
AN ABSTRACT OF THE THESIS OF

Mohammad Borujerdi for the degree of Doctor of Philosophy in Computer Science

presented on April 6, 1999.

Title: Optimal Inference with Local Expressions.

Abstract approved:

Bruce D'Ambrosio

Probabilistic inference using Bayesian networks is now a well-established

approach for reasoning under uncertainty. Among many e�ciency-driven tech-

niques which have been developed, the Optimal Factoring Problem (OFP) is

distinguished for presenting a combinatorial optimization point of view on the

problem.

The contribution of this thesis is to extend OFP into a theoretical frame-

work that not only covers the standard Bayesian networks but also includes

non-standard Bayesian networks. A non-standard Bayesian network has struc-

tures within its local distributions that are signi�cant to the problem. This

thesis presents value sets algebra as a coherent framework that facilitates formal

treatments of inference in both standard and non-standard Bayesian networks

as a combinatorial optimization problem.

Parallel to value sets algebra theory local expression languages allow one

to symbolically encode Bayesian network distributions. Such symbolic encod-

ings allow all the structural and numerical information in distributions to be

represented in the most compact form. However, the symbolic and syntactic

exibilities in local expression languages have the usual drawback of allow-

ing possible incoherent expressions. Value sets algebra leads us to an e�cient

coherency veri�cation on such expressions.

This thesis views optimal inference with local expressions as an optimal

search problem. The search space for this problem is shown to be so large that

it renders any exhaustive search impractical. Hence it is necessary to turn to

heuristic solutions. Using A* heuristic framework and ideas from OFP, which

is the counterpart of this problem for standard Bayesian networks, a heuris-

tic algorithm for the problem is developed. As a key feature, this algorithm

di�erentiates between symbolic combinations of expressions and arithmetic op-

erations in the expressions. Cost bearing arithmetic operations are performed

only when su�cient information is available to guarantee that no saving oppor-

tunities are lost. On the other hand, expressions are combined in a way that

quickly provides maximum opportunity for e�cient arithmetic operations.

This thesis also explores the representation of Intercausal Independencies

(ICI) in Bayesian networks and de�nes some new operators in local expression

language which are shown to facilitate more e�cient ICI representations.

Optimal Inference with Local Expressions

by

Mohammad Borujerdi

A THESIS

submitted to

Oregon State University

in partial ful�llment of
the requirements for the

degree of

Doctor of Philosophy

Completed April 6, 1999
Commencement June 1999

Copyright by Mohammad Borujerdi

April 6, 1999

All rights reserved

Doctor of Philosophy thesis of Mohammad Borujerdi presented on April 6, 1999

APPROVED:

Major Professor, representing Computer Science

Head of Department of Computer Science

Dean of Graduate School

I understand that my thesis will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

thesis to any reader upon request.

Mohammad Borujerdi, Author

Approved by Committee:

Major Professor (Bruce D'Ambrosio)

Committee Member (Michael Quinn)

Committee Member (Timothy Budd)

Committee Member (Prasad Tadepalli)

Graduate School Representative (Jonathan King)

Date thesis presented April 6, 1999

ACKNOWLEDGMENT

I would like to express my gratitude to my major professor and advisor

Professor Bruce D'Ambrosio for all the help and support that he gave me

throughout this work. I would also like to thank other wonderful members of

my committee, Professors Michael Quinn, Prasad Tadepalli, Timothy Budd,

and Jonathan King for their assistance.

Many thanks to Computer Science Dept. faculty, sta�, and support, espe-

cially to Professor Toshimi Minoura and Mrs. Bernie Feyerherm.

I would like to thank my Mother for letting me come here to pursue a

dream and I cannot �nd enough words to thank my dear wife - Nasrin whose

understanding and patience made this possible.

TABLE OF CONTENTS
Page

Chapter 1: Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Overview . 3

Chapter 2: Local Expressions 4

Chapter 3: Value Sets Algebra 11

3.1 Theory of Value Sets Algebra 12

3.2 Value Sets Join Chain Optimization Problem 20

3.3 Inference in Bayesian Networks and Value Sets Algebra 21

Chapter 4: Coherency of Local Expressions 23

4.1 Canonical Form . 23

4.2 Coherency Veri�cation Procedure 24

Chapter 5: Local Expressions Inference 28

5.1 Introduction . 28

5.2 Local Expressions Inference as an Optimal Search Problem . . . 29

5.3 A Review of Optimal Factoring Problem and its Heuristic Solution 32

5.4 SPI*: A Heuristic Algorithm for Local Expressions Inference . . 35

5.4.1 Adapting the Remaining Size Criterion 35

5.4.2 Performing the Operations in Expressions 36

5.4.2.1 Marginalization Related (MGR) Operations . . . 36

5.4.2.2 Subset-Dimension Related (SDR) Operations . . 38

5.4.2.3 Term Summation Related (TSR) Operations . . . 38

TABLE OF CONTENTS (Continued)

Page
5.5 An Example Execution of SPI* Algorithm 40

5.6 Performance of the Heuristic . 43

5.6.1 Asymmetries and Contingencies 43

5.6.2 Intercausal Independencies 50

5.6.3 Complexity . 51

Chapter 6: Intercausal Independencies in Bayesian Networks 53

6.1 Heterogeneous Factorization . 54

6.2 Temporal Transformation . 56

6.3 A Look at the Performance of the Approaches 57

6.4 A Multiplicatively Factored Representation 61

6.5 New Representation and Inference Algorithms 64

Chapter 7: Conclusions and Future Work 69

7.1 Conclusions . 69

7.2 Future Work . 70

Bibliography 71

LIST OF FIGURES
Figure Page

2.1 An example of noisy-or interaction. 6

5.1 Part of the search space for �nding the optimal order of operations 32

5.2 An example network for the heuristic algorithm. 40

5.3 In
uence diagram for the oil wildcatter example. 44

5.4 In
uence diagram for the car buyer example. 46

5.5 In
uence diagram for the Generalized Buying Problem. 47

5.6 Savings and Number of decisions graph for Generalized Buying
Problem. 48

5.7 Savings and savings factor graph for Generalized Buying Problem. 48

5.8 An Example CPCS-type Bayesian network. 51

6.1 A Bayesian network for studying heterogeneous factorization. . . 54

6.2 Deputation Bayesian network for Fig. 6.1 network. 55

6.3 A Bayesian network for a multiple cause situation. 56

6.4 A temporal transformation of the network in Fig. 6.3. 57

6.5 An example network for temporal transformation. 59

6.6 Another example network for temporal transformation. 60

6.7 An example BN2O network. 66

LIST OF TABLES

Table Page
2.1 Evaluation for the noisy-or expression of Fig. 1 8

5.1 Savings vs the number of asymmetric decisions. 49

5.2 Savings vs the savings factor. 49

6.1 Characteristic terms for the expressions in example BN2O network 67

OPTIMAL INFERENCE WITH LOCAL EXPRESSIONS

Chapter 1

INTRODUCTION

1.1 Motivation

A Bayesian network representation of a probabilistic situation consists of a

graphical structure and a set of conditional and marginal distributions over

the variables involved. The graphical level, which represents the conditional

independencies, is used by inference algorithms to reduce the computational

complexity of inference. This is good in general, but in many situations there

are interesting structural properties that neither the graphical level nor the

ordinary joint conditional distributions of Bayesian networks can e�ectively

represent. The local expression language provides an e�cient representation

mechanism for such situations and thus can enhance and improve probabilistic

inference.

Intercausal independencies (ICI) and asymmetric models are two classes of

such situations which have been applied to a range of applications including

diagnosing multiple diseases and decision making. The distinguishing feature

of the local expression approach in comparison with others is the explicit use

of symbolic manipulation to simplify the inevitable numerical calculations in

probability evaluation. Since probability distributions are algebraic objects,

our �ndings will potentially contribute to the �eld of symbolic algebra as well.

2

1.2 Background

A Bayesian network represents a full joint probability distribution over a set

of variables in the form a directed acyclic graph (DAG) and a set of local

distributions. If such a DAG is sparse, local distributions will be small and

probabilistic computations with this representation will involve fewer numbers

and will be more e�cient than computations with the full joint distribution.

The sparseness of the DAG follows from conditional independencies among the

variables which are represented as nodes.

During the early stages of the development of Bayesian networks emphasis

was largely on decomposing the large joint probability distributions. Using

the DAGs as graphical representations and smaller local distributions, such

decompositions eased knowledge elicitation and inference computations (Pearl,

1988). In that context local expressions were used in the nodes of Bayesian

network DAGs to represent the joint conditional probability distribution (JCD)

of the node variable given its parents. We refer to such models and their

corresponding local expressions as standard Bayesian networks and standard

local expressions.

Later, local distribution of Bayesian networks started to involve �ner grain

representations with even more potential to improve the e�ciency of the infer-

ence computations. Such developments include noisy-or (Pearl, 1988), (Srini-

vas, 1993) , contingencies (Fung R., & Shachter R., 1991), additive models

(Dagum & Galper, 1993), similarity networks (Heckerman, 1991), and the

structured distributions (Boutilier, Friedman, Goldszmidt, & Koller, 1996).

Along with those developments local expressions were extended and a language

with a formal grammar was de�ned for them. This allowed local expressions

3

to (D'Ambrosio, 1995) represent more dependencies including intercausal and

asymmetric dependencies. The extended local expressions brought some inter-

esting issues with them, including the coherency of local expressions and how

to do inference with them.

1.3 Overview

Chapter Two is an extensive review of local expression languages including

their grammar, representation, and examples.

In Chapter Three \value sets algebra," a theoretical framework for opera-

tion on local expressions, is presented. Using value sets algebra a combinatorial

optimization problem is de�ned for joining value sets. Then it is shown that

probabilistic inference in Bayesian networks with extended local expressions

can be described as instances of that optimization problem.

Chapter Four is about the coherency of local expressions. It is shown how

the symbolic representation of local expressions can be veri�ed to be consistent

with the numerical constraints of axiomatic probability theory.

In Chapter Five solutions to the optimal inference with local expressions

are studied. Optimal factoring, which is a closely related problem, is reviewed

and some additional insights are provided which eventually lead to a heuristic

algorithm for the problem of optimal inference with local expressions.

Chapter Six focuses on the representation of intercausal independencies in

Bayesian networks. Major approaches for representing independencies among

causal e�ects in Bayesian networks are compared. Some of the factors which

in
uence the performance of the approaches in di�erent situations are identi-

�ed. Finally a new and better representation for intercausal independencies as

local expressions is introduced.

4

Chapter 2

LOCAL EXPRESSIONS

A local expression language is an extension to the standard representation

for Bayesian networks. This extended expression language is useful for compact

representation of various models for interaction among antecedents.

The intuition behind local expressions is simple. Any marginal or condi-

tional distribution in Bayesian networks can be written as an algebraic ex-

pression of distributions whose state-spaces are subsets of the original. For

example, the marginal distribution P (A) (assuming P (A = t) = 0:7, and

P (A = f) = 0:3) can be written as

At + Af

where At, for example, has the value 0.7 and is de�ned over A = t. But such a

representation, although complete, is not always bene�cial, since its space and

inference time complexity are exponential in the number of antecedent nodes.

However, there are situations where additional independencies in the local

interactions exist, and such independencies can be exploited to write more

compact local expressions and obtain faster inference time. In the rest of this

chapter we will �rst de�ne the syntax and semantics for local expressions. Then

we will review some of those interaction models to see how local expressions

can capture the independencies and other structural properties in the models.

The formal syntax for our expression language is shown below. Note how

terms eventually reduce to one or more distributions. Distributions are de�ned

5

over some subset of the Cartesian product of domains of their conditioned and

conditioning variables. In our presentation the actual numeric values in the

distributions will be ignored, since they are not germane to the discussion.

Also, our actual syntax uses pre�x notation; however, for readability we will

use in�x notation throughout the thesis.

exp ! term j (+ term term-set) j

! (� term term-set) j

! (� term term-set)

term ! exp j distribution:

term-set ! term j term term-set:

distribution ! namedimensions.

dimensions ! conditioned j

! conditioned \j" conditioning.

conditioned ! var-namedomain

! var-namedomainconditioned.

conditioning ! var-namedomain

! var-namedomain j conditioning.

domain ! \ " j value j value-set.

value-set ! value j value; value-set.

For local expressions we de�ne their semantics in the following evaluation

rule, and then we move on to consider the use of the local expression language

to represent several commonly occurring intra-distribution structures. The

evaluation rule is as follows.

An expression is equivalent to the distribution obtained by evalu-

ating it using the standard rules of algebra for each possible com-

bination of antecedent values.

6

&%
'$

"!

"!

J
J
J
JĴ

�

A B

D

FIGURE 2.1: An example of noisy-or interaction.

