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Internet of Things (IoT) is an integral part of application domains such as smart-

home, digital healthcare, smart grid systems and vehicular networks. Various stan-

dard public key cryptography techniques (e.g., key exchange, public key encryption,

digital signature) are available to provide fundamental security services for IoTs. How-

ever, despite their pervasiveness and well-proven security, they also have been shown

to be highly costly for embedded devices in terms of energy and time consumption.

These standard techniques introduce high delays that may hinder the safe operation

of the IoT applications (e.g., smart grids, vehicular networks). Hence, it is a critical

task to improve the efficiency of standard cryptographic services, while preserving

their desirable security properties simultaneously.

To address the efficiency of the public key cryptography in IoT setting, we propose

(i) a series of algorithmic improvements over key exchange and public key encryption



schemes and (ii) an attack and an efficient fix to a real-time digital signature scheme

that benefits aggregate signatures.

In this thesis, we first exploit synergies among various cryptographic primitives

(key exchange and public key encryption schemes) with algorithmic optimizations to

substantially reduce the energy consumption of standard cryptographic techniques

on embedded devices. Our contributions are: (i) We harness special pre-computation

techniques, which have not been considered for some important cryptographic stan-

dards to boost the performance of key exchange, integrated encryption, and hybrid

constructions. (ii) We provide self-certification for these techniques to push their per-

formance to the edge. (iii) We implemented our techniques and their counterparts

on 8-bit AVR ATmega 2560 and evaluated their performance. We used microECC

library and made the implementations on NIST-recommended secp192 curve, due to

its standardization. Our experiments confirmed significant improvements on the bat-

tery life (up to 7×) while preserving the desirable properties of standard techniques.

Moreover, to the best of our knowledge, we provide the first open-source framework

including such set of optimizations on low-end devices.

Delay-aware signatures also play an important role to provide authentication for

critical IoT applications. A recent attempt to derive signer-efficient digital signatures

from aggregate signatures was made in a signature scheme referred to as Structure-free

Compact Rapid Authentication (SCRA) (IEEE TIFS 2017). In this thesis, we show

that SCRA generic design leaks information about the private keys. For pqNTRUsign

instantiation, this leakage can be exploited to recover all private key components with

an overwhelming probability by observing only 8192 signatures. We then propose a



new signature scheme that we call as Fast Authentication with Aggregate Signatures

(FAAS), which can transform any single-signer (k-element extraction secure) aggregate

signature scheme into a signer-efficient signature scheme. We develop two efficient

instantiations of FAAS, namely, FAAS-C-RSA and FAAS-NTRU, both of which achieve

a low end-to-end cryptographic delay while FAAS-NTRU also offers a post-quantum

promise. Our experiments confirmed that FAAS instantiations offer very fast signature

generation with up to 100× speed improvements over their base schemes. Moreover,

FAAS signature generation avoids operations such as exponentiation and Gaussian

sampling, and therefore offers an improved side-channel resiliency against attacks

targeting these operations. All these desirable properties come with the cost of a

larger private key and a slight increase in the signature size.
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Chapter 1: Introduction

Internet of Things (IoT) is a heterogeneous system comprised of interrelated smart-

objects and sensors. Due to IoTs’ pervasiveness and impact on the real-life appli-

cations, it is critical to guarantee their security. Especially, fundamental security

services such as authentication, integrity, and confidentiality are required for any

viable IoT.

Although various standard cryptographic techniques exist ([64, 6, 5]), the vast

majority of them may not fully meet the needs of IoTs, especially when such systems

involve resource-limited devices. In particular, despite the recent progress on the

capabilities of off-the-shelf embedded systems (e.g, AVR ATmega 2560), the energy-

constraints of such devices still pose a critical limitation.

Below, we discuss the limitations of some alternatives and specify the research

gap to be addressed.

Problem Statement and Research Gap: Symmetric primitives are preferred

for resource-limited devices due to their computational efficiency, however, Public

Key Cryptography (PKC) is also an essential tool for IoTs: (i) Energy efficient PKC

is necessary for the management/distribution of symmetric keys in ubiquitous IoT

systems. (ii) Symmetric primitives might not be scalable for large-distributed systems

[62], while PKC can achieve scalability for large systems. (iii) Symmetric primitives do

not offer public verifiability and non-repudiation, which are highly desirable for some
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IoT applications such as payment systems, secure audit logging, and digital forensics

(medical devices). On the other hand, to pervasively deploy PKC in resource-limited

IoT systems, the efficiency of PKC primitives should be substantially improved and

optimized.

Many techniques are proposed to improve the efficiency of PKC [6, 5]. Improved

standards include key exchange (HMQV [37]), integrated encryption (ECIES [47])

and hybrid constructions (Signcryption [64]). To further improve these techniques,

lightweight signatures [22], self-certified key exchange [31], and efficient Elliptic Curve

(EC) variants [11, 21] have been introduced. Despite their merits, there is a research

gap that prevents the full utilization of performance benefits of these techniques for

IoT systems:

(i) The integrated schemes and self-certified constructions have various common

operations to be synergized. Yet, these primitives are considered in isolation. (ii)

These common operations have the potential to receive significant benefits from spe-

cial algorithmic optimizations [18], which have not been explored for integrated and

self-certified cryptographic techniques. (iii) A comprehensive energy consumption

analysis of such improved cryptographic techniques on modern embedded devices are

currently missing in the literature. (iv) An open-source framework of energy efficient

schemes, specifically for IoT applications for public use is necessary.

Aggregate digital signatures allow multiple signatures to be aggregated into a sin-

gle signature [16]. Due to their communication efficiency, they have been considered

for a wide range of applications, including, but not limited to, secure routing [65],

authentication in outsourced databases [42] and secure logging [38].
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Aggregate signatures have also been used to achieve efficient signature genera-

tion as shown in [60] with Rapid Authentication (RA) scheme. RA exploits the fact

that the signature aggregation operation is significantly faster than that of the sig-

nature generation for some aggregate signature schemes. This permits a signer to

pre-compute a set of individual signatures in the key generation algorithm (offline),

and then aggregate a subset of them to efficiently compute signatures in the signa-

ture generation algorithm (online). This strategy improves the signature generation

efficiency, and therefore is useful for time-critical systems (e.g. smart-grids [2]) that

require a low cryptographic delay to operate safely. However, RA requires a one-time

signature to be stored for each message to be signed, and also needs messages to be

in a pre-defined (fixed length) format.

It is highly desirable to develop fast digital signature schemes that can avoid the

storage/re-generation of one-time signatures and the need of a pre-defined message

format. One recent attempt to address these issues was proposed in Structure-free

Compact and Rapid Authentication (SCRA) [61]. In this thesis, we show that, it is a

challenging and yet feasible task to create such fast signatures by first mounting an

attack to SCRA [61], and then constructing new fast digital signature schemes that

can address the aforementioned limitations.
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Chapter 2: Low-Cost Standard Public Key Cryptography Services for

Wireless IoT Systems

2.1 Our Contributions

Towards filling the aforementioned research gaps, we propose a series of cryptographic

optimizations that exploit synergies and algorithmic techniques to enable high effi-

ciency and minimum energy consumption for wireless IoT systems.

• Improving Battery life with Low Storage Overhead: One of the costly operations

in standard PKC suites is EC scalar multiplication (Emul). We observe that it can

be significantly accelerated with Boyko-Peinado-Venkatesan (BPV) technique [18],

whose potential is not investigated for major cryptographic suites (ECHMQV [37],

ECIES [47] and Signcryption [64]). We provide, to the best of our knowledge, the

first realization of BPV for these suites on embedded devices. We also present

further optimizations that we refer to as Designated BPV (DBPV). Our improved

suites achieve significantly lower energy consumption with a small constant-storage

overhead. Note that the traditional pre-computation techniques incur linear token

storage/re-generation costs (a token per-item), which are not feasible for memory

limited IoT devices. Moreover, it is shown in [53] that the re-generation of tokens

may require more energy and time than just following the standard protocol.

• Eliminating Certification Overhead: In aforementioned cryptographic suites,
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the sender creates an ephemeral ECDH key to be incorporated in encryption and/or

signatures. We notice that by transforming this step into a self-certified ECDH op-

eration, for instance via Arazi-Qi (AQ) [5], it is possible to seamlessly eliminate the

verification/transmission overhead introduced by certificates.

• Integration of Optimizations to Standard Suites: We identify that self-certification

synergizes well with BPV, providing further efficiency gain. Our analysis shows signif-

icant performance gains for both fixed key exchange and integrated protocols. With

these improvements: (i) Our proposed scheme AQ-BPV achieves almost 3× faster

key exchange than ECDH with ECDSA certificate, where the transmission cost of

the certificate is also eliminated (see Table 2.2). (ii) Our improved schemes with AQ,

BPV and DBPV eliminate the overhead of certificates and improve execution time

by up to 7× (see Table 2.3) for integrated schemes such as ECIES and Signcryption.

• Experimental Evaluation and Open-Source Framework: We implemented our

techniques and their counterparts on an 8-bit ATmega 2560 microcontroller which

is widely used in IoT applications due to its flexibility and low-power consump-

tion [55, 56]. Our experiments confirmed that our schemes achieve approximately

7× improvement in terms of battery life and computation time (see Section 2.4).

Moreover, to the best of our knowledge, there is no open-source library for these

cryptographic suites and the improvements we have adopted to low-end embedded

devices. Therefore, we are putting an effort for the adoption of our optimizations and

these cryptographic suites by making our implementations open-source.

https://github.com/ozgurozmen/OptimizedPKCSuite

https://github.com/ozgurozmen/OptimizedPKCSuite


6

Limitations: BPV introduces the storage of a 11.25 KB (constant-size) table,

and when DBPV is also utilized, this storage overhead increases to 18.75KB. How-

ever, we show that such storage is feasible even to 8-bit devices like ATmega 2560

microcontroller, and provides up to 7× time and energy efficiency. Therefore, we

believe it is a useful trade-off. The limitation of AQ protocol (which provides self-

certification) is that a key generation center (KGC) needs to calculate and distribute

the keys to the nodes. While this approach is certainly feasible to be employed in

certain IoT applications (e.g., smart airport/city systems), it may not be for some

other applications. As self-certification removes all certification overhead, we believe

it is useful to adopt AQ protocol when it is feasible.

Note that our optimizations are not tightly coupled. Therefore, for the applica-

tions that are not suitable for AQ protocol, BPV and DBPV still provide significant

improvements (vice versa). Moreover, these improvements are achieved by preserving

the core operations of the base schemes, so they retain their security properties as

well as permitting an easy adoption for real-life applications.

2.2 Preliminaries

We first outline notation in Table 2.1, and then describe building blocks used by our

proposed schemes as follows:

Arazi-Qi (AQ) Self-Certified Ephemeral Scheme: Arazi-Qi (AQ) [5] pro-

posed a simple yet efficient self-certified ECDH scheme. During the offline phase, all

participants in the system are given a self-certified ECDH private/public key pair by
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Table 2.1: Notation followed to describe schemes.

