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The numerical analysis of thermal convection in porous media,
heated from below, and assuming Darcy flow conditions, involves the
solving of a set of non-linear equations for the temperature and flow
fields. The condition of criticality determining the onset of convec-
tion is obtained by linearization and the solving of an eigenvalue prob-
lem of the fourth order. The smallest eigenvalue represents the
critical Rayleigh number. The shape of the critical temperature and
flow fields is then obtained from the linear set. In most practical
cases, the problem setting is such that closed analytical solutions
cannot be derived.

The difficulties of solving the convection equations can be
overcome by using the Galerkin finite-element method. The method
allows the solution of both the linear set and also the more complete

non-linear set of equations at various boundary conditions and taking



variations in the material parameters into account.

In this thesis, the Galerkin method is used to solve the
convection equations for infinitely long porous \}ertical or semi-
vertical slabs with prescribed temperatures at the top and bott‘om sur -
faces. The first set of models investigated involve boundary walls
that are impermeab};e to the fluid but perfectly conducting to heat.

The critical Rayleigh numbers and critical temperature and
flow fields are obtainea for éuéh slabs with various aspect ratios. The
results show that the critical number is raised by 200 to 400% as
compared with published data for similar slabs with thermally non-
conducting walls.

The results are generalized by investigating cases of slabs with
(1) three types of vertically varying permeability, (2) by taking the
temperature dependence of the fluid properties into account, (3) by
including non-linear terms, and finally, (4) a few cases of slabs with
boundary walls of finite thermal conductivity are investigated.

The results are applicable to a number of situations in
geothermal areas. A brief discussion of two such cases is given,
that is, (1) the estimating of the critical permeability profile for the
East geothermal field in the Imperial Valley and (2) the computation
of a temperature cross section in the Cumali geothermal field in

Turkey.
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NUMERICAL ANALYSIS OF CRITICAL FIELD FUNCTIONS
FOR THERMAL CONVECTION IN VERTICAL OR
QUASI-VERTICAL DARCY FLOW SLABS

I. INTRODUCTION

Thermal convection phenomena in porous media are of consider-
able interest in theoretical and applied geophysics. At a sufficiently
high permeability, natural convection may take place in porous
formations of almost any shape and dimensions. The fluid movements
result in a convective transport of heat which may contribute to the
natural heat flow and thus modify the local temperature field. A tem-
perature field and heat flow theory based on purely conductive proc-
esses is inapplicable for such conditions.

The convective phenomena are of particular interest in
situations of enhanced local heat flow such as in and around active
geothermal systems and in areas of active volcanism. Convection
may then contribute very significantly to the thermal phenomena and
the outward flow of heat. As a result, the geothermal sciences take a
very great interest in many theoretical and numerical aspects of the
convective phenomena.

A problem setting of particular interest centers around the
specific or critical conditions required to initiate thermal convection
in a porous formation of given geometry, boundary conditions and

material properties. Here we are not only interested in the critical




conditions that lead to convection but also in the shape of the numeri-
cal data on the resulting temperature and heat flow fields. As a mat-
ter of fact, the critical field functions have received very great
attention in the literature during the past two or three decades. The
problem setting that has been the focus of interest can be divided into
two main cases, that is, (1) instability analysis and (2) development
of time dependent models. Below we briefly review the literature in

these fields.

Classical Instability Analysis

Clasical linearized Rayleigh type convective instability analysis
(Rayleigh, 1916: Chandrasekhar, 1961) was applied by Horton and
Rogers (1945) and Lapwood (1948) to determine the critical Rayleigh
number (Rc) and flow pattern at the onset of convection in an
infinite horizontal layer of a saturated homogeneous and isotropic
porous Darcy type medium heated from below. Establishing the mass,
momentum and energy balances for this type of system, neglecting
the temperature and pressure dependence of the fluid, except where
they create buoyancy (Boussinesq approximation), and omitting all
nonlinear terms in the equations, lL.apwood obtained for isothermal

39.5. Assum-

and impermeable boundary surfaces, the value Rc

27.1. Results

ing permeable surfaces the value is reduced to Rc

of experimental work by Katto and Masuoka (1967) show a satisfactory




agreement between theory and experiment. Using numerical tech-
niques, critical Rayleigh numbers for more general sets of boundary
conditions were obtained by Nield (1968). Analogue solutions for
similar systems including nonlinear terms have been given (Wooding,
1957: Wooding, 1958: Elder, 1967: Chan et al., 1970).

The procedure employed by Lapwood was extended by Beck
(1972) to investigate convection in porous boxes with insulated walls.
Zebib and Kassoy (1978) have used a two-term expansion of the tem-
perature and velocity vector fields to reinvestigate the box models
and conclude that when the Rayleigh number is just above the critical
value the two-dimensional convection mode transfers heat more
effectively than does the three-dimensional convection mode.
Recently, Zebib and Kassoy (1977) have reconsidered Beck's problem
by taking into account the effects of viscosity variation due to tem-
perature differences. They found that the general mode configuration
is the same as derived by Beck (1972) but, the critical Rayleigh num-
ber is significantly reduced as the thermal gradient increases. Straus
and Schubert (1977) have carried out a very complete analysis of the
effects of variable thermodynamic and transport properties of water
on the critical functions. They observed that the critical Rayleigh
number may be reduced very considerably below the values obtained

by Lapwood (1948). This implies that convection may occur at a

smaller temperature gradient than predicted by an analysis based on




the Boussinesq approximation.

Evolutionary Models

A few investigators have treated non-steady state or evolutionary
models. Laboratory and numerical experiments on non-steady con-
vective flows in porous slab systems have been reported by Elder
(1967). A numerical and experimental analysis of convection in box
geometries with insulated boundaries has been carried out by Holst
and Aziz (1972). Mercer and others (Mercer and Pinder, 1973:
Mercer, Pinder and Donaldson, 1975) have carried out a numerical
simulation of the hydrothermal system at Wairakei, New Zealand.
They assume a temperature dependent viscosity and thermal expan-
sion coefficient. Mercer et al. (1975) point out, that their models are
essentially two dimensional (horizontally). Cases involving multi-
phase fluids were investigated by Lasseter et al. (1975) and Faust and
Mercer (1975). Sorey (1976) further investigated this problem in a
vertical slab model, and demonstrated the importance of the varia-
tions in the physical properties of the fluid. However, Sorey (1976)

did not treat the convection instability systematically and his analysis

has been criticized by Straus and Schubert (1977).




Scope of the Present Research

The principal aim of the work by Beck (1972) and Zebib and
Kassoy (1977) quoted above has been to modify the earlier results so
that they could be made applicable to problems of convective stability
in specific geological structures such as individual fault blocks where
Darcy type flow conditions can be assumed. To reduce the computa-
tional effort, the walls bounding the blocks are assumed to be imper -
meable to the fluid and non-conductive to heat. Clearly, the latter
boundary condition is not entirely realistic and, as can be demon-
strated by # relatively simple argument, leads to an underestimate of
the critical Rayleigh Number. The magnitude of the error involved
cannot be estimated within the framework of the approach taken.

Turning to the other extreme of wall condition, it is evident
that the critical Rayleigh number of such blocks will be overesti-
mated by taking the walls to be perfectly conducting to heat. Assum-
ing this condition, we obtain an upper bound to the critical number.
Such data are therefore complementary to those of Beck (1972) and
Zebib and Kassoy (1977). The real critical Rayleigh number for
finitely conducting walls will be bounded by the two extremes. It is
therefore of considerable interest to provide data on the upper bound.

In the thesis, we will elaborate on this subject by carrying

through computations of the critical functions for very long vertical or




semi-vertical porous Darcy type slabs where we assume that the
bounding walls are impermeable to the fluid but perfectly conducting to
heat. In view of the geometry assumed, the flow and temperature
fields will be assumed to be two-dimensional. To enhance the applica-
bility of the results, several angles of tilt will be assumed for the
slabs and the flow condition at the top bounding plane will be varied.

We will further generalize our work by investigating the impli-
cations of non-Boussinesq flows and temperature dependent fluid
properties. A few specific cases of varying permeability will also be
taken up for consideration.

Finally, a specific case of a slab embedded in rock having a
realistic finite heat conductivity will beinvestigated.

It is of interest to note that the present work is an outgrowth of
a joint research project of the Geophysics group at Oregon State Uni-
versity and the Department of Geophysical Sciences at Georgia
Institute of Technology, Atlanta, Ga‘. The principal scope of this
project was to investigate convective phenomena in geothermal sys-
tems. Both the OSU and GIT project were supported by the U.S.
Geological Survey Extramural Geothermal Research Program.

Dr. Robert P. Lowell served as the Principal Investigator at GIT.



II. NUMERICAL ANALYSIS

Various approaches to the mathematical formulation of describ-
ing the behavior of heat and mass transfer in fluid saturated porous
materials have been given (see, for example, Lapwood, 1948;
Wooding, 1957; Beck, 1972; Bear, 1972; Garg et al., 1975). Under
the present working frame the common basic assumptions are,

1) the porous medium is isotropic;

2) the fluid is in liquid phase;

3) the flow is in the saturated laminar range;

4) no heat sources or sinks exist in the field;

5) heat conduction is assumed to occur in both the liquid and the
solid material. Further, they are assumed to be in local
(pointwise) equilibrium.

