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Abstract approved:

The numerical analysis of thermal convection in porous media,

heated from below, and assuming Darcy flow conditions, involves the

solving of a set of non-linear equations for the temperature and flow

fields. The condition of criticality determining the onset of convec-

tion is obtained by linearization and the solving of an eigenvaiue prob-

lem of the fourth order. The smallest eigenvalue represents the

critical Rayleigh number. The shape of the critical temperature and

flow fields is then obtained from the linear set. In most practical

cases, the problem setting is such that closed analytical solutions

cannot be derived.

The difficulties of solving the convection equations can be

overcome by using the Galerkin finite-element method. The method

allows the solution of both the linear set and also the more complete

non-linear set of equations at various boundary conditions and taking
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variations in the material parameters into account.

In this thesis, the Galerkin method is used to solve the

convection equations for infinitely long porous vertical or semi-

vertical slabs with prescribed temperatures at the top and bottom sur-

faces. The first set of models investigated involve boundary walls

that are impermeable to the fluid but perfectly conducting to heat.

The critical Rayleigh numbers and critical temperature and

flow fields are obtained for such slabs with various aspect ratios. The

results show that the critical number is raised by 200 to 400% as

compared with published data for similar slabs with thermally non-

conducting walls.

The results are generalized by investigating cases of slabs with

(1) three types of vertically varying permeability, (2) by taking the

temperature dependence of the fluid properties into account, (3) by

including non-linear terms, and finally, (4) a few cases of slabs with

boundary walls of finite thermal conductivity are investigated.

The results are applicable to a number of situations in

geothermal areas. A brief discussion of two such cases is given,

that is, (1) the estimating of the critical permeability profile for the

East geothermal field in the Imperial Valley and (2) the computation

of a temperature cross section in the Cumali geothermal field in

Turkey.
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NUMERICAL ANALYSIS OF CRITICAL FIELD FUNCTIONS
FOR THERMAL CONVECTION IN VERTICAL OR

QUASI-VERTICAL DARCY FLOW SLABS

I. INTRODUCTION

Thermal convection phenomena in porous media are of consider-

able interest in theoretical and applied geophysics. At a sufficiently

high permeability, natural convection may take place in porous

formations of almost any shape and dimensions. The fluid movements

result in a convective transport of heat which may contribute to the

natural heat flow and thus modify the local temperature field. A tern-

perature field and heat flow theory based on purely conductive proc-

esses is inapplicable for such conditions.

The convective phenomena are of particular interest in

situations of enhanced local heat flow such as in and around active

geothermal systems and in areas of active volcanism. Convection

may then contribute very significantly to the thermal phenomena and

the outward flow of heat. As a result, the geothermal sciences take a

very great interest in many theoretical and numerical aspects of the

convective phenomena.

A problem setting of particular interest centers around the

specific or critical conditions required to initiate thermal convection

in a porous formation of given geometry, boundary conditions and

material properties. Here we are not only interested in the critical



conditions that lead to convection but also in the shape of the numeri

cal data on the resulting temperature and heat flow fields. As a mat-

ter of fact, the critical field functions have received very great

attention in the literature during the past two or three decades. The

problem setting that has been the focus of interest can be divided into

two main cases, that is, (1) instability analysis and (2) development

of time dependent models. Below we briefly review the literature in

these fields.

Classical Instability Analysis

Clasical linearized Rayleigh type convective instability analysis

(Rayleigh, 1916: Chandrasekhar, 1961) was applied by Horton and

Rogers (1945) and Lapwood (1948) to determine the critical Rayleigh

number (Rc) and flow pattern at the onset of convection in an

infinite horizontal layer of a saturated homogeneous and isotropic

porous Darcy type medium heated from below. Establishing the mass,

momentum and energy balances for this type of system, neglecting

the temperature and pressure dependence of the fluid, except where

they create buoyancy (Boussinesq approximation), and omitting all

nonlinear terms in the equations, Lapwood obtained for isothermal

and impermeable boundary surfaces, the value Rc = 39.5. As sum-

ing permeable surfaces the value is reduced to Rc = 27. 1. Results

of experimental work by Katto and Masuoka (1967) show a satisfactory
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agreement between theory and experiment. Using numerical tech-

niques, critical Rayleigh numbers for more general sets of boundary

conditions were obtained by Nield (1968). Analogue solutions for

similar systems including nonlinear terms have been given (Wooding,

1957: Wooding, 1958: Elder, 1967: Chan et al., 1970).

The procedure employed by Lapwood was extended by Beck

(197Z) to investigate convection in porous boxes with insulated walls.

Zebib and Kas soy (1978) have used a two-term expansion of the tem-

perature and velocity vector fields to reinvestigate the box models

and conclude that when the Rayleigh number is just above the critical

value the two-dimensional convection mode transfers heat more

effectively than does the three-dimensional convection mode.

Recently, Zebib and Kassoy (1977) have reconsidered Beckts problem

by taking into account the effects of viscosity variation due to tem-

perature differences. They found that the general mode configuration

is the same as derived by Beck (197Z) but, the critical Rayleigh num-

ber is significantly reduced as the thermal gradient increases. Straus

and Schubert (1977) have carried out a very complete analysis of the

effects of variable thermodynamic and transport properties of water

on the critical functions. They observed that the critical Rayleigh

number may be reduced very considerably below the values obtained

by Lapwood (1948). This implies that convection may occur at a

smaller temperature gradient than predicted by an analysis based on



the Boussinesq approximation.

Evolutionary Models

A few investigators have treated non-steady state or evolutionary

models. Laboratory and numerical experiments on non-steady con-

vective flows in porous slab systems have been reported by Elder

(1967). A numerical and experimental analysis of convection in box

geometries with insulated boundaries has been carried out by Holst

and Aziz (1972). Mercer and others (Mercer and Pinder, 1973:

Mercer, Pinder and Donaldson, 1975) have carried out a numerical

simulation of the hydrothermal system at Wairakei, New Zealand.

They assume a temperature dependent viscosity and thermal expan-

sion coefficient. Mercer et al. (1975) point out, that their models are

essentially two dimensional (horizontally). Cases involving multi-

phase fluids were investigated by Lasseter et al. (1975) and Faust and

Mercer (1975). Sorey (1976) further investigated this problem in a

vertical slab model, and demonstrated the importance of the varia-

tions in the physical properties of the fluid. However, Sorey (1976)

did not treat the convection instability systematically and his analysis

has been criticized by Straus and Schubert (1977).
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Scope of the Present Research

The principal aim of the work by Beck (1972) and Zebib and

Kas soy (1977) quoted above has been to modify the earlier results so

that they could be made applicable to problems of convective stability

in specific geological structures such as individual fault blocks where

Darcy type flow conditions can be assumed. To reduce the computa-

tional effort, the walls bounding the blocks are assumed to be imper-

me able to the fluid and non-conductive to heat. Clearly, the latter

boundary condition is not entirely realistic and, as can be demon-

strated by a relatively simple argument, leads to an underestimate of

the critical Rayleigh Number. The magnitude of the error involved

cannot be estimated within the framework of the approach taken.

Turning to the other extreme of wall condition, it is evident

that the critical Rayleigh number of such blocks will be overesti-

mated by taking the walls to be perfectly conducting to heat. Assum-

ing this condition, we obtain an upper bound to the critical number.

Such data are therefore complementary to those of Beck (1972) and

Zebib and Kassoy (1977). The real critical Rayleigh number for

finitely conducting walls will be bounded by the two extremes. It is

therefore of considerable interest to provide data on the upper bound.

In the thesis, we will elaborate on this subject by carrying

through computations of the critical functions for very long vertical or



semi-vertical porous Darcy type slabs where we assume that the

bounding walls are impermeable to the fluid but perfectly conducting to

heat. In view of the geometry assumed, the flow and temperature

fields will be assumed to be two-dimensional. To enhance the applica-

bility of the results, several angles of tilt will be assumed for the

slabs and the flow condition at the top bounding plane will be varied.

We will further generalize our work by investigating the impli-

cations of non-Boussinesq flows and temperature dependent fluid

properties. A few specific cases of varying permeability will also be

taken up for consideration.

Finally, a specific case of a slab embedded in rock having a

realistic finite heat conductivity will be investigated.

It is of interest to note that the present work is an outgrowth of

a joint research project of the Geophysics group at Oregon State Uni-

versity and the Department of Geophysical Sciences at Georgia

Institute of Technology, Atlanta, Ga. The principal scope of this

project was to investigate convective phenomena in geothermal sys -

tems. Both the OSU and GIT project were supported by the U.S.

Geological Survey Extramural Geothermal Research Program.

Dr. Robert P. Lowell served as the Principal Investigator at GIT.
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II. NUMERICAL ANALYSIS

Various approaches to the mathematical formulation of desc rib-

ing the behavior of heat and mass transfer in fluid saturated porous

materials have been given (see, for example, Lapwood, 1948;

Wooding, 1957; Beck, 1972; Bear, 1972; Garg et al., 1975). Under

the present working frame the common basic assumptions are,

1) the porous medium is isotropic;

2) the fluid is in liquid phase;

3) the flow is in the saturated laminar range;

4) no heat sources or sinks exist in the field;

5) heat conduction is assumed to occur in both the liquid and the

solid material. Further, they are assumed to be in local

(pointwise) equilibrium.

Under these conditions, the flow of heat and mass in the porous mate-

rial may be described by the following set of equations.

Governing Equations

Flow Equation

The evolutionary form of Darcy's Law similar to that used by

Wooding (1959) and Schowalter (1965) is taken to be



- -av V
Pf[ +v()] = -Vp -+ Pt (2.1)

-where V is the macroscopic average fluid velocity field, P the

fluid pressure, Pf the fluid density, p the fluid viscosity, K

the permeability of the medium, 4 the area porosity of the medium

and is the acceleration of gravity. The true (pore) fluid velocity

is equal to V/. The inclusion of the intertia terms on the left hand

side in Darcy1s law is required to describe nonstationary flows. In

the case of slowly varying laminar flows in porous media, these

terms are generally negligible. Bear (1972) has discussed the range

of validity of Darcy's law, and Bodvarsson (1970) has concluded that

the inertia terms are of significance only in fractured rock with rela-

tively wide openings (a few centimeters).

Continuity Equation

For a compressible fluid, we can write the continuity equation

as

8(cPf)
= -V(pV)

at

Energy Equation

(2. 2)

Neglecting the viscous dissipation and applying the energy bal-

ance equation developed by Bird and others (1960, p. 313 (10. 1-9)) we



obtain the following energy equation for the combined fluid and solid

phases

aT kVT[PfCf+(1-)P c
DP 2 - PfCfVVT (2.3)

s S at Dt m

DP aPwhere = + V VP is the rate of enthalpy increased by com-

pression, p the density of the solid material, a the fluid

the rmal expansivity, km the thermal conductivity of the saturated

medium, C1 the fluid specific heat at constant pressure, and C

is the specific heat of the solid phase. For simplicity we take km

k = 4k + (1-4)k (2.4)m f 5

where kf is the thermal conductivity of the fluid and k the

thermal conductivity of solid phase. In applying (2. 4), we assume

that the heat conduction through the fluid and solid phases is parallel

but separate (Lagarde, 1965). In some cases the effective conductivity

is slightly higher than the values derived from (2. 4) because of the

thermal dispersion. A discussion of this parameter based on experi-

mental work has been given by Green (1963).

Equation of State

The physical properties of water are functions of both tempera-

ture and pressure. Relevant data are usually given in the form of
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algebraic relations. The equations derived by Meyer et al. (1968)

employed in this thesis are too complex to be quoted here. A sub-

program PROPT (Appendix C) has been worked out to generate the

density, thermal expansivity, compressibility, specific heat at con-

stant pressure and viscosity of water for given temperature and

pressure.

Galerkin Finite-Element Method

Our problem is to solve a couple set of nonlinear partial

differential equations. In general, solutions of the equations cannot

be derived in an analytical form, and consequently numerical tech-

niques have to be resorted to. Furthermore, the problem setting is

further complicating by spatial variations in the material properties

such as permeability and conductivity. Moreover, irregular geome-

tries and boundary conditions are often encountered. The selection

of the Galerkin finite-element technique for solving our convective

problem is based on the consideration of these difficulties.

Although the finite-element approach is often found to be more

flexible than finite-difference methods the variational formulation is

generally rather difficult. The Galerkin method offers an alternative

way of formulating problems for finite element solutions without using

direct variational principles. For many physical problems the

methods of Galerkin and Ritz often lead to similar approximating
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equations. The Galerkin method is, however, more universal and is

applicable to equations of the elliptic, parabolic, and hyperbolic

types. Kantorovich and Krylov (1964) and Forray (1968) present a

detailed discussion of the relative merits of the Galerkin and Ritz

methods. Douglas and Dupont (1970) give a comprehensive discussion

of the extensive use of the methods in the petroleum industry in recent

years.

The application of the Gale rkin finite-element method to heat

and mass transfer problems in geothermal fields was initiated only a

few years ago (e. g., Thirriot et al., 1974; Mercer et al. , 1975;

Faust and Mercer, 1975). They find that this approach is of great

value in the modeling of natural geothermal systems. On this method,

the whole domain under consideration is divided into irregular sub-

divisions as indicated by the physics and geometry of the underlying

problem. The size of each subdomain (element) can be varied

readily, and the approach yields good approximations of external and

internal boundaries. Even inhomogeneties and anisotropicities are

quite easily accommodated. Moreover, it is possible to represent

coefficients of the partial differential equations which vary in space

(e.g., permeability and density) as piece-wise function over each

element (Pinder et al. , 1973).

The primary disadvantage of the Galerkin method is the need

for complicated computer programs and good computer facilities. To
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derive efficient computer codes for the Galerkin method is a

formidable task; however, once the development is complete, the

codes may be applied to a wide range of similar problems without

modification. General references on the application of the Galerkin

method to field equations include Zienkiewicz (1971), Pinder and

Frind (1972), Segol et al. (1975), and Pinder and Gray (1977).

General Formulation Procedure

Equation (2. 1), (2. 2), and (2.3) can be written as

L(h) f in D (2.5)

where D is a bounded domain and the operator L acts on the

unknown field variable h to generate the known function f. To

solve (2. 5) by the Galerkin finite-element method, we start out from

a trial solution of the following form

(P, t) = a.(t)N.(P), (2. 6)

where N.(P) represent n basis (shape) functions of the field

point P forming a complete set for a linear subspace of dimension

n and chosen such that they satisfy the principal boundary conditions

imposed on (2. 1), (2. 2) and (2. 3). The a.(t) are time-dependent

expansion coefficients to be determined. Substituting (2. 6) into (2.5)
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L [a.(t)N.(P)] - f = R (2. 7)

where the residual R vanishes when the trial solution is an exact

solution. The Galerkin finite-element method is a special case of a

more general approach to the method of weighted residuals. The

basis functions N.(P) are weighting functions that are selected such

that the residual R is minimized relative to an appropriate norm.

In the present approach, this is equivalent to requiring the ortho-

gonalty of L[ a.(t)N.(P)] - f to the basis function N(P), i. e.

ai(t)N(P)f]Nj(P)da = 0 (2. 8)

j =

Since N.(P) belongs to a complete for a finite dimensional subspace

(dimension n) it is expected that as n , the approximate

solution will tend to an exact one. Assuming that the above integra-

tions can be performed appropriately (2. 8) represents a set of n

equations with n unknowns (a.(t), i = 1,2, . . n). Often there is a

way to lower the order of the space derivatives in equation (2. 8) and



14

to introduce natural boundary conditions on the basis of an integration

by parts.

Element Basis Functions

Almost any two-dimensional domain of complex geometry can

be divided into appropriate triangular elements. This approach will

be used throughout this thesis. There is a trade-off between the num-

her of the elements and the order of the basis functions. The same

degree of accuracy can be achieved by reducing the number but

increasing the order. In the field of petroleum engineering the

emphasis has been on using fewer elements of high-order basis func-

tions in relatively simple geometries while in structural engineering,

the tendency has been toward using more elements of low-order basis

functions. As shown in Chapter III, the analysis of convection

stability does require elements of high-order basis functions for suf-

ficiently fast convergence. Accordingly, a quadratic triangular ele-

ment (Fig. 1) appears to be a reasonable choice for the problems to

be investigated in the present thesis.

In each triangular element, the unknown function is given by the

relation:

where

(2. 9)
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Ne = (N.,N.,N ,N ,N ,Nijk p q r
eT

a (a.,a.,a ,a ,a ,aijk p q r

N(2L-L1; N.=2L-L2; Nk=2LLk

N = 4L L ; N = 4L2L3; Nr 4L3L1
p 12 q

L local (natural or area) coordinate (see Fig. 1) n = 1,2,3
n
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L2 = {(z x -z x )+(x -x )z+(z -z )x]ki ik k i i k
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j j i

+ L2 + L3 = 1

Area of the triangular element.

x ,Li=0

0.5

L3
Li=)

1k
I

I
I

I
/

I

I

(x1,

I
I

I.

Il
/

I
I

I
I

I
I

Figure 1. Quadratic triangular element and area coordinate system.



Treatment of Functional Coefficients

One of the most efficient ways of dealing with variable param-

eters in the governing equations is to assume that they are constant

over the elements or vary in a similar manner as the basis functions.

We may express these variables as linear functions

c (x, z) = L c. + L c. + L cm ii 3k

where L are the linear triangular basis functions or local (area)
n

coordinates and c., c., and c are coefficients. Of course, it is
1 k

possible to express the cm in terms of high-order basis functions

(e. g., (2. 9)), but this would only complicate the computation. It is a

simple matter to incorporate the functional coefficients in conjunction

with quadratic triangular elements and nunerical integration. The

above idea was first discussed by Desai and Abel (1972), and further

extended by Pinder et al. (1973). This approach is applicable to both

isotropic and anisotropic problems.

Differentiation and Integration

Before carrying out the integrations of the element equations

in (2.8), we face the task of evaluating the partial derivatives,

at/ax and /az. Since h is çxpressed as a function of the local

coordinates L1, L2, and L3 as in (2. 6), it is necessary to express
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3f-l8x, 8/8z, and dxdz in terms of L1 and L2 also. This

can be done as follows.

From equation (2. 6) we obtain

r r
A -, (. v-.

8h \ m &II \ m
L am Dx L am Dz

m1 mi

and hence we must express DN lax and DN lDz in terms ofm m

L1 and L2. By the chain rule of differentiation we obtain

and similarly

whe r e

(aN 1aN
I m I_ml
I

a, JDL
= [j]-'( 1

IaN laMm m

L
Dz LDL2

dxdz = det[J]dL1dL2

Dx Dz
DL1 DL1

[3] =
Dx Oz

8L2 aL2

is the Jacobian matrix. It can be shown that if the mapping is

acceptable, that is, one-to-one, then [311 exists (Zienkiewicz,

1971, p. 132). On the basis of these transformation integrals



expression such as (2.8) reduce to the form

lL2
F(L1, L2, L3) det[J]dL1dL2

where F is the transformed function [L amNmfe]Nj at the

element level. Clearly, the transformed integrand F is not a

simple function that permits closed form integration. Taking into

account the fact that all the dependent variables are simple poiy-

nornials numerical integration can, on the other hand, be carried out

to any degree of accuracy.

The accuracy of the numerical integration required to assure

convergence of the finite element method is of considerable impor-

tance. One of the most popular numerical integration schemes for

triangular areas of integration is similar to the Gauss method where

the integrand is evaluated at n discrete points. The integrals are

then calculated on the basis of the relation

n

SS
lLzF(L L2, L3)det[J]dL1dL2 wk det[J]F(L1, L2, L3)

00
k 1

(2. 10)

where the Wk are weighting factors which are uniquely associated

with each point k. Making use of n sampling points in relation

(2. 10) exact integrals of all polynomial expressions of the form
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where a,3,y < n-i can be obtained. Corresponding

weighting factors and stations may be found on the basis of Hammer's

formulas (Hammer et al. , 1956; Hammer and Stroud, 1958).

Treatment of Temporal Derivatives

Approximation solutions to the time -dependent equations can

also be obtained on the basis of the Galerkin approach (e. g.

Zienkiewicz and Parekh, 1970; Donea, 1974; Kb'hler and Pittr, 1974).

Numerical experiments have, however, shown that, in general, none

of the methods tested perform significantly better than the centered

finite-difference procedure. This observation along with the sim-

plicity of the latter method lead to the conclusion that the finite-

difference scheme in time is the best overall choice in the majority

of cases of time-dependent finite element analysis. It is convenient

to combine the procedures by solving the transient equation using the

Galerkin method, and then to discretize the time derivative using a

finite difference scheme. For the problems at hand the backward

difference may provide better results as has been found by Pindér

(1973), Mercer (1973), and Segol et al. (1975). The finite-difference

disc retization of the time derivative is expanded in the following

formula
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h(t')dt' sh + (lE)ht
t

t+t

where t < ti < t+Lt. The case E 0 corresponds to an explicit

scheme (forward difference scheme), = 0. 5 is the centered

implicit scheme (Crank-Nicholson scheme), and E = 1 is the

implicit scheme (backward difference scheme).
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III. LINEARIZED STABILITY CRITERIA FOR NATURAL
CONVECTION IN REGIONS BOUNDED BY

HORIZONTAL PLANES

Consider a homogeneous and isotropic fluid saturated Darcy

type porous system bounded above and below by horizontal planes,

place a rectangular coordinate system with the origin in the upper

plane and the z-axis vertically down. Hence, z = 0 in the upper

plane and let the lower plane be at z = H. We assume that the

system is initially at rest and that its initial state is characterized by

the stationary temperature field T0 and the pressure field P0.

Let this pressure field be hydrostatic, that is, P0 pfgz where

Pf is the unperturbed density of the fluid. Moreover, we assume

that the temperature in upper plane is constant and equal to T1

whereas the lower plane has a constant temperature T2 such that

T T +(T -T )z/H
0 1 21 z

Let the system be subjected to small convective perturbations,

in the temperature 9, in the pressure p and to a velocity field

such that the resulting fields are

TT +0
P = P0 + p

Following standard procedure, we assume that marginal stability is

characterized by a /at = 0 (Chandrasekhar, 1961). Substituting the
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-above perturbations 0, p, and v into (2. 1), (2. 2), (2. 3), and by

neglecting second-order terms (linearization) we obtain for marginal

stability

v (Pfl) = 0 (3. 1)

-Vp p = 0 (3.2)

PfCf VT0 - aT0.Vp kV2O (3.3)

In the case of two-dimensional convection in the x-z plane where

= (uw), these equations take the form

8u 8w
+ + w(3pfg-aD) = 0 (3.4)

ia + 1± = 0
ax K

(3. 5)

8z K - (3pfp-a'pfO)g = 0 (3.6)

k v20 + (aT0pfg-pfCfD)w = 0 (3.7)
m

where D (T2-T1)/H is the unperturbed temperature gradient.

To the first approximation, the parameters Pf a, I, 1.1 and K

are assumed to be horizontally constant, but can vary vertically.

The heat conductivity k is assumed constant. In the derivation of
m

(3. 6) we have used a linearized equation of state for the fluid such

that the perturbed density is = I3PfP aPfO. Eliminating p from

(3.5) and (3.6) we obtain



O -u()0 (3.8)azK

Moreover eliminating au/ax from (3. 4) by making use of equation

(3. 8) we obtain

12
v w ± [(pfg-aD)-gp + (a)]fK az K azK x,z

22 2E
+ r: (13PfgaD)-P pfg K

+ aDgPpf
1( + 13Pf -()-ciD ()Jw

a2o± apfg -i- = 0 (3.9)
ax

where
z a a

Vx,z 2 2
ax az

By introducing

pCH
Z0

H
X0 = DH

R
1/2

w
z z z m

Pf a Cf
aPf0 ' 0 a Cf0

C ' 0 Ifs s fs s

Ic

101

whe re

ga DHp2 C K
s zfs fs s

S

is defined as the Rayleigh number, and the subscript s refers to



the value of the parameter at the surface z = 0. For the sake of

simplicity the subscript 0 will be dropped from the transformed

quantities x0 00 w0 hereafter. With this in mind, we may

rewrite equations (3. 7) and (3. 9) with the dimensionless parameters

included

20 a 0 sOO zR1/'2V2 w+R1'
K p. a a p. DH

x2z K0

+R20 ( a

FL0 "ç (IB5P0Pf8PfQg_a a D)]sO
'1

- a wsO K0)

a0Pf0K0 a2e
+

p. 2
0

/ p

v2 0+R1'2 f0 (a a H Dzg4a a T g-C C D)w0.x,z DC s0z sOs fsf0
fs

This can be rewritten in a more compact form

whe re

24

2 w + E(z) + F(z)w + G(z)R'
a2e

= 0 (3. 10)
2

V2 0 H(z)Rh/2w = 0 (3. 11)
x, z

0 OsO z
E(z)

p. a a p. DH

p.0
az K0

(3. 12)
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K ( aF(z) =
10

- 5P0Pf8Pf0gH50P p ga a D) (3. 13)fsfO sO K

a0Pf0K0
G(z) = (3. 14)

Pf0
H(z)

DC
(Cf5Cf0D_a5a0gHDz_a5a0T5g). (3. 15)

fs

In the case of the Boussinesq approximation, the terms E(z) and

F(z) are equal to zero, and G(z) and H(z) are equal to unity.

Equations (3. 10) and (3. 11) together with given proper boundary con-

ditions constitute an eigenvalue problem for the Rayleigh number R.

In marginal stability analysis we are only interested in the smallest

positive eigenvaiue of (3. 10) and (3. 11). This is the critical Rayleigh

number Rc which determines the marginal stability of the per-

turbation and thereby the onset of convection.

Formulation

Following the general procedure of the Galer kin finite-element

method discussed in Chapter II, the trial solutions are assumed to be

of the form



w N.w, (3, 16)

0 N.0. (3. 17)

where M is the total number of nodes in the finite element grid,

w, and 0, are the finite element solutions for w and 0 at the
:1. 1

node i, and N. are the quadratic basis functions defined over the

triangles. Functional coefficients E(z), F(z), G(z), and H(z) are

approximated by

E(z)

M

G(z) ZLG

M

F(z)

M

H(z) L.H.

(3. 18)

where M is the number of corner nodes of the finite element grid

and L, are the linear triangular basis functions. Application of the

Galerkin procedure on (3. 10) and (3. 11) with the substitution of (3. 16)

to (3. 18) into (3. 10) and (3. 11) yields
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[v2 NT{w}+LT{E} aNT w}+LT{F}NT{w}

D

+ R' /2LT{G}
DZNT

Nkda = 0

[v2 NT{0}Rh/2LT{H}NT{w}]Nkda = 0 k = 1,2, . .