G Generator group point
q Order of group
d Private Key of CA
D Public Key of CA where D = d×G

xi Fixed Private Key of Node i
Ui Fixed Public Key of Node i
IDi Identification of Node i
m Message
× Elliptic Curve Scalar Multiplication

Elliptic Curve (EC) points are shown in bold.

a CA. At the online phase, any two entities with valid self-certified key pair can es-

tablish a symmetric key without requiring the transmission and verification of ECDH

certificates. In Algorithm 1, we outline an ephemeral AQ variant proposed by Hang

et. al. in [31], which offers higher security guarantees.

As xa × [H(IDb||Ub)×Ub +D] = xb × [H(IDa||Ua)×Ua + D] = xa · xb ×G is

constant for both nodes (which is the fixed key in AQ [5]), they can store this value

and use it in future key exchanges. In the online phase, there are only two Emul for

each node. This also decreases the bandwidth as Ua and Ub are transferred only once.

Boyko-Peinado-Venkatesan (BPV) Technique [18]: This technique re-

duces the computational cost of a full scalar multiplication to only a few EC additions

with the expense of a small-constant size table storage.

2.3 Proposed Techniques

Our target suites are key exchanges (ECHMQV [37], AQ [5]), and integrated protocols

(ECIES [47], Signcryption [64]). Our rationale for selecting these cryptographic suites
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Algorithm 1 Ephemeral AQ variant by Hang et. al. [31]

(xa,Ua, xb,Ub)← AQ-Hang .Offline (offline calculations performed by CA)

1: ba
$←− Zq, Ua ←− ba ×G.

2: xa ← [H(IDa,Ua) · ba + d] and repeat 1-2 for node B.
3: Node A ←− (xa,Ua), Node B ←− (xb,Ub).
Kab ← AQ-Hang .Online (online calculations)

Node A Node B

pa
$←− Zq pb

$←− Zq

Ea ← pa ×G Eb ← pb ×G

Send (IDa,Ua,Ea)

Send (IDb,Ub,Eb)

Node A: Kab = xa × [H(IDb||Ub)×Ub + D] + pa × Eb.
Node B: Kab = xb × [H(IDa||Ua)×Ua + D] + pb × Ea.

Algorithm 2 BPV Generator

Γ←− BPV .Offline(n), n : Number of pre-computed pairs.

1: pi
$←− Zq, Pi ←− pi ×G, and store pairs Γ = 〈(pi,Pi)〉ni=1

(r,R)←− BPV .Online(Γ )

1: Generate a random set S ⊂ [1, n], where |S| = k.
2: r ←

∑
i∈S pi and R = r ×G =

∑
i∈S Pi.

can be summarized as follows: (i) Although ECDH with certificates is very common

in practice (SSL/TLS), it is very costly for IoT systems. Therefore, we improve AQ

scheme, a lightweight self-certified key exchange protocol, and ECHMQV scheme as

it was standardized in IEEE P1363 [1]. (ii) Integrated schemes provide both authen-

tication and encryption with a less cost than considering these two apart. Selected
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integrated schemes are also standardized (ECIES - IEEE P1363 [1], Signcryption -

ISO/IEC 29150:2011) and extensively used in practice.

• Seamless Integration of Self-Certification: These cryptographic techniques re-

quire a certificate to be transmitted and verified to ensure the authenticity of the

public key(s). We notice that these techniques generate an Elgamal encryption key

as an (ephemeral) ECDH key. This key is directly used in ECHMQV and ECIES,

and also incorporated into joint signature/encryption in Signcryption. We exploit this

common step to enable a self-certification by adopting AQ protocol [5]. This strategy

permits us to avoid the transmission and verification of certificates but requires all

nodes to receive their key set from CA as required by AQ protocol.

• Constant Size Pre-computation: Traditional pre-computation techniques store a

set of pairs 〈ri, ri×G〉Ni=1 to avoid online scalar multiplications, which incurs a linear

memory overhead. Moreover, once these tokens are depleted, the device must re-

generate them, which is highly costly [53]. Hence, these techniques are not suitable

for battery-limited IoT devices. We observe that BPV (see Section 2.2) has been

overlooked for various standard cryptographic suites. We harness BPV to speed-up

operations involving a scalar multiplication with randomness in these cryptographic

techniques.

• Enabling BPV for Designated Public Keys: Some of these integrated crypto-

graphic techniques require an online scalar multiplication over a public key in the

form of 〈r, r×U〉, which cannot be directly speed-up via BPV. However, we observe

that it is possible to extend BPV to this setting, if the sender can store a table for

each receiver public key 〈Γi,Ui〉r
′
i=1. In many IoT applications, the number of re-
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ceivers that an IoT device reports to is generally limited (one or at most a few cloud

servers). Hence, we propose to apply BPV to this set of designated public keys, and

we refer this strategy to as Designated BPV (DBPV). Please note that DBPV might

not be applicable if the number of receivers is large for the IoT device.

• Preserving Security Features of Primitives due to Direct Integration: All the

improved proposed schemes perpetuate security properties of underlying primitives as

optimization techniques are integrated directly, without any modification. Therefore,

there is no need for separate security proofs of the proposed schemes. Thus, our

optimizations can be integrated easily to the existing schemes.

• Improving AQ and ECHMQV Key Exchange:

Scheme I - Ephemeral AQ-BPV: Algorithm 1 depicts that Ea and Eb are calcu-

lated by EC scalar multiplications. Instead, we leverage BPV to minimize this over-

head. Thus, in the offline phase, pre-computation steps of BPV are followed by both

parties so that in the online phase Ea and Eb are calculated only with EC additions.

Scheme II - ECHMQV with AQ-BPV: ECHMQV protocol needs a prior ECDH

key exchange, which requires certified public keys [37]. Instead, we make ECHMQV

self-certified by adopting Fixed AQ protocol. Prior to online calculations, nodes A

and B follow Fixed AQ protocol [5]. Thus, private and public key pair of nodes are

xa = [H(IDa,Ua) · ba + d] where Ua = ba ×G and xb = [H(IDb,Ub) · bb + d], where

Ub = bb ×G. Furthermore, ECHMQV also receives benefits from BPV, especially

in deriving ephemeral session keys. Note that the values H(IDb||Ub)×Ub + D and

(H(IDa||Ua)×Ua +D) can be calculated only once, prior to online communications.

With all these optimizations combined, a total of four EC scalar multiplications can
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Algorithm 3 ECHMQV with AQ-BPV

1: Node A: (pa,Pa)←− BPV .Online(Γa)
2: Node B: (pb,Pb)←− BPV .Online(Γb)
3: Node A and Node B exchange Pa and Pb

4: e1 ← H(Pa||Ub) and e2 = H(Pb||Ua)
5: σA ← (pa + e1 · xa)× (Pb + e2 ×H(IDb||Ub)×Ub + D)
6: σB ← (pb + e2 · xb)× (Pa + e1 ×H(IDa||Ua)×Ua + D)
7: Kab = H(σA) = H(σB)

be reduced to (3 + 2k) Eadd (Eadd denotes EC additions, k = 8), which offers a

significant performance gain.

• Improving Integrated Schemes:

Scheme III - ECIES with AQ-BPV: As in ECHMQV, we first integrate Fixed AQ

into ECIES to achieve self-certified fixed ECDH keys. Therefore, xa = [H(IDa,Ua) ·

ba + d] and xb = [H(IDb,Ub) · bb + d], where Ua = ba ×G and Ub = bb ×G. More-

over, the sender uses BPV to eliminate an online EC scalar multiplication. Finally,

H(IDb||Ub)×Ub is calculated only once at the offline phase.

Algorithm 4 ECIES with AQ-BPV

Sender:
1: (pa,Pa)← BPV .Online(Γa)
2: Z← pa × [H(IDb||Ub)×Ub + D], where Z = (x1, y1)
3: ke||km ←− KDF (S||S1), where S1 is public (e.g., IDa) and S = x1

4: c← Eke(m), d←MACkm(c||S2), where S2 is public (e.g., IDb)
5: Send (Pa, c, d) to the receiver
Receiver:
1: Z← xb ×Pa, where Z = (x1, y1)
2: ke||km ←− KDF (S||S1), where S = x1

3: If d = MACkm(c||S2) then m← Dke(c)
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ECIES can be further improved with DBPV as follows:

Scheme IV - ECIES with AQ-DBPV: In addition to computing Pa with BPV

(Sender Step 1), we observe that the values for public key Z can also be pre-computed

and stored in a similar way. That is, our pre-computation table also includes values

for (pa,Z = pa× [H(IDb||Ub)×Ub +D]). When sender needs to generate S, she just

uses these pre-computed values to obtain Z with only k Eadd operations. Therefore,

we denote these DBPV operations as (pa,Pa,Z)← DBPV.Online(Γa). Notice that,

after these improvements, there is no EC scalar multiplications but only 2k Eadd

operations at the sender side.

Scheme V - Signcryption with AQ-DBPV: We notice that Signcryption is initi-

ated by sender performing an Emul over the public key of the receiver (a DH

key in base Signcryption [64]). This implies that Signcryption can also benefit

from both AQ and DBPV optimizations. That is, we first make Signcryption self-

certified, where the nodes follow fixed AQ protocol prior to online communication

as, xa = [H(IDa,Ua) · ba + d] and xb = [H(IDb,Ub) · bb + d], where Ua = ba ×G

and Ub = bb × G, respectively. Furthermore, as in ECIES, the sender performs

(pa,Pa,Z)← DBPV.Online(Γa).

• Security of Proposed Schemes: Our security depends on two well-known primi-

tives, AQ and BPV (considering DBPV is just an extension of BPV and incorporates

its security).

The security of BPV is well-analyzed and relies on the hardness of Hidden Subset

Sum Problem [18]. Moreover, the security of BPV with an integration to Elliptic

Curve Discrete Logarithm Problem (ECDLP) based protocols (e.g., ECDSA) has been
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Algorithm 5 Signcryption with AQ-DBPV

Sender:
1: (pa,Pa,Z)← DBPV.Online(Γa), where Z = (x1, y1)
2: ke||km ← H(x1)
3: r ← H(km||m) and s← pa · (r + xa)

−1 mod q
4: c← Eke(m), output (c, r, s)

Receiver:
1: Z = (s · xb)× [(H(IDa||Ua)×Ua + D) + r ×G]
2: ke||km ← H(x1), where Z = (x1, y1)
3: m← Dke(c), accepted if H(km||m) = r

investigated in [6]. Specifically, the BPV with ECDLP based signatures rely on Affine

Hidden Subset Sum Problem. Given that our adoption of BPV into ECDLP-based

key exchange protocols, integrated scheme, and Signcryption adhere these principles,

our techniques preserve these security guarantees.

