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To my parents.



I went this far with him: "Sir, allow me to ask you one
question. If the Church should say to you, 'two and three
make ten', what would you do? "Sir," said he, "I should
believe it, and I should count like this: one, two, three, four,
ten." I was now fully satisfied.

Boswell's Journal for 31st May, 1764
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REAL ALGEBRAIC GEOMETRY AND
THE PIERCEBIRKHOFF CONJECTURE

INTRODUCTION

What is real algebraic geometry? It is not easy to give a precise definition

of this relatively young field, so we will rather provide some historical background.

In the nineteenth century, a number of algebraists were interested in locating the

real zeros of polynomials in one variable. Important results were obtained by J.C.F

Sturm (1803 1855), Ch. Hermite (1822 1901), C.G.J Jacobi (1804 1851), C.W

Borchardt (1817 1880), J.J. Sylvester (1814 1897) and A. Cayley (1821 1895),

to name just a few.

Today, one is rather interested in sets defined by finitely many polynomial

inequalities f(xi,...,x,,)> 0 (or f(xi,...,xn) > 0), the coefficients coming from

some ordered field k, typically the real numbers. Questions such as "how many

inequalities are needed in order to describe a given semialgebraic set" have been

answered. Semialgebraic geometry depends very much on how the underlying field

is ordered, and a theory of ordered fields was developed by Artin and Schreier in

the 1920's. Later on, their ideas were generalized to commutative rings, but is was

not until the late seventies, when things were put into perspective by M. Coste and

M.F. Roy, who introduced the real spectrum of a ring A as the set of all orderings on

A, together with a topology that reveals its 'spectral' features. The real spectrum

proves to be very useful for deriving results on semialgebraic sets, when A is taken

to be the ring of polynomials in n variables over an ordered field. One of the central

theorems of real algebraic geometry is the Ultrafilter Theorem by L. Br Cocker that

establishes an intimate relationship between the abstract positivity of a polynomial

f E k[xi,...,xn] and the semialgebraic set If E kn : f(x) > 0} defined by f.
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Another area that plays an important role in this context is the theory of

valuations and real places, whose main concepts are due to W. Krull (see Journal

Reine Angewandte Mathematik, 1932). A highlight of this theory is the so-called

Artin Lang Homomorphism Theorem that appears in S. Lang's paper "The Theory

of Real Places" in the Annals of Mathematics in 1953.

An interesting problem where some techniques of real algebraic geomtry can

be applied, is the Pierce-Birkhoff-Conjecture. First stated by G. Birkhoff and R.S.

Pierce in 1956, the conjecture claims that a piecewise polynomial function

h:Rn>IR

can be reexpressed in terms of suprema and infima of finitely many polynomials,

i.e.

for some fib E 7 7 Xrd

h = sup inf.{ fij }
j z

The outline of this paper is as follows: Chapters I and II present the Artin

Schreier theory for fields and commutative rings, in chapter III the real spectrum

will be introduced and further examined in chapter IV, which also contains the

Ultrafilter Theorem. Chapter V provides some examples illustrating the Ultrafilter

Theorem; and in chapter VI the basic concepts of valuation theory will be devel-

oped. In chapter VII, we will focus on semialgebraic subsets of Rn and describe

the cylindrical algebraic decomposition of semialgebraic sets (due to P.J. Cohen),

thus providing an important tool for the proof of the Pierce-Birkhoff Conjecture

in chapter VIII. In chapter X we will take a different point of view and 'attack'

the Pierce-Birkhoff Conjecture with methods of abstract real algebraic geometry as

suggested by J. Madden in 1989. Some facts about semialgebraic functions that

will be needed for Maddens's approach are presented in chapter IX.
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CHAPTER I

ORDERED FIELDS

Before we can develop semialgebraic geometry, we need to settle the notion of

positivity and 'order', i.e. we have to define what it means for a polynomial to be

positive on a subset of its domain. So in this chapter, and in a more general context

in chapters II and III, the basic concepts of orderings on fields will be introduced.

Definition 1.1: An ordering P of a field K is a subset P C K satisfying the

following conditions:

(P1) P+Pc P (P2) PPCP (P3) P n P = {0} (P4) P U P = K

Remarks:
1. Conditions (P2) and (P4) imply that K2 C P: Since either a E P or a E P,

a2 = a a = (a)(a) E P.
2. Condition (P3) is equivalent to (P3'): 1 0 P. Since if 1 E P then 1 = 12 E

P fl P = {0} and conversely, if OaEPn P then a2 E P, so 1 E P.
3. PcQP=Q: Suppose q E Q\P, then q E P C Q, so gEQn Q {0}.

Given an ordering P on K, one can define a total ordering on K by

a<b #ba EP.
Then for a, b, c E K:

(i) a <bai-c<b-Fc
(ii) a < b, c >0 ac < bc.

Definition 1.2: A preordering T on K is a subset of K with the following proper-

ties:

(Ti) T+TET (T2) TT ET (T3) T n T = {0} (T4) K2 E T

Since (P4) implies (T4), every ordering is a preordering.
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Lemma 1.3. If T is a preordering on K and a (1 T then T aT is a preordering

on K.

Proof. (1), (2) and (4) follow from the fact that T is a preordering. Suppose 1 =

bac, where b, c E T. Then c 0 and a = (b+1) = --2-2(cb+c) E T, a contradiction.

Definition 1.4: A field K is said to be formally real if 1 is not a sum of squares

in K.

Theorem 1.5. K has an ordering if and only if K is formally real.

Proof. The 'only if'-part follows from the axioms. Suppose K is formally real. This

means that E K2 is a preordering on K. Let M:= {T: T preordering on K and

T D E K21. M is nonempty and partially ordered by inclusion. If {TO is a chain in

M then T := UaTa is an upper bound; so by Zorn's Lemma, M contains a maximal

element P. Claim: P is an ordering. Suppose a % P. Since P = PaP, 0 a1 E P,

hence a E P.

Example: Let (K, <) be a totally ordered field, K(t) the rational function field in

one variable. For any a E K the sets

Pa,,+ := {0} U {(t a)rf(t) : f(a) oo, f(a) > 0, r E Z}

Pa, := {0} U {(a At) : f (a) # oo, f (a) > 0, r E Z}

are orderings on K(t) that extend the ordering on K. In Pa,+ we have a < t < b

for any b K with b > a and in Pa,_ b<t<aforanyb<a.

Definition 1.6: Let KIL be a field extension, P an ordering on K. An ordering

Q on L is an extension, of P if P = Q fl K.

Definition 1.7: A field K is said to be real closed if it is formally real and has no

proper formally real extension that is algebraic over K.
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Theorem 1.8. Let K be a field. The following are equivalent:

(1) K is real closed

(2) P = K2 is the unique ordering on K and every polynomial of odd

degree has a root in K.

In order to prove Theorem 1.8 we need the following result, which is due to

T.A. Springer:

Lemma 1.9. Let LIK be a finite algebraic extension of K where [L : K] is an

odd number, q =< , a,n > an anisotropic quadratic form over K. Then q is

anisotropic over L.

Proof. We may assume that L = K(a), since if L = K(a)(/3), then [L : K] = [L :

K(a)] [K(a) : K] and both extensions are of odd degree, so we can iterate the

argument. Thus assume L = K(a) and let f E K[x] be the minimal polynomial of

a over K. We will use induction on 7/ = deg(f), n odd. If n = 1, there is nothing to

show, so assume n > 1. Let q =< , am > be anisotropic over K. Suppose q is

isotropic over L. Then we find gi, , g, h E K[x], not all g, = 0 and deg(gi) < n

such that

(*) aigi(x)2 + + aingm(x)2 = f(x)h(x)

holds in K[x]. We may also assume that gcd(gi, , gm) = 1. Let d :=
max{deg(gi ), , deg(gn,)}. Then d < n and since 2d = n deg(h) it follows

that deg(h) < n and odd. In particular, h has an irreducible factor h1 of odd de-

gree. Now, the algebraic extension E := K[x]/(hi) of K satisfies [E : K] < n and

odd, therefore, by induction, q must be anisotropic over E. On the other hand, (*)

implies that q is isotropic over E, a contradiction.

Proof of Theorem 1.8. (1)(2): Let a E P. If a is not a square in K then K(iii) =

K[x]/(x2 a) is an algebraic extension of K which is not formally real. So we find

an equation

1 =
n

i=1
xi + yiA/T2)2



and therefore

1 = (xi2 yi2a)

i=1

Since K is formally real, Ein_i yi2 0, so

2a = (E yi2)-1(1 E xi )
2

( E 2 )2
i=1 i=1

2 \)xi E P,

6

a contradiction. Therefore every positive element in K is a square in K.

Now suppose f E K[x] is a polynomial of degree n (n odd) that has no root

in K. Without loss of generality assume f irreducible (otherwise at least one of

its irreducible factors has odd degree). The field L := K[x] /(f) is an algebraic

extension of K with [L : K] = rt. If we can show that P can be extended to an

ordering Q on L we shall be done, for this contradicts the assumption that K is

real closed. Consider the set

T := {pibi2 + + pnbn2 : pi E P, bi E L, n E N}

T satisfiesPcT,T+TCT,TTCTandL2C T.
Claim: T is a preordering on L. It remains to show that 1 ct T. Suppose

1 = p1 bi2 + pin bm2 for some pi E P, bi E L.

This means that the quadratic form < 1,pi , p,n > is isotropic over L, contradict-

ing Lemma 1.9. Therefore T is a preordering which can be enlarged to an ordering

Q on L. Q extends P since P E T.

(2) = (1): Let L1K be a proper algebraic extension of K. Then L contains

a finite extension L' D K and by assumption, [L' : K] = 2m, m E N. This

implies that there exist a field F, K C F C L, such that [F:K]. 2. Therefore
F = K( /) for some a E K. Since a K2, there exists b E K with a = b2. Hence

1 = bz = ( )2 is a square in F, so F is not formally real. 44

Definition 1.10: Let P be an ordering on a field K. A real closure K of K is an

algebraic extension of K that is real closed and whose ordering contains P.

From Theorem 1.8 follows that k2 is the unique ordering on K.
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Theorem 1.11. Every ordered field has a real closure and any two real closures of

a field K are isomorphic.

The proof uses a version of

Sturm's Theorem: (without proof) Let R be a real closed field, f E R[x] without

multiple roots, fo,... , fk a sequence of polynomials constructed in the following

way:

fo = 1, fi L-2 = fi-1 fi

with deg(fi) < deg(fi_i) for i = 2, ... , k and fk E R \ {O }. (In particular fk =

gcd(f, f'))

If vf(-Foo) (vf(oo)) denotes the number of sign changes of the leading coefficients

of the polynomials f o ( x ) , . . . , fk(x) (fo(x), , fk(x)) then the number of roots of

f in R is equal to vf(oo) vf(-Foo).

Proof of Theorem 1.11.

(a) Existence of a real closure by Zorn's Lemma: Let K be al field with ordering P

and K an algebraic closure of K. Let

£ := {(F,PF K C F CR- and P C PF}

The family I is ordered by

(F, PF) (F', PF, ) :4=>. F C F' and PF C PF'

By Zorn's Lemma, I contains a maximal element (k, Pk). Claim: k is real closed.

We have to show that every positive element is a square in K. Suppose a E Pk but

a is not a square, then the semiring T generated by Pk and elements of the form

(c c, d E K, is a preordering in the field K( /i): If

1 = bi(Ci diNIC7)2, Ci, di E K, bi E Pk



then

1 = bi (c'2 di2a) E Pk
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which is impossible.

Therefore T is contained in an ordering on .k(Va) that extends the ordering on k,

contradicting the maximality of K.

(b) Now let R and R' be two real closures of K. Our task is to show that they are

isomorphic. Consider the family

.F := {0 : F--+R': KCFCR,Ois order preserving}

J is partially ordered in the following way: 01 -< 02 if one has a commutative

diagramm
F1 F2

1 492

RI

Again, by Zorn's Lemma, there is a maximal (1. : L --+ R'. It remains to show

that L = R. If not, there exists a E R\L with minimal polynomial f E L[x]. As

an ordered field L has characteristic zero and is therefore separable, so f has no

multiple roots. Let al < < an be the roots of f in R, with a = Applying

Sturm's Theorem, one gets a sequence of polynomials fo,...,fk in L[x]. Since (I)

is order preserving, the polynomial (1)( f) = 1 4(at)x' has the same number of

roots in R' as f in R:

00) v f(+oo) = '14m ( 00) V4)(f) (+00)

If we denote the roots of (I)(f) with b1 < < kJ, we obtain a homomorphism

klf : L(a) R by klf(a) = bj.

Theorem 1.12. (Fundamental Theorem of Algebra) If R is a real closed field, then

R(1---1.) is algebraically closed.

Proof. Suppose C = = R(i) is not algebraically closed, then, since by

Theorem 1.8 any finite algebraic extension of R is of degree 2', m > 1, there exists
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an extension L with [L : = 2. So we can find a = a + bi, a, b E R such that a is

not a square in L. Since R is real closed, b 0, and a2 b2 = c2 for some c > 0,

c E R. This implies that both c a and c + a are positive (since c2 > a2). So we

find x, y E R with x2 = 1-s, y2 = c
2
a and we choose x > 0, sign(y) = sign(b).

Then (x iy)2 = x2 + 2xyi y2 = a + 2xyi. Since (2x y)2 c2 a2 = b2 and

x > 0, it follows that 2xy = b, hence a = (x iy)2, contradicting our assumption

that a is not a square in C.

Corollary 1.13. Let R be a real closed field and K C R a subfield. K is real

closed iff K is algebraically closed in R.

Proof. Suppose K is not algebraically closed in R. Then we have the field extensions

K C L C R, LIK algebraic. But R induces an ordering on L (by restriction), which

contradicts the fact that K is real closed.

Conversely, assume K is algebraically closed in R. Then K(\ -/-1) is algebraically

closed in R(Nr-1) for, if a = a + bi (a, b E R) is algebraic over K(i), it is algebraic

over K, and so are a, VI, hence a, b E K and a = a + bi E K(i). As R is

real closed, Theorem 1.12 applies and it follows that its algebraic closure is R(i).

Therefore the algebraic closure of K is K(i). But this means that K is real closed

because there are no algebraic extensions of K properly contained in K(i) and 1

is a square in K(i).
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CHAPTER II

ORDERED RINGS

The concept of reality and orderings can be generalized to rings. It turns out

that we need to relax condition (P4) and require that PnP be a prime ideal in the

ring being considered. As a consequence, not every ordering P on a ring A defines

a total order anymore and it is possible to have chains of orderings PCQC. .

Definition 2.1: Let A be a commutative ring with unity. A subset P of A is called

an ordering on A if it satisfies the following properties:

(1) P+PcP (2) PPCP (3) PU = A

(4) p = P fl P is a (proper) prime ideal of A

p is called the support of P, also denoted by supp(P).

Remarks:
(1) As in the field case, A2 C P and 1 P, for otherwise 1 = 12 E P n P, so
p = A.

(2) If P c Q, then supp(P) c supp(Q): Suppose supp(P) = supp(Q) and a E

Q\P.Then a E P C Q, so a E supp(Q) = supp(P) C P, a contradiction.

Given an ordering P one introduces the following notation:

a >p 0 :<=> a E P\ P

a >p 0:<=>aEP

a =p 0 :<# a E supp(P)

Note that there are rings that cannot be ordered: let A = Z/nZ; then 1

contradicting that 1 ct P.

If P is an ordering on a field F, then p = supp(P) is the zero ideal.

V11.-1
2-.12=1.
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Starting with an ordering P on A one can pass to the domain A = A/ supp(P)

and one obtains the ordering P on A. Since P has support zero, it extends uniquely

to an ordering on k(p) := quot (A/ p): b E P if ab E P. Conversely, given a prime

ideal p of A and an ordering P on k(p), the set P = {a : a E P n Alp} is an

ordering on A with support p.

In contrast to the field case one distinguishes two notions of reality:

Definition 2.2: Let A be a commutative ring with unity.

(1) A is said to be semireal if 1 is not a sum of squares in A

(2) A is said to be real if for ai, , an E A

ai2 = 0 = ai = 0, 1,...,n.
i=i

If A is real, then it is semireal: if 1 = Ez ail then 0 = 12 + L-dz=1 ail.

If K is a field, these two concepts coincide: suppose a12 + + an2 = 0 but al 0

(say), then 1 = (cL2-)2 (Sa)2.
al \ al

Also Note that there are rings which are semireal but not real:

A := [xi, , x,d/(x12 + + xn2) is not real because Ezn._i xi2 = 0 but xi 0 for

all i. A is semireal since it admits a homomorphism into the field of real numbers

via the map

: A 4 R, 0(f- + (x12 + + xn2)) = 1(0).

In analogy to the field case one defines a preordering T on A as a subset satisfying

the following conditions:

(Ti) T+TcT (T2) T-TcT (T3) A2 c T (T4) 1 T

Lemma 2.3. If T is a preordering on A and xy E T for x, y E A, then either

T xT or T yT is a preordering on A.
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Proof. If none of them is a preordering one has equations -1 = ti+xt2, -1 = t3+yt4

for suitable ti E T (conditions (T1)-(T3) hold for T + xt and T + yT). Combining

these equations one gets

xyt2t4 = (-1-t1)(-1-t3) =l+ti+t3+tit3 = -1 = -xyt2t4+ti+t3-1-tit3 E T,

a contradiction.

Lemma 2.4. Any preordering T is contained in an ordering.

Proof. Using Zorn's Lemma (applied to the set of preorderings containing T, par-

tially ordered by inclusion) one can enlarge T to a maximal preordering M. In

order to prove that M is an ordering one has to show that (1) M U -M = A and

(2) M fl -M is a prime ideal of A.