D

By making use of Greents theorem to remove the second derivatives

from the integral expressions we obtain

DN aNT DNk aNT SLTEN DNTd{}
+ )da{w}

ID
k Dz

- LT{F}NkNTda{w} + Rh/2S LT{G}(_. )da{e}
ID D

Dx Dx

- N (- + )ds - RhI2S LT{G}N ds = 0 (3. 19)kDx x z k8x x

r DNk DNT DNk aNT)d{o}+R1/2
LT{H}NkNTda{w}(-. a x

+
D z

ID

SNk( i + )ds 0Dx x Dz z
(3, 20)

where i and are respectively the x and the z compo-

nents of the unit normal to the boundary, and ds is a differential

arc length along the boundary. The surface integral (boundary



residual) in equation (3. 19) and (3. 20) now enables us to introduce the

boundary conditions. These equations with appropriate boundary

conditions can be written in matrix form as

[A]{w} + Rh/2[B]{O} = 0

Rh/2[C]{w} + [D]{o} = 0

wh e r e

[A]=5NT+kLT{}
aNT

D
ax ax az az

s
awN ( + )dsk ax

(3. 21)

(3. 22)

LT{F}NkNT) da

[B]
=5

LT{G}( k aNT
)da

5
LT{G}N dskax

D
ax ax

C

[ci
5D LT{H}NkNTda

8Nk aNT 8Nk 8NT)d
-5 N +- )ds[Dl = ax Dx

+-g-;_.
Dz

c
k Dx x

Equations (3. 21) and (3. 22) have non-trivial solutions if and on'y if

det
[A] Rhh'2[B]1

[c]R112 [D] j
=0

which can be further reduced to
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I {] '[c][AF '[B]- [UI 0

This is an eigenvalue problem of a M x M matrix. The maximum

value taken by the reciprocal eigenvalue hR of the system (3. 21)

and (3. 22) represents the critical condition for the onset of convec

tion. Matrices are formed in our program BAFORM and then solved

for eigenvalues by program ORGAN. For the purpose of investigating

convection instability problems, the program RAYLFI (including

several developed subprograms) has the capability of dealing with

various field conditions. Details of coding with the aid of the many

supplementary statements are given throughout the program lists

(Appendix C). Some of the important features include the following:

1) Two dimensional irregular geometry are subdivided into

many triangular elements with quadratic basis functions.

2) The material properties or the coefficients of the partial

differential equations are allowed to be continuous or dis-

continuous within each element.

3) Many types of realistic boundary conditions such as conduct-

ing boundaries and totally impermeable or permeable

boundaries can be taken into consideration.

4) Coefficients of the matrices are stored in a band mode.

5) A subprogram GRID is available to generate elements and

node numbers for slab geometries with different tilt angles.
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The evaluation of the element equations in program BAFORM involves

a large number of arithmetic calculations. These operations are

listed in Appendix C.

An Example of Comparison with Existing Analytic Solutions

In order to demonstrate the validity of the above formulation,

we will below compare numerical results obtained on the basis of our

method to analytical results obtained for models with insulated walls

developed by Sutton (1969) and Beck (1972). For the present purpose,

we will limit Beck's three-dimensional model to the special two-

dimensional case shown in Figure 2. The model involves a rectangu-

lar region in -cc < y < cc filled with porous material and bounded

by impermeable and insulated walls.

Ix
a :2

, ..J D

.' .''' .:.
.G..e:. .

I 0

I I

a

...0. ......
0

0

I
a.

'
1I '

.

I

S .
a a

0

Hz

Figure 2. Schematic representation of a slab, Hx and Hz are in units
of length.
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In the Boussinesq approximation, the governing equations (3. 10)

and (3. 11) simplify to

2 1/28
0 (3.23)V w+Rx,z ax2

2 1/2
v B-R w0 (3.24)

x, z

with the boundary conditions

u0 on x0, Hx/Hz
w = 0 on z = 0, 1

= 0 on x = 0, Hx/Hzax

0 = 0 on z = 0, 1 (3.25)

The analytic solutions (Sutton, 1969; Beck, 1972) for the temperature

field and critical Rayleigh numbers Rc are given as

Hz 2Hzx0cos(l+ Hx
).s1niz

2r mHz Hx 12Rcir i( )+( )jHx mHz

where m = integeral part of (1/2 + fJl+4(Hx/Hz)2).

Figure 3 and 4 show the results of our numerical calculations

in comparison with the exact values obtained by Sutton (1969) and Beck

(1972). The results demonstrate a monotonic convergence of the

approximate critical Rayleigh number and field functions with mesh



Mesh
configuration

Hx

Hz

Hx

Hz

Hx

Hz

No. of No. of Hx/Itz Hc Rc Error

elements nodes (exact) (finite element)

1

13 0.5

0,1

39.148

61.69

1006.80

40.00

62.50

1020.10

1.32%

1.30%

1.32%

1 39.48 39.72 0.604

16 41 0,5 6169 62.01 o.6o

0.1 1006.80 1012.30 0.55%

1 39.48 39.52 0.10%

36 85 0,5 61.69 61.77 0.13%

0.1 1oo68o 1008.00 0.12%

Figure 3. Convergence of the critical Rayleigh number Rc versus the number of elements. Corn-
parison between finite element and exact values of Rc for the box model in Figure 2.
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Figure 4. Comparison of the analytical solutions and the finite
element solutions for the box model in Figure 2.
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size. Even when only 4 elements are used, the numerical tempera-

ture results at the nodes agree within about 1% of the exact values.

Infinite Slab Models with Conducting Walls

As discussed in the introduction, we will now turn our attention

to the basic task of the present research, that is the investigation of

the critical field functions for models with perfectly conducting walls.

Moreover, we will also investigate models with variable permeability

temperature and pressure dependent fluid properties and the implica-

tions of non-Boussinesq conditions will also be considered.

To carry out the computational work, the dimensions of the

specific models under investigation have to be chosen with regard to

applicability to realistic conditions. In our selection of slab dimen-

sions, we have had the geometry of fault blocks in mind, in particu-

lar, the field conditions in the Basin and Range Province. There is a

considerable amount of geothermal activity in this region, and most

of it appears to be controlled by the master faults which are so con-

spicuous at the horst and graben structures. Although our numerical

results are derived for models of specific dimensions, the data

obtained can be applied to geometrically similar models of other

dimensions with the help of simple dimensional analysis.
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Conducting /Imperme able Boundaries in the B ous sines c
Approximation

As shown in Figure 5 we commence by considering an infinitely

long slab with a slanted parallelogram cross section in the x-z

plane where the walls (1) and (2) make the angle 4) with the hori-

zontal. Considering only the 2-dimensional flow case in the x-z

plane and assuming all boundaries are impermeable and perfectly

conducting, the boundary conditions for the perturbation fields become

OO onwalls landZ

e 0 on z = 0, 1

w 0 on z 0,1

and from the flow condition on walls 1 and 2 (see Appendix A)

where

= G(z)Rh/2 - [1(z)
8w

w+ ]cot 4)&x

K F10

1(z) = _2
-;

() - g50pf5pf0HZ

All parameters are assumed constant except p in (3. 2) which is

taken to be = pf[1a(TT)].

Turning now to vertical slabs, with 4) = 900 and using the

Galerkin finite-element method, the set of equations (3. 23) and (3. 24)

has been solved with the above boundary conditions. A comparison of
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the eigenvalues derived for different aspect ratios Hx/Hz with

those obtained by Sutton (1969) and Beck (1972) for the same type of

flow but with insulated walls is presented in Table I and in Figure 6.

Figure 5. Tilted porous slab.

Table 1. Critical Rayleigh number at various
onset of convection in infinitely long
impermeable tops.

aspect ratios for the
slabs (y-direction) with

Hx/Hz 1.00 0.75 0.50 0.25

Conductingwalls 80.10 109.40 199.20 681.40
Insulated walls 39.48 42.80 61.70 178.30

0.10 0.05 0.01

Conductingwalls 4014.60 15336.60 297014.00
Insulated walls 1006. 80 3967. 60 98715.70
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Mx

Figure 6. Comparison of critical Rayleigh numbers for vertical
slabs at various aspect ratios and perfectly conducting
walls with those of a similar model with insulated
walls.



For a 3-dimensional model with insulated walls and extending

over the entire y-axis, Beck (1972) derived for the limiting case of

H 0 a critical Rayleigh number of 29. 48. 1 This value is con-

siderably lower than the value calculated by Lowell and Shyu (1978)

for the same model geometry with conducting walls. They came to

the conclusion that for Hx/Hz < 1 the critical Rayleigh number

approaches to the above values for 2-dimensional models (Table 1 and

Fig. 6). This suggests that the 2-dimensional circulation pattern is

preferred when Hx/Hz < 1. Even if the circulating motion in the

case of the model with insulated walls is restricted to the x-z

plane the critical Rayleigh numbers as derived by Sutton (1969) are

still lower by a factor of 2 to 4 when compared to our present values.

When Hx/Hz < 2, the heat transferred across the conducting walls

becomes more important. Consequently, the onset of convection

requires higher critical Rayleigh numbers. The dashed lines in

Figure 6 implies that as the aspect ratio increases the effects of the

conducting walls become less important and the critical Rayleigh

number tends to the value 39.48 obtained by Lapwood (1948) for hori-

zontal slabs of infinite extent.

Figure 7 illustrates the computed isotherms for cases of both

insulated and conducting walls at a fixed aspect ratio Hx/Hz = 1.

'In the case of 3-d model with insulated walls the critical
Rayleigh number 39.48 as Hy a.



Rc 39.48, I. R83.5, b-I.
insulated walls conducttng wallsx

Ra z5Qi, I.

Hz

conducting wails
0 25

x

0.25 -0.25

Figure 7. Critical convective patterns in vertical slabs as
affected by boundary conditions and Rayleigh numbers.
With R = 83. 5, case b has a central convective cell
whereas at Rc = 80. 1 case c has a double convective cell
with centrally ascending fluid. Solid contours are iso-
therms. Dashed lines are contours of convection cells.
R = Rayleigh number, Rc = critical Rayleigh number.
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The signatures in Figure 7 will be used for the representation of

results throughout this thesis. Isotherms are shown with solid lines

contours of convection cells with dashed lines and the values of 0

and the dip angle 4) are indicated. For convenience the scale of

the field amplitudes of the isotherms has been chosen such that the

maximum amplitude is 12. Figure 7 indicates how the isotherms

depend on the wall boundary conditions. The isotherms in Figure 7-a

show clearly that no heat is transferred across the side walls, while

in the case of conducting walls in Figure 7-b, heat is absorbed by one

side wall and released by the other.

It is of interest to note that the asymetric single-node flow

field obtained for conducting walls at a Rayleigh number of 83. 1 and

shown in Figure 7-b was derived on the basis of 2 x 4 x 4 = 32

computational elements. The symmetric two-node flow field obtained

at a slightly lower Rayleigh number of 80. 1 was, on the other hands

derived with the help of a more symmetric scheme of 3 x 4 x 3 = 36

computational elements. Analog results for a different aspect ratio

are shown in Figure 8. Obviously, there is some inconsistency since

we would expect the simpler mode to correspond to a lower Rayleigh

number. We believe that we are here confronted with an artifact

resulting from a "numerical resonance" between the computational

scheme and the basic modes of the underlying model. The more

symmetric computational scheme generates the symmetric mode
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Figure 8. Critical isotherms and convection cells at various aspect ratios and Rayleigh numbers for
infinite vertical slabs with impermeable tops. Due to scale limitation only the upper half

of the convective patterns are shown in c and d where the aspect ratio Hx/Hz 0. 1.
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rather than the more basic asymmetric mode. Introducing some

asymmetry into the model such as a slight tilt of the slab but still

using 36 computational elements results in the suppression of the

symmetric two-node flow field solutions and only the single-node

asymmetric field with Rc 80. 1 (see later in Table 2) is obtained.

In the following, we will therefore make the basic assumption that the

single-node flow field and the associated Rayleigh number represent

the critical situation.

Tilted Slabs with Conducting Walls and Impermeable Tops

Our next step is to investigate the effects of different dip angles

on the critical Rayleigh numbers and convection cell forms in

infinitely long slabs of the type investigated above. Using the same

computational procedure as above, our results for the critical

Rayleigh numbers at dip angles from cj 90° to 60° are

tabulated in Table 2 and their general trend with respect to decreas-

ing is sketched in Figure 9. The critical Raleigh number Rc

is not found to change much (within 10 percent) for 70° < < 900

This suggests that in estimating critical Rayleigh numbers, vertical

slab models can in many cases be used to approximate slightly tilted

structures. It is interesting to note as shown in Figure 9 that for

Hx/Hz < 0. 10, the critical number decreases with the dip angle.

Therefore, a narrow (Hx/Hz < 0. 25) tilted slab may in many



Table 2. Critical Rayleigh number for the onset of convection in infinitely long slabs with
impermeable top for various aspect ratios and tilt angles.

Hx/Hz
1.00 0.75 0.50 0.25 0. 10 0. 05 0.01

900 80.10 109.40 199.20 657.10 4014.60 15336.00 397014.00
850 81.10 110.40 203.40 668.30 4019.60 15405.00 392051.00
800 81.30 111.80 205.00 674.70 4078.40 15351.00 387997.00
75° 81.50 113.10 210.00 678.80 4017.80 15198.00 384706.00

70° 81.80 114.90 216.20 681.50 3973.00 14959.00 381456.00

65° 82.50 117.20 222.80 684.70 3894.20 14684.00 374781.00

60° 83.90 120.20 230.60 690.50 3812.50 14393.50 367996.00
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Figure 9. Variations of the critical Rayleigh number with the
tilt angle 4'.
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cases be more unstable than a vertical one with the same aspect ratio.

Numerical results on critical isotherms and vertical flow

vectors in tilted infinite slabs are given in Figures 10 to 13, Again

the normalization of flow and temperature amplitude are arbitrary.

The isotherms and vertical flow fields in these figures indicate a

tendency of forming a main vertical cell in the central. portion of the

slab accompanied by two local subcells near the corners. As already

stated, it is of interest to note that all critical flow solutions for

tilted slabs turn out to be the asymmetric type.

Vertical Slabs with Conducting Walls and Permeable Tops

Flow or recharge through a permeable upper boundary may

occur when either a standing liquid or a second porous medium (with

a much larger permeability) overlies the porous layer of interest.

The appropriate boundary condition is then one of constant pressure

(Lapwood, 1948) which implies that there is no viscous interaction

across the boundary z = 0. By considering the continuity equation

we found for this case that, ap/ax 0, ap/az = 0, and therefore

aw/az 0 at z = 0. The boundary conditions in (3. 25) has to be

replaced by 8w/8z = 0 at z = 0 and w = 0 at z = 1.

Proceeding as in the previous section we can calculate the

critical functions for models with a permeable top surface. The

results given in Table 3 and Figure 14 show that a permeable top
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Figure 12. Critical isotherms and vertical flow vectors at an
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venience only the upper half of the critical fields is
shown.
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Figure 14. Comparison of critical Rayleigh numbers for permeable
and impermeable tops.
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leads to a reduced value of the critical Rayleigh number. The differ-

ence depends highly on the aspect ratio. For example, when

Hx/Hz 1, the critical number is reduced to 1/3 of the value for

the case of an impermeable top. However, at Hx/Hz = 0. 5, this

difference becomes negligibly small. In other words, the critical

conditions are independent of the top condition when Hx/Hz < 0. 5

Table 3. Critical Rayleigh number for the onset of convection for
various aspect ratios--assuming permeable top surface.

Hx/Hz 1.00 0.75 0.50 0.25 0. 10 0.05 0. 01

Rc 66.40 100. 20 189.00 654.80 4010. 0.0 15438.00 297000.00

The isotherms are, however, significantly affected by the top

boundary condition. The vertical symmetry of the impermeable top

case is lost. In the permeable top case the double cell (see Figure

iS-a) is shifted slightly upward (asymmetry about the lint z = 0. 5).

This phenomenon can be understood with the help of the flow pattern

shown in Figure 15-b. Since the ascending and decending plumes can

cross the boundary, their flow pattern is less restricted and the

velocity therefore higher than in the case of an impermeable top.

This effect intensifies the positive and negative isotherms around the

top boundary. Although the critical Rayleigh number is little

affected by the top boundary condition when Hx/Hz < 0. 5, the

circulation pattern may be basically different.
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Figure 15. Critical isotherms and vertical flow vectors at an
aspect ratio of Hx/Hz = 0. 5- -assuming a permeable top
surface.



53

Tilted Slabs with Permeable Tops

Results of the computation of critical Rayleigh numbers for

tilted slabs with permeable tops are given in Table 4 and critical flow

patterns are shown in Figures 16 and 17. Taking a glance at the

values in Table 4, two facts emerge. First, the values are not sig-

nificantly smaller than in the case of impermeable tops, particularly

in the range Hx/Hz < 0.5. Secondly, a sharp change in the magni-

tude of the critical Rayleigh number may occur at some dip angles.

To illustrate this, the critical isotherms and vertical velocity pat-

terns for normal slabs and those with a sharp change in the critical

Rayleigh number are compared in Figure 16 and 17. The figures

show that the abnormal behavior of the critical Rayleigh numbers is

associated with the emergence of a three-cell pattern. A relatively

large increase in the critical Rayleigh number is associated with the

jump from double to triple cell convection. In general, a change in

the topology of the cell pattern is associated with an abrupt change

in the critical Rayleigh number.

Although, the criteria for the set up of multi-cell (> 2) con-

vection is an interesting subject, we will not discuss it here. Par-

ticularly interesting cases can be explored separately with our

program RAYLEI. At this stage, we would like to emphasize the fact

emerging from these result, that in the case of permeable tops the
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cell pattern is more dependent on the aspect ratio and the tilt angle

than in the case of impermeable tops.

Table 4. Critical Rayleigh numbers for the onset of convection at
various aspect ratios and tilt angles for slabs with a
permeable top surface.

Hx/Hz
1. 00 0.75 0.50 0.25 0. 10 0.05 0.01

90° 66.40 100.20 189.00 654.80 4010.00 15438.00 397000.00

80° 66. 10 97. 00 192.40 674. 20 4076. 80 15508. 00 408827. 00

70° 67.23 101. 50 208. 10 816.00 3943.30 15240.00 378946.00

60° 72.40 114.60 309.10 645.90 3782.00 l468.00 364261.00
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IV. EFFECTS OF TEMPERATURE- AND PRESSURE-
DEPENDENT THERMODYNAMICAL AND TRANSPORT

PROPERTIES OF THE FLUID

Kassoy and Zebib (1975) have emphasized the importance of

variable viscosity for the onset of free convection in porous media.

The implications of variable thermodynamical and transport proper-

ties of water as well as of non-Boussinesq effects have been investi-

gated by Straus and Schubert (1977). Their analysis is, however,

limited to infinite horizontal layers with impermeable top and bottom

boundaries. In this section we will employ our computational tech-

nique to study the effects of variable properties and non-Boussinesq

effects on the critical Rayleigh numbers and flow modes for two-

dimensional convection in infinite slabs of the same type as in our

above models. Data on the thermodynamic properties of water are

given in Appendix B.

With regard to the non-Boussinesq effects we have instead of

setting E(z) = F(z) = 0 and G(z) = H(z) = 1 to solve the whole set

of equations (3. 10) to (3. 15). The expressions E(z), F(z), G(z),

and H(z) are then assumed to be known parameter functions to be

applied in the solving of equations (3. 10) and (3. 11). A new computa-

tional program PROPT and a subprogram ROAP (Appendix C) have

been developed to evaluate the parameter functions. No additional

computational effort will be needed to take into account variations of
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the material properties over individual element areas because during

numerical integration the value of the parameter functions at the sta-

tions for integration are available on the basis of a one-dimensional

linear interpolation between neighboring corner nodes. The introduc

tion of the additional parameter terms in the integral equations

increases the order of the highest order polynomials to be integrated

from four to five (the unknown parameters 0 and w are approxi-

mated by quadratic basis functions). Fortunately, fourth- and fifth-

order polynomials require the same number of stations for integra-

tion, so that no additional work is required in the integration based on

functional parameter representation.

Non-Boussinesq Slab Models with Conducting
and Impermeable Boundaries

Assuming a surface temperature Ts = 25°C and a surface

pressure Ps = 1 bar, the stability problem formulated above has

been solved using the shooting method. Because of the temperature

dependent properties, we have in this case to prescribe the tempera-

ture gradient and geometry from which criticallity is to develop. In

our analysis of a water saturated infinite slab with impermeable but

conducting boundaries we assume the temperature gradients to be

D = 30, 50 and 70°C /km, depths Hz < 5 km and aspect ratios

Hx/Hz 0.5, 0.25, 0.1 and 0.01. The results are given below in
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terms of a relative Rayleigh number which is the ratio between the

actual Rayleigh number and the corresponding number for a model

with constant properties equal to the state in the top surface. The

relative Rayleigh number is displayed in Figure 18 as a function of

Hz for 4 different aspect ratios with D as a parameter.

Clearly, the onset of convection in a water-saturated porous

slab is substantially influenced by the variable properties and non-

Boussinesq effects. As noted by Straus and Schubert (1977) for the

case of an infinite horizontal porous layer, the water-saturated

porous slab is considerably more unstable to thermal convection than

an equivalent porous slab saturated with an ideal fluid having spatially

constant thermodynamic properties. The results shown in Figures 18

and 19 indicate how the relative number r decreases with D and

Hz when the other quantities are held fixed. To take an example,

consider a slab of aspect ratio Hx/Hz = 0. 25 with a moderate tem-

perature gradient D 3OeC/km and being 1 km deep. This case

leads to r 0. 5 (Figure 18). Furthermore, in the case of a slab

with an aspect ratio Hx/Hz = 0.01, a temperature gradient

D 50°C/km, and depth of 5 km, the relative number r is

reduced to only about 0. 033.

It is interesting to consider the effects of variable fluid proper-

ties on the relative Rayleigh number as Hx/Hz tends to very small

values assuming a fixed temperature gradient D. One may consider
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Figure 19. The relative Rayleigh number r (defined in Figure 18)
as a function of the vertical dimension Hz with Hx/Hz
as a parameter.
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Hx/Hz as a parameter and arrive thereby at the graphs shown in

Figure 19. An interesting fact is that the relative Rayleigh number

decreases with the aspect ratio Hx/Hz until the latter reaches a

value of 0. 1. Below this value there is little change.

To elaborate on the above results, typical critical isotherms

and vertical flow fields for infinite slabs with impermeable boundaries

are shown in Figures 20 and 21. In contrast to our earlier results

obtained with the Boussinesq approximation (e. g. the isotherms shown

in Figure 8, which are symmetric about z = 0. 5 Hz) the present

results show a relatively high density of isotherms near the lower

boundary. This implies that the hot fluid near the bottom boundary

moves relatively fast in comparison with the cooler fluid near the top

boundary. The associated vertical velocity fields given in Figures

20 and 21 provide further evidence for this phenomenon. A close

inspection of the two figures indicates that as a result of the effects of

temperature and pressure on the fluid properties only about 60 to 70%

of the volume of the porous slabs is relatively strongly involved in the

convection. The relative size of the active volume decreases with

the aspect ratio.
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Non-Boussinesg Slab Models with Conducting
Boundaries and a Permeable Top

Since in the case of variable fluid properties discussed above

mainly the lower portion of the porous slabs is strongly involved in

the onset of convection, the upper top boundary conditions have little

influence on the critical Rayleigh number. Accordingly, one may

expect that in the non-Boussinesq case the critical Rayleigh number

for slabs with permeable tops should be very close to the values

those obtained for the case of impermeable tops. Several numerical

tests of this conjecture have been run with the help of our program

RAYLEI. In the work we have chosen Hx = 0. 5 km, Hz = 1 km,

D = 30°C I, m, and obtained practically the same critical Rayleigh

number Rc = 171.9 for both cases of top condition. Therefore, the

data furnished in Figure 18 hold (except at near surface) equally well

for both types of top condition. The critical isotherms and velocity

vector solutions shown in Figure 22 are nearly the same for both

cases (Figure 20). The vertical velocity vectors shown at the top sur-

face in Figure 22 are extremely small but finite quantities.
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V. VARIABLE PERMEABILITY

In the natural setting, the formation permeability may vary

within wide limits. In our modeling, we are therefore interested in

being able to cope with large variations of this parameter. It is one

of the advantages of the finite element formulation applied above that

it does allow the material properties to vary from element to element,

and therefore only little additional work is needed to be able to handle

models with a complex permeability distribution. In order to look

into the implications of a variable permeability, we present below

results for four physically interesting cases: namely (a) a permea-

bility constant with depth (Figure 23-a), (b) permeability decreasing

linearly with depth (Figure 23-b), (c) permeability decreasing quad-

ratically with depth but less than in the linear case (Figure 23-c) and

(d) permeability decreasing quadratically with depth but greater than

in the linear case (Figure 23-d). (To the best of our knowledge, the

critical Rayleigh number of an infinite horizontal layer of variable

permeability has not been determined.

Since in the above finite element formulations, the derivatives

of the material properties are included in equations (3. 12) to (3. 15),

both gradual as well as abrupt changes from element to element are

equally well within the capabilities of our program RAYLEI. For the

present purpose we will consider the specific case of a vertical slab
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with an aspect ratio of Hx/Hz = 1/4 and a depth Hz = 5 km.

Except for case (a), the permeability varies as much as an order of

magnitude between top and bottom. The unperturbed temperature

gradient is assumed to be D 50°C/km.

It is of some interest to discuss the effects of the surface

hydrodynamic boundary conditions before solving the above stated

problems. Making use of the results obtained in previous sections,

the critical Rayleigh number for the case Hx/Hz = 1/4 with a

permeable top is within 0. 5% of that in the case of an impermeable

top (Table 2 and 3). The effects of temperature and pressure, which

shift the main convection zone downward, further reduce the influence

of the top boundary conditions. We may conclude that for

Hx/Hz 1/4, the critical Rayleigh number is largely independent of

the hydrodynamic conditions at the top. This conclusion holds

although one might expect that the decrease of the permeability with

depth could offset the effects of temperature and pressure especially

when both the bottom permeability and temperature are low. To look

further into case (c) in Figure 23 with an unperturbed gradient

D = 30°C /km. As expected we find a critical Rayleigh number of

301.0 for an impermeable top, and a value of 300. 9 for a permeable

top. This result implies that only one of the top boundary conditions

will be needed to analyze the rest of the cases. In Table 5 below,

we show further results for the critical Rayleigh number when
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Hx/Hz = 1/4, Hz = 5 km, and D = 50°C/km. Except for the first

two rows which are quoted here from our previous results, we have

taken full account of the effects of temperature and pressure. As

expected the permeability decrease with depth tends to stabilize the

fluid within the porous material. In contrast to the influence of tern-

perature and pressure, these effects raise the values of the critical

Rayleigh number and thus suppress the onset of thermal convection.

In our earlier investigation, we have emphasized the importance of

variable hydrodynarnic properties on the Rayleigh number. In the

present section, we conclude that the variable permeability is of

equal importance. This is not surprising since the parameter K

enters into equations (3. 12) to (3. 14) in the same manner as the

viscosity does.

Table 5. Critical Rayleigh numbers for various permeability situa-
tions assuming Hx/Hz = 1/4, Hz = 5 km and an unperturbed
gradient D = 50°C /krn; Ks = permeability at top.

Permeability Functions Rc

(a) KKs 680. 6 Imper. Top; Boussi. Approx.

(a) KKs 680. 0 Per. Top; Boussi. Approx.

(a) KKs 29. 6 Imper. Top; Non-Boussi.

(b) K(1-0. 18z)Ks 89. 3 Imper. Top; Non-Boussi.

(c) K( 1-0. 36z+0. 036z2)Ks 156. 2 Imper. Top; Non-Boussi.

(d) K(1-0. 036z2)Ks 62.3 Imper. Top; Non-Boussi.
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The critical isotherms and vertical flow vectors corresponding

to the cases in Table 5 are given in Figures 24 to 28. One interesting

characteristic revealed in these figures is the shifting of the site of

the main convection zone as we observe in the cases (a) to (d). Fig-

ures 20 to 22 reveal that the variable water properties force the main

convections down to lower regions, whereas Figures 26 to 28 show

that the permeability decrease with depth pushes it up to higher

regions. This is physically reasonable since more buoyant water is

created by higher temperatures at depth which is then dispersed in

the more permeable sections of the porous medium. In these exam-

pies, the effect of the permeability decrease with depth nowhere corn-

pletely offsets the effects of the variable water properties. The

tendency of the main convection cells to move up or down as a result

of these effects is a very useful piece of information which helps us

to understand the physical behavior of natural convection systems.
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VI. TIME DEPENDENT MODELS

In our analysis, we have so far concentrated on the critical

functions such as the Rayleigh number nd flow fields at the onset of

convection. Our analysis has been based on the linear perturbation

approximation of the governing equations and on the assumption of

time independent temperature and flow boundary conditions. A num-

ber of interesting results concerning the onset of convection in our

models have been obtained this way.