Noisy-or If A and B have a noisy-or in
uence on D in the network shown in

Fig. 2.1 the following expression can be written to represent the dependence

of D on A and B, following Pearl (Pearl, 1988):

P (D = t) = 1� (1� cA(D))(1� cB(D))

P (D = f) = (1� cA(D))(1� cB(D))

where cA(D) is the probability that D is true given that A is true and B is

false. The notation can be made slightly more compact by de�ning

c0A(D) = (1� cA(D))

where

c0A(D) = 1� cA(D); A = t

= 1; A = f

7

Now c0A(D) is a pair of numbers expressing the dependence of P (D) on A

whereas, cA(D) is a single number (P (D = tjA = t; B = f)). The expression

can now be rewritten as:

P (D = t) = 1� c0A(D) � c0B(D)

P (D = f) = c0A(D) � c0B(D)

The size of this expression is linear in the number of antecedents, it captures

the structure of the interaction, and, as Heckerman showed (Heckerman, 1989),

it can be manually manipulated to perform e�cient inference.

e(D) = 1Dt � c0DtjAt;f
� c0DtjBt;f

+ c0Df jAt;f
� c0Df jBt;f

Note the two instances of c0A(D) in the expression where the numeric distri-

butions for the instances are identical, their de�ning state-spaces are di�erent.

Having shown that a noisy-or can be expressed in our syntax, we will next

examine whether the expression semantically matches those standardly at-

tributed to the noisy-or structural model. Performing the evaluation in the

expressions semantic rule for our simple example yields the Table 2.1 which is,

in fact, exactly the standard semantics attributed to noisy-or.

Asymmetries (Geiger D. & Heckerman D., 1991) pointed out that probabilis-

tic relationships are often asymmetric. An example asymmetric relationship

was presented by Geiger and Heckerman in which, a variable Badge (B) de-

pends on a second variable, Hypothesis (H). Badge also depends on a third

variable, Gender (G), but only when Hypothesis is either \worker" or \exec-

utive" (Hypothesis takes four values, \worker" (w), \executive" (e) , \visitor"

8

A B D

t f

t t 1-(1-cD(A))*(1-cD(B)) (1-cD(A))*(1-cD(B))

t f 1-(1-cD(A))*(1)) (1-cD(A))*(1))

f t 1-(1)*(1-cD(B)) (1)*(1-cD(B))

f f 1-(1)*(1) (1)*(1)

TABLE 2.1: Evaluation for the noisy-or expression of Fig. 1

(v), and \spy" (s)). The following expression can be written for this structure.

exp(Badge) = PBt;f jHs;v
+ PBt;f jHw;e;Gm;f

Contingencies Contingency is a form of asymmetry in which a variable's

existence is contingent on other variables. For example, W might only exist

when X = t, and it might depend on the values of variables Y and Z (Fung

R., & Shachter R., 1991):

exp(W) = PWt;f jXtYt;fZt;f + PW;jXf

The second term in the above expression represents the nonexistence of

W and ensures that we are able to recover the joint probability across all

the variables by forming the product of all local expressions. Another way to

ensure this is to make it a requirement that every local expression must be

de�ned for every instantiation of its parent set. Furthermore, for each such

instantiation, the local expression must describe the distribution of the mass

for that instantiation. The second term in the above expression represents a

fact about the mass corresponding to speci�c instantiations of the parents (all

9

those in which X = f). It shows that the mass is not assigned to any of the

values in the domain of the variable W . However, this mass must be explicitly

represented so that this expression can be combined with others to properly

recover the full joint.

Additive Decompositions The utility of additive decomposition of condi-

tional distributions has been noted by Dagum and Galper (Dagum & Galper,

1993). Local expressions can easily represent the corresponding model:

exp(Y) = a1 � pYt;f jX1t;f + a2 � pY jX2t;f

With regard to this example we must mention that in the local expression

language domains are not restricted to ft; fg; we use that domain merely for

concreteness. Also, it is possible to decompose into conditioning subsets rather

than individual variables as Dagum and Galper described.

Inference computation with local expressions can be done with an algorithm

which is an extension of set factoring algorithm (Li & D'Ambrosio, 1994). We

will refer to this algorithm as ESPI hereafter. ESPI algorithm tries to �nd

the best order of operations on local expressions by successively selecting and

combining candidate expressions whose combination will have the smallest set

of remaining variables (D'Ambrosio, 1995). Compared to the set factoring al-

gorithm, the extended algorithm has a more comprehensive combination candi-

date generation procedure. It also includes heuristic adjustments to the scoring

function for combination candidates. For example, the number of terms in an

expression is taken into account in scoring. After the candidate is selected, the

combined expression is immediately reduced to a distribution by performing

the arithmetic operations in the expression. For example, consider the network

10

in Fig. 2.1 which involves the following local expressions.

e(D) = 1Dt � c0DtjAt;f
� c0DtjBt;f

+ c0Df jAt;f
� c0Df jBt;f

e(A) = At + Af

e(B) = Bt +Bf

Combining expressions for A and D will give,

e(AD) = 1Dt � At � c0DtjAt;f
� c0DtjBt;f

� At

+c0Df jAt;f
� c0Df jBt;f

� At

1Dt � Af � c0DtjAt;f
� c0DtjBt;f

� Af

+c0Df jAt;f
� c0Df jBt;f

� Af

The algorithm at this point performs all the relevant products inside the ex-

pression and essentially reduces the expression to a distribution. Later in

chapter �ve we will present a new way for extending the set factoring heuris-

tic to inference with these expressions. Also in chapter six the performance

of this approach will be analyzed along with other prominent approaches for

representation of noisy-or situations.

11

Chapter 3

VALUE SETS ALGEBRA

Probability distributions are algebraic objects at the center of a highly de-

veloped scienti�c research area called \Probabilistic Reasoning". During the

early stages of the development of that area, emphasis was mainly on capturing

value independent conditional independence to decompose the representation

of large joint probability distributions to ease knowledge elicitation and in-

ference computations (Pearl, 1988). Symbolic Probabilistic Inference (SPI)

(D'Ambrosio, 1990) approached the e�cient probabilistic inference in an alge-

braic way that later led to a combinatorial optimization point of view on the

same problem known as Optimal Factoring Problem (OFP) (Li & D'Ambrosio,

1994).

Nowadays decomposition e�orts in the same area have reached the distribu-

tions at local levels. Researchers (Geiger D. & Heckerman D., 1991); (Srinivas,

1993); (Heckerman & Breese, 1994); (Zhang & Poole, 1996) have developed lo-

cal distribution models that involve �ner grain decompositions. These models

are di�erent from standard distributions and they can potentially improve the

e�ciency of the inference computations even further. OFP framework made

it possible to de�ne the inference in standard Bayesian networks as a combi-

natorial optimization problem. Now it is our objective to develop a theoreti-

cal framework for non-standard Bayesian networks where there are structures

within local distributions and they are signi�cant to the problem. Our goal is

to provide a coherent set of de�nitions that can facilitate a formal treatment

12

of probabilistic inference in non-standard Bayesian network as a combinatorial

optimization problem.

3.1 Theory of Value Sets Algebra

Let us �rst introduce some notation. Throughout this section �rst uppercase

letters of the alphabet (e.g., A, B, C) denote propositional variables. The

last uppercase alphabet letters (e.g., X, Y, Z) are used to represent sets of

variables. A subscripted variable denotes a set of speci�c instances or values

of that variable as indicated in the subscript. The domain of a variable A,

which is the �nite set of all instances of that variable, is denoted by d(A).

Super domain of a variable A is denoted by SD(A) and is the power set of the

domain of that variable, i.e., SD(A) = fd: d � d(A) g.

The domain of a set of variables V = fV 1; V 2; : : : ; V n g, is the Cartesian

product of the domains of the variables in the set, i.e., d(V) = d(V 1)�d(V 2)�

: : :� d(V n). Similarly, the super domain of a set of variables is the Cartesian

product of the super domains of all the variables in the set, i.e., SD(V) =

SD(V 1)� SD(V 2)� : : :� SD(V n).

De�nition 1. Simple Super domain of a variable A, denoted by D(A),

is the subset of SD(A) where the size of every element is less than two, i.e.,

D(A) = fsd: sd 2 SD(A) and jsdj < 2 g. The simple super domain of a set

of variables is the Cartesian product of the simple super domains of all the

variables in the set, i.e., D(V) = D(V 1)�D(V 2)� : : :�D(V n). An element

of D(V) is called a point and it is an n-tuple (s1; s2; : : : ; sn) where si 2 D(V i).

Given an n� tuple s = (s1; s2; : : : ; sn) we denote its component corresponding

to V i as s(V i). Two points s1 and s2 are equal if both correspond to the same

set of variables V and 8v 2 V; s1(v) = s2(v).

13

De�nition 2. Subsets of D(V) are called point sets. Dimension of a point

set S � D(V) is denoted by dim(S), and it is the set V . The scope of V i

in S is denoted by S(V i) = I � D(V i) and it is the set of those elements

of D(V i) which are present in at least one element of S. In other words,

I = fv : v 2 D(V i); 9s 2 S; s(V i) = vg. We use S(V k) = ; to represent

that V k 62 dim(S) or V k has an empty scope in S. On the other hand if

S(V i) = D(V i)\f;g we say V i has a full scope in S.

Note that if S(V i) = f;g then V i 2 dim(S) and V i has a nonempty scope

in S.

De�nition 3. The dimension of a point set can be reduced by reducing the

scopes of some variables to empty set. Suppose S � D(V) and dim(S) = V .

We denote the reduction of the dimension of S from V to Y by /�Z S where

Z = V � Y . Such a reduction results in ŜY where Y � V and 8s 2 ŜY , if

A 2 Z then s(A) does not exist.

De�nition 4. The dimension of a point set can be expanded by adding

some variables with their full scope to the dimension of that point set. Suppose

S � D(V) and dim(S) = V . We denote the expansion of the dimension of

S from V to Y by /+Z S where Z = Y � V . Such an expansion results in

TY = S � (fd(Z1)� fd(Z2) : : :� fd(Zn)) where Zi 2 Z for i = 1; 2; : : : n and

fd(Zi) = D(Zi)\f;g.

Union, set di�erence, and intersection for sets of points with the same

dimensions are the same operations de�ned for sets in general. Using de�nition

4 one only needs to expand the dimensions of operands to the union of their

dimensions before performing such operations on sets of points with di�erent

dimensions. Cartesian product of sets of points is the same as the Cartesian

product for sets in general. In the Cartesian product of two sets of points such

14

as S1 and S2 denoted by S1 � S2, the product of two points such as s1 and s2

is denoted by (s1; s2).

De�nition 5. Join of two sets of points S1 and S2, is denoted by S1 1 S2.

S1 1 S2 = f(s1; s2)js1 2 S1; s2 2 S2;

8v if 9s1(v) and 9s2(v), s1(v) = s2(v)g

So join produces a subset of Cartesian product where every variable has

only one mapping at every point.

De�nition 6. Full join of two point sets S1 1F S2 is de�ned as follows.

Suppose Y = dim(S1) and Z = dim(S2). First expand the dimensions of S1

and S2 to V = Y [Z to get SV
1 and SV

2 .

S1 1F S2 = f(s1; s2)js1 2 SV
1 ; s2 2 SV

2 ;

8v, s1(v) = s2(v)g

Lemma 0. Join and Full Join are equivalent.

Proof. Consider point sets S1 and S2 where Y = dim(S1), Z = dim(S2),

V = Y [Z, and I = Y \ Z. We must prove that J = FJ where J = S1 1 S2

and FJ = S1 1F S2.

We can describe V as the union of three disjoint sets. V = I [(Y � Z) [

(Z � Y). Suppose (s1; s2) 2 J then,

8v 2 V if v 2 I then (s1; s2)(v) = s1(v) = s2(v)

if v 2 (Y � Z) then (s1; s2)(v) = s1(v)

if v 2 (Z � Y) then (s1; s2)(v) = s2(v)

Now let sRk ; k = 1; 2; R = I; Y � Z;Z � Y denote the elements of the sk

n-tuple which correspond to variables in R. For example, sZ�Y2 are the compo-

nents in s2 which correspond to variables that are exclusively in dimension of

15

S2 and not in dimension of S1. We form two new points s01 and s02 by forming

products of s1 and s2 in the following way: s
0
1 = (s1; s

Z�Y
2) and s02 = (s2; s

Y�Z
1).

By de�nition 6 we know that (s01; s
0
2) 2 FJ . Furthermore,

8v 2 V if v 2 I then (s01; s
0
2)(v) = s01(v) = s02(v)

= s1(v) = s2(v)

= (s1; s2)(v)

if v 2 (Y � Z) then (s01; s
0
2)(v) = s01(v) = s1(v)

= (s1; s2)(v)

if v 2 (Z � Y) then (s01; s
0
2)(v) = s02(v) = s2(v)

= (s1; s2)(v)

So 8v 2 V; (s1; s2)(v) = (s01; s
0
2)(v) and (s1; s2)(v) 2 FJ .