As to (1), suppose x Et M. Since M xM is a preordering and M maximal,

M = M - xM, hence -x E M. As to (2), show first that M fl -M is an ideal in

A: ml, m2 E M fl -M implies m1 m2 E M fl -M. If m E M fl -M and a E A,

then either M + aM = M or M aM = M and since both imply that +am E M,

one concludes that M fl -M is an ideal in A. Now suppose ab E M fl -M, but

a 0 M fl -M and assume a 0 M. Then M + aM ct M. Since +ab E -M, Lemma

2.3 implies that M + bM = M, so that b E M fl -M.

Theorem 2.5. A ring A can be ordered if and only if A is semireal.

Proof. Let P be an ordering on A. If A is not semireal then -1 E E A2 C P, a

contradiction. Conversely, assume A is semireal. Then -1 0 E A2, so E A2 is a

preordering which is contained in an ordering on A.
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CHAPTER III

THE REAL SPECTRUM OF A COMMUTATIVE RING

In this Chapter we will describe the set of orderings as a topological space.

This was first done by M. Coste and M.F. Roy in 1979. For a very detailed pre-

sentation of the material consult [3]. We will see that this space has some curious

properties.

Definition 3.1: The real spectrum, Sper A, of the ring A is defined as the set of

all pairs a = (p, P) such that p is a prime ideal of A and P is an ordering on k(p).

Since every pair (p,-P) corresponds to an ordering P on A with support p, one

can interpret Sper A as the set of all orderings on'A. If k(a) denotes a real closure

of k(p), there is the canonical homomorphism

0a : A k(p) --+ k(a),

where the first arrow stands for projection and the second for inclusion. For given

f E A we will write f(a) rather than 0,(f).

As seen in chapter I, the real closure of an ordered field is unique up to

isomorphism, one may introduce the following equivalence relation: given ring ho-

momorphisms q5 : A + K, 01 : A K' into real closed fields K, K', denote by k

(k') the real closures of A/ ker 0 (A/ ker 0'). One says that 0 and 0' are equivalent

(in symbols 0 0') if there is an isomorphism ti) : k k' such that the diagram

A ---+ k
sbit

k`
is commutative. This allows us to characterize Sper A as the set of all equivalence

classes of homomorphisms q : A K, where K is a real closed field and K2 its

unique ordering. The corresponding point ao in Sper A is the pair

act, = (kerb, P),
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where P = K2 fl A /kerq is the ordering on A/ker0 induced by the ordering K2 on

K.

We are now going to introduce the promised topology on Sper A, which in

the literature is commonly denoted as the Harrison topology on Sper A. A subbasis

for this topology is given by the sets

HA(f) := {P E Sper A: f >p 0};

accordingly, a basis for the Harrison topology is given by the sets

, fn.) := 113 E Sper A : f1 > p 0, , fri >p 01

For convenience, let's also define the sets

, fn,) := Sper A : f1 >p f > p 01

, fn) := E Sper A : f1 =p O, ... fr, =p O }.

Here we observe that , fn) = Z(f), where f = Ei=i f?, since

h 0) =p 0 f > Op(h) = 0,- ,Op(fri) = 0 < > Op(

as k(P) is formally real.

Theorem 3.2. Let P and Q be orderings on A. Then

PE{Q} -4=> QcP

Corollary 3.3. Maximal orderings are closed points in Sper A.

f?) = 0,

Proof of Theorem 3.2. P E 101 .4=> (P E HA(f) Q E HAM) <=> P\ P C
Q\ Q.#.QCP. As to the last `<#.`-, sign, suppose a E Q\P, then a E P\P C

Q\Q and if a E P\ P but a ct Q\ Q, then a E Q C P.
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Remark: Theorem 3.2 implies that the closure of a point {P} in Sper A is

totally ordered by inclusion: suppose T D P, T' D P and a E T\T1, b E \T = T E
H(ab), T' E H(b a) and H(ab)nx(b a) = 0, contradicting T, T' E {P}. So

closures of points look like 'spears', which explains why one chose the abbreviation

`Sper A' for the real spectrum.

Definition 3.4 Given two points P, Q E Sper A, P C Q. Q is called a specialization

of P and P is called a generalization of Q.

Now let R be a real closed field and A an affine R-algebra, i.e.

where p is an ideal in R[xi,... , xn]. Let V(R) = {x E Rn : f(x) = 0 for all f E p}.

For any a = (al, , an) E V(R) consider the ordering Pa = {f E A: f(a) > 0 },

where '>' refers to the unique ordering W on R. The support of Pa is the maximal

ideal ma = ff E A: f(a) = 0 }. ma is maximal since A/ma R via the map

0(f + ma) = f(a)

Hence the map a 1-4 Pa defines an embedding of V(R) into Sper A, or more

precisely, into the subspace of maximal points of Sper A. In order to see that

a 1-4 Pa is in fact injective, suppose Pa = Pb but a # b, say al < b1. Since Pa = Pb,

f(a) > 0 #>. f(b) > 0, so f(a) f(b) > 0 for any f E A. But for g := xi -1(ai bi)

g(a) g(b) < 0.

It turns out that the topology induced on V(R) by the Harrison topology

of Sper A is just the strong topology, i.e. the topology coming from the interval

topology on R:

Theorem 3.5. The relative topology on V(R) as a subset of Sper A is precisely

the strong topology on V(R).

Proof Consider a basic open set HUI.,

fa) n V(R) = {Pa :

fn) of Sper A. Then

E Pa\ Pa} = {a: fi(a) > 0}
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which is open in the strong topology. Conversely, if U := {a E V : bi < ai < ci, i

1, , n} is an open set in V(R), then

U = H(x b1, , xn bn, c1 xl, , cn x n V(R),

which is open in the induced Harrison topology on V(R). Even more is true:

Theorem 3.6. V(R) is a dense subspace of Sper A.

This is a consequence of the Artin-Lang-Homomorphism-Theorem

(proved in a later section):

Let A be an R-affine algebra, fi,gj (i = 1,...,n,j n) elements of

A. If there exists an ordering T on A such that fi >T 0 and gi >7' 0 for all i,j

then there exists a R-algebra homomorphism q : A > R such that 0(f i) > 0 and

0(gi) 0 for all i,j.

Proof of Theorem 3.6. It suffices to show that every basic open set of Sper A meets

V(R). Let fi , , f,. E A such that H = 0 0, say P E H. Then
fi >p 0 and there exists : A > R such that (¢(f i) > 0, i = 1,...,r. Let

ai := q(xi), 1 = 1,...,n. The point a = (al, , an) is in V(R), since for any

g E p, g(ai,... , an) = g(0(xi),... ,0(xn)) = (kg) = 0, and since (XL) = fi(a) > 0

for all i, the ordering Pa belongs to H n V(R).
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CHAPTER IV

THE REAL SPECTRUM IN THE LIGHT OF LATTICE THEORY

Definition 4.1: A partially ordered set (C,<) is called a lattice (with 0 and 1) if

every finite subset M E has a greatest lower bound (inf M) and a least upper

bound (sup M) in r. In particular, 0 inf G := sup 0 and 1 := sup .0 := inf 0.

Some notation:

x A y := inflx,y1 x V y sup{x,y} for x, y E

£ is called a Boolean lattice if also the following conditions hold:

(a) xA(yVz)=(xAy)V(xAz)

x V (y A z) = (x V y) A (x V z) (distributivity)

(b) for x E £ there exists x' E ,C such that

x V x' = 1 and x A = 0 (complement)

Definition 4.2:

(a) C(A) denotes the Boolean sublattice of 2sP" A (the power set of Sper A) gen-

erated by the Harrison subbasis {H(f), f E A}. The elements of C(A) are called

constructible sets.

(b) The constructible topology on Sper A is generated by the constructible sets,

which form a basis for this topology.

C(A) is the smallest subset of 2s P" A that contains all Harrison sets and is

closed under finite unions and complements. More precisely, C(A) consists of finite

unions of sets of the form

H( , , f,) n H(gi,...,gn) or H(fi,...,fm)n Z(g)
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for fi, gi, g E A. Note that

H(gi,...,gi)c =UL1-11(gi) and Z(g) = H(g2)c.

The constructible topology is usually finer than the Harrison topology. How-

ever, they agree in case that A = K for some field K, since in this case H(f)e

H(f) for 0 f E K.

In order to avoid confusion, the following terminology will be introduced:

A set H E Sper A will be called C-closed (C-open, C-compact, etc.) if it is closed

(open, compact...) in the constructible topology. Attributes without this prefix and

formations like A 1.--+ A refer to the Harrison topology.

Theorem 4.3. In the constructible topology, Sper A is a totally disconnected

compact space. A subset C E A is constructible if and only if it is C-open and

C-closed.

Proof. Let Z = lifEA{0, 1}, where {0,1} has the discrete topology and Z the

product topology. Z is totally disconnected:

Suppose there exists a connected subset M E Z containing at least two points

zl , z2. Then one can find an f E A such that zi (f) z2(f), say zi (f) = 1, z2(f) = 0.

The open sets U1 := {z E Z : z(f) = 1} and U2 := E Z : z(f) = 0} are disjoint

and cover Z. Therefore M = (M fl U1) U (M fl U2), M fl Ui 0, a contradiction.

By Tychonov's Theorem, Z is also compact.

The idea of the proof is to embed Sper A into Z and to show that it is closed

in Z, so that the theorem follows. For this purpose one identifies an ordering P on

A with the characteristic function on P\ P, that is

P <> 1p\_p where 1P \ P(f) =
1 f E P\ P
0 f E P
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That this is in fact an embedding, follows from the fact that P = Q <=;> P\ P =
Q\ Q as seen earlier in the proof of Theorem 3.2.

Given the function ip\_p E Z, we recover the ordering P by

P = (-1-r-,_p)({0}) = E A : 1p \_p( a) = 01.

Now, assuming z E Z \Sper A, one has to show that z is contained in an open

set U that does not meet Sper A. To the function z attach the set S := z-1({0}).

Since S is not an ordering, it violates at least one of the following axioms:

(1) S+ScS (2) SScS
(4) S U = A (5) S fl S is a prime ideal

(3) 1 S

However, this implies that the particular axiom is violated in an entire neigh bor-

hood of z: suppose, for instance, S does not satisfy (1), i.e. there exist a, b E S

such that a + b ct S. Then the set

U1 := {z E Z : z(a) = 0, z(b) = 0, z(a = 1}

is a neighborhood contained in (Sper A)c, since any w E U1 violates (1), hence

cannot come from an ordering. Likewise, if S violates (2), the set

U2 := E Z : z(a) = 0, z(b) = 0, z(ab) = 1}

is the desired neighborhood for S; the other cases are handled similarly.

Let's turn to the second statement of the theorem: by definition of the con-

structible topology a constructible set is both C-closed and C-open. Conversely,

let C be a C-clopen set. Since C is C-open, it is a union of basic C-open, i.e.

constructible sets. C is also C-closed, therefore it is C-compact (as a subset of a

C-compact space). Consequently C is a union of finitely many constructible sets,

which renders C constructible.
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Corollary 4.4. Sper A is quasicompact with respect to the Harrison topology.

Proof. The Harrison topology is coarser than the constructible topology, therefore

any open cover of Sper A is a C-open cover of Sper A.

Definition 4.5: A set Y E Sper A is called proconstructible if it is an (arbitrary)

intersection of constructible sets of Sper A.

Note: Y E Sper A is proconstructible if Y is C-closed.

Proof. As an intersection of constructible (therefore C-closed) sets Y must be C-

closed, and if Y is C-closed, then Yc = UCa, Ca constructible, so Y = nc,C,, is

proconstructible.

Theorem 4.6. Let Y E Sper A be proconstructible. Then

Y = U
{Y}*

yEY

Proof. "J" is obvious. As to the other inclusion suppose z E Y. then for all open

constructible sets U with z E U, the intersection U n Y is nonempty. Let

:= {U open constructible : z E U}

and consider V := nuEu(U n Y) = (nuEttu) n Y. Since U n Y 0 for each U,

(nu EuU) n Y 0 (otherwise, by C-compactness of Y, there exist U1, , UT, E

such that U1n, , nUn n Y = 0, but U1n, , nun is a neighborhood of z and

therefore meets Y). For y E (nuEu) n Y it follows that z E {y} because any

neighborhood of z contains an open constructible set U z.

Corollary 4.7. A proconstructible set Y E Sper A is closed iff it is closed un-

der specialization; a constructible set C E Sper A is open iff it is closed under

generalization.

Proof Since 17 = UyEy{y}, the first part of the Corollary follows. Now let C E C(A)

be open, Q E C and P E Sper A such that P C Q. We need to show that P E C.
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If not, then P E CC = UTEc.{T}, so there exists T E CC such that T C P. But

then T C P C Q, so Q E CC by the first part of the theorem, a contradiction.

Conversely, let U be constructible and closed under generalization. In order to show

that U is open, it suffices to show that IT' is closed under specialization. To this end

let T E P E Sper A with P D T. If P E U, then T E U, again a contradiction.

Note that the second statement in Corollary 4.7 becomes false if we only

require that C be proconstructible: Consider the ordering Poo+ E Sper R[t] as

described in detail in the next chapter. Poo+ is proconstructible, for

P'4" nQNI1(t
n).

Also, Poo+ is closed under generalization, since supp P+ = (0). But

Sper R[t]\Poo+ = Sper R[t]

by Theorem 4.9, so Poo+ cannot be open.

Corollary 4.8. Let Y be a closed subset of Sper A. Y is irreducible (i.e not a union

of two proper closed subsets of Y) iff Y = {y} for some y E Sper A. Moreover, this

y is unique.

Proof. Assume Y is irreducible and let

if := {U C Sper A : U open constructible and U fl Y 0}.

Define Z := nuEuU. Since for any finite collection U1, Un the intersection

Y fl WiLlUi is nonempty (if Y fl Ui # 0, i = 1, 2 but Y fl (U1 n u2) = 0, then
Y = (YnUf)U(YnUD, so Y reducible), C-compactness of Y implies that Ynz 0.

For y E Ynz one has Y = {y }, since if x E Y\{y}, there exists an open constructible

set V that meets Y but not {y}, so y t% Z.

For the converse, let Y = {y} and assume Y = C1 U C2, Ci closed in Y and

C1 fl C2 = 0. Then y E C1 or y E C2 and since Ci closed, {y} C C1 or {y} C C2

To see that y is unique, suppose Y = {y} = {y' }. Theorem 3.2 implies that

y C y' and y' c y, hence y = y'.
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Theorem 4.9. If C C Sper A is constructible, then C n V(R) is C-dense in C and

consequently dense in C.

Proof. It suffices to show that every basic open set U C C meets C n V(R), i.e.

U n C nV(R) 0. To this end, since U n C is constructible, it is enough to prove

the following:

(*) D C Sper A constructible, D 0= D n V(R) 0.

Without loss of generality one may assume D = Z(f) n , fm,), D 0

(f,fi E A). Let B := A/(f) and W(R) := VB(R). It will be shown that W(R) n

fm) 0. As a subset of Sper A/(f), , fm) 0, so by Theo-

rem 3.6 , fm) n w(R) 0 and the preimage of 75 E fm)nw(R)
is an ordering in V(R) n Z(f) n HUI., ,

Corollary 4.10. Let P E Sper A. {P} is constructible if and only if P E V(R).

Proof. {P} constructible = {P} n V(R) 0 = P E V(R) and conversely, if

P E V(R) P = Pa for some a = , an) E V(R) = P = Z(fi, fn),

where fi = xi ai, i = 1, , n.

Definition 4.11 Let a(V(R)) := {C n V(R) : C E C(A)}. Elements in o(V(R))

are called semialgebraic subsets of V(R).

If C = n z(f), f, fa E A then

C n V(R) = {a : f =pa 0, f2 >pa 0, i = 1,... , m}

= {a : f(a) = 0, f$(a) > 0, i = 1, ... ,m},

so the semialgebraic sets in V(R) can be described by finitely many polymial equa-

tions and inequalities.



The retraction map

r : C(Sper A) > a(V(R))

C 1> CnV(R)
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is a one-to-one correspondence between the constructible sets in Sper A and the

semialgebraic sets in V(R). This can be seen as follows:

(a) Surjectivity: given a semialgebraic set M = 0, gi > 0, i = 1, , m} C

V (R), then M = H(gi, , gm) n Z (f).
(b) The proof of injectivity will make use of (*) in the proof of Theorem 4.9. Suppose

r(C1) = r(C2), i.e. C1 n V(R) = C2 n V(R). Then (Ci AC2) n V(R) = Cl n C2 n

V(R) U C2 n Ci n V(R) = 0, so by (*) Cl AC2 = 0 which means C1 = C2.

The inverse map of r assigns to each semialgebraic set M the unique con-

structible set M with the property M = M n V(R). M is the closure of M with

respect to the constructible topology: M is C-closed as a constructible set and it is

the C-closure of M because M n V(R) is C-dense in M by Theorem 4.9.

Definition 4.12: Let G be a boolean lattice of 2SP" A A filter ,T C G is a

nonempty subset of G satisfying

(F1) 0 It .F

(F2) A, B AnBEY-
(F3)AE.F, BDA = BE

Maximal filters are called ultrafilters; these always exist by Zorn's Lemma

(applied to the set of filters partially ordered by inclusion; an upper bound of a

chain is the union of the filters in the chain). Ultrafilters can be characterized in

the following way:

Proposition 4.13. A filter .F of a boolean lattice G is maximal if for any A E C,

either A or AC belongs to .F.