Under these conditions, the flow of heat and mass in the porous mate-

rial may be described by the following set of equations.

Governing Equations

Flow Equation

The evolutionary form of Darcy's Law similar to that used by

Wooding (1959) and Schowalter (1965) is taken to be



-v(g)]=-vp-ﬂ’\'7’+pf§ (2. 1)

oV
rmm———— +
bt K

< 1<)

pf[

AN
where V is the macroscopic average fluid velocity field, P the

fluid pressure, p_. the fluid density, p the fluid viscosity, K

f
the permeability of the medium, ¢ the area porosity of the medium
and ? is the acceleration of gravity. The true (pore) fluid velocity
AN

is equal to V/¢. The inclusion of the intertia terms on the left hand
side in Darcy's law is required to'describe nonstationary flows. In
the case of slowly varying laminar flows in porous media, these
terms are generally negligible. Bear (1972) has discussed the range
of validity of Darcy's law, and Bodvarsson (1970) has concluded that

the inertia terms are of significance only in fractured rock with rela-

tively wide openings (a few centimeters).

Continuity Equation

For a compressible fluid, we can write the continuity equation

as

8(<l>pf)
at

= .v. (pf'\"') (2. 2)

Energy Equation

Neglecting the viscous dissipation and applying the energy bal-

ance equation developed by Bird and others (1960, p. 313 (10.1-9)) we



obtain the following energy equation for the combined fluid and solid

phases
9T DP 2 =2
+(1- - - — = v - . .
[cbprf (1 ¢)psCs] sc - T oo "k VT pCV VT (2.3)
DP P =
where —— = oF + V:-VP is the rate of enthalpy increased by com-

Dt ot
pression, ps the density of the solid material, «a the fluid
the rmal expansivity, km the thermal conductivity of the saturated
medium, Cf the fluid specific heat at constant pressure, and Cs

is the specific heat of the solid phase. For simplicity we take km
= +(1- .4
k | = ok, (1-¢)k_ (2. 4)

where kf is the thermal conductivity of the fluid and ks the
thermal conductivity of solid phase. In applying (2.4), we assume

that the heat conduction through the fluid and solid phases is parallel
but separate (Lagarde, 1965). In some cases the effective conductivity
is slightly higher than the values derived from (2. 4) because of the

thermal dispersion. A discussion of this parameter based on experi-

mental work has been given by Green (1963).

Equation of State

The physical properties of water are functions of both tempera-

ture and pressure. Relevant data are usually given in the form of
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algebraic relations. The equations derived by Meyer et al. (1968)
employed in this thesis are too complex to be quoted here. A sub-
program PROPT (Appendix C) has been worked out to generate the
density, thermal expansivity, compressibility, specific heat at con-
stant pressure and viscosity of water for given temperature and

pressure.

Galerkin Finite-Element Method

Our problem is to solve a couple set of nonlinear partial
differential equations. In general, solutions of the equations cannot
be derived in an analytical form, and consequently numerical tech-
niques have to be resorted to. Furthermore, the problem setting is
further complicating by spatial variations in the material properties
such as permeability and conductivity. Moreover, irregular geome-
tries and boundary conditions are often encountered. The selection
of the Galerkin finite -element technique for solving our convective
problem is based on the consideration of these difficulties.

Although the finite-element approach is often found to be more
flexible than finite-difference methods the variational formulation is
generally rather difficult. The Galerkin method offers an alternative
way of formulating problems for finite element solutions without using
direct variational principles. For many physical problems the

methods of Galerkin and Ritz often lead to similar approximating
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equations. The Galerkin method is, however, more universal and is
applicable to equations of the elliptic, parabolic, and hyperbolic
types. Kantorovich and Krylov (1964) and Forray (1968) present a
detailed discussion of the relative merits of the Galerkin and Ritz
methods. Douglas and Dupont (1970) give a comprehensive discussion
of the extensive use of the methods in the petroleum industry in recent
years.

The application of the Galerkin finite-element method to heat
and mass transfer problems in geothermal fields was initiated only a
few years ago (e.g., Thirriot et al., 1974; Mercer et al., 1975;
Faust and Mercer, 1975). They find that this approach is of great
value in the modeling of natural geothermal systems. On this method,
the whole domain under consideration is divided into irregular sub-
divisions as indicated by the physics and geometry of the underlying
problem. The size of each subdomain (element) can be varied
readily, and the approach yields good approximations of external and
internal boundaries. Even inhomogeneties and anisotropicities are
quite easily accommodated. Moreover, it is possible to represent
coefficients of the partial differential equations which vary in space
(e. g., permeability and density) as piece-wise function over each
element (Pinder et al., 1973).

The primary disadvantage of the Galerkin method is the need

for complicated computer programs and good computer facilities. To
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derive efficient computer codes for the Galerkin method is a
formidable task; however, once the development is complete, the
codes may be applied to a wide range of similar problems without
modification. General references on the application of the Galerkin
method to field equations include Zienkiewicz (1971), Pinder and

Frind (1972), Segol et al. (1975), and Pinder and Gray (1977).

General Formulation Procedure

Equation (2.1), (2.2), and (2.3) can be written as
Lth)=f in D (2.5)

where D 1is a bounded domain and the operator L acts on the
unknown field variable h to generate the known function f. To
solve (2. 5) by the Galerkin finite -element method, we start out from

a trial solution of the following form

n

P, t) = Z a, (t)N, (P), (2. 6)
i=1
where Ni(P) represent n basis (shape) functions of the field
point P forming a complete set for a linear subspace of dimension
n and chosen such that they satisfy the principal boundary conditions

imposed on (2. 1), (2.2) and (2.3). The ai(t) are time-dependent

expansion coefficients to be determined. Substituting (2. 6) into (2.5)
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yields

n

L [ Z ai(t)Ni(P)} -f=R (2.7)

i=1

where the residual R vanishes when the trial solution is an exact
solution. The Galerkin finite-element method is a special case of a
more general approach to the method of weighted residuals. The
basis functions Nj(P) are weighting functions that are selected such
that the residual R 1is minimized relative to an appropriate norm.

In the present approach, this is equivalent to requiring the ortho-

n

gonalty of L[Z ai(t)Ni(P)] - f to the basis function Nj(P)' i.e.
i=1
n
g[L Z a.(t)N.(P)-f]N.(P)da =0 (2.8)
1 1 )
D .
i=1
j=1L,2,...,n

Since Nj(P) belongs to a complete for a finite dimensional subspace
(dimension n) it is expected that as n =™ ©, the approximate
solution will tend to an exact one. Assuming that the above integra-
tions can be performed appropriately (2. 8) represents a set of n

equations with n unknowns (ai(t), i=1,2,..n). Oftenthere is a

way to lower the order of the space derivatives in equation (2. 8) and
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to introduce natural boundary conditions on the basis of an integration

by parts.

Element Basis Functions

Almost any two -dimensional domain of complex geometry can
be divided into appropriate triangular elements. This approach will
be used throughout this thesis. There is a trade-off between the num-
ber of the elements and the order of the basis functions. The same
degree of accuracy can be achieved by reducing the number but
increasing the order. In the field of petroleum engineering the
emphasis has been on using fewer elements of high-order basis func-
tions in relatively simple geometries while in structural engineering,
the tendency has been toward using more elements of low-order basis
functions. As shown in Chapter III, the analysis of convection
stability does require elements of high-order basis functions for suf-
ficiently fast convergence. Accordingly, a quadratic triangular ele-
ment (Fig. 1) appears to be a reasonable choice for the problems to
be investigated in @he present thesis.

In each triangular elerpent, the unknown function is given by the

relation:

5
1]
zl
[sV)

(2.9)

where
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€= (N,N,N,N,N,N)
i k q r
AT
€ (a.,a.,a ,a ,a ,a )
a i: ) k, [ y
N. = (2L L N, = 2L L; N = ZLZ L
i 1 j T k k Tk
Np = 4L1L2, Nq = 4L2L3, Nr = 41_31_1
Ln = local (natural or area) coordinate (see Fig. 1) n=1,2,3
L. = = [(z.x -z x.)Hx.-x )zt(z -z.)x]
128 AR AT T T K k™%
1
= — - Hx -x.)z+(z. -
LZ oA [(kai Zixk) (Xk xi)z (zi zk)x]
L = L [(z.x.-2.x,)H(x.-x.)z+(z, -2, )x]
3 2A ity i i j i

+L+L =1
Ly+tL, "L

& = Area of the triangular element.

Figure 1. Quadratic triangular element and area coordinate system.
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Treatment of Functional Coefficients

One of the most efficient ways of dealing with variable param-
eters in the governing equations is to assume that they are constant
over the elements or vary in a similar manner as the basis functions.

We may express these variables as linear functions

¢ (x,z)=L.c. +tL.c. +L_c
m 171 3

27j k

where Ln are the linear triangular basis functions or local (area)
coordinates and Ci’ cj, and ck are coefficients. Of course, it is
possible to express the S in terms of high-order basis functions
(e. g., (2.9)), but this would only complicate the computation. It is a
simple matter to incorpiorate the functional coefficients in conjunction
with quadratic triangular elements and numerical integration. The
above idea was first discussed by Desai and Abel (1972), and further

extended by Pinder et al. (1973). This approach is applicable to both

isotropic and anisotropic problems.