Rest is to show that self-certification does not impact the security of the proposed

schemes. As stated by Bernstein in [12], the signature s = y −H(m||R) · r mod q in

Schnorr is a linear combination of the permanent private key y and the ephemeral

private key r, with coefficients 1 and H(m||R), respectively. Therefore, it is possible

to modify these coefficients by any function of m and R, which yields several variants

of Schnorr signature. Such variants are also called as “Schnorr-like signatures" as

discussed in [28, 12]. Although it is not discussed in the original AQ paper [5], it is

depicted in Algorithm 1 that the private key assigned to nodes is in this form. Basi-

cally, in AQ scheme, the private keys are Schnorr-like signatures that are generated by

the certification authority in off-line phase and are verified during the key establish-

ment phase. Hence, the security of AQ scheme relies on the security of Schnorr-like
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Table 2.2: Performance of existing and improved key exchange schemes on 8-bit
ATmega 2560.

Protocol¶
CPU

Time†(s)
Code Size
(Byte)

Bandwidth
(Byte)

Cert.
Overhead

ECDH+ECDSA+
Certificate 3.24 34698 72 yes

AQ 2.10 33192 24 no
ECHMQV+Certificate 4.31 35788 72 yes

Our Proposed Improved Schemes with Optimization
AQ-BPV 1.19 45712 24 no

ECHMQV with BPV 3.45 45872 72 yes
ECHMQV with AQ-BPV 2.26 45872 24 no
¶ All protocols are implemented as ephemeral key exchange schemes. All comparisons are made for the on-
line phases of these schemes.
† CPU times are based on the first online phase of the protocols. After the first phase, where the public key
should be verified, verification cost (1.19s) is removed, until public keys are renewed.

signatures, which is well-analyzed.

2.4 Performance Evaluation

Experimental Setup and Evaluation Metrics: We implemented our schemes

and their counterparts on an 8-bit ATmega 2560 microcontroller. ATmega 2560 is a

very lightweight device and used commonly in practice for IoT applications, especially

in medical devices [55, 56], where there are critical time and energy constraints. AVR

ATmega 2560 is an 8-bit microcontroller with 256 KB flash memory, 8KB SRAM and

4 KB EEPROM and its maximum clock frequency is 16MHz. During our experiments,

ATmega 2560 was powered by a 2200 mAh power pack. This enabled us to use a DC

power monitor/ammeter connected between the battery and processor to monitor

the current drawn. Moreover, the experimental current results are compared with
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Table 2.3: Performance of existing and improved integrated schemes on 8-bit ATmega
2560.

Protocol
CPU

Time†(s)
Code Size
(Byte)

Bandwidth
(Byte)

Cert.
Overhead

ECIES with
ECDSA+Certificate 3.25 34876 96 yes

Signcryption with
ECDSA+Certificate 2.48 36418 96 yes

Our Proposed Improved Schemes with Optimization
ECIES with BPV 2.38 48274 96 yes
ECIES with DBPV 1.51 55004 96 yes

Signcryption with DBPV 1.41 49318 96 yes
ECIES with AQ-BPV 1.19 48274 48 no
ECIES with AQ-DBPV 0.32 55004 48 no

Signcryption with AQ-DBPV 0.22 49318 48 no
† CPU times are based on the first online phase of the protocols. After the verification of the certificate, the
verification cost (1.19s) is removed, until public keys are renewed.

the datasheet of the processor1. All of the schemes are implemented using microECC

library [39].

We selected our elliptic curve as the NIST-recommended secp192 [19] (security

parameter κ = 96). Although there are more efficient curves such as Curve25519

[11] and FourQ [21], NIST curves are the most common ones which are deployed in

practice due to their standardization. Moreover, Curve25519 and FourQ offer very

fast elliptic curve additions, therefore, we believe, our improvements would be even

more effective in these curves. However, in this thesis we are following the conservative

approach which is not in our favor and use the NIST recommended curves to show

our techniques can achieve these numbers even in the slower but standardized curves.

Our evaluation metrics include computation, code size (for ATmega 2560), com-
1http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-
2560-2561_datasheet.pdf
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Figure 2.1: Energy comparison of key exchange protocols with IoT sensor (pressure)
on 8-bit ATmega 2560

munication, memory overhead, and energy consumption. We measured the energy

consumption with the formula E = V · I · t, where V = 5 Volts (required by AT-

mega2560), and t is the computation time (based on clock cycles) as in [6].

In our long-term experiments (to monitor the energy consumption), we focused on

the dominative costs for all schemes. Therefore, we did not take the effect of certificate

verification into consideration, as this will happen in the first online communication

and may not be repeated until the receiver renews its public key. However, even if this

cost was also considered, our advantages in terms of energy efficiency would increase.

Performance Evaluation and Comparison: Analytical comparison can be

found in Appendix A. We give the experimental evaluation and comparison for key

exchange and integrated protocols in Tables 2.2 and 2.3, respectively. Our exper-
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Figure 2.2: Energy comparison of integrated schemes with IoT sensor (pressure) on
8-bit ATmega 2560

iments confirmed significant improvements in terms of both CPU time and energy

consumption. Moreover, besides saving more energy as compared to ECDH with cer-

tificates, they are more communication efficient, by reducing 48 Byte communication

overhead. Our optimizations offer even better improvements for integrated protocols.

ECIES and Signcryption with AQ-DBPV improve their base schemes for CPU time

and energy efficiency by 6.44× and 5.86×, respectively.

In Figure 2.1 and Figure 2.2, we examined how much energy is required for crypto-

graphic operations as compared to a BMP183 Pressure/Altitude Sensor2 on ATmega

2560. To calculate the energy consumption of BMP183, we checked the datasheet

and observed that the current drawn by the sensor is 5µA and it operates at 2.5V.
2https://cdn-shop.adafruit.com/datasheets/1900_BMP183.pdf

https://cdn-shop.adafruit.com/datasheets/1900_BMP183.pdf
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The sampling rate for this sensor is selected as 30 minutes, and the energy consumed

by the sensor is calculated with the formula E = V · I · t. Additionally, ATmega

2560 consumes energy to read the data and also during the wait time. These energy

consumptions are also taken into consideration. Results in Figure 2.1 and Figure 2.2

show that the cryptographic operations consume up to 73.6% of the battery. With

our optimizations, this overhead is decreased to 51.36% and 16.38% for key exchange

and integrated schemes, respectively.

Furthermore, we analyzed the time that ATmega 2560 can operate without a

battery replacement/charge when both IoT sensor and cryptographic operations are

used, and the sampling rate is 30 minutes. This analysis showed how much our

optimizations on cryptographic operations affect the overall energy consumption of

the IoT application. We used the data presented in Figure 2.1 and Figure 2.2 to

analyze battery replacement time. If ECDH with ECDSA certificate or ECHMQV

with ECDSA certificate were used, the battery would be drained in 50 days, this

is increased to 92 days with AQ-BPV. Moreover, Signcryption with certificates and

ECIES with certificates drain the battery in 88 and 67 days respectively. With our

improved schemes, these numbers increase to 158, 148 days.
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Chapter 3: Attacks and Fixes on Real-Time Signatures for Critical

Cyber Infrastructures

3.1 Our Contributions

Our contributions are two-fold: (i) We show a security flaw in SCRA digital signature

scheme in [61]. (ii) We then propose a new series of fast digital signatures that can

address the performance and security issues of the previous constructions in [60, 61].

We further elaborate our contributions as follows.

Attack on SCRA Signature Scheme: SCRA signature generation aggregates

signatures computed from only a small set of messages, and then releases both the

aggregate signature and indexes of the corresponding messages. The exposure of the

indexes and aggregate signature without a one-time masking leaks information about

the private key. That is, we show that it is possible to recover a SCRA private key by

observing only 8192 signatures with an overwhelming probability, for an instantiation.

Fast Authentication from Aggregate Signatures (FAAS): We develop a new

signature scheme that we refer to as Fast Authentication with Aggregate Signatures

(FAAS). FAAS can be instantiated from any single-signer (k-element extraction se-

cure [16]) aggregate signature. We propose two efficient instantiations of FAAS: (i)

An instantiation with Condensed-RSA [41] called as FAAS-C-RSA, and (ii) an in-
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stantiation with pqNTRUsign [34] called as FAAS-NTRU. The desirable properties of

FAAS instantiations are as follows.

• Fast Signing : FAAS instantiations offer significant speed improvements over

their base schemes in terms of signature generation, since they do not require

expensive operations (e.g., exponentiation, Gaussian sampling). More specif-

ically, FAAS-C-RSA improves its base scheme’s signature generation by 42×,

while this improvement is 30× for FAAS-NTRU. Moreover, unlike its base scheme,

FAAS-NTRU does not require any rejection sampling, and therefore offers a con-

stant signature generation time.

• Low End-to-end Delay : We instantiate FAAS with verification-efficient digital

signature schemes to complement the benefit of highly efficient signature gener-

ation. This strategy enables a low end-to-end cryptographic delay for FAAS in-

stantiations. For instance, FAAS-C-RSA and FAAS-NTRU improve the end-to-end

delay of their base schemes by 32× and 17×, respectively.

• Improved Side-Channel Resiliency : Side-channel attacks pose a critical threat

to real-life implementations of cryptographic schemes. For instance, several

side-channel attacks have been shown (e.g., [30, 26]) against lattice-based digi-

tal signature schemes that rely on Gaussian sampling (e.g., [23]). Moreover, the

use of weak pseudorandom number generators (PRNGs) in digital signatures are

also known to cause security vulnerabilities [45, 35]. FAAS instantiations offer

features that can mitigate some of these attacks: (i) FAAS instantiations do not

require operations such as exponentiation or Gaussian sampling in their online
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signature generation algorithm. Therefore, they have an improved resiliency

against side-channel attacks that target these operations. (ii) FAAS instanti-

ations do not generate any new randomness at their signature generation (as

in [14]), and therefore can avoid the problems that stem from weak PRNGs.

• Post-Quantum Promise: FAAS-NTRU inherits the post-quantum promises of its

base scheme, and therefore, is potentially a suitable choice for applications that

require long-term security with high signing efficiency and low end-to-end delay.

• Structure-free Signing with Constant-size Secret Key : Unlike RA [60], which

assumes a pre-defined (fixed length) format in messages and relies on one-time

masking signatures (that results in linear storage (or computation) overhead),

FAAS instantiations do not require a format on messages, and have a constant-

size private key. Therefore, FAAS instantiations can potentially meet the de-

mands of various delay-aware applications.

Limitations: The main limitation of FAAS instantiations is the increased private

key size due to the storage of pre-computed signatures. For example, FAAS-C-RSA and

FAAS-NTRU require 193 KB and 511 KB private keys, respectively, with κ = 128-bit

security (see Table 3.4 in Section 3.6 for details). This increased private key size;

however, translates into 30× and 42× faster signing with an improved side-channel

resiliency, for FAAS-C-RSA and FAAS-NTRU, respectively. This is expected to be a

highly desirable feature for some applications that demand delay-aware authentica-

tion (e.g., energy delivery systems, vehicular networks) and the signer can store such

private keys (e.g., command center, car). On the other hand, FAAS instantiations



22

might not be ideal for highly memory limited signers (e.g., a medical implantable).

Potential Use-cases: Some use-cases for FAAS schemes, including but not limited

to, could be listed as follows.