Now suppose (s1; s2) 2 FJ . Then 8v 2 V we have s1(v) = s2(v). We form

two new points s"1 and s"2 by removing parts of s1 and s2 respectively in the

following way: s"1 = (sI1; s
Y�Z
1) and s"2 = (sI2; s

Z�Y
2). By de�nition 5 we know

that (s"1; s"2) 2 J . Furthermore,

8v 2 V if v 2 I then (s"1; s"2)(v) = s"1(v) = s"2(v)

= s1(v) = s2(v)

= (s1; s2)(v)

if v 2 (Y � Z) then (s"1; s"2)(v) = s"1(v) = s1(v)

= (s1; s2)(v)

if v 2 (Z � Y) then (s"1; s"2)(v) = s"2(v) = s2(v)

= (s1; s2)(v)

So 8v 2 V; (s1; s2)(v) = (s"1; s"2)(v) and (s1; s2)(v) 2 J . Hence J = FJ .

De�nition 7. A value set fS is a mapping between the point set S and

the set of real numbers. Such a mapping assigns a real number value to every

16

point in S. The size of a value set is the size of its domain point set. A subset

of a value set fS is another value set f̂R where R � S and 8r 2 R; fr = f̂r.

De�nition 8. A dimension reduction on a value set fS denoted by /�X fS

results in another value set gT where T =/�X S, X � dim(S), and for every

t 2 T , let St = fs : 8v 2 dim(T); s(v) = t(v)g. Then gt =
P

St
fs. A dimension

expansion on a value set fS results in another value set hQ where Q =/+Y S

and and for every s 2 S, let Qs = fq : 8v 2 dim(S); q(v) = s(v)g. Then for

every q 2 Qs, hq = fs.

De�nition 9. Sum/Di�erence of two value sets is de�ned as, fS1
+
� gS2 =

hS where S = S1 [S2 and 8s 2 S, hs = f
0

s

+
� g

0

s where f
0

s = fs if s 2 S1, 0

otherwise and g
0

s = gs if s 2 S2, 0 otherwise. Extension to any number of value

sets is trivial.

De�nition 10. Product of two value sets is de�ned as, fS1 � gS2 = hS

where S = S1�S2 and 8s 2 S, hs = f
0

s�g
0

s where f
0

s = fs if s 2 S1, 1 otherwise

and g
0

s = gs if s 2 S2, 1 otherwise. Extension to any number of value sets is

trivial.

De�nition 11. Join of two value sets is de�ned as, fS1 1 gS2 = hS where

S = S1 1 S2 and 8s 2 S, hs = fs�gs. Equivalently, fS1 1 gS2 = f̂S� ĝS where

S = S1 1 S2. Extension to any number of value sets is trivial.

Lemma 1. Sum, product, and join operations for value sets are all asso-

ciative and commutative.

Proof. We will prove that join is associative and commutative. Proofs

for other operations can be accomplished in similar ways. First we prove that

join is commutative. Let hS = fS1 1 gS2 and let s = (s1; s2) be an arbitrary

point in S where s1 and s2 are corresponding points in S1 and S2 respectively.

By de�nition 5 we know that 8v if 9s1(v) and 9s2(v), s1(v) = s2(v). Now

17

considering h0S0 = gS2 1 fS1 , the point s
0 = (s2; s1) holds the property that 8v

if 9s1(v) and 9s2(v), s1(v) = s2(v). So s0 2 S 0. Furthermore 8v(s1; s2)(v) =

(s2; s1)(v) and hence s = s0 and consequently s 2 S 0. Now with regard to

values since s 2 S we have hs = fs1�gs2, while h
0
s0 = gs2�fs1 = fs1�gs2 = hs.

This proves that if an arbitrary point and its value are in fS1 1 gS2 then

they are in gS2 1 fS1 . The other side can be similarly proved and hence

fS1 1 gS2 = gS2 1 fS1 .

To prove that join is associative let hS = (eS1 1 fS2) 1 gS3 and h
0
S0 = eS1 1

(fS2 1 gS3). For an arbitrary point s 2 S, s = (s1; s2; s3) with s1, s2 s3 as

corresponding points in S1, S2 and S3 respectively we have,

8v if 9s1(v) and 9s2(v) then s1(v) = s2(v)

if 9s1(v) and 9s3(v) then s1(v) = s3(v)

if 9s2(v) and 9s3(v) then s2(v) = s3(v)

if 9s1(v) and 9s2(v) and 9s3(v) then s1(v) = s2(v) = s3(v)

The above properties also hold for the point s0 = (s2; s3; s1) and hence

s0 2 S 0 and furthermore 8v(s2; s3; s1) = (s1; s2; s3) which means s = s0 and

consequently s 2 S 0. Value-wise we know that hs = (es1 � fs2) � gs3 = es1 �

(fs2 � gs3) = h0s0 This proves that if an arbitrary point and its value are in

(eS1 1 fS2) 1 gS3 then they are in eS1 1 (fS2 1 gS3). The other side can be

similarly proved and hence (eS1 1 fS2) 1 gS3 = eS1 1 (fS2 1 gS3).

Lemma 2. Join and product both commute with sum.

Proof. We must show that hS = eS1 1 (fS2 + gS3) and h0S0 = (eS1 1

fS2)+(eS1 1 gS3) are the same. To do so we �rst show that S = S1 1 (S2[S3)

and S 0 = (S1 1 S2) [(S1 1 S3) are equal.

First we consider an arbitrary point s 2 S, s = (s1; s2; s3) with s1, s2 s3

as corresponding points in S1, S2 and S3 respectively. Let X = dim(S1); Y =

18

dim(S2); Z = dim(S3); and V = X [Y [Z.

8v 2 V if v 2 X � (Y [Z) then s(v) = s1(v)

if v 2 (Y [Z)�X then if v 2 Y � Z then s(v) = s2(v)

then if v 2 Z � Y then s(v) = s3(v)

then if v 2 Z \ Y then s(v) = s2(v) = s3(v)

if v 2 X \ (Y [Z) then if v 2 Y � Z then s(v) = s1(v) = s2(v)

then if v 2 Z � Y then s(v) = s1(v) = s3(v)

then if v 2 Z \ Y then s(v) = s1(v) = s2(v)

= s3(v)

Now consider the two points s0 = (s1; s2) and s" = (s1; s3) which both

belong to S 0. Using the similar properties of s0 and s" with regard to disjoint

sets in the above cases, it is true that 8v 2 V; either s = s0, or s = s", or

s = s0 = s". Hence s 2 S 0. Value-wise es1�(fs2+gs3) = (es1�fs2)+(es1�gs3).

This proves that if an arbitrary point and its value are in eS1 1 (fS2+gS3) then

they are in (eS1 1 fS2) + (eS1 1 gS3). The other side can be similarly proved

and hence eS1 1 (fS2 + gS3) = (eS1 1 fS2) + (eS1 1 gS3).

Lemma 3. A cascade of dimension reductions can be combined into one,

and a combined dimension reduction can be separated to a cascade of dimension

reductions. This is stated formally as, /�V1/�V2 : : : /�Vn fS =/�V fS where

V = [ni=1Vi, V � dim(S), and \ni=1Vi = ;.

Proof. We show the equivalence in case of two dimension reductions.

Extension to higher numbers of dimension reductions is trivial. We want to

show that /�V1/�V2 fS =/�(V1[V2) fS. For the combined dimension reduction

we have,

/�(V1[V2) fS = gT , T = /�(V1[V2) S,

and 8t 2 T; S1;2
t = fs : 8v 2 dim(T); s(v) = t(v)g and gt =

P
S1;2t

fs.

19

Since dim(T) = dim(S)� (V1 [V2), the above can be rewritten as,

/�(V1[V2) fS = gT , T =/�(V1[V2) S and 8t 2 T; S1;2
t = fs : 8v 2 dim(S) �

(V1 [V2); s(v) = t(v)g and gt =
P

S1;2t
fs.

The �rst of the cascading dimension reductions can be written as,

/�V2 fS = g0T 0 , T 0 =/�V2 S and 8t0 2 T 0; S2
t0 = fs : 8v 2 dim(S) �

V2; s(v) = t0(v)g and g0t0 =
P

S2
t0
fs.

Cascading with the second dimension reduction gives,

/�V1 (/�V2 fS) = g"T", T" =/�V1 T 0 and 8t" 2 T"; S1
t" = fs : 8v 2

dim(T 0)� V1; s(v) = t"(v)g and gt" =
P

S1
t"
g0s.

We can write T" =/�V1 T
0 =/�V1�V2 S =/�(V1[V2) S. Also g

0
s =
P

S2
t0
fs. So

the above relation can be rewritten as,

/�V1 (/�V2 fS) = g"T", T" =/�(V1[V2) S and 8t" 2 T"; S1
t" = fs : 8v 2

dim(T 0)� V1; s(v) = t"(v)g and gt" =
P

S1t"

P
S2
t0
fs.

Now given that
P

S1
t"

P
S2
t0
fs =
P

S1;2t
fs it follows that gt = g"t" and our

equivalence is proved.

Lemma 4. Commuting dimension reduction with join. Let fS1 and gS2 be

two value sets. Let /�(X1[X2) be a dimension reduction where X1 � dim(S1),

X2 � dim(S2), X1 \ X2 = ;, X1 \ dim(S2) = ;, and X2 \ dim(S1) = ;.

Then

/�(X1[X2) fS1 1 gS2 =/�X1 (fS1) 1/�X2 (gS2)

Proof. We su�ce to outline the stepwise proof as follows.

Step 1: Assume that fS1 1 gS2 = e(S).

Step 2: Show that

fS1 1/�X2 gS2 =/�X2 e(S):

20

Note that the join equality constraints that apply to the intersection of dimen-

sions of S1 and S2 are not a�ected by such a dimension reduction because X2

does not intersect with S1 \ S2.

Step 3: Using the same reasoning presented in step 2 show that

/�X1 fS1 1/�X2 gS2 =/�X1 (/�X2 e(S))

Step 4: Using Lemma 3 (cascading dimension reductions) we conclude that

/�X1 fS1 1/�X2 gS2 =/�(X1[X2) e(S) =/�(X1[X2) (fS1 1 gS2)

3.2 Value Sets Join Chain Optimization Problem

Using the above operations we can form value sets algebraic expressions. A

typical expression is a sum of products of value sets fS's which is denoted by

e =
P

�fS. We will later show that probabilistic inference problems can be

described as the operation of dimension reduction on joins of such sums of

products.

An optimal way of performing such operations �nds the resultant value set

at the minimum cost. We assume that sum and dimension reduction operations

on value sets have no cost. For product or join operations the cost is the

number of real number multiplications involved in performing those operations.

Formally the problem is de�ned as follows.

21

De�nition Given

1. A set of m variables V ,

2. A set of n subsets of V : R = fRf1g; Rf2g; : : : ; Rfngg,

3. For every Ri 2 R, a �nite collection of sets F i
Si

= fF i;1
Si;1

; F i;2
Si;2

; : : : F i;J
Si;Jg, where

every element is a set of value sets F i;j
Si;j

= ff i;j;1Si;j;1
; f i;j;2Si;j;2

; : : : f i;j;KSi;j;Kg de�ned over the

super domain of Ri, and a sum of products of value sets in F i;j
Si;j

:

ei =

j�JX

j=1

k�KY

k=1

f i;j;kSi;j;k

De�ne operation:

1. A sequence of ` joins over ` + 1 value sets with dimension reduction,

�` =/VI1
`+1
i=1 ei; VI � ([`+1i=1Vi)

2. The cost function of �` given the operations order � is denoted by ��(�`) and it is

de�ned as the number of multiplications necessary to obtain the resultant value set

if the operations are performed in the order speci�ed by �.

The value sets join chain optimization problem is to �nd � such that ��(�n) is

minimal.

3.3 Inference in Bayesian Networks and Value Sets Algebra

Probabilistic inference in Bayesian network can be described as the problem

of marginalizing a joint distribution of the involved variables. For example, in

the Bayesian network shown in �gure 1 we can describe the probability of A

as,

P (A) =
X

BD

P (ABD) =
X

BD

P (D=AB)P (A)P (B)

22

Lets assume that all the variables have the binary domain ft; fg. Furthermore

we assume that D has a noisy-or interaction with A and B. This leads to

factorization of P (D=AB) as indicated earlier.