Differentiation and Integration

Before carrying out the integrations of the element equations
in (2.8), we face the task of evaluating the partial derivatives,

oh/ox and gﬁ/az. Since /1\1 " is expressed as a function of the local

coordinates L 1 LZ’

and L3 as in (2. 6), it is necessary to express




8%/8x, 8’1\1/8z, and dxdz 1in terms of L and L also. This

1 2
can be done as follows.
From equation (2. 6) we obtain
T T
A 0 0
h .y “m af 5 N
0x am o9x ' oz an'1 dz
m=i m=i

and hence we must express 8Nm/8x and 8Nm/8z in terms of

Ll and LZ. By the chain rule of differentiation we obtain

ON (on )
m - m
0x oL
-1 1

¢ p =l }
ON oM
m m

\, 82} LaL ,

and similarly

dxdz = det[J]dleLZ

where

[ 9x 9z |
oL oL
1 1
[7] =
0x oz
L
h8L2 ) 2

is the Jacobian matrix. It can be shown that if the mapping is
-1
acceptable, that is, one-to-one, then (7] exists (Zienkiewicz,

1971, p. 132). On the basis of these transformation integrals

17
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expression such as (2.8) reduce to the form

1 1-L,
So ‘fo F(Ll, LZ, L3) det[J]dleLZ

r

where F 1is the transformed function [:L Z amNm-fe ]Nj at the
m=i

element level. Clearly, the transformed integrand F 1is not a
simple function that permits closed form integration. Taking into
account the fact that all the dependent variables are simple poly-
nomials numerical integration can, on the other hand, be carried out
to any degree of accuracy.

The accuracy of the numerical integration required to assure
convergence of the finite element method is of considerable impor-
tance. One of the most popular numerical integration schemes for
triangular areas of integration is similar to the Gauss method where
the integrand is evaluated at n ‘disc rete points. The integrals are

then calculated on the basis of the relation

n
1 l-L2
g S F(L},L,, L;)det[J]dL dL, = Z w, det[J]F(L , L, L;)
00 ~
k=1
(2.10)
where the w, are weighting factors which are uniquely associated

with each point k. Making use of n sampling points in relation

(2. 10) exact integrals of all polynomial expressions of the form
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ZLTLng where @,B,y < n-1 can be obtained. Corresponding

weighting factors and stations may be found on the basis of Hammer's

formulas (Hammer et al., 1956; Hammer and Stroud, 1958).

Treatment of Temporal Derivatives

Approximation solutions to the time-dependent equations can
also be obtained on the basis of the Galerkin approach (e.g.,
Zienkiewicz and Parekh, 1970; Donea, 1974; K¥hler and Pittr, 1974).
Numerical experiments have, however, shown that, in general, none
of the methods tested perform significantly better than the centered
finite-difference procedure. This observation along with the sim-
plicity of the latter method lead to the conclusion that the finite-
difference scheme in time is the best overall choice in the majority
of cases of time-dependent finite element analysis. It is convenient
to combine the procedures by solving the transient equation using the
Galerkin method, and then to discretize the time derivative using a
finite difference scheme. For 'the problems at hand the backward
difference may provide better results as has been found by Pinder
(1973), Mercer (1973), and Segol et al. (1975). The finite-difference
discretization of the time derivative is expanded in the following

formula
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] t+at
—S h(t"')dt' = €h + (1-e)ht
t

At ttAt

where t < t'< ttAt. The case € =0 corresponds to an explicit
scheme (forward difference scheme), € = 0.5 1is the centered

implicit scheme (Crank-Nicholson scheme), and € =1 isthe

implicit scheme (backward difference scheme).
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III. LINEARIZED STABILITY CRITERIA FOR NATURAL
CONVECTION IN REGIONS BOUNDED BY
HORIZONTAL PLANES

Consider a homogeneous and isotropic fluid saturated Darcy
type porous system bounded above and below by horizontal planes,
place a rectangular coordinate system with the origin in the upper
plane and the z-axis vertically down. Hence, z = 0 in the upper
plane and let the lower plane be at =z = Hz. We assume that the
system is initially at rest and that its initial state is characterized by

and the pressure field P_.

the stationary temperature field T 0

0
Let this pressure field be hydrostatic, that is, PO = pfgz where
pf is the unperturbed density of the fluid. Moreover, we assume
that the temperature in upper plane is constant and equal to Tl

whereas the lower plane has a constant temperature T2 such that

T =T, + (T

0 ) -Tl)z/Hz.

2
Let the system be subjected to small convective perturbations,

in the temperature 6, inthe pressure p and to a velocity field

¥ such that the resulting fields are

T=17T_+
0 0

P_+
0 p

"U
I

Following standard procedure, we assume that marginal stability is

characterized by 8/8t = 0 (Chandrasekhar, 1961). Substituting the
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above perturbations 6, p, and ¥ into (2.1), (2.2), (2.3), and by

neglecting second-order terms (linearization) we obtain for marginal

stability
v-(pfv‘):o (3. 1)
vp - (Ey+pig=0 (3.2)
K f
pfcfv‘-vTO - aTO'\?-Vp = kmvze (3.3)

In the case of two-dimensional convection in the x-z plane where

Vv = (u,w), these equations take the form
ou , Ow
___+ puiiid + - = .4
5x oz | W(PPg-aD) =0 (3. 4)
-—Ba + E = 5
ox Ku 0 (3.5)
8p B o =
5. TR W (5pfp apfe)g 0 (3.6)
k VZO + (aT CDw=20 (3.7)
m oPE-Perg W ‘

where D = (T

Z—T 1)/Hz is the unperturbed temperature gradient.

To the first approximation, the parameters pf, a, B, p and K
are assumed to be horizontally constant, but can vary vertically.

The heat conductivity km is assumed constant. In the derivation of
(3. 6) we have used a linearized equation of state for the fluid such
that the perturbed density is pf' = Bpfp - apfe. Eliminating p from

{3.5) and (3. 6) we obtain
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o
K

LB + 06 p8u 8 B,
t g gBpu tapg = - P ug e () =0 (3.8)

Moreover, eliminating 9u/dx from (3.4) by making use of equation

(3. 8) we obtain

0
%vz Jw [E(ﬁpfg aD)- gﬁpfJi +—‘(E)] =

2

) . )
[JJ-L (ﬁp 8- -aD)- ﬁ Py g 2Ry aDgﬁpr + Be g g(f{)—aD g(f{)]w

Ko K
2
o
tap.g 2 =0 (3.9)
f 2
ox
where
v2 - 82+ 82
X2 5y dz
By introducing
_z _x g L8 Pt 172
2"H * *o H’® ‘0o DH ' Yo
z z Z m
o} :——pf o :-g— C :——C:f ﬁ :—@—
fo0 pfs 0 ozs fO0 Cfs 0 [3s
v kk
By =7 . Ko7
0 Mg 0 Ks
whe re
2
ga DH?p C_. K
S z fs fs s
R = K
pLsrn

is defined as the Rayleigh number, and the subscript s refersto
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the value of the parameter at the surface 2z = 0. For the sake of
simplicity the subscript 0 will be dropped from the transformed

quantities Xg> Zg 60, Wy hereafter. With this in mind, we may

rewrite equations (3.7) and (3.9) with the dimensionless parameters

included

asa HODHz

K M
2
R1/2V2 W+R}/ o[a 0

(2). =0 ] dw

X,2 Mo oz K0 K0 oz

1/2 ~0 5 Mo
+ — —[— -
R Mo {Hz oz [KO (ﬁsﬁopfspfog asaoD)]

v
2 0
) ﬁsﬁopfspngHz(ﬁsﬁOPfspng_asaoD)KO} v

2 1/2 Pfo

X, 2 DCfs

(aSaOHzng'fafsaoTsg—CfsCfoD)w = 0.

This can be rewritten in a more compact form

2
W w+E(2) Y + Flow + G2RIZLE (3. 10)
X, 2 oz 2
ox
VZ 0 —H(z)R1/2w=O (3.11)
X, Z
whe re
K v a a n DH
O, 0 0 0 0
E(z) :‘—['a'; (g ) SK 2] (3.12)
Fo 0 0
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Ko a "o
F(z) = Fo {Hz E[R_; (BB oPesPr08~ % %P
B B HE(B_p e aD) 2y (3.13)
- PPoPesPro8H PP P Pro8 %% K, .
a p. K
G(z) ZO_fOQ (3_ 14)
Fo
H():—'pio"‘(CCDaa H Dz-a a. T g) (3.15)
z DC, £s 0" %% 08Pt %% S8 .
s

Inthe case of the Boussinesq approximation, the terms E(z) and
F(z) are equal to zero, and G(z) and H(z) are equal to unity.
Equations (3.10) and (3. 11) together with given proper boundary con-
ditions constitute an eigenvalue problem for the Rayleigh number R.
In marginal stability analysis, we are only interested in the smallest
positive eigenvalue of (3.10) and (3. 11). This is the critical Rayleigh
number Rc which determines the marginal stability of the per-

turbation and thereby the onset of convection.