(i) Smart-Grids: Phasor Measurement Units (PMUs) enable high rate data trans-

fer, which demands high-speed authentication [57]. Moreover, considering that PMUs

are usually low-end devices (e.g., 32-bit ARM microcontrollers), delay requirements

of smart-grid systems may not be achieved with standard techniques. FAAS schemes

seem to be a suitable alternative to meet real-time authentication need of PMUs.

FAAS schemes offer significant improvements on the signature generation time of their

base schemes, and therefore might be an ideal choice for smart-grid systems. FAAS can

meet stringent 4 to 20 ms end-to-end delay requirement [2] of smart-grid systems.

Notice that, in practice, PMUs rely on capable but still low-end hardware (e.g., sim-

ulated with ARM Cortex A-9 processors equipped with 1GB storage and 512 MB

DDR3 memory in [57]). We expect that such processors can readily store the large

private keys of FAAS schemes.

(ii) Vehicular and Drone Networks: Another use-case is high-speed signature gen-

eration in vehicular networks. For instance, according to relevant standards [33, 3],

a vehicle may need to generate up to 1000 messages per second. ECDSA has been

considered as the choice of a digital signature in these standards; however, the short-

comings of ECDSA at this front have been shown [40, 63]. Given high throughput

advantages, along with its low end-to-end delay, FAAS schemes might be a suitable

alternative to ECDSA. We also observe that FAAS schemes can be useful to secure the



23

communication channel and telemetry for commercial air drone networks. Recently,

the need for efficient cryptographic techniques for commercial air drones started to

receive attention from the research community [59, 50]. FAAS schemes can be used

for the broadcast authentication of telemetry data from an off the shelf drone. Such

high-speed authentication techniques can be useful for commercial applications like

Amazon Air1.

Remark that, in all aforementioned use-cases, the sender can potentially store a

larger private key.

3.2 Preliminaries

Notation. |a| denotes the bit length of variable a. a $← S denotes that a is selected

from set S at random. In x||y, || denotes the concatenation of bit strings of x and y.

We represent vectors as bold letters a, while scalars are represented as non-bold letters

i.e., a. ||a||2 and ||a||∞ denote the Euclidean norm and infinity norm of vector ν,

respectively. We define hash functions H0 : {0, 1}∗ → {0, 1}l0 , H1 : {0, 1}l1 → {0, 1}∗

and H2 : {0, 1}∗ → {0, 1}l2 for some integers l0, l1 and l2. AO1,...,Oi denotes that

algorithm A is provided with access to oracles O1, . . . ,Oi.

Definition 1 A single-signer aggregate signature ASig is defined as follows:

- (sk ,PK ) ← Asig.Kg(1κ): Given the security parameter 1κ as the input, the key

generation algorithm returns a private/public key pair (sk ,PK ) as the output.
1https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011

https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
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- γ ← Asig.Sig(m, sk): Given a message m ∈ {0, 1}∗ and private key sk as the

input, this algorithm returns a signature γ of the message under sk as the output.

- s← Asig.Agg(γ1, . . . , γL): Given a set of signatures (γ1, . . . , γL) as the input, this

algorithm returns a single-compact signature s as the output.

- {0, 1} ← Asig.Ver(−→m, s,PK ): Given messages −→m = (m1, . . . ,mL), aggregate sig-

nature s and PK as the input, this algorithm returns a bit: 1 means valid and 0

means invalid.

Definition 2 Agg function that is used to aggregate multiple messages to a single

message is defined as follows:

- (m) ← Agg(m1, . . . ,mL): Given a set of messages (m1, . . . ,mL) as the input, Agg

function returns a single message m as the output.

Agg function is also a part of the Asig.Ver algorithm that allows the batch verifi-

cation of multiple messages. This function can be instantiated as multiplication over

mod N in RSA [49] or vector addition in pqNTRUsign [34].

FAAS is proven to be Aggregate Existential Unforgeability under Chosen Message

Attack (A-EU -CMA) [16] based on the experiment defined in Definition 3. In this

experiment, the adversary A is provided with access to the following oracles:

• Setup RO(·) Oracle: A is given access to a random oracle RO(·) [10], from

which it can request the hash of any input x for up to qH messages. The

function H -Sim is used to handle RO(·) queries. That is, the cryptographic

hash function H is modeled as a random oracle via H -Sim as follows.
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– h ← H -Sim(x, LH , i): If x ∈ LH then H -Sim returns the corresponding

value h← LH(x). Otherwise, it returns h $← {0, 1}li where i ∈ {0, 1, 2} as

the answer, inserts (x, h) into LH , respectively.

• σ ← SigAsk(
−→m): A is provided with the aggregate signing oracle SigAsk(.). For

each aggregate signature query i, A queries SigAsk(·) with a batch message
−→m = (m1, . . . ,mj) for some integer j, and will be provided with the corre-

sponding aggregate signature σ computed under sk. This oracle keeps track of

all the submitted queries by keeping a list Lm, which is initially empty. A can

query this oracle to up to qS messages. SigAsk(.) is defined in the A-EU -CMA

experiment (as in Definition 3).

Definition 3 Aggregate Existential Unforgeability under Chosen Message Attack

(A-EU -CMA) for a single user aggregate signature is as follows.

ExpA-EU -CMA
Asig,A (1κ) :

Lm ← ∅ SigAsk(−→m)

(sk ,PK )← Asig.Kg(1κ) γi ← Asig.Sig(mi, sk) for i = 1, . . . , j

(−→m∗, σ∗)← ASigAsk (·),RO(·)(PK ) σ ← Asig.Agg(γ1, . . . , γj)

Lm ← Lm ∪ −→m
We say A wins in time t, and after qS and qh queries if ((Asig.Ver

(−→m∗, σ∗,PK ) ∧ (−→m∗ ∩ Lm = ∅)). The A-EU -CMA advantage of A is defined as

AdvA-EU -CMA
Asig,A (t, qS, qh) = Pr[ExpA-EU -CMA

Asig,A = 1].

FAAS requires that the underlying aggregate signature achieves k-element Aggre-
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gate Extraction (AE) property [16, 20], which is defined in the following.

Definition 4 For a given aggregate signature s ← SigAsk(−→m) computed on k indi-

vidual data items −→m = (m1, . . . ,mk), it is difficult to extract the individual signatures

(γ1, . . . , γk) of (m1, . . . ,mk) provided that only s is known to the extractor.

Initially, Boneh et al. [16] assumed that it is a hard problem to extract individual

BGLS signatures [15] given an aggregate BGLS signature, which was then proven

to hold in [20] under the Computational Diffie-Hellmann assumption. We note that

C-RSA [43] and pqNTRUsign [34], which are used in FAAS instantiations, achieve this

property (see B for a discussion on pqNTRUsign).

3.3 Attack on SCRA Signature Scheme

We identified a security flaw in the signature scheme called Structure-free and Compact

Rapid Authentication (SCRA) [61]. SCRA was proposed as a generic scheme that

transforms a single-signer aggregate signature scheme into a fast signature scheme.

As shown in Algorithm 6, in SCRA.Kg Steps 2-3, a set of signatures are pre-computed

for each b-bit structure of L fields of the hash output (where b · L = l0). These

signatures are stored in a pre-computed table comprised of 2b ·L signatures, which is

the private key of SCRA (see Γ in SCRA.Kg). In the signature generation algorithm,

the message is hashed with a randomness, and for each of L fields of the hash output,

their corresponding pre-computed signatures are aggregated. The randomness is sent

along with the aggregated signature to enable signature verification. Thus, in Steps
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Algorithm 6 Structure-free and Compact Real-time Authentication (SCRA)

(sk ,PK )← SCRA.Kg(1κ):
1: (sk′, PK ′)← ASig.Kg(1κ), P ← {0, 1}l0
2: Select integers (b, L) such that b · L = l0
3: m̃i,j ← i||j||P , γi,j ← ASig.Sig(m̃i,j, sk

′), i = 1, . . . , L and j = 0, . . . , 2b − 1

4: sk ← (sk′,Γ) and PK ← (PK ′, P ), where Γ← {m̃i,j, γi,j}L,2
b−1

i=1,j=0

σ ← SCRA.Sig(m, sk):
1: (M∗

1 , . . .M
∗
L)← H0(m||r) where r ∈ {0, 1}κ and M∗

i ∈ [0, 2b − 1], i = 1, . . . , L.
2: m′i ← i||M∗

i ||P , and fetch corresponding signature γ′i of m′i from table Γ, i =
1, . . . , L

3: s← ASig.Agg(γ′1, . . . γ
′
L) and σ ← (r, s)

{0, 1} ← SCRA.Ver(m,σ,PK ):
1: (M∗

1 , . . . ,M
∗
L)← H0(m||r)

2: m′i ← i||M∗
i ||P , i = 1, . . . , L

3: {0, 1} ← ASig.Ver(〈m′1, . . . ,m′L〉, s, PK ′)

1-2 in SCRA.Ver, individual messages are recovered and their verification is performed

in Step 3.

We noticed that for signature verification, SCRA allows the verifier to know which

message sub-fields (i.e., indexes) are used during signature generation (i.e., aggrega-

tion). Therefore, an adversaryA can keep track of the indexes of individual signatures

that are used to compute the aggregate signatures. This can lead to an information

leakage about the private keys on generic SCRA design, since the adversary learns

which private key components are aggregated.

In the case of pqNTRUsign instantiation, after observing a small-constant number

of aggregate signatures, A can re-construct either the whole or a part of the pre-

computation table (private key) by solving a system of linear equations. The number
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of signatures necessary for a successful attack to recover the whole table depends on

the signatures observed by A . A needs to solve a set equations of L variables, with 2b ·

L unknowns, as can be seen in s = ASig.Agg(γ′1, . . . , γ
′
L). A can construct equations

based on the indexes of the specific signatures. To recover all the private keys, the

signatures observed by A should contain all the private key components. Since in

each signature generation, one signature is selected from each L fields containing 2b

signatures, the probability that one signature is not selected is (2b − 1/2b)qS , where

qS denotes the number of signatures observed by A. Considering that there are 2b ·L

different pre-computed signatures in SCRA private key, the probability that A derives

all of the secret key components (Pr[WinA]) is:

Pr[WinA] = 1− (2b · L · (2b − 1

2b
)qS), where qS ≥ 2b · L (3.1)

Therefore, with an overwhelming probability, all of the SCRA - pqNTRUsign

instantiation private key can be recovered by observing 2b ·L signatures. Considering

that suggested parameters for (b, l) are (8, 32) [61], when qS = 8192, A can recover all

the private key components with probability≈ 1. Although SCRA can be instantiated

with different (b, l) parameters, since the storage overhead introduced is equal to 2b ·L,

this number cannot be large enough to prevent our attack.