P (D=AB) = 1Dt � c0DtjAt;f
� c0DtjBt;f

+ c0Df jAt;f
� c0Df jBt;f

The calculation of P (A) can be described in terms of value sets algebra in

the following way. We describe every probabilistic distribution as a value set

whose domain point set is the state-space of the distribution, a subset of the

super domain of the set of involved variables. The range of such value sets is

[0,1] subset of real numbers with the actual mappings being the probability

values indicated in the probability distribution. For example 1Dt is a value set

whose point set is fD = tg and the value mapped to the single point is 1. Also

c0DtjAt;f
is a value set whose point set is f(D = t; A = t); (D = t; A = f)g with

the values 1� cA(D) for (D = t; A = t) and 1 for (D = t; A = f). If we denote

by V (X=Y) the value set corresponding to the distribution P (X=Y) then we

can describe the probability calculations for P (A) in terms of value set algebra

as,

/�BD V (D=AB) 1 V (A) 1 V (B)

which is equivalent to

/�BD (V (Dt)� V (Dt=A) � V (Dt=B) + V (Df=A) � V (Df=B)) 1 V (A) 1 V (B)

Performing the value set operations will result in a value set whose domain

point set is fAt;Afg and its mappings are the corresponding probabilities.

23

Chapter 4

COHERENCY OF LOCAL EXPRESSIONS

The various properties of a noisy-or or an asymmetric interaction make it

possible to represent the joint conditional distribution (JCD) in a very compact

form in a local expression. To be coherent, the entries on every row in a

JCD must add up to 1. So, an obvious way to check the coherency of a local

expression is to evaluate the expression using the rule in Chapter One to obtain

the JCD table and numerically check every row. But this is expensive since

the number of rows is exponential in the number of parents.

A better approach to coherency checking is to take advantage of the de-

compositions and factorings that are present in the expression to reduce the

evaluations and checkings of the actual numbers. To simplify our coherency

checking operations, we require that expressions be represented in a canonical

form, as de�ned below.

4.1 Canonical Form

Canonical forms have been employed in computer algebra systems to simplify

certain kinds of operations on polynomials. We de�ne a canonical form for

local expressions in the following way to facilitate the coherency checking on

such expressions.

1. An expression in canonical form is the sum of some terms and every such

term is the product of some factors.

24

2. If the conditioned variable has a full scope in the state-space of a factor

then the factor must be probabilistically coherent.

Note that in the contexts where the symbolic manipulation of local expres-

sions is discussed we mostly use the word "factor" to refer to "distribution"

in the local expression grammar. The same entity may be represented and

referred to as "value set" in more theoretic discussions.

The second condition can be veri�ed on a factor by reducing the dimension

of the corresponding value set. In this reduction the scope of the conditioned

variable in the dimension will be reduced to the empty set. Then the condi-

tion is veri�ed by observing that all resultant values are one. There are local

expressions that are numerically coherent but are not in canonical form. One

example of such expressions is the expression for base and modi�er represen-

tation of additive value function (D'Ambrosio, 1995). Using the weighted sum

approach of (Dagum & Galper, 1993) for the additive relationships will give a

local expression that is in canonical form.

4.2 Coherency Veri�cation Procedure

Given an expression whose coherency is in question, the following procedure is

performed. Basic conjunctive state-space (BCS) is formed for every term. A

term BCS is the joint state-space of the factors in the term considering only

the variables that are explicitly present in the dimension of the term factors.

If the conditioned variable's scope in BCS is full, and BCS is disjoint from

other terms BCS, then the term is a prime term. Prime terms are individually

veri�ed to be coherent. For example, consider the following local expression

representing part of an expression for a �nding node F with two parents D1

25

and D2. It is assumed that relationship among the nodes is of a noisy-max

(Henrion, 1988); (Pradhan, Provan, Middleton, & Henrion, 1994), and all nodes

have the ternary domain of low, medium, and high.

exp(f) = 1Fl;m;hjD2l � f1Fl;m;hjD1l;m;h
+ 1Fl;m;hjD1m;h

� f2Fl;m;hjD2l

+ f 01Fl;mjD1m;h
� f 02Fl;mjD2m;h

There are three terms in this expression. The �rst term BCS, using the local

expressions subscript notation, is Fl;m;hD2lD1l;m;h. The BCS for the second

term is Fl;m;hD1m;hD2l. Both terms are prime terms, and each is individually

veri�ed to be coherent.

For all the other terms where the conditioned variable has only a partial

scope in BCS, the following operations are performed. First, if the size of the

conditioned variable's scope is greater than 1 in any term, the term will be

rewritten. Such a term will be the sum of some terms, one for each distinct

element of the conditioned variable domain. In our example the factors of the

last term will be rewritten that way to get an equivalent expression,

(f1FljD1m;h
+ f"1FmjD1m;h

) � (f2FljD2m;h
+ f"2FmjD2m;h

)

which is converted into canonical form to give,

f1FljD1m;h
� f2FljD2m;h

+ f"1FmjD1m;h
� f"2FmjD2m;h

Through dimension reduction the conditioned variable is removed from the

dimensions of all the terms. The terms are then grouped into sets which are

disjoint in terms of state-space. Hence terms within any such group or set

share the same state-space. Continuing with the example we will have,

f1D1m;h
� f2D2m;h

+ f"1D1m;h
� f"2D2m;h

26

Both remaining terms have the same state-space of D1m;hD2m;h. The only

remaining operation in our current example is to perform the products and

sum all the terms against one in the state-space. In general within any such

set with shared state-space a search will take place to �nd and match pairs of

terms with more than one factor and opposite signs. These are matched factor

by factor for symbolic reductions. For example consider the noisy-or expression

of Section 2:

e(D) = 1Dt � c0DtjAt;f
� c0DtjBt;f

+ c0Df jAt;f
� c0Df jBt;f

After this expression goes through the stages of our procedure that are

already described, it will be as follows:

1� c0At;f
� c0Bt;f

+ c0At;f
� c0Bt;f

Note that the second and third term share state-space. The equality of

factors is established based on equality of their state-space and then the corre-

sponding values. If such a one-to-one factor match is established the terms will

be removed. This will reduce the above example expression to 1. Generally,

and in case there are other remaining terms, for the remaining terms in the

group the products will be performed in an order found through a factoring

algorithm. Then all terms are summed up against one in all the points in the

state-space.

All the transformations prescribed by the coherency veri�cation procedure

are correct in the sense that their application to any expression maintains the

coherency of the original expression.

We must also mention that the need to e�ciently multiply distributions

shows that in the worst case the coherency veri�cation can be as hard as

27

general probabilistic inference. The real sources of e�ciency in both problems

are the same. First there are structural factorizations and decompositions over

the set of all variables that follow from true probabilistic independencies among

them. Second, there are algebraic properties in the distributions at the local

levels of variables interactions. They both allow one to order the operations in

a cost e�cient manner usually by keeping the size of the intermediate results at

minimum. It is a plausible hypothesis to state that both coherency veri�cation

and probabilistic inference share the e�ciency bene�ts of the above sources.

Therefore, the easier coherency veri�cation on a local expression is, the easier

probabilistic inference with that local expression is, and vice versa.

28

Chapter 5

LOCAL EXPRESSIONS INFERENCE

The problem of inference with extended local expressions is characterized as

a combinatorial optimization problem. An old solution to a restricted version

of the problem is analyzed as a heuristic search and its essential features are

enhanced and modi�ed to form a heuristic solution for our new problem.

5.1 Introduction

Local expressions represent the various forms of local interactions and depen-

dencies among adjacent nodes in Bayesian networks. More speci�cally, a local

expression in a node represents the joint conditional probability distribution

(JCD) of the node variable given its parents. Local expression languages are

expressive and
exible, so that local expressions can represent more depen-

dency structures including noisy OR and asymmetric dependencies. Such de-

pendencies can not be easily represented in standard Bayesian network graph

or distributions. Local expressions enhance Bayesian networks with these rep-

resentational capabilities and demand an enhanced inference mechanism that

can take advantage of new �ner grain relationships.

ESPI that was introduced in Chapter One was an earlier attempt

(D'Ambrosio, 1995) at this problem that used di�erent heuristics and strategies

than what we will represent here. Some other approaches have been proposed

to deal with �ner grain relationships in Bayesian networks as well. For ex-

ample in the context of Intercausal Independencies (ICI) there are two major

29

approaches. Heterogeneous Factorization (Zhang & Poole, 1996); (Zhang &

Poole, 1994) and temporal Belief Networks (Heckerman & Breese, 1994) are

the major approaches which are capable of representing many forms of causal

independencies. Many theoretical and practical modeling aspects of ICI are

covered in (Pearl, 1988), (Pradhan et al., 1994), and (Srinivas, 1993). There

are also approaches that deal with asymmetries and contingencies in Bayesian

network and in
uence diagram inference. See (Geiger D. & Heckerman D.,

1991), (Fung R., & Shachter R., 1991), (Smith, Holtzman, & Matheson, 1993),

(Shenoy, 1996), and (Boutilier et al., 1996). Many of these approaches try to

eliminate the arti�cial and unnecessary computations which follow from ad-hoc

modeling of asymmetries in standard Bayesian networks.

This thesis responds to the challenge from a combinatorial optimization

perspective. Earlier, a formal characterization of this problem was presented

in Chapter Three. In this chapter We will present an informal but nonetheless

intuitive description of the problem as an optimal search problem. Then we re-

view Optimal Factoring Problem that is closely related to our current problem

under the same light. Finally using our search analogy we present a reasonable

heuristic solution for the problem.

5.2 Local Expressions Inference as an Optimal Search Problem

The inputs to the algorithm are a Bayesian network graph, a set of local ex-

pressions representing the distributions in that network, and a query. The al-

gorithm goal is to combine the expressions and �nd the response to the query

with the minimum number of multiplications. We assume that the network is

always re�ned to a subnetwork consisting of only those nodes that are relevant

to the query. Using d-separation, such a re�nement can be done in a time

30

polynomial in the number of nodes (Geiger, D., Verma, T., & Pearl, J., 1989).

We begin with an intuitive, albeit informal description of the problem as a

combinatorial optimization problem. Then we will review the Optimal Factor-

ing which is a closely related problem. We will discuss how we can extend and

apply the ideas from the heuristic solution of optimal factoring to our current

problem.

Assume that we can apply two operations to local expressions: combination

and reduction. Combining two local expressions such as ei and ej results in an

expression ei�j such that if

ei = ti;1 + ti;2 + : : :+ ti;n

ej = tj;1 + tj;2 + : : :+ tj;m

Then,

ei�j =

l=1;2;::: ;mX

k=1;2;::: ;n

tk;l

tk;l = ti;k � tj;l

8i; j ! i = 1; 2; : : : ; n; j = 1; 2; : : : ; m

The state-space of a result term such as tk;l is constrained to the intersection

of the state-spaces of the operand terms ti;k and tj;l. For example in the network

31

in Fig. 2.1 we had the following local expressions.

e(D) = 1Dt � c0DtjAt;f
� c0DtjBt;f

+c0Df jAt;f
� c0Df jBt;f

e(A) = At + Af

e(B) = Bt +Bf

Combining expressions e(A) and e(D) will give,

e(A �D) = 1Dt � At � c0DtjAt
� c0DtjBt;f

� At

+c0Df jAt
� c0Df jBt;f

� At

1Dt � Af � c0DtjAf
� c0DtjBt;f

� Af

+c0Df jAf
� c0Df jBt;f

� Af

Note that in the �rst half of terms in the result all instances of A's dimension

are constrained to t. The terms in the second half of the expression include

only f as a dimension for A.

The combination operation does not include any multiplication or summa-

tion. Reduction, on the other hand, includes multiplication of the factors in

terms and summation of terms. A complete reduction will perform all mul-

tiplications and summations indicated in expression. But the algorithm may

decide to apply a partial reduction to an expression or be lazy and apply no

reduction at all. A partial reduction means only some of multiplications and

summations in a given expression are performed. In the network in Fig. 2.1,

suppose the given query involves all the variables and reductions are limited

to either complete reductions or no reductions. Then the initial parts of the

search space for �nding a minimal cost solution are depicted in Fig. 5.1.

32

��������

XXXXXXXX

J
J
J

J
J
J

J
J
J

COMBINE

e(A),e(B)e(B),e(D)

e(AB)e(A*D)e(AD)e(B*D)e(BD)

y nnyny

REDUCE

e(A*B)

REDUCEREDUCE

e(B*D) e(A*D)

e(A),e(D)

e(A*B)

FIGURE 5.1: Part of the search space for �nding the optimal order of opera-
tions

We can consider combination and reduction as one operation. In that case

the number of branches for a node will depend on the number of node pairs to

combine as well as the number of possible reductions on each pair.

5.3 A Review of Optimal Factoring Problem and its Heuristic So-
lution

Optimal Factoring Problem (OFP)(Li & D'Ambrosio, 1994) is how to combine

distributions in a standard Bayesian network into a query response at the mini-

mum cost. OFP is a restricted form of optimal inference with local expressions.