Proof. Of course not both A and AC are in since AnAc = 0 .F. Moreover, either

A or AC intersects all elements in if not, there exist F, F' F C A, F' CAC
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and F n F' = 0. Without loss of generality assume A n F 0 for all F E T. The

collection

:= {B EL: BD (F n A) for some F E .F}

is a filter containing T; hence by maximality of .F, = so A E .F.

Conversely, let .F be a filter such that A of AC belongs to T for any A E L. If

T is not maximal, then T C .F1 for some maximal filter and one finds a set

B E ..71\.T. But the BC E F C F, so B n BC = 0 E T, a contradiction.

Lemma 4.14. There is a one-to-one correspondence between the set of filters on

C(A) and the set of proconstructible sets 0) of Sper A, given by the map

n F YF
FET

YF 0 0 since Sper A is C-compact. The inverse map, defined for Y proconstructible

and non-empty, is

:= { B E ,C : B D Y}.

Proof. 4 . is onto since Fy (which clearly is a filter) maps to Y. To prove injectivity it

is enough to show that (I)-1 o cb(.F) = .F for any filter .F. So for .F and Y := n A
AEF

one has to show that .7. = .Fy. .1 C .Fy since any A E .F contains Y. If B

is any constructible set containing Y, then BC C U A'. BC is C-compact, so
AEF

Bc C A.U U An for finitely many Ai and B J Al n nAn. But Al n nAT, E .F,

so B E .F.

Corollary 4.15.

(a) Ultrafilter Theorem (L. Bri5cker, 1981):

There is a bijective correspondence between Sper A and the set of ultrafilters on

o(V(R)) via the map

: Sper A Ultra a(V(R)), a = {M : a E ./V/}



with inverse

0' : Ultra o(V(R)) -- Sper A, ,F i n .11/.
ME.7-
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(b) The set of filters on cr(V(R)) corresponds bijectively to the set of nonempty

proconstructible sets of Sper A via ,F 1-4 U Al
m1-

In this respect, given an ordering P E Sper A, an element f E A is positive

with respect to P iff the semialgebraic set { x E V(R) : f(x) > 0} is contained in

the filter Tp. Thus, the 'abstract' positivity of f with respect to P can be described

in terms of the unique ordering on k(a), where a = (p, P).

Proof of Corollary 4.15. (a) For any a E Sper A, Fa is maximal since for A E

Sper A either a E A or a E AC and therefore A or Ac belongs to F,. This shows

q(Sper A) C Ultra o(V(R)). Now, any maximal filter of a(V(R)) is of the form

Fa for some a E Sper A, since Sper A is hausdorff in the constructible topology:

suppose a, 0 E n U,where U is an ultrafilter. (This intersection cannot be empty
UEU

because Sper A is C-compact.) There are neighborhoods V of a, W of /3 with

V fl W = (A, so that only one of them is in U. 0 is injective since it can be

interpreted as the restriction of the map 4)-1 introduced in Lemma 4.14.

(b) follows directly from Lemma 4.14 because of the correspondence

a(V(R)) 4-+ C(A).
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CHAPTER V

SOME EXAMPLES ARE IN ORDER

Example 1. A = R[t], where 11' is the field of real numbers. R is real closed, for

every positive number is a square in R and every polynomial in t of odd degree has

a root in R by the Intermediate Value Theorem. What are the possible orderings on

R[t]? According to the previous chapter, each ordering corresponds to an ultrafilter

consisting of semialgebraic subsets of V(R) = R, so let's try to determine the

ultrafilters first.

Since Seer A induces the usual interval topology on R, consider the boolean

lattice r generated by the open intervals {]a, oo[: a E R} and look for possible

ultrafilters U in r.

We certainly have filters of type

(A) l'ia={UEL: aE U} for fixed a E R

Ultrafilters of another kind are

(B)

for fixed a E R.

tia = {U" E :]a e, [ CU for some > 0}

Ua_ = {U E : ja, a + e[ C U for some e > 0}

Proof. (for tia+ only) Suppose B E ,C, B = U ilk, for some intervals ./.7 C R and

B Ua+. Then for all E > 0 ]a, a + e[ B, so a cannot lie in the interior of B.

Also, a cannot be a left endpoint of a nondegenerate interval Ik of B, so it is either

a right endpoint of some Ik or an interior point of BC, and in either case BC E 14a+

(C)

A third kind of ultrafilters are those of type

/60+ = {U E ,C : ]a, -Foo[ C U for some a E R}

Uc,_ = {U E :] oo,a[ c U for some a E R}

Given any interval /in

fact maximal.

, either I or /C is unbounded, so that these filters are in
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Lemma. Any ultrafilter of is either of type (A), (B) or (C).

Proof. Let U be an ultrafilter and assume U is not of type (A).

Case 1: There exist c < d in R such that ]c, d[ E U. Then the intersection

V:= n
U ELI

is not empty since it is contained in the compact interval [c, d] and any finite inter-

section U1 n n Un, E U is nonempty by the filter axioms. V cannot contain

two distinct elements a 0 b because if a, b E V, a 0 b, then for e := either

]a e, a [ E U or ]b E, b [ E U. So for {a} = V it follows a E U for all U E /4,

and depending on whether ]a, a + e[ E U or ]a E, a[ E Ll ( arbitrary), U = Zia or

= Ua_

Case 2: U contains no finite interval. Then ] oo, a[U]b, oo[e U for any pair a, b E R

and consequently either ] oo, a[ E U for all a E or ]b, oo[ E U for all b E and

U is of type (C).

Having thus determined the possible ultrafilters on R, what are the corre-

sponding orderings on R[t]?

Type (A) : Denote the ordering corresponding to tla with Pa. Since both

]a e, a] and [a, a + [ belong to /4 (E arbitrary), both functions t a and a t are

in Pa, so supp (Pa) = (t a) and Pa = If E f(a) _> 01.

Type (B) : Let U = Ua_ for some a E R[t]. Since ]ae, a[E U and ]a, a- e[ if
for all E > 0, one concludes that a t E Pa_ but t a ct Pa_. Write f E R[t] in

the form (a t)rg(t) with g(a) 0 0 to see that f > 0 on an interval ]a E, a[ if

g(a) > 0. Thus

Pa_ = {0} U {(a t)rg(t) : g(a) > 01, and likewise

Pa+ = {0} U {(t a)rg(t) : g(a) > 01.
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Note that Pa_ and Pa+ both generalize the ordering Pa and

supp (Pa_) = supp (Pa+) = (0) (t a) = supp (Pa),

which is a maximal ideal.

Type (C) : Let 14 = Uoo_. In this case ] oo, a[ E U for all a E R, so

f > 0 with respect to Poo_ iff f > 0 on an interval ] oo, a[ ,which means that

lim At) = +oo Therefore

Poo_ = {0} U {ao + alt + + anti : ( -1)' an > 0}, and likewise

Poo+ = {0} U {ao ait + + antn : an > 0}.

Note that Poo_ and Poo+ are maximal orderings although their support is zero. To

see this, suppose Poo+ C P for some P E Sper R[t]. Then P must have nonzero

support and supp (.13) = (f) for some irreducible f E R[t]. Thus f is either of the

form t a for some a E R or f = t2 bt c with b2 4c < 0 (b, c E R). But the

ring B := RN! (t2 bt c) is not semireal, for

4(t +1 = E B2.
4c b2

So f = t a and P = Pa for some a E R, but h = t (a + 1) E Poo+\Pa

Example 2. A =

FE :<=>

y], V(R) = . Consider the following filter T:

36 > 0 3g E R[x] with g(x) > 0 for x E]0,[

1 and the set M; := {(a, b) E R2 : 0 < a < e, 0 < b < g(a)} c F

is a filter: suppose F, F' E .1, then there exist My C F, .A/1;: C F' and for

fo := min {{c E R+\{0} : g')(c) = 0 }, E, E'}

either .Ac,° or is is contained in F fl F'.

.F is maximal: suppose B E a ( ) and B Then for any g E R[x] such
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that g(x) > 0 on ]0, e[, the set M; ct B. One only needs to consider the case that

(0, 0) E B and B C {(a, b) : a > 0, b > 0 }. Without loss of generality assume

B = {(x, y) E R2 : f(x,y) 0,gi(x,y)> 0, ... ,gri(x,y) > 0}.

One can further reduce to the case B = = 0} or B = {g > 0}, f, g irreducible:

first, a set { fg > 0} can be decomposed into ({ f > 0}n{g > 0})U({f < 0}n{g < 0})

and secondly, if F = F1 n n Fn ,F then there exists an i E {1, , n} such that

U2 ,F, thus Uic E .7- and consequently E So we might as well assume

(a) B = { f = 0} for some f E R[x,y]. {f = 0} is a closed set with empty interior,

so Bc contains a set of the required form.

(b) If B = If > 0} with f = ai(x) ETjjobijxj , ao(x) 0 0, let

m := ord (ao(x)) and D i =1...nj = 0 ni. Then for e := ;92-;61

the sign of f is determined by bon,, whenever 0 < x < e and 0 < y < xm+1, since

If(x, y) bornxm I lbo.+1 xm+1 + + bon° xn° + yf(x, y) I for suitable I

xm 4- 1 (Ibom+11 + +1f(x,Y)1)

< xm eD

< lbomixm.

By assumption, B does not contain the set

M = .A4n-,+1 = f(x,y) : 0 < x < e, 0 < y < xm+11.

Also, f does not change sign on M, thus f < 0 on M and BC E.P.

The ordering P corresponding to ,F can be described as follows:

Functions of the form a xm, m > 0, a E R+ and xm y are in P because

the sets {a xm > 0}, {xm y > 0} are in ,F. From this one can see that x is

`infinitesimal' with respect to I + \ {0} and y is 'infinitesimal' with respect to x, in

symbols 0 <<p y <<p x <<p R+\{0}.
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What are possible specializitions of P? First note that supp (P) = (0).
Considering the prime ideal chain

(0) C (y) C (x,y) in R[x, y]
0 0

one finds P C P' C P", where

P' = ff E R[x, : f(x,0) > 0 on )0, e[ for some e > 0} and

= If ER[x,y]: f(0,0) 0}.

Here P' corresponds to the ultrafilter

= IF E a(R2) : 3 > 0 such that ]0, e[x {0} C F}

and P" corresponds to

7' = {F E a(R2) : (0,0) E F}.

So in this case one has a nice geometric interpretation of the chain of orderings

P C P' C P" via the ultrafilters

In general, one can construct an ordering P on R[x, y} by taking an algebraic

curve F, fixing a point on it and setting

f >p 0 :4:* the set {(x, y) : f(x, y) > 0}contains a segment

of the form

where F' and r" are also algebraic curves and F' passes through x.
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CHAPTER VI

VALUATIONS, PLACES AND THE
LANG HOMOMORPHISM THEOREM

VALUATIONS

Definition 6.1: Let A be an integral domain with quotient field K. A is called

a valuation domain (or valuation ring) if for every a E K \ {0} either a E A or

a-1 E A.

Definition 6.2: A ring A is called a local ring if it has only one maximal ideal

(denoted by mA or simply m, if the reference is clear). The field k(A) := A /mA is

the residue field of A.

Lemma 6.3. If A is a valuation domain, then A is local.

Proof It suffices to show that the set m = set of non-units forms an ideal in A.

Given a E A, m E m, am cannot be a unit, for if amb = 1 for some b E A, then

m = (ab)' , but m was assumed to be a non-unit. If a, b E m, then either ab' E A

or a-1 b E A and assuming ab' E A one gets a + b = b(abi + 1) E m.

Definition 6.4: Let A be a subring of a field K, P an ordering on K. A is said to

be convex in K (with respect to 13) if for a, b E K the following holds:

0 < b < a, aEA = bEA

Accordingly, one defines the convex hull chp(A) of A in K with respect to P as the

set

chp(A) := {k E K : 3a E A such that I < a},

where alp = a if a E P, lalp = a otherwise.
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Lemma 6.5. Let A a subring of K, P an ordering of K.

(1) chp(A) is a convex subring of K

(2) A is convex in K if [0,1] C A. In particular, any ring B that

contains a convex ring A is convex.

Proof. (1): For x, y E chp(A) there exist a, b E A such that a ± x,b±y E P. Hence

(a + b) f (x y) E P and Ix + ylp <p a + b. Moreover,

1
ab xy = [(a x)(b y) + (a x)(b y)] >p 0

1
ab xy = [(a x)(b y) + (a x)(b y)] _?_p 0

hence lxylp >p 0 and thus x y, xy E chp(A). As to convexity of chp(A), note

that if 0 < k < b, k E K,b E A, then there exists a E A such that 0 < k < b < a,

thus k E chp(A).

(2): If A is convex, then [0,1] C A, since 0,1 E A. Conversely, if [0, 1] C A and

a E A, b E K with 0 < b < a, then 0 < alb < 1 and b = a(a-1 b) E A.

Note: chp(A) is a valuation ring: let a E K, then either a or a-1 E [-1,1].

Theorem 6.6. Let A be a valuation ring of K.

(1) If p is a prime ideal of A then p = pAp.

(2) If B is a subring of K, then B A implies mB C A, hence p := mB

is a prime ideal of A. Furthermore, B = A. Consequently, any

overring of A is the localization of A at some prime ideal p a A.

(3) The set of overrings of A is totally ordered by inclusion and the

same holds for the set of prime ideals of A.

Proof. (1): Let p E p, a E A\p. It is to show that pa-1 E p. First observe that

pa-1 E A for otherwise p-1 a E A and a= p(p-1 a) E p. Now, p= (pa-1)a E p and

a p, therefore pa-1 E p.
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(2): If mB 0 A, one finds an element m E mB \ A, so that m-1 E A C B, a

contradiction. Ap is contained in B because pAp = mB and (Ap)* C B*. For the

other inclusion, suppose b E B. If b A then b-1 E A, so b E B* = B\mB and

b = 11b-1 E Ap.

(3): Suppose B j A, B' D A and b E B\B', b' E 111\B. If b(11)' E A C B' then

b = b(V)-111 E B' and if b -1 b' E A C B then b' = E B, so neither b(b') -1

nor b -1 b' E A, a contradiction.

Remark: The smallest convex subring of an ordered field K is chp(Z), since

Zc Ac K for any subring A C K.

Definition 6.7: Let K be a field an F a totally ordered abelian group. A valuation

of K is a map v : K U {oo} such that for a,b E K

(v1) v(a) = oo < > a = 0

(v2) v(ab) = v(a) v(b)

(v3) v(a b) > min{v(a), v(b)}

v(K *) = r, is called the value group of K. (it is tacitly assumed that -y < oo

for all 7 E r, oo = oo -y = oo, oo = oo.)

Remarks:

(1) If a is a root of unity, then v(a) = 0, since (a) v(1) = v(12) =

v(1) + v(1) = v(1) = 0 and (b) 0 = v(an) = nv(a) v(a) = 0 (F

is totally ordered, thus torsion free).

(2) v(a-1) -v(a) for a E K since 0 = v(1) = v(aa-1) = v(a)

v(a-1)

(3) v(-a) = v(-1) v(a) = v(a)

(4) If v(a) # v(b) then v(a = min {v(a), v(b) }:

Suppose v(a > min{v(a), v(b)} and, say, v(a) < v(b). Then

v(a+b) > v(a) implies v(a) = v((a+b)-b) ?_ min{v(a+b),v(b)} >

v(a).
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Theorem 6.8. Let v : K F U {oo} be a valuation of K.

Then Av := {a E K : v(a) > is a valuation ring of K with maximal ideal

mA := fa E K : v(a) > 0}.

Proof The fact that Av is a ring follows from r being totally ordered. Suppose

a E K\Av, i.e. v(a) < 0, then v(a') > 0 and a-1 E Av, thus Av is a valuation

domain. If a E mA then v(a') < 0, so a" V A and a is a non-unit of A.

Example: 1 Let F = K(t), K a field, and v : K* -3 Z be the order of a function

f = h in t, i.e. if f = t17, g'(0), h'(0) 0, then v(f) = ord(f) = r.

To prove axiom (v3), suppose f = tr aiti, g = t E710 biti ao, bo 0 0, r < s.

v(f g)

>s if r = s and as = -b,

=s if r = s and as 0 b,

r otherwise,

so in all cases v(f g) > minfv(f), v(g)}. The corresponding valuation ring is

Av = ff E K(t) : v(f) > 0} = K(t)(t)

Given a valuation domain A of a field K, let us construct a valuation v : K

r U {oo} such that Av = A. For this purpose let r K*/A* and define

aA* < bA* . < E A

This defines a total ordering on F since for any k E K, either k or k-1 E A. Let v

be the the projection of K* onto K*/A*, i.e. v(a) = aA* for a E K* and v(0) = oo.

The axioms (v1)-(v3) are satisfied:

(v1): holds by definition
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(v2): v(ab) = abA* = aA* bA* by definition of the multiplication in I'

(v3): for a, b 0 and v(a) < v(b) ( a' b E A)

v(a b) = (a + b)A* = a(1 b)A* > aA* = v(a)

Av = A since a E Av <=> v(a) > 0 -< aA* > 0 4> a E A.

v = -VA is often called the canonical valuation associated to A.

Definition 6.9: Let (K, P) be an ordered field, v : K U { oo} a valuation on

K. v is said to be compatible with P if Av is convex in (K, P).

Lemma 6.10. The following statements are equivalent:

(1) v is compatible with P

(2) 1 + mA C P

(3) 0 <p a <p b = v(a) > v(b) (a, b E K)

Proof. (1) = (2): obvious for m E mA, m >p 0. So suppose m E mA and m <p 0.

m-1 A -m-1 >p 1 1 >p -m 1+ m >p O.

(2) (3): suppose 0 <p a <p b but v(a) < v(b), then ba' E m and 0 <p
a a-1 <p ba-1, so 1 ba-1 <p 0 contradicting 1 m C P.