In the following, we show that it is possible to design a signer-efficient signature

scheme from aggregate signatures while addressing the security issues of SCRA.
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3.4 The Proposed Scheme

Pre-computed One-time Masking for Aggregate Signatures: We note that

the security flaw in SCRA stems from the lack of one-time masking in signature

generation. Since the indexes (message encoding) must be released for verification,

one can recover the private key of SCRA. To overcome this in an efficient manner, we

propose a one-time masking strategy based on pre-computed signature components that

can be applied to any aggregate signature scheme. Our idea is to (deterministically)

generate random message components and their corresponding signatures at the key

generation phase and then aggregate a subset of them to generate a random message-

signature pair. Since aggregation is usually faster than signature generation (e.g., in

RSA [49], pqNTRUsign [34]), this allows us to efficiently generate a random message-

signature pair. Then, this pair can be used to hide the SCRA private keys at signature

generation phase, by only aggregating this with the SCRA signature (see Figure 3.1).

Moreover, the aggregated message should be released with the signature, however

since one cannot derive neither the individual message components nor the selected

indexes (signer does not release them), our attack cannot be applied to this technique.

Main Idea: We capitalize on the observation in [60, 61] that the signature aggre-

gation of some signature schemes is significantly faster than that of their signature

generation. This allows the pre-computation of a set of signatures at the key gen-

eration (offline), some subset of which will later be efficiently aggregated during the

signature generation (online) to sign a message depending on its encodings. However,

FAAS differs from previous constructions in the way that messages and randomness
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are encoded and computed: (i) In FAAS, the message is encoded as L b-bit structures,

however unlike SCRA, we do not sample different structures from “fields” and rely on

L-out-of-2b different combinations (as in [17]). This strategy significantly reduces the

private key size of FAAS schemes when compared to SCRA. (ii) FAAS hides individual

aggregate signatures that encode a message with a random masking signature with

the described strategy. Unlike RA [60], this approach eliminates the requirement of

storing and re-generating linear number (with respect to the number of messages to

be signed) of pre-computed online/offline signatures. Similarly, this permits FAAS to

hide the pre-computed signatures that encode the messages, and therefore avoids the

security vulnerability of SCRA [61] (recall Section 3.3).

All these strategies enable FAAS to transform any single-signer (k-element ex-

traction secure as in Definition 4) aggregate signature scheme into a signer-efficient

signature by only storing a small-constant size pre-computed signature table at the

signer’s side, without inheriting the performance or security problems of its previous

counterparts in [60, 61].

3.4.1 Generic FAAS Design

Generic FAAS is presented in Algorithm 7 and Figure 3.1, and is further elaborated

as follows.

Key Generation: In Step 1-2, we first generate parameters (k, t) and (b, L), which

are used to determine a subset for the masking term and encode messages, respec-

tively. We then create the private/public key pair of the underlying aggregate sig-
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Algorithm 7 Generic FAAS Scheme

(sk ,PK )← FAAS.Kg(1κ):
1: Select integers (k, t) such that k · |t| = l2 and (b, L) such that b · L = l0
2: (sk′, PK ′)← ASig.Kg(1κ) and z ← {0, 1}κ
3: ui ← H1(i||z) and βi ← ASig.Sig(ui, sk

′) for i = 0, . . . , t− 1
4: Set pre-computed signature table B ← {βi}t−1

i=0

5: γi ← ASig.Sig(i, sk′) for i = 0, . . . , 2b − 1

6: Set pre-computed signature table Γ← {γi}2b−1
i=0

7: sk ← (z,B,Γ) and PK ← PK ′

σ ← FAAS.Sig(m, sk):

1: (j1, . . . , jk)← H2(m||z), where each {ji}ki=1 is interpreted as a |t|-bit integer.
2: uji ← H1(ji||z) for i = 1, . . . , k
3: σU ← ASig.Agg(βj1 , . . . , βjk)
4: u← Agg(uj1 , . . . , ujk)
5: (j∗1 , . . . , j

∗
L)← H0(m||u), where each {ji}Li=1 is interpreted as a b-bit integer.

6: s← ASig.Agg(σU , γj∗1 , . . . , γj∗L) and set σ ← (u, s)

{0, 1} ← FAAS.Ver(m,σ,PK ):
1: (j∗1 , . . . , j

∗
L)← H0(m||u)

2: {0, 1} ← ASig.Ver(〈u, j∗1 , . . . , j∗L〉, s, PK ′)

nature and a random seed value z, which are used to generate two pre-computed

signature tables: (i) In Step 3-4, we deterministically derive t random numbers with

a keyed hash and compute their corresponding individual signatures to be stored

in table B. A subset of these random numbers and table B will be aggregated

(FAAS.Sig Step 2-3) and used to mask the private key components (FAAS.Sig Step

5). (ii) In Step 5-6, we generate 2b signatures, from which L of them will be selected

to encode the message in signature generation (FAAS.Sig Step 4-5). Finally, pre-

computed tables and seed are stored as FAAS private key, while the public key of the
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FAAS Key Generation 
Message Encoding SignaturesMasking Signatures

FAAS Signature Generation 
Aggregate Masking Signatures (secret indexes) Auxiliary aggregated message

L out of 2^b
signatures 
aggregated

Aggregate Message Encoding Signatures

FAAS Signature Verification

k out of t
signatures 
aggregated

Figure 3.1: High-level description of FAAS algorithms.

underlying aggregate signature scheme is used as FAAS public key.

Signature Generation: In Step 1-2, we derive secret indexes (j1, . . . , jk) from the

message m and compute their corresponding random numbers (uj1 , . . . , ujk) via a

keyed hash. In Step 3-4, we first set u as the aggregation of the random num-

bers (uj1 , . . . , ujk). Then, we aggregate their corresponding signatures selected from

table B, as σU . In Step 5-6, we first encode the message and u together with

indexes (j∗1 , . . . , j
∗
L), and then mask the aggregation of (γj∗1 , . . . , γj∗1 ) with σU as

s ← ASig.Agg(σU , γj∗1 , . . . , γj∗1 ). We set FAAS signature as σ = (u, s), where the

aggregated randomness u enables the verification of the message m with s at the

verifier side. Remark that it is essential to keep individual random numbers and their

indexes as secrets by aggregating them. We do this with an aggregation function

u ← Agg(uj∗1 , . . . , uj∗k) as in Step 4. The aggregation function Agg(.) is instantiated

as modular multiplication and vector addition in Condensed RSA (C-RSA) [43] and
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pqNTRUSign [34], in Section 3.4.2. respectively.

Signature Verification: The signature verification simply checks whether the mes-

sages u and indexes (j∗1 , . . . , j
∗
L)← H0(m||u) are verified with s under PK ′.

Correctness of FAAS Design: FAAS signature is composed of two components,

a random message u and an aggregated signature s. In essence, s is generated by

aggregating βj1 , . . . , βjk and γj∗1 , . . . , γj∗L (see Steps 3 and 6 in FAAS.Sig), where in-

dexes of β’s are kept secret and indexes of γ’s are released. Since, indexes of β’s are

secret, for the verification to work, the messages that corresponds to the selected sig-

natures are also aggregated and released as u (see Step 4 in FAAS.Sig). This message

aggregation is instantiated as multiplication over modulo N and vector addition in

FAAS-C-RSA and FAAS-NTRU, respectively. Therefore, verifier first obtains the indexes

(i.e., the messages, see Step 5 in FAAS.Kg) and then performs a batch verification.

Considering that the messages involved in the batch verification are 〈u, j∗1 , . . . , j∗L〉,

these correspond to the all signatures that are aggregated to obtain s. Therefore, our

FAAS design is correct.

3.4.2 FAAS Instantiations

FAAS can be instantiated with any single-signer (k-element extraction secure) aggre-

gate signature scheme. FAAS enables a highly fast signing for aggregate signature

schemes with the cost of a larger private key size. Therefore, FAAS is especially ben-

eficial for aggregate signature schemes with costly signing and efficient verification

algorithms. This significantly improved signing efficiency, combined with already fast
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Algorithm 8 Instantiation of FAAS with C-RSA

(sk ,PK )← FAAS-C-RSA.Kg(1κ):
1: Generate two large primes (p, q) and n← p · q. Compute (e, d) such that e · d =
φ(n), where φ(n)← (p− 1)(q − 1)

2: sk′ ← (n, d), PK ′ ← (n, e) and z ← {0, 1}κ
3: Select integers (k, t, b, L) as in generic FAAS.Kg Step 1
4: ui ← H1(i||z) and βi ← ui

d mod n, where |ui| = |n| for i = 0, . . . , t− 1
5: Set pre-computed signature table B ← {βi}t−1

i=0

6: γi ← HF (i)d mod n, for i = 0, . . . , 2b − 1, where HF : {0, 1}∗ → Z∗n
7: Set pre-computed signature table Γ← {γi}2b−1

i=0

8: sk ← (z,B,Γ) and PK ← PK ′

σ ← FAAS-C-RSA.Sig(m, sk):

1: (j1, . . . , jk)← H2(m||z), where each {ji}ki=1 is interpreted as a |t|-bit integer.
2: uji ← H1(ji||z) for i = 1, . . . , k

3: u←
∏k

i=1 uji mod n and σU ←
∏k

i=1 βji mod n
4: (j∗1 , . . . , j

∗
L)← H0(m||u), where each {ji}Li=1 is interpreted as a b-bit integer.

5: s← σU ·
∏L

i=1 γj∗i mod n and set σ ← (u, s)

{0, 1} ← FAAS-C-RSA.Ver(m,σ,PK ):
1: (j∗1 , . . . , j

∗
L)← H0(m||u)

2: if se = u ·
∏L

i=1HF (j∗i ) mod n then return 1, else return 0
3: end if

verification, enable FAAS to achieve a low end-to-end delay. In this line, we propose

two efficient instantiations of FAAS as below.

FAAS-C-RSA : We instantiate FAAS with C-RSA, that is proven to be secure under the

RSA assumption in the random oracle model [9]. Note that the signature generation of

C-RSA is expensive since it requires an exponentiation over a large modulus, whereas

its verification only requires an exponentiation over a small modulus (e.g., 65537).

Therefore, FAAS-C-RSA has significant improvements over C-RSA in terms of signature
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generation and end-to-end delay. The detailed description of FAAS-C-RSA is given in

Algorithm 8.

FAAS-NTRU: Lattice-based signature schemes provide a viable post-quantum secu-

rity promise [24]. We identified only a few lattice-based signature schemes that are

proven to have secure aggregation [34, 25]. Among these schemes, we noticed that

pqNTRUsign [34] offers fast verification with a slow signature generation that requires

Gaussian sampling. Thus, FAAS-NTRU vastly improves the signing efficiency of pqN-

TRUsign as well as achieving an improved side-channel resiliency, thanks to the elim-

ination of Gaussian sampling from the signature generation algorithm. The detailed

description of FAAS-NTRU is presented in Algorithm 10, that refers to pqNTRUsign

signature generation algorithm defined in Algorithm 9, to refrain from repetitions in

the algorithm description. Notice that expensive calculations such as Gaussian sam-

pling and polynomial multiplication are done in the key generation algorithm (once

and offline). At the signing phase, only polynomial additions are performed.