If local expressions are restricted to include only one term which in turn has

only one factor then optimal inference with local expressions will be the same

as OFP. OFP has a heuristic algorithm that performs well. We will revisit it

in order to come up with good heuristics for our problem. The heuristic so-

lution to this problem treats the distributions as subsets of network variables.

For example, pEjA;B will be represented as fA;B;Eg. These subsets are also

referred to as factors. Here is a description of the OFP heuristic algorithm.

33

1. Divide the set of factors into independent (i.e., no shared variables) sub-

sets if possible. Solve each subset separately using the following method,

then combine the results:

2. Form a factor set A which includes every factor that may be chosen for

the next combination (initially all the relevant net distributions). Each

factor in set A is represented as a set of variables. Initialize a candidate

set B empty.

3. Add all pairwise combinations of factors of the factor set A to B, provided

that these combinations are not already in set B and additionally one

factor of the pair contains a variable which is a parent or child of a

variable in the second factor. Compute u = (x [y) and sum(u) of each

pair, where x and y are factors in the set A, sum(u) is the number of

variables in u which can be summed out when the product corresponding

to combination of the two factors is performed. A variable can be summed

out when it appears in neither the set of target variables nor any of the

factors not in the current pair.

4. Choose elements from set B such that C = fuju : minimumB(juj �

sum(u))g, here juj is the size of u excluding observed variables. If jCj =

1, x and y are the factors for the next combination; otherwise, choose

elements from C such that D = fuju : maximumC(jxj + jyj); x; y 2 ug.

If jDj = 1, x and y are the factors for the next multiplication, otherwise,

choose any one of D.

34

5. Generate a new factor by combining the pair chosen in the above steps.

Modify the factor set A by deleting the two factors in the chosen pair

from the factor set and adding the new factor in the set.

6. Delete any pair in set B which has non-empty intersection with the can-

didate pair.

7. Repeat step 3 to 6 until only one element is left in the factor set A which

is the �nal result.

The algorithm repeatedly selects the best related pair of factors to combine

until all factors are combined. The best pair is identi�ed as the one with

the least remaining size. If more than one candidate pair have the minimum

remaining size then the one with the largest original size will be selected.

In our view the OFP heuristic is a restricted instance of A* search in the

space of all possible solutions. The algorithm trades o� the current cost func-

tion g(n) with e�ciency by ignoring it and becomes a greedy algorithm. For

the future cost function h(n) the algorithm uses the remaining size (and the

sum of original sizes to break ties) heuristic. Since the cost of combining two

distributions is the product of their corresponding sizes it is trivial to show

that remaining size is an admissible heuristic. In case of ties using the com-

bination of larger partial solutions guarantees that the remaining parts of the

solution will be smaller. These smaller parts are going to be combined with the

current solution that has the least remaining size and this makes the criteria

admissible. We must also bear in mind that OFP ignores g(n) and hence is

not guaranteed to �nd the optimal cost solution as a search algorithm.

35

5.4 SPI*: A Heuristic Algorithm for Local Expressions Inference

In comparison with OFP we are dealing with sums of products of factors in

every expression as our units to be combined. So to be able to use a similar

heuristic we have to provide the following items: (1) A scoring criterion for

combination candidates. (2) A set of decision making criteria as to carry out

any products in term-by-term combinations or not at any time. (3) A scheme

to indicate when to sum out the variables which are not the target of the query.

ESPI, an earlier (D'Ambrosio, 1995) attempt at this problem used di�erent

heuristics and strategies than what we will represent here. In that approach

heuristic scoring function for candidate selection was extended to include num-

ber of factors in expressions. Our approach is to revert to the base function and

use the actual size of all factors in an expression. Also with regard to combina-

tion versus reduction operations the earlier attempt was to use an immediate

all out reduction strategy. Meaning that right after any two expressions are

combined all the products in resultant terms are carried out. Our strategy

is to postpone the products until all the relevant factors are present for the

best product ordering unless performing them now bene�ts the overall cost in

a sensible way. We will refer to our new heuristic as SPI* algorithm.

5.4.1 Adapting the Remaining Size Criterion

We would like to use the same heuristic cost functions that were used in OFP.

Every local expression in OFP, however, was limited to one single-factor term,

and that is not the case in extended local expressions that we have to deal with.

So we need to de�ne what we mean by "remaining size" for the extended local

expressions. The remaining size for an extended local expression is de�ned as

36

the total size of all individual factors that remain in all terms of the expres-

sion. It must be obvious that this de�nition favors factored representation of

distributions against their non-factored representation.

In general the remaining size depends on the products or sums in the ex-

pression that may be performed after combination of expressions. Some of such

operations are safe to perform in the sense that postponing them certainly will

not reduce the total cost. We will identify such operations later so that an

upper bound on the remaining size for a combination can be found. Yet some

other operations can not be ruled safe to perform, even though to perform them

in conjunction with summation of terms may reduce the remaining size for the

current expression. In other words, postponing such operations may serve the

total cost reduction better than performing them to reduce the remaining size.

We will introduce a heuristic way for making such decisions in SPI* algorithm.

5.4.2 Performing the Operations in Expressions

Combination operation �rst forms a term-by-term symbolic product of the

operand expressions as described in Section 5.2.1. As we mentioned, no actual

product or sum is performed as part of the combination. Then heuristically

reasonable operations among the factors and terms in the product are per-

formed. There are three types of operations that are heuristically reasonable

and they will be described here.

5.4.2.1 Marginalization Related (MGR) Operations

The �rst type of operations that are considered reasonable to perform are those

operations among the factors in a term that are necessary to form a joint factor,

37

so that some variables can be safely summed out. The following de�nitions help

identify what variables can be safely summed out of terms.

F is the set of factors in a term. C is a subset of F which contains all

the conditional factors in F . J is the set of conditional factors in F such

that if all factors in F are multiplied, nothing will remain conditioned on the

conditioning variables of J factors. In other words, J is a subset of C such that

all conditioning variables of factors in J are present in the factors of F � C.

Vg is the set of variables in the factor set G. V Ig is de�ned as a subset of Vg

where elements have no link to variables outside Vg. Sg is a subset of Vg whose

elements are to be summed out in a query. SIg is a subset of Sg where elements

have no link to variables outside Vg.

A term t1 can be marginalized with regard to variables in its SIj. Restrict-

ing marginalizations to the variables in SIj guarantees that all the factors

relevant to such variables are present in the term. It also guarantees that the

most e�cient way of multiplying these factors now at the �rst opportunity is

indeed the most e�cient way of multiplying them anywhere during the rest of

the inference computations.

In order to perform the marginalization for every variable si in SIj we �nd

the subset of J denoted by Jsi which includes factors involving si. Then for

every factor in Jsi such as fj we �nd the corresponding factor in F � C or fu

which can be multiplied by fu to give an unconditional factor fuj. Now fuj can

be marginalized with regard to si and si can be summed out of fuj.

Our heuristic marginalizes more aggressively. In any term every variable

that is neither a target variable in the query nor present in other expressions

can be marginalized. In a term all the factors involving such variables are

joined and the joint factor is marginalized with regard to those variables.

38

5.4.2.2 Subset-Dimension Related (SDR) Operations

The second type of operations that are considered reasonable are the binary op-

erations in which one factor's dimension is a subset of other factor's dimension.

So if such an operation is performed, it produces a factor whose dimension is

the same as the dimension of one of the operands. For example, A�Ft;fEt=A is

a SDR operation. But if there is a factor such as Dt=A in a related expression,

then it would be better to wait until the product A �Dt=A is performed �rst.

Heuristically, we consider that if the product f1�f2 is an SDR operation, then

we need to justify it against every factor f3 in the fringe of the current ex-

pression that intersect with either f1 or f2. So f1, f2, and f3 form a triangle

where all possible orders among the products are tried to see if SDR operation

is justi�ed or not.

5.4.2.3 Term Summation Related (TSR) Operations

There are times that joint state-spaces of several terms in an expression are

the same. In other words, if all the products in those terms are performed, the

resultant factors will have the same state-spaces. Such factors can be summed

out, resulting in a smaller but equivalent expression. On the other hand,

performing all the products in such terms may eliminate some opportunities

for cheaper combinations of the factors in those terms and the factors in other

expressions. So a decision has to be made whether to perform all products in

same state-space terms and sum them up or postpone such products until the

expression is combined with other expressions.

Let us restrict this problem to a situation where we can consider that the

impact of the decision to sum or not to sum terms can be best evaluated based

on the situation in the neighborhood of the expression rather than the whole

39

network. Further, assume that there is only one group of the same state-

space terms in our expression and this group is denoted by t+1 ; t
+
2 ; : : : ; t

+
n . We

will denote this set as et+. The neighborhood of an expression is the set of

expressions which contain at least one variable which is a parent or child of

a variable in the expression. Let tsdr1 ; tsdr2 ; : : : ; tsdrm denote such neighborhood

expressions where their terms are reduced to a subset of their factors. Every

remaining factor in those terms has a set of variables that is a subset of the

set of variables in at least one factor of any t+i . We will denote the set of

tsdr's by etsdr. The set etsdr represents the expressions whose terms include

factors whose combinations with factors in any t+i do not result in an increased

dimension or larger state-space.

If etsdr is empty, then all the products necessary for the summation of terms

in et+ will be performed and they will be summed up. Otherwise, we consider

etsdr as a set of expressions and �nd the following two costs. Cost-1 is the

cost of performing all products in et+ and then combining the resultant ex-

pression with etsdr and performing the remaining products. Cost-2, is the cost

of performing all the products after etsdr and et+ are symbolically combined.

If Cost-1 > Cost-2, then products in et+ should not be performed, otherwise

they must.

SPI* heuristic considers that TSR operations are either all done or all

postponed in an expression. Furthermore, it restricts the evaluation context to

individual expressions in the fringe of the expression. This evaluation is imple-

mented at the candidate generation step by generating all possible summed-

terms and unsummed-terms combinations of the candidate pair.

40

"!

"!

"!

"!

"!

"!

? ?

? ?

HHHHHHj

�������

HHHHHHj

�������

D1 D2

F1 F2

A S

FIGURE 5.2: An example network for the heuristic algorithm.

5.5 An Example Execution of SPI* Algorithm

The execution of the algorithm will be brie
y demonstrated using the Bayesian

network in Fig. 5.2. In this network variable S stands for the sex of the patient

which is either female or male represented by the domain ff, mg. Variable A

represents the age group of the patient which can be young, middle-age, or old

represented by fy;m; og. There are two diseases represented by D1 and D2.

Their absence or presence is represented by true or false in the domain ft; fg.

The same domain exists for the two �ndings F1 and F2 in the network. If

sex is female, D2 is false. If age is young, then D1 is false. F1 has a noisy-or

relationship with D1 and D2. The individual in
uences in that relationships

are denoted by q11 and q12 for D1 and D2 respectively. The same type of

relationship holds between F2 and its parents D1 and D2 with similar in
uences

q21 and q22 for D1 and D2 respectively. Local expressions in the original

41

network are as follows.

e(A) = p1Ay + p2Am + p3Ao

e(S) = p4Sm + p5Sf

e(D1) = 1D1f=Ay + p6D1t;f=Sm;fAm;o

e(D2) = 1D2f=Sf + p7D2t;f=SmAy;m;o

e(F1) = 1F1t=D1t;f � 1F1t=D2t;f � q11F1t=D1t;f � q12F1t=D2t;f

+q11F1f=D1t;f � q12F1f=D2t;f

e(F2) = 1F2t=D1t;f � 1F2t=D2t;f � q21F2t=D1t;f � q22F2t=D2t;f

+q21F2f=D1t;f � q22F2f=D2t;f

Consider the query: P(D1=t/F1=t,F2=f,A=m,S=m) = ? Local expressions

are reduced to:

e(A) = p2Am

e(S) = p4Sm

e(D1) = p6D1t=SmAm

e(D2) = p7D2t;f=SmAm

e(F1) = 1F1t=D1t � 1F1t=D2t;f � q11F1t=D1t � q12F1t=D2t;f

e(F2) = q21F2f=D1t � q22F2f=D2t;f

In the �rst loop candidates and their scores are as follows.

42

Candidates Remaining-Size

e(A), e(D1) 1

e(A), e(D2) 3

e(S), e(D1) 1

e(S), e(D2) 3

e(D1), e(F1) 3

e(D1), e(F2) 3

e(D2), e(F1) 6

e(D2), e(F2) 6

It is assumed here that ties are arbitrarily broken and as a result e(A); e(D1)

will be selected to produce the following combination.

e(A �D1) = p2Am � p6D1t=SmAm
= p8D1tAm=Sm

where p8 = p6 � p2. The second loop candidates are as follows.