Formulation

Following the general procedure of the Galerkin finite-element
method discussed in Chapter II, the trial solutions are assumed to be

of the form



26

3
0
Z
&

(3.16)

M
0 = ZN.O. (3.17)
1:

node i, and N.1 are the quadratic basis functions defined over the
triangles. Functional coefficients E(z), F(z), G(z), and H(z) are

approximated by

M
C

E(z) = ZLJ.EJ. , F(z) = L.F,
j=1

(3.18)

M
c
G(z) = ZLjGj, H(z) = L H.

J:] J:]

where MC is the number of corner nodes of the finite element grid
and Lj are the linear triangular basis functions. Application of the
Galerkin procedure on (3. 10) and (3. 11) with the substitution of (3. 16)

where M is the total number of nodes in the finite element grid,
wi and Gi are the finite element solutions for w and © at the
to (3. 18) into (3.10) and (3. 11) yields
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T
g (vi ZNT{W}+LT{E} aa—NZ— (wh+L T {FINT {w})
D s
52T
+ R 1/2 e} R {e}]N da = 0
8x

]

S [vi ZNT{G}-RI/Z T{H}N {w }]N da =0 k=12 ...,M

D b

By making use of Green's theorem to remove the second derivatives

from the integral expressions we obtain

T

ON T ON T

oON k ON T ON

S ( k. + . )da{w} -g L {E}N da{w}
0x ox oz 0z D k 0z

ON
S‘ LT{F}NkNTda{w} N RI/ZS' LT{G}(8_1_<.8N

D D

)da{6}

1 00
SN (8_‘2'2 +8_w£ )dS- /ZS: LT{G}N £ ds—O (3.19)
c k@x x 08z . k 9x

ON T ON T
0 0 1 T
S( k ON | __k ON )da{6} + R /ZS LT{H}N N~ dafw}
D ox ox 9z oz D k

2
-SN(ng +29) yas = 0 (3. 20)
where ﬂx and ﬂz are respectively the x andthe 2z compo-

nents of the unit normal to the boundary, and ds is a differential

arc length along the boundary. The surface integral (boundary
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residual) in equation (3. 19) and (3. 20) now enables us to introduce the
boundary conditions. These equations with appropriate boundary

conditions can be written in matrix form as

[Al{w} + R”Z[B]{e} =0 (3.21)
2w} + [DHo} = 0 (3. 22)
where
ON T oN T T
~ k N k ON T N~ T T
[A] —S‘D{ax 0x * 9z 0z -L {E}Nk oz -L {F}NkN }da
ow ow
ON T
)
[B] =§ LT{G}('E)';(L{' 8Nx )da g LT{G}nggﬁxds
D C
[C]Vzg L TN Nl da
D Kk

ON T ON T
) ON
[D]=§( k oM, k. )da—S‘N(—aeﬁ + 28 yas
D ox ox oz oz c k'd9x x 0z =z

Equations (3.21) and (3.22) have non-trivial solutions if and only if

a]  rRY¥B]

which can be further reduced to
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(D)7 '[ela) 8] ¢ (1] = o0

This is an eigenvalue problem of a M xM matrix. The maximum
value taken by the reciprocal eigenvalue 1/R  of the system (3.21)
and (3.22) represents the critical condition for the onset of convec-
tion. Matrices are formed in our program BAFORM and then solved
for eigenvalues by program ORGAN. For the purpose of investigating
convection instability problems, the program RAYLEI (including
several developed subprograms) has the capability of dealing with
various field conditions. Details of coding with the aid of the many
supplementary statements are given throughout the program lists
(Appendix C). Some of the important features include the following:

1) Two dimensional irregular geometry are subdivided into
many triangular elements with quadratic basis functions.

2) The material properties or the coefficients of the partial
differential equations are allowed to be continuous or dis-
continuous within each element.

3) Many types of realistic boundary conditions such as conduct-
ing boundaries and totally impermeable or permeable
boundaries can be taken into consideration.

4) Coefficients of the matrices are stored in a band mode.

5) A subprogram GRID is available to generate elements and

node numbers for slab geometries with different tilt angles.
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The evaluation of the element equations in program BAFORM involves
a large number of arithmetic calculations. These operations are

listed in Appendix C.

An Example of Comparison with Existing Analytic Solutions

In order to demonstrate the validity of the above formulation,
we will below compare numerical results obtained on the basis of our
method to analytical results obtained for models with insulated walls
developed by Sutton (1969) and Beck (1972). For the present purpose,
we will limit Beck's three-dimensional model to the special two-
dimensional case shown in Figure 2. The model involves a rectangu-
lar regionin - < y < o filled with porous material and bounded

by impermeable and insulated walls.

0 X “Zu L L

\_\\l\\\\\\\\_\\\\}\\\_\\\\\\\ \\\\\\\.

2
7
L’
Z
L’
7
L’
L7
L7
“
L’
z

‘Y Hz

Vv
7z
L’
7
L’
7
-
7

A “

-." 3

L

‘ I

Figure 2. Schematic representation of a slab, Hx and Hz are in units
of length.

e
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In the Boussinesq approximation, the governing equations (3. 10)

and (3.11) simplify to

2
VZ w+R1/2§—Q:O (3.23)
X, Z 2

0x
VZ 0 - Rl/zw =0 (3.24)
X, Z

with the boundary conditions
u=0 on x =0, Hx/Hz

on z =0, 1

3
i
o

Q
[an)

=0 on x =0, Hx/Hz

@
o x|

=0 on z=0,1 (3.25)

The analytic solutions (Sutton, 1969; Beck, 1972) for the temperature

field and critical Rayleigh numbers Rc are given as

Hz w 2Hzx
= -— + . g1
0 ~Ha €°5 2 (1 Hx ) sin =z
2 H H 2
Re = n[(B=2)+H(—=-)]

Hx mHz

1
where m = integeral part of (1/2 + -Z-'J l+4(Hx/Hz)2).
Figure 3 and 4 show the results of our numerical calculations
in comparison with the exact values obtained by Sutton (1969) and Beck

(1972). The results demonstrate a monotonic convergence of the

approximate critical Rayleigh number and field functions with mesh
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Mesh No. of No, of Hx/Hz  Rc Rc
configuration elements nodes (exact) (finite element)
Hx
1 39.48 40.00 1.32%
Hz i 13 0.5 61,69 62,50 1,.30%
0.1 1006,80 1020,10 1.32%
Hx
1 39.48 39.72 0.60%
Hz 16 41 0.5 61,69 52,01 0.60%
0.1 1006.80 1012,30 0,55%
Hx
1 39.48 39.52 0.10%
Hz 36 85 0.5 61,69 61.77 0.13%
0.1 1006,80 100800 0.12%

Figure 3. Convergence of the critical Rayleigh number Rc versus the number of elements.

Com-

parison between finite element and exact values of Rc for the box model in Figure 2.

(43
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Figure 4. Comparison of the analytical solutions and the finite
element solutions for the box model in Figure 2.
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size. Even when only 4 elements are used, the numerical tempera-

ture results at the nodes agree within about 1% of the exact values.

Infinite Slab Models with Conducting Walls

As discussed in the introduction, we will now turn our attention
to the basic task of the present research, that is the investigation of
the critical field functions for models with perfectly conducting walls.
Moreover, we will also investigate models with variable permeability,
temperature and pressure dependent fluid properties and the implica-
tions of non-Boussinesq conditions will also be considered.

To carry out the computational work, the dimensions of the
specific models under investigation have to be chosen with regard to
applicability to realistic conditions. In our selection of slab dimen-
sions, we have had the geometry of fault blocks in mind, in particu-
lar, the field conditions in the Basin and Range Province. There is a
considerable amount of geothermal activity in this region, and most
of it appears to be controlled by the master faults which are so con-
spicuous at the horst and graben structures. Although our numerical
results are derived for models of specific dimensions, the data

obtained can be applied to geometrically similar models of other

dimensions with the help of simple dimensional analysis.
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Conducting /Impermeable Boundaries in the Boussinesg
Approximation

As shown in Figure 5 we commence by considering an infinitely
long slab with a slanted parallelogram cross section in the x-z
plane where the walls (1) and (2) make the angle ¢ with the hori-
zontal. Conside rihg only the 2-dimensional flow case in the x-z
plane and assuming all boundaries are impermeable and perfectly

conducting, the boundary conditions for the perturbation fields become

® =0 onwalls 1 and 2
6=0 on z=0,1
w=0 on z=0,1

and from the flow condition on walls 1 and 2 (see Appendix A)

ow _ 1/2 96 ow
e -G(z)R 0w [1(z)w+ az]COt ¢
where
K b
__08 0
I(z) = w 02 (KO) - 8B _Bp. PoH2

All parameters are assumed constant except pf' in (3. 2) which is
- _ - .
taken to be pf pf[l a(T Ts)]
Turning now to vertical slabs, with <|> = 90° and using the

Galerkin finite-element method, the set of equations (3.23) and (3. 24)

has been solved with the above boundary conditions. A comparison of
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the eigenvalues derived for different aspect ratios Hx /Hz with
those obtained by Sutton (1969) and Beck (1972) for the same type of

flow but with insulated walls is presented in Table 1 and in Figure 6.