(3) = (1): suppose 0 <p a <p b, b E A, a E K, then v(a) > v(b) > 0, hence a E A.

Example 2: Consider the situation described in the previous example (after Theo-

rem 6.8) and assume K is ordered byP. We are now going to construct an ordering

Q on K(t) with Q D P and Q compatible with v.

For f E K(t) let L(f) be the coefficient of f corresponding to its lowest order term,

i.e. if f = aiti, a_3 0, then L(f) = a_3 = av(f). Define

Q := {0} U If E K(t) : L(f) > 0}

Q is an ordering since L(f g) = L(f) L(g) and

L(g) if v(f) = v(g) and L(f) L(g)
L(f g) =

L(f) if v(f) < v(g)
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The case L(f) = L(g) does not occur for f, g E Q. Now suppose 0 < f < g with

respect to Q but v(f) < v(g). This implies v(fg) = v(f) and L( f g) = L( f) > 0,

thus f g E Q and f >(:) g, a contradiction. So the pair (v, Q) meets condition (3)

in Lemma 6.10, which means that v is compatible with Q.

For K = the ordering Q on (t) is exactly the extension of Po+ on R[t] to

its quotient field (see chapter V).

Example 3: Let a be the ordering described in the second example in chapter V.

For f E [x1,... ,xr], f = ym ak..0 ai(x)yi, where ao(x) E a. aoixi, define

v(f) := (ordyf, ordxao(x)) and extend v to R(x, y) via v(9) = v(f) v(g). (Set

v(0) := oo, as usual.) v is a valuation on

(v1): holds by definition.

(x1, xn):

(v2): Consider polynomials f, g E [x, y] first. Let
k

f = Y

and
i=0

k2

ai(x)yi, where ao(x)

g = ys E bi(x)yi, where bo(
i=o

Then

)

=-.

j=11

r2

j=l2

aoiX

v(fg) = v(ym ai(x)yz)( bj(x)y3)) = (m s,ord(ao(x) bo(x))
0

= (m + /2) = v( f) v(g)

Now let hi. = h2 = E R(x,y). In this case
9i 92

v(hih2) = v(fl f2
) = v(fi f2) v(gig2)

glg2

V(h) v(f2) v(gi) v(g2) = v(hi) + 102).

(v3): Again, we will consider polynomials f, g E

set up in (v2) we may assume that m < s to obtain
(m, /), where 1 > min{h, /2}

v(f g) =

(i,t), where i > m

, y] first. Using the notation

if m < s or (m s and

ao(x) bo(x) 0 0) (see Ex. 2)

if m = s and ao(x) bo(x) = O.
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So in any case, v(f g) > minfv(f), v(g)}. If h1 = s , h2 =

v(hi + h2)

L, then
g2

= V( 11 +12)
gl g2

= v( fig2 + f2gi
)

gl g2

v(fig2 + f2g1) v(glg2)

min {v(fi) + V(g2 ), v(12) + v(gi)} v(gi) v(g2)

= min {v(fi) v(g2) v(gi) v(g2), v(h) + v(gi) v(gi) v(g2)}

= min {v(hi),v(h2) }.

Claim: v is compatible with a. We are going to show:

v(a) < v(b) = b(a) < a(a)

for a, b E R(x, y), a(a), b(a) > 0. First assume that a, b E R[x, y] and let v(a) =

(mi, /1), v(b) = (m2, /2). Then a = Wm- (am, (x)+ ), b = yrn2 (bn,2 (x)-p ). Since

by assumption (mi li) < (m2, 12), we either have ml < m2 or m1 = m2 and 11 < 12.

According to the estimations we made in chapter V, example 2, we conclude that the

set {(x, y) : a(x, y) > 0} contains a set of the form {(x, y) : 0 < x < e, 0 < y < xli+1}

for some e > 0, and so does {(x, y) : (a b)(x , y) > Oh hence (a b)(a) > 0.

Now let h1 = s , h2 = where hi(a) > 0, h2(a) > 0 and v(hi) < v(h2).

Then v(fi) v(gi) < v(f2) v(g2), so v(flg2) < v(f2g1). The previous calculations

imply that (fi g2)(a) (f2gl)(a), which gives the desired result.

Theorem 6.11. Let A be a valuation ring in a field K, v : K {oo} a

surjective valuation, r+ {-y e r : -y > 0}.

(1) The map

: p 1-4 Ap v(A\p) U v(A\p) = v(A;)

is a one-to-one correspondence between the prime ideals of A and

the convex subgroups of F.

(2) fp a A is prime if and only if fp is a radical ideal.
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Proof. (1): If -y, 6 E Ap there exist r, s E A;, such that v(r) = -y, v(s) = 6. Then

7 b = v(r) v(s) = v(rs-1). If rs-1 E pAp = p, then s-1 E p, but s E A. This

shows that Ap is a subgroup of r. Now suppose 0 < 6' < 6 with S E Ap. We will

find r, s E A; such that v(r) = 6, v(s) = 6 61, and thus 6' = v(r) v(s) = v(rs-1).

If rs' E p then s' E p, but on the other hand v(s-1) = 6' S < 0. Therefore

rs-1 p and E Ap, so Ap is convex.

If p c q are two prime ideals of A, then Aq C Ap and v(A*) C v(A*), since for
q P

a E A;\Aq* it follows Iv(a)1 > Iv(b)1 (otherwise, by convexity of Aq, v(a) E Aq

v(a) = v(b) for some b E Aq* = ab' E A* C Aq* = a = abb-1 C Aq*.) This shows

injectivity of 4) and it remains to show that 4) is onto. Consider the set

PA := {O} U V-1(r+ \A),

where A is a convex subgroup of r.
(a) pA is an ideal in A: let a, b E pa and suppose a + b E v-1(0). Since v(a b) >

min {v(a), v(b)}, this implies that at least one of v(a), v(b) lies in A, so either a E v-1

or b E v-1.

(b) pA is a prime ideal: let a, b p = v(a), v(b) E A = v(a) v(b) = v(ab) E A

ab p.

(c) 4)(PA) = A : cD(pA) = v(A n pAc) u v(A n pAc) = (r+ n A) U (r_ n A) = A.

(2): Let p a A such that TO = p. Suppose ab E p and assume ab' E A Then

abab-1 = a2 E p, so a E p.

Definition 6.12:

(1) Let r be a totally ordered abelian group. The rank of F is the

number of convex subgroups of P properly contained in r.
(2) Let A be a valuation domain. The rank of A is defined as the rank

of its canonical value group r = K* IA* where K = quot (A).

According to the previous theorem, rank A is the number of prime ideals of A (other

than the zero ideal) which in this case agrees with the Krull dimension of A, since

the set of prime ideals is totally ordered by inclusion. Rank A also coincides with

the number of overrings of A in K K) by Theorem 6.6.
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REAL PLACES

Let K be a field and K := K U {oo} together with the following relations:

a + oo = oo + a = co, a oo = oo a = oo (a E K)

-oo = oo, 0-1 = oo, 00 -1 = 0, oo oo = 00

The relations oo oo, 0 oo and oo 0 remain undefined.

Definition 6.13: Let K, L be fields. A place of K with values in L is a map

A : L satisfying

(1) A(a) + A(b) is defined in L = a + b is defined in k and A(a b) =

A(a) A(b)

(2) A(a)A(b) is defined = ab is defined and A(ab) = A(a)A(b)

(3) A(1) = 1.

If K and L are extensions of a common ground field k and Al,. = idk, then A is

called a k -place of K.

Remark. Places have the following properties:

(a) A(oo) = oo, A(0) = 0

(b) A(-a) = -A(a), A(a-1) = [A(a)]-1 for a E K

(c) If A' : L -4 .A4- is a place, then A' o A : A4- is a place.

Proof. (a): If A(oo) oo, then A(oo) A(oo) is defined and so is oo oo, but in

fact, it's not.

(b) holds for a E {0, oo} because of (a). If A(a) = A(-a) = oo then A(a) = -A(a)

and A(a-1) = 0 = [A(a)]-1. Otherwise A(a) A(-a), A(a) A(a-1) are defined and

A(a) A(-a) = A(0) = 0, A(a) A(a-1) = A(1) = 1, which proves (b).

(c) holds because a place acts like a homomorphism whenever it takes values in L

and is the identity on {0, oo}.

Theorem 6.14. If A : K U {oo} L U {oo} is a place, then

AA := {a E K : A(a) oo}
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is a valuation ring with maximal ideal m), := {a E K : A(a) = 0}.

Proof. It is clear that AA is a ring. For any a E K, at least one of A(a), A(-a) oo,

so A is a valuation ring. a E A is a nonunit of A <> A(a') = oo < >

A(a) = 0 <> a E mA, hence mA is the maximal ideal of A.

Given a valuation ring A C K = quot A, the associated canonical place is

A: K U {oo} - k(A) U oo = A/mAU oo

ifaEA
A(a)

oo otherwise

Then A = A'(k(A)) and a E mA < > A(a) = 0.

Definition 6.15: A place A : K U {oo} L U {oo} is called real if L is formally

real. If P, Q are orderings on K, L respectively, then A : K U {oo} L U {oo} is

said to be compatible with P, Q, if it is order preserving, i.e. A(P) C Q U {oo }.

Theorem 6.16. Let A: K -* L U {oo} be a place, P an order on K, Q an order

on L.

A is compatible with P and Q < > AA is convex with respect to P and the induced

homorphism A : A A/mA --+ L, A(a mA) = A(a) satisfies A(P) C Q.

Proof. Suppose A is not convex, then there is m E mA such that -1 m E P

and A(-1 m) = -1 Q, so A does not preserve order. Since A(a) = A(a) for

a E AA, A preserves order if A does.

A(a) E Q U {oo} < > A(a-1) E Q U fool, so consider a E AA n P. Then

a= a +mAEP and A(a) = A(d) E Q.
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THE ARTIN LANG HOMOMORPHISM

In this section, the Lang-Homomorphism-Theorem, as stated in chapter III , will be

proved. However, we will not present Lang's original proof but a slightly different

version as presented in [12], chapter 5.

Theorem 6.17. Let A = k[xi, ,xaj/a, where k is a real closed field and K =

quot A. Given al, , ak E K, there exists a k-place : K ()fool such that

0(ai) is finite for all i.

Corollary 6.18. (Lang's Homomorphism Theorem) Let A be a real affine domain

over k. Then there exists a k-homomorphism q : A ---+ k.

Remark: This is another way of saying that A has an ordering, given by P =

0-1(k2). Define ai := = 1, ,n, then a := (ai., an) E VA(k) and

0-1(k2)= {f EA: 0} = If EA f(ai,...,aa) 0} = Pa,

which is the maximal ordering corresponding to the real point a.

Proof of Corollary 6.18. Apply Theorem 6.17: if 0 : K --+ k U {co} is a k-place

such that 0(xi + a) < oc for all i, then A E a4, = 0'(k) and 0IA is the desired

homomorphism.

Corollary 6.19. Let A be an affine k-algebra, k real closed, and i =
1, . ,r, j = 1, . ,s be given elements in A. If P E Sper A is an ordering such

that p E fr ) fl 9.8) then there exists a k-algebra homomorphism

0 A -+ k such that 0(fi) > 0, 0(g j) > 0 for all i, j.

Proof. It is enough to consider the case supp(P) = (0), since if supp(P) = p (0),

then apply the result to A := A/p to get q : A/p k such that o(fi) > 0, 0(gj)

0 for all i, j, and : A k, q(f) := 0(f) is the desired map! So suppose
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supp(P) = (0), so that P extends uniquely to an ordering P on K = quot A with

A E P\{0}, g j E P. Since K has an ordering, K is real and so is A. Now apply

Corollary 6.18 to the algebra A' = A[1/ ri fi, , .\/gT, ,\/gs], in which
i=i

all f and g j are squares, which implies that qS(fi) > 0, (4gi) > 0 for all i,j. In

particular, the L are units in A', so that o(fi) = 0 is impossible. It remains to

show that the algebra A' is in fact real.

To this end it suffices to show that K' = quot A' = K(, VT) fgT) V9s

is real. Without loss of generality assume that K' = K(All) for some f, since one

can iterate the argument for each square root adjoined. Suppose

1 =
m

m

E a2i ,

i=i

i+1

f = 1+
i+1 i=1

where ai = ai ai, /3i E K

1 8 f)

2ai ,

where the right-hand side is in P \ {0 }, but the left-hand side is not, since f was

assumed to be in P.

The proof of Theorem 6.17 uses the following result:

(*) Let KIF be a finite algebraic extension of formally real fields, 7r : Sper K

Sper F defined by r(P) = P fl F. Then r(Sper K) is open in Sper F.

Based on (*) we will prove the following

Lemma 6.20. Let K be real function field over k and trdegk(K) = 1. For any

transcendental x E K there exists S E k and P E Sper K such that (x 5)-1

chp(k) (the convex hull of k in K with respect to P).

Proof. Fix Po E Sper K and consider its restriction Qo to F = k(x). By (*),

there exists an open neighborhood H = , fr.) of Qo that is contained in

4(Sper K). The goal is to find P E H such that for some S E k, (x 8) is
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infinitesimal (i.e. 'Sip < k+) and positive (with respect to 13), so that (x

is not bounded by any element in k. One may assume that fi E k[x]\{0}, since

if f = h, h L 0, then f E P < > ghePandg-hEk[x]. Moreover, since
any polynomial of odd degree has a root in k, f is a product of linear factors and

quadratic irreducible polynomials. But if g is an irreducible polynomial of degree

2, it must be a sum of two squares, and dropping this factor from f does not affect

its sign modulo P. Therefore one may assume that each fi is a product of distinct

linear factors. Consider the sets

Ai(Q) : = {a E k : fi(a) = 0, a<x}

Bi(Q) := {a E k : fi(a) = 0, a>x}

for any Q E Sper k(x). Then if bi denotes the cardinality of Bi(Q), signckfi)

( -1)b'. So for any Q E Sper k(x) that satisfies Bi(Q) = Bi(Q0) for all i, it follows

that Q E H and Q is the restriction of an ordering on K. Our task now is to find

Q such that Bi(Q) = Bi(Qo), i = 1, , r and (x 8) is infinitesimal with respect

to Q for some S E k. Let

a := max (i U lAi(Q0)), b := min (iU 1Bi(Qo)),

i.e. a is the largest root of the fi which is smaller than x, and b is the smallest

root bigger than x. In case that one of the sets U Ai(Q0)), U Bi(Q0)) is empty,

define a = b. We have a <Qo X <Qo b. Now consider Q := Pb+ for S := a (a b).

In this ordering, 0 < x < is for any E k+VOI and Bi(Q) = Bi(Q0) for all i.

Therefore Q E H and since (x 8)-1 is unbounded with respect to k, 71--1(Q) is

the desired ordering.

Remark If P := (1)-1(Q), Q as above, then x E A := chp(k) and A/mA = k.

Proof. Since 0 < Ix 81 < for any 0 E k, x(5 E mA and x (x-8)+8 E A.

A /mA is ordered by Po, where Po = PnA, so if one can show that A/mA is algebraic

over k, it follows that A/mA = k, because k is real closed. Suppose one can find
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y E A such that g is transcendental over k. Then x, g are algebraically independent,

for otherwise f(±", y) = 0 = 1(8, g) = 0 and thus g is algebraic over k. Therefore

trdegkK > 2, contradicting the assumption that trdegkK = 1.

Lemma 6.21. Let A be a residually real valuation ring and al,...,an E K =

quot A. If Ein_i ai E A, then ai E A, i =1,...,n.

Proof. Since for any i, j either ai/ai E A or ailai E A, one may assume that

ai/ai E A for all i. Then 4.(1 E7_2(.11,-,32) E A and 1 + Ein....2(--1-)2 is a unit in

A, for otherwise -1 = EL2(Z)2 in A/mA, but A/mA is real. Thus al E A, which

implies ai E A for all i.

We now come to the

Proof of Theorem 6.17. (by induction on d = trdegkK)

If d = 0, then K is algebraic over k, hence K = k and there is nothing to show. So

Let d =1 and x := E K.

Case 1: x is transcendental over k. Let P be the ordering on K as constructed in

Lemma 6.20. Then x E A := chp(k), so by Lemma 6.21 all a E A. The canonical

place AA associated to the valuation ring A has the desired properties.

Case 2: x is algebraic over k. Then x E k, since k(x) is real and k is real closed. So

take any transcendental y E K and use the construction described in Case 1 to get

a k-place (/) : K {oo }. Since x E k, 0(x) < oo, so x E A4, = 0-1(k) and again

all ai E

Now assume d > 1. Let K be a real closure of K with respect to some ordering

P. Choose a subfield L C K with trdegLK = 1 and denote its relative algebraic

closure in K by L. Then, by Corollary 1.13, L is real closed and the field L(K) is

a function field over L of transcendence degree 1. By induction, there exists an L-

place q : {oo} with 0(ai) < oo for all i. The restriction OIK is a place from

K to LU {oo} and the ring A := 0-11K(.1-) is a valuation ring in K that contains all
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ai. The associated canonical place AA : K -> Al mA = 0-1(Z)10-1(0) is finite on

all ai. A/mA is real as it is isomorphic to a subfield of .-E, and trdegkA/mA < d 1.

By induction we find a place A' : A/mA -+ k U {oo} with A1(ai) < oo for all i.

Finally, the composition A := AA o A' is the place we were looking for. QV
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CHAPTER VII

SEMIALGEBRAIC FUNCTIONS ON IV

Definition 7.1: Let S C IV be a semialgebraic set. A function f : S R is

called semialgebraic if for all semialgebraic sets T CRP+1 the set

{(x, t) E Rn+P : x E S and (t, f(x)) E T}

is semialgebraic.

Remarks.

