels are the best suited
for use in the convolution~backprojection algorithm but they are
reasonable ones to use and demonstrate the use of the formulas. The
examples given are in two dimensions, as this is the space of interest

in practice. Here e, k, are as defined in Chapter V.

Example 8.1. We start here with a simple example where E 1is a
constant multiple of Xp» the characteristic function of the unit disc

D={x ¢R : x| <1}, i.e.,

1 ' %— if x| <1
T Xp(x) =
0

E(x) -
otherwise

and so

-% if  |r| <1
e(r)
0 otherwise.

Using (5.3) with n = 2 and setting t = v’sz—r2 gives

s
—li-f% [ cos ut dt if ls| <1
27 0
k(s,n) =
s
L2 coswrdr if s} >1
27° 98 /LZ
s -1



and hence

1 cos us
2w2
k(s,u) =

1
- [cos us -

27

so the corresponding e 1is

2
e(r) = f%-e—r /2 .

By (5.3) with n = 2 we have after setting u = t2 and o = s

k(Yo,u) =

(2w)2 do

Integrating by parts and then setting t2

Yo
u(2m)

k(Vo,u) =

2 do

Hence

]slcos(uVsz-l)]

if  |s] <1

if  |s| > 1.

Vs

2—1

4 (2 sin o -

2

Vo d fc e—u/2 cos(uvo-u) du
0 Yo-u

0 - u gives

o _y/2
f e V' “ gin(u/o-u)du)
0

o}
e—u/2 cos(uvo-u) du

0 Yo-u
2
~o/2 et /2 cos ut dt,
0

62
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e

2
k(s,u) = 1 2'(cos us - se_S /2 f
(2m) 0

63

cos ut dt),

- 2
which is the kernel of Tretiak and Metz [24]. Since E(§) = e l£| /2

the Fourier transform formula (5.7) gives

1

—75 1€
2c2m 32

el Phr2

R(8,E) =

if  |o| > [u]

0 i o] < [ul.

| Example 8.3. For v > 0 let

v a-1x1H° 1 x| <1

E(x) =

and so the corresponding e 1is

v+l

2.v
- =)

if  |r|

A
'_l

e(r) =

Using (5.5) with n =2 and s replaced by /s we get

k(¥s,u)

S
Vs [ (-p)VTh e8It gr 4 cos u/s]
0

2w s-r

1 —
Xi% [-v/s f (1—r)v_1£££ﬁ£—§:£ldr + cos uvs]
0

2T s~r

if 0O<s<1
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Assuming Vv an integer we have

fs (1—r)v—1§.9_s_(_1;l.____.__ 'S—r)dr = Vil (__1)_'](\)—1) IS rj cos(uvs-r) dr.
0 vys-r i=0 . 3 0 /s-r

The integral in the left hand side is evaluated by Laplace transform.

Applying formulas 29.3.7, 29.3.76 and 29.3.80 of [1] we get

s
j cos(u¥s-r) _ 4s, (3+1/2)/2
é r _——JEEE—__dr =V F(j+1)(u2) Jj+1/2(P/§).
Hence
[0 QepleesleD o
0 Vs-r
v=-1 v
_ j_(=1)! 2.5+1/2 j+1/2
B JZO -1 (V"l"'J)' (u) (/;) JJ+1/2(U‘/;), (8.2)

which, for 0 < s < 1, evaluates the first integral appearing in (8.1).

Now

fl(l_r)v—1£2§$£L§:£ldr = fs (1_r)\)-1cos(u¢s-—r)dr

0 Vs~-r 0 Vs~r

S

- [ Q-r)

1 S~r

v=1 cos(uv¥s-r) dr. (8.3)

The first integral in the right hand side is evaluated by (8.2). For
the second we first let x =r - 1 and then use Laplace transforms

and formulas 29.3.7, 29.3.76 and 29.3.80 of [1] we have
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fs (1_r)v-1 cos(uVs-r)ldr

1 Vs-r
- (_1)v—1 fs—l xv—l cos(pvys=1-x) dx
0 Vs~1-x
- (O Rt GV e YD

Substituting back in (8.2) and using (8.3) we have for (8.1) with s

instead of Vs

v-1 . - .
k(s,u) = Lbs ) (-n3* 7;:%%337‘(Z§93+1/2J.+1/2(us) + 21% cos us
2n/m =0 S J 2n
0 if 0<s <1
+

(-1)v—1(V+1)V{ (éov-l/Zs( /82_1)\)—1/2J (uVsz—l) if s>1.