It is obviously of considerable interest to look briefly into a

more general problem setting involving the evolutionary or time-

dependent aspects of convection in our slab models when both flow

non-linearities and heat conduction processes in the bounding media

are taken into account. Below we will briefly present some compu-

tational results along these lines.

Governing Equations and Galerkin Formulation

The equations governing the heat and mass flow through porous

media, based on Darcy's law and the principle of conservation of

momentum and energy are listed earlier as (2. 1), (2. 2), and (2. 3).

For the present purpose we may again neglect the inertial forces as

small compared with viscous forces in the porous medium. The

left-hand side of (2. 2) can then be expanded as



a4Pf p &Pf

Pf a at + at aTP at

8P a

fm + Pf4P Pfcia r

where 3 is the compressibility of the wet porous medium. Thus,

in the final form, our equations are

- K
V = (-VP+Pf) (4. 1)

- aT
-V. (V) + P14 (4. 2)

2 - -[PfCf+(l-P C I = k V T
S m

PfCfV . VT + aTV . VP

+aT-. (4.3)
at

We need to introduce the heat conduction equation to describe the

temperature field in the solid material bounding the porous medium,

that is,

2aVT (4.4)
at

where a is the thermal diffusivity of the solid wall material.

Although the basic problem is now time -dependent, the Galerkin

finite-element procedure can be applied as in Chapter Ill. The

conduction-c onvection phenomena involve a density dependence

coupled with fluid flow which renders the problem nonlinear.
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Moreover, some difficulties arise because of the explicit time-

dependence of the temperature and pressure fields.

A convenient approach to the solving of the equations is to

combine (4. 1) and (4. 2) by eliminating and assuming that the

last terms in (4.2) and (4.3) are negligible quantities. The combined

equations can then be solved for the pressure P which is substi-

tuted into (4. 1) to obtain the velocity field V. The velocity field is

subsequently inserted in (4.3) for calculating the temperature field.

The above procedure leads to satisfactory results when the

conductive heat transport is substantial. Computational difficulties

(Meissner, 1973; Segol, et al., 1975; Dessai and Contractor, 1977)

may, on the other hand, arise if the convective terms are very large.

These results from the computation of the velocity field by (4. 1)

based on trial solutions for the pressure field only. Moreover, the

computation of derivatives directly from trial solutions may in our

case result in velocity discontinuities across the element boundaries.

In view of this, it has been found necessary to include the components

of the velocity as well as the pressure fields as primary nodal

unknowns. This procedure has the advantage that the pressure and the

velocity boundary conditions may be readily incorporated into the

matrix equations. Accordingly, to insure an accurate velocity field

in the mixed approach, the nodal unknowns were assumed to be tern-

per ature T, the velocity components u and w, and the



pressure P which are expressed as

M
t

A T
T T = ) N.T.(t),La''

i= 1

=

M
A \TP P = ) N.P.(t)Ld''

1=1

w = N.w.(t)

Here, the set of basis functions N. satisfy the essential boundary

conditions of the partial differential equations and are assumed to be

linearly independent. Moreover, T.(t), u.(t), w.(t), and P.(t)

are unknown time dependent coefficients and M and M are the

number of total temperature respectively the total flow nodes. In

our mixed domains, Mt is much larger than M. In order to

allow the parameters Pf a, 3, I.L, and K to vary linearly in

an element, we can use the functional representation for a parameter

function f

M

f(t, x, z) L.f.(t)

Here again the parameters are function of time. The element equa-

tions were obtained by using the Galerkin residual procedure as in

Chapter III. Only the relevant details are presented here. In this

approach, the terms in equation (4. 1) can be expanded such that



SD
NTNkda{u} = - K

aNT
Nkda{P}0x

5D
NTNkda{w}

-5
K

aNT
Nd{P} + KPfgNda

D az

and combined in a matrix form

[AJ{v} + [B]{P} = {F}

where {v}, {P}, and {F} are arrays of order 2M defined by

(U) SD(

°

{v} , {P} , {F} = da
P KPfgN)

T
1da,[A]

0

D 0 1NNkJ

rKaNN 0

[B]=51
8x k

0 K3 kJ

Substituting (4. 1) into (4. 2) to eliminate V, we find

PfK
-v [- (vP+Pf)] +4Pfa att

PfK
2

PfK
fg)

pfKg 8p
= v P v() (-vP+p + 4p a-

f at

(4. 5)



Applying Green's theorem to the Laplacian operator in (4. 3), (4.4)

and (4. 5) results in a system of matrix equations of the form

where

[A] f {x} + [B]{x} = {F}

{x} = {p}

[Al S Pfm)NNkda
D

aNT &Nk aNT aNk
[B]

=5
[PfK ax ax

+
az

D

-s (K-] 2 a
PfK aNT

D
ax

+[ 8z )Nkda

ap
{F} $

PfK A

= - gpfL ()N da +5 )N Nkda +$LPK -;
D

z k D

in (4. 5),

{} = {T}

[A]

5D
l)pC]NTNkda

k
aNTk 8NT&Nk

am x az az

+ls:D
pC(u +w )N,daf f ax K
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in(4.3), and

{x} = {T}

[A]
D(rock)

[B]
=9D(roc k)

{F} =9C (rock)

(pC)rock .NTNkda

aNT aNk
+ )da(k)rock ( ax 8x az az

A

(k)rock -'N dsan k

in (4.4). Here, C is the boundary of the domain for each equation
A A.

and aP/an, 8T Ian are derivatives along the outward normal to C.

The expressions F in (4. 3) and (4. 4) are assumed to cancel

mutually at the boundary between the porous media and the adjacent

rock. Physically, we assume that the heat flow is continuous at that

boundary, that is, there is no accumulation of heat.

Details of Solution Algorithm

In general, an iterative approach is required to obtain a satis-

factory solution to the above four coupled basic equations (4. 1), (4. 2),



(4.3) and (4. 4). It is often advantageous to choose different time

steps in solving the flow and energy equations. A time-lagged formu-

lation procedure can allow considerable economy in the computation

and still provide acceptable results (Sorey, 1976; Lippmann et al.,

1976). Using this method the interrelated equations (4.3), (4. 4) and

(4. 5) are solved alternatively by interlacing solutions in time. The

flow equations are solved for P and at a time t+(t/2) by

using data on T /at and the fluid properties at t. Then the energy

equations are used to obtain T at time t+t with the help of data

on , aP/at and the fluid properties at t+(t/2). The values of

the temperature and pressure dependent properties of the fluid are

subsequently revised and then used to adjust the partial differential

equations. From the physical point of view, the variation of the

pressure in the flow equations is much faster than the variation of the

temperature in energy equations. It is therefore justified to use much

smaller time steps in the flow cycles than in the energy cycles. This

technique which is illustrated in Figure 29 is essentially similar to

the one suggested by Lippman et al. (1977). Our program CONVEC

(with an example as illustration, is shown in Appendix D) has been

developed to carry out these computations. To assure the convergence

of the final steady state solutions, and to determine suitable time

steps, several experiments were conducted with the proper boundary

conditions and parameters. Since our model is designed to treat



F3

evolutionary or transient problems, an arbitrary set of initial

conditions was assumed and the procedure was carried out through

time until a steady state was achieved. Our experience is that shorter

time steps in the energy equations require fewer time steps overall

in the flow equations and result in more accurate solutions. Longer

time steps in the energy equations require more time steps overall

in the flow equations, hut the total computer time required to reach a

steady state is shortened. Short time steps are required in the

energy equation to preserve accuracy and stability at high Rayleigh

numbers.

FLOW CYCLES

ENERGY CYCLES

Figure Z9. Marching scheme of interlacing energy and flow equations.

To illustrate the evolutionary behavior of models with heat

conducting boundary walls, a number of numerical examples are pre

sented below. Except for individually specified cases, the material

properties assumed in all examples are listed in Table 6.



Table 6. Material properties used in evolutionary or transient
models.

Property

Density of solid phase

Porosity

Thermal conductivity of solid phase

Heat capacity of solid phase

Compressibility of porous media

Thermal conductivity of fluid phase

Z.7x (kg/rn3)

0. 1

2.3 (joule/m,s, °C)

9.3 x 102 (joule/kg, °C)
-10 22. 5 x 10 (m /newton)

0.65 (joule/rn, s, °C)

Vertical Porous Slabs with Impermeable
Caprock and Walls

Figure 30 shows the specific dimensions, boundary conditions,

and initial temperature distribution chosen for the transient system

model. The permeable slab C could represent a bounded frac-

tured zone with two impermeable but thermally conducting walls. No

internal heat sources are assumed for the model and the temperature

of the lower boundary has been assumed on the basis of a regional

temperature gradient of 30°C/km. The results of the stability analy-

sis for the case of Hx/Hz 0.25 and an unperturbed gradient

D = 30°C /km, illustrated in Figure 18 show that a model of this

geometry with perfectly conducting walls and a constant permeability

has a critical Rayleigh number of 60. 15.
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Figure 30. Geometry, initial temperature, and boundary conditions
of the transient system model.

For the present model, the fluid parameters are calculated on

the basis of empirical equations (e.g. Meyer et al., 1968; Mercer

et al., 1975) or with the help of our subprograms INIT and DENPRO

(Appendix D). The substituting of these parameters into the Rayleigh
-10 2

number gives a corresponding permeability of K = 1. 19 x 10 cm

(11.9 millidarcy).

For a rapid approach to steady state in this example, the initial

disturbance was assumed on the basis of the results obtained from the

stability analysis in Chapter III. Other disturbances were also con-

sidered. In all cases, the steady state solutions were correctly found

to be independent of the disturbance initiating the flow. The run time

required to reach steady state decreases as the Rayleigh number

increases, and reaches a maximum at the critical Rayleigh number.



Temperature and Temperature Gradients

A series of computational operations for different Rayleigh

numbers have been carried out for the above model. Assuming an

initial unperturbed temperature gradient of D 30°C 1km and

computationaily convenient pressure field perturbations, the temporal

development of the temperature field along the central line of the

convective channel has been investigated. The results are shown in

Figure 3 1 and the final steady state isotherms are shown in

Figure 32.

Figure 3 1 indicates that the time to reach a steady state

decreases with increasing Rayleigh number. Systems that are almost

critical require the maximum relaxation time. The final steady state

solution is therefore adequate to describe convection in systems that

are older than the relaxation time. For the system at hand a relaxa-

tion time of about 7000 years is obtained. As expected, the near-

surface temperature gradients in the caprock are quite high whereas

the temperature gradients in the convective zone are low (Figure 31).

The final steady state temperature gradient in the convective channel

depends on the initial Rayleigh number. Higher Rayleigh numbers

result in lower steady state gradients. The graphs in Figure 31 show

that the steady state temperature field is lower over a considerable

part of the convecting cell. We can now define a generalized Rayleigh
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Figure 31. Temperature development at the center plane of the
system shown in Figure 30.

Dc = approximate temperature gradient at the center
plane of the convective zone.
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number on the basis of the constant gradient. In the case in Figure

3l-a we obtain a value of the generalized number of 28. 07. It is of

interest to point out that the system is still convecting at this low

number although the initial critical Rayleigh number was 60. 15. This

can be attributed to the different type of thermal boundary conditions

(Figure 32). The isotherms across the boundary represent a thermal

condition which lies in between the cases with fully conducting and

fully insulated boundaries.

Heat Flow Calculation

The computation of the surface heat flow is of considerable

interest for the above model. Here we face some difficulties because

of discontinuities in the derivatives across the element boundaries.

Various techniques can be used to obtain the gradient at node points.

One procedure is to employ conjugate approximation theory (Oden and

Brauchli, 1971). However, although work is being carried out in this

field (Fischer, 1976; Larock and Herrmann, 1977) there is no definite

averaging rule available for computation. An alternative approach is

to use higher order interpolations over the elements, because differ-

entiation will then yield gradients that are functions of the coordi-

nates. The difficulties involved have, however, not often been

emphasized sufficiently. For example, suppose f(x) is given by

discrete values at four points. A polynomial of third degree passing
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through the four discrete points and approximating the function f(x)

in the interval may be written

4
A

f(x) 1(x) = N.(x)f.
1 1

i= 1

The approximation gives exact values at the points x0 to x3

(Figure 33). But the derivative of (x) may approximate the

derivative of 1(x) quite poorly.

K)

x

Figure 33. Given function 1(x) and its approximate representation
1(x) N.f..

11

To obtain the heat flow at the surface it is therefore better to

apply a finite difference technique which acts as a smoothing devise.

Using this method, our results for the surface gradients in Figure 3 1
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are Ds = 46. 5, 56. 5, 72. 0, and 90. 6°C 1km for the cases (a) to (d)

respectively. The ratio of the calculated surface heat flow to the heat

flow with no convection is shown in Figure 34. Clearly, the ratio

increases with the Rayleigh number. On the other hand, the ratio of

the maximums to minimums decreases as the Rayleigh number

increases and in transitions from one mode to the other, the ratio is

further reduced (Figure 34-d to 34-e, Figure 34-f to 34-g).

The results in Figure 34 correspond to the cases of one, two

and three convection cells. With practical applications in mind

further runs were made over a range of Rayleigh numbers with van-

ous thicknesses of caprock. The resulting surface temperature

gradients and temperatures at the top of convective zones, are shown

in Figure 35. The data indicate a useful relation between the surface

gradient and the Rayleigh number which may in cases possibly be

applied to estimate the Rayleigh number from observational surface

temperature and heat flow data.
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Figure 34. Ratio of the computed surface heat flow to the non-
convective heat flow for the model in Figure 30 with
an impermeable cap rock.
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VII. CONCLUDING REMARKS ON APPLICATIONS

The purpose of the present project has been to develop compu-

tational codes and techniques to be applied in the numerical analysis

of thermal convection in the natural environment, in particular, in

geothermal areas. This involves numerical data on critical field

functions and evolutionary processes at various types of field and

boundary conditions. Powerful methods for this purpose have been

derived and a number of results that have been displayed indicate the

capabilities of the techniques.

On the other hand, the analysis of actual field cases was not

contemplated. This would constitute a separate task that requires a

considerable amount of work. However, to provide a more satis-

factory conclusion to our theoretical efforts, we will in the following

few paragraphs very briefly outline two cases of application of our

results that appear to be of interest for the geothermal sciences.

Thermal Convection in the Imperial Valley, California

For our first case, we will turn to the Imperial Valley in

California where there is a considerable amount of geothermal

activity that has received attention in the literature. The East Mesa

geothermal field that is of particular interest has been described by

Swanberg (1976) and further data on conditions in the region and



mainly on the Salton Sea geothermal field are given by Schroeder

(1976).

The sketch in Figure 36 shows the location of the hot spots or

geothermal areas in the Imperial Valley north of the international

border. The most relevant characteristics of the areas is that they

are embedded in the sediments of the Salton Trough which is a struc

tural depression that forms the northern extension of the Gulf of

California and the East Pacific Rise. According to Biehler et al.

(1964), the maximum thickness of the sediments is about 6.4 km.

The sediments are generally believed to be of the type where Darcy's

law can be applied to fluid movements.

The surface heat flow contours of the East Mesa field are

shown in Figure 37 (Swanberg, 1976) and a few temperature-depth

profiles are given in Figure 38. Over a considerable section of the

anomaly the temperature at the depth of 2 km is 180°C to 200°C.

There is strong evidence that the geothermal "hot spots" in the

Imperial Valley are caused by local magmatic intrusions into the

basement below the floor of the Imperial Trough. Heat conducted

from the intrusive bodies raises the temperature in the overlying

sediments leading to convection in the entire vertical section above

the hot bodies. In other words, the temperature flow-field is super-

critical, that is, the Rayleigh number is above the critical value.

We will apply this picture to the East Mesa geothermal field and
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estimate the minimum permeability profile that will lead to a critical

Rayleigh number when we assume a temperature of, for example,

280°C at the top of the basement. This is a plausible temperature

at the top of a solidified silicic intrusion.

The heat flow contours in Figure 37 indicate quite strongly that

the East Mesa field is controlled by the Combs-Hadley fault line and

that there is convection in an elongated vertical slab along the fault.

For the present purpose we assume that the slab has a thickness of

about 1. 25 km and that it bottoms out at 5 km such that the aspect

ratio is 1/4. Moreover, we assume that the quadratic permeability

profile (c) in Figure 23 can be taken to represent the conditions in

the vertical sedimentary column.

On the basis of these assumptions, the data in Figure 27 are

relevant to the present problem. The critical Rayleigh number is

therefore 156 yielding an estimate of the minimum value of the sur-

face permeability of 292 millidarcy. Based on the form assumed for

the permeability profile the permeability at the bottom of the slab is

then estimated at 29 millidarcy. The latter value appears somewhat

high, but not implausible.

The Cumali Geothermal System in Turkey

Reviewing the geothermal literature, we find that the Cumali

geothermal field in Turkey present a favorable setting where the
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application of our above results is quite straightforward. This case

has the additional advantage that a considerable number of boreholes

have been drilled in the geothermal anomaly and that therefore good

shallow temperature data are available. The area has been described

by E'der and imek (1976).

A geolocal section through the area is given in Figure 39 which

shows the general block structure and the location of some of the

boreholes. Temperature data from some of the boreholes are shown

in Figure 40.

Assuming that our results with regard to thermal convection in

tilted slabs with heat conducting boundary walls (page 42) are applica-

ble to the Cumali system, we have carried out a numerical analysis

of the temperature field in the main convective block there. Omitting

details of the calculation, we commence by deriving the temperature

field corresponding to a few values of the Rayleigh number. Com-

paring the results with the actual borehole temperature data, we then

select the most probable Rayleigh number and use this number to

carry out our complete numerical computation of the temperature

field.

The various temperature profiles corresponding to Rayleigh

numbers of 40 to 60 are shown in Figure 40. The final temperature

field results that are obtained on the basis of a Rayleigh number of

Ra 50. 4 and a permeability of 10 millidarcy are shown in Figure

41. The end results appear quite plausible.
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Figure 39. Geological crossection of Cumali geothermal field (only relevant details are por-
trayed from E9der and imek, 1975, Figure 6, page 354).
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APPENDIX A

Imposed Boundary Conditions Due to the Elimination
of Velocity u

To eliminate the velocity u by the mainpulation of equations

(3. 4), (3. 5), and (3. 6) resulting in equation (3. 9), the natural

boundary condition of u has to be incorporated with (3.7) and (3. 9).

Referring to the geometric configuration in Figure 5 for a porous

slab with a dip angle c, the boundary condition of u at wall 1

and 2 is

u-wCot4. (A.!)

Where u and w are the horizontal and the vertical component of

the velocity. Eliminating pressure p from (3. 5) and (3. 6), then

making use of (3.5) we have

ae au 3

K gpf U +
K

- u
K

= o (A. 2)

At the boundary walls 1 and 2, (A. 1) is substituted into (A. 2)

apgK30 3w Kw )f -Cot4 Cot4a(K +g13PfwCot
.L 3x 3z

The boundary condition can be reduced to dimensionless x0, z0, Oo,

w0 and by the substitutions as in Chapter III,
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APPENDIX B

Thermodynamic Properties of Water

Convection of water in geothermal reservoirs and other struc-

tures often involves temperatures as high as 350°C and pressures of

the order of 500 bars. Kassoy and Zebib (1975), and Straus and

Schubert (1977) have emphasized that the assumption of constant fluid

parameters cannot be upheld under such conditions. In this Appendix

we discuss briefly the effects of temperature and pressure on the

properties of liquid water.

cosit

Although viscosity is both temperature and pressure dependent,

it varies more strongly with temperature than it does with pressure.

The following empirical equation for the viscosity has been suggested

by Mercer et al. (1975),

= 538 + 380A Z6AZ

A = (T-150)/100

where T is in °C and 1' is in gm/cm, sec. This equation is 3%

in error over the range T = 0°C to 300°C. In this range, water

viscosity decreases by an order of magnitude between 25°C and 300°C.

The effect is particularly important because it enhances convective
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instability due to the reduction of the dissipative effects of viscosity.

Figure 42-a gives data on the viscosity of water as a function of depth

and the temperature gradient.

Density Thermal Expansivity, Compressibility,
Specific Heat and Adiabatic Gradient

The density of water decreases with temperature due to thermal

expansion and increases with pressure due to compression. Several

empirical equations are available for the density. A detailed discus-

sion is given by Meyer et al. (1968) and Kinan (1968).

Figure 42-b to 42-f give data on the density, thermal expansiv-

ity, compressibility, specific heat and adiabatic gradient of water as

a function of depth and the temperature gradient.
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dynamic viscosity; p density; a thermal expan-
sivity; 1 = compressibility; C = specific heat at con-
stant pressure; g gravity; T = temperature.
The subscript s refers to values at the surface.
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APPENDIX C

Flow Charts and Program Listings for the Stability Ana1is

THE OVERALL PROGRAM LOGIC

START

RAYLEI
Link BAFORM
and ORGAN

Call BAFORM
Form matrix equations

Call ORGAN
Form a matrix [A] {DF '[C][AF 1[B],
solve eigenvaiues and eigenvectors for [A]

Print resdts
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izo

1

Select boundary conditions, Boussinesq or non-
Boussinesq approximation, permeability func
tions, temperature gradient, Hx Hz, dip angle
etc.

Call GRID
Generate quadratic element data,
locate the node numbers, subdivide
the region into elements

Call HAMER
Given Hammer 's formula for
numerical integration

'Boussinesq

approximation,>H
Call EFGHI
Read coefficients of E(z),
F(z), G(z), H(z), 1(z)

Yes

Compute element matrices by using Hammer's
formula, function BAZ and function DXZZ
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Add element matrices
to global matrices

AreNo

assembled?
all elements

Yes

Modify system equations to account for
boundary conditions

Save information of total nodes, band
width, boundary points and all four
global matrices on disk file TAPE 2



122

Call READ
Obtain matrices [A], [B], [C],

ED] from previous saved file
TAPE 2

Call LINV iF, Call MULTI
For matrix inversion and matrix multi-
plication until
[Al = [D1 '{C][A] '[B] if formed

Call EIGRF
Calculate eigenvaiues and
e i g eflye c to r 5
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Definitions of Important Symbols and Explanations of
Program Listings

The following program names appear in the order in which they

are called. Parameters will not be defined if already defined in the

previous programs unless they need to be redefined. Numbers in

parentheses represent the corresponding commentary locations in the

original program listings.

Main program RAYLEI
Function: link subroutines BAFORM and ORGAN, solve eigenvaiues

and eigenvectors for the onset of natural convection in a
porous slab with various conditions.

(1) KNEWI repeat the calculations of critical
Rayleigh number with different conditions.

KNEWU end the execution of all programs.

Subroutine BAFORM
Function: form stiffness matrices [A], [B], [CL [Dl in band model.

AR area of an element.

ZN(i), WO(i) coefficients and weights respectively of Hammer ts
formula for l-D numerical integration (have not
been used in the current programs).

ZS(i,j),W(i) same as defined above except for 2-D.

PQR(i) integral stations.

NG(i) global node numbers.

XO(i), ZO(i),
X(i, j), Z(i, j) coordinates.

NETR(i) indexes of the most right elements.
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NETL(i) indexes of the most left elements.

Y(i, j) global indexes of the 3 vertexes of the elements.

XC(i, j), ZC(i, j) global coordinates of the 3 vertexes of the ele-
me nt s.

NT(i), NW(i) global indexes of the boundary nodes for the tem-
peratures and the vertical velocities respectively.

A(i,j), B(i,j),
C(i,j), D(i,j) matrices of [A], [B], [C] and [ij] respectively.

E(i), F(i), G(i),
H(i), RI(i) for coefficients of E(z), F(z), G(z), H(z) and 1(z)

respectively at 3 vertexes of an element, see also
equations (3. 12) to (3. 15) and Appendix A.

(1) IMP1 for permeable top.

IMP 1 for impermeable top.

(2) ITP1 for non-Boussinesq approximation.

ITP1 for Boussinesq approximation.

(3) options for permeability functions and temperature
gradients.

IPER1,2,3,4 corresponding to permeability
functions of (a), (b), (c), (d) in Table 5 respec-
tively.

GRADtemperature gradient.

(4) Hz=depth; Hxhorizontal dimensions; ZTAdip
angle.

(5) see subroutine GRID.

1B2 maximum row dimension of a matrix.

(6) see subroutine HAMER.

(7) see subroutine EFGHI.
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(8) see function DXZ2.

(9) see function BAZ.

(10) save NOD, 1B2, NBCT, NBCW, NT(i), NW(i) and
matrices [A], [B], [C], ID] in disk file TAPE2.

Function BAZ
Function: represent quadratic shape functions N (i1, 2.. .6) by

area coordinate L (i1, 2,3) at stations P, Q, R.

lEA index of shape function N, (e.g. 1EA5 for N5).

P. Q, R stations for numerical integration.

Function DXZZ
Function: form derivatives of quadratic shape function

(i1, 2. . .6) in terms of area coordinate L1 (i1, 2,3) at
stations P,Q,R.

ND ND1 for 8N. 18x; ND- 1 for N. /8z.
1 1

Subroutine EFGHI
Function: obtain values of coefficients E(z), F(z), G(z), H(z) and

1(z) at each node.

KLOP number of intervals in Hz to approximate E(z),
F(z), G(z), H(z) and 1(z).

(1) file TAPE 16 has been derived separately by pro-
gram EFGH, see program EFGH for details.

Subroutine HAMEB.
Function: provide stations and weights for numerical integrations.

AN(i), WO(i) for 1-D element.

ZS(i), W(i) for triangular element.
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Subroutine GRID
Function: automatically generates element data for the system.

Y(i, j) global indexes for vertexes of triangular elements.

XC(i, 5), ZC(i, j) global coordinates for vertexes of triangular
e lement 5.

NETR(k), NETL(K) indexes of the most right and most left element
respectively.

Subroutine ORGAN -1 -
Function: forms a matrix [A] = [Di [ci [A]

1 [B] and solve its
eigenvalues and eigenvectors. [A], [B], [C] and [D]
are defined in Chapter III.

(1) 130B1 for eigenvalues and eigenvectors.

LTOB1 for eigenvalues only.

(2) see subroutine READ.

(3) LINV1F is one of the IMSL library subroutines in
CYBER 7300 system for matrix inversion, for
details see IMSL manual.

(4) see subroutine MULTI.

(5) EIGRF is one of the IMSL library subroutines in
CYBER 7300 system for eigenvalue and eigenvec-
tar solutions, for details see IMSL manual. Simi.-
lar routines can be found in Matrix Eigensystem
Routines - EISPAC guide (Smith et al. , 1974). 2

(6) MWsequence index of the maximum eigenvalue.
STRCcriticai Rayleigh number.

(7) IVEL1 for velocity calculations otherwise skipped.

2B. T. Smith and others, Matrix Eigensystem Routines -
EISPACK Guide, 551 pp., Springer-Verlag, Berlin, 1974.
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Subroutine READ
Function: read in from file TAPEZ.

IRD =1 for matrix [A].

Z for matrix [B].

3 for matrix [ci.

4 for matrix [D].

M, N column and row dimensions respectively of the
matrix to be read in.

Subroutine MULTI
Function: multiplication of two matrices [A] and [B] i.e.

[A]=[A] [B].

MV, NV column dimensions of [A] and [B] respectively.

MH,NH row dimensions of [A] and [B] respectively.