(1) Polynomials are semialgebraic:

If 5 C is described by polynomials pi > 0, > 0, pi E R[xi, and

T C RP+1 by qi, , q., qi E I [xi,... ,xp+1], then for any Q E R[xi, x,,} the set

{(x,t) E Rn+P : xES A (t,Q(x)) E T}

is given by

{(x,t) E Rn+P : p1(x) > 0, . . . ,p,(x) 0, gi(t, Q(x)) > 0, . . , qs(t, Q(x)) 0},

which is of course semialgebraic.

(2) The graph r(f) = {(x, f(x)) : x E S} of a semialgebraic function f : S R is

semialgebraic in Rn+1: Let T C R2, T = {(x, y) E R2 : x y = 0}. Then

{(x,t) E Rn+1: xES A (t,f(x)) E T}

={(x,t): x E S A t= f(x)} = {(x, f(x)) : xES}

It will turn out that a function f : S R is semialgebraic if its graph 1,(f) is

semialgebraic as a set in S x R, which makes it much easier to check whether a given

function is semialgebraic of not. Using this result, one can show that, for instance,

the function

f : R 4 R, f (x)
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is semialgebraic, since

r(f) {(x, y) : y = -1--0x1}

={(x,y): x?...0,y_>0Ay2x=0}U{(x,y): x<0,y<OAy2 +x =0}

More generally, functions describing the roots of polynomials with respect to a

specified variable are semialgebraic where they are defined.

Semialgebraic functions need not be continuous: the function f : R

R, f(x) = sign(x) is a counterexample.

(3) Definition 7.1 ensures that sets defined by finitely many sign conditions on

semialgebraic functions are semialgebraic: if R T =]0,00k p = 0 and S = Rn,

then

Ix E : f(x) T} = {x E Rn : f(x) > 0}

is semialgebraic for a semialgebraic function f.

Lemma 7.2. Let S C Rn be semialgebraic. If f is a polynomial in m variables and

gi, , g,n : S R are semialgebraic, then f(gi, , gm) : S R is semialgebraic.

Corollary 7.3. The semialgebraic functions f : S R form a ring under addition

and multiplication.

Proof. Let f, g : S > R be semialgebraic functions, define a,13 : R x R R by

a(x, y) = x + y, 13(x, y) = x y, then by the previous Lemma, a( f, g) = f + g and

[3(f, g) = f g are semialgebraic.

Proof of Lemma 7.2. We need to show that for given T C RP+1, T semialgebraic,

the set

S := {(x, t) E Rn+P : (t, f(gi(x), . , gm(x)) E T}

is semialgebraic. Without loss of generality, assume T is given by a single inequality,

i.e. T = {(t, y) E RP x R : p(t,y) > 0 }. Now, for any m-tuple (yi, ym) E
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p(t, f(yi,... ,ym.)) = P(M., ,Ym), where the coefficients of P are polynomials in

t that depend on p and f only. Rewrite P in the form

P(Y1, ,yin) = E Qi(yl, ., )ymi , Qi = Qi(t).
i=o

Since gm is semialgebraic, the set

8

{(X ,t,yi , ,y,n-i) : ym-i, g.(x)) Qi(t)(yi , , ym_i)g,(x) 0}
i=1

is semialgebraic, hence is the union of sets of the form

{(x,t,Yi, : P:(x,t,yi, , Ym-i) > 0, i = 1, k}.

By the same argument, the set

{(x,t,yi, Ym-2) : Pl(x, , gm_i(x)) 0}

is semialgebraic, which implies that

{(x,t,yi, Y.-2) : ym_2,g,n_1(x),g,n(x)) 0}

is semialgebraic. Repeating this argument, one eventually concludes that S is semi-

algebraic and the proof is done.

We will now present an algorithm that allows us to decompose semialgebraic

subsets into cylinders. This method will find its application in chapter VIII, where

the Pierce-Birkhoff Conjecture will be proved. Cylindrical Algebraic Decomposition

is due to P.J. Cohen and its original version can be found in [5]. The proof presented

here is taken from [6].

Theorem 7.4. (Cylindrical Algebraic Decomposition)

Let P(x,y) = P(xi,... , x, y) E R[xi,... ,xn][y] be given. There exists a partition

of into semialgebraic sets A1,... , Am such that for all i exactly one of the

following cases hold:

(1) sign P(x, y) (E {+, , 0 }) is constant for all x E Ai and all y E R



(2) The zeros of P that lie in Ai x
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are given by continuous semialge-

braic functions Zi(x),... ,Zt,(x) such that Zi(x) < , < Zti(x)

for all (x, y) E Ai x I and the sign of P(x,y) only depends on

y Zi(x), j = 1, ... ,ti. (ti < degy P).

Proof. By induction on n = degy(P). If n = 0, let

Al = E Rn : P(x) = 0)

A2 = E : P(x) >

A3 = {x E : P(x) < 0)

and P will not change sign on Ai x R.

Now let n > 1 and suppose the theorem is proved for all Q such that degy(Q) < n.
ap

If degy(P) n, then degy(ay ) = n 1 and by induction, R can be decomposed

ap
into sets A1, , Am such that the zeros of are given by 'Z'l < < 2k, on

Ai and the 23 are continuous and semialgebraic. Thus one can decompose the

Ai into smaller semialgebraic pieces B1, ... ,B, on which the signs of P(2, ), i

=1,...,ki are constant. For fixed xi E Bi and y E j2i(x),2i+i(x)[ the

function P(x, y) is monotone and has therefore at most one zero in this interval.

This implies that the zeros of P on Bi are given by functions Z1 < < Zii

that for all x E Bi and each Z1 exactly one of the following relations holds:

(1) Zi(x) < 21(x)

(2) Zii(x) > 2ki(x)

(3) 2i(x) < Zi(x) < 2i+1(x) for suitable j

(4) Zi(x) = 2i(x) for some j

On each of the pieces

C = {(x,y) E Bi x R : Z.i(x) < y < Zi+i(x)}, j = 1, ... ,ti

such

P does not change its sign, for if it did, we could find (x0, yo) E C with P(xo, yo) = 0.

Hence there would be points (x1, (x2, Y2) E C with the properties



(a) Zi(xo) < yl

ap
(b) ay (xo,y1)

yo C Y2 < Z+1(xo)

=
ap
ay

(xo, y2) = 0
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(c) P is monotone on the fiber {xo} x 1Y1, Y2 [-

Since by construction of the Bt, sign P(xo, yi) = sign P(xo, y2), one concludes that

P(xo, yi) = P(xo, y2) = 0, however Zi(xo) < yi, Y2 < Zi-1-1(X0 )

For the same reason, sign(P) is constant on {(x, y) : x E B2 A co < y <
Zi(x)} and on {(x, y) : x E Bi A Zii(x) < y < oo}.

As to continuity of the Z1, note first that in case Z1 = 2i for some j continuity

follows from the induction hypothesis. So suppose 2i < ZI < 2i+1 on B2 for suitable

j (the cases oo < Z1 < 21 and 24 < < oo are handled similarly). Fix xo E B2

and a, b E R such that

2;(x0) < a < Zj(xo) < b < j-Fi(xo)-

Without loss of generality assume P(xo, a) < 0, P(xo, b) > 0. Since 2,, 2j4.1 and

P are continuous, one can find a neighborhood U of xo in B2 such that Zj(x) <

a, 2i+1(x) > b, P(x, a) < 0, P(x, b) > 0 on U. By the intermediate value theorem

a < Zi(x) < b for all x E U.

It remains to show that the functions Zi are semialgebraic. Given a set of the form

A := {(x,t) E ll8n x : x E B2 A Q(t,Zi(x)) > 0},

where Q E R[xi, , xn+p], we have to show that A is semialgebraic.

If /3,2(x) denotes the leading coefficient of P in y, one can assume that PP(x) is of

constant sign on Bi, for otherwise partition Bi into smaller sets where it remains

constant. If Pn(x) happens to be zero on Bi, semialgebraicity of Zi follows from the

induction hypothesis since in this case P is of lower degree on B2. So let's assume

Pn(x) > 0 on B2, the other case is treated the same.

Upon dividing pP( x6Y, y) by Q(t, y) in the ring 11: (t, x)[y] one obtains

P(x)Q(t,y) = P(x,y)- S(t, x, y) + R(t,x,y),



where k > 0 and degy(R) < degy(P). Substituting Zi(x) for y yields

so that

Pn(x)Q(t, Zi(x)) = R(t, x, Zi(x)),

A =,{(x,t) E n+P : X E Bi A R(t, x, Zi(x)) > 01.
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Using the induction hypothesis on R, one can decompose n+P into semialgebraic

sets C1, , Ck with corresponding semialgebraic zero-functions W1, , Ws; , j =
1, . . . k and in refining this partition where necessary, one may as well assume that

the functions 2/(x) Wi(t, x) and P(x, Wi(t, x)) (all 1, j) have constant signs on Ci

(here we used the fact that the Wj are semialgebraic).

Claim: the sign of R(t, x, Z i(x)) on each Ci is determined by the signs of 2/ Wj

and P(x, Wi(t, x)), and therefore remains constant on Ci.

Once the claim is established, the theorem follows, since the set A is the union of

those Ci, where R(t, x, Z i(x)) is positive, which renders A semialgebraic.

Proof of the Claim: Fix (t0, x0) E Ci. Since xo E B for some j, it is possible to

locate Z(xo) in one of the intervals

] oo, Zl (xo ) [, at; (xo ), oo

(each of these intervals contains at most one of the Z j). Since Zi(x) Wi(t, x) does

not change sign on Ci, one can find out, which of the Wj(to, x0) lie in the same

interval as Z(xo). Evaluation of P at (xo, Wj(to, x0)) for those Wj in question, tells

the position of Z(xo) between, say, Wk and Wk+i (i.e. P has different signs on Wk

and Wk +1). But on

{(t,x,y) : (t,x) E Ci A Wk(t,x) < y < Wk±i(t,x)}

the sign of R remains constant and the claim is proved. 44

The result can be extended to a finite number of polynomials

Pi E , , ] :
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Corollary 7.5. F o r given polynomials s . . .P1(x, y). . . , Ps(x,y) there exists a partition

of into semialgebraic sets Ai, , Am such that the zeros of all polynomials

P1, , P, on Ai x R are given by semialgebraic functions Z1 < < Zt, for all i

and signPi(x,y) depends only on y Zk(x), k = 1, ... ,ti.

Proof By induction on s = number of polynomials. Case s = 1 is covered by

Theorem 7.4, so let s 1 polynomials be given. For the first s ones one has a

decomposition of into Bi, , Bp with zeros Z1, , Zki on Bi. For P.9+1 one

has another decomposition into , C1 with functions W1, , Wk describing

the zeros of Ps+i. Thus form all possible intersections Bi fl C3 and partition these

into semialgebraic subsets where the functions Zi W3 (all i, j) have constant sign.

Corollary 7.6. If S C Rn+1 is semialgebraic, then its projection 7r(S) C Rn is

semialgebraic.

Proof Let S be given by {pi > 0, ,ps> 0}. Construct a cylindrical decomposi-

tion of 11: into A1, , Am according to Corollary 7.5. Then 7r(S) is the union of

those Ai such that there exists (xi, yi) E Ai x and pi (xi, yi), , yi) > 0.

Corollary 7.7. (Tarski-Seidenberg-Principle) Suppose S C Rn is given by a for-

mula consisting of a finite number of quantifiers (among '3, V') and sign conditions

on finitely many polynomials. Then it is possible to describe S in terms of polyno-

mial relations only, i.e. all quantifiers can be eliminated.

Proof. First, it is enough to consider the symbol '3', since

{x E : Vy T(x,y)} = {x E Rn : 3y such that ( _,4)(x, y) }c.

Secondly, using induction, it suffices to prove the statement for formulas involving

one '3' only, since

{x E : 3y3z klf(x,y,z ...)} = 71-{(x, y) ERn+1 : 3z ... W(x,y,z ...)}
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So, given a set S = {x E Rn : ay 9: y)}, where 4' consists of the sign data

Pl > 0, . , > 0, then

S = 71(x,y) E n+1 (x, > 0, . . . Pm(X, y) 0},

hence S is semialgebraic by Corollary 7.6 and can therefore be written in terms of

sign conditions of certain polynomials in n variables.

Corollary 7.8. A function f : S R is semialgebraic if and only if its graph

r(f) C Rn+1 is semialgebraic.

Proof. The 'only if'-part was done earlier. Suppose r( f) = {(x, f(x)) : x E S} is

described by a formula (I) and T C RP+1 is given by W. Then

{(x,t) E RP : s E S A T(t, f(x))} = {(x,t) E RP : 3y such that xlf(t,y) A 4(x, y)}

is semialgebraic by the previous Corollary.

Given a finite number of polynomials Pi(x, y), , Pt(x, y) in R[xi, - , xn, y], one

can look at all intersections

(*)
t

in {(x, y) E Rn+1 : Pi(x, OEM,
=1

where ci E {>,<,0}. Via cylindrical algebraic decomposition we see that each

A,...,t , Pt) is the union of sets of the form

{(x, y) : x E B and ((x) < y < 7(x)} or {(x, y) : xEBandC(x) =y}

for some semialgebraic set B C Rn and semialgebraic functions (, : B > R.

In general, A,...,(P1,... , Pt) need not be connected. However, by adding some

polynomials to the list P1, , Pt, one can achieve that the sets of the form (*) be

connected. How this is done in the one-dimensional case, shows the following
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Lemma 7.9. (Thom's Lemma) Let {P1, . . . , Pm } C [t] be closed under derivation

(i.e.P E E {P1,...,Pm}) and let A = Pm) for

given Ei E {<, >, 0}. Then A is either empty or connected (i.e a point or an interval)

in R.

Proof. By induction on m = number of polynomials. For m = 0 there is nothing to

show. So consider a collection of m 1 polynomials and without loss of generality

assume Pm+1 is of maximal degree among all of them. Since {P1, , Pm} is closed

under derivation, the set

A' := rin) Ix E : Pi(x)Ei0}

is connected. Suppose it is not empty and let

A := A' n {x E I : Pm+1(x)e,n+10}.

If A' is a point, then A is empty or a point; so suppose A' is an interval. Pm' +1 is

one of the polynomials Pi, , Pm, thus Pm+1 is strictly monotone or constant on

A'. If Pm+1 is constant, then, depending on 6,4_1, A is either empty of A = A'.

Otherwise Pm+1 is injective on A', so if E12+1 E 1=1, A is a point; if Em+1 E {<, > },

then A is an interval contained in A'.

This idea can be generalized to n variables:

Theorem 7.10. Let {P1, , Pr} C [xl, , xn]. Then we can find polynomials

Pr+i, Pr-F.9 E [xi, . ., xn,] such that for any E = , er+s) E {<,>,=---}r+s

the sets

A(E) = ii E : Pi(x)Ei0}
=

are either empty or connected.

Proof. The proof is based on induction on n = number of variables and uses Thom's

Lemma in dimension 1, applied to a suitable cylindrical decomposition.
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If n = 1, we have to add the derivatives in all orders of all the given Pi in

order to get the result.

Now assume {P1, , P,.} C , xn,xn4.11. First we add to this list

the partial derivatives with respect to x,,+1 of all ordersand of all Pi to obtain a

list 1P1, , Pr+sl. Then we decompose Rn into semialgebraic subsets B1,... , Bp,

where on each Bi the zeros of {P1, ... ,P,.+.9} are given by Z1, , Z/i . Using the

induction hypothesis, one may assume that the Bi are connected and given by sign

conditions on polynomials , Pr+s+k

Claim: For E {<,>,=}r+844 the set A,(Pi, ,Pr+.9-Fk) is connected. Fix xo E

A(e). Then 71-(x0) =: xo E is in one of the Bi and by Thom's Lemnia, A(6) n

r-1(4) consists either only of the point xo (and therefore xo = (x10, Zi(4)) for

some j E {1,..., li}) or

A(e) n r-1(4) = 1(4, y) : Zi(x10) < y < Zi.+1(4)}

for some j. Since on Bi, the {P1, , P,. 3 } do not change their signs, one concludes

that in the first case,

A(e) {(x,y) E Bi x R : y = Zi(x)}

and in the second case

A(E) --= {(x, y) E Bi x R Zj(x) < y < Zi+1(x)}-

If A(E) is of the first type, it is connected since it is the graph of a continuous function

on a connected domain. Otherwise, assume A(E) = A U B, A and B relatively open

in A(e) and disjoint. Then 71-(A UB) = r(A)Ur(B) = Bi; and since Bi is connected

and r(A), ir(B) are nonempty open sets (projections are open mappings), we find

xo E 71-(A) 11 ir(B). But then, for some y1, y2 E R, (xo, y1) E A, (xo, Y2) E B

and the fiber F = {x0} x 1Zj(X0), Zi+I(x0)[ can be written as Al U B1, where

Al := F n A, B1 := F n B, A1, B1 nonempty and open in F. This, however,

contradicts the connectedness of F.
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CHAPTER VIII

THE PIERCEBIRKHOFF CONJECTURE

Definition 8.1: A continuous function h : is called piecewise polynomial

(pwp) if there exist semialgebraic sets A1, , Am and polynomials gi , ,grn
772

R[Xl, xn] such that Rn = U Ai and h = g, on Ai.
i=i

Note that the set of piecewise polynomial functions on 12; is a ring under

addition and multiplication: if h = g , on Ai and h' = g, on Ai, then h -1- h' = g, gj

on Ai n

The so-called Pierce-Birkhoff- Conjecture, first stated by G. Birkhoff and R.S.