~N

Figure 5. Tilted porous slab.

Table 1. Critical Rayleigh number at various aspect ratios for the
onset of convection in infinitely long slabs (y-direction) with
impermeable tops.

Hx /Hz 1.00 0.75 0.50 0.25

Conducting walls 80.10 109. 40 199. 20 681. 40

Insulated walls 39.48 42. 80 61.70 178.30
0.10 0.05 0.01

Conducting walls 4014. 60 15336. 60 297014, 00

Insulated walls 1006. 80 3967. 60 98715.70




Figure 6.

Re

(Parfectly conducting walls)

1
. 2-D Model e __
T (Insulated walls)

z: ¥ 1 T 1 H A}
0 0.1 0.2% 0.5 0.75 1

Comparison of critical Rayleigh numbers for vertical
slabs at various aspect ratios and perfectly conducting
walls with those of a similar model with insulated
walls.

37
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For a 3-dimensional model with insulated walls and extending
over the entire y-axis, Beck (1972) derived for the limiting case of
Hy —> o a critical Rayleigh number of 29.48. ! This value is con-
siderably lower than the value calculated by Lowell and Shyu (1978)
for the same model geometry with conducting walls. They came to
the conclusion that for Hx/Hz < 1 the critical Rayleigh number
approaches to the above values for 2-dimensional models (Table 1 and
Fig. 6). This suggests that the 2-dimensional circulation pattern is
preferred when Hx /Hz < 1. Even ifthe circulating motion in the
case of the model with insulated walls is restricted to the x-z
plane the critical Rayleigh numbers as derived by Sutton (1969) are
still lower by a factor of 2 to 4 when compared to our present values.
When Hx/Hz < 2, the heat transferred across the conducting walls
becomes more important. Consequently, the onset of convection
requires higher critical Rayleigh numbers. The dashed lines in
Figure 6 implies that as the aspect ratio increases the effects of the
conducting walls become less important and the critical Rayleigh
number tends to the value 39. 48 obtained by Lapwood (1948) for hori-
zontal slabs of infinite extent.

Figure 7 illustrates the computed isotherms for cases of both

insulated and conducting walls at a fixed aspect ratio Hx/Hz = 1.

In the case of 3-d model with insulated walls the critical
Rayleigh number =™ 39.48 as Hy — cc.
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- Hx
Re-3948. 57t R-835, H=1
'nsulated walls P conducting walls .
0 0.25 0.50 073 10 ) 025 050 ors 10

P Ld —--).—--,“
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0.25
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o025} [°3

Figure 7. Critical convective patterns in vertical slabs as
affected by boundary conditions and Rayleigh numbers.
With R = 83.5, case b has a central convective cell
whereas at Rc = 80. 1 case ¢ has a double convective cell
with centrally ascending fluid. Solid contours are iso-
therms. Dashed lines are contours of convection cells.
R = Rayleigh number, Rc = critical Rayleigh number.



40
The signatures in Figure 7 will be used for the representation of
results throughout this thesis. Isotherms are shown with solid lines
contours of convection cells with dashed lines and the values of ©
and the dip angle ¢ are indicated. For convenience the scale of
the field amplitudes of the isotherms has been chosen such that the
maximum amplitude is 12. Figure 7 indicates how the isotherms
depend on the wall boundary conditions. The isotherms in Figure 7-a
show clearly that no heat is transferred across the side walls, while
in the case of conducting walls in Figure 7-b, heat is absorbed by one
side wall and released by the other.

It is of interest to note that the asymetric single-node flow
field obtained for conducting walls at a Rayleigh number of 83.1 and
shown in Figure 7-b was derived on the basis of 2 x4 x 4 = 32
computational elements. The symmetric two-node flow field obtained
at a slightly lower Rayleigh number of 80. 1 was, on the other hand,
derived with the help of a more symmetric scheme of 3 x4 x 3 = 36
computational elements. Analog results for a different aspect ratio
are shown in Figure 8. Obviously, there is some inconsistency since
we would expect the simpler mode to correspond to a lower Rayleigh
number. We believe that we are here confronted with an artifact
resulting from a "numerical re sona‘.l';ce " between the computational
scheme and the basic modes of the underlying model. The more

symmetric computational scheme generates the symmetric mode
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Figure 8. Critical isotherms and convection cells at various aspect ratios and Rayleigh numbers for

infinite vertical slabs with impermeable tops.

of the convective patterns are shown in ¢ and d where the aspect ratio Hx/Hz = 0. 1.

Due to scale limitation only the upper half

NN
—
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rather than the more basic asymmetric mode. Introducing some
asymmetry into the model such as a slight tilt of the slab but still
using 36 con';putational elements results in the suppression of the
symmetric two-node flow field solutions and only the single-node
asymmetric field with Rc = 80.1 (see later in Table 2) is obtained.
In the following, we will therefore make the basic assumption that the
single-node flow field and the associated Rayleigh number represent

the critical situation.

Tilted Slabs with Conducting Walls and Impermeable Tops

Our next step is to investigate the effects of different dip angles
on the critical Rayleigh numbers and convection cell forms in
infinitely long slabs of the type investigated above. Using the same
computational procedure as above, our results for the critical
Rayleigh numbers at dip angles from ¢ =90° to ¢ = 60° are
tabulated in Table 2 and their general trend with respect to decreas-
ing ¢ is sketched in Figure 9. The critical Raleigh number Rc
is not found to change much (within 10 percent) for 70° < ¢ < 90°.
This suggests that in estimating critical Rayleigh numbers, vertical
slab models can in many cases be used to approximate slightly tilted
structures. It is interesting to note as shown in Figure 9 that for
Hx/Hz < 0.10, the critical number decreases with the dip angle.

Therefore, a narrow (Hx/Hz < 0.25) tilted slab may in many



Table 2.

Critical Rayleigh number for the onset of convection in infinitely long slabs with

impermeable top for various aspect ratios and tilt angles.

Hx /Hz

¢ 1. 00 0.75 0.50 0. 25 0.10 0. 05 0.01
90° 80. 10 109. 40 199. 20 657. 10 4014. 60 15336. 00 397014. 00
85° 81.10 110. 40 203. 40 668.30 4019. 60 15405. 00 392051. 00
80° 81.30 111.80 205.00 674.70 4078. 40 15351. 00 387997. 00
75° 81.50 113.10 210.00 678. 80 4017.80 15198. 00 384706. 00
70° 81. 80 114, 90 216. 20 681.50 3973.00 14959. 00 381456, 00
65° 82. 50 117.20 222.80 684. 70 3894. 20 14684. 00 374781. 00
60° 83.90 120. 20 230. 60 690. 50 3812.50 14393. 50 367996. 00

1574
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Figure 9. Variations of the critical Rayleigh number with the
tilt angle ¢.
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cases be more unstable than a vertical one with the same aspect ratio.
Numerical results on critical isotherms and vertical flow
vectors in tilted infinite slabs are given in Figures 10 to 13. Again,

the normalization of flow and temperature amplitude are arbitrary.
The isotherms and vertical flow fields in these figures indicate a
tendency of forming a main vertical cell in the central portion of the
slab accompanied by two local subcells near the corners. As already
stated, it is of interest to note that all critical flow solutions for

tilted slabs turn out to be the asymmetric type.

Vertical Slabs with Conducting Walls and Permeable Tops

Flow or recharge through a permeable upper boundary may
occur when either a standing liquid or a second porous medium (with
a much larger permeability) overlies the porous layer of interest.
The appropriate boundary condition is then one of constant pressure
(Lapwood, 1948) which implies that there is no viscous interaction
across the boundary z = 0. By considering the continuity equation
we found for this case that, 0p/dx =0, 8p/dz = 0, and therefore
9w/8z =0 at =z = 0. The boundary conditions in (3.25) has to be
replaced by 8w/0z=0 at z=0 and w=0 at =z=1

Proceeding as in the previous section we can calculate the
critical "fu;nctions for models with a permeable top surface. The

results given in Table 3 and Figure 14 show that a permeable top
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Figure 10. Critical isotherms and vertical flow vectors at an
aspect ratio Hx/Hz = 0.5, and a tile angle ¢ = 80°
--assuming an impermeable top surface.
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Figure 11. Critical isotherms and vertical flow vectors at an aspect ratio Hx /Hz = 0.5, and a tilt
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local temperature extremums near the corners. Their relative amplitude is very small.
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Figure 12. Critical isotherms and vertical flow vectors at an
aspect ratio Hx/Hz = 0.1, and a tilt angle ¢ = 80°--
assuming an impermeable top surface. For con-

venience only the upper half of the critical fields is
shown.
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Figure 13. Critical isotherms and vertical flow vectors at an
aspect ratio Hx/Hz = 0.1, and a tilt angle ¢ = 60°--
assuming an impermeable top surface. For con-
venience only the upper half of the critical fields is
shown.
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leads to a reduced value of the critical Rayleigh number. The differ-
ence depends highly on the aspect ratio. For example, when
Hx/Hz = 1, the critical number is reduced to 1/3 of the value for
the case of an impermeable top. However, at Hx/Hz = 0.5, this
difference becomes negligibly small. In other words, the critical
conditions are independent of the top condition when Hx/Hz < 0.5.