Main program EFGH
Function: prepare data for functional coefficients E(z), F(z), G(z),

H(z), and 1(z) in program RAY LEI.

E(i), F(i), G(i),
H(i), RI(i) magnitude of E(z), F(z), G(z), H(z) and 1(z) at

z(i)x(DEPTH)/(KLOP- 1).

Subroutine PROPT
Function: water properties of Pf a, 3, Cf and L are derived from

the empirical equations given by Meyer et al. (1968) and
Mercer et al. (1975) if temperature and pressure are
known.

Ti temperature (°c).

P1 pressure (bar),

(1) ROPf AP=a, BA3, CPCf UEL,
PERperme ability.
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RAYLEI 3' 2'79 17 L 13 PACE

I; PROCRAN RaYLEICINPUT.OUTPUT1aPE1TAPE2.TAPE3TAPETAPE16)
MAIN PROGRAM TO LINK SIJ8ROUTINES BAFORM £ ORGAN

3;C TO SOLVE CRITICAL RAYLEIGH NUMBERS FOR THE ONSET OF NATURAL

4;C CONVECTION IN A SLAB
5..0 ***VRITTEH BY C. T. SHYO*** JAN. 19?Ba**

SC
7;C "TO FORM A BAND MATRIX FOR THE SYS?EN-"

B; 18 CALL BAFORM
9;C ---TO SOLVE CRITICAL RAYLEIGH HUMBERS(RAC)---

10, CALL ORGAN
11, WRITE 18
12; 18 FORMAT(1XSOLVING RAC FOR DIFFERENT CONDITIONS? (YESI))

13; READ 19KP4EW (

14; 19 FORNAT(I1)
15; ZF(KNEV.NE.1>GO 70 20
16; GO TO lB
1?; 20 CONTINUE
18; END
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BAFORP 3' 2/79 17. 8.39 PAGE

1; SUBROUTINE BAFORN
2.0 CONVECTION IN A POROUS NEDIUN OF FAULT ZONES

3; CONNON AR. ZN(?). ZS(7, 3), W(7). VO(?),PQR(4)

COMMON NG(6).XO(5),ZO(5).X(Z.5).Z(5).HETR(6)..HETL(6)
5; COMMON Y(36.3).XC(36.3).ZC(36.3).HT(38).NW(38)
6; COMMON a(05.53),8(85.53).C85.53.D85.53)
7, COMMON E(3).F(3).G(3),H(3).RI (3)

B; INTEGER V
9; C

10; WRITE 78
11; 78 FORNAT(1X.UPERMEABLE TOPI(YESaI))

12. READ 29. i ( i )

13; WRiTE 29. IMP
14; WRITE 68
15; FORNAT(1X,CONSIDERING TENPERAIURE&PRESSURE EFFECTS?(VE51)')

16; READ 29. lIP < ( 2 )
1?; 29 FORMAT(I1)
18; WRITE 29. lIP
19. XF(ITP.NE.1)GO TO 335
20; WRITE 58
21; 58 FORMATPERM. CASESR? (1,2.3.09 4),GRADIEWT(OC,KM)*?(F5.8))

22; READ 59. IPER. GRAD < ( 3 )

23; 59 FORMAT(I1,FZ.S)
24; WRITE 59. IPER. GRAD

25; 335 WRITE LB
26; 18 FORfiAI(1X.HZ,HX(KM).D1P(DEC.)? (3F5.8))

27; READ 19,HZ.HX,ZTA < (4
28; 19 FORNAT(3F5.0)
29, WRITE 5?. ITP.HZ.HX.ZTA
30; ZTZIA188.s3. 1415926536
31; 57 FORMAT(1X,ITPs',Il.1X,H2,F6.3,1X.HX,F6.3,ZTR,F6.3)
32; NXHZ*NX'HZ
33; CALL GRID(!MP. lCD. IV. NXHZ. ZTA.NEI. 18. HOD. NOd, NBCW) 4( 5)
34; C

35, CALL NAMER ( ( 6 )
36; 182z2*181
37. DO 595 juj, NOD
38; DO 595 Jal, 182
39; 505 A(I. J)aB( I. ,J)2C( I. J)afl( I. ..ie.

40; KNExI
41; DO 1880 KE1 NET
42; IZAI
43; DO 73 11.3
44; NC(t)xY(KE, 1)
45; XO(l)XCCKE.I)
46; ZO(I)ZC(KE,I)
4?; IF(IIP.HE.l)GO TO 73

48; ZHEWxZO(I)
49. CALL EPGHI(GRAD. IPER. ZNEW. HZ. EE. FE. CE. HE. RIE. KNE) ( 7

50; KMEIO
51; ECI)'EE
52; P(I).FE
53; GCI)GE
54; N(1>RHE
55; R1(I)xRIE
56; 73 CONTINUE
5?;C 28 FORNATC1X,12.12.t2,ZX.F9.6,F9.6.F9.6.F9.6,F9.6,F9.6)
58..0 CALCULATING THE ELEMENT STIFFNESS MATRIX IN ONE ELEMENT
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BAFORN 3' 2'?9 17 839 PACE 2

59. X0<4)rXO(1)
68; XO(5)X0(2)
61,
62; Z005)20(2)
63; t4G(4)(KCC1 )+NC(2) )/2
64; 14CC5)a(NCC2)+HC(3))'2
65; NC(6)t(NGCI>+HCC3))/2
66; AR(20(2)*X0(3)+2O(1)*X0C2)+XO(1>*Z0C3)XOCI)*Z0C2>X0C2)*70C3)
6?. e-X0C3)s2OC1))'2.
68; AP5ABSCAR)
69; DO 10 11.5
78; DO 18 J1.5
71; XCI. J)X0C1 )X0(J)
72; 18 ZCI.J)20C1)-ZOCJ)
73; D4ACOZCI.3)*XC2,3)-2C2..3)SX(1,3)
74; IFCZTA.EQ.98.)CO TO 32
75; DO 55 INCI,6
76, IF(KE.E0.NETL(INC))IZAZ2
7?; 55 IF(KEEC.t4ETRCIHC))IZAZ3
78; 32 DO 25 11,6
79. DC iS J1,6
80; SM1=SM2S3S$4Sfl5R8
81; DC 16 K1.?
82. PZS(K. 1)
83; 0ZSCK.2)
84; RaZSCK3)
85; STP10.
86; STP2uO.
8?; STP3I.
88. STP41.
89;
98; IF(ITP.HE.1)COTO 17
91; $Tp1-P.EC1).o*E(2)+RaEC3)
92; S1P2.P*f( 1)+Q*F(2)+R*F(3)
93; STP3P*C(I)4Q*G(2)+R*CC3)
94; STP4.P*H( 1)+0*H(2)+R*H(3)
95; STPSP*R1 (j)+Q*RI(2)+R*RI(3)
96; 1? SII1.DXZZ(1,I.P,0,R)*DXZ2(1.J,P,9.R)+DXZ2tI,I,P,Q,R)
97. 0.DXZ2C-1.J.P.0.R) (8)
98; SN2-STPI*B42(I,P'Q,R)*DXZ2C1,J,P.Q,R)
99; e-STP2*8A2(I,P,C,R)*BA2<J,P,Q,R) (

188; SN1 S1+ (S$1+S)42 )*W CK)
101; Sl2STP3sDXZ2(1,I,P,Q,R)*DXZ2C1,J,P,Q,R)*U(K)+SN2
102; S3sSTp48A2(I,p,0,R)*BA2(J,P,g,R)*(J(W)+SI3
103k SM4SP4+SH1*I(K>
184; CC TO(16. 26. 2?). IZA
185. 26 SL1S0T(XOC1 )*.2+20(1)**2)
186; SL2SQRTCXO(2)**2+20C2)**2)
18?; SLDSLZ-SLI
188; GO TO 24
109; 27 SL1SQRT(CXO(I )-HXHZ)**2+ZOC1 )**2)
118; SL2SOPTC CXO(3 )-NXHZ) **2+ZO( 3 )**2)
111; SLDSL1-SL2
112; 24 SLPSLI.SL2
113; SKG. 5.(St.P.SLD*ZNCK))
114; SLIz(SLD-SK)'SLII
115; SLJSLIz1.-SLI
116. GO TO(36.36.3?),IZA
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BAFORPI 31 2/79 1? 839 PACE 3

11?; 36 SLK=0.
118; 00 70 33
119; 3? SL8.
128; 33 SPI5zSPI5+STP5*BA2( $11. SLJ.SLK).8A2(I.SLI.SLJ. SLK)*O(K)
121; 16 CONTINuE
122; IGzPIG(1)

123; JGNG(J)
124; JBxJG-1G+IB
125; ACIG.JBSPI1aDJACO+RCIC.J&).8.5,SLD*Sfl5.(-1).*(IZA-1)aCOS(2T)
126; 8(IG.JB)S82*D4ACO4BClG.J8)
12?; C(lC,J6)SPI3SDJRCO+C(ZG..)B)
12$; D(1G.4B)SN4.DJACO+D(IG.J8)
129; 15 COHTZMUE
138; 25 CONTINUE
131; 1088 CONTINUE
132;C STIFHESS MATRIX IS FORMED WITHOUT CONCERNING D.C. ?E1

133..0 **NOt TO INTRODUCE THE DIRICHLET 8.C.***
134;C **B.C. FOR TEMPERATURE!*
135; DC 105 I1.t4BCT
136; DO 115 IOzl.t4OD
137; JNNT(I)-IO+IB
138; IF(JH.0T.I22.OR.JN.LE.$>GO TO 115

139; (I.JN)g9(1O,JN)x.23456?2Ø
148; 115 CONTINUE
141; DO 116 JH.1.tB2
142; 116 C(HT(I). JN)zD(HT(I).4N)1. 23456?E28
143; 185 CONTINUE
144;C **.C. FOR VERTICAL VELOCITYS'
145; 282 DC 285 I*1N8C
146; DO 215 IO'I.NOD
14?; JNaN(I)-IO+I8
148; IF(JN.GT.182.ORJK.LE.0)CO TO 215
149; C(IO.4N)ZA(IO, .JH)s1.23456?E28
158. 215 CONTINUE
151. DO 216 JN*1.,182
153; 216 A(H(I). JN)B(NV(I).JH)s1. 23436?E28
153; 285 CONTINUE
154, WR1TEC2.23)NOD.J82,N8CT.N9C < (io

155; 23 FORPIAT(1X. 12. IX, 12. IX. 12. IX. 12)

136; DC 28 11.NBCT
15?; 28 VRITE(2.22)WT(I)
159; 22 FORPIAT(IX.12)
159; DO 21 IRI,$BCV
168; 21 WRITEC2.22)N(I)
161; DC 518 11.NOD
162; 90 518 41. 182
163; JOJ+I-IB
164; IF(JO.LE.0.OR.3O.CT.HOD)GO TO 510
165. SPI1ABS(A(I.J))+ABS(B(1.J))+ABS(C(I.J)>+RBS(D(I.J))
166; IF(SM1.E.4.1.23456?E28)GO TO 518
167. IF($M1.GT.1.OE-I2VRITE2.5281.J.AX.J..BI.J.CU..fl.D!.J
168; 518 CONTINUE
169;
178; SM1*$M2SM3S$4e.
171; VRITE(2.528)I..h'PI1.SR2.Sfl3.SM4
172; 528 FORMQT(1X.12.1X.12.3X.Et5.8,1X.E15.8.IX.E15.8,1X.E15.8
173; REVIND 2
174. RETURN
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*75; END
1?6;C
U?; FUNCTION 8A2(IBA,P,Q.R)
1?8;C BA2zSHAPE FUNCTIONS INTERNS OF AREA COORDINATES(PLI;OL2;RzL3)
179; COMMON AR.ZN(7). ZS(7. 3), V(7). WO(7).PQR(4)

188; PQR(1)aP
181. POR(2)Q
182; PQR(3).R
183; PQR(4)wP
184; !F(IBA.GT.3)G01028
185; 8A222..PQR(IBA)*POR(IBA)-PQR(IBA)
186; 00 TO 50
18?. 28 KNSIBA-3
188; 8A24..PQR(KH)*PQR(KN+1)
189; 50 RETURN
198; END
191;C
192; FUNCTION DXZ2(ND,N.P.Q.R)
193..0 DXZ2EDERIVATIOH OF THE SHAPE FUNCTION H WITH RESPECT TO

194;C X' OR 2 IN TERMS OF AREA COORDINATES
195;C NDaI FOR D(N)/DX; HDS-1 FOR D(N)/DZ
196; COMMON AR.ZN(?). ZS(?. 3). W(7). VO(?).PQR(4)
197; COMMON MG(6).XO(5).ZO(5).X(5.Z).Z(5.5).NEIR(6).HETL(6)
198; IF(AR.LE.1.BE-18.OR.AR.GT.1.8E5)WRITE 18.AR
199; 18 FORMAT(1X,AR.E12.5)
288; PQR(1)P
2e1; PQR(2)zQ
282; POR(3).R
203; POR(4)zP
284; IF(HD.EO.-1)GO TO *8
205; IF(N.LE.3)DXZ2(4.PQR(M)-1.>.Z(M+2.N+1)'(2.*AR)
286; KNaN-3
287; IF(M.GT.3)DX22a2.s(POR(KH+1)*Z(KH+2,KN+l)+POR(KH)SZcKH,KH+2)),AR
298; CO TO 58
209. 18 £F(fl.I.E3)DXZ2.(4.*PGR.fl)-1)*X(fl+.1.M+2)'(2..AR)
218; KNaIi-3

211; IF(N.GT.3)DXZ2Z2.*(PQR(KN+1)*X(KN+1,KH+2)+POR(KN)*X(KN+2,KH)),AR
212; 58 CONTINUE
213; RETURN
214; END
215; C
216; SUBROUTINE EFCHI (GRAD, IPER. ZNEW. HZ. LE. FE. CE. HE. RIE. KE)

217;C TO GENERATE COEFS. E.F.C.H.I FOR EACH ELEMENT
218; DIMENSION ZOLD(11),E(11),F(I1),G(11),H(11), RI(11)
219; IF(KE.GE.2)GO TO 52
228; XLOP11
221; READ(16. 19)D.KPER
222; 19 FORNAT(F5.2.IX..11)
223; 00 51 Nal.KLOP
224; 51 READ(16.18)E(K).F(K).G(K).H(K).RI(K) ( (i )
225; 18 FORMAT(1X.5(E12.5>)
226; IF(D.EQ.GRAD.AND.KPER.EO.IPER)G0 TO 52
22?; 52 ZOD5ZHEW*HZ
228; ZOL.D(1)8.
229; DO 18 I1.18
238; ZOLD(I+1).S.5*I
231; Zs(ZOD-ZOLD(I))*(ZOD-ZOLD(I,1))
232; IF(Z.LE.e.e)GO TO 28
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233; 19 CONTINUE
234; 29 ZPOT2OD-2OLD(I ))/(ZOLD(I+1 )-ZOLD(I))
235; EE*E(I )+(E( 1+1 )-E( I ))*ZPOT
236; FEF(I)+(F(I+1)F(Z ))*ZPOT
23?; CEG(1)+(C( I+l)-C( !))*POT
238; HEaHU)+(H(I+I )-H( I ))aZPOT
239; RIE.RI(I)4CRI(I+I)-RI(I))*ZPOT
249; RETURN
241; END
242;C
243; SUBROUTINE NAMER
244;C HAMMER'S FORMULA FOR NUMERICAL INTEGRATION IN ONED £ TRIANGULAR
245;C ELEMENT
246; COMMON AR,ZH(?),ZS(7.3),W(7);WO(?);POR(4)
24?, ZH(1)$.
248; ZH(2)=8. 4958451514
249. ZN(3).9. 7415311856
25$; ZN(4.$.94918?91234
251; 2N(5).-ZH(2)
252; 2N(6)-ZN(3)
253. ZH(7).-ZN(4)
254; VO(i)L8.41?9591836?
255; V0C2)aVO(5)aB.38183$$5B51
256; WO(3)WO(6)a9.2?9?8539t49
2!?; WO(4)aWO(7)8. 129484966169
258; S18.3333333333
259; S2$.?9?42699
269; S3a8.19128651
261; S48.B59?158?
262; S5*8.47814286
263; 28(1, 1)sZSC1. 2)ZS(1. 3).Sl
264; ZS(2,1)2S(3,2)ZS(4.3)S2
265; 2S(2,2)aZS(2.3)*ZS(3,1)ZS(3,3)aZS(4,1)aZ5(4..2)zS3
266; ZS(5..1)aZS(6.2)SZS(7,3)zS4
26?; ZS(S,2)RZS(5,3)IZS(6,1)ZZS(6,3)SZS(7,1)aZS(7,2)=S5
268. V(1)B.1125
269; W(2)V(3-4-e.86296959
278; W(5)aW(6).V(?).9. 86619798
271; RETURN
272; END
273; C
274; SUBROUTINE GRID(I$P.IGD. IV,HXNZ,ZTA.NET.I8,NOD,NBCT,HBCW)
2?5;C ---TO GENERATE ELEMENT DATA
276,C ---HXHZHX'HZ NETaTOIRL ELDNENTS. IBBAND WIDTH;
27?..0 "NODTOTRL NODES. NBCTTOTAL NODES AT B.C. FOR TEMPT.;
2?S;C ---NBCVTOTAI. NODES AT B.C. FOR VELOCITY V----
2?9;C ---INPUT IMP. ICD.HXHZ.NET---OUTPUTIV. IB.NOD..NBCT..NBCW---
289; COMMON AR,ZN(?). ZS(7. 3). W(7). WO(7).POR(4)
281; COMMON NG(6),XO(5),ZO(5).X(5,5),Z(5,5),NETR(6).NETL(s)
282; COMMON Y(36.3).XC(36. 3). ZC(36.3). NT(38),NU(30),NW(38)
283; INTEGER Y,HT.NW
284; ZT.ZTA'188. *3. 1415926536
285; WRITE 18
286; 18 FORMAT(IX.0R1)1,CRID2,CRID3 OR GRID4?(I1))
28?; READ 19 lCD
288; WRITE 19. lCD
289. 19 FORMAT(I1)
299; WRITE 29
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291; 28 FORMAT(lX.VERTICAL?(YES1))
292, READ 19. IV
293. WRITE 19. IV
294. WRITE 38
295. 38 FORMAT(ZX.'NO& MANY ELEMENTS? (12))
2964 READ 39. NET
29?; WRITE 39.NET
298. 39 FORMAT(12)
299;C
308; IBt1+(ICD-1)*8
381; NODNETs(18+8*IGL-8)/(4*ICD>+(2*ICD+l)
382; IF(IV-1)13. 12. 13
383; 12 NHXHZ/ICD
304; V.4, *IGDII4EI

305, CO TO 14
386; 13 N1.'ICD
30?; V.HXNZ.4*ICD,NET
308; 14 NEN.NET-(4.ZCD-1)
389; NEP.HET*2/(4.ICD>+1
319;
311; NI8
3I2 DO 210 I.1.NEN.MJP
313; NINII1
314; DO 21$ 41. lCD
315, I1'144*(Jl)
316; I$.(NI-1>*(2+8*IGD)
31?; Y(I1,1)Y(II+Z,I.1+2*(J-1)+IM
318; Y(I1,2)aY(Il+2.2)11+(1CD-1)*8+2*(J1)4IP1
319; Y(I1,3)(!1.1,2)Y(I1.2.1>aY(I1+3,2).?+4s(1GD-1)+2.(J-1)+IM
328; Y(I1+l.3).Y(11+3.l)s3.2*(J-1)*IM
321; Y(I1p2,3).Y(I1*3,3)a13+$.(ICD-1)+21(J-1)+IM
322; XCCI1,I>zXC(I1+l.Z)aXC(11.2).XC(I1+2,2)a(J-1)*M
323; XC(I1,3).XC(I1+1,2)*XC(Il+2,l).XC(l1+3.2).H*(J-1),8.SSH
324. XCCI1.1,3).XC(I143,l)aXC(I1+2..3)XC(I1+3,3).4*H
325; ZC(I1.1).ZC(I1+I.1)2CCI1+1.3)ZC(I1+31).(NI-1).V
326; ZC(I1,3).ZC(11+1,2)2CCI1+2.1)ZC(I1+3.2).(HI-1)*V+8.5.V
32?; ZC(jl,2)a2C(11+2,2).ZC(I1+2,3)ZC(Z1+3,3>.HI*V
320; 210 CONTINUE
329; IFCZTA.EO.90.)GO 10 212
338; DO 211 1.1 MET
331, DO 211 4r1.3
332; XCCL.J)ZC( I, J)'TAN(ZT)+XCCI. J)
333; 211 CONTINUE
334;C B.C. NODES FOR TEMPERATURE
335; 212 NBCT.2,NEP+2s(2*ICD-1)
336; DO 220 I1.NEP
33?; NT( I).1+C1-1)sC4*!CD+1)
338; 228 NT(NEP,I).HT(I)+2*ICD
339, ICF.2*ICD-1
348; DO 221 I1.ICF
341; NT(2*NEP+I)al'I
342; 221 NT(2sNEP,1GF,1sNOD-ICF,I-1
343; IF(IV.NE.1)CO TO 280
344;C B.C. NODES FOR VELOCITY W

345; NBCWa2*ICF+4
346; NNB.NBCW/2
347; IF(INP.EQ.1)GO TO 223
348; 00 222 I.1.NNB
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349; NV(I)z!
358; 222 NV(1+NN8>NOD-NNB+1
351; 00 10 226
352; 223 DO 225 I1.NNB
353; 225 NV(I)Zt4ODNNB+I
354, N8CHN8
355; 226 IF(ZTA.EQ.90. )GO 10 999
356; DO 58 I1,6
357; NETL(I),I+(I-1)*4*IGD
358. 58 HETR(I)ts4sIGD
359; GO TO 999
368; 280 IF(IMP.EQ.1)GO To 281
361; N0Ca2vNEP
362; DO 224 1a1.NEP
363; H(X )rl+( I-1)*(4*IGD+i)
364; 224 PIW(HEP+I)aNVCI)+2*IGD
365; GO 10 282
366; 281 DO 22? I1.NEP
36?; 22? HV( I )1+( I-1)*(4.IGD+I)+2*IGD
368; N8CaNEP
369; 202 DO 230 11..NET
378; DO 238 J1.3
371; XTKC(1.J)
372; XC(T.J)ZC(I.J)
373. 238 ZC(I..J)aIGD*H-XT
374, 999 RETURN
375; END

17r 8;39 PACE 7
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I; SUBROUTINE ORGAN
2; DIMENSION 8(89.89)
3. COMMON VEL(88.89). 2(89. 88).V(89). WK(168)
4; COMMON A(8e.89).F(98.89)..E(89)
5; COMPLEX ZN.Z.W.WK
6; EQUIVALENCE (Z.8)
7; DO 3 I'1.86
8, E(I)W(1)aWK(I)8.
9; DO 3 4.1.88
18; VEL(Z,J).A(I,J)B(I.4)F(I,J)Z(1,J)e.
11; 3 CONTINUE
12; DO 2 I81.16B
13. 2 WK(I)aB.
14.0 **TO FORM A MATRIX A1/D*C*(1/A)*B £ SOLVE ITS EIGENVALUES
15. WRITE 18
16. 18 FORN*T(1X.SOLVING FOR EXCEN VECTORS? (YES-1))
1?; READ 19. 1406 (
18; 19 FORMAT(11)
19. DO 5 It.88
29; E(I)8.
21. DO 5 4.1.89
22; 5 AC!. J).B( 1, J)aF(!, J).B.
23; CALL READ(1.MV..MH) (. ( 2
24; CALL LIHVIFCA.NV.8a.B.e..E.IER1) (
25; CALL READ(2..NV.NH)
26, DO lB It.8B (3
27; DO 1$ 4*,89
28; 5.8(1,4)
29; B(I.d).A(I.4)
38; 18 ACI.4)S
31; CALL MULTI(MV,NH.NV.NH) ( (4)
32. DO 28 1.1.88
33; DO 29 J1.88
34; VELC!,J)mR(I.J)
35; 29 8(1. 4)ACI, 4)
36; CALL READ(3.$CV.MCH)
37. CALL MULTICMCV.MCN.MV.HH)
38; DO 38 It.MCV
39; DO 39 J.t,$H
48, 38 F(1..J)A(IJ)
41; CALL READ(4.MDV.MDH)
42; CALL LXNVIF(A. MDV. 89.8. G.E. IERZ)
43; DC 35 11.8$
44; DO 35 4.1.99
45; ACI.J)8(I.4)
46; 35 8C1.J).F(IJ)
47; CALL MULTI(MDV.MDH.MCV.NH)
48; CALL EIGRF(A. MDV. 89. IJO8.W. 2.88. WK. IER3> (.