Candidates Remaining-Size

e(AD1), e(D2) 2

e(S), e(AD1) 2

e(S), e(D2) 3

e(AD1), e(F1) 3

e(AD1), e(F2) 3

e(D2), e(F1) 6

e(D2), e(F2) 6

As a result e(ASD1) = p9D1tSmAm will be selected where p9 = p8 � p4. The

next loop candidates are as follows.

43

Candidates Remaining-Size

e(ASD1), e(D2) 2

e(ASD1), e(F1) 4

e(ASD1), e(F2) 4

e(D2), e(F1) 6

e(D2), e(F2) 6

As a result e(ASD1D2) will be selected. The next loop candidates are as

follows.

Candidates Remaining-Size

e(ASD1D2), e(F1) 2

e(ASD1D2), e(F2) 2

As a result e(ASD1D2F1) will be selected. A term summation in e(F1) takes

place before the combination and the reduction. The �nal combination is with

the remaining e(F2) expression. The total evaluation cost for the obtained

ordering in this example is 17 multiplications.

5.6 Performance of the Heuristic

SPI* has been implemented and tested with many networks. In this section

the performance of SPI* on several interesting cases will be presented and

compared with performances of other relevant approaches.

5.6.1 Asymmetries and Contingencies

The oil wildcatter problem The oil wildcatter problem (Rai�a, 1968)

contains asymmetric as well as contingent relationships. An in
uence diagram

44

-

Q
Q
Q
Q
Q
Q
Q
QQs TT��
TT ��

�
�
�
��3

�
�
�
�
���

�
�
�
�7J
J
Ĵ

�

?

&%
'$

.

&%
'$

&%
'$

Decision
Drill

Test
Decision

TD

DD

SS

DC

V

OIL

Structure
Seismic

Cost
Drilling

Amount
Oil

FIGURE 5.3: In
uence diagram for the oil wildcatter example.

for the problem is shown in Fig. 5.3. Since the description of the problem is well

known, we will su�ce to describe it through the following local expressions.

e(TD) = TDyes;no

e(OIL) = OILdry;wet;soaking

e(SS) = SSno�struct;open;closed=OILdry;wet;soaking

e(DD) = DDyes;no=TDnoSS; +DDyes;no=TDyesSSno�struct;open;closed

e(DC) = DClow;med;high=DDyes +DC;=DDno

e(V) = Vt;f=DDyesDClow;med;high + Vt;f=DDyesOILdry;wet;soaking

+ Vt;f=TDyes;no

The natural inference problem for this type of decision problems is to �nd

the optimal policies. On the Bayesian network of this example we must �nd the

45

joint probability distribution of all decision nodes and their parents given that

value is observed to be true (Shachter, R. D. & Peot, M. A., 1992). A symmetric

version of this problem built using arti�cial states for variables required 200

multiplications for the query to be computed. ESPI, on the other hand, took

151 multiplications when local expressions are used to model the asymmetries

and contingencies. SPI* found an evaluation for the query that takes only 96

multiplications.

The Car Buyer problem The car buyer problem (Howard, 1989) is an-

other well-known asymmetric problem. The in
uence diagram for the problem

is shown in Fig. 5.4. The following local expressions su�ce to describe the

problem here.

e(CC) = CCpeach;lemon

e(R1) = R1;=T1no�test +R1zero;one=T1steer;transCCpeach;lemon

+R1zero;one;two=T1fuel�electCCpeach;lemon

e(R2) = R2;=T1no�test;steer;fuel�elect +R2;=T2no +R2;=R1two

+R2zero;one=T1transT2yesR1zero;oneCCpeach;lemon

e(T1) = T1no�test;steer;fuel�elect;trans

e(T2) = T2no=T1no�test;steer;fuel�elect + T2yes;no=T1transR1zero;one

e(B) = By;n;g=T1no�test +By;n;g=T1steerR1zero;one

+By;n;g=T1fuel�electR1zero;one;two

+By;n;g=T1transR1zero;oneT2yes;noR2zero;one

e(V) = Vt;f=T1no�test;steer;fuel�elect;trans + Vt;f=T2yes;no

+ Vt;f=By;n;gCCpeach;lemon

46

����

����
���� ---�
��

PPPq
-�
�
� A

AU
-�
�
�
�
�� B

B
BN

J
J
J

�@

@ �
��

Z
Z

Z
ZZ}

�

�
�
�
�7
""

bb""

bb

ZZ

ZZ~R1T1 T2 R2 B

CC

V

FIGURE 5.4: In
uence diagram for the car buyer example.

We computed optimal policies for this example in the same way described

earlier. The symmetric version needed 960 multiplications. ESPI took 519,

while SPI* presented an evaluation with 329 multiplications.

The Generalized Buying Problem The Generalized Buying Problem was

de�ned in(Qi & Poole, 1995) as follows.

Suppose we have to decide whether to buy an expensive and com-

plex item. Before making the decision, we can have n tests, denoted

by T1,: : : ,Tn , on the item and we can look at the corresponding

results denoted by R1,: : : ,Rn. Suppose test Ti has ki alternatives

and ji possible outcomes for i = 1; : : : ; n. Among ki alternatives

for test Ti, one stands for the option of no-testing. Correspond-

ingly, among the ji possible outcomes of test Ti, one stands for

no-observation, resulting from the no-testing alternative.

An in
uence diagram for this problem is shown in Fig. 5.5. Our objective

is to show how e�ectively our heuristic exploits asymmetry for this class of

decision problems. We will compare the cost of computing optimal policies

47

���� ��������

"!

ZZ

ZZ~ - - - -
""

bb""

bb

�
�
�
� A

A
A
AU�

�
�
�� B

B
B
B
BN�

�
�
�
�� B

B
B
B
BBN�

�
�
�
�
�� A

A
A
A
A
AAU�

� @
@R

 J

J
Ĵ�

�
�
� A

A
A
AU

HH ��*@
@ ��

��*J
J
J �

�
��>

A
A
A
A
AAK

�
�
�
�
���

��
��

��
��

��
��
�*-

��
��

��HHHHj

A
A
A
A �

�
�
��e

e
e
e
ee �

�
�
�
���

��
��@

@R

�
�
�
�
�
�
���

�
�
�
�
�
�
��B
B
B
B
BBN

T
T
T
T
T
T
T
T
TT �

�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A

6

. . .R1T1 T2 R2 Tn Rn B
V

Condition

FIGURE 5.5: In
uence diagram for the Generalized Buying Problem.

by using our heuristic against the same cost if the symmetric version of the

problem is solved by OFP Heuristic (Li & D'Ambrosio, 1994).

It is assumed that �nal decision node B has a dimension of size 3 and

the Condition node has a binary domain. All test decision nodes Tis and

result nodes Ris are assumed to have dimensions of size 4 in our problem

instances. In the �rst part of our experiments we measured the savings obtained

by our heuristic for the instances of the problem where number of asymmetric

decisions Tis varies from 1 to 4. The numbers are shown in Table 5.1 and

their corresponding graph is displayed in Fig. 5.6. The results show that our

heuristic gains exponential savings in the number of asymmetric decisions when

it is applied to this class of decision problems.

In the second part of experiments we measured the savings gained by our

heuristic when the degree of asymmetry in decisions change. The degree of

asymmetry in a relationship is called savings factor (Qi & Poole, 1995). For

48

���
���

��

�
�

�
�

�
�

���������
���

!!
!!

!!
!!

Symm Cost

Savings

SPI* Cost

1 2 3 4

10000

30000

50000

70000

No. of Asymmetric Decisions

FIGURE 5.6: Savings and Number of decisions graph for Generalized Buying
Problem.

�
��
!!!

((((
((((

((((
((((

10000

7500

5000

2500

2 6 10 14

Savings

Savings Factor

Dimension Size = 5, No of decisions = 2

FIGURE 5.7: Savings and savings factor graph for Generalized Buying Prob-
lem.

49

No. of asym decisions OFP-cost SPI*-cost Savings

1 108 103 5

2 900 874 26

3 8028 5841 2187

4 65619 27047 38572

TABLE 5.1: Savings vs the number of asymmetric decisions.

Decisions Savings Factor OFP-cost SPI*-cost Savings

1.47 7225 5519 1706

2.5 7225 3617 3608

5 7225 2882 4343

12.5 7225 1165 6060

TABLE 5.2: Savings vs the savings factor.

decision node Ti with ki alternatives and ji possible outcom the savings factor

is de�ned as ki�ji
hi

, where hi is the number of points in the state-space of the

relationship with non-zero probabilities. The number of asymmetric decisions

and the number of their alternatives were 2 and 5, respectively, in all the

problem instances. The savings are shown in Table 5.2. A corresponding

graph is displayed in Fig. 5.7. The results show that our heuristic gains more

savings if the asymmetric degree of relationships increases but such gains do

not seem to be exponential.

50

5.6.2 Intercausal Independencies

A CPCS-type Example The following example in Fig. 5.8 is from (Zhang

& Poole, 1996) and shows a small network where all children have ICI rela-

tionships with their parents. For this experiment we used the following local

expressions with SPI* algorithm.

e(A) = At;f

e(B) = Bt;f

e(C) = Ct;f

e(e1) = 1e1tjAt;f
� 1e1tjBt;f

� 1e1tjCt;f � e1e1tjAt;f
� e1e1tjBt;f

� e1e1tjCt;f

+e1e1f jAt;f
� e1e1f jBt;f

� e1e1f jCt;f

e(e2) = 1e2tjAt;f
� 1e2tjBt;f

� 1e2tjCt;f � e2e2tjAt;f
� e2e2tjBt;f

� e2e2tjCt;f

+e2e2f jAt;f
� e2e2f jBt;f

� e2e2f jCt;f

e(e3) = 1e3tje1t;f � 1e3tje2t;f � e3e3tje1t;f � e3e3tje2t;f + e3e3f je1t;f � e3e3f je2t;f

A typical query for such a network is P(A/e3=t)=?, which is the probability of

A given that e3 is observed to be true. SPI* found an evaluation for that query

with 128 multiplications. A simulation of Heterogeneous Factorization (Zhang

& Poole, 1996) shows that HF evaluation with the best variable elimination

ordering takes 148 multiplications for the same query. If e3 is not observed

then calculating P(A)=? takes 149 multiplications in SPI* while it takes 194

multiplications in HF.

51

��
��

��
��

��
��

��
��
��
��

��
��

J
J
Ĵ

HHHHHHHHj

����������

J
J
Ĵ

�

�

J
J
Ĵ

�

b c

e2

e3

a

e1

FIGURE 5.8: An Example CPCS-type Bayesian network.

5.6.3 Complexity

The time complexity of the algorithm is measured in the number of expressions

relevant to the current query. If there are n expressions in the problem the

complexity of candidate generation step is O(4n2). The cost evaluations for

candidates are done in O(K2n) where K is a factor representing the number

of terms in expressions. Therefore the time complexity of the algorithm is

O(4Kn�1n3). However, it must be noted that such exponentiality does not

automatically follow from having more than one term in expressions. For

example, there are many situations where there n terms in expressions, but with

disjoint state-spaces such that the term-by-term product of those expressions

will have a number of terms, such as kn which is proportional to the number

of terms in operand expressions, rather than an n2. Also note that in practice

we can see that the exponential part of our complexity is compensated by

the huge savings obtained in the query evaluation costs in the number of real

multiplications. (Qi & Poole, 1995) shows the exponential complexity of such

52

savings in the context of decision problems with asymmetries. On the other

hand, it has been shown that all known special inference algorithms for ICI

situations to date have worst-case exponential complexity (Dechter & Rish,

1998). The e�ciency issues in relation with ICI and noisy-or situations are

extensively discussed in Chapter Six.

53

Chapter 6

INTERCAUSAL INDEPENDENCIES IN BAYESIAN

NETWORKS

Local parent-child or cause-e�ect relationships in Bayesian networks consti-

tute an important part of both knowledge engineering and inference. In many

situations individual causes in
uence an e�ect independent of one another.

Such \Intercausal Independencies" (ICI) provide an opportunity to represent

the local structures more e�ciently and ease both the knowledge acquisition

and the inference. Noisy-Or interaction (Pearl, 1988) (Srinivas, 1993) is one

of the best studied and most widely used models of ICI. Di�erent approaches

have been proposed to represent ICI and to integrate the corresponding mod-

els into standard Bayesian network inference. Local Expression Languages

(D'Ambrosio, 1995) provide a comprehensive approach for integration of many

local structure models including ICI into standard Bayesian networks. Het-

erogeneous Factorization (Zhang & Poole, 1996) (Zhang & Poole, 1994) and

temporal Belief Networks (Heckerman & Breese, 1994) are two other major

approaches which are capable of representing many forms of causal indepen-

dencies.