Pierce in 1956, says the following:

Conjecture 8.2. If h : Rn R is pwp, then there exist polynomials fib E

1°' [xl, . . . , xn], i = 1, . . . , k, j =-- 1, . . . , 1 such that

h(x) = sup inf { fii(x)} for all x E Rn.
j

The conjecture has been proved in 1984 by L. Mahe for n = 2. The proof that

will be presented here uses Mahe's ideas and is based on a paper by C.N. Delzell,

published in the Rocky Mountain Journal of Mathematics in 1989.

It is rather easy to see that the converse of Conjecture 7.2 holds:

Since for two continuous functions f,g, sup{ f, g} and inf{ f, g} are given by

sup{ f, g} = 2(f g) 1-
2

If gl, inf{ f,
2

gl = 1-(f g)
2

gl,

one concludes that h given as in (*) is continuous. To see that it is pwp, reindex

the fib to obtain a list of polynomials fl, , fm and look at the differences f, fj,
1 < j < i < m. If the latter polynomials are denoted by gi, , g3, form the sets

A(ei , , es) := E Rn : g ,(x)e,O, i = 1 . . . , s}, e, E {>,<,=}.



On each of such A(e), we have

L(i) < < fcr(n)
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for some permutation o E S(m) and therefore supi infi { fii} = Loh throughout

A(e) for some io, jo, which says that h is piecewise polynomial.

The proof of the conjecture for n < 2 proceeds in several steps. Starting out

with the given Ai and corresponding polynomials fi, we construct a list gi , , gs

by forming the differences fi fi and close this family up under derivation and

another, not yet defined operation. Using cylindrical decomposition, we obtain a

partition of Rn into connected algebraic subsets E1, . , Et such that h = fi,(Ei) on

Ei. Finally, we will construct sup-inf-polynomially definable functions hii such that

h&j C fv(Ei) on Ei

h&j fi,(Ej) on Ei

and H = supi infi{hii, fi} agrees with h on

Before we turn to the proof of Conjecture 8.2, some

Preliminaries:

Definition 8.3: Denote by SIPD( ) the lattice generated by R [xi, xn] and the

operations sup and inf, i.e. if f, g E SIPD(r ) then sup{ f, g }, inf{ f, g} E SIPD(Rn).

Lemma 8.4. S/PD(Rn) is a ring under addition and multiplication.

Proof. Given f, g, h E SIPD(Rn), then

sup{ f , g} = inf { f, g}

h + sup{ f , g} sup{h f, h

h + inf{f , g} = inf{h f, h g},
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and since for fi, , fn

sup{ fl, , fn} = sup{ fl, sup{f2 , sup {... sup{ fn-1, .fn } }1
the sum and difference of two functions in SIPD(Rn) can be computed successively

from these building blocks. Before we go on to prove that SIPD(Rn) is closed under

multiplication, we make a

Definition: Given f E SIPD(I'' ), we will define the height of f in the following

way: any function f E SIPD( ) can be obtained in finitely many steps from taking

suprema or infima of no more than two functions in SIPD(Rn) at a time, i.e. the

definition of f resembles a tree structure.

Example: If

f = sup{fi , inf { /2, } suP{ f5 f6 }}

then f can be reexpressed as

f = sup{ h suPfinflf2 sup{ f4, sup{f5 f6 } } } }.

Let the height of such an f be the length of this so-obtained tree, i.e. the maximal

number of suprema and infima taken successively. The height of the function f in

our example would be 4.

In general, the height of f E SIPD( ) might depend on the way f is defined,

but this will not have an effect on the proof. Notice that

so that

sup{ f, g} = g + sup{f. g, 0}

inf{ f, g} = g inf{ f g, 0}

inf{ f g, 0} = sup{ -( f g), 0} ,

h sup{ f, = h (g + sup{ f g ,0})

h inf{ f , g} = h (g inf.{ f g ,0})

= h (g sup{ -( f g), 0})
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and it is enough to show that

h sup{ f, 0} E SIPD(Rn)

for given h, f E SIPD( ), using induction on the height of functions in SIPD(Rn).

We will use the following identity:

(*) h sup{ f, 0} = suplinf{hf, h2f + inf {0, h2f f}}

Proof of the identity: Since inf{0, h2f f} = (-1 h2)sup{f, 0}, the right hand

side is equal to

(**) sup{inf{hf,f(1 + h2)}, (-1 h2)sup{0,f}}.

Case A: f > 0, so f(1 + h2) > O.

If h > 0, (**)

if h < 0, (**)

= inf{hf,f(1 + h2} and

= sup{hf, f(1+ h2}

Case B: f < 0, so f(1 + h2) < 0

If h > 0, (**) = 0 = h sup{ f, 0} and

if h < 0, (**) = 0 = h sup{ f,0}

In Case A, note that Ihf < If(1-1-h2)1 (since f2(1 d-h2)2 h2f2 /2(1 +h24_0) >

0), so that (**) = hf = h sup{f, 0} as well. Now let

A := {h E SIPD( ) : h sup{ f, 0} E SIPD(Rn) for all f E SIPD(Rn)}.

Note that if h E A and f E SIPD(Rn), then hf E SIPD( ) since f = sup{ f, 0}

sup{f, 0}. Our task is to show that A = SIPD( ). We will proceed in several

steps.

Step 1 : W e will show that R [xi, , xn] C A. For this purpose, let h E R[xi, ,xn],

f E SIPD(r n) and, for the time being, assume that also that f E R[xi, ,xn]
Then, by identity (*),

h sup{ f,0} = suplinf{hf, hf + f},inf{O, hf h2f}} E SIPD(Rn).
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Now suppose f E SIPD( ), f = sup{fi,f2}, where fi, f2 E SIPD(Rn). By

induction on the height of f, we may assume that hfi, h2 E SIPD(Rn). We

will apply (*) twice in order to get the result:

h sup{ f, 0} = suplinf{hf, h2 f f}, inf{... }}

= sup{inflhsup{fi,f2},h2suP{fi,f2} + sup{ f2}},inf{. }}

and we have to show that hsup{ fi, f2 }, h2 suP{ fi, f2} E SIPD(Rn). But this can

be done using (*) and the identity

hsup{fi, f2} = f2 + sup {fi f2, 0}.

Step 2: A is closed under the operation h sup{h,0}. Let h E A, f E SIPD(

sup{h,0} sup{h,0}(sup{f, 0} sup{f,0})

= sup{h, 0} sup{ f, 0} sup{h, 0} sup{ f, 0}

= sup{h sup{ f, 0},0} sup{h sup { f, 0} , 0}

E SIPD(Rn)

by (*) and the fact that h E A.

Step 3: A is closed under suprema, since sup{hi, h2} = h2 sup {hi h2, 0} and A

is closed under addition. By step 1, A contains all polynomials, so A = SIPD(Rn).

Definitions 8.5: Let P = , Pt} be a collection of finitely many polynomials

Pi,. , Pt E Rn. As before, for e = (el, , et) E {>,<,=}t we write

Ap(e) = nti=i{x E : Pi(x)ei0}.

Let .4(P) = {Ap(e) : c E {>, <, =}n and Ap(e) is open in Rn}, i.e. A(P) is the

collection of the open semialgebraic sets of Rn defined by P. Here ei E {=} occurs

only in the case that the corresponding polynomial Pi is the zero polynomial.
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AEA(P)

0 0
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Proof: First, if A, B are closed and A = B = 0, then (A U B)° = 0: Suppose U C

AU B, U open in 11 n. Then UUAc 0 0 and UnBc 0. Also, (UnAc)nBc 0, for

otherwise Un Ac C B, but B does not contain open sets. Therefore UnAc n Bc 0,

contradicting the assumption. Secondly, tic is the finite union of closed sets of the

form B := nLi{Piei0}, where Ei E {<,>, =} and there exists at least one index j

such that Pi 0 0 and Ei E {=}. But if B contains an open set V, then Pi = 0 on

V, hence Pi 0. Therefore B = 0, which implies tic is nowhere dense.

Suppose, we have a cylindrical algebraic decomposition of Rnz-1 x Rn-m into

B1, B1 with respect to the m-th variable x,, i.e. if ( describes the zeros of

Pi, then = ((x1,... , x,_1, xm+i, , xn). A set C := Bi x R will be called an

m-cylinder of P and the set of open m-cylinders of P will be denoted by Cm(P) (i.e.

its base, being one of the Bi, is open. Again, the set

= U C
CEC,(P)

is dense in

For given P C R[xi,..., xn] \ {0} let Fm(P) be the smallest set containing P, such

that rin,(72) is closed under the following two operations:

(1)
O

/31-)
P OP

2
Oxin Oxm,

Correspondingly, we have the sets A(1",,(2)) and Ck (P)) (we need only the case

k = m).

Finally, let x := (x1, . . . , xn) and xm := (x1, , xm-i , xm-Fi , , xn).

Lemma 8.6. Let P C R[xi, ,xn], 1 <m<nandOOPErm(P). Fix a
cylinder C E cm(r,n(p)) and P E P. Let

< <

be the zeros of P in C (t < degxm P). Then, for each i E {0,...,t+ 1}, there exists

a function cp,i E SIPD such that

P(x) if xm > (i(xm)
cp,i(x) =

0 otherwise
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In other words, on a given cylinder C C , cp,i(x) truncates the polynomial P

such that cp,i(x) = P above the i-th zero-function and cp,i(x) = 0 below.

Proof. By induction on d = degxm(P). If d = 0, let cp,o(x) = P and cp,t+i(x) = 0.

Now let d > 0. By induction on d one may assume that for all Q E rm(P) with

degxm Q < d, all cp,i(x) have been constructed as well as for P, all cp,i(x), for

1 < j < i 1 by induction on i. We are now going to construct cp,o(x) for P in the

following way: tit
ap OP

If (1 < < (;,( < < (Tr) denote the zeros of
axm

(R = P axm),

let j be the smallest index such that (i < and k the smallest index such that

< (T. Define

then

xn,
e(x) := cp'j(x) cR,k(x),

0

e(x) = P(x) R(x)

P(x)

if xni < ("i

if C. <xm <bk3

if or, < xm.

If P((,) = 0, then R(Vi) = PW)
OP

W) = 0 and therefore (i =
3 3

one can take

cp,i(x) = e(x).

S3 = (k. and

Otherwise, assume P(Vi) > 0 (P(C1i) < 0 is similar). In this case, since R(Vi) =

P(() > 0,

(1)

(2)

R(x) > 0 for ("i < xm < Cli; and

P(x) < 0 for 6_1 < xm < (i.

(2) holds since by assumption, Si is no multiple root and therefore P must change

sign at (i. By (1),

sup{P, e} =
P if x7.)., > (i

sup{P, 0} if xm <
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Now define

ep,i := inf{sup{cp,i_1,0},sup{P, e} l.

It remains to show that ep,i has the desired properties.

If P(C3) > 0 then cp,i_i < 0 for (i_i < x < (i and sup{cp,i-i, 0} = 0 for

x < Since sup{P, e} > 0 for x < (i, we conclude that cp,i(x) = 0 for x <

For x > (i, sup{P, e} = P = and the proof is done.

For the rest of this chapter, let h be a piecewise polynomial function on

h = gi on Ai and let

P := {gi gi : 15_i<j<s}.
0 0

Here it is assumed that the gi are distinct, hence Ai n Ai = 0. Also, we may assume

that the Ai be closed, since h is continuous, and h = gi on Ai forces h = gi on Ai.

We have the following

Proposition 8.7. Let C E cm(r,n(p)) < m < n). For each connected compo-

nent of C there exists a function q ESIPD(Rn) which coincides with h on A.

Proof. Fix a cylinder C E Cm(I'm(P)) for some m and without loss of generality

assume that C is connected. Let < < (i be the zeros of all functions in Fm(P)

over C. The sets

Di := {x E COm) < sat < (i+i(xm)}, i = 0, ,t 1

are disjoint, open and connected and their union is dense in C. (here we set Co :=

-oo and (t+i := +oo). For each k = 1,... ,t there exists a unique ,u(k) such
that Dk E A.10), since h is continuous and Dk is connected. (If Dk was not

connected, say Dk C Ai U Ai, i j, we would find points xi, xi E Dk such that

h(xi) = gi(xi), h(xi) = gi(x.i), so on a path connecting xi and xi there would be

a point x with gi(x) = gi(x), but all functions gi gi are nonzero on Dk).

If t = 1 (i.e. Do = C) then define q := gii(D.). Otherwise, let

dk gi,(Do gp(Dk_i) for k = 1,... ,t +1.
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Note that dk = 0 on D k npk_i because h is continuous, so that the Dk are separated

by the graphs of the zero-functions of the gi gi. If dk 0 on Dk, there is exactly

one function among 6, , Ct whose graph separates Dk from Dki.

Lemma 8.6, there exists Cdo(k) ESIPD with

dk(x) if xm > (i(k)(m)
cdk,i(k) {

otherwise.

Now define

q = gµ(Do) +E cdki(k) E SIPD(Rn).
k=1

For any x E U := x E Di for a unique i and
t+1

q(x) = git(D0)(x) cdk,i(k)(x)
k=1

Hence, by

= g iL(Do)(x) +E[g ii(Do)(X) 11,(Dk-i)(X)1
k=1

= g A(Di)(X) = h(x).

If x E Dk n Dk--1 for some k > 1, then xnz = Cz(k)(xrn), so cdk,i(k)(x) = 0 and

q(x) = gp,(Dk-i)(x) = gti(Dk)(x) = h(x).

Remark: For n = 1, Proposition 8.7 implies the Pierce-Birkhoff-Conjecture, since

the zeros are just points in R and the unique cylinder in C1(r1(2)) is all of Rl.

Lemma 8.8. Suppose S < (E R and b : R R is pwp. If 6 = ( assume further

that b(() = 0. Then it is possible to construct a function u ESIPD(Rn) such that

u(t) >b(t)fort >(andu(t)= 0fort<8.

Proof. In case 6 < ( define u(t)

u(t) =

by

b(t)

(()
6)

if ( < t

if 8 < t < (

otherwise

(t
C 8

0

and if 6 = (, let u(t) = b(t) for t > (, u(t) = 0 otherwise.

In either case, u is piecewise polynomial, hence in SIPD(Rn) by the preceding

remark.
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Lemma 8.9. Let Q C I [x1,..., xr], Q finite. There exists a finite subset Q' of

,x,2] containing Q such that each A E A(Q') is connected and one obtains

a function v : A(Q1) H {1,... , s} such that for all A E A(Q') h = g(A) on A.

Proof. The existence of Q' follows from Theorem 7.10. On each A E A(Q), the

functions gigi have constant sign (either < or >), and therefore An (Ai n Ai) 0

for each pair i, j since gi gi = 0 on Ai nAi. Suppose A C AkUA1, A Z Ak, Act Al.

Since A n (Ak n A1)= 0, A C AkLA, (symmetric difference). A is open, hence

A C (Ak n A1)° C AZ U A7. But AI n Ai = 0 and so A C Ak (say) and define

v(A) = k.

Proof of Conjecture 8.2. for n = 2.

For P := {gi gj : 1<i<j_< n} C R[xi, x2] let P' F1(P) U r2(2) and let

C1(P'), C2(P') be cylindrical algebraic decompositions of P' such that all cylinders

in C1(P') and C2(2') are connected. If C1 (C2) is the set of polynomials in R[x2]

(R[xi]) describing the cylinders in C1(P1) (C2(P')), let Q 2' UC1 U C2. Then each

A E A(Q) is connected. Denote the sets in A(Q) by E1, , Et. We will construct

functions hi.; ESIPD(I" ), i, j = 1, , t such that

(1) hii 5_ gp(Ei) on Ei

(2) hi j ?_ gi,(Ei) on Ei

Then for H := supi infi{hii , gu(Ei)} we have H = h on E := U:=1.Ei and since E is

dense in R2, it extends uniquely to a continous function H on which must be h.

To see that H = h on .E, suppose x E Ek for some k. Then for each j the function

hi := infi{hii, gy(Ei)} satisfies

(3)

(4)

hi(x) 5 gu(Ei)(x) for x E Ei by (1) and

hi(x) = g,,(Ei)(x) for x E Ei by (2),

so for x E Ek, one has hk(x) = g(Ek)(x) by (4) and hi(x) 5_ gy(E0(x) for j k,

hence supi hi(x) = gv(Ek)(x).
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If Ei,Ei (i, j are fixed from now on) lie in a common cylinder C of C1(P') or

C2(P'), there exists a function q that agrees with h on C by Proposition 7.7 and

one may take q for hii.

So assume Ei and Ei do not lie in a common cylinder and we have the following

situation:

X2.
A

52

)(4.

Ei lies in a unique cylinder C1 in xi- direction and in another cylinder C2 in

x2-direction. Let ((I, (2) be the upper right vertex of the rectangle C1 n C2. Here

it is assumed that EE is somewhat above and to the right of Ei, the other cases can

be treated in a similar way. Let

Li := {(xi, x2) E R2 : xi + x2 = t and

and

) ( 2 (2) > 0}

1(t) := {1 <k < s : Ak n Lt 0}.

Since R2 = UiciAk, each 1(t) 0. Define

P(i) := max (h gv(Ei))(si, x2).
(x,,x2)ELt

p(t) is well defined because Li is compact for each t.

P(t) 5_
kEmax

(gk gv(Ei))(xi, X2)l(t)
(xi,x2)ELt
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since for each (xi, x2) E Lt, h(xi,x2)--= gk(xi, x2) for some k E 1(t).

Now translate the point ((i, (2) to the origin and rotate the axes by 4 radians,

applying the following coordinate change:

Yl := (X1 Si) ± (X2 )) Y 2 = (X1 0) (x2 0)

For each k, expand gk gy(Ei) in powers of Y1 and Y2:

(gk gy(Ei)) = akoo + akioYi + akolY2 + ak2oY12 + aknYi Y2 + ak02Y22 +

for finitely many alai E R.