( )
49; sTe.
59; DO 52 I.I.MDY
51; IF(REAL(M(I)).LE.ST)GO 1052
52; IF(ABS(A!MAG(W(I))).GT.5.$E-18)CO 1052
53; STREAL(W(I))
54;
55; 52 CONTINUE
56; STI./ST
5?; WRITE 38.MV.ST ( (6)
58; ZN.Z(1.NW)
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59; 38 F0RflT(1X..t3.3X.RC.E14.7)
60; IF(IJOB.NE.1)CO TO 281
61; DO 53 I1.NDV.3
£2; III+1
63; I2I+2
64; 13143
65. 2(1. NW).Z(I.NW)'ZN
66; Z(I1.$V).Z(I1. NW)/ZN
67; ZCI2.NV)Z(I2.NW)/ZN
68; 53 WRITE 58.Z(I.PfV).Z(Il,NW)..2(12.PIW)
69; 58 FORNAT(3(E11.4.1X.E9.2))
79; 281 WRITE 28
71; 28 FORNAT(IX.FOR VELOCITY? (YES1)')
72; REID 19. IVEL ( ( 7)
73, IF(IYEL.HE.1)CO To 2999
74; DO 69 I1.V
75. WK(I).8.
?6; DO 61 J1.NH
77; 61 WK(I)-W(I)+VELCI. J)*Z(J.MW)
78; 68 WK(I)a-SORT(ST)*WK(I)
79; DO 63 I.1.NV.3
88; 11*1+1
81. 121+2
82; 63 WRITE 58.VK(I).VK(I1).WK(I2)
83; 00 64 K1,5
84; STI.'REAL(W(K))
85; URITE(5.38)K.ST
86; ZN.Z(1.K)
8?; DO 65 11.MDV
88; 65 Z(I,K).2(I,X)/ZN
89; WRITECZ.648)(2CI.K),Il,5)
99; WRITE(5.648)(Z(I,K).1s6,18)
91; WRITE(5.648)(Z(I.K),I-i1..15)
92; WRITE(5,648)(Z(I,K),1a16,28)
93; VRITE(5,648)(Z(I,K>.1a21,25)
94; VRITE(5.648)(Z(I.K),I26.39)
95; VRITE(5.648)(Z(I,K),I-31.35)
96. VRITE(5.648)Z(36.K)
9?; 648 FORNAT(1X. 5(E1 1. 4. IX, F9. 2. 1X)>
98; 64 CONTINUE
99; 2898 CONTINUE

198; REWIND 2
181; REWIND 3
192; REWIND S
193; REWIND 16
184; RETURN
105; END
186;C
197; SUBROUTINE NULTI(NV.NH.NV.HH)
188; CONNON A(88.80).8(88.89).F(88.89),E(80)
109;C S*(R*9), NH-NV
118; DO 19 11.NV
III. DO 11 4N.t.MH
112; 11 E(JN)A(I,JN)
113. 00 18 J.t.NH
114; (I,d)9.
115, DO IS K-1,NV
116; 19 A(I.J).A(I.J)+E(K)*B(K.4)
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11?..0 SEHD OF NULTIPLICATION*sa
118; DO 26 1iNY
119; E(1)e.
128; 50 28 J1HN
121; 28 8(1,J)$.
122, RETURN
L23 END
1241C
125; SUBROUTINE READ(IRDNK)
126; D!NENSION-NW(5S)NT(50).A8CD(4)
12?; CONNON A(8888)
128; 50 56 !'1..89
129, 00 59 .1.1.80
138; 58 A(14).S.
13i REWIND 2
132; READC228)NQD IBZ,P4BCT.MBCV
133; 28 FORPIATC1X, I2 IX, 12, 1X, 12. 1X. 12)

134; 1B.(182+i)'2
135. DO 18 11.H8CT
136. 10 READ(2.18)NT(I)
137, 18 FORPIAT(1X.I2)
138; DO 28 !.t.NBCW
139; 28 READ(2.18)NW(I)
14$;
141; DO 1980 IKk'l,1B$96
142; RERDC2.3S)I.JN.A8CD(i)ABCDC2).ABCD(3).A8CD(4)
143; 38 FORNAT(iX12.1X.I2.3XE15.8tX.E15.8.1X.E15.8.1X.E15.8)
144; IFCI.EO.e)CO TO 1882
145; IP(ABCD(IRD).EQ.1.23456?E20)GO io ieee

146; J1N+I-i8
147; ISJS9
148; CC TO (21.22.23. 24). IRS
149; 21 DO 39 K1.NBCW
156, 1F(I.GT.NW(K))IS1S+L
151; 39 IF(4.GT.NW(X))4SJS+1
152; 1.1-IS
153; J*J4S
154. A(I.J).RBCDCI)
155; IF(I.CT.M)NzI
156; IF(4.GT.N)N..J
157; GO TO 1890
158; 22 DC 31 K'1.NBCW
159. 31 IP(l.CT.NM(K>)1$X$+L
16$; 50 32 Ki.NBCT
i61; 32 IF(4.GT.NT(K))JS.JS+t
162; A(IIS.JJS)ABCD(2)
163; IF(I-IS.GT.M)M.I-IS
164; IF(J-JS.GT.H>NJ-4S
165 GO TO 1898
166; 23 DO 33 K1.N8CT
167; 33 IFCI.GT.NT(K))1S!S+1
168; DO 34 K.1.NBCW
169; 34 IF(J.GT.NW(K))JSJS+i
179; A(1-IS.J-JS)-ABCD(3)
171; IF(I-IS. CT. N)N.I-IS
172; IF(J-JS.GT.N)NJ-JS
173; GO TO 1000
174; 24 DO 35 K1..P4BCT
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175, IF( I. T. P11(K)) IS*IS4t

176, 35 IF(J.CT.NTCK))JSaJS.1
17?; A(I-1S.J-4$)zABCD(4)
178; IF(I-IS.CT.N)PI.I-IS
179; IF(J-JS.GT.N)N.4-JS
188; 1808 CONTINUE
t81 1081 REWIND 2
182; RETURN
183; END

3' 2/79 17t253 PACE 4
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C PROGRAM EFON
C PRFPARE DATA FOR FUNCTIONAL COEFFICIENTS E::.,F),G,H(Z)..
C _--I(Z) IN PROGRAM "RAYLEI"

DIMENSION FILEAC2)
COMMON Ti.. Pt. E(6), F(G) GC6.. H(se:), RI(6)
COMMON RO AP, BA CP LiE.. PER
COMMON DUT DBAT DBAP, DROT, DROP, DFsPT.. DAPF
DATA PEROS/i. eE-ti/ GV/9. .-. HZ/Ø3. /, TS/2. /

C --PEROS=i. ØE-ii IS RU PPITRRRY RSSIJMPTION ThIS PRPRMFTER WILL
C BE CANCELLED ITSELF FINALLY

DATA FILER(i)FILEA(2)/SHEFGHF4H SRC/
CALL. ENTER(t. FILER)
WRITE4,i9)

1i9 FORMAT(1>. "BOTTOM DEPTH(KM)=? (FS. 2)")
P.EAD.::4, i'38:DEPTH

i08 FORMAT(FS. 2)
KLOPII
K)ZSi.'(KLOP-i)
WRITE(4S)

8 FORMAT(i> "PERMEABILITY CPSE='' (t.2..OP 4)')
RERC'(459)IPER

59 FORJRT(I1)
WRITE(4..2B)

2S FORMAT(1>< "GRAr)IENT?(OC/KM)')
RERD(4.. 29)D

29 FORMRT(FS. a)

oz=DEPTH*1@eeee. /5g.
PSIi. e
TSU=?
PRE.
RO

DO iøI=iSi.

DEP=FLOFiT(Ii)*DZ
TITSU+D*DEF
POi=P:1.______________________________

ROORO
_______CALL PROPT:t.i

ROORO
RO5RO

-- BASBA
- CPSCP

UES='.E
ADIASAP*93it. *(T1+27. 15)/CR
PERSPEROS
'...Jr41 1-U

C--FOR PERMEABILITY PER---
GO TO (Si.. S2.. 53 S4), IPER

51 PERPEROS
DPER'=ø.
GO TO 55

52 RP eiP*t øE-)
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DPEZ-ffi. E-5*PERO5
GO TO 55
PER=PEROS*(1. -8. 35*DEP*t. eE-5+cj. 835*DEP*CEP*t. PJE-18)
DF'ERZ=PEROS*(-8. 3G*i. 8E-5+8. 872*.c..EF*1. 8E-18)
GO TO 55

4 ffERPROS*(fr -8a6*EEPDEPi. øE-i.-34
DPERZ=PROS* r-. 072*DEP*1. ØE-iø)

55 CONTIr-JUEC FOR FP1) - -
E( I )*1Z*(*DUT/UE-DPERZ/PER-AP*D)

C-----FOP F(ZN) ------
-F-(4-=4BF4*RO*GV-flPwD

F< 1 >=<F( I )+RO*GV*(D*DBIT+RO*GV*DBp)>
F (I )F( I )#BS*G*(D*DROT+RO*GV*tROP)
-F(

i:.:------FOR G(2N) ------
G( I )=AP*RO*UES*PER,'(APS*ROS*IJE*PEPO)

H( I )=RO*(CP*C.-AP*D*DEP*GV-F4PWTS*GV) / (D*CPS*ROS)
CFOR RI(ZN)-----

RI=DUER*ROcRERz/PER
K=K+i.
IF(I.ECLI)GO TO 28gRF=se4R*_)i.øI8. '18008
RTEST=ABS(ROO-RO)/RO
IF(RTEST. LE. 0. 01)GO TO 28

2 IF(I. NF.. 1)GO TO 12
ES=F(i.)
FS=F--
GSG(i.)
HS=H(1)

R-I-S=RI(i> -__________
PEP=PER

:1.2 PORRO/ROS
P=RRF' -

BFR=RA/BPS
c=cP,'cps
UER=UE-'US
ADIA=AP*988. *(T1+27. 15)/CR
ADIFiR=Ar,IFi/Rr)IFs5

FR=F<I)/FS
QR=G<I)/GS

DEP=r,EP/l0800a
-- PPE±EUfl)*I1 5*:1cii3Li .i1ciØØcj

KPW.KPW+i
IF(KPW. NE. KT)Z)GO TO 10_ _-j4RiTE1, 8:)E(D. I) GtIHCI) RId)

88 FOPMAT(25(E12.5)>
KPW=

1 CONTINUE
CALL CLOSE(1)
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SUBROIJT INE PROPT(NPROPT, NEFOHI>
- C NPROPTt. FOR LIQUID PROPERTIES; NEFGHI=1 FOR EF,GH.I(ZO)

DIMENSION A(22>C(12)
C TO PROVIDE TF4 HYDROD'iNfltiIC POPETIEZ EFFECTED OY TEMP. & PRESS.
C FROM MEYER ET RL(±968)
C: RO=DENSITY APEXPANSION COEF., BA=COMPRESSIBILIT'

CP-PtCIFIC I-4ERT RT CONT. PRESS. UE-DVNAMIC VISCOSITV
C INPUT 'Pl(BAR>. T1.(DEGP.FE C)' OUTPUT "P0. AP, BA, CP IN C. G. S.

COMMON T1.Pt..Ec60).F(60).Gc.60)H(60),RI(6e)
COMMON RO. FIP, 8A CP. UE... PER ( ( i )COMMON DIJT, OBAT. OBAP. DROT. DROP. DART. DRPP
DATA A/-S. 42286367E2, -2. 096666205E4. 3. 941286787E4, -6. 733277739E4.
.. 902301020E4. 1. 0939i14ES. e. 59004166?C4. 4. S11iB?42E4..

1. 418138926E4. -2. 017271113E3. 7. 98269271.7. -2. 616571843E-2.
1. 2241i79øE-3. 2. 2842?9g54E-2, 2. 421647803E2. 1. 265716088E-1e.

:2. 074638320C 7. 2. i74O295E-e--i-±e5?io4OE 1. 234Ei
1.. 3Ø9ij9?2E-5. 6. 94762638E-14/. C/8. 438375405E-i. 5. 362162162E-4.
1. 72 7. 34227S489E-2.. 4. 97585887E-2.. 6. 5371543E-t. 1.. 15E-6..j iøo-s, i. 4100E-1. 7. DO275t'SS.. 2. 2O42#5E 4 2, t4E 1/.
ABI'6. 824687741E3/
S=(Ti+273. t5)/647. 3

YS=t -C(i)*S*S-C(2)*S**(-6)
Z&iS+SQRT(C()*YS*YS-2. *C(4)*S+2. *C(5)*8)

2. i-C(1).s-S1- rC<2)-f-S-t-It<-7)
DYSS-2. *C(j)-42. *C(2)*5**C-8)
ozs=rwS+ccc3)*ys*Dys-C4))/sQRT(c(3)*yS*Ys-2. *C(4)*5+2. *C(5)*8)
O-SRT(C(3)-S-2. 'CZ4)*Z*2. *'C(5)1-0)
DZSSDYSS+(C (3)*DYS*DYS+C(3 )*YS*DYSS) /50
DZ5SDZSS-(C(3)*YS*1W5C(4) )**2/(SQ*SQ*SQ)
Dfl-C(S)/SQRT(C(3)$*S 2. *C(4)*S+2, *C(S).4-O)
DX-(5. '17. )*A(11>*Cc5)*(Z**c-22. /1.7. ))*DZS
DXS=XS+(R(iZ)+2. *A(j4)*S-A(j5)*j.. '(C(6)-S)**9

DXSDXS+t1. *(A(17)+2. *A(3)*B+3. *R(19)*8*9)*S**18/(C(3)+5**j1)**2
DXS-DXS-18. *R(2Q)*(S**j7)*(C<9)+S*5)*(-3. /(C(1ø)+B)**4+C(i1))
DXcDXS 2. (2)#S.s'1-1s.(-2./(C(1O)-l-8).-.4.4-,-C(11)) 3*RC.21)'lOw.8
:-80. *F$(22)*S**(-21)*A*8*8
DXB=(-5. /1.7. >*A(il)*C(S)*DB*(2**(-22. /1.7. ))
c'XP-DXB-(2. 1-fl(i8)-I-6. *58)/(CO)tS*w-jj
DXRDXB-A(2e)*S**i8*(CC9)+S*S)*12/CC(1e)+B>**5
DXB=OXB+6. *A(21)*(C(.i.2)-S)*B+12. *A(22)*8*B/S**28

X1A(t1>*C(5)*(Z**(-5. /1.7. )>

X1=Xt-(A(17)+2. *R(i8)*B+3. *A(19)*9*8)/(C(8)+!.**jj)
X1X1-A(2ø)*<S**1.8)*(C(9)+S*S)*(-3. /(C(iø)+B)**4C(11))
x1-xii-3. s-fl(21)1-(C(12>
RO=1. /(3. 17*X1.)

C-7----FOR EXPANSION COEF "AR" AND COMPRESIBILITY "BA" ------
AP-RO'-3. 17/647. 3*DXZ
BA=-RO*3. 1.7/221. 2*DXR*i. ØE-6

C---FOR SPECIFIC MEAT "CR"
SI-420. 10(22)*(D$ *4)/Z**2 fl<2e)*(Z**16)u()OG. *C)-4-390. *5.i-5)s
(1.. /(CCi.ø>+B)**3+C(t1>*8)
S151-(242*(S**20)/(C(8)+S**il)**3-11ø*(S**9)/(C(8)+S**j1)**2)*

:(fl(i.?)1OIfl(1M)itO*O4fl(j9)wO1.O*O)
SISI+B*(2*A(14)+9ø*A(tZ)*(C(6)-S)**8+722*A(16)*(Ss.*36)
:/(C(7)+S**19)**3-342*A(16)*S**i7/(C(7)+S**19)**2)
SI-SI-(11)*(i7*DS/217*tWSS/12Y(3*1(t2./t7. >)
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- SI=SI+A(11)*(24*OS/29-2DYS)*DS*(Z**(. /17. ))
SI5I+(il)*(i2*2'/29-YS)*(**(-5. /17. )*OZ5S-5*(**(-22. /17. >

Si=SI+2*AC3)+6*F4(4)*S+2*R(5)wS*s2+20*F4(S)*S**3+3*A(7)*S**4

=-71 *1
C-----FOP VISCOSITY "UE"------
C UE=0.000001*(241.4*(18.**(247.8/(T1+133.15))))

J=(T1-1 i
L3ED538. +380. *IJEA-26. *UER**3
UE=i.. /UED
TF(.HEEHI N 1 )fl 1Q.J.0Ø
DZBF=-C(5)*DZB/(Z-YS)**2
DZS-C<5)*<DZS-DYS)/(Z-YS)**2
DXSjO*A(22)***3/5**22
D>(SS(t8*17*(20)*S**16*(C(9)+S*S)+36*A(20)*5**i8+38*A(20)*S**i8)
*(C(i1)-3,'(C(10)+B)**4)+DXSS

*(F1(j7)+2*A( 8)*R+3*A(19)*B*B)

-(18*19)*A*S**7/(C(7)+S**1S)**2+OXSS
DX%5(1i0. /289. )*q(jj)*CC5)/**(39. /1?. )*c.Z5*025+DXSS
DXcS=O(S5-(. /17. ).(jj)*CC)*DZSS/2**(22. /17. )
DXS8-6*F4(2i. )*8-24O*R(22*B/5**2j
DxcF=D)S8-(i.*s1(28)*S**i7*(C(9)+S*S)+2*R(20)*S**t9)

:*(12/(C(i0>+B)**5)
DXSB=D>S8+11*(2*(t8)+*A(i9)*?S*,1e/(Cc8)+S**t1)**2
D<SRmD><SB-(. /17. )*A(il)*C($)*DZSB/Z**(22. /17. )
DxSB=DxSB+(i.10. /289. )*(i1>*C()*OZ8*DZS/Z**<39. /17
DXa8=24*A(28/S**2?±2)*<C(t2))

DXR8DXR8-6*(i9>/(C(8)+S**11>-C. /17. )*A(i1)*C()*DZBB/
2**(22. /17. )
DXB8=DXBB+(1i.0. /289. )*R(ii)*C(5)*DZB*DZE/Z**(39. /17. )
0UT-(3. 8-0. 78*UER*uap)/(UED*UED)
OROT-DXS/(647.3*2._j7*X1.*j)
OROP-DXB/(3. 17*2. 212E8*Xi*Xi)
DAPT3, 17*(-D'<S*DXS/(3. j.7*X1*>(j)+RO*C'XSS)/(647. 3*647. 3)

DRPFZ. 17*(-DXR*DXS/C3. 17*Xi.*X1)+RO*DXSB)/(647. 3*2 21 E8)
DBRT-3. 17*(-D<S*DXB/(3. 17*X1*Xt)+RO*DXSB)/(647. 3*2. 2i.2E8)
DRRP'-3. j7*(-D(B*DX9/(3. j7*Xj*)j)+RO*DX98)/(4. 89294416)

108 CONTINUE
RETURN
END
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APPENDIX D

Flow Charts and Program Listing for the
Time Dependent Model

The following programs are designed as an example to be

structurally similar to that in Figure 30, Chapter VI. Considering

the accuracy of the numerical integral algorithm (otherwise need to

be integrated by using the characteristic relationship of area coordi-

nates), we assumed both the hydrodynamic parameters and the

permeability are constant within an element. The final element sub-

division for the domain is shown in the figure on the following page.

Programs wrote in FORTRAN IV below are originally run on a

ECLIPSE mini computer which has 32K 16-bit true work memory

(exclude system memory). Due to storage limitation an overlay

technique has been applied which can be found elsewhere in the

manual along with most of the mini computers. The whole programs

of the system are located in several overlay areas, only limited

files are loaded in the core during run time although the whole pro-

gram listings become lengthy. Some programs need to be renamed

in different overlays because of the recognition of the programs

during load.
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THE OVERALL PROGRAM LOGIC

START

(root program)

CONVEC
Link overlays BASIC, START,
REVISE, MAIN, MAINZ, SOLVE

(overlay BASIC)

Call GRID
Generate element data, locate node numbers, par-
tial element data are read in from file GRIDIN

(overlay BASIC)

Call HAMER
Input stations and weights for
numerical integrations

(overlay START)

Call INIT
Input parameters of porous media and rocks,
boundary conditions, initial conditions, function
DENPRO has been called to provide hydrodynamic
parameters

(overlay REVISE)

Call PROPT, set IDPO
Revise hydrodynamic parameters
for update temperature and
pres sure

146



IDP> 1?

No

Yes

(overlay MAINZ)

Call STIFP
BAZP, DXZ2P, COMPP, COMPB have
been used to form finite difference (in
time) equations

+1 -n -
{A]P =[B]P +F
Save IA1. FBi. on disk file AXAY

(overlay SOLVE)

Call EQSO, IDPIDP+1
Read in from file AXAY and from

...en+1 ._n - -
{A]P ={B]P +FF'

-
Solve for P , update P

MCY?
NO<ic:s

(overlay MAIN)

Call STIFF, 1D1 I

BAZ, DXZZ, COMPAC have been I

- I

used to form 1AlF I

(overlay SOLVE)
Call EQSO
Solve for

147



(overlay MAIN)

Call STIFF, 1D2
BAZ, DXZZ, COMPAC have been used

r i-. -to form iAjw=F

(overlay SOLV
Call EQSO
Solve for w
Set IDPO

(overlay MAIN:

Call STIFF, 1D4
BA2, DXZZ, COMPAC have been used

-
to form [AlT =F

(overlay SOLV]
Call EQSO
Solve for T at t+t
Update T

______________1______________
Print results on disk file SHCON if
nece ssary

MCY number of flow cycles per energy cycle.
n, n+l = time levels.
F forcing functions or known vectors..
KEGY = total time levels required.

148



Flow chart for subroutine STIFF

149

START

-ID-i for u, ID-2 for w, ID-4 for T
Evaluate integral equations numerically for
each element, select proper time increment
for the marching scheme

Delete nodes associated with Dirichlet
boundary conditions, modify forcing functions

Insert element matrix equations
into global matrix system

Are
all elements

as s e mb led

Yes

END
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Definitions of Important Symbols and Explanations of
Program Listings

The following program names appear in the order in which they

are called. Parameters will not be defined if already defined in the

previous programs unless they need to be redefined. Numbers in

parentheses represent the corresponding commentary locations in

the original program listings.

Main program CONVEC
Function: link programs in overlay BASIC, START, REVISE,

MAIN, MAINZ and SOLVE, evaluate temperature, flow
velocity and pressure solutions for time dependent
model of natural convection in a porous slab with various
conditions.

SHGOB disk file for the element data storage.

(1) see subroutine GRID.

(2) see subroutine HAMER.

(3) see subroutine INIT.

(4) see subroutine PROPT.

SHCON disk file for output of solutions.

SHGAB disk file for scrap use.

AXAY disk file for temporary storage of flow equations
in matrix form.

DTP, DT time increments in the flow and in the energy
equations respectively.

(5) see subroutine STIFP.

(6) see subroutine EQSO.
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NP(i) node indexes for pressure.

P 1(i), P2(i) pressure at time t and t+t respectively.

YY(i) forcing functions in input, solutions in output.

(7) see subroutine STIFF.

NU(i) node indexes for velocity u.

U(i) horizontal velocity u.

NW(i) node indexes for velocity w.

W(i) vertical velocity w.

NT(i) node indexes for temperature T.

T 1(i), TZ(i) temperature at time t and t+t respectively.

Subroutine GRID
Function: generate the element data for the structure.

GRIDIN disk file, provide partly node and element num-
bers, specify partly node coordinates.

IMD,IGD grid intervals in depth and the horizontal respec-
tively.

XP(i), ZP(i) node coordinates in the horizontal and depth
respectively.

ZTA dip angle of the slab.

NET total elements.

NOD total nodes.

Y(i,j) global node numbers, ielement number,
j=vertex number in a triangular element.

NF(i) node indexes in the domain of the porous slab.



152

XC(i,j), ZC(i,j) the X and Z coordinates of the nodes, ieiement
number, jvertex number in a triangular element.

Subroutine HAMER
Function: provide stations and weights for numerical integrations.

ID =1 for l-D element.

=2 for triangular element.

ZN(i) stations for 1-D element.

ZS(i,j) stations for triangular element.

WE(i) weights.

Subroutine INIT
Function: introduce material parameters, boundary conditions,

initial conditions.

FAI porosity.

BFAI vertical compres sibility (cm2 /dyne).

ROS density of solid phase in the porous medium
(g/cm).

CS specific heat of solid phase in the porous medium
(erg/g, °C).

COND conductivity of the porous medium (erg/cm, s, °C).

RORCK rock density (g/cm3).

CSRCK rock specific heat (erg/g, °C).

CONRCK conductivity of the rock (erg/cm, s, °C).

2
PERS permeability at the surface (cm ).

TS temperature at the surface (°C).

DTDZ temperature gradient (°C/km).
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GRAV =980 (cm/s2).

(1) NT(i)=555 if temperature at node i is a known
value (Dirichiet conditions), so as NU(i) to
velocity u, NW(i) to velocity w, NP(i) to pressure
P.

PER permeability (cmZ).

PER1, PER2 permeability coefficients associated with the first
order and the second order terms respectively in
Table 6.

NG(i) global node indexes in an element.

XO(i), ZO(i) node coordinates in an element

RAYLE Rayleigh number.

PERS1 =PERS.

Function DENPRO
Function: water properties of Pf a, , Cf and p. are derived from

the empirical equations given by Meyer et al. (1968) and
Mercer et al. (1975) if temperature and pressure are
known.

IDT =1 for Pf (g/cm3).

Z for a (1/°C).

3 for (cm2 /dyne).

4 for Cf (erg/g, °C).

= 5 for p. (poise).

TEMP temperature (°C).

PRESS pressure (dyne/cm2).

AO, A(i), C(i) coefficients for the empirical equations.
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Subroutine PROPT
Function: as stated in function DENPRO.

RO(i), AP(i), BA(i),
CP(i), UE(i), PER(i) Pf a, 3, Cf and permeability at node i

respectively.

Subroutine STIFP
Function: form matrix equations in a partial packing storage scheme

(this scheme was suggested by Key, 1973) to solve for
pressure.

ISCH 1 for backward difference scheme.

2 for Crank-Nicholson scheme.

(1) will form a system as [AX1 = [AY] +

MEQ total equations to be solved.

MROWX maximum row dimension of AX(i,j).

MROWY maximum row dimension of AY(i,j).

AR area of an element.

DJACO Jacobian determinant for coordinate transforma-
tion.

(2) average values of material properties in an
element.

P,Q,R temporary storage of ZS(i,j).

(3) see function BAZP and function DXZZP.

AXE(i,j) local (for one element) matrix of AX(i,j).

AYE(i,j) local (for one element) matrix of AY(i,j).

3j. E. Key, Computer program for solution of large, sparse,
unsymmetric systems of linear equations, mt. J. for numerical
methods in engineering, 6:497-509, 1973.
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(4) see subroutine COMPP and subroutine COMPB.

(5) write down information of YY(i), AX(i, j),
NCOAX(i,j), AY(i,j) and NCOAY(i,j) on disk file
AXAY.

Function BA2P
Function: represent quadratic shape functions Ni(i=1,2,. . 6) by

area coordinates Li (i1,Z,3) at stations P,Q,R.

IBA index of shape function Ni (e.g. 1BA5 for N5).

P, Q, R stations for numerical integrations.

Function DXZ2P
Function: form derivatives of quadratic shape functions Ni

(i1, 2,.. .6) in terms of area coordinates Li (i1, 2,3) at
stations P,QR.

ND 1 for N. /Dx
1

=-1 for aN./az
1

M index of shape function Ni.

Subroutine COMPP
Function: insert a local matrix AE(i, j) into a global matrix A(i, j)

in a partial packing storage scheme.

AE(i,j) AXE(i,j) defined in STIFP.

A(i,j) =AX(i,j) defined in STIFP.

NCOL(i,j) NCOAX(i,j), column indices of A(i,j).

Subroutine COMPB
Function: insert a local matrix AE2(i,j) into a global matrix A2(i,j)

in a partial packing storage scheme.

AE2(j, j) AYE(i, j) defined in STIFF.



156

AZ(i,j) =AY(i,j) defined in STIFP.

NCOLZ(i, j) NCOAY(i, j), column indices of AZ(i, j).

Subroutine EQSO
Function: solve matrix syem equations [A] X=B, [A]partial

packed matrix, Bknown vector. Details of the program
was discussed by Gupta and Tanji (1977).

NPT total equations to be solved.

MROW maximum row dimension of A(i,j) in calling pro-
gram.

NNN maximum row dimension of A(i,j) in EQSO,
NNN>MROW.

ZTEST value below which element made equal to zero.

B(i) forcing functions in input, solutions in output.

IBANDW number of nonzero coefficients in each row.

NCOL(i,j) matrix containing indices of nonzero coefficients
of A(i,j).

NNCOL(i) one dimension array for pivotal row indices.

NPIV(i) one dimension array to store pivotal column.

AA(i) one dimension array used for pivotal row elements.

Subroutine STIFF
Function: form matrix equations in a partial packing storage

scheme.

ID 1 for velocity u.

2 for velocity w.

4s. K. Gupta and K. K. Tanji, Computer program for solution
of large, sparse, unsymmetric systems of linear equations, mt. J.
Numerical Methods in Engineering, 11:1251-1259, 1977.
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4 for temperature T

(1) see function BAZ and function DXZ2,

UKNO velocity u at previous time.

WKNO velocity w at previous time.

PKNO pressure P at previous time.

(2) see subroutine COMPAC.

Function BAZ
Function: as stated in function BA2P.

Function DXZ2
Function: as stated in function DXZZP.