In this chapter these major approaches for representing independencies

among causal e�ects in Bayesian networks will be compared. Some of the

factors that in
uence the performance of the approaches in di�erent situations

will be identi�ed. Finally, a new and better representation for intercausal in-

dependencies will be introduced.

54

��
��

��
��

��
��

��
��
��
��

��
��

J
J
Ĵ

HHHHHHHHj

����������

J
J
Ĵ

�

�

J
J
Ĵ

�

b c

e2

e3

a

e1

FIGURE 6.1: A Bayesian network for studying heterogeneous factorization.

6.1 Heterogeneous Factorization

Heterogeneous Factorization (HF) (Zhang & Poole, 1996) (Zhang & Poole,

1994) provides a way for Bayesian networks to incorporate intercausal inde-

pendencies in the local structures of the network. In
uences of the causes on

an e�ect in ICI situations are represented in terms of individual factors in HF.

Such e�ect variables are called "convergent" variables. For every convergent

node a regular node is added to the network as its child, and this child is called

the deputy of the corresponding convergent node. Fig. 6.1 shows an example

Bayesian network where all the e�ect nodes are convergent. Fig. 6.2 shows the

deputation network that is used in HF for inference.

As the name implies, the independent individual in
uences of the causes

are to converge at a convergent e�ect node. Once such a convergence occurs

the corresponding factors are combined. Then the e�ect node is converted to a

regular node through combination with its deputy, since there is no more need

to keep the convergence mechanism at the e�ect node.

55

��
��

��
��

��
��
��
��

��
��

��
��

��
��

��
��

��
��

J
J
Ĵ

�

J
J
Ĵ

HHHHHHHHHj

??

J
J
Ĵ

?

�

�

����������

a b

e'2

e2e1

e'3

e3

c

e'1

FIGURE 6.2: Deputation Bayesian network for Fig. 6.1 network.

The inference computation for standard Bayesian networks usually com-

bines homogeneous probabilistic distributions uniformly through multiplication

and addition operations. HF generalizes the combination operation so that the

new heterogeneous individual factors can be combined with standard distri-

butions during the inference. HF inference starts by �nding an elimination

ordering for those variables that are not included in the query. To eliminate a

variable, all distributions and factors involving the variable are combined, and

the resultant distribution is marginalized with regard to that variable.

56

&%
'$

"!

"!

&%
'$

@
@
@
@@R

�
�

�
�

�
�

��+
?

C2 Cn

e

C1 . . .

FIGURE 6.3: A Bayesian network for a multiple cause situation.

6.2 Temporal Transformation

Heckerman provides a new temporal de�nition of ICI (Heckerman, 1993). In

the relationship between a cause and an e�ect, this model states the following.

If the cause makes a transition from one of its states to another between times

t and t+1 then the status of the e�ect at time t+1 depends only on the status

of the e�ect at time t and the transition of the cause.

This model results in a transformation of a subgraph of a set of causes

and an e�ect into a new subgraph. In the new subgraph the old e�ect is

replaced by as many nodes as the number of the causes for the e�ect. Each

of these new e�ect nodes represents the e�ect when only some of the causes

have made their transitions. Fig. 6.3 shows a Bayesian network consisting of

an e�ect that has a set of causes. Fig. 6.4 shows the network in Figure 4

after temporal transformation is performed on it. TT results in a standard

Bayesian network where any standard algorithm may be used for inference.

Note that transformation does not determine an ordering among parents when

their corresponding e�ect-node instances are being added to the network.

57

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$? ?

- -

?

-

C1 C2 Cn

e2 ene1

. . .

FIGURE 6.4: A temporal transformation of the network in Fig. 6.3.

6.3 A Look at the Performance of the Approaches

Local Expressions

The ESPI algorithm was introduced in Chapter Two. It tries to �nd the

best order of operations on local expressions by successively selecting and com-

bining candidate expressions whose combination will have the smallest set of

remaining variables. Combination is followed by immediate reduction of the

expression to a distribution. For example we mentioned earlier that combining

expressions for nodes A and D in Fig. 2.1 gives,

exp(AD) = 1Dt � At � c0DtjAt;f
� c0DtjBt;f

� At

+c0Df jAt;f
� c0Df jBt;f

� At

1Dt � Af � c0DtjAt;f
� c0DtjBt;f

� Af

+c0Df jAt;f
� c0Df jBt;f

� Af

The algorithm at this point performs all the relevant products inside the ex-

pression and essentially reduces the expression to a distribution. For example,

we have the 1Dt �At product in the �rst term. Now one could ask the following

58

question. Is it not better to wait until we combine this expression with the

expression for B and then decide about the order of multiplications among 1Dt,

At and Bt in the �rst term? In general, if we unnecessarily wait until more

expressions are combined the number of terms will rapidly grow, rendering

the cost high. On the other hand, if the products are performed too early,

as it is currently done in ESPI, we may have to carry an unnecessarily large

intermediate result inside the terms and thus rendering the cost even higher.

Heterogeneous Factorization

In HF the cost of combination operation in terms of real multiplications

is exponential in the number of convergent variables that are shared among

the factors to be combined. HF tries to avoid this by: (1) adding a deputy

variable for every convergent variable in the network, and (2) constraining the

elimination ordering so that heterogeneous factors for any convergent variable

are combined into a standard distribution before being combined with other

factors. The overhead cost of including the deputy variables in the inference, as

well as the fact that the elimination ordering can not be always constrained to

avoid situations mentioned in (2) can render high computation costs for some

queries.

An Elimination ordering is usually found using Minimum De�ciency Order-

ing (MDO). MDO is well known as a heuristic triangulation method (Kjaerul�,

1990). So it is not unreasonable if we say that computation for the HF is con-

centrated in cliques of the triangulated version of the network. But note that

HF algorithm does not require that the graph be moralized by connecting the

unconnected parents of nodes prior to triangulation, and this is contrary to the

requirements of most clique-tree oriented Bayesian network algorithms. This

may create problems for regular parents-child relationships that may exist in

59

&%
'$
"!

"!

"!

"!
.

�
�
�
�
�
�
�
�
�
�
���

@
@
@
@@R

C
C
C
CW

�
�

�
�

�
��=

@
@
@
@
@R

. . .C1,1 C1,2 C1,n

e

C2

FIGURE 6.5: An example network for temporal transformation.

a network. See (Zhang, N. L. & Yan L., 1997) for related problems when it is

attempted to use HF modeling with clique-tree propagation algorithm.

In practice, triangulation techniques can take into account the di�erent

state space sizes of the nodes and try to minimize the heaviest clique in the

junction tree of the network (Becker, A. & Geiger, D., 1996). This is based on

the following fact. The product of all state space sizes in a clique is propor-

tional to the number of multiplications required to combine the distributions

in the clique. This is true when the distributions are homogeneous and com-

binable through multiplication. However, with HF modeling it is not obvious

at all what the e�ective state space sizes of convergent nodes are. Unless this

de�ciency is addressed, the elimination ordering algorithms such as MDO can

not be directed toward �nding an optimal ordering for the maximum e�ciency

in inference with HF in more general settings.

60

&%
'$

"!

"!

"!

"!

"!

"!

"!

"!

"!

.

HHHHHHHHj

�
��=

��
��*

@
@I

S
SSw

�
�
�
�
���

���
���

����:

C
C
C
C
CCW

C
CW

�
�
�7

. . .

C1,2. . .

e3

e1

e2

C1,1C1,n

C2,1 C2,m

e4

C2,2

FIGURE 6.6: Another example network for temporal transformation.

Temporal Transformation

TT modeling in general produces a more factorized representation of local

parents-child distributions. However, in doing so it adds many nodes to the

network, which may make the network maintenance a di�cult job in terms of

memory requirements.

Depending on the structure of the original Bayesian network, di�erent or-

dering among parents during TT may produce di�erent networks with di�erent

structural properties. This in turn may render inference computations with dif-

ferent costs for the same original network.

One of the structural properties in Bayesian networks is the existence of

loops in the undirected graph of the network. Such loops have some adverse

e�ects on inference e�ciency, because they prevent reduction of the size of

61

intermediate results during the stages of computations. Roughly speaking, the

added cost of the inference is proportional to the diameters (or lengths) of

such loops. If such a loop in the original network includes parent and child

nodes of an ICI situation, TT modeling will result in a network that may have

a corresponding loop with a higher diameter. For example, in the network in

Fig. 6.5, suppose that ICI relationships exist between C2 and its parents, while

e and its parents have a standard relationship. Then depending on the ordering

among parents of C2 possible temporal transformations of the network can

have loops whose sizes range from 3 to n + 2. Fig. 6.6 shows another example

network for which TT may produce loops whose sizes range from 7 to n + m

+ 5 depending on the ordering among the parents of e1 and parents of e2. In

this network e4 is assumed to have a standard relationship with its parents.

6.4 A Multiplicatively Factored Representation

We have seen that each of the above representations has certain disadvantages:

the additive local expression language decomposition su�ers from necessity to

distribute expressions over the ICI child expressions. Heterogeneous factoriza-

tion has costly overhead and constraints. The temporal transformation imposes

an arbitrary ordering among ICI parents.

In this section we present a new, multiplicatively factored local expression

language representation. Consider a noisy-or node with a set of parents and one

child. We introduce an auxiliary variable for every parent so that we can sepa-

rate the in
uences of individual parents on the child. These auxiliary variables

play the same role the child instances variables play in TT, but they are not

represented at the graphical level as individual nodes. We can accomplish the

same functionality by including a local expression for every such variable in the

62

original child node expression. To provide interaction among such variables,

TT imposes an order on parents so that auxiliary variables form a �xed chain.

We, on the other hand, provide a
exible coupling among the expressions for

auxiliary variables so that they can be combined in any order.

Consider V = fv0; v1; : : : ; vng as a reference set and let V
�V 0

denote any vi

such that vi 62 V 0 and V 0 � V . When sets such as V 0 are small, we abbreviate

the notation by mentioning the individual elements of the sets. For example if

V 0 = fvjg then we use V
�vj

for V
�V 0

. The following equalities are useful.

V
�vj
\ vi = vi; i 6= j

= ;; i = j

V
�vj
\ V

�vi = V
�vjvi

; i 6= j

= V
�vj
; i = j

V
�vj
[V

�vi = V; i 6= j

= V
�vj
; i = j

Every variable vi has a corresponding state-space that is denoted by vid .

For the time being, we further assume that 8i; j vid = vjd = fd0; d1; : : : ; dmg.

vidk denotes an element in the state-space of vi where vi assumes the state dk.

Now we let V
�V 0

dk denote any vidk such that vi 62 V 0 and V 0 � V . The following

equality is very useful.

V
�vj

dk \ V
�vi

dl = V
�vj ;vi

dk ; i 6= j; dk = dl

= ;; i 6= j; dk 6= dl

Now, for our Fig. 2.1 example where A and B are ICI parents of D, we

use auxiliary variables DA and DB and write the following local expressions.

63

V = fDA;DBg is the only reference set in this situation. The joint probability

table P(ABD) can be obtained by �nding the conformal product of the above

expressions, and marginalizing with regard to the auxiliary variables.

e(DA) = 1
DAtjAt;fV

�DA
t

+ (1� c0)
DAtjAt;fV

�DA

f

+ c0
DAf jAt;fV

�DA

f

e(DB) = 1
DBtjBt;fV

�DB
t

+ (1� c0)
DBtjBt;fV

�DB

f

+ c0
DBf jBt;fV

�DB

f

e(A) = At;f

e(B) = Bt;f

In the ordering for the combination of expressions we assume that the cor-

responding algorithm treats the �rst expression of a set of auxiliary variables

as an entry point and remove its coupling terms and dimension. Furthermore,

the last of such expressions will be assumed to be treated as an exit point,

where instances of corresponding auxiliary variable will be replaced by the cor-

responding instances of the original child variable. For example, if e(DA) was

an entry point it would be modi�ed to,

e(DA) = (1� c0)DAtjAt;f
+ c0DAf jAt;f

In a sense the above representation provides all potential advantages of the

TT linear transformation approach, but it leaves the ordering aspects to be

decided by the inference algorithm in an optimizing fashion.

64

6.5 New Representation and Inference Algorithms

V
�

is a new construct for the local expression languages, and hence existing al-

gorithms for inference with local expressions need some enhancements to handle

the new construct. This section discusses the issues related to implementation

of the new construct and shows that existing local expression algorithms need

only little modi�cations to adapt the new construct. Our discussion will be

focused on the changes to the factoring heuristic. Since the heuristic presented

in Chapter Five is an extension of the factoring heuristic, it can adapt the new

construct with similar modi�cations.