Claim:

(*) Kx1 (1) ± (x2 (2)1 C It Cl C21 for (xi, x2) E Li

Proof: Since x1 + x2 = t, Ixi (.1 + x2 (21 = It Cl 01. To prove (*) for the

` '-sign, distinguish two cases:

(1) x1 > (1 and x2 > C2. Then

1(xi C1)(x2 0)1 C max{(xi C1), (x2 C2)} < (x1 CO + (x2 (2) =

(2) xi < Ci and x2 < C2. Then

I(xi (x2 (2)1 < max{(xi 0), (x2 (2)1 5 + + x2 = It C2I

So by (*), 11711 < It Ci C21 and 11721 5_ It (1 (21 and we obtain

P(t) < max ((lakool + + lakoi pit C2IkEgo

(lak2o1 + lakio I + Iakoi plt (212 + )

Denote the righthand side by b(t). Let (5 E be the smallest number such that

s < t < + (2 n Et = O.
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Of course (5 < < (2. If S = + (2 then (1) b(S) = 0 and (2) b(t) = 0.
0

Proof of (1): If (5 = + (2 then I(S) = {k : ((.1, (2) E Ak}. If (6, (2) E Ai for

some 1, then .40 = {l} since the Ak are mutually disjoint. But then 1 = v(Ei), for

if 1 0 v(Ei), one can find a neighborhood U of ((1, (2) with

(a) Lt C U for ei (2 < t < (1 + (2 and some e > 0

(b) U n Ei = 0.

However, (a) and (b) imply S < + (2, a contradiction. Therefore 1 = v(E1) and

b(S) = knEla)(gk gy(Ei))(0, (2) = (gv(Ei) 9li(Ei))(6 (2) = 0.

If (6,(2) E 5A1 for some 1, then I(S) = {k : (0, (2) E aAk} and for j,/ E I(S),

g/((1)(2) = 0. Moreover v(Ei) E I(S) since there exists e > 0 such that

Lt n 0,

so that ((1, (2) E E4 C Ay(Ei). (The Ai were assumed to be closed). Again,

b(t) = maxicI(6)(9k g v(Ei))((i, (2) = 0.

Proof of (2): b(S) = 0 implies aka) = 0 for all k E I(S), hence limt,6 b(t) = 0.

By Lemma 8.8 we can construct a function u ESIPD(I ) with u(t) > b(t) >

p(t) for t > + and u(t) = 0 for t < S. It follows that

(a) hii(xi, x2) > gp(E;)(xi, x2) on Ei since for any (xi, x2) E Ei xi > (1,x2 >

and thus

u(xi + x2) + x2) = max (h gu(Ei)) C gv(E;) gv(Ei)
(x1,x2)ELx1+02

(b) hii(xi, x2) = g,,(E0(xi , x2) on Ei since here xi +x2 < (5 and u(xi +x2) = 0 00.
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CHAPTER IX

ABSTRACT SEMIALGEBRAIC FUNCTIONS

Abstract semialgebraic functions are defined on constructible subsets of the

real spectrum of a given commutative ring A. In the situation where A is a poly-

nomial ring over a real closed field R, the constructible sets of Sper A correspond

to semialgebraic subsets of R", and the idea is to extend "ordinary" semialgebraic

functions and make them 'work' over the real spectrum. It turns out that the ring

of abstract semialgebraic functions over a constructible set C in Sper A is isomor-

phic to the ring of semialgebraic functions on the semialgebraic subset in Rn that

corresponds to C (this will not be proved here, also it is by no means obvious that

the set of abstract semialgebraic functions forms a ring, as shown by N. Schwartz).

In this chapter, we will set up the notion of an abstract semialgebraic function and

prove a certain 'continuity property', referring to its values on points x, y E Sper A,

where y specializes x. First, we will introduce the concept of sections, which of

course can be done in a much more general context than needed here.

Definition 9.1: Let A be a ring, A[t] the ring of polynomials in one indeterminate

over A. We have the projection map

7r : Sper A[T] -;Sper A

1-40 n A.

Given a E Sper A, the fiber 7r-1(a) = {/3 E Sper A[T] : 740) = a} is homeomorpic

to Sper k(a)[T] with respect to the Harrison topology. Here, k(a) denotes the real

closure of quot A/supp(a). (For a proof of this, consult [2]).

Note that 7T-1(a) is C-clopen as it is the homeomorphic image of the C-clopen

set Sper k(a)[T], thus 7r-1(a) is constructible in Sper A[T] by Theorem 4.3.

Definition 9.2: Let X E Sper A be constructible. A section s : X -3 Sper A[T]

is a set theoretic map satisfying 7r o s = idx. s is called a constructible section if

the image s(X) is constructible in Sper A[T].
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In other words, a section s assigns each x E X an element s(x) of the fiber

r-1(x). In the same vein one may define sections s : S Rn+i where S E Rn is a

semialgebraic set (R a real closed field). In this situation, any function f : S-4 R
yields a section sf : S -> r(f) C S x R by sf(x) = (x, f(x)), x E S. It is exactly

this model that will be used to construct sections on Sper A[T].

If s : X -> Sper A[7] is a constructible section, the point s(x) = r-1(x)ns(X)

is constructible in Sper k(x)[T] for any x E X. However, this implies that s(x) E

k(x) according to Corollary 4.10, and therefore k(s(x)) = k(x) (here k(s(x)) denotes

the real closure of F = quot A[T] /supp(s(x))). In this sense we may identify the

ordering s(x) with the image T(s(x)) in k(s(x)) = k(x) and we obtain a 'function'

fs : X U k(x), f9(x) = T(s(x)), i.e. f8(x) E fl k(x). The section s(X) is
xEX xEX

completely determined by f3 since for any x E X the ordering s(x) corresponds to

the `k(x)- rational' point T(s(x)).

We have the injective maps

A/supp(x) -74 A[7] /supp(s(x)) k(x),

where i is just the inclusion and p defined by p(a supp(x)) = a + supp(s(x)). p is

injective because for a E A

a E supp(s(x)) <> aeAn s(x) n -s(x) <> a E supp(x).

Hence A/supp(x) C A[2] /supp(s(x)) C k(x).

How do we obtain extensions of orderings on A to A[T]? Given a E Sper A,

a E A, we have the projection map

rat(a) := a(a) = a + supp(a) E A/supp(a) C k(a).

Define .-§a(a) := = E K(a)[T] : f(a(a)) > 0}. /3 is the ordering on k(a)[T]

corresponding to the point a(a) E k(a) with k(#) = k(a)[T]l (T a(a)) = k(a).

The desired ordering # on A[T] then is

sa(a) := = 7c1((3) n A/supp(a)
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Doing this for each a E Sper A, we obtain the section sa : Sper A -÷ Sper A[T]

and since for any a, the ordering sa(a) is associated to the point a(a) E k(a), we

may identify sa with a k(a)(a(a))aESper A E
aESper A

Let's go back to the setting where A = R[xi,...,xn] /a, S C VA(R) semial-

gebraic set and f : S --+ R a semialgebraic function. G. Brumfiel has shown that

f is continiuous iff r( f) is a closed subset of S x R and f is locally bounded, i.e.

for 0< e E R and x E S there exists an open neighborhood U of x such that

1./(01 < if(x)i e for all y E U. This gives rise to the following definitions:

Definition 9.3: Let s be a constructible section of X. s is locally bounded if for

all x E X there exists an open neighborhood U(x) such that for all y E U(x)

fi(Y) < a(Y)b(y)
for some a, b E A with b(y) 0.

Definition 9.4: An abstract semialgebraic function on X is a constructible section

s of X satisfying

(1) s is locally bounded

(2) s(X) is closed in it -1(X ).

Functions so defined have an interesting property:

Theorem 9.5. Let f be an abstract semialgebraic function on X . For any x, y E X

such that x C y there exists a specialization z of (x) with ir(z) = y. (Recall, ir(z)

denotes the projection of z onto Sper A).

The proof of Theorem 9.5 will make use of valuation theory. Let us set up

some notation first:

Given points x, y E X with x C y, define M(x, y) to be the set of all convex

valuation rings C D A/supp(x) of k(x) that satisfy the following condition:

(*) me fl A/supp(x) = supp(y) /supp(x),
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where mc is the maximal ideal of C. By Theorem 5.6, M(x, y) is totally ordered

by inclusion, its smallest element being the convex hull chk2(z)(Ap), where A =

A/supp(x) and p = supp(y)/supp(x).

Proof. Denote the smallest element of M(x, y) by D(x, y). D(x, y) is obviously

convex. Also, any C E M(x, y) contains Ap, since if 9 E C for some a E A, s fo,

then a E mc, hence s E mc fl A = fo, a contradiction. By convexity of C then

D(x, y) C C. Note that pAp is convex in Ap with respect to the ordering k2(x) on

k(x): Suppose 0 < 3 < t, b E p, s,t p. Then 0 <y at <y bs since y specializes

x. By assumption b E supp(y), hence a E supp(y), so 43 E p.

It remains to show that D(x, y) satisfies (*). This will be guaranteed by the following

Lemma 9.6. Let (K, P) be an ordered field, A a local subring of K whose maximal

ideal is convex in A with respect to P. Then

Inchp(A) = mA,

where chp(A) is the convex hull of A with respect to P.

Proof mchp(A) C mA is clear since every unit in A is a unit in chp(A). Suppose

rn E InAinchp(A), m> 0. Then 0< m-1 < a for some a E A, so m> > 0

which implies a-1 E mA, a contradiction.

The maximal element of M(x, y) is given by

C(x, y) := U C.
CEM(x,y)

C(x, y) is a ring since M(x, y) forms a chain under inclusion; it is a valuation

domain as an overring of D(x, y), and it is convex because 0 < a < b, b E C(x, y)

implies aECC C(x, y) for some C E .A4(x, y). We now turn to the

Proof of Theorem 9.5. Let x C y be given points in X, M(x, y) as above. As f is

locally bounded, there exists U y, U open such that for all x' E U : fs(x')2 <
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bkx,), b 0 on U. In particular, x E U since y E {x}, and fs(x)2 < ab((l b(y) 0

implies that -kV p, hence CI E D(x, y) which forces fs(x)2 E D(x, y) and thus

f s(x) E D(x,y). Fix any C E M(x, y). Let us now construct the specialization z of

s(x) that projects down to y E Sper A. As seen earlier, the ring A[T]/supp(s(x)) is

a subring of k(x). It is also contained in C, for T(s(x)) = fs(x) E C. mc is convex

in C and so is the prime ideal mc fl A[T]/supp(s(x)) q/supp(s(x)) in the ring

A[T]/supp(s(x)). Define

z := s(x) U q.

Claim: z is an ordering on A[T].We will check the axioms (P1)(P4).

(P1): z z C z: Let z1, z2 E z. If both are either in s(x) or q, their sum will be as

well. So suppose z1 E s(x)\q, z2 E q. If 1z11 > 1z21 with respect to the ordering s(x),

then z1 + z2 E s(x), otherwise z1 E q by convexity of q. In either case, z1 + z2 E z.

(P2): zz C z and
(P3): z U z c z are clear.

(P4): z fl z = (s(x) U q) fl (-s(x) U q) = q.

Thus z is an ordering on A[T]. We have s(x) C z; and r(z) = y since

znA=(s(x)nA)U(qnA)=xUmcnA=xUsuPP(Y)=Y.

Example: Let A = R[xi,... , x,d/a, S C VA(R), R a real closed field. Consider a

continuous semialgebraic function f: R. f induces a section sf : S>SxR

via the map sf(x) = (x, f(x)) for x E S. Let g be the C-closure of Sin Sper A. s f

extends to a constructible section gf : Sper A[T] in the following way:

If xEgn VA(R) = S, then :41(x) = T(x, f(x)) = f(x), hence we get our original

function back and .gf(x) is the ordering associated to the point (x, f (x)) E r(f), i.e.

gf(x) = {P E A[T]: P(x, f(x)) > 0}.

For x E g we are going to describe gf(x) via the ultrafilter ,Tx attached to x:

According to Corollary 4.15,

= M E cr(VA(R)) : x E
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First, restrict ,Fx to semialgebraic sets contained in S, i.e.

:= {4- ns: mE .Tx }.

For convenience, let's denote .Fis again by The section S f(x) maps each M E -rx

to the semialgebraic set M x f(M) C r(f). Now consider the set

Ff(x) C Cr(V(R) x R): 3M E .Fx such that M x f(M) C N}.

Claim: Ff(x) is a filter. We need to check the following axioms:

(F1) 0 0 ..rf(x): clear, since 0 SE

(F2) A,B E .Ff(x) = AnB E ,Ff(x): A contains a set M1 x f(Mi) and B a
set M2 x f(M2), hence A n B contains the set M1 n M2 x f(M1 n M2), where

M1 n M2 E .Fx.

(F3) A C B, A E ,Ff(x) B E ..Ff(x): by construction.

.Ff(x) is maximal for, if N 4;t ,Ff(x) for some N E cr(V(R) x R), then

(*) V M E ,Fx : M x f(M) ¢N.

Fix M E .Fx being maximal, either A := ir(N n (M x f(M)) or M\A belongs

to J. If A E ,Fx, then A x 1(A) C N, which contradicts (*), hence NC E .Ff(x)

Ff(x) corresponds to an ordering y E Sper A[T] and we define :41(x) = y. We have

r(y) = x since

aEynA < > fa E .Ff(x) < > r({a 0}) E < > a E x.

In order to prove that g f is constructible, we need to show that the set "gf(g) is a

constructible subset of Sper A. Recall that f : S ---+ R is a semialgebraic function

in the ordinary sense, so its graph r(f) can be written in the form

r(f).{xESxR: kli(x)}

for a formula W. We claim that

gf(,S) = {y E Sper A[7] : If(y)},
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i.e. the 'abstract graph' of s f is just r(f).

Proof. "C": Let y E There exists x E S with y = gf(x) and .Fy = Tf (x ) .ry

contains the set S x f(S) = r(f), thus 11/(y) is true and we conclude that y E E.

"D": Let y E Sper A[T] such that 111(y) holds. We need to find x E S such that

y = s f(x). Again, by assumption, r(f) E .Fy. Thus for any F E F fl F(f) E .Ty

and F fl r(f) is of the form M x f(M) for some semialgebraic set M C S. Let

C E a(V(R)) : 3N E .Fy 9: r(N) C M}.

g is a filter (in u(V(R))) since if 7r(N) C M, ir(N') C M', then 7r(N fl N') C

ir(N) fl ir(N') C M fl M'. If M g for some M E o-(V(R)), then M does not

contain any semialgebraic subset S' of S such that S' x f(S') E . In particular,

(M fl S') x fl S') E .Fy for such S'. Maximality of .Fy now implies that

(S' \M) x f(S'\M) E hence MC E g. This shows that g is an ultrafilter and

therefore defines a point xin Sper A. It remains to show that x E this follows

from S being in C.

We are now going to prove that gf is indeed an abstract semialgebraic function

on S.

For this purpose we need to show (a) -if is locally bounded and (b) "if(.5) is closed

in 7r-1(,§).

As seen earlier, :41(S) = rf(s), so that (b) follows. As to (a), note first

that r( f) (and therefore r(f)) has only finitely many connected components (cf.

Theorem 6.10). For each component Ci we can find polynomials pi that vanish on

Ci (Ci has empty interior). Writing pi in the form pi = E;to aii(x)yi, aini # 0, we

see that E;t0 aiif(x)i = 0, x E Ci. For fixed xo E Ci, the set of zeros of pi(x0,T)

is contained in the set
ni

{(xo,Y): lyl < 1 +
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To see this, let aini yni + + ao = 0. Then

ni ani-1 n-1
ani

and if 1y1 > 1 then

ao

an,

1 1
IYI

an -1
I + I

ao
II I

<_
an, yno_i ani

so in any case 1y1 _< 1 -F. I-LLan I.
i

Ui is semialgebraic and open in V(R), so

01 := fx E S : rsf(x)I < 1 + fa,01(x)I nilaii(x)1, aio(x) 0}
i=1

is constructible and open in Sper A (this is not covered by any theorem proved in

this paper, but follows from the fact that U C V(R) is open < Sper A

is open, cf. [2]),In particular, S C lijUi and since gf is bounded on each Ui, we

conclude that :if is locally bounded.

A whole lot more can be said about abstract semialgebraic functions. Here

are some further results we will need in the next chapter:

Definition 9.7: Given a ring A, we denote by SA(A) the set of abstract semialge-

braic functions on Sper A.

SA(A) is a ring under addition and multiplication when defined component-

wise, i.e. if f, g E SA(A), then f(x),g(x) E k(x), so set (f g)(x) = f(x) g(x)

in k(x). This guarantees that r(f(x) g(x)) = x. Moreover, SA(A) is a lattice,

i.e. it is closed under suprema and infima (taken componentwise). In the special

case that S C Rn is a semialgebraic set and A the ring of continuous semialgebraic

functions, it can be shown that SA(A) is isomorphic to A = fl a(a). (See N.
aESper A

Schwartz: Real closed spaces, Habilitationsschrift, Miinchen 1984)

Another important feature that SA(A) shares with its 'ordinary' counterpart

is that subsets of Sper A defined by finitely many sign conditions on functions of

SA(A) are constructible.

Now let's see what abstract functions can do for us.
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CHAPTER X

THE PIERCE-BIRKHOFF CONJECTURE:
AN ABSTRACT APPROACH

In the recent past, the Pierce-Birkhoff Conjecture has challenged quite a few

mathematicians. In 1989, J. Madden was able to restate the problem and place

it in a much more general setting. Before discussing his results, let's recall briefly

what the Pierce-Birkhoff Conjecture says: It claims that a continuous piecewise

polynomial function h on 11; can be expressed as

h = sup inf{fik}
k

for finitely many polynomials fik. If we want to transfer this to the abstract setting,

we first of all need a

Definition 10.1: For any ring A, let PWP(Sper A) denote the set of functions

f E SA(A) such that for all a E Sper A there exists a E A such that f (a) = a(a).