Table 3. Critical Rayleigh number for the onset of convection for
various aspect ratios--assuming permeable top surface.

Hx/Hz 1.00 0.75 0.50 0.25 0.10 0.05 0.01

Rc 66.40. 100.20. 189.00 654.80 4010.00 15438.00 297000. 00

The isotherms are, however, significantly affected by the top
boundary condition. The vertical symmetry of the impermeable top
case is lost. In the permeable top case the double cell (see Figure
15-a) is shifted slightly upward (asymmetry about the lint =z = 0.5).
This phenomenon can be understood with the help of the flow pattern
shown in Figure 15-b. Since the ascending and decending plumes can
cross the boundary, their flow pattern is less restricted and the
velocity therefore higher than in the case of an impermeable top.
This effect intensifies the positive and negative isotherms around the
top boundary. Although the critical Rayleigh number is little
affected by the top boundary condition when Hx/Hz < 0.5, the

circulation pattern may be basically different.
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Figure 15. Critical isotherms and vertical flow vectors at an
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Tilted Slabs with Permeable Tops

Results of the computation of critical Rayleigh numbers for
tilted slabs with permeable tops are given in Table 4 and critical flow
patterns are shown in Figures 16 and 17. Taking a glance at the
values in Table 4, two facts emerge. First, the values are not sig-
nificantly smaller than in the case of impermeable tops, particularly
in the range Hx/Hz < 0.5. Secondly, a sharp change in the magni-
tude of the critical Rayleigh number may occur at some dip angles.
To illustrate this, the critical isotherms and vertical velocity pat-
terns for normal slabs and those with a sharp change in the critical
Rayleigh number are compared in Figure 16 and 17. The figures
show that the abnormal behavior of the critical Rayleigh numbers is
associated with the emergence of a three-cell pattern. A relatively
large increase in the critical Rayleigh number is associated with the
jump from double to triple cell convection. In general, a change in
the topology of the cell pattern is associated with an abrupt change
in the critical Rayleigh number.

Although, the criteria for the set up of multi-cell (> 2) con-
vection is an interesting subject, we will not discuss it here. Par-
ticularly interesting cases can be explored separately witl:1 our
program RAYILEI. At this stage, we would like to emphas‘ize the fact

emerging from these result, that in the case of permeable tops the
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cell pattern is more dependent on the aspect ratio and the tilt angle

than in the case of impermeable tops.

Table 4. Critical Rayleigh numbers for the onset of convection at
various aspect ratios and tilt angles for slabs with a

permeable top surface.

Hx /Hz
o) 1.00 0.75 0.50 0.25 0.10 0.05 0.01
90° 66.40 100.20 189.00 654.80 4010.00 15438.00 397000.00
80° 66.10 97.00 192.40 674.20 4076.80 15508.00 408827.00
70°  67.23 101.50 208.10 816.00 3943.30 15240.00 378946.00
60° 72.40 114.60 309.10 645.90 3782.00 14682.00 364261.00
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I"-igure 16. Critical isotherms and vertical flow vectors at an
aspect ratio of Hx/Hz = 0.5 and a tilt angle ¢ = 80°--
assuming a permeable top surface.
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Figure 17. Critical isotherms and vertical flow vectors at an aspect ratio of Hx/Hz = 0.5 and a
tilt angle of ¢ = 60°--assuming a permeable top surface.
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IV. EFFECTS OF TEMPERATURE - AND PRESSURE -
DEPENDENT THERMODYNAMICAL AND TRANSPORT
PROPERTIES OF THE FLUID

Kassoy and Zebib (1975) have emphasized the importance of
variable viscosity for the onset of free convection in porous media.
The implications of variable thermodynamical and transport proper-
ties of water as well as of non-Boussinesq effects have been investi-
gated by Straus and Schubert (1977). Their analysis is, however,
limited to infinite horizontal layers with impermeable top and bottom
boundaries. In this section we will employ our computational tech-
nique to study the effects of variable properties and non-Boussinesq
effects on the critical Rayleigh numbers and flow modes for two-
dimensional convection in infinite slabs of the same type as in our
above models. Data on the thermodynamic properties of water are
given in Appendix B.

With regard to the non-Boussinesq effects we have instead of
setting E(z) = F(z) =0 and G(z) = H(z) = 1 to solve the whole set
of equations (3.10) to (3.15). The expressions E(z), F(z), G(z),
and H(z) are then assumed to be known parameter functions to be
applied in the solving of equations (3. 10) and (3. 11). A new computa-
tional program PROPT and a subprogram ROAP (Appendix C) have

been developed to evaluate the parameter functions. No additional

computational effort will be needed to take into account variations of
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the material properties over individual element areas because during
numerical integration the value of the parameter functions at the sta-
tions for integration are available on the basis of a one-dimensional
linear interpolation between neighboring corner nodes. The introduc-
tion of the additional parameter terms in the integral equations
increases the order of the highest order polynomials to be integrated
from four to five (the unknown parameters © and w are approxi-
mated by quadratic basis functions). Fortunately, fourth- and fifth-
order polynomials require the same number of stations for integra-
tion, so that no additional work is required in the integration based on
functional parameter representation.

Non-Boussinesq Slab Models with Conducting
and Impermeable Boundaries

Assuming a surface temperature Ts =25°C and a surface
pressure Ps = 1bar, the stability problem formulated above has
been solved using the shooting method. Because of the temperature
dependent properties, we have in this case to prescribe the tempera-
ture gradient and geometry from which criticallity is to develop. In
our analysis of a water saturated infinite slab with impermeable but
conducting boundaries we assume the temperature gradients to be
D =30, 50 and 70°C/km, depths Hz < 5 km and aspect ratios

Hx/Hz = 0.5, 0.25, 0.1 and 0.0l. The results are given below in
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terms of a relative Rayleigh number which is the ratio between the
actual Rayleigh number and the corresponding number for a model
with constant properties equal to the state in the top surface. The
relative Rayleigh number is displayed in Figure 18 as a function of
Hz for 4 different aspect ratios with D as a parameter.

Clearly, the onset of convection in a water -saturated porous
slab is substantially influenced by the variable properties and non-
Boussinesq effects. As noted by Straus and Schubert (1977) for the
case of an infinite horizontal porous layer, the water-saturated
porous slab is considerably more unstable to thermal convection than
an equivalent porous slab saturated with an ideal fluid having spatially
constant thermodynamic properties. The results shown in Figures 18
and 19 indicate how the relative number r decreases with D and
Hz when the other quantities are held fixed. To take an example,

0.25 with a moderate tem-

consider a slab of aspect ratio Hx/Hz
perature gradient D = 30°C/km  and being 1 km deep. This case
leads to r = 0.5 (Figure 18). Furthermore, in the case of a slab
with an aspect ratio Hx/Hz = 0.01, a temperature gradient
D = 50°C/km, and depth of 5 km, the relative number r is
reduced to only about 0. 033.

It is interesting to consider the effects of variable fluid proper-

ties on the relative Rayleigh number as Hx/Hz tends to very small

values assuming a fixed temperature gradient D. One may consider




r o

rw

60

r o

He(Ka)

T

He(Ka) He(ks}
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Hx/Hz as a parameter and arrive thereby at the graphs shown in
Figure 19. An interesting fact is that the relative Rayleigh number
decreases with the aspect ratio Hx /Hz until the latter reaches a
value of 0. 1. Below this value there is little change.

To elaborate on the above results, typical critical isotherms
and vertical flow fields for infinite slabs with impermeable boundaries
are shown in Figures 20 and 21. In contrast to our earlier results
obtained with the Boussinesq approximation (e. g. the isotherms shown
in Figure 8, which are symmetric about =z = 0.5 Hz) the present
results show a relatively high density of isotherms near the lower
boundary. This implies that the hot fluid near the bottom boundary
moves relatively fast in comparison with the cooler fluid near the top
boundary. The associated vertical Veloéity fields given in Figures
20 and 21 provide further evidence for this phenomenon. A close
inspection of the two figures indicates that as a result of the effects of
temperature and pressure on the fluid properties only about 60 to 70%
of the volume of the porous slabs is relatively strongly involved in the
convection. The relative size of the active volume decreases with

the aspect ratio.
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Figure 20.