The new representation has an important property that facilitates its use

in inference with factoring algorithms (Li & D'Ambrosio, 1994). The terms

in an expression for noisy-or nodes in the new representation all have similar

structures so that all of them can be abstractly represented with one char-

acteristic term. Informally, we say an expression has a characteristic term if

the following conditions are met: (1) All the terms have the same number of

factors. (2) In any two terms, any factor in one term has exactly one and only

one matching factor in the other term. The matching factors have identical

state-spaces for the parent variables of the expression variable.

The following table shows some expressions and the state-space of their

corresponding characteristic terms. The reader can easily verify that if V
�

s

are removed from such state-spaces then the problem of combining such state-

spaces is a factoring problem.

65

Expression Char term state-space

At;f At;f

1
Eat=At;fV

�Ea
t

+ (1� c0)
Eat=At;fV

�Ea

f

+c0
Eaf=At;fV

�Ea

f

Eax=At;fV
�Ea

x

To apply the optimal factoring heuristic there are two types of operational

issues that have to be addressed. The �rst type is about how to perform set

intersection and set size calculation with V
�

s. The de�nitions provided for V
�

s

operations earlier completely specify the size calculation as well as intersection

of the sets involving V
�

s and hence they will not be discussed any further here.

The second type of operational issues is about how to marginalize over

auxiliary variables speci�ed with V
�

notation. An auxiliary variable changes

role to a regular variable in the following way. Any node expression can contain

only one auxiliary variable from a reference set. When combining nodes for

candidate generation If the nodes have both auxiliary variables then one of

them must turn regular by stripping the term and dimension elements for

V
�

speci�cations. Then combination proceeds as usual. If such a candidate is

selected as the next combination, the auxiliary variable turned regular must be

removed from the corresponding reference set as well. If as a result of updating

a reference set becomes empty, the last auxiliary variable will be marked as an

exit auxiliary variable automatically.

An exit auxiliary variable turns regular if the corresponding reference set

is empty. In general, and with few exceptions, either of the two auxiliary

nodes can be turned regular. Therefore, two candidate combinations must be

generated and their size evaluated. In some cases one of the two may be already

designated as an exit, in which case only the other one will turn regular.

66

&%
'$
"!

"!

"!

"!

..

.

C
C
C
CW

�
�
�
���

C
C
C
CW

�
�
�
��

@
@
@
@@R

A B C

D E

FIGURE 6.7: An example BN2O network.

When nodes contain auxiliary variables from di�erent reference sets, we

require that only exit nodes can be combined. If either of the two reference

sets have no exit nodes up to this point, then the candidate nodes will be

designated as exit nodes in case the candidate comb is selected.

We will demonstrate the above ideas for the example BN2O network shown

in Fig. 6.7. Query is P (B=DtEt).

The expressions and their corresponding characteristic term state-spaces

are shown in Table 6.1. Note that in characteristic terms x can be either t or

f but not both.

Cycle 1: (C;Ec) has a remaining size 2 and will be selected for combination.

This is denoted as CEc, and after we sum C out we denote it with Ecc.

Remaining size for the candidate (A;Da) is 3, which is for variables A, Da,

and V
�Ea

. For (Da;Db) the remaining size is 5. This is for variables Da, A,

V
�Ea

in Da, V
�Eb

in Db, and B. However, note that combination will unite

V
�Ea

and V
�Eb

into one, since they are from the same reference set.

Cycles 2 and 3: Assume that A and Da as well as B and Eb will be

67

Expression Char term state-space

At;f At;f

Bt;f Bt;f

Ct;f Ct;f

1
Dat=At;fV

�Ea
t

+ (1� c0)
Dat=At;fV

�Ea

f

+c0
Daf=At;fV

�Ea

f

Dax=At;fV
�Ea

x

1
Dbt=At;fV

�Eb
t

+ (1� c0)
Dbt=At;fV

�Eb

f

+c0
Dbf=At;fV

�Eb

f

Dbx=At;fV
�Eb

x

1
Eat=At;fV

�Ea
t

+ (1� c0)
Eat=At;fV

�Ea

f

+c0
Eaf=At;fV

�Ea

f

Eax=At;fV
�Ea

x

1
Ebt=At;fV

�Eb
t

+ (1� c0)
Ebt=At;fV

�Eb

f

+c0
Ebf=At;fV

�Eb

f

Ebx=At;fV
�Eb

x

1
Ect=At;fV

�Ec
t

+ (1� c0)
Ect=At;fV

�Ec

f

+c0
Ecf=At;fV

�Ec

f

Ecx=At;fV
�Ec

x

TABLE 6.1: Characteristic terms for the expressions in example BN2O network

combined. This will reduce our factor set elements to, DaA, Db, Ea, EbB,

and Ecc.

Cycle 4: (DaA;Db) has a remaining size 3. (Ea;Ecc) and (EbB;Ecc)

both have the same remaining size if Ecc can be summed out (with regard to

duplicity of candidate generation mentioned earlier). The tie breaker is the

original aggregate size of factors which is 6 for (DaA;Db) and 4 for the other

candidates. So (DaA;Db) will be the selected combination candidate, and it

will be marginalized with regard to Da.

The result denoted by DbA is an exit as well as a regular node by de�nition.

Due to being an exit node, Db will be instantiated to t in the expression at

this point. Also note that when we calculate the remaining size for (DaA;Db)

the fact that their reference set will be diminished is taken into account.

68

It is also noteworthy that (DaA;Ea) has the remaining size 4. If such

a candidate is selected as the top candidate in a situation, then we see that

DaA, which is an auxiliary node, will be combined with another auxiliary

node from a di�erent reference set. That combination takes place prior to

DaA combination with other auxiliary nodes from its reference set. In that

situation it is required that both nodes will be designated the exit nodes for

their corresponding reference sets. This clearly shows the potentials that are

provided by the dynamic ordering of auxiliary nodes versus the static and

non-query oriented ordering among them.

Cycle 5: (Ea;Ecc) will be selected for combination. If Ecc is treated as a

regular variable, Then Ecc is summed out and Ea remains.

Cycle 6: (Ea;EbB) will be selected for combination. The exit node desig-

nation and the corresponding instantiation take place here.

Cycle 7: (EaEbB;DbA) will be our last combination that lets us marginal-

ize with regard to A.

69

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In conclusion this thesis has established the following points.

� Probabilistic inference with local expressions for non-standard Bayesian

networks is a combinatorial optimization problem.

� Based on an analogy with optimal search algorithms such as A*, an ef-

fective heuristic solution called SPI* for that combinatorial optimization

problem has been developed. SPI* is an inference algorithm which is ca-

pable of handling many non-standard local interactions more e�ciently

than previous algorithms for the same tasks.

� Local expression language has been in existence for about a decade. This

thesis is the �rst to show a reasonable approach as well as an analysis on

how to verify the coherency of such expressions.

� There have been many e�orts trying to integrate graph-based Bayesian

network inference algorithms with non-standard local interaction models.

This thesis is the �rst to propose an e�ective measure of weight for nodes

with non-standard distributions. The proposed measure can be applied

in graph-based approaches such as variable elimination and clique-based

algorithms.

70

� By developing new constructs for local expression language such as V � we

showed that value set algebra and its representation in local expression

language are the best potential and least restrictive modeling mechanism

for �ner-grain representation of local structures in Bayesian networks.

7.2 Future Work

The following is a listing of interesting issues and questions that are still open

for further investigation.

� The complexity of the value sets join chain optimization problem is still

unknown. This problem has a subproblem called OFP, whose complexity

is still unknown as well. We believe both problems are NP-Hard, but we

have not proven that for either problem.

� There has been no comprehensive review and comparison of the inference

approaches for Bayesian networks with asymmetric relationships. The

partial studies that were done lack detailed analytical and experimental

data and results.

� SPI* heuristic strategies for symbolic computations are rather simple.

More studies are needed to re�ne such strategies and bring them closer

to optimal.

� From what we described about the implementation of the V � construct,

it must be obvious that it will de�nitely reduce the complexity of the

numerical computations for inference. But its impact on the complex-

ity of the symbolic computations still need to be determined through

experiments.

71

BIBLIOGRAPHY

Becker, A., & Geiger, D. (1996). \A Su�ciently Fast Algorithm for Finding
Close to Optimal Junction Trees". In Proceedings of the Twelfth Annual

Conference on Uncertainty in Arti�cial Intelligence, pp. 81{89.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). \Context-
Speci�c Independence in Bayesian Networks". In Proceedings of the

Twelfth Annual Conference on Uncertainty in Arti�cial Intelligence, pp.
115{123.

Dagum, P., & Galper, A. (1993). \Additive Belief-Network Models". In Pro-

ceedings of the Ninth Conference on Uncertainty in Arti�cial Intelligence,
pp. 91{98.

D'Ambrosio, B. (1990). Symbolic Probabilistic Inference in Belief Networks,
Technical Report 90-30-1. , Dept. of Computer Science, Oregon State
University.

D'Ambrosio, B. (1995). \Local Expression Languages for Probabilistic Depen-
dence". Intl Jrnl of Approximate Reasoning, Vol 13 (No 1), 61{81.

Dechter, R., & Rish, I. (1998). On the impact of causal independence, ICS
Technical Report, October 1998. , Dept. of Information and Computer
Science, University of California, Irvine.

Fung, R., & Shachter R. (1991). Contingent In
uence Diagrams. Submitted
for publication.

Geiger, D., & Heckerman D. (1991). \Advances in Probabilistic Reasoning".
In Proceedings of the Seventh Annual Conference on Uncertainty in AI,
pp. 118{126.

Geiger, D., Verma, T., & Pearl, J. (1989). \d-separation: From theorems to
algorithms". In Proceedings of the Fifth Workshop on Uncertainty in AI,
pp. 118{125.

Heckerman, D. (1989). \A Tractable Inference Algorithm for Diagnosing Mul-
tiple Diseases". In Proceedings of the Fifth Workshop on Uncertainty in

AI, pp. 174{181.

72

Heckerman, D. (1991). Probabilistic Similarity Networks. MIT Press, Cam-
bridge, MA.

Heckerman, D. (1993). \Causal Independence for Knowledge Acquisition and
Inference". In Proceedings of the Ninth Annual Conference on Uncer-

tainty in AI, pp. 122{127.

Heckerman, D., & Breese, B. (1994). \A New Look at Causal Independence".
In Proceedings of the Tenth Annual Conference on Uncertainty in AI, pp.
286{292.

Henrion, M. (1988). \Practical Issues in Constructing a Bayes Belief Network",
pp. 132{139. North Holland, Amsterdam.

Howard, R. A. (1989). \The used car buyer", Vol. II, pp. 689{718. Strategic
Decision Group, Menlo Park, CA.

Kjaerul�, U. (1990). \Traingulation of Graphs-algorithms giving small total
state space.". Tech. rep., R 90-09, Department of Mathematics and Com-
puter Science, Aalborg University.

Li, Z., & D'Ambrosio, B. (1994). \E�cient Inference in Bayes Nets as a Com-
binatorial Optimization Problem". Intl Jrnl of Approximate Reasoning,
Vol 11 (No 1), 55{81.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufman, San Mateo, CA.

Pradhan, M., Provan, G., Middleton, B., & Henrion, M. (1994). \Knowledge
Engineering for Large Belief Networks". In Proceedings of the Tenth

Annual Conference on Uncertainty in AI, pp. 484{490.

Qi, R., & Poole, D. (1995). \A New Method for In
uence Diagram Evaluation".
Computational Intelligence, 498{528.

Rai�a, H. (1968). Decision Analysis. Addison Wesley.

Shachter, R. D., & Peot, M. A. (1992). \Decision Making Using Probabilistic
Inference Methods". In Proceedings of the Eighth Conference on Uncer-

tainty in AI, pp. 276{283.

73

Shenoy, P. P. (1996). \Representing and Solving Asymmetric Decision Problems
Using Valuation Networks", pp. 99{108. Lecture Notes in Statistics 112.
Springer-Verlag.

Smith, J. E., Holtzman, S., & Matheson, J. E. (1993). \Structuring Conditional
Relationships in In
uence Diagrams". Operations Research, Vol 41 (No
2), 280{297.

Srinivas, S. (1993). \A Generalization of the Noisy OR Model". In Proceedings

of the Ninth Annual Conference on Uncertainty in AI, pp. 208{215.

Zhang, N. L., & Poole, D. (1994). \Intercausal Independence and Heteroge-
neous Factorization". In Proceedings of the Tenth Annual Conference on

Uncertainty in AI, pp. 606{614.

Zhang, N. L., & Poole, D. (1996). \Exploiting Causal Independence in Bayesian
Network Inference". Journal Of Arti�cial Intelligence Research, 301{328.

Zhang, N. L., & Yan L. (1997). \Independence of Causal In
uence and Clique
Tree Propagation". In Proceedings of the Thirteenth Annual Conference

on Uncertainty in AI, pp. 481{488.