As depicted in Algorithm 10, we work over a polynomial ring Rq = Zq[x]/(xN +1)

Algorithm 9 pqNTRUsign Signature Generation [34]

(v′)← pqNTRUsign.Sig(m, sk′,h):
1: Compute (up,vp) = HN(m||h)

2: Sample r← χNσ̃ and b $← {0, 1}
3: Compute u1 ← pr + up, v1 ← u1h mod q and a← (vp − v1)/g mod p
4: if ||af ||2 > νs or ||ag||∞ > νt then go to Step 2
5: end if
6: v′ = v1 + (−1)bag
7: if ||v′||∞ > q/2−Bt then go to Step 2
8: end if
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Algorithm 10 FAAS pqNTRUsign instantiation

(sk ,PK )← FAAS-NTRU.Kg(1κ):
1: Generate secret keys f ,g ∈ Rq such that h(x) = p−1g(x)f−1(x)
2: If f and g are not invertible mod q, go to Step 1
3: sk′ ← (f ,g), PK ′ ← h and z ← {0, 1}κ
4: Select integers (k, t, b, L) as in generic FAAS.Kg Step 1
5: ui ← H1(i||z), βi ← pqNTRUsign.Sig(ui, sk

′), where |ui| = κ for i = 0, . . . , t− 1
6: Set pre-computed signature table B ← {βi}t−1

i=0

7: γi ← pqNTRUsign.Sig(i, sk′), for i = 0, . . . , 2b − 1

8: Set pre-computed signature table Γ← {γi}2b−1
i=0

9: sk ← (z,B,Γ) and PK ← PK ′

σ ← FAAS-NTRU.Sig(m, sk):

1: (j1, . . . , jk)← H2(m||z), where each {ji}ki=1 is interpreted as a |t|-bit integer.
2: uji ← H1(ji||z) and (upji

,vpji
)← HN(uji ||h) where i = 1, . . . , k

3: (up,vp)←
∑k

i=1(upji
,vpji

), and σU ←
∑k

i=1 βi
4: (j∗1 , . . . , j

∗
L)← H0(m||u), where each {ji}Li=1 is interpreted as a b-bit integer.

5: s← σU +
∑L

i=1 γj∗i and σ ← (up,vp, s)

{0, 1} ← FAAS-NTRU.Ver(m,σ,PK ):
1: (j∗1 , . . . , j

∗
L)← H0(m||u)

2: û = sh−1 mod q̂
3: if ||û||∞ >

√
(k + L)τpσ̃ then return 0

4: end if
5: (upi

,vpi
)← HN(j∗i ||h) where i = 1, . . . , L

6: if (û, s) = (up,vp) +
∑L

i=1(upi
,vpi

) then return 1, else return 0
7: end if

for a prime q and a positive integer N [34]. We use a Bimodal Gaussian distribution

χNσ̃ with standard deviation σ̃ to sample an N -dimension random vector r. For

FAAS-NTRU, we model a hash function HN : {0, 1}∗ → ZNq . This enables generating

random elements mp = (up,vp) with up ∈ ZN1
p and vp ∈ ZN2

p for a prime p and
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N = N1+N2. We let f(x), g(x), h(x) ∈ Rq where f(x) and g(x) have small coefficients

and h(x) = p−1g(x)f−1(x). The NTRU lattice associated with h is defined as L =

{(û, v̂) ∈ R2
q : ûh = v̂}. A vector in NTRU lattice can be written as v = 〈̂s, t̂〉

where ŝ, t̂ ∈ Rq, following [34], we refer to ŝ as s-side and t̂ as t-side of the vector.

Hoffstein et al. also uses rejection sampling to ensure that the signature component

does not leak any information about the private keys by checking if its norm is in

(− q
2

+νy,
q
2
−νy) for some public parameter ν where y ∈ {s-side, t-side}. This is done

as in the Step 4 of Algorithm 9. We also note that τ in Algorithm 9 is a Gaussian

distribution parameter which ensures a bound on the value of the sampled vector’s

coordinates.

3.5 Security Analysis

Theorem 1 AdvA-EU-CMA
FAAS,A (t, qS, qh) is bounded as follows.

AdvA-EU-CMA
FAAS,A (t, qS, qh) ≤ AdvA-EU-CMA

Asig,B (t′, q′S, q
′
h)

where t′ = O(t) + 2qS(tRNG + tSig + tAgg) , q′S ≥ 2qS and qH = q′H .

Proof 1 Please refer to B
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3.6 Performance Evaluation and Comparison

We first give the analytical costs of FAAS instantiations and their counterparts in terms

of computational overhead and key/signature sizes. We then outline our experimental

setup, parameters and provide a detailed experimental comparison.

3.6.1 Analytical Performance

Computation Overhead: We analyze key generation, signature generation and

verification overhead of FAAS, where the online costs can be seen in Table 3.1.

Key Generation (offline, once): FAAS instantiations require pre-calculating two

tables in their key generation algorithm, and therefore, it is more expensive than

their counterparts. Specifically, to generate the two pre-calculation tables, 2b + t

signatures of underlying aggregate signature schemes are computed.

Signature Generation: FAAS signature generation requires a small-constant num-

ber of signature aggregation, message aggregation and hash calls as (k+L)·ASig .Agg+

k ·H+k ·Agg. Specifically, FAAS-C-RSA signature generation only requires a few mod-

ular multiplications over n and hash calls, while RSA needs a full exponentiation with

a large integer d. pqNTRUsign requires Gaussian sampling and polynomial multipli-

cation to generate a signature. This overhead is reduced to polynomial additions and

mapping functions (HN) in FAAS-NTRU. We present a variant of FAAS-NTRU (referred

to as FAAS-NTRU′) to improve the efficiency of signature generation with the cost of

an increased private key size. Our implementation (see Section 3.6.2) showed that

the mapping function in FAAS-NTRU takes a significant amount of time. Therefore, to
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Table 3.1: Analytical computation overhead analysis and comparison.

Schemes Signature Generation Signature Verification
RSA [49] Expd Expe
ECDSA [4] Emul +H +Mulq′ 1.3 · Emul + Eadd+H

BPV-ECDSA [18] vB · Eadd+H +Mulq′ 1.3 · Emul + Eadd+H

Ed25519 [14] Emul25519 + 2H +Mulq′ 1.3 · Emul25519 + Eadd25519 +H

SPHINCS [13] (2tS − 1)H (kS((log tS)− xS + 1) + 2xS − 1)H

pqNTRUsign [34] Gsamp+ Pmul Pmul

FAAS
(k + L) ·ASig .Agg + k ·H

+k ·Agg ASig .Ver + L ·Agg

FAAS-C-RSA (2k + L) ·Muln + k ·H Expe + L ·Muln
FAAS-NTRU (2k + L) · Padd + L ·HN Pmul + L · Padd
FAAS-NTRU′ (2k + L) · Padd Pmul + L · Padd

ASig.Agg and ASig.Ver denote the cost of aggregate operation and aggregate signature verification of ASig, re-
spectively. In our FAAS instantiations, the cost of message aggregation (with Agg) and signature aggregation
with ASig.Agg are comparable (especially for FAAS-C-RSA). Expe and Expd denote an exponentiation with the
small exponent e and large exponent d, respectively, over modulus n. Emul and Eadd denote the costs of EC
scalar multiplication over modulus p′, and EC addition over modulus p′, respectively. Emul25519 and Eadd25519
are performed on twisted Edwards’ curve. H and Mulq′ denote a cryptographic hash and a modular multiplica-
tion over modulus q′, respectively. We omit the constant number of negligible operations if there is an expensive
operation (e.g., integer additions are omitted if there is an Emul or Expe). We use double-point scalar multi-
plication for verifications of ECC based schemes (1.3 · Emul instead of 2 · Emul [32]). Pmul and Padd denote
polynomial multiplication and addition, respectively. Gsamp represents the cost of Gaussian sampling over in-
tegers. HN denotes the cost of the mapping hash function in pqNTRUSign. tS , kS and xS are SPHINCS [13]
parameters where tS is the number of secret key elements, kS is the number of revealed secret key elements and
xS is a small integer. k and L are FAAS parameters (as defined in Algorithm 7) and vB is the BPV parameter
and the recommended values are k = L = vB = 32.

reduce the signature generation time, we offer a variant of FAAS-NTRU that stores the

results of mappings as the private key (instead of deterministically generating them

in the signature generation algorithm). Therefore, the cost of the mapping functions

are avoided in FAAS-NTRU′.

Note that, aside from Gaussian sampling, pqNTRUsign also requires a rejection

sampling in the signature generation to ensure that signatures do not leak sensitive

information about the private key distribution. Therefore, due to rejection sam-

pling, the signature generation of these schemes do not have a constant time, whereas
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FAAS instantiations do not require rejection sampling.

Signature Verification and End-to-end Delay: FAAS instantiations add a slight

overhead to the verification of their base schemes, which is equal to L message ag-

gregations. However, note that, since message aggregation is highly efficient, this

overhead is negligible in practice, especially considering the overall gain in terms of

the end-to-end delay due to the highly efficient signature generation algorithm of

FAAS.

ECDSA and Ed25519 require one scalar multiplication at the signer’s and a double

scalar multiplication at the verifier’s side. Although, SPHINCS requires only hash

calls, the number of hash calls at the signer is significantly high (≈ 217).

Discussion on Side-Channel Attacks: Side-channel attacks pose a serious threat

to cryptographic implementations. Lattice-based cryptography offers efficient solu-

tions with post-quantum security promise. However, most of the efficient lattice-based

signature schemes require a (high precision) sampling from a distribution, mostly a

Gaussian, which not only degrades their performance on the signer’s side, but is also

highly prone to side-channel attacks. For instance, BLISS [23], as one of the most

efficient instances of such schemes, has been targeted with a number of side-channel

attacks [30, 26]. Secure implementation approaches might mitigate some of these

side-channel attacks; however, they are deemed to be a highly challenging and error

prone task [24].

Table 3.1 shows that FAAS instantiations do not require any exponentiation or

Gaussian sampling in signature generation algorithm. Although, these operations

are required in the key generation of FAAS instantiations, they are done once and
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Table 3.2: Analytical storage/transmission analysis and comparison.

Schemes Secret Key Size Signature Size Public Key Size
RSA [49] |n|+ |d| |n| |n|+ |e|
ECDSA [4] |q′| |q′|+ |H| |q′|

BPV-ECDSA [18] (nB + 1) · |q′| |q′|+ |H| |q′|
Ed25519 [14] |q′| |q′|+ |H| |q′|

SPHINCS [13] nS
nS(kS(|tS |

−xS + 1) + 2xS )
nS

pqNTRUsign [34] |f |+ |g| |b| |h|

FAAS
(2b + t+ 1) · |ASig .Sig|

+κ
|ASig .Sig|+ |Agg| PK ′

FAAS-C-RSA (2b + t+ 1) · |n|+ κ 2|n| |n|+ |e|
FAAS-NTRU (2b + t+ 1) · |v′|+ κ 3|v′| |h|

FAAS-NTRU′
(2b + t+ 1) · |v′|+ κ

t · |HN |
3|v′| |h|

b and n are FAAS parameters (as defined in Algorithm 7), and nB is BPV parameter. Suggested values are b = 8
and t = nB = 256. v′ is the t-side of a vector where b is the s-side[34]. h is the public key of pqNTRUsign, where
f and g are the secret keys of it [34]. SPHINCS [13] parameter nS denotes the bit length of hashes. The sizes of
each component are given in Table 3.4 for κ = 128.

offline. Therefore, FAAS instantiations offer an improved side-channel resiliency and

easy implementation as compared to techniques that require online Gaussian sampling

and exponentiation. Moreover, FAAS instantiations offer deterministic signing (as in

Ed25519 [14]), that makes it immune to weak PRNG attacks (e.g. [35]).