Critical isotherms and vertical flow vectors for the
non-Boussinesq case at an aspect ratio Hx/Hz = 0.5
assuming an impermeable top and a temperature
gradient D = 50°C /km.
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Critical isotherms and vertical flow vectors for the
non-Boussinesq case at an aspect ratio Hx/Hz = 0.5
--assuming an impermeable top and a temperature

gradient D = 50°C /km.
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Non-Boussinesq Slab Models with Conducting
Boundaries and a Permeable Top

Since in the case of variable fluid properties discussed above
mainly the lower portion of the porous slabs is strongly involved in
the onset of convection, the upper top boundary conditions have little
influence on the critical Rayleigh number. Accordingly, one may
expect that in the non-Boussinesq case the critical Rayleigh number
for slabs with permeable tops should be very close to the values
those obtained for the case of impermeable tops. Several numerical
tests of this conjecture have been run with the help of our program
RAYLEI. Inthe work we have chosen Hx = 0.5 km, Hz = 1 km,

D =30°C/,m, and obtained practically the same critical Rayleigh
number Rc = 171.9 for both cases of top condition. Therefore, the
data furnished in Figure 18 hold (except at near surface) equally well
for both types of top condition. The critical isotherms and velocity
vector solutions shown in Figure 22 are nearly the same for both
cases (Figure 20). The vertical velocity vectors shown at the top sur-

face in Figure 22 are extremely small but finite quantities.
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Figure 22. Critical isotherms and vertical flow vectors for the
non-Boussinesq case at an aspect ratio Hx/Hz = 0.5
--assuming a permeable top and a temperature gradi-
ent D = 50°C /km.
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V. VARIABLE PERMEABILITY

In the natural setting, the formation permeability may vary
within wide limits. In our modeling, we are therefore interested in
being able to cope with large variations of this parameter. It is one
of the advantages of the finite element formulation applied above that
it does allow the material properties to vary from element to element,
and therefore only little additional work is needed to be able to handle
models with a complex permeability distribution. In order to look
into the implications of a variable permeability, we present below
results for four physically interesting cases: namely (a) a permea-
bility constant with depth (Figure 23-a), (b) permeability decreasing
linearly with depth (Figure 23-b), (c) permeability decreasing quad-
ratically with depth but less than in the linear case (Figure 23-c) and
(d) permeability decreasing quadratically with depth but greater than
in the linear case (Figure 23-d). (To the best of our knowledge, the
critical Rayleigh number of an infinite horizontal layer of variable
permeability has not been determined. )

Since in the above finite element formulations, the derivatives
of the material properties are included in equations (3. 12) to (3. 15),
both gradual as well as abrupt changes from element to element are

equally well within the capabilities of our program RAYLEI. For the

present purpose we will consider the specific case of a vertical slab




Figure 23.

Ks=Permeability at the top
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Four permeability models.
a = permeability constant with depth.

b = permeability decreasing linearly with depth.

c and d = two cases of permeability decreasing
quadratically with depth.
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with an aspect ratio of Hx/Hz = 1/4 and a depth Hz =5 km.
Except for case (a), the permeability varies as much as an order of
magnitude between top-and bottom. The unperturbed temperature
gradient is assumed to be D = 50°C /km.

It is of some interest to discuss the effects of the surface
hydrodynamic boundary conditions before solving the above stated
problems. Making use of the results obtained in previous sections,
the critical Rayleigh number for the case Hx/Hz = 1/4 with a
permeable top is within 0. 5% of that in the case of an impermeable
top (Table 2 and 3). The effects of temperature and pressure, which
shift the main convection zone downward, further reduce the influence
of the top boundary conditions. We may conclude that for
Hx/Hz = 1/4, the critical Rayleigh number is largely independent of
the hydrodynamic conditions at the top. This conclusion holds
although one might expect that the decrease of the permeability with
depth could offset the effects of temperature and pressure especially
when both the bottom permeability and temperature are low. To look
further into case (c) in Figure 23 with an unperturbed gradient
D = 30°C/km. As expected we find a critical Rayleigh humber of
301.0 for an impermeable top, and a value of 300. 9 for a permeable
top. This result implies that only one of the top boundary conditions

will be needed to analyze the rest of the cases. In Table 5 below,

we show further results for the critical Rayleigh number when
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Hx/Hz = 1/4, Hz =5 km, and D = 50°C /km. Except for the first
two rows which are quoted here from our previous results, we have
taken full account of the effects of temperature and pressure. As
expected the permeability decrease with depth tends to stabilize the
fluid within the porous material. In contrast to the influence of tem-
perature and pressure, these effects raise the values of the critical
Rayleigh number and thus suppress the onset of thermal convection.
In our earlier investigation, we have emphasized the importance of
variable hydrodynamic properties on the Rayleigh number. In the
present section, we conclude that the variable permeability is of
equal importance. This is not surprising since the parameter K
enters into equations (3. 12) to (3. 14) in the same manner as the
viscosity does.
Table 5. Critical Rayleigh numbers for various permeability situa-

tions assuming Hx/Hz = 1/4, Hz = 5 km and an unperturbed
gradient D = 50°C /km; Ks = permeability at top.

Permeability Functions Rc

(a2) K=Ks 680. 6 Imper. Top; Boussi. Approx.
(a) K=Ks 680. 0 Per. Top; Boussi. Approx.
(a) K=Ks 29.6 Imper. Top; Non-Boussi.

(b) K=(1-0. 18z)Ks 89.3 Imper. Top; Non-Boussi.

(c) K=(1-0.36z10. 03 6z2)Ks 156. 2 Imper. Top; Non-Boussi.

(d) K=(1-0. 036z2)Ks 62.3 Imper. Top; Non-Boussi.
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The critical isotherms and vertical flow vectors corresponding
to the cases in Table 5 are given in Figures 24 to 28. One interesting
characteristic revealed in these figures is the shifting of the site of
the main convection zone as we observe in the cases (a) to (d). Fig-
ures 20 to 22 reveal that the variable water properties force the main
convections down to lower regions, whereas Figures 26 to 28 show
that the permeability decrease with depth pushes it up to higher
regions. This is physically reasonable since more buoyant water is
created by higher temperatures at depth which is then dispersed in
the more permeable sections of the porous medium. In these exam-
ples, the effect of the permeability decrease with depth nowhere com-
pletely offsets the effects of the variable water properties. The
tendency of the main convection cells to move up or down as a result
of these effects is a very useful piece of information which helps us

to understand the physical behavior of natural convection systems.
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Figure 24. Critical isotherms and vertical flow vectors for an
impermeable top assuming Boussinesq approximation,
an unperturbed gradient D = 50°C /km and the
permeability function (a) in Table 5.



73

Rc=680.0
Hx -0.25 X X
Hz (km ) (km)
0 0.625 125 4+ ¢ 0625 .25
2 -2 R

Figure 25.

-8
10 -0 [ «I.Jll
z RN
(km) 12 -2 (km)
2.51 J 4 T I c v, b4
Y I I « ¥ 3 'S
U Y

-4 T 1

e
[%\\ i )

8.0 L

Critical isotherms and vertical flow vectors for a
permeable top assuming Boussinesq approximation,
an unperturbed gradient D = 50°C /km and the
permeability function (a) in Table 5.
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Figure 26. Critical isotherms and vertical flow vectors for an
impermeable top assuming non-Boussinesq approxi-
mation, an unperturbed gradient D = 50°C /km and
the permeability function (b) in Table 5.
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Figure 27. Critical isotherms and vertical flow vectors for an
impermeable top assuming non-Boussinesq approxi-
mation, an unperturbed gradient, D = 50°C /km and
the permeability function (c) in Table 5.
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Critical isotherms and vertical flow vectors for an
impermeable top assuming non-Boussinesq approxi-
mation, an unperturbed gradient D = 50°C /km and
the permeability function (d) in Table 5.
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Vi. TIME DEPENDENT MODELS

In our analysis, we have so far concentrated on the critical
functions such as the Rayleigh number and flow fields at the onset of
convection. Our analysis has been based on the linear perturbation
approximation of the governing equations and on the assumption of
time independent temperature and flow boundary conditions. A num-
ber of interesting results concerning the onset of convection in our
models have been obtained this way.

It is obviously of considerable interest to look briefly into a
more general problem setting involving the evolutionary or time-
dependent aspects of convection in our slab models when both flow
non-linearities and heat conduction processes in the bounding media
are taken into account. Below we will briefly present some compu-

tational results along these lines.

Governing Equations and Galerkin Formulation

The equations governing the heat and mass flow through porous
media, based on Darcy's law and the principle of conservation of
momentum and energy are listed earlier as (2. 1), (2.2), and (2. 3).
For the present purpose we may again neglect the inertial forces as
small compared with viscous forces in the porous medium. The

left-hand side of (2.2) can then be expanded as
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where Bm is the compressibility of the wet porous medium. Thus,

in the final form, our equations are

A K o
V = _H (-vP+pfg) (4. 1)
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We need to introduce the heat conduction equation to describe the
temperature field in the solid material bounding the porous medium,

that is,

— =av T (4. 4)

where a is the thermal diffusivity of the solid wall material.
Although the basic problem is now time -dependent, the Galerkin

finite -element procedure can be applied as in Chapter III. The

conduction-convection phenomena involve a density dependence

coupled with fluid flow which renders the problem nonlinear.
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Moreover, some difficulties arise because of the explicit time-
dependence of the temperature and pressure fields.

A convenient approach to the solving of the equations is to
combine (4. 1) and (4. 2) by eliminating -\? and assuming that the
last terms in (4.2) and (4.3) are negligible quantities. The combined
equations can then be solved for the pressure P which is substi-
tuted into (4. 1) to obtain the velocity field V. The velocity field is
subsequently inserted in (4.3) for calculating the temperature field.