Subroutine COMPAC
Function: as stated in subroutine COMPP.
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CONVEC 3' 2/79 9. 4. 3 PACE 1

1;C POGRAM CONVEC C. 1. SHYUNRY, 1978"
A TRANSCIENT MODEL. FOR CONVECTION IN POROUS MATERIAL CONFINED IN A SLAB

3.0 s***.* WROTE BY C. 1. SHYU, MAY. 1978 s*.s**

4; COMMON SGWL(22).SCW2(12).SGW3
3; COMMON FRi. BF#l, ROS. CS. COND. RORCX, CSRCK, CONRCK, PUS, DI, DIP, IS, GRAY. DTDZ

6. COMMON RR.ZN(7),ZS(7.3).WE(7).PQR(4).P,Q.R.HETNOD,ZTO.XTO..IMD.IGD,ZTA
7; COMMON HG(6).XO(6),ZO(6).X(3.5).Z(Z.3),NF(223)
8; COMMON NT(223).NU(?7).14W(?7).NP(?7)
9. COMMON U(?7). W(77). 11(223). 12(223). P1(77). P2(77)

18; COMMON RO(77).AP(?7).BA(??).Cp(??).UE(77),PER(?7)
11; COMMON AXE(6.6).AN(1?9.25),Y?(223).HCOAX(179.Z5)
12.i EXTERNAL BASIC.START.NAIN.MAIN2.SOLYE.REVZSE
13..0 OOMATERIAL PROPERTIES ARE INPUT THROuGH SUBROUTINE 1M11'

14.0 8BWATER PROPERTIES ARE PROVIDED THROUGH SUBROUTtNE PROPT

15; CALL FOPEN(35,SH608)
16. CaLL. OYOPN(21.CONYEC.0L.!ER)

GENERATE FINITE GRID POINTS FROM GIVEN GEOMETRY---

18; CALL OYLOD(21,SASIC.0.IER8)
19; CALL GRID (i )
28..0 ----- INTRODUCE NAMER'S FORMULA FOR NUMERICAL INTEGRATION---

21; CALL NAMER(2) 4 (2 )
22;C ----- INITIALIZE SYSTEMS AND PROVIDE INITIAL. CONDITIONS---

23. CALL OVL.OD(Zi. START.S, IERST)

24; CALL INtl < ( 3 )
25; CALL OVLOD(21. REVISE. 0, IERS)

26, CALL PROPT < ( 4J
27; C-----------------------------------------------------------------
28; CALL FOPEN(3$. SHCON)
29; CALL FOPEM(31,SHGAB)
30; CALL. FOPEN(33. AXAY)

CALCULATE NEW P AT 1+51 -----
32, ACCEPTIOV MANY FLOW CYCLES PER EHEREGY CYCLE?. MC?

33; ACCEPT'TOTAL ENERGY $TEPSz, KEG?
34; KTIME2O
33; 38$ KTIME.(TINE+1
36; IDP0
37; DTP-8T'NC?
38; 188 IDPIDP+1
39; IF(IDP.GT.1)GO 10 6
4$; CALL OYLO5(21.flAIN2$,tERfl2)
41. CALL STIFP(1,$EQ.MROVX.MROWY) ( (5
42. 6 CaLL. OVLODZI,SOLYE,a,ZERS
43. CALL EQSO(NEQ.MROWX.23.0.0) < ( s)
44, tMD0
43; DO 3$ It,77
46; IF(MP(I).ED.555)GO TO 3$
47. IHDaIND+l
48; Pt(I)P2(I)
49; P2(t)aYY(IND)
50; 30 CONTINUE
51; IF(ZDP.GE.MCY)GO TO 181

52; MNCa(MCY+t),2
53; IF(KTZME.EO.1.AHD.IDP.EO.MHC)G0 TO 181

54. GO 10 190
55..0 ----- CALCULATE U---
56. 181 CALL OYLOD(21.MA!N. 9. tERM)
37; CALL. STIFF(8. L.NED.MROV) 1% 7

58; CALL OVLUDCZL.$OLVE.S.IERS)
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CQKVEC 31 2/79 9 4 3 PAGE 2
59; CaLL EOSOCNEQ.flROV.25.8.0)
68; 1H0I
61; 00 10 1t.?7
62; !F4U(t).EQ.555)CO TO 13
63. lNDal$0+1

U(I>sVY(114D)
65; II CONTINUE
66C ----- CALCULATE a---
6?; CALL OVLOD(21.NAIN.$. tERM)
68; CALL STIFF($.2.MEQ.MRON)
69; CALL OYLOD(21.SQLVE.0.1fR3)
70. CALL EOSOMED.MROU.25.8.8
71, IN0I
72; DO 28 1.1.77
73; 1(MgCl).EQ55s)co TO 20
74; LND'LND+1
75; (I)aYY(1ND)
76; 28 CONTINUE
?7;C ----- TEMPERATURE AT T+DT
73; CALL OVLOD(21. MAIN. 8. tERN)
79; CALL STIFF(1.4.NED.MRON)
88; CALL OYLOD(21.SOLVE0.IER$)
81. CALL EOSO(flEQ.MRO.258.d)
82; LND.S
83; 00 48 1l.223
84; 1F(NT(1).EQ.555)O 104$
85; 1140.END+t
86; 11(I)a12(I)
87; T2(t)aYY(IMD)
38; 43 CONTINUE
89; CALL OVLOD(21. REVISE. 9. IERR)
90; CALL PROPT
91; DT1.2.DT
92; KTINE.KTIME+I
93; VRITEC3O, 13)KTINE
94. 18 ORNAT(1X.'KTtME.!3)
95; 00 50 1.1.?
96; J2.L1e!
9?; JlaJ2-t0
98; 58 RITEC3I,58)(UC4).JJ1.J2)
99; 38 FORMAT(IX.1I(E11.4.IX))

160; 00 51 1.1.7
181; J2t1*t
192; J1J2-t0
183; 51 WRITE(3R.S8)(WC4).Jai1.J2)
184; 50 52 Iut.20
185; J211*t
186; J112-18
107; 52 VRITE(38.58)(12C4).4J1.J2)
198; VRITE(3$. 59)(12(3). J221. 223)
109; 39 FORNATCLX.3cE11. 4. LX))
110; EF(KTIME.GE.KEG?)CO 10 190$
lii; GO TO 380
112; 1309 CALL REOET
113; END
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GRID 31 2/79 9:!?: 16 PACE
1; OVERLAY BASIC
2; SUBROUTINE GRID
3;C ---TO GENERATE ELEMENT DATA---GRID SCALEufl*MzZMD*IGD
4;C -4ET*TOTPL ELEME}1TS HODTOTAL NODS t99AND MIDTH. ZT42DIP ANCLE-
S.0 -ZTO2BOT1l3M DEPTN. XTOHORtZONTAL IuIIDTN---
SC ---OUTPUTZIrtD. lCD. IB.ZTO,XTO.Y.NET.HOD.XC.ZC---
7; INTEGER Y
8. DIMENSION Yc10B.3).XC(108.3).ZC(130.3)
9; COMMON 5GV1C22).SGW2(12).SGW3

tG COMMON F,GFAI,ROS.CS.COND.RORCK.CSRCK.CONRCK.PERS.DT.DTP.TS..GRaV.DTDZ
11; COMMON ARZN(?).ZS<?,3),WE(7),POR(4),P,Q,R,NET.NOD,ZTO,XTO. IMU. ECU. ZIA
12; COMMON NG(5).XQ(6).ZQ(5).X(3.Z(5.5).MF(223)
1L COMMGM NT(2)U(77).4(??),XP(7).ZP()
1.4, CALL. FOPEN(36. CRIDEN)
15; RITECI3.19)
15; 1.8 FORMAT(1X.GRID DIMEMSIOM(P1*M). M,Nx1 (It.LX.11))
17; READ(36.19)IMD.IGD
18; TYPE INL IOU
19. I9FORMAT(!t.IX.II)
20. R!TE(18.28)
21; 23 FORMAT(1X.XPI.XP2.XP3,XP4,XP5,XP6,XP72? ?(F7.3.1X))
22; READ(35.29)XP(I).XPC2>.XP(3),XP(4).XP(5).XP(6).XP(7)
23; RtTEC10.29)XP(1).XP(2).XP(3).XP(4).XP(5)..XP(6).XP(7)
24; 29 FORMAT(7(F?.3. IX))
25; RtTE(10. 38)
26. 38 FORMAT(IX.ZPI,ZPZ.ZP3,ZP4,ZP5,2P6z? 6(F?.31X))
27; READ(36.29)ZP(I).ZP(2).ZP(3),ZP(4)..ZP(5),ZP(6)
23; gRTE(1e,29)ZP(i),ZP(2).ZPC3).ZP(4)ZP(!).ZP(6)
29. RITE(10.!8)
30. 58 FORMT(1X.DIP A$GLE(DECREE)z? (F!.0))
31; REAU(36.S3)ZTA
32; 59 FORMAT(F5.S)
93. RETE(18.!9)ZTA
34 ZT*ZTA,188. *3. 1415926536
35; ZTOZP(6)
36; )CTOaXP(7)
37; NEIzIBO
38; NODz223
39; 00 9 1:1, 1.30
48; DO 3 4:1,3
41; 9 Y(t.J)3
42. DO 29 1:1.223
43; 28 NF(I):e
44; DO 31 KM:1,S
45; DO 38 IL.9
45. NF(66+(KM-1)*21+1)a(KMI)*17+I
4?; IF(XM.EO.5.OR.1.EO.9)G0 TO 38
49; NF(7?+(KM-1)*21+I):(KMI)$17+I+9
49; 30 CONTINUE
59 31 CONTINUE
51; DO 33 lzt10
52, 33 READ(36.7$)(YCI,4),J1.3)
53; 78 FORNAT(13. IX. 13. 1*. 13)
54; DO 34 1:91, 100
55; 34 RE*D(36,70)(Y(I,,J).J:1.3)
56; CALL FCLOS(36)
5?; DO 12 K:t.11,2
58; K1:K,22



GRID 3' 1/79 15385l
59; KHK/2
60. DO 13 1*1,10

00 13 ,.a1,3
62; ZF(Y(t,J).E0.K)XCCI.J)*XP(1)
63; £F(Y(I,J).EQ.K)ZC(t,J)*ZP(1#KH)
64. zFcYu.J).Ea.K&)C(I.J)*xPc2)
65; 13 IF(Y(t.4).EQ.K1)ZC(1.4).ZP(i+KN)
56. 12 CO$T!UE
6?; DO 14 (*191,201,2
60. KI1K+22
69; K14'(X-198)'2
78; 00 15 1*91; 180

DO 13 J't.3
72; IF(Y(I,J).EQ.K)XC(1,4)XP(6)
73; IF(Y(t,J).Q.K)ZCCI..4)aZP<1+KH)
74; IF(Y(I,J).EQ.K1)XC(I,J)XP(?)
75; IS IF(Y(1.J).EQ. K1)ZC( 1. 4)SZP(1+KM)

76; 14 CONTII4tJE

7?, DO 210 421,4
78; NL*0
79. 00 218 11.5
80; N!2t41+t

61; !1st1+4*( I-1),(J-1)*20
82; !fl42.(J-I)+23+2*(1-l)

V(11,t)1
94; Y(I1+1,1)*Y(!1,1)
95; Y(11,2)ZM+2
56; Y(! 1+2 2)2V(11,2)
67; Y(I 1, 3)I+2+20
88; 'i'(I 1+1,2)aY(I1,3)

89; YCI1+2. L)Y(1t,3)
90; Y(I 1+3,2>Y(I1,3)
91, ((1 1+1, 3)IPI+2+49
92; Y(11+3 1)*Y(11+t,3)
33; ?(Il+2,3)Ill.2,40+2
34; 'C (11+3. 3)=y U 1+2 3)

95; XC(l1,1)*XP(J+l)
96; XC(It+1,1)*XC(11,1)
97; XC(Ii, Z)=(C(I1, I)
98; XC( 11+2. 2)*XC (11, 1)

99; XC(I1,3)*XP(J+1)+0.5*(XP(J+2)XP(4+l))
188. XC(I1+t 2)'XC(I13)
181; XC( 11+2k 1 )C( 11,3)
182; XCU1+3. 2)2XC(I1.3)
183; XC(I1+1,3)SXP(J+2)

XC(Ils3,I)*XC(I1+l,3)
185; XC(I1+2,3)XC<Z1+1,3)
186; XC(I1+3.3)XC(I1+1,3)
18?; ZC(tl, 1).ZP(N1)
198; ZC(11+1.t)*ZC(I1,1)
189, ZCU1+1s 3)ZC(Il, 1)
110; 2CC 11+2. 1 )*ZC( Ii. 1)

111; ZCCI1,3)ZP(NI)+S.5*(2P(N1+1)-ZP(N1))
112; ZCCII+1,2)2ZC(I1,3)
113. ZC(I1+2, 1)*ZC(II,3)
114; ZC(I1+3 2)*ZC(I1,3)
115; ZC(It,2)ZPCt4I+1)
116; ZC(I1+2. 2)*ZC(t1,2)

PAGE 2
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CR10 3' 1'?9 l53ø51
117; ZC(t1+2 3)*ZC(I1,2)
118; 2C(I1+3 3)22C(1L2)
119 210 CONTINUE
120. IFZTh.EQ.90.G0 To 212
121. 0021! Zzt,HET
122. DO 211 41.3
123; XC(t,J)*ZC(I,J)ITAM(ZT)+XCCI.J)
124, 211 CONTINUE
125, 212 DO 229 II.NET
12E. DO 229
127. VRITE(3.8)Y(!J)XCCI.J).ZCCI.J)
122; 229 CONTINUE
129; 8 FORPiT(2X,I3.2X.F8.4.2XF8.4)
130; REUIND 35
131; RETURN
132. END

Pr4CE 3
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File "GRIDIN"
56
8.99000 5.08089 12.0809 12.6250 13.2500 29.2500 25.2589
9.80009 0.30000 1.53008 2.89088 4.05080 5.30089 9.00000
99.00
88! 803 023
823 903 025
083 02? 925
883 005 02?
005 08? 92?
92? 00? 829
99? 031 029
08? 009 031
889 011 831
031 811 033
191 215 213
191 193 215
193 195 215
21! 195 21?
19! 219 217
19! 197 219
19? 199 219
219 199 221
199 223 22!
199 29! 223
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HAPIER 3, 1'79 15.3331 PAGE
1; SUBROUTINE HAPIER(ID)
2.0 HANflERS FORMULA FOR NUMERICAL IHTEGR1!ON IN OHE-D t TRIANGULAR
3.0 DOMAIN. E.G. ID=1 FOR 1-D. Ifl=2 FOR TRIANGULAR
4, COMMON 3CI(22).SGW2U2).SCd3
5; COMMON FAI, BFAI. ROS. CS. COND. RORCK, CSRCK, COMRCK. PERS. DT. DIP; IS. GRAY. DTDZ

6; COMMON AR,ZH(7).2S(7.3),E(7).PQR(4)
7; IF(ID.EQ.2)GO 1029
8; ZN(1).-8.86U3631-0.1594$53E-$
9; zNc2-e. 33993194-0. 353483ff-8
10; 2$(3)s-ZH(2)
Ii. ZH(4)s-ZM(1)
12; WEC 1 )9. 34785484+0. 5137 454E-8
13; WE(2)sO.63214515+0.4862546E-8
14. WE(3)WE(2)
15; WE(4)VE(1)
16; GO TO 50
17; 29 S10.3333333333
18; S2'0.?9742699
IS; S30.10128651
29. S40.959?158?
21; 55z9.47914206
22; ZSC1.1)'Sl
23; ZS(1.2)aSI
24; ZS(t,3)aSl
25. ZS(2.1)'S2
26; ZS(3,2)S2
27; ZS(4,3>aS2
29; ZS(2.2)S3
29; ZS(2.3)a83
39. ZS(3.1)S3
31; ZS(3.3)aS3
32; ZS(4.1)S3
33; ZS(4.2)S3
34; ZS(5.l)S4
35; ZS(62)S4
36. ZSC?.3)aS4
37; ZS(5.2)S5
38; ZS(5,3)aSS
39; ZS(6.I)SZ
49, ZS(6.3'S5
41; ZS(?.1)sSS
42. ZS(7.2)85
43; VE(1)0. 1125
44; WE(2)aa.96296959
45 VE(3).VE(2)
46. WE(4)ZWE(2)
47; VE($)*e.066197$8
48;
49; WEC7)aWE(5)
58; 58 RETURN
51; END
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IHIT 3, 1/79 1535.46 PAGE
I. OVERLAY START
2; SUBROUTINE IMIT
3C GRID DIflENSIONN*N8IMD*IGD, ZTO280TTOM DEPTH.. XTO2HORIZOH. WIDTH
4.0 INTRO. PARAMETERS OF POROUS MEDIUM AND ROCKS. AND BOUNDARY COHDI.
5; COMMON SCW1(22).SGW2(12).SCW3
6. COMMON FAL. BFAI. ROS. CS. COND. RORCX. CSRCK. COHRCK. PERS. DI. DIP. IS. GRAV. 0132
7; COMMON AR. 314(7). 38(7. 3). WE(7). PQR(4), P.O. R. NET, HOD. 210, XTO, IND. lCD. ZTA
8. COMMON NGC6),O(6).ZO(6).X(5.5).Z(5.5).NF(223)
9; COMMON 141(223). HU(7?). NW(77). HP(?7)
10; COMMON U(??).W(??).T1(223).12(223).P1(?7).P2(?7)
ii; COMMON RO(77),RP(?7).BA(7fl.CP(77).UE(?7),PER(77)
12; COMMON AXE(6. 6). ZP(1BB1).PP(1081). AX(1948)
13; EXTERNAL DENPRO
14; C

L$;C---F*1*POROSITY--BFAI*VERTICAL. COMPRESSIBILITY OF POROUS MEDIUM
16;C---ROS*ROCK DENSZTY(IH PORO. )-.-CSzRQCK SPECIFIC HEAT(IH PORO.
j?;C--CONDaCONDUCTIVITY OF PORO. MEDIUM--RORCK2ROCK DENSITY
19.C---CSRCaRORCK SPECIFIC HEAI--CQNRCK*CONDUCTIVITY OF ROCK
l9;C---PERS*PER$EABILIIY AT SURFACE--OT*TIME IHCREDIMEHT--IS2SURFACE TEMP.
28;C---GRAV.CRRVITY--DTDZ8TEMPERATURE GRADIENT AT INITIAL TIME
21; C ---------------------------------------------------------------------
22; FAI2B. 1
23; BFAI22.SE-11
24; R0S22.7
25, CSaB.93
26; COHD2S.1*4.185*tB880.
2?; RORCKaZ.?
28; CSRCIC'8.93
29; COHRCK5. 5*4. 185*l$9.
38; ACCEPTIMITIAL DI FOR ENERGY CYCLES2I.DT
31. ACCEPTSURFACE TEMPERATURE(DEC. )2?S 1$
32; ACCEPTTEMPERATURE CRADIENT(DEG.'K$)2?,DTDZ
33; CRRV29SB.
34; C ---------------------------------------------------------------
35; ACCEPTCRITICAL RAYLEIGH MUMBER2?.RAC
36. TYPE'RAYLEIGH NU$BER'. RAC
37; DZ22TO,1808.
38, 30 11 121,223
39; 11 14T(I)'8
48; 30 12 121,??
41 MU(I).0
42. 12 NW(I)aB
4LC ----- B. C. NODES FOR TEMPERATURE---
44; 12'2*Ii1D41
45; DO 19 121,12 (
46. 141(1)2535
47; 10 MT(212+I)2555
48; NT(12)25
49. NT(22)'555
50. NT(202).555
31; NT(212)'555 f

32; 00 15 121,9 1, I

53; MT(29*I+2+t)553
54; 13 HT(28*l+I+2+10)2335
53;C ----- B. C. NODES FOR VELOCITY U---
56; 00 28 121,9
5?; NU(NF(66+I))aSSS
58. 28 NU(NF(158+I))2533 (
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INIT 3' 1'79 53546 PAGE 2

59;C-----8.C. NODES FOR VELOCITY a---
60; DO 30 1*15 (

61; NM(NF(6?+21S( I-I)) )*555
62.. 39 NWCHF(7S+21*(t-1)))a555
63;C-----8. C. NODES FOR PRESSURE P--
64; DO 69 1*1,5
65; 69 NP(NF(21*(t-1)+G?))a555 (
66; KINP.9
67; IS FORnAT(1x.PERnE0fl.ITY COEFFICIENTSz? 2<F5.8))
68; 19 FORMAT(2F5.S)
&9;C----- INPUT VALUES AT 3. C. FOR T. U. V. P---
?S;C-----CRLCULTE PRESSURE VLTH RESPECT TO DEPTH -------
71; P1.
72; TTS
73; ZP(1)*8.
74; PP(1)aP
75; DO 518 K22, 1891
76; ZP(k)*DZ.(K-1)
77. PO'P
78; DENaDEHPRO(1,1,T,P)
79; P*P,DENGRAV*bZ/19.
90; TaT.DZ*DTDZ
81; DENN*DENPRO(1, 1.T,P)
92; DP*(DEN+DENN),2.*DZSGRAV/19.
$3;
$4; PP(K)aP
85. 519 CONTINUE
86; 123 K!MP*KINP+1
87; ACCEPTPERMEA8ILITY Al SURFACES?,PERS
88; TYPE PEAS
.99, WRITE(18. 18)
99; READ(21.19)PERN1.PERM2
91 .0

92; DC 1808 KE*I, NET
93; DO 25 1*1.3
94, READ(35.69)NG(I).XO(1).Z0(I)
95; 25 CONTINUE
96; 69 FORMAT(1X,13.2X.F8.4.2X.F0.4)
97;
98; NC(5)*(NG(2)+IIC(3))12
99. HG(6)*(NG(1)+NG(3))12

(Q(4)a(XQ(1)+X0(2)),2
181; XO(5)*(XO(2)+XO(3))12
192; XO(6)*(XO<1 )+XO(3))'2
183; 20(4 )*(2O( 1 )+ZO< 2)) '2

194; Z0(5)a<ZQ(2)+ZO(3) ).'2
105; ZQ(6)*(ZOC1 )+ZO(3) )'Z
186. ZF(KIMP.CE.2)GO TO 35
287;C ----- INPUT TEMPERATURE AT 9. C.

188; DO 198 1*1,6
199; T2(NCCI))TS+Z0(t)*DTDZ
118; 199 T1(NG(I))sTZ(NG(I))
111;C ----- INPUT VELOCITY U.V aT 8. C.

112; DO 289 1*1.6
113; IF(NF(NG(!)).EO.9)GO TO 289
114. XF<NU(NF($G(I))).EQ.555)U(NF(H6(I)))ae.
115; 288 CONTINUE
116; DC 389 1*1,6
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ii?; IFCNF(NG(I)).EQ.e)Go 10380
lie; !F(HW(NF(NG(I))).EQ.555)W(HF<HC(I)))8.
119; 388 CONTINUE
128.C- INPUT PRESSURE RI 8. C.

121; 00 528 I16
122,. 4aNF(HC(I))
123; IF(J.EQ.S)GO 10 528
124, 80 531 k1. 1808
125; N'(ZO(1)-ZP(K)).(ZO(t')-ZP(K+1)/ZP(K+1)
126, ZF(SCM.GT.LOE-6)CO TO 532
12?; P2(J)a(PP<K)+(ZO(I>-ZP(K))/(ZP(X+t)ZP(K))*(PP(K+1)PP(K)>)*1889008.
128;
129; 531 CONTINUE
138; 528 CONTINUE
131;C ----- IUPUT PERNEROILITY---
132. 35 DO 538 121,6
133. IF(NF(HG(1)>.EO.8)GO TO 538
134; PER(KF(NG(X)))*PERS*(i.+PERNISZO(t)+PERMZ*ZOU)*ZO(I))
135; 530 CONTINUE
136. 1088 CONTINUE
13?. REUINO 35
133; r2r2u09)
139; P'P2(35)
148; RO3aOENPRO(1.0,T,P)
141; RP32DEHPRO(2,0.T,P)
142; CPS2DEHPRQ(4.8,T,P)
143; UE3DENPRO(5.8.T.P)
144, TYPERO.RP.CP.UE,CON0.RO3.RP3,CP3.UE3.COND
145; RAYLE.GRAVSAP3*oI8Z.(zTo)**2.(po3*s2)*pERsscp3*teeaee. ,(1JE3*COHD)
146; TYPECAL.CULRTED RAYLEIGH NUN8ERa.RAYLE
14?; PERSZ-RRCaPER$IRRYLE
143; TYPEPERNEABILZTY AT SURFACE SHULD BE >.PERS1
149; XF(KINP.GE.2)CO TO 121
158; CO TO 123

INTRODUCING DISTURBANI PRESSURE P
152; 121 DO 58 121,77
153; U(I).e.
154; 58 W(t)28.
155; P2(NF(89))21.05*P1(HF(89))
156. P2(HF(131))28.95*P1(NF(131>)
157. P2(NF(98))al.1*P1(HF(98))
158; P2CHF(132))aI.9sP1(NF(132))
159; P2(NF(91))al.ISUPI(NF(91))
168; P2(t4F(l33))8.85sP1(NF(133))
161; P2(HFC92))at.2.P1(NF(92)>
162; PZCNF(134))*8.8*e1(Mc(134))
163; P2CNF<93))t.Z5*PI(HF<93))
164; P2(NF(135))a8.?SaPt(HF(135))
165. P2(NF(94) )21. 2*P1(NF(94>
166; P2(HF(136))88'P1(NF(136i)
167; P2CNFC95))1.1SPI(HF(95))
168; P2NF(13?))28. 90P1CNFC13?))
169; RETURN
178. END
171,
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DENPRO 3' 1,79 1348.21 PE
1; FUHCTIOH DENPROCIPT. IBAR. TEMP. PRESS)
2.0 TO PROVIDE THE NYDRODYNAMIC PROPERTIES EFFECTED BY TEMP. 4 PRESS.
3..0 ROaDENSITY, APEXPANSION COEF.. 8ACOflPRESSIBILIT?
4C CP$PECIFIC HEAT AT CONST. PRESS.. UE*OYNANLC VISCOSITY
5; C IPTuI FOR RO. 2 FOR AP, 3 FOR BA. 4 FOR CP. S FOR UE
S.0 !MPUT'TENPCDEG. C), PRES$(C.C.S.) IF IBARa$. (BAR) IF IBAR=t

OUTPUT R0.AP.8A,CP,UE IN C.G.S.
8; COMMON AC22).C(12),R8
9, COMMON FA1,8FAL,ROS,CS,COND,RORCK,CSRCK,C0HRCK,PERS,DT,DTP,TSGRAV,DTDZ