Storage and Transmission Overhead: FAAS requires two pre-computation tables

to be stored at the signer’s side, with the size of (2b+ t+1) · |ASig .Sig|+κ. Moreover,

in addition to their base scheme, FAAS requires an aggregated randomness which

makes the total signature size |ASig .Sig|+ |Agg|. Note that, in FAAS-NTRU signature,

the signature size changes from |b| bits to |v′| bits. The reason is that the ‘t-side’

of the vector should be transmitted for aggregate verification in pqNTRUsign [34].

Therefore, the signature size of FAAS-NTRU increases slightly more. The public key
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size of FAAS instantiations is the same with that of their base aggregate signature

schemes.

3.6.2 Performance Evaluation

Experimental Setup: We implemented FAAS instantiations on a laptop equipped

with Intel i7 6700HQ 2.6GHz processor and 12 GB RAM. Our operating system was

Linux Ubuntu 16.04 and we used gcc version 5.4.0.

Software Libraries and Implementation: We developed FAAS instantiations with

C. We implemented FAAS-C-RSA with GMP library due to its optimized modular

arithmetic operations [29]. We used the open-source pqNTRUsign implementation

available in NTRU open source project [34] to develop FAAS-NTRU. We used Blake2 as

our hash function (as in SPHINCS [13]), due to its high efficiency [8]. We open-source

our implementations for wide-adaptation and comparison.

https://github.com/ozgurozmen/FAAS

We ran the open-source implementations of our state-of-the-art counterparts in

our experimental setup, to present a fair comparison. We benchmarked the ECDSA

in MIRACL library [52] and RSA in GMP library [29]. We implemented BPV pre-

computation technique over MIRACL ECDSA implementation and benchmarked

BPV-ECDSA. We benchmarked Ed25519 and SPHINCS using their Supercop im-

plementations. Lastly, we used the open-source implementation of pqNTRUsign.

Parameters: We selected parameters to provide κ = 128-bit security. We selected

|n| = 3072 bit, |e| = 17 bit and |d| ≈ 3072 bit for RSA-based schemes. We chose |p′| =

https://github.com/ozgurozmen/FAAS
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|q′| = 256 bit for ECC-based schemes. We used the suggested parameters providing

κ = 128-bit security for SPHINCS [13] and pqNTRUsign [34]. FAAS parameters are

selected as (b, L) = (8, 32) and (k, t) = (256, 32) for l0 = l2 = 256. The security of

these parameters depend on how many different combinations one can derive with

k-out-of-t pre-computed components, that is
(
t
k

)
=
(

2b

L

)
. With current parameters,

there are 2141 different combinations that can be created. For instance, considering

(k, t) parameters that are used for one-time masking, one can derive 2141 different

random values using these parameters. Another important aspect of security of (k, t)

is to keep the indexes secret. As discussed in Section 3.4, this ensures that presented

attack cannot be applied to FAAS schemes. Since we are concatenating a secret key

in the hash call, the indexes will remain as secret. On the other hand, one can attack

to H0 and try to obtain an m∗ such that H0(m||u) corresponds to the same indexes

as H0(m∗||u). However, since u is a random value derived based on secret indexes,

attacker must conduct a target collision attack to find such m∗. On the other hand,

any permutation of the indexes would correspond to a collision on H0. Since there

are k! different possible index permutations, the probability to find such an m∗ is

L!

22b
. With the current parameter selection, the probability for this is 1

2138
. Since the

underlying signature schemes’ parameters are selected to provide κ = 128-bit security,

all in all, FAAS instantiations offer κ = 128-bit security.

Experimental Comparison: Tables 3.3 and 3.4 give numerical evaluation and

comparison of FAAS instantiations and their counterparts.

FAAS instantiations offer notably faster signature generation over their base schemes

with a slightly slower verification. Specifically, FAAS-C-RSA signature generation
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Table 3.3: Experimental performance comparison and analysis (in µ sec).

Schemes Signature
Generation

Signature
Verification

End-to-end
Delay

Post-Quantum
Promise

RSA [49] 8083.26 47.74 8131.00 7

ECDSA [4] 725.38 927.30 1652.68 7

BPV-ECDSA [18] 149.60 927.30 1076.90 7

Ed25519 [14] 132.61 335.95 468.56 7

SPHINCS [13] 13458.18 370.50 13828.68 X
pqNTRUsign [34] 14516.21 304.10 14820.31 X

FAAS-C-RSA 192.19 61.97 254.16 7

FAAS-NTRU 489.29 710.17 1199.46 X
FAAS-NTRU′ 137.87 710.17 848.04 X

is over 40× faster than traditional RSA. FAAS-NTRU and FAAS-NTRU′ also improve

pqNTRUsign signature generation by 29.67× and 105.29×, respectively. However,

FAAS instantiations require storing a secret key up to 1 MB (see Table 3.4). With

their improved side-channel resiliency and fast signature generation, FAAS instanti-

ations may be highly preferable for delay-aware applications where the signer can

tolerate storing up to 1MB of private key. We observed that signature generation

cost of FAAS-NTRU was dominated by the mapping functions, that are required to

map the message to a vector. We further noticed that these vectors can be stored as

the private key, instead of deterministically generating them at the signature gener-

ation. This resulted in a trade-off between signature generation time and secret key

size, where signature generation speed up 3.55× with a 2× increased secret key (see

Tables 3.3 and 3.4).

Recall that, SCRA [61] does not use a masking strategy, and therefore, leaks its

private key (as shown in Section 3.3). Since FAAS uses a highly efficient and constant-
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Table 3.4: Key/signature size comparison and analysis (in Bytes).

Schemes Secret Key Size Signature Size Public Key Size
RSA [49] 768 372 386
ECDSA [4] 32 64 32

BPV-ECDSA [18] 10272 64 32
Ed25519 [14] 32 64 32
SPHINCS [13] 1088 41000 1056

pqNTRUsign [34] 1024 576 1024
FAAS-C-RSA 197408 768 386
FAAS-NTRU 525328 3072 1024
FAAS-NTRU′ 1049600 3072 1024

size signature masking strategy, its signature generation requires only twice as much

signature aggregations and k message aggregations compared to insecure SCRA. This

results in an approximately three times increase in signature generation time. The

signature verification of the both schemes are the same. Moreover, since FAAS relies

on an efficient message encoding (see Section 3.4), the secret key of FAAS is L× smaller

than that of SCRA. In practice, since L is selected as 32, this results in a significant

improvement in terms of secret key size. Therefore, FAAS address the flaws of SCRA

with a small computation overhead and a more compact secret key size.

3.6.3 Potential Impacts

Note that FAAS can be instantiated with any single signer aggregate signature scheme.

In this thesis, we proposed some efficient instantiations, where signature verifica-

tion was significantly faster than signature generation, which was optimized with

FAAS strategy. For instance, like SCRA [61], FAAS can also be instantiated with
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BGLS [15], that would offer low storage. However, since the verification requires

pairing, an expensive operation, we do not present this instantiation. Moreover, we

only instantiated FAAS with signature schemes that are proven to have secure ag-

gregation. Signature aggregation has not been extensively studied in some signature

schemes such as BLISS [23] and Dilithium [24]. BLISS can get benefit a lot from our

FAAS construction due to its improved side-channel resiliency. Despite being one of

the fastest signature schemes up to date, BLISS faced numerous side-channel attacks

that pose a critical limit against its practical adoption. Dilithium and BLISS offer

fast signature generation (272µs and 141µs, respectively, in our experimental setting)

and even faster verification (50µs and 28µs, respectively, in our experimental setting).

Furthermore, there are numerous schemes proposed to NIST Post-quantum compe-

tition, that requires Gaussian Sampling. Considering the side-channel resiliency of

FAAS schemes by eliminating such operations in the online signing phase, we believe

that FAAS can be widely used in practice to strengthen the aforementioned post-

quantum schemes. However, first, the secure aggregation property of these schemes

must be proven.

3.7 Related Work

In this section, we describe authentication mechanisms, schemes based on aggregate

signatures and pre-computation methods that are most relevant to our work.

Message authentication codes (e.g. HMAC [36]) offer very fast authentication,

however they lack scalability, non-repudiation and public verifiability. Although dig-
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ital signatures offer these properties, they may be costly since they require expensive

operations such as exponentiation [49] or scalar multiplication [4, 14]. One-time sig-

natures (e.g. HORS [48], TV-HORS [58]) and delayed key disclosure methods (e.g.

TESLA [46] have been proposed that offer fast signature generation and verification.

However, HORS incurs large signature sizes, and a private/public key pair can only

be used once. The continuous renewal and certification of the new keys might be

impractical. TESLA requires time synchronization and packet buffering due to the

delayed disclosure strategy. Thus, it cannot offer immediate verification, which might

be essential for some use-cases. Online/offline signatures [51, 27, 44] offer very fast

signing since they pre-compute tokens for each message to be signed at the offline

phase. Therefore, at the online phase, these pre-computed tokens are used, that

provides efficient signature generation. However, such methods incur linear storage

with respect to the number of messages to be signed. Moreover, as tokens are de-

pleted, they should be renewed continuously that might introduce further overhead.

Therefore, we believe they may not be practical for real-time networks that require

continuous, ultra-fast signature generation.

There are various schemes that leverage signature aggregation to ensure authenti-

cation and integrity in outsourced databases (e.g., [43, 41, 54]). In such applications,

the signatures of a relatively small set of messages with well-defined indexes (e.g., sig-

natures belonging to some row elements in a database table) are aggregated to obtain

compact signatures for the response of basic database queries [43]. Despite their mer-

its, potential security issues that may stem from the homomorphic properties of these

signatures were pointed out [43, 38]. Specifically, it has been shown that, since aggre-
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gate signatures are mutable, one can create “new signatures" on data items that have

not been explicitly queried by combining previously obtained aggregate signatures.

To prevent this issue, immutable signatures (e.g., [43, 38]) have been developed, which

generally rely on one-time masking and/or sentinel (umbrella) signatures. Recently,

signature schemes that depend on secure aggregation (e.g. RA [60] and SCRA [61])

have been proposed. However, as discussed, RA [60] is an online/offline signature

with a dependency on pre-defined structures in messages. In this thesis, we prove

that SCRA leaks information about the private keys, that may cause serious conse-

quences.

Traditional pre-computation methods (e.g., used in online/offline signatures [51,

27, 44]) can significantly decrease the computational overhead at the online phases.