Let SIPD(Sper A) be the sublattice of SA(A) generated by A, i.e. SIPD(Sper A)

is closed under taking suprema and infima. As in the concrete case, SIPD(Sper A)

and PWP(Sper A) are rings and SIPD(Sper A) C PWP(Sper A).

Consider a function f E PWP(Sper A) and fix a E Sper A. There is a E A

such that f(a) = a(a). As f is semialgebraic, the set {a E Sper A : f(a) = a(a)}

is constructible, so that f agrees with a on a C-open set U. By C-compactness, there

are finitely many Uk C Sper A and ak E A such that Sper A = ULiUk and f = ak

on Uk. In the case that A = R[xl, , xn] this says that f is `piecewise polynomial'

on Sper A and we have derived an abstract analogue to the concept of piecewise

polynomial functions on I n. Consequently, given a pwp function h on Rn, h = fi

on semialgebraic sets Ai, then the map h H h, where h = fi on Ai, establishes an

isomorphism between PWP(Rn) and PWP(Sper

SIPD(Sper A) and PWP(Sper A):

I. ). The next definition relates
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Definition 10.2: We call A a Pierce-Birkhoff ring if

SIPD(Sper A) = PWP(Sper A).

Then the Pierce-Birkhoff Conjecture translates into the statement that

, , xn] is a Pierce-Birkhoff ring.

If we go back and look at the proof of the conjecture in Chapter 8, we see

that the main idea was to construct functions hij such that

where

hij < gy(Ei) on Ei and hij > gv(Ei) on Ej,

= UjEj and h = g(Ej) on Ej. This idea is reflected in the following

Lemma 10.3. A is a Pierce-Birkhoff ring if and only if for each s E PWP(Sper A)

and any two points a, 0 E Sper A there exists h E A such that h(a) > s(a) and

h(#) < s( /3).

Proof. (contrapositive). Suppose we can find s E PWP(Sper A) such that for

all h E A, h(a) > s(a) implies h(/3) > s(/3). Pick finitely many h1, . . . , lin with this

property. Since infj hi(a) > s(a), this implies infj hi(/3) > s(/3). Now suppose

that supi infj hij = s(a) for some hij E A. If for all i, infj hij(0) < s(/3), then

supi infj hij(0) < s(0), thus we can find io such that infj hioj > s(/3). But then, by

the above consideration, infj hioj > s(/3), hence supi infj hij(0) > s(/3). This means

that .s SIPD(Sper A).

For any two points a, 0 E Sper A pick has E A such that

has > s(a)

has < s(/3).

In particular, 11,,(a) = s(a). We can find U(a, /3) and V(a, 0) such that

has(7) 47)

ho(8) > s(S)

for -y E U(a, 13)

for E V (a, f3).
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Fix a. Since Sper A = U V(a, /3), by compactness there are a = /3o, 01, On
fiESperA

such that Sper A = Urf_oV(a, (3i). Because hoj(S) < 8(S) on V(a, [IA ha :=

infi{hoj } < s on all of Sper A. Let U(a) := n.7_0U(a,13i). Then h = s on U(a)

since U(a) C U(a, a), has = s on U(a, a) and hoi > s(a) on U(a). Again, by

compactness, Sper A = 411U(ai), where hat = s on U(ai) and ha, < .s elsewhere.

Hence, the function h := supi hat E SIPD(Sper A) represents s.

We may interpret a function has as described in Lemma 10.3 as a "separator

of a and /3 along s", which lead J. Madden to the following

Definition 10.4: For a, 0 E Sper A let (a, 0) be the ideal in A generated be all

elements a E A such that a(a) > 0 and a(0) < 0. (a, /3) will be called the separating

ideal of a and 0.

Note that supp a + supp /3 C (a, #). We have a nice characterization of

elements in (a, 0):

Lemma 10.5. Let a E A, a(a) > 0. Then a E (a, 0) if and only if there exists

b E A such that b(a) > a(a) and b((3) < 0.

Thus elements in (a, /3) are 'dominated' by those which actually change sign.

Proof. If a(/3) < 0, then a E (a, 03) by definition and we may take b = a. So assume

a(/3) > 0. If a E (a, #) then a = fihi, where hi(a) > 0 and hi(0) < 0. We1

may assume that fi(a) > 0 for all i, for if fi(a) < 0 for some j, then (a fi hi)(a) >

a(a) > Oand if we find h such that h(a) > (a fihi)(a) and h(0) < 0, h works for

a as well. So assume all fi are positive with respect to a. Define

Ifi
if fi(3) > 0

gi = 1 if fi(0) < 0 and 0 < fi(a) < 1

fi if fi(0) < 0 and fi(a) > 1



80

Then gi(a) > fi(a) > 0 and gi(3) > 0, so that gi(a)hi(a) > fi(a) and gi(#)hi(13) 5_

0. Hence h := gihi has the required properties.

Conversely, assume h(a) > a(a) > 0 and 1/(3) < 0 for some h E A. Then h a, h

E (a, #), thus a = (h a) + h E (a,#).

Corollary 10.6. (a, /3) = afl( /3) +( a)fl(/3), i.e. every element in the separating

ideal is the sum of two elements which change sign.

Proof. "D": by definition of (a,13).

"C": trivial for a E (a, /3), a(a) > 0, a(3) < 0. So assume a is positive on a

and /3, then we find h E (a, /3) such that h(a) > a(a) > 0 and h(#) < 0. Thus

a = (a h ) h, where a h E a n 13, hEan (-0).

Note: If a and /3 are contained in a common specialization -y, then necessarily

(a, 13) C supp 7.

Proposition 10.7.

(1) In A/ supp a (resp. A/ supp /3), (a, 13)/ supp a ((a,#)/supp /3) is

convex.

(2) Both a and /3 induce the same total order on A/ (a, 13) and (a, /3)

is the smallest ideal with this property.

(3) If (a, #) is proper, then p : /3) is prime and a, # induce the

same total order on A/ p. Moreover, A/ p with this order is the

least common specialization of a and # in Sper A.

Proof. (1) For A/ supp a only: Let 0 < a < b, b E (a, 13)/supp a. There is h E

A/ supp a with 0 <a< b < h and h(#) 5_ 0, so by Lemma 10.5, EtE (a03)/ supp a.

(2) The orderings induced by a and /3 are total orders because supp a, supp C

(a, /3); they are the same since everything that changes sign is in (a, /3). Suppose

a= on on AI I, where I D supp a + supp 13. Then a(a) > 0, a(/3) < 0 implies a= 0,
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hence (a, 0) c I.

(3) As V(a,,3) is the nilradical of the ring A/(a, /3), it suffices to show that the

nilradical of a totally ordered ring is convex and prime. Assume 0 < a < b and

bn = 0 for some n. Then 0 < a2 < ab, thus 0 < a2n < (ab)n = 0, which shows that

0-3 is convex. The same argument shows that Nid is prime: suppose ab E 07,1 and

0 < a < b. (This assumption is valid, since we may switch signs to achieve this.)

As before, a2n E \id for some n, hence a E NAT So if we lift the ordering a = r

on A/V(a,,3) to an ordering -y on A, we get 7 D a, 7 D /3 and supp y =

But /(a, 0) is the smallest prime ideal containing (a, /3) and by (2) it is necessary

that (a, /3) be contained in supp y, hence y is the least common specialization of a

and /3.

Note: (3) implies that /(a, /3) = A if a and ,3 have no common specialization.

Now let s E PWP(Sper A), a, /3 E Sper A. Denote by sa any element a E A

with the property s(a) = a(a). Then we can state the following

Theorem 10.8. (J. Madden, 1989) A is a Pierce-Birkhoff ring if and only if for all

s E PWP(Sper A) and all pairs a, l3 E Sper A, sa sp E (a,13).

Proof. Let s E PWP(Sper A), a, /3 E Sper A and h E A such that h(a) >

s(a) = sa, h(/3) 5_ s(/3) = s,3. We may assume that (sa sg)(a) _>_ 0. A little

calculation yields h(a) s;3(a) > sa(a) 30(a) > 0 and h(3) 343) < 0
h(a) + .30(a) > sa and h(,3) + 30(3) 5 30(3).

Comment: Although Theorem 10.8 is a very clear result, it does not seem to make

the proof of the Conjecture easier. It basically comes down to the following: given

a pwp function h on n such that h= gi on Ai, h= gj on Ai, we know that gi gi

vanishes outside (AO' n (k)c, since h is continous. So suppose a polynomial g has

zeros outside two open and disjoint semialgebraic sets A and B, one has to show

that for any pair (a, /3) such that a E A, E B, g E (a, /3).
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Separating ideals themselves are an interesting object to study and in some

situations it is possible to interpret them geometrically. To see this, let us start

with a

Definition 10.9: Let A = R[xi,.. , xid/P, R a real closed field. Fix a E
Sper A, f, g E Sper A. We call f infinitesimal with respect to g (in symbols

f(a) < g(a)) if for all r E R, sign g(a)-1- r f(a) = sign g(a).

Note:

(1) f E supp a = f(a) < g(a) (trivial)

(2) f(a) < g(a) and Ih(a)1 < r for some r E R = (hf)(a) <
g(a): We have sign g(a) rsf(a) = sign g(a) for all s E R

sign g(a)--1- sh(a)f(a) = sign g(a) for all s

(3) f(a) < g(a) and h(a) << g(a) = (f h)(a) < g(a)

Consider two points a, # in Sper A such that the coordinate functions xi are

bounded in both orderings, i.e. there exist ri, si E R with lxi Ka) < ri and lxi(0)1 <

si for all i. As A is Noetherian, (a, 0) =< 11, , fm > for fi E A, fi(a) > 0 and

fi(0) < 0. Then

and

(a, 0) ==< fl fl + .f2 fl + f2 + /3 fl + + fm >:=<

0 < gi(a) _5 5_ gm(a) 0 < MO) < <

If h E (a, /3), then h = higi for some hi E A, and since all hi are bounded, we

conclude that

(*) gm(a) h(a) and gm( /3) h(0),

i.e. in both orderings gm is not infinitesimal with respect to h.

Conversely, assume h E A has property (*). We may also assume that h(a) > 0.

We find r, s E R such that

(1) sign (h rgm)(a) sign h(a), so (h rgm)(a) < 0 and r < 0

(2) sign (h sgrn)(13) sign h(0).
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If h(/3) > 0, then necessarily s < 0, so h sgm, E (a, /3) and therefore h E (a, 0). If

h($) < 0 then h E (a, /(3) by definition of (a,13). Thus we have proved

Lemma 10.10. Let A = R[xi,... ,x,,]/a and a, E Sper A be such that all

coordinate functions are bounded with respect to a, /3. Then there exists f E A

such that

a E (a, 0) < > a(a) f(a) and a(0) f(0).

In this respect, f represents the "highest level of positivity" an element in the

separating ideal can assume.

Definition 10.11: We call f as in Lemma 10.10 an indicator of the separating

ideal (a ,t3)

Corollary 10.12. Let A as in Lemma 10.10 and fix a E Sper A such that a

specializes to a point a E VA(R) The set

{(a, /3) : E Sper A}

forms a chain under inclusion.

Proof. First note that all coordinate functions are bounded with respect to a, be-

cause f(a) < oo for all f E A. Given 0,7 E Sper A, we can assume that both

specialize to a for otherwise at least one of the ideals < a, /3 >, < a, -y > is the

whole ring and we get the desired inclusion. So we find indicators f(a,#), E A

for the respective separating ideals. Without loss of generality assume f(a,#)(a)

f<,,,,,,>(a). Then f<,7> E (a, 0) and therefore < a, -y >c (a, /3).

Example: Consider the ordering a as given in chapter V, example 2. Let

:= E [x, : the set { f > 0} contains a segment of the form

{0 < x < e, < y < g(x)} for some E > 0, where g(x) > 0 on (0, )}.
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/3 is determined by the curve y =

Claim: (a, 0) = (y, en). First notice that the functions y cen , 0 < c < 1
change sign, so that (y, C (a, /3). For the other inclusion , suppose f = ao(x)-F

yf(x,y) E (a, /3), where ordzao(x) < rn. We may also assume that f changes sign,

say f(a) > 0, f (3) < 0. However, for s := orcircto(x) (s > 0) we can find es > 0

such that the sign of f is constant on the set {(x, y) : 0 < x < e, 0 < y < 2x3+1} .

Since f(a) > 0 and s +1 < m, f must be positive on this set (the curve y = 2x3+1

lies above the curve y = xm), so f(0) > 0 and f does not change sign, contradicting

our assumption.

Our result implies that

n (a, /3) C(y)
fiESper 114z,y]

We are now going to prove that, in fact,

n ,8) = (Y)-
PESper 114x,y]

We only need to consider orderings such that a and have a common specializa-

tion, for otherwise (a, /3) will be the whole ring (c.f. the remark after Proposition

10.7).

If the least common specialization of a and is the ordering associated to

the point (0,0), then -Oa, [3) = (x, y) and (a, /3) contains a power of its radical.

Therefore xm E (a, 0) for some tn, and since y(a) < xm(a) for all m, y E (a, 0).

If a and specialize to the ordering

= If E [x, y] : f(x, 0) > 0 for x > 0 sufficiently small }
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then 0 is just the ordering that corresponds to the other side of the x-axis, and y

changes sign between a and /3. So again y E (a, /3) and the statement is established.

If we consider the valuation va associated to a (cf. chapter 6, example 3), we

see that the infinitesimality of a function with respect to another can be expressed

in terms of their values:

f (a) < g(a) va(f) > vc,(g)

So the separating ideal contains all elements whose value is greater than a prescribed

value 7 E Z x Z. In this respect, (a, /3) can be interpreted as a 'valuation ideal'

inside the polynomial ring R[x, y]. This also explains why y E (a, /3) for all /3:

(y) = (1, 0) > va(f) for any f that has a monomial in x. Given any /3 such that

the least common specialization of a and /3 is the point (0, 0), the separating ideal

(a, #) will contain such an f, and consequently y E (a, /3).

So, in general, the intersection

fl (a, #),
/3ESper

where the intersection is taken over those /3 which neither generalize nor specialize a,

seems to depend on the value group ra associated to va, and it would be interesting

to know under which conditions

fl (a, #) = supp a.
/3ESper

i3ZaAacZ/3

In different terms: What conditions do we need to impose on a such that for all f

that do not belong to the support of a we can find an ordering /3 with f tt (a, /3),

i.e. when can we find an ordering /3 that is closer to a than f, so to speak.

Another way of interpreting separating ideals is the following: suppose a E

Sper [xi, , xn] is given by an arc of an algebraic curve ra C Rn passing through

the origin. a can be described in the following way: f(a) > 0 iff there is e > 0
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such that f > 0 on B(0, e) fl where B(0, e) is the ball with radius e centered

at 0. Given f E R[xi,...,x,2], we can define the rate of growth of f along 1-1: for

any r > 0 we intersect the sphere Sn-1(r) of radius r with ra and evaluate f at

this point. In this way we obtain a function f : R fa(r) = f(sn-1,r,) fl ra).

Observe that fa is semialgebraic:

Graph(f) = {(x,y) E R2 : y = f(x),3xi, ,x.
A x2 x? x20.

Here Wa is the formula that determines ra. There exists a neighborhood of 0 such

that f is represented by a convergent Puiseux series (7 = E5>1 aor6 and we define

the rate of growth 4)(f) of f along ra to be the smallest exponent occurring in

cy, i.e. q5a(f) = ord (7 . We see that f (a) < g(a) < > q5(f) < 0,,(g) and

f (a) > 0 < > a60 > 0, 8o = 0a(f). Given two algebraic arcs rat, rfi that intersect

in the origin, we can look at the separating ideal of the attached orders a and /3.

Let (a, 13) be generated by , fm, where fi(a) > 0 and MP) 5_ 0, i = 1, , m.

Define fa/3 := + fin and c, = minfOa(ti), 0,(f7Z)}. Then

Oa( f co) = cc, = min{q5c,(f) : f E (a, ,3)}

To see this, let fil , , fir be the generators with 0(fii ) = c, i = 1, , r, i.e.

= ail r + (terms of higher orders).

Since all fi, are positive with respect to a, all ai; > 0, so E37:=1 ail > 0 and

ord = ord E = cc,. The second equality holds since for f = E gifi,

ord = ord C C l min {ord , i = 1 , . . . , m} = ca.

It is understood that the addition and multiplication of Puiseux-series is valid

only on the intersection of their respective neighborhoods of convergence, i.e. if

Mr) = (7 on Uf, ga(r) = (; on Ug where Uf, U9 are neighborhoods of 0, then

(fa 4.- ga)(r) = (7 -I- c; on Uf n ug.
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Also, q5a(f) > cc, implies that f E (a, 0), for in this case we will find A > 0

such that (Afa.,3 f)(a) > 0, and since Afo(#) < 0, it follows from Lemma 10.5

that f E (a, 0).

The same observations hold for 9 := ,Ois(f,)} and we con-

clude that

f E (cv,8) < > cb,(f) ca and 0#(f)> 9.

Thus in this situation infinitesimality can be described in terms of the rate of

growth along the curves rc, and To and a function f is in the separating ideal (a, /3)

if and only if its rate of growth along these two curves does not exceed a certiain

value (note that, since a and /3 are centered at 0, things go the other way: a lower

order in the Puiseux expansion corresponds to a larger rate of growth).
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