18. COMMON AR,ZN(?).ZS(7.3).E(7),PQR(4).P.Q,R.NET,NOD.ZTO.XTO. mU. ICD.ZTA
11; COMMON NC(S).XO(6),2O(6).XV(5.5).ZV(5.5).NF(263)
12; COMMON NT(263).NU(?7).N(?7).HP(77)
13. COMMON U(?7),w(?7).Tl(263),T2(263),P1(?7).P2(?7)
14; COMMON RO(??).AP(7?).BA(?T).CP(7?).UE(?7).PER(77)
15; A(1)a-5.422*636?3E2
16. A(2)a-2. 096666285E4
1?; A(3)3.941286?87E4
IS, A(4)a-6.?332??739E4
19; A(5)a9.982381828E4
28; A(6)a-1.893911??4E5
21; A(?)8.59S84166?E4
22; A(8)a-4.511168?42E4
23. A(9)-l.418138926E4
24; A(18)'-2.8172?1113E3
25; A(11)a?.982692717
26; A(12)-2.616571843E2
2?; A(13)1.522411?98E-3
28; (14a2. 2842?9e54E-2
29. A<15)2.421647983E2
38; A(1$)at.26971688$E18
31. A(17)*2.8741338328E?
32. A(19)a2. 17482935E-8
33. A(19)'t. 1857184986-9
34. ACZ9)at.293441934E1
35; A(21)zt.388119072E-5
36; A(22)a6. 8476263386-14
37; C(1)8.4383?5485E-t
38; C(2)aS.362162162E-4
39; C(3)aL.?2
49; C(4)a?.342278489E-2
41. C(5)a4.9?58588?62
42. C(6)a6.5371543E-1
43; C(flst.1SE-S
44; C($)1.S188E5
45, CC9).t.418$E-1
46; C(1$)a7.882753165
4?; C(11)2. 9952849266-4
48; C(12)aZ.046-1
49; AS'6.82468?741E3
58; S(TENP+273.15)/64?.3
51; IF( IBAR. EQ. SPRESSaPRESS/1888$88.
52. B'PRESS'221.2
53; YS.t.-C(1)*S*8-C(2)*SS*(6)
54; ZVS+SQRT(C(3).YS*YS2. *C(4)*S+2. sC(5)B)
55; DY5-2. SC(1 )*St6. UC(2)*S*S(7)
56. OYSSa-2. SCC 1)-42. *C(2)*S**(-9)
57; DZSDYS+(C(3)*YS*DY$-C(4))/SQRT(C(3)*YS*YS2. *C(4)*S+2. *C(5)*B)
58; SQaSQRT(C(3)*YS*YS-2.*C(4)*S+2.*C(5)*8)
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59; DZSS*DYS$+(C(3)sDYS*IIYS+CC3sYSaDYSS,Sg
68. DZSS-OZSS-(C(3)*YSaDYS-C (4) )s.2/($Q*SQ*SQ)
61. Dz9cc5),SORTcc3sYssYs-2.*c(4)ss+2.scc5.e
62; OX3a-(5.,1?.)s4(j1)*C(5)*(Z.(-22.,I7.))*DZS
63, DXSaDXS+CA(13)+2.SAU4)*S-4(15).18.s(C(6)-S)..9
64; -A(16)S29*S.*18,(C(7)+S**19)**2)
65.
66. DxS=DxS-18..a28*ss*17sC9+ssSs3./c1e+e**4+cu1
67; OXSaDXS-2..A(29).S.s19*(-3.,(C(le).e)*.4.C(tt))-3sA*:21)ae.e
68; -88.*4(22)*S*s(-21)*8s8.8
69; DXBC-5.'1?.).A(1I)sC(5)sDZ8a(Z.*(-a2.,17.))
79; DX8OXB-(2.*A(l8)+6.uA(19)*8),(C(8)+6*st1)
71; 39.DXB-A(29).S*sj9.(C(9),S*S)s12,(C(l8)+9)*.5
72; DX8*DXS+6. SA(21)s(C(12)-S)s$+12. .4(22)sG*8,S..20
?3;C-----FQR DENSITY
74; X1a(11)*C(5)*(Z*S(-5.,I7.))
75; X15XI4(A(12)+A(13)sS+A(14)sS*S+A(13)a(C(6)-S)s*t9+A(t6)'
76. .(C(7)+6sa19))
77; X1X1-(A(1?)+2..AC18)s8+3.sA(19)*8s8)/(C(8)+Sss1l)
79; XlaXl-A(28)*(S**19)s(C(9)+S*$)*(-3./(C(18).8)**4.C(11))
79; X1*1+3.sa21sCC12-S)*8s8+4..A22).CS*s-29)8sBs8
89; DENSIT?aI.,(3. l7sgl)
81; DENPROaDENSITY
82; !F(IPT.t.E.1)GO To 50
83;C-----FOREXPANSION COEF #P AND COPRESI8XL1T? 84 -------
84; flEHPROOENSITY*3. 17'547. 3sX$
85; !F(IPT.LE.2)GO TO 5$
86; DENPRO-DENSITY*3. 1?/221.2*8X9*l.ØE-6
8?. ZF(IPT.LE.3)GO TO 58
88;C ----- FOR SPECIFIC HEAT CP
89; S1'42$. *A(22)*(Bs*4)'S*s22-A(2$)*($*st6)e(386. $C(9)+388. +$*S)*
9$; Cl. '(C(1S)+8)*a3+C(11)*0)
91; SIS!-(242*<S*s2I>/(C(8)+S*stL)..3-119.(Sss9),(C(8)+Ss.1t).s2)*
92.
93; SI.S1+8*C2sA( 14)+90.AC15)*(C(6)-S)**8+?22sa( 16)*CS**36)
94; ,(C(7)+Ss*19)*.3-342*AC16).S**17,(CC7)+8se19)*a2)
95. SISl+A(1i)*(1?sDZSS,29-l?sDYSS,t2)s(Za.(12. /17.))
96. SISI+a(11)*(24*DZS,29-2*DYS)*DZS*(Z..(-5.,17.))
9?; SZSI+a(11)*(12*Z/29-YS)s(Z*s<-5. /1?. )*flZSS-Z*(Z*(-22.'t7. ))*DZS
98; $DZS/1?)
99; SX2SI+2*A(3)+6s0C4)*S412*A(5)$S**2+ZBSA(6)sSS*3+38*A(7)iSs.4

188; SIaSI+42sA(8)$S**5+56.A(9)*S*.6,72aA(18.',*Ss*7-R0,S
181; DENPRO-221.2s3. 17'SI*S,64?. 3sL.$E6
182; IF(IPT.l.E.4)GO TO 5$
193;C ----- FOR VISCOSITY UE -------
184.0
185; UEACTENP-150. )/188.
106; UED539. +390. sUEA-26. .UEA**3
187; DENPRO'l. 'lIED
189; 50 RETURN
189; END
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1; OVERLAY REVISE
2; SUBROUTINE PROP!
3..0 TO PROVIDE THE HYOROD'rHANIC PROPERTIES EFFECTED DY TEMP. I PRESS.
4;C RODENSITY. APaEXPAMSION COEF.. SA2COMPRESSISILITY

CPSPECIFIC HEAT AT COHST. PRESS.. UEiDYNAM1C VISCOSITY
6;C INPUT P2(C.G.S. ). T2(DEGREE C).OUTPUT R0.AP,BA.CP IN C.G.S.
7; COMMON A(22).C(12).A9
9. COMMON PAZ. DPAZ. ROS. CS. COND, RORCK. CSRCK. COHRCK. PERS.. DT. DIP, IS. GRAY. DTDZ
9; COMMON AR.ZM(7).ZS(?.3).WE(?).POR(4).P,G.R.NET.NOD.ZTO.XTO.IMD.ICD.ZTA

18; COMMON NG(6).XO(5).ZOC6).XV(5..5).ZV(5.5).MF(223)
11; COMMON NT(223).HU(?7).NW(?7). NeC??)
12; COMMON U(77),(77).T1(223),T2(223),P1(77).P2(?7)
13; COMMON R0C77).AP(77).OA(77).CP(77).UEC77).PER(?7)
14. 00 109 IND-t. NOD
iS; NFIND.NFCIMD)
16; !F(NFIND.Eg.e)GO TO 109
1?; S'(T2(IND)+2?3.15)'64?.3
18; BP2(HFCIMO))'(221.2'1B99O9I.)
19; YSSI.-CC1).Ss$-C(2)sSs*(-6)
29; Z*YS+SQRT(C(3).YS*YS-2.*C(4)*S+2.*CC5).8)
21; DYS-2.sCC1)*S+6.*C(2)*S**(-?)
22 DYS$z-3. *C(1)-42.*C(2)SSS.(-8)
23; DZSaDVS+(C(3)aYS*0YS-CC4)>/SQRT(C(3)*YS*YS-Z. 'C(4)'S+2. *C( 5)*9)
24; SQaSORT(C(3)*yS*y$-2.*C(4)*S+2.sC(5)*9)
25. DZSSaOYSS4(C(3)SDYS*DYS+C(3)*YSSD'(SS)ISO
26. DZSSaOZSS-(CC3)SYS*DYS-C(4)).*2,CSQSSQ*SQ)
27; DZ9C5)'SQRTc3)sYSsYS-2.aC4>.S.e.*c5'se
29; DXSa-(S.,1?.)SA(11)SC(5)*(Zss(-22.,i7.))eDZS
29; DXS2DXS+(AC13)+2.*A(14)*$-R(15)*19.s(C(6)-S).*9
39. :A(16)*t9*S**l$/(C(?)+S**19)S*2)
31; DxSoxS,i1..aCt?+2..a18s9.3.squ9.B.esa*Ie,Ce+s*.t1,.ez
32; DXSaDXS-i8.sAC29*CSsa17*CC9+S*$.-3.,C1e+G*a4+CUi
33; DXS.DXS-2..A(29).S*$19*C-3.,(C(1a)+0)*s4+C(11))-3*4(21)*8*9
34; .-8B. *A(22)*S**(-21)*B*9*8
35; 0X9(-5.,i?.)SA(11)*C(5)*0Z9*(Z**(-22.,17.))
36. D9DXB.(2.*A(18)+6.$A(19)*8),(CC8)+S*st1)
37; DXBDXD-A(29)sSs.18*CC(9)+S.S)s12/(C(10)+8)*s5
38; DX9flx8+6.*A2L*CCL2-S*e+tZ.sAZ2*8s8,S..20
39;C ----- FOR DENSiTY ------
40;
41; X1.Xl+(A(t2).A<1Z)*S+A(14)*S*9+#C15>*CC(6)-S)*j9+A(16)'
42; (C(7)+S**19))
43; XI2K1-(ACl?)+2..AC18)*B+3.*AC19)*8*9)/(CC8)+S**It)
44; X1X1-A(2S)s(S**18)*(CC9)+S*S)*(-3.,(CC1e)+8)**4+C(11))
45; X11+3. *4(21)s(C(12)-S)s9.B+4. SACZZ)s($s*(-29))*$s9.9
46. RO(NFIND)al.'(3.17*X1)
4?;C ----- FOR EXPANSION COEF AP AND CONPRESIB!LITY .9A. ------
48; AP(NFIND).RO(HFIND)*3.17,647.3*DXS
49; B4(NFIND)-R0(NFIND)*3. 1?'ZZl.ZSDXB*l.BEG
5B;C ----- FOR SPECIFIC HEAT CP
51. SI42e.*4(22)s(B**4),sss22-A(29)*(SesI6)uC3a6. *C(9)+389. s$.S)*
52; .(I.'CC(10)+8)s.3+C(11)B)
53; SISI-C242*<S.*2a),(C(8)+S*.11)*e3-119a(Ss*9),(C(8)4S.*11)**2).

(AC 17)*8+A( 18)a9s0+A 19)*es8*8)
55; sI.sI+e*c2*4c14).9e8a(ls)*(Cc6)-S)s.e+?22sA(16).cs..36)
56. ,/(C(7)+S**l9).*3-342*A(16)*S**t?/(C(?)+S$*19>.*2)
57; SIS!+A(l1)S<1?*DZSS/29-17*DYSS/12)*(Z**(i2.,17.))
5$; SI.SI+A(11).(24*DZS,29-2*OYS)*DZS*(Zs*(-5. /t?. ))
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SIiSI+A(11)*(12*Z/29-YS)*(Zsa(-5. '1?. )sDZSS-s(Z..(-22.,17. ))*DZS
.DZ$/j7)

61; SI*SI+2*A3,6.44sS+12*4(sS**2+2e*A6)*S**3+38*Afl*S*.4
62 SIssI+42sA(8).S.a5+56sAc9)*S*6.?2*A(le)*Sa*?-A6/S
63; CP(NFZND)w-Z21.2s3.1?.SIPS,64?.3*t.eES
64;C ----- FOR VISCOSITY UE -------
65;C UECNFIHD)'e.uuela(241.4*(laus(24?.g,c12(IND)+133.15))))
66; UEAR(T2(IND)-1Z$.)'tSS.
6?; UED538. +385. .UEA-26. *UEAs*3
68 UE(NFIND)ai.,UED
69; 198 CONTINUE
78, RETURN
72. END
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1. OVERLAY MAIN2
2; SUBROUTINE STIFP(ISCH.$EO.NROWX,MROY)
3.0 CONVECTION IN A POROUS MEDIUM OF FAULT ZONES
4.0 TO FORM STIFFNESS MATRICES FOR PRESSURE P SOLUTIONS
5;C ISCI4.I FOR BACK DIFF. SCHEME. ISCH.2 FOR CRANKHICHOLSON SCHEME
6..0 NEQ-TOTAL EONS. TO BE SOLVED; NRO-MAX. DIMENSQION OF ROWS--
7. COMMON SGWI(22).SGWZ(12).SGM
8. COMMON FAI. BFAZ. ROS. CS. CONS. RORCK. CSRCK. CONRCK. PERS. DI.. DIP. IS. GRAY. DIDZ
9. COMMON AR, ZN( 7). ZSCT. 3). WE(?). PQR( 4). P. 0. R. NET. NOD. ZTO. XTO. INS. lCD. ZIA

lB. COMMON NG(6).XO(6).ZO(6).X(5.5).Z(5.5).NF(223)
114 COMMON NT(223).NU(77).NV(77).NP(??)
12; COMMON U(??).V(77).T1(223).T2(223).P1C77).P2(?7)
13; COMMON RO(??).AP(7?).80<7?).CP(?7).UE(?7).PER(?7)
14. COMMON AXE(6.6>.AX(??.25).P4CO#X(77.25).YY(77)
15; COMMON AYE(6.6).AY(7?.25).HCOAY(77.25)
16; EXTERNAL BAZP. DXZ2P. COMPP. COMP8
1?; C

18; Dhlal.'DTP
19. DTZ=t.'DT
2$; DO 595 1.1.77
21; YY(I)aS.
22; DC 584 .31.25
23; AX(I.J)8.
24; HCOAX(l.J)9
25; AY(I.J)a$.
26. NCO4Y(I.J)a$
2?; 584 CONTINUE
2$; 585 CONTINUE
29; 50 1989 KE-1. NET
38; DO 25 11.3
31; 25 READ(35.69)NG(I).XO(I).ZOC1)
32; 69 FORMAT(1X.13.2X.F8.4.2X.FS.4)
33; IF(KE.GE.51.AND.KE.LE.54)GO TO 1099
34, !FCXE.LE.34.OR.KE.GE.71)GO TO 1089
35;C CALCULATING THE ELEMENT STIFFNESS MATRIX IN ONE ELEMENT
36, X0C4)-XO(1)
37; XO(5)aXO(2)
38; ZO(4)Z0(1)
39; Z0(5)aZO(2)
48; HG(4).(NG(1).MC(2))/2
41; NG(5)(HG(2)+NG(3) )'Z
42; NG(6)g(HG(1).NGC3))i2
43; AR(2O(2)sX0C3)+ZO(1)SXO(2)+XOC1)*Z0(3)-XO(1).Z0C2)-XO(2)*ZO(3)
44; 0-XO(3)*ZO(1))/2.
45, ARABS(AR)
46. DO 10 11.5
4?; DO 10 3-1.5
48; XCI.J)XO(I)-XO(J)
49; 18 Z(1.J)-ZO(I)-ZU(J)
50; DJACO.Z(1,3)*XC2.3)-Z(2,3)*X(1,3)
51; RAB1-I.3333333s(RO(NF(HG(1)))+RO(HFCHG(2)))+RO(NF(NG(3)>))
52; RAB2'$.3333333.(AP(NF(t4G(1)))+AP(KF(NG(2)))+AP(HF(HGC3))))
53; RA83=$.3333333*CBaNFCNCU)+8ANFU4GC2+eANFNG3 2
54; RABS=8.3333333.(UE(NF(NG(1)))+UE(NF(NG(2)))+UE(HF(NG(3))))
55; RAB6aB.3333333.(PER(HF(HG(1)))+PER(NF(NC(2)))+PER(HF(NG(3)))>
56; 00 15 1.1.6
57; YNG-0.
58; DO I? 31.6
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59; SIø.
60. SA6.
61. SAY8.

s,rve.
63, SYYBORROW-S.
64; DO 16 kWt.7
65; P'ZS(KV. 1)
66. QaZS(K1,2)
67. R*ZS(K.3)
68; SAXSAx.WECKlD.BA2PJa8A2PI)
69; SAYSAY-fi&E(j(V)*(DXZ2P(1.J)*DXZ2P(1,I)+DXZ2P(-t,J)*DXZ2P(-1,I))
73; S?Y9ORROW2S8CRR0WsWE(K)*BA2?(J)*82P(I)
71. 16 CONTINUE
72. SXTaSAX*<-SFMI.FAI.RA83)*RA81 sRAG5.R5
73; SAYTSAY.RA81*RA85*RA86
74; SAXDTiS!SCH*SAXT-S4YT
75; SAYDT1*ISCH*SAXT+( ISCH-l)*SAYT
76, DTDTZ(T2(NG(J))-Ti(HG(4)))a0T2
77; NGaY?4G+FAI 'RAB!
73; AXE(t,J)aSAX*DJACO
79; AYE(I, j):SAY.D,JRCO
88; YY(HF(NGCI)))YY(NF(NG(t)))+YNG*DiRCO
81; 1? CONTINUE
82; 15 CONTINUE
83. CALL CONPP (
84, CALL CCNPB (
85; 1880 CONTINUE
86; REWIND 35
67;C ---NODIFY THE EQUATIONS AND INTRODUCE B.C. VALUES---
88; DO 38 Ii,77
89; IF(NP(L).NE.555)GU 10 38
98; DC 31 ..a1.25

91; IF(NCOAX(IJ).HE.!)CO 1031
92 YY(I)AX(I,J)sP2(1>at8E38
93; AXC I, J)t. 8E38.AX( I, J)
94; 00 TO 38
95; 31 CONTINUE
96. 38 CONTINUE
97; flEQ77
98;
99; DC 58 It,flEQ

180; flRS
181. 30 51 jsj,25
182; IF(HCOAX(!.J).EQ.8)CO 1051
183; NRMR+t
184. 51 CONTINUE
185; IF(NR. 01. MROWX)ROWXaR
186; 58 CONTINUE
187;
188; 30 52 11,NEQ
109; NR*8
118; DO 53 4t,25
111. LF(NCOAY(I,J).EQ.8)GO TO 53
112; NR.NR+1
113; 53 CONTINUE
114; IF(PIR. OT. NROUY)NROVYNR
115; 52 CONTINUE
116; ROWaNROWX
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Ii?; IF(flROX. LT. NROVY)flROROVY
118; DO 68 1t..flE8 (
119; VRITE<33.38)YY(I)
12$; DO 6$ ( 5

121. WRITEC33,39)AX(I,J).NCOAX(!,J),AY(I,J).NCOAY(1.J)
122; 60 CONTINUE
123; 38 FORNAT(1XE13.6)
124; 39 FGRNAT(1XE13. 6. IX. £2. LX.E13. 6. 1X 12)

125 REVIND 33
126; RETURN
£2?; END
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1 FUNCTION BAZP(IBA)
2C B2PSKPE FUNCTXONS INTERNS OF RE C3ORDIN#TES(PL1;Q*L2;RsL3)

COMMON SG1(22).5GV2(12).SG3
4i COMMON FL, BFAL. ROS. CS. COND. RORCK. CSRCK. CONRCK, PUS, DI. DIP. IS. GRV. DTSZ
5; COMMON aR.ZN(7).ZS(7,3),WE(7),POR(4),P.O,R.HET,HOD,ZTO,XIO.IMLLGD.ZT
6 PQR(1)aP
7;

8; P8R(3)R
9; PQR(4)P
10; IF(I8A.GT3)GO To 28
11; B2P2. *PQRCI8).PQR( LOA)-PQR(184)
I2 CO 10 58
13; 28 KNaIRA-3
14; BA2P.4.SPOR(KN)*POR(KN+t)
15; 50 RETURN
16. END
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1; FUNCTION DXZ2P(HD.M)
2C DXZ2P-DERIYATION OF THE SHAPE FUNCTION 4 WITH RESPECT TO
3.0 X OR Z IN TERMS OF AREA COORDiNATES
4.0 NBI FOR B(N)'OC. N-1 FOR D(N)'DZ
5; COMMON SGWIC22),SCWZ(12).SGW3

COMMON FR!. BFAI, ROS. CS. COND RORCK CSRCK. COHRCX. PERS. DI. DIP. IS. GRAY. DTDZ

7; COMMON AR,ZH(7),ZS(?,3).WE(?),PQR(4),P,Q.R.MET.MOD,ZTO,XTO. 1MB. IGB.ZTR
8; COMMON NG(6).XO(6).2O(6),X(55).Z(5.5)
9; IFCAR.LE.1.eE-Lt.OR.RR.GT.l.aeWR1TE(25.Ieae
18; 18 FGRMRT(1X.AR.E12.5)
11. PQRCt)P
I2
13; PQR(3)R
14;

15. LF(NLED. -1)GO TO 19
16. £F(M.LE.3)DXZ2P'u(4. *PQR(M)1. )*Z(M+2,M+t),(2.*RR)
1?; KN.M-3
18;

19; 00 10 59
29; 19 ZF(N.LE.3)DX22P(4.*PQRCPU-1.)sX(fl+1.fl+2),(2.*RR)
21. KNM-3
22. IF(M.GT.3)DXZ2P2.*(PQRCKN+1)*X(KM+t.KM+Z)+POR(K$)*X(KH+2.KN)),4R
23; 39 CONTINUE
Z4 RETURN
25; END
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1; SUBROUTiNE CONPP
2;C INSERT AE(6.6) IN TO (1N. 17)

3..0 'NCOL*COI.UnN INDEX OF A

4C 'WG'*CLOBAL NODE INDEX
5; COMMON SG1(22).SC2(tZ)SGV3
6; COMMON FfaI. BFI, ROS, CS, COMB. RORCK. CSRCK. CONRCK, PERS. DI, DIP, 1$. CRAY. DIDZ

7; COMMON AR,Z1u7).ZS(?,3),wE(?)PQR(4).P.O.R,NET,NOD,ZIOXTO,IMD.!GD.ZTA
8. COMMON 14C(G),XO(6),ZO(6),X(5,5),Z(5,5).NF(223)
9; COMMON NT(223).NU(77).t4V(77),MP(77)

10; COMMON U(??).V(??),I1(223).T2(223).Pt(?7).P2(?7)
11; COMMON RO(?7).AP(77).B4(77).CP(7?).UE(77).PER(77)
12; COMMON AE(6,6),4(77.25),NCOL(7?,25).YY(7?)
13. COMMON AE2(6,6).A2(??.23).MCOL2(?7.25)
14;

15; DO 70 laLaS
16, DO 70 4*1,6
17; IF(A8S(AECI,4)).GT.SDF)SBFABS(At(Z.4))
18; 78 CONTINUE
19 DO 71 izt,6
20; DO 71 4t,6
21, S.AE(I,J)/SDF
22;
23; 71 CONTINUE

DO 10 (*1,6
23; ZM*NF(NG(K))
26. IF(IN.LE.S)GO 10 10
2?; DO 11 L-16
20; IF(ABS(AE(K.L)).LE.3.BE-5B)GO TO 11
29; 4$NF(NG(L))
30; IF(JPI.LE.0)OO TO 11
31.; DO 16 4Cst. 18
32; LFCNCOL(IPbJc).E0.0)GO 10 17
33; IF(Jfl.LT.MCOLCIM.4C))GO TO 18
34, IF(Jfl.NE.NCOL(Ifl.JC))GO TO 16
35; R(IM.JC)*#(tM.4C)+AE(K.L)
36. GO 10 11
3?; 16 CONTINUE
38; JCv4C-L
39; 1? R(IM,JC)zAE(K,L)
40; NCOL(IM,JC)4M
41; GO 10 11
42; 18 LA-MCOL(Ifl.JC)
43; ALAa(IN,JC)
44; DO 19 NL*JC,t?
45; NX*NCOL(IM.ML.t)
46; RNXZA( IN. NL+1)
4?; NCOLUM.ML.+l)SLA
40; R(Ifl.flt+1)ALA
49; IF(NX.EQ.0)GO TO 20
50, LR-NX
31; 19 ALA.AMX
52; 20 A(IN,JC)aAE(K.L)
33; NCOL(Ifl.JC)*JM
54 11 CONTINUE
55; 10 CONTINUE
56; RETURN
5?; END
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1, SUBROUTINE cose
2;C INSERT AE2(6,6) IN TO 2(IN, 17)

3;C NCOLCOLUNN INDEX OF
4;C NGGLO8ffl. NODE INDEX
3; CONNON SG1C22).SG2C12).SG3
6; CONNON FAt, OFA!. ROS. CS, COND. RORCK. CSRCK. COP4RCK. PERS. DI. DIP. IS, ORAY. DTDZ

COMNON AR.ZN(7),ZS(?,3).E(7,POR(4)P.Q.R.MEI.NOD.ZTO.XTO,IflD.IGD.ZTA
8; COMMON NG(6),XOC6).ZO(6).X(3.5).2(!.5).NF(223)
9; COMMON NT(223),HUC?7),NV(?7), t4P(77)

IS; COMMON UC77),V(77),T1(223).T2(223).P1(77).P2(7?)
11. COMMON RO(?7),AP(77).0A2(77).CP(?7),UE(?7).PER(?7)
12; COMMON AE(6.6),A(77.23),NCOL.(7?.Z3),YY(7?)
13, COMMON AE2(6.6).A2(77,23).NCOLZ(77.25)
14; SDF2B.
15; DO 70 1-1.6
16; DO 70 J1,6
I?; IF(ABSCAE2(I.J)).GI.SDF)SDF-ABS(AE2(!.J))
18; 78 CONTINUE
19; DO 71 Iat,6
20; DO it
21; SAE2(I, J)/SDF
22; IF(AGS(S).LE.3.SE-6)AEZ(1.J)-0.
23. 71 CONTINUE
24; DO 10 Kat,6
23; INNF(NG(K))
26. IF(tfl.LE.0)GO TO 1$
2?; no ii Lat,6
28; IF(ABS(AE2(K.L)).LE.5.SE-50)GO TO 11
29;
38; IF(J$.LE.8)G3 TO 11
31; 00 16 JC'l.ZZ
32; IF(NCOL2<Ifl.JC).EQ.I)GO TO 17
33; IF<JN.LT.NCOL2(!N.JC))GO TO 18
34; IF(J$.NE.NCOL2(IN.JC))GO TO 16
33; A2(1N,4C)42(IM.JC)+AEZ(X,L)
36, GO TO Ii
3?; 16 CONTINUE
38; JCa.JC-t