2/ v-1/2

Example 8.4. For v > 0, let E(x) = F((;:i)/Z)(lgl)-v/ZJv/z(lxl),
then '
E(E) = (1/2m) (1—15[2)(“’2)/2 if |£] <1 and 0 otherwise.
And by (5.8) ,
k(s,1) = —5 f/gz;—;(1+u2-cz =212 15(s0) do (8.4)

/Y EETY

Assume v 1is an even integer, v > 2. Near the origin expanding the

cosine in its Taylor series and integrating term by term we get

2
1 -1 2k Y
k(s,n) = —5 ot S i o

) (v=2)/2 do
4n° k=0 ‘ u

(1+u2-02)
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If v =2y, vy an integer, then integration by parts gives for s near

the origin

Dk 1 ‘2‘ )
v

1 [o ]
k(s,u) = ) ;
4r? kmo (20! j=0 g=1 Y

2(k~-j)
Ju

For larger values of s, let m = (v-2)/2, a2 =1+ uz and

(o) = c(az—uz)m. Then using formula 2.634 of [8] we get for (8.4)

V1+u2 =V1+u2

P2m+1

g
f P,y (O cos(so)do = g(o) E"i'r‘l;f’sgl + h(o) S2s8(s9),
u -
where
m k 2k
(-1) " d 2 2m
g(o) = | 55— = [0(a"=0")"]
k=0 Szk d0'2k
and
h(o) = i%;i .

It is not hard to see that g satisfies the differential equation

2
1+1 94 4500) = a(a?-o?)"
7 2
s do

whose solution is

m
g(o) =a ) ak(az-cz)k
k=0

where




a =1

m
a - 2m(2m+1)
m-1 2

S

and for k = 0,1,...,m-2

3k
-]
And hence
m
h(g) = z Ck(az-cz)k
k=0
where

c = (2m+l)am

and for k = 0,1,...,m~1

 2(k#l) 2
== @) (e, -aa,,

= (2k+l)ak - 2a2(k+l)a

k+1 °

) -

a2a
k+2

]
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IX. ESTIMATION OF ERRORS IN THE
CONVOLUTION-BACKPROJECTION ALGORITHM

To check to what extent algorithms in TCT accurately reconstruct
the desired attentuation coefficient of a cross section of the body,
Shepp and Logan [20] suggested reconstructing phantoms, i.e., simula-
tions of the object of interest. The data, in this case given by
(1.4), can be exactly computed. For instance, Shepp and Logan [20]
suggested as a simulation of the cross section of the human head a
superposition of ellipses with the attenuation coefficient u constant
on each ellipse. The same simulation of a cross section of the head
can be used in our case where the intensity of the radiation £ 1is
assumed constant on each ellipse. Here we will be satisfied with
finding ways to check the convolution-backprojection algorithm for the
case f 1is the characteristic function of a disc in the plane.

Comparing the convolution-backprojection algorithm with the exact
inversion formula (7.1) we expect that for a suitable choice of point
spread function and p, the convolution step Puf * Kp is a
smoothed approximation of anuPuf. For the case where f 1is the
characteristic function of a disc in the plane we give explicit
formulas to evaluate (l/4w)AuPuf, Puf * Kp and the difference
between them. Also a formula that can be used to check the backpro-
jection step is given.

Let T denote translation in R defined by Taf(x) = f(x-a).
Then direct consequences of the definition of Pu and the fact that

convolution and differentiation commute with translation are
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ep<a,6>

Pu(raf)(e,s) = (T Puf)(e,s) (9.1)

1
<a,8 >

and

_ u<a,6>
[Aupu(Taf)](e’s) = e (T<a’el>Aupuf)(e’s)' (9.2)

Lemma 9.1. Let Xa be the characteristic function of a disc in

the plane with center a and radius § > 0. Then

u<a,o6>

1 e L 1
v Aupuxa(e,s) = __7ZF_—.[COS u(s~-<a,8 >)-h(s-<a,6">)] (9.3)
where
0 if |t| <8
h(t) = (9.4)
/2 :
|cosu/e®-s5 le] > 6.
2 .2
t -6

Proof. If a =0 then

2 sinh(uVGZ-sz) if Isl < &
= H -
puXO(e’S) (9.5)
0 if |s| > 8

and is clearly in Li(]Ri) if p < 2. Hence, by Remark 7.2,
(1/4n)AuPuxo is just the convolution kernel corresponding to the
point spread function Xo* A calculation identical to that done in
Example 8.1 gives (9.3) when a = 0. 1In general Xg= ToXoo and by

(9.2) we get the desired result.



There is another way for getting (9.3) which involves complex
variable methods and the Hilbert transform. This way is sketched
briefly in the additional remark at the end of this chapter.

Let Xg be as in Lemma 9.1. The result that relates the con-
volutiqn step Puxa * K with (1/4H)AuPuXav is a direct consequence

of the following theorem, and is given in Remark 9.3.

Theorem 9.2. Let e be an even function which is piecewise C
on IR and is continuous at 0. For x eIRz, let E(x) = e(lxl) and
let k be given by (5.3) with n = 2. If

M > max{|s-6-|a||,s+s+|a|} then

(k*PuXa) (e ,S)
= M3 / [Cos‘u(s-<a,el>)— L(r,s-<a,0%>) re(r) dr .
0

where

ur<¢,0>

L(r,s) = (27" [] h(s-r<4,6 >)e dé

S

and h is as in (9.4).