However, since they require linear storage overhead, their use in practice may be

limited. Therefore, constant-storage pre-computation methods (as considered in this

work) are proposed by Boyko-Peinado-Venkatesan [18]. This line of pre-computation

also received a significant interest from research and a few variants of BPV that

optimizes the storage/computation costs were later proposed in [7].
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Chapter 4: Conclusion

Standard cryptographic suites offer high-security guarantees, but their high energy

consumption poses an obstacle towards their broad adoption for battery-limited de-

vices, which are an integral part of IoT applications (e.g., smart-home, healthcare).

In this thesis, we first develop a series of algorithmic improvements and optimiza-

tions that can be applied to a vast range of cryptographic techniques with only a

minimal modification. It is central to our techniques to enable self-certification and

small-constant size pre-computation capabilities for prominent key exchange, inte-

grated encryption, and hybrid cryptographic constructions. We fully implemented

our techniques and provided a comprehensive experimental evaluation of modern

embedded systems to assess their practicality for real-life applications. Our exper-

imental analysis confirmed up to 7× battery life improvements over the standard

cryptographic techniques by introducing only a small-constant storage overhead. Our

improvements adhere the core design properties of their base cryptographic standards,

and can also be potentially adopted to other similar cryptographic techniques.

Inline with efficient digital signature schemes, we presented an attack to SCRA

signature scheme that can recover the private key of the signer with an overwhelming

probability by observing only 8192 signatures, for an instantiation. We then proposed

a new generic signature scheme (i.e., FAAS) that can transform any single-signer (k-

element extraction secure) aggregate signature into a signer efficient signature scheme
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with the cost of an increased private key size. Specifically, we proposed two instanti-

ations of FAAS called FAAS-C-RSA and FAAS-NTRU that can offer up to 42× and 105×

faster signature generation as compared to their base signature schemes, respectively.

Moreover, our FAAS-NTRU instantiation provides a post-quantum promise with an

improved side-channel resiliency.
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Appendix A: Analytical Analysis

Analytical comparison of our techniques with their state-of-the-art counterparts are

depicted in Table A.1. One may notice that the improvements enabled by our two-

stage optimizations are: (i) BPV permitted us to reduce the cost of Emul operations

to k Eadd (where k = 8 as in [6]), which offers significant performance gains. DBPV

further amplified this gain by requiring slightly more storage (only possible with a

small receiver set). (ii) The integration of certified ECDH via AQ enabled us to

eliminate the transmission and verification of certificates for the initial key exchange

operations.

We exemplified the impacts of these improvements over Fixed ECHMQV and

ECIES schemes. Fixed ECHMQV required 7Emul performed by each node. In-

tegrating AQ to ECHMQV, we eliminated the transmission of the certificate along

with 2Emul computation required for its verification. With the help of BPV, another

2Emul were reduced to 2k Eadd. Hence, our improved fixed ECHMQV with AQ-

BPV scheme only requires three full 3Emul along with Eadd operations. Similarly,

ECIES takes the advantage of AQ by eliminating 2Emul. We also integrated BPV

and DBPV to ECIES, where each of them reduces the cost of one Emul to k Eadd on

the sender side. Therefore, no full Emul is needed in the online phase of the sender.

Moreover, the cost of Signcryption is also minimized at the sender side, where there

is no Emul but only a few Eadd.
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Appendix B: Proof of Theorem 1

Theorem 2 AdvA-EU-CMA
FAAS,A (t, qS, qh) is bounded as follows.

AdvA-EU-CMA
FAAS,A (t, qS, qh) ≤ AdvA-EU-CMA

Asig,B (t′, q′S, q
′
h)

where t′ = O(t) + 2qS(tRNG + tSig + tAgg) , q′S ≥ 2qS and qH = q′H .

Proof 2 We prove that if there exists an adversary A that can break the A-EU-CMA

security of FAAS signatures as in Definition 3 in time t, and after making qS and

qH signature generation and hash queries, respectively, then one can use A to build

an algorithm B that can break the A-EU-CMA security of the underlying aggregate

signature scheme ASig signatures as in Definition 3 in time t′, and after making q′S

and q′H signature generation and hash queries, respectively.

Setup: B is initiated with the public key of the underlying aggregate signature scheme

PK ′ where (sk ′,PK ′)← Asig.Kg(1κ)

• B is provided with access to the A.Sigsk and RO(·) as defined in Section 3.2.

• B keeps tables (LH , Lm) to keep track of random oracle and signature queries.

• B picks z $← {0, 1}κ, sets PK ← PK ′ and passes PK ′ to A as the public key of

FAAS signature scheme.

Execute AAsigsk(·),RO(·) : B replies A’s signature and hash queries as follows.
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• To reply a signature queries on mi for i ∈ (1, . . . , qS) B works as follows:

1. B computes (j1, . . . , jk)← H -Sim(mi||z, LH , 2) where each {ji}ki=1 is inter-

preted as a |t|-bit integer, then computes (uj1 . . . ujk)← H -Sim(ji||z, LH , 1)

and ui ← Agg(u1, . . . , uk).

2. B queries σui ← SigAsk ′(u1, . . . , uk) and stores (ui, σUi) in Lm.

3. B computes (j∗1 , . . . , j
∗
k)← H -Sim(mi||ui, LH , 0) where each {j∗i }Li=1 inter-

preted as a |b|-bit integer.

4. B queries σmi ← Asig.Ask ′(j
∗
1 , . . . , j

∗
L) and s ← Asig.Agg(σui , σmi) and

stores (mi, σmi) in Lm.

5. B returns σi = (ui, si).

• RO(·) Queries: B replies to A’s queries on H0, H1 and H2 hash functions on

input x by initiating the H -Sim(x, LH , i) oracle where i ∈ {0, 1, 2} as defined in

Section 3.2.

Forgery of A : After at most qS signature queries, A outputs a forgery 〈m∗, (u∗, s∗)〉

under PK . As in Definition 3, A wins if (FAAS.Ver(m∗, σ∗ = (u∗, s∗), PK) ∧ (m∗ ∩

Lm = ∅)). Otherwise, A loses in the experiment. If A loses in the experiment, B also

loses and outputs 0.

Forgery of B : Given A’s successful forgery 〈m∗, (u∗, s∗)〉, B works as follows.

1. First computes (j̃∗1 , . . . , j̃
∗
k) ← H -Sim(m∗||z, LH , 2) and (u∗

j̃∗1
, . . . , u∗

j̃∗k
) ←

H -Sim(j̃∗i ||z, LH , 1) and checks if u∗ ?
= Agg(u∗

j̃∗1
, . . . , u∗

j̃∗k
) holds, it outputs 0 (this
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event can happen with a negligible probability since it is equivalent to breaking

the hash function).

2. B then computes (j∗1 , . . . , j
∗
L) ← H -Sim(m∗||u∗, LH , 0) where each {j∗i }Li=1 is

interpreted as a |b|-bit integer.

3. B queries σm ← SigAsk ′(j
∗
1 , . . . , j

∗
L), computes s̃∗ ← ASig.Agg(s∗, Inv(σm))

(where Inv is the inverting function based on the mathematical structure of

the underlying aggregate signature scheme).

4. B outputs (u∗, s̃∗) as a successful forgery of the underlying aggregate signature

scheme ASig.

Success Probability Analysis: We analyze the events that are needed for B to win the

A-EU -CMA experiment as defined in Definition 3 for ASig as follows.

• Abort1: B does not fail in answering any of A’s queries.

• Forge: A wins the A-EU -CMA experiment for FAAS.

• Abort2: B does not abort during the forgery of B .

• Win: B wins the A-EU -CMA experiment of Asig

B wins if all the events happens and therefore, the probability AdvA-EU-CMA
Asig,B (t′, q′S, q

′
h)

decomposes as:

Pr[Win] = Pr[Abort1] · Pr[Forge|Abort1] · Pr[Abort2|Abort1 ∧ Forge]
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1. Abort1: B responds to each of A’s sign queries by querying the SigAsk ′(·) as

defined in Definition 3 twice. Therefore, B only aborts if it cannot receive a valid

signature from the SigAsk ′(·) that only happens with a negligible probability, and

therefore, Pr[Abort1] = 1.

2. Forge: B only aborts if adversary A aborts and since the simulation transcript is

indistinguishable from that of the actual scheme (based on the discussion in the

indistinguishability analysis), the probability that B does not abort and A wins

the A-EU -CMA experiment is Pr[Forge|Abort1] = AdvA-EU-CMA
FAAS,A (t, qS, qh).

3. Abort2: As highlighted in the Step 1 in Forgery of B , the probability that (u∗, s̃∗)

is not a valid message-signature pair is negligible. Moreover, the probability that

u∗ ∩Lm → u∗ happens is only 1
2κ
, since it requires breaking the underlying hash

function. Therefore, after the successful forgery by A , B’s forgery will also be

valid and non-trivial with an overwhelming probability and it can be concluded

that Pr[Abort2|Abort1 ∧ Forge] ≈ 1.

4. Win: B wins the A-EU -CMA experiment of Asig with probability denoted as

Pr[Win] = AdvA-EU-CMA
Asig,A (t′, q′S, q

′
h). This event only happens when all the above

events happen. This implies that the A-EU -CMA advantage of FAAS adversary

is bounded by the A-EU -CMA advantage of the underlying Asig adversary.

Execution Time Analysis: B’s running time is that of A’s plus all the the time it

takes to respond A’s queries. Each A’s query requires two random number generator

calls (which its cost is denoted by tRNG) and two SigAsk ′(·) calls. Each SigAsk ′(·)

call corresponds to a ASig.Sig(·) and a ASig.Agg(·) calls, which cost tSig and tAgg,
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respectively. Therefore, B’s running time is estimated as t′ = O(t) + 2qS(tRNG + tSig +

tAgg).

Transcript Indistinguishability: A’s view of the actual scheme is the public key PK ,

the signatures (σ1, . . . , σj) for j ≤ qS and the output of the hash functions. PK =

PK ′ is an output of ASig.Kg(1κ), which is identical to the actual scheme. For the

signatures {σj = (uj, sj)}qSj=1, one can see that the distribution of u is identical to

the actual scheme since it is the output of the Agg(·) algorithm on the values {ui}ki=1

which have the same distribution as in the actual scheme, (due to the RO(·) calls).

Moreover, the distribution of {si}qSi=1 in the simulation is identical to those in the

actual scheme, since they are all the output of the same ASig.Agg(·). Lastly, the

output of the random oracles in the proof is simulated with the same domain for

H0, H1 and H2 as in the actual schemes.

Discussion: We note that for the instantiations in Section 3.4, the underlying

scheme, C-RSA [41], is proven to be k-element secure as in Definition 4. As for the

FAAS-NTRU instantiation [34], because of the probabilistic nature of signature gener-

ation due to the sampling step r ← χNσ̃ , the aggregation of each v = v1 + (−1)bag

where u1 = pr + up, and v1 = u1h mod q leads to the aggregation of r in the ag-

gregate signature. The aggregated randomness contributes to the hardness of the

signature extraction problem since to do so, one needs to first take out the aggre-

gated randomness from the signature.

We also note that since we are only aggregating 64 signatures, which is much less

than even the theoretical bound mentioned in [34], FAAS-NTRU is immune to attack

on batch signatures proposed in [34].
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