39; 1? A2(IM,JC)AE2(K,L)
40; NCOL2(IN. .JC)-JM
41; GO 10 11
42; lB $CQL2(tfl,JC)
43; AL.A.A2(IM.JC)
44; 00 19 $LJC,24
45; HXNCOL2(IM.$L+t)
46; ANXA2(I$.ML+1)
4?; NCOL2( IN. ML,t)LA
48; A2(Lfl.NL+1)'AI.A
49; IFCNX. ED. 9)00 TO 20
58; LANX
51; 19 ALAANX
32; 20 A2(IflaqJC)AE2(K.L)
53; NCOL.2C1N, JC)JM
54 it CONTINUE
33; 10 CONTINUE
36. RETURN
3?; END
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1; OVERLAY SOLVE
2; SUBROUTINE EOSO(MPT. NROW. fINN. ZTESI)
3; COMMON SG1(22).SG2(12).SG3
4; COMMON FAI. BFAI. ROS. CS. COND. RORCK. CSRCK. CONRCK. PERS. DI. DIP. IS. GRAY. DTDZ
5; COMMON AR.ZN(7).ZS(7.3).Ec7),pgR(4),p,o,R,HET,NoD.Zro,xTa.IMD.!GD,zTA
6. COMMON f40C6).XO(6).ZO(6),XEO(5,5),Z(5,5),NF(223)
7; COMMON NT(223).MU(?7).NV(?7).HPPC77)
5; COMMON tJ(?7).W(?7).1t(223).T2(223).P1(7?),P2(77)
9; COMMON RO(77).APC77),BA(77),CP(77),UE(77),PER(77)
18; COMMON AXE(6,6).A(179,z5).a(223).f4coLc179.25)
11, DIMENSION NPIV(i79). I8Af4D(179). NNCOL( 179). AA( 179)
12; C --------------------------------------------------------------------
13;C SOLVES '*'X.B
14eC *.PARTIALLY PACKED MATRIX OF MON-ZERO COEFF. ---(INPUT)
t5;C 9aKXOH VECTOR---(INPUT),SOLUITONS(OUIPUT)
1S;C AA*SIHGLE DIMENSIONED ARRAY FOR PIVOTAL RO ELEMENTS
17;C IBANDV-NO. OF NONZERO COEFF. IN EACH ROV
19;C MCOL-IMDZCES MATRIX OF NONZERO COEFF. OF UAe_(XHPUT)
19;C MNCOLONE COLUMN ARRAY FOR PIVOTAL ROU INDICES
28;C ?INNCOLUMM DIMENSION FOR A 4 MCOL IN MAIN PROGRAM(INPUI)
21;C fIP!Y0$E COLUMN ARRAY TO STORE PIVOTAL COLUMN
22;C MPTaTOTAL EQUATIONS, TOTAL UNKNONHS
23.0 ZTESTVALUE 8ELOV WHICH ELEMENT MADE EQUAL 10 ZERO
24, C --------------------------------------------------------------------
Z5;COQUO$INIIIRLIZE THE BANDTH COUNTER eooie00000eooeem000q000eqoqo
261 IF(NPT.ME.77)GO TO lea
27; 30 181 Iut, 179
28; 9(I)9.
29; AA(I)u$.
38; NPIV(I)u9
31; DO 181 Jul.25
32. A(I,J)ue.
33. fICOL(I,J)1
34; 181 CONTINUE
35..0 CALL FOPEH(33.'AXAY)
36; 30 200 Iul,?7
37. READ(33.388)BCI)
38; 30 201 Jut. MROV
39; READ(33,389)A(I,J),NCOL(I,J),AA(J),f4p1y(J)
40; 281 CONTINUE
41; SUPIO.
42; DO 202 Jut, MROV
43; IF(NP!Y(J).EQ.0)GO 10283
44; 282 SU$uSUM+AA(J)*P2(NPIV(J))
45; 203 8(I)u8(I)+SUM
46, 288 CONTINUE
47; 388 FORNAT(E13.6)
48. 389 FORMAT(E13. 6. IX. 12. IX. E13. 6. IN. 12)
49; REVIND 33
58;C
51; 100 DO 972 1.1.179
52; A4(I)uO.
53; NPIV(I)aO
54;
55; fINCOL(I)uO
56; 972 CONTINUE
57; IF(ABS(ZTEST).GT.8.8881)ZTESI.e.0
58; NSTOPO
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59; NAXWIDSS
6e DO 1 !.t,NPT
61; 1 I8ANDW(I)$
62; DO 5 !st,HPT
63; 30 2 Jt.HNN
64; MCzHCOL(I,J)
65; IF(HC. EQ. 8)00 TO 3
66; IBAHDW(I)iJ
67; 2 CONTINUE
68; 3 IFCNAXWID.LT.4)PIAXVEDSJ
63; IF(J.NE.1)GO TO 5
73; WR1T2C31118)I
71; 18 FORflaT(1XALL EL.E$ENTS 1t4

72; MSTOP1
73 5 CONTINUE
74; IF(NSTOP.EO.1)STOP
75; NPT1HPT1
76. DO 23 LL1NPT1
?7;C3c13$8 F1NtNG THE ROW WITH NINI
78; KK-18$81
79; 30 6 I*.LNPT
88; ICt8ANDV(I)
31; IF(IC.LE.G)GO TO $
82; IFCIC.GE.KK)GO TO 6
33; NINROVC
84. KKIC
85; 6 CONTINUE
86,C*0833 INTERCHANGE ROWS WITH U.
8?; L$!8*HDW(LL)
88; NNINROV
89, 30 7 t1,Lfl
38; HNCOLCZ)aNCOLCII, I)
91; NCOL(N.I)aNCOLCL.L I)
92, AA(X)aA(NI)
93; A(M,I)aACLL,I)
94; 7 CONTINUE
95; SVE.8(LL)
96; 8(LL)8(N)
9?; 3(N)SAVE
38; IB*NDV(LL)IBAHDW(N)
99; EBANDWCM)Lfl
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ROg.,14.aEQUAI. TO ZERO.SINCULARITV)

8ANUWIDTH 38838388888983$83883

188;C9898* FIHDINC 910 A IN HINROW u3aasee3ø3esaes888e3983av89*8ssQ88øø
131; MC*I9NDW(LL)
132; HNCOLCNCt)3
133; HINROWL
£84;
£35. ININROW
186. 30 8 ,J.1.NC
13?; AA*ABSCAA(4))
138; IF(AAA.LT.*t)GO TO 8
139; AIaAAA
113; IY
111; 8 CONTINUE
112. NAXCOLNNCOL(IY)
113; HPIV(LL).$AXCOL
114;C*8838 NORMAL.XZE THE NINROW 3*3313*Q$$38*3$333833833333838331883388
115; XaAACI?)
116. DO 9 4*1, NC
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117; (J)a4A(J)/X
118; I4COLCNINROWJ)NNCOL(J)
119; 9 ACMINROv,j)zAA(4)
120; B(NINROW)8CMINROW)/X
121; A(MINRQW. !Y)-t.0
122; AACIY).1.$
1Z3;C08800 FINDING THE ROWS WHICH CONTAIN NAXCOL 100080808000880000108008000
124; LLI.U..1
12$; DO 22 I.LLXNPT
126; IFCTBANDW(I). EQ. 8)00 TO 22
127; MCI8ANDW(I)
122; DC 21 J1..MC
129; IF(McOL(IJ)-saXCOL)211e.22
130iC88009 IF HCOL(X.J) IS EQUAL TO NAXCOL THEN ROW CONTAINS THE VARIABLE
1!1C*G*0* MOPQOV'TNE Rag BEING OPERATED 0808*8 88*0 8*809888888*
132; 18 NOPR0VI
133; JKOPt
134. JKPI.1
l35; C.-A(NOPROV.J)
136; B(HOPROV).8CMINROV)*C+0(NOPROW)
137; 11 CONTINUE
138. IF(NHCOL(JKP!).EQ.S)G0 1022
139; IF(NCOL(NOPROW.JKOP).EQ.8)G0 10 12
140; ZF(N$COL(JKP!)-NCOL(NOPROW.JKOP))12.14.23
141; 12 !9AH(I)18ANDW(I)+1
142, IF(PIAXWID.LT. IBANOW(t ))MAXWIflt8AHDW(I)
143; IFCMAXVID.GT.HHN)GO TO 31
144; tII9ANDV(I)
145. JKLJKOP+1
146; 13 IXSII-t
14?, A(NOPROW, I!)A(NOPROW. IX)
148; NCOL(NOPROV. II)HCOLC14OPROU. IX)
149; IIsIX
150; !FCIX.GE.JKL)GO TO 13
151; A(NOpROW,JKOP)#A(JKPI)sC
152; MCOL(NOPROW. JKOP)NNCOL(JKPI)
153. IXzNC3LCNOPROW.JKOP)
154; GO 10 19
155;C*8O9ONIHROV AND THE ROW SEING CONSIDERED CONTAIN THIS ELEMENT SHIFTING
156;C83011 OF SOIN ROWS IS DONE AND )4OPROW IS OPERATED *088808009*8880008
157; 14 IXNCOL(N0PR0W.JKOP)
158; IF(IX. EQ. MAXCOL)GO 10 15
159; XSAA(JKPI )IC+A(HOPROV. JKOP)
160; ACHOPROW. JKOP)aX
161;C38088 TESTING TO SEE IF ANY OTHER ELEMENTS WERE ELIMINATED OTHER THAN
162;C88000 NAXCOL IN THE MORROW 0090 *0*8*0 0800*088*0 8889000888
163; ATEST.ABSCX)-ZTEST
164; IF(ATEST.GT.9.)GO TO 19
165; 15 !8ANflW(nOPR0V)t8aNDW(NOPROV)-L
166; IF(ZBANOV(NOPROW))16.16.t?
16?; 16 WRTTEC31,28)MINROV,MAXCOL.HOPROW
168; 28 FORMAT(MATRIX IS SINGULAR. M1MR0Wa, 14, MgxCOL. 14. ROV
169; OPERATED.14)
170; STOP
171. 17 IXaXBAHDV(NOPROW)
172; DO 36 MKJKOP. IX
173; A(I,IlK)aA(t.MK+t)
174; 36 NCOL(I,NK)aNCOL(I,NK+1)
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175; IXaIX+t
176; NCOL(!,IX)9
17?. ACt. IX)$.8
178; JKPIwJKPI+1
179; GO TO 11
lee; 19 JKPTaJKPI+I
l31;C99G99 M1NRO DOES HOT CONTAIN THIS ELEMENT SHIFT NOPRD AND CONTINUE
182; 28 JKOP4KOP+1
183; GO TO 11
184; 21 CONTINUE
185; 22 CONTINUE
186; 23 CONTINUE
137;C98988 ELIMINATE M!NRO AND NAXCOL FROM BEING CONSIDERED AGAIN 9899
133, HP! V(HPT)$COL(HPT. 1)
189; VR!TEC31.38)NAXWID
198; 38 FORN*T(1X.MAXVIDa.14. ROV DIMENSIONS OF A 4 NCOL)
191 ;C91999 BACK SUBSTITUTION 9888$98*øeDe888@888998898*e*8ea*888888888888
192; DO 24 I'I1NPT
193; 24 AA(t).8.e
194; DO 27 1t.MPT
195; ItHPT-I.1
196. Lflt8A$DV(!I)
197; HPNPtV(II)
198. IFCHP. ED. 9)GO TO 27
199; DO 26 Ju1.Lfl
281; NN*NCOL(II.J)
291; !F(HN. ED. NP)GO TO 25
292; BCII)-8U1-#ANNaACII, J)
283; GO TO 26
234. 25 t4zI
205; 26 CONTINUE
286; 4A(HP)z8(II)/ACIt,14)
287; 2? CONTINUE
229;C88808 STORE THE SOLUTION IN 8 VECTOR 8**e8eeSe899Ie8e*8*8a9$eae999
209; DO 37 I1..NPT
218; 3? BCt)*AACI)
211; GO TO 33
212; 31 WRITEC31. 5$)!
213; RtTE(3t,68)LL
214, STOP
21!; 58 FORMaTC1X, COLUNN DINENSIONS OF MCDL. 4 A EXCEEDED lit RO. 14)
216; 68 FORNAT(IX. H!LE THE NUMBER OF ROBS OPERATED MERE. 14)
217; 33 RETURN
218; END



1;

2;

3; C

4; C

5; C

6; C
7;

Si

9;

II;

Ii;
12;

13;

14.

15;

16. C

17.

18;

19;
29;
21.
22;
23;
24;
25;
26;
27,
28;
29;
39;
31;
32;
33.
34;
35; C

36.
37;
30;
39;
49;
41.
42;
43;
44;
45.
46;
4?;
40;
49;
58;
51;
52;
53;
54;
55;
56;
57;
58;

183

STIFF 3' 1,79 15.56.56 PAGE 1

OVERL.AY MAIN
SUBROUTINE STIFF(ISCH.1D,MEQ.MRO)
CONVECTION IN A POROUS MEDIUM OF FAULT ZONES
TO FORK STIFFNESS MATRICES, £D1 FOR U. !0a2 FOR V 15-4 FOR T
ISCH1 FOR BACK 51FF. SCHEME; ISCH2 FOR CRANK-NICHOLSON SCHEME
NEQTOTAL. EONS. TO BE SOLVED; MROMAX. DINENSOION OF ROWS--
COMMON SGWIC22). SGV2C12),SG
COMMON F*I.BFAI,ROS.CS.COND.RORCK,CSRCK.CONRCK,PERS,T,DTP,TS,CRAV,DTDZ
COMMON AR.ZN(?),ZS(?.3).VE(?),PQR(4),P,O,R,NET,NOD.ZTO,(TO. INS. IGD.ZTA
COMMON NGCG),XO(6),ZO(6),X(5.5).Z(3,5),flFC223)
COMMON MT(223).NU(?7),NWC?7).HP(?7)
COMMON U(7?),V(77),T1(223).T2223).Pi(77).P2c7?)
COMMON RO(77).APC77).BA(77),CP(77).tjE(77,,PER(77)
COMMON AXE(6.6>.AX(t?9,25),VV(223),MCOAI((1?9,25>
EXTERNAL BAR. DXZ2

3T11. DTP
5121. 'DT
DO 595 Ia!, 179
YYc I )-a.

00 504 J1.25
AX( I, 4)9.
NCOAX( I. 4)

304 CONTINUE
395 CONTINUE

00 090 KE1. NET
NTOP.0
DO 25 I-t.3

25 READ(35.69)NG(I).XO(1).ZO(I)
69 FORMAT(iX.I3,2X.F3.4,2XF8.4)

IFCKE. CE. Si. AND. KS. LE. 54 )NTOP-199
!F(ID.NE.4.AND.KE.LE.34)GO TO 1000
LF(ID.NE.4.AND.KE.GE.71)GO TO 1109
IF(ID.NE.4.AND.HTQP.EO.188)GO TO 1909
CALCULATING THE ELEMENT STIFFNESS MATRIX IN ONE ELEMENT
XO(4)-XO( 1)
XO(5)aXO(2)
Z0C4)Z0C I)
ZO(5)-Z0C2)
NGC4)(MG(1)+NG(2) )'Z
NG(5)(NG(2)+NGC3) )i2
NG( 6)(NG(1 ).MG(3) ).'2
ARa(20(2)sXO(3)+ZO(1)sXO(2)+XO(1)sZOC3)XO(j)aZO(2)xO(2)sZO(3)

9-XOC3)*ZOC1 ))'2.
AR-ABS C AR )
00 10 1*1.5
00 19 J.15
XCI. 4).XO(t)-XO(J)

IS Z(I,d)ZOCI)-ZO(J)
DjACOaZ(1,3)SX(2,3)-ZC2. 3)*XC1,3)
IFCKE.LE.34.OR.KE.GE.?1)GO TO 29
IF(NTOP. EQ. 109)GO TO 29
RASI.I.3333333s(RO(NF(NG(1)))+QO(NF(NG(2)),.ROCNF(NG(3))))
RRB2-I.3333333.(AP(NFCNG(1))).AP(NF(NC(2))),Ap(NF(NG(3))),
RRB3-$.3333333sCBA(NFCNG(1))).OA($F(NG(2))).SACNF(NG(3,)))
RAB4S.3333333*(CP(NFCNG(i))).Cp(HF(NG(2)))+cp(HF(NG(3))))
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59;
60. 20 DO 15 It,6
61; ysGe.
62. DO 17 .Jal..6
63;
64; sax.e.
65; SAY.8.
66;
6?; SY?9ORROVI.
68. DO 16 Kt.7
69; PZ$CKV.1)
70; QZSCKW.2)
71; RSZS(XU.3)
72. GO TO (1. 2.3. 4). ID
73; 1 SAXeSAX4WECKW*0A2C!'*8A2(J (
74; SaY-$AY-EKw).OxZ2u. 4)*8A2( I)
75; 00 70 16
76; 2 sAX-sAx+ECK)*0A2(t)*9A2(J)
77; SAYaSAY-WE(K)eOXZ2(-1. J>*OAZ(I)
78; SYY*SY?+E(K).8a2(I)
79; GO TO 16
80; 3 SAXZSAX+WE(KV)s8A2(.J).8A2(I)
81; SAY*SaY-E(kW)a(DXZ2(1.J)*DXZ2<t,t),DXZ2(-t,J)s0XZ2(-1,t)>
82; SyyB0RROSyy90tR0+gE(Ks0A2(J)seA2(!)
83; 00 10 16
84; 4 IF(KE.LE.34.OR.KE.GE.71) GO 10 5
85; IF(NTOP. EQ. 100)00 TO 5
86; SAXaSAX+WE(XW)S(FAI*RA81*Q04+(1.-Fa!).R0$*CS)*eA2(J)*8A2(1)
8?; UKHO0.
80; IkN0.0.
89; PKI408.
90; 00 12 KNOZI,6
91; UKNOUKNO,e2(KNO)*U(NF(IIG(KNO)))
92; WKKOaKNO+0A2(KMO)*(NF(NG(KNO)))
93; 12 PkHOaPNO+BA2(K#4O)s(P2(HF(NGCKNO)))-P1($F(NG(KNO))))sDT1
94; S4YSAY-ECKW)sCOND*(DXZ2(I.J)*DXZ2(I. I)+DXZZ(1,J)*OXZ2(1,1))
95; SAY.SAY-E(K)*RA8t*RA84S(UXNO*DXZ2(1.J)+lKNO*DXZ2(-1,J))*8A2(I)
96;
97; .8A2(J)*8A2C!)
98; SAY*SAY+WE(K)sR82*PKHO*8P2( J) *0R2( I)
99; 00 10 16

10*; 5 SAXaSAX+E(x)*RQRCKsCSRCK*0a2J.e2I
181; SAYSAY-E(KV)sCOHRCX*(flXZ2(1,J)*DXZ2(1,I)+DXZ2(-1.J)*flXZ2(-t,I))
102; 16 coNriNuE
103; 00 TO (5i.51.53,54),ID
104; 51 YHGYNG+8RY*P2(HF(MG(J)')
105; AXEC I. J)a$AX.O4ACO*RASS
106; 00 10 17
10?; 53 SaxT.SAx.(-BFag+FIsRA03)aR81*RA85.RA05
108; SAYTSAY*RA8I*RA85*RAB6
109; SAX.DTISISCH.SaXT-SAYT
1 10; SAYDTts1$CH.SXT+( ISCH-1)*SAYT
Ill, DTDT.(T2<NG(J))-T1U40(J)))*0T2
112;
113; AXE(I.4)aS*XSD4ACO
114; 00 TO 17
115; 54 SaXTzSAX
116; SAYIaSAY
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11?. SAX*DT2sISCH.SAXT-SAYT
1183 SaY*DTZ*ISCH*SAXT,<ISCH-t)sSAYT
119; YNGYNG+SAYsT2CNG(J))
129; AXEC I. 4)-SAXSD4ACO
121; 17 CONTINUE
1223 GO TO(6L.62.6364), ID
123; 61 VY(NFCNG(I))).YY(NF(MG<I)))+YNG*RABS*DJACO
124; GO TO 15
125; 52 YY(NFCNGU)))*YY(NF(NG(I)),Yw0,SYYSRAB1*0RaV*RABS*DJACO
126; GO TO 15
12?; 63 YY(NF(NG( I) ))*YY(NF(NC( 1)) )+YNG*OJACO
129; GO TO 15
129; 64 YY(NG(I))*Yt(NC(I))+Yt(CsDJACO
138; 15 CONTINUE
131;C ---DELETE SOUNDARY NODES AND NODIFY FORCE FUNCTIONS---
132; DO 38 Il,6
133; 00 10 (31.32. 33. 34). ID
134; 31 IF(MU(NF(NGCI))).NE.555)GO 1030
135; YY(NF(NG( I) ))*U(NF(NG(I)))
136; GO TO 3?
13?; 32 IF(NWCI4F(NG(I))).ME.555)GO 10 30
138; YY(NF(NG( !)))zW(NF(NG(I )))
139; GO TO 37
149; 33 IF(NP(NF(NGCI))).ME.555)GO TO 38
141; YY(PIF(NG(I)))aP2(NF(NG(I)))
142; 00 10 37
143; 34 IF(NT(NG(I)). NE. 555)00 TO 38
144; YY(HG(I))*12(NG(1))
145, 37 90 36 jal,6
146; IF(IL EQ. 4)GO TO 35
147; YYCNF(NG(.J) ))*YY(NF(NC(.J)) )-AXE(4. I)*YY(MFU4G( I)))
148; 00 10 36
149, 35 YY(NG(J))aYY(NG(J))-#XE(J.I).YY(NG(t))
158; 36 CONTINUE
1St; IF(ID.EQ.4)GO 10 39
152; Y?(NF(NG(I)))1.234567E29
153; 00 TO 68
154; 39 YY(NG(I))'I.23456?E29
155; 58 DO 65 Ja1,6
156; *XE(X.J)-I.
157; 65 AXE(4. I)*8.
1584 38 CONTINUE
159; CALL. CONPACCID) (2)
160; 1D$ CONTINUE
161; REWIND 15
162;C TO OBTAIN IMFORNATION OF 40. OF EGtiS.(NEQ). 4 flAX. ROW DInENSIONSiNROV.-
163; 90 78 1*1,179
164; ZF(NCOAX(I.1).EQ.9)GO TO 75
165; NEQWL
166; 79 CONTINUE
16?; 00 TO 74
168i 75 NEQaI-t
169; 74 NROWI
178; DO 77 I*t.NEQ
171;
172; DO 79 Jzt.18
173; IF(PICOAXC!.J).EQ.9)GO 10 78
174; NOKNO+t
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175; 79 CONTINUE
l?6 78 IFCKNO.GT.flROW)MROVNO
17?; 7? CONTINUE
178, Ia$
179; 66 IaI+t
18S; IF(I.GE.223)GO To 68
191; IF(YYU).NE.1.23456fl28)GO
182; DO 6? IPE222
183; 67 YY(1P)zYY(IP+1)
184; 1.1-I
185S GO TO 66
196. REVIND 32
187, 68 RETURN
189; END

1/79 15!656

TO 66

PAGE 4
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1; FUNCTION 942(194)
ZJC 942-SHAPE FUNCTIONS INTERNS OF AREA COORDINATES(P11;012;RL3)
3; COMMON SGMI(22).SGY2(12).SGN3
4; COMMON Fa1. SF41. R08.CS, CONS. RORCK. CSRCK.COHRCK. PERS. ST. DIP. IS. GRAY, DTDZ
5; COMMON AR.ZNC7).ZS(7.3).wE(7).PQR(4).P.O.R.NET.NOD.ZTO.XIO. INS. ZGS.ZTA
6; PQR(I).P
7;

8. PQR(3)-R
9; PQR(4)sP

19; !P(ISA.CT.3)GO TO 29
11; 842-2. aPQR*: I9A)*PORCIBA-PORC iaa
12; GO TO 58
13; 28 KN.1B*-3
14; 942-4. .PQR(KN)SPQR(KN41)
15; 58 RETURN
16; END
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1; FUNCTION DXZZ(H01$)
2;C DXZ2OERIVTION OF THE SHAPE FUNCTION 'N WITH RESPECT TO
3;C X OR Z IN TERNS OF AREA COORDIPrnTES
4.0 ND.1 FOR D(N)/DX; NIa-t FOR D(H)'DZ
5; CONMON SCVI(22),SCW2(12)1SCW3
6; CONHON FAIR BF*I1 ROS. CS, COHn. RORCK. CSRCK CONRCE, PERS1 DI, DIP., IS, GRAV. DTDZ
7; CONNON AR,ZN(7),ZS(?,3),WE(7),PQR(4),P,Q,R,HET,NOD.ZTO.XTO,ZND. IGD,ZTA
8; CONNON NG(6),XO(6),ZO(6).K(5.5).ZC5,5)
9; XFCRR.LE.1.8E-1S.OR.RR.GT.1.8EZ)WRITE(25.18)4R

18; 18 FQRH*T(1X,AR,E12.5)
11, PQR(l)aP
12; PQR(2)uQ
13, PGR(3).R
14; PQRC4).P
15; IF(NLED.-t)CO TO IS
16. IF(N.l.E.3)DXZ2*(4.$PQR(M)-1)*Z(H+2.$+I)/(2.*R)
17; KHH-3
18; IF(fl.GT.3)DHZ22.*(PQR(KH+1)*Z(KH+2.KN+t),PQR(KN)*Z(KN,KM+2))14R
19; GO TO 5$
2$i 1$ 1F(M.LE.3)DXZ2(4.sPQR(M)-1.)*X(N.t,N+2)/(2.*4R)
21;
22; £F(N.CT.3)DX22*2.S(PQR(KH+t)SX(KH+t,KN+Z)+PQRCKN)*X(KN+2,KN))'#R
23; 53 CONTINUE
24; RETURN
25; END
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1; SU8ROUTINE CONPACCID)
2;C INSERT AE(6.6) IN TO A(IN, 17)
3;C NCOL.COLUMW INDEX OF #
4;C NGsGLOBAL I4OBE INIEX
5; CONNON SGt41(22),SG2C12),SGV3
6; CONMON FI.8FL,ROS.CS.COND.RORCK.CSRClC.CONRCX.PERS.DT,DTP.TS,GRAV.DTDZ
7; CONNON AR.ZN(7),zg(7,3).WE(?),PQR(4),P,Q,R,WET,$OD.ZTO.XTO.IflD.IGD.ZTA
a; C4MC
9, CONMON NT(223).NU(?7),NJC?7),NP(??)

19; CO1MON U(77)J(?7).TI(223).12C223).PI(77),P2(?7)
11; COIMON O(?7). AP(?7). A(77), CP(77>,UE(77),PER(7?)
12; CCMCN E(S,6).A(17,,23).fY(223).MCOL(t79.Z5)
13; SDFa9.
14; 00 7* tl6
15; 00 75 .t,6
16. IF(A9s(AE(1.J)).GT.SDF)8DFA8S(AE(I.J))
1?; 79 CONtINUE
13; 00 71 l't.6
19; 00 71 Jt.6
28; S2AE(1,J)/SDF
2!; IF(A8S(S).LE.3.$E-6)AE(I.J)'ø.
22; 71 CONTINUE
23. 00 18 KUIS6
24 LMNF(NG(K))
25; IF(ID. NE. 4)00 TO 3$
26; r'NGcK)
2?; 38 KIS$
28; 00 58 ISal. IN
29; GO TO (51.52,53.54.53). ID
3$. 51 IF(NU(IS).NE.555)GO TO 5$
31; GO TO ¶6
72; ¶2 IF(N(IS).NE.555)GO TO 5$
33; GO TO 56
74, 53 IF(NPC!S).NE.5!5)GO TO 59
35; 00 TO ¶6
36; 54 IF(HTC!S).NE.555)GO TO 5$
3?, 56 K!S.KIS+1
38; 58 CONTINUE
39; IiM-KIS
45, !F(IN.LE.9)GO TO 1$
41; 00 11 L1.6
42; !F(a9S(AECK.L)).LE.5.5E28)GO TO It
43; JNNF(NG(L))
44; !FCID. NE. 4)00 10 68
45; JMaNGCL)
46; 60 KISa$
4?; 00 55 IS*1.uN
49; 00 TO(61.62.63.64.63),ID
49; 61 !F(NU(IS).NE.555)C0 TO 55

GO TO 66
51. 62 1FcN(IS).NE.555)GO TO 55
¶2; 00 TO 66
53; 63 IF(NP(1S).NE.555)GO TO 55
¶4; 00 TC 66
¶5; 64 IF(HT(1S).NE.555)GO TO 55
56; 66 KISaK1S+L
57; 55 CONTINUE
53; J$aJN-KIS



COIIPaC 3' 1/79 1558.52
59; IF(Jfl.LE.0)CO TO 11

DO 16 JCzl,25
61; IFCMCOL(tfl.JC).E0.I)GO TO 17
62; IF(JM.LT.HCOLCIM.JC))GO TO 18
63; !F(J$.E.NCOL(IN.JC))GO TO 16
64;
65; 00 TO 11
66; 16 CONTINUE
67; JCJC-1
68; 17 IN1JC)AE(K.L)
69; NCOL(I.JC)Jfl
73; 00 TO 11
71; 18 LNCOLCIfl.JC)
72; L.#CIN.JC)
73; 30 19 MLsJC24
74; 4X.NCOL(IN.t.41)
75; 4NX4( IN, NL+1)
76; 4COLIM,NL$1)I.
77; A(IM1NL+t)ALA
78; IF(NX.EO.$)GO 10 20
79; LANX
30; 19 ALAANX
81; 20 A(fl,JC)AE(KL)
82; NCOL(!NJC).JN
83; 11 CONTINUE
84, 18 CONTINUE
85; RETURN
36 END
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