'Proof. It suffices to show (9.6) for a = 0, as the general case

follows from (9.1). 8o let a = 0. For fixed s, the convolution
(k*PuXO)(e’S) depends only on the values of k on [s-§,s+8] and

hence on its values on [-M,M]. Let

E(x) if |x| <M

By (%) =

0 if x| > M
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and let kM be the corresponding convolution kernel given by Remark
(7.2). Clearly kM(t) = k(t) if |t| < M. Since e 1is piecewise

1 P .
C~ then PuEM(e’ ) € Ll(IR) if p < 2. Hence

]

(k*PuXo)(e’S) (kM*Puxo)(e,S)

= = (AupuEM*puXO)(e’s)

= = (PUEM*AUPUXO)(S,S)

Fubini's theorem and the polar coordinates formula in ]R2 give for

any g

ur<¢,o>

M
(P Ey*e) (8,8) = [ re(r) [ g(8,s-r<¢,07>)e dédr. (9.7)

0 S

With g = (1/4w)AuPuxo, and t = <¢,6> we have from Theorem 9.1

ur<¢,6>

fl cos u(s—r<¢,el>)e d¢

S

ur<¢, 6>

d¢

1 cosh(ur»’l-—tz)dt
2

cos us fl cos(ur<¢,el>)e
S

4 cos us [ cos(urt)
0

1-t

2T cos us,

where the last equality follows from p. 38 of [8]. Substituting back

in (9.7) and using (9.3) we get (9.6) for a = 0, and so we are dome.
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Remark 9.3. If M <« is chosen in (9.6) so that

M
27 f re(r)dr = f E(x)dx = 1
0 |XI§M

then using (9.3) we can write (9.6) as

=1
(k*Puxa)(e,S) =i AuPuxa(e,s)

eu<a,6> M

+ f [h(s—<a,el>) - L(r,s-<a,el>)]re(r)dr.
0

where the second term on the right hand side of the equality can be

used to estimate the difference between k * Puxa and (1/4W)AuPuxa.

Remark 9.4. In the special case when s - <a,el> =0, L(r,0) = 0

if |r| <6 and L(r,0) = 2r if |r| > 8. With M chosen as in

Remark 9.3
L APy (e (kP x ) (8,8) = " IM (r) d
o M uxa »8) — uxa ,8) = e A re(r) dr
ep<a,6> f
= — E(x) dx
o be]xl
ep<a,e> f
= —— [1 - E(x) ds].
27 lx __<_6

From the above results we see that, for a good choice of E,
k * Puxa should be a good approximation of (1/4w)AuPuxa and hence

of the right hand side of (9.3). Remark 9.3 gives an exact formula




for the difference and allows one to check for errors in numerical
calculations of the convolution kernel and estimate errors in the
convolution computations.

As an immediate corollary to Lemma 4.1 and the inversion formula
(7.2) we get the following which can be used to check the backprojec-

tion step in the algorithm.

Corollary 9.5. Let g(8,s) be given by the right hand side of

(9.3). Then
Pfug(X) = x,(%).

Additional Remark. As mentioned earlier Lemma 9.1 can be proved

using complex variable methods and the Hilbert transform. We give a
brief description of this method here. Again it suffices to consider

the case a = 0. For simplicity let & = 1. By (9.5) we have

2 sinh(u#l—s%
u

if  |s| <1

Puxo(e,S) =

0 if  |s| > 1

Proceeding as in Remark 6.7 one has

AP Xg(8,8) = & 4L [cos(us) (Hig;) () + sin(us) (Hg,) ()]

where

cos(ut)sinh (u/l-t?) if le] <1
g, (t) = {

0 if || > 1,
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sin(ut)sinh(uV1—t2) if ] <1
gz(t) ={
0 if  |e] > 1
and |

Hg =H) o "8

is the Hilbert transform of g with H as in (6.1).

1,0

A theorem in complex variables gives a method to evaluate the
Hilbert transform. The following is a statement of this theorem; see

for instance Theorem 93, p. 125 of [23].

Theorem. Let F be analytic on Imz > 0 and
ey I, <m

F(x+iy), X,y e R. Then if g 1is the real boundary

where F_(x
- )
function of F on the real axis then Hg is the imaginary boundary

function of F.

To evaluate Hgl we pick F1 such that
Fl(z) = sinh u(/{:;E.+ iz)
and to evaluate ng we pick F2 such that
Fz(z) = -i[cosh(u/{:;§-+ inz)].

F1 and F2

boundary function of F

satisfy the hypothesis of the above theorem. The real

1 on the real axis is 81 and the imaginary

boundary function of F1 is
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sin(ut + thz-l) if t < ~1

hl(t) = sin(ut)cosh(uVl-tz) if ltl <1
2
sin(ut - uvt =1) if t>1

The real boundary function of F2 on the real axis is g,y and the

imaginary boundary function is

1 - cos(ut + u¢t2-l) if t < -1

hy(t) =4 1 - cos(ut)cosh(uVl-tz) if  Je] <1

1 - cos(pt - u¢t2-l) if t > 1.

It is worth noting here that in the definitions of Fl and F2 we
use the analytic branch of the square root defined off of the negative
real axis. The verifications of the estimates and indicated boundary

functions are omitted.
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