The above procedure leads to satisfactory results when the
conductive heat transport is substantial. Computational difficulties
(Meissner, 1973; Segol, et al., 1975; Dessai and Contractor, 1977)
may, on the other hand, arise if the convective terms are very large.
These results from the computation of the velocity field by (4. 1)
based on trial solutions for the pressure field only. Moreover, the
computation of derivatives directly from trial solutions may in our
case result in velocity discontinuities across the element boundaries.
In view of this, it has been found necessary to include the components
of the velocity as well as the pressure fields as primary nodal
unknowns. This procedure has the advantage that the pressure and the
velocity boundary conditions may be readily incorporated into the
matrix equations. Accordingly, to insure an accurate velocity field
in the mixed approach, the nodal unknowns were assumed to be tem-

perature T, the velocity components u and w, and the



80

pressure P which are expressed as
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Here, the set of basis functions Ni satisfy the essential boundary
conditions of the partial differential equations and are assumed to be
linearly independent. Moreover, Ti(t)’ ui(t), Wi(t)’ and Pi(t)

are unknown time dependent coefficients and Mt and M are the
number of total temperature respectively the total flow nodes. In
our mixed domains, Mt is much larger than M. In order to
allow the parameters pf, a, B, Cf, M, and K to vary linearly in

an element, we can use the functional representation for a parameter

function f

M
c

flt,x,z) = E L.f.(t)
JJ
j=1

Here again the parameters are function of time. The element equa-
tions were obtained by using the Galerkin residual procedure as in
Chapter III. Only the relevant details are presented here. In this

approach, the terms in equation (4. 1) can be expanded such that
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S pNTdea{u} = -S‘ aaN N, da{P}
D D %

)
g pNTdea{w} = S K aN_z dea{P} +S Kpngkda
D D D

and combined in a matrix form
[Al{v} + [Bi{P} = {F}

where {V}, {P}, and {F} are arrays of order 2M defined by

u P 0
{v}-= » {P}= , {F}= da
W P D Kpngk
n |pN Nk 0
[A] S da,
0
D PN Nk
T
ON
K 9x Nk 0
[B] :§D aNT da.
0 K oz Nk

N
Substituting (4. 1) into (4.2) to eliminate V, we find

pK
P 9T
= - —_— + +
peleB-B_ ) Zo = -v- [ " (-vP+p B)] dp o oo
p K p K p Kg 0p
£ 2 f N f f dT
=—— VvV P -v(—).(-vP+ e —t —=
" v v ( H)(v P B) L oz op @ T

(4.5)
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Applying Green's theorem to the Laplacian operator in (4.3), (4.4)

and (4.5) results in a system of matrix equations of the form

(] 2= {x} + [Blix} = (F)

where

{x} = {P}

[A] =S‘ PfH2(¢ﬁ-ﬁm)NTdea
D

[B]

T N T ON
g (o (2 k (AN k)4,
8x ox 9z 0Oz

D k

aN 2 5 P& oNT
S {[H K""(“")] +[H g;(T)]—az—}N da

p K A
2 0 'f 2. T 9T 9P
= . —_— (— + — —
{F} S gk 5, | " )N, da S(Mfau IN'N, da = +S e K 5
D D c
in (4.5),
{x} = (T}

A] =§ [q>prf+(1—q>)psCs]NTdea
D

T 0N T ON

oON k , ON k
= +
[(B] SD km( O9x 0x 0z 0z Jda
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-S [ap gw- 2 (0P +wl)taNT 2 INTN da
f K ot k
D
of
{F} :S k — N ds
m 9n k
C
in (4.3), and
{x} ={T}
T
[A] =§ (pC)rock NN, da
D(rock)
T ON T aN
N k , @ k
[B] :\g (k)rock - ( 0x Ox * ;\Iz 0z )da
D(rock)
%
{F} = (k)rock - o 'des
C(rock)

in (4.4). Here, C is the boundary of the domain for each equation
A A

and 8P/8n, 8T /0n are derivatives along the outward normal to C.

The expressions F in (4.3) and (4.4) are assumed to cancel

mutually at the boundary between the porous media and the adjacent

rock. Physically, we assume that the heat flow is continuous at that

boundary, that is, there is no accumulation of heat.

Details of Solution Algorithm

In general, an iterative approach is required to obtain a satis-

factory solution to the above four coupled basic equations (4. 1), (4.2),

I
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(4.3) and (4.4). It is often advantageous to choose different time
steps in solving the flow and energy equations. A time-lagged formu-
lation procedure can allow considerable economy in the computation
and still provide acceptable results (Sorey, 1976; Lippmann et al.,
1976). Using this method the interrelated equations (4.3), (4.4) and
(4.5) are solved alternatively by interlacing solutions in time. The
flow equations are solved for P and V  at atime t+(at/2) by
using data on 8T /38t and the fluid properties at t. Then the energy
equations are used to obtain T at time ttAt with the help of data
on V\, 9P /3t and the fluid properties at t+(At/2). The values of
the temperature and pressure dependent properties of the fluid are
subsequently revised and then used to adjust the partial differential
equations. From the physical point of view, the variation of the
pressure in the flow equations is much faster than the variation of the
temperature in energy equations. It is therefore justified to use much
smaller time steps in the flow cycles than in the energy cycles. This
technique which is illustrated in Figure 29 is essentially similar to
the one suggested by Lippman et al. (1977). Our program CONVEC
(with an example as illustration, is shown in Appendix D) has been
developed to carry out these computations. To assure the convergence
of the final steady state solutions, and to determine suitable time
steps, several experiments were conducted with the proper boundary

conditions and parameters. Since our model is designed to treat
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evolutionary or transient problems, an arbitrary set of initial
conditions was assumed and the procedure was carried out through
time until a steady state was achieved. Our experience is that shorter
time steps in the energy equations require fewer time steps overall
in the flow equations and result in more accurate solutions. Longer
time steps in the energy equations require more time steps overall
in the flow equations, but the total computer time required to reach a
steady state is shortened. Short time steps are required in the
energy equation to preserve accuracy and stability at high Rayleigh

numbers.

FL.OW CYCLES

t—0.5 At t t4-0.5 At t+ At

ENERGY CYCLES

Figure 29. Marching scheme of interlacing energy and flow equations.

To illustrate the evolutionary behavior of models with heat
conducting boundary walls, a number of numerical examples are pre-
sented below. Except for individually specified cases, the material

properties assumed in all examples are listed in Table 6.
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Table 6. Material properties used in evolutionary or transient

models.

Property
. . 3 3
Density of solid phase 2.7x 107 (kg/m”)
Porosity 0.1
Thermal conductivity of solid phase 2.3 (joule/m, s, °C)
2

Heat capacity of solid phase 9.3 x 10" (joule/kg, °C)

s . -10 2
Compressibility of porous media 2.5 x 10 (m~ /newton)
Thermal conductivity of fluid phase 0. 65 (joule/m, s, °C)

Vertical Porous Slabs with Impermeable
Caprock and Walls

Figure 30 shows the specific dimensions, boundary conditions,
and initial temperature distribution chosen for the transient system
model. The permeable slab C could represent a bounded frac-
tured zone with two impermeable but thermally conducting walls. No
internal heat sources are assumed for the model and the temperature
of the lower boundary has been assumed on the basis of a regional
temperature gradient of 30°C /km. The results of the stability analy-
sis for the case of Hx/Hz = 0.25 and an unperturbed gradient
D = 30°C /km, illustrated in Figure 18 show that a model of this
geometry with perfectly conducting walls and a constant permeability

has a critical Rayleigh number of 60. 15.
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Figure 30. Geometry, initial temperature, and boundary conditions
of the transient system model.

For the present model, the fluid parameters are calculated on
the basis of empirical equations (e.g. Meyer et al., 1968; Mercer
et al., 1975) or with the help of our subprograms INIT and DENPRO
(Appendix D). The substituting of these parameters into the Rayleigh
number gives a corresponding permeability of K = 1. 19 x IO‘locm2
(11.9 millidarcy).

For a rapid approach to steady state in this example, the initial
disturbance was assumed on the basis of the results obtained from the
stability analysis in Chapter III. Other disturbances were also con-
sidered. In all cases, the steady state solutions were correctly found
to be independent of the disturbance initiating the flow. The run time

required to reach steady state decreases as the Rayleigh number

increases, and reaches a maximum at the critical Rayleigh number.
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Temperature and Temperature Gradients

A series of computational operations for different Rayleigh
numbers have been carried out for the above model. Assuming an
initial unperturbed temperature gradient of D =30°C /km  and
computationally convenient pressure field perturbations, the temporal
development of the temperature field along the central line of the
convective channel has been investigated. The results are shown in
Figure 31 and the final steady state isotherms are shown in
Figure 32.

Figure 31 indicates that the time to reach a steady state
decreases with increasing Rayleigh number. Systems that are almost
critical require the maximum relaxation time. The final steady state
solution is therefore adequate to describe convection in systems that
are older than the relaxation time. For the system at hand a relaxa-
tion time of about 7000 years is obtained. As expected, the near-
surface temperature gradients in the caprock are quite high whereas
the temperature gradients in the convective zone are low (Figure 31).
The final steady state temperature gradient in the convective channel
depends on the initial Rayleigh number. Higher Rayleigh numbers
result in lower steady state gradients. The graphs in Figure 31 show
that the steady state temperature field is lower over a considerable

part of the convecting cell. We can now define a generalized Rayleigh
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number on the basis of the constant gradient. Inthe case in Figure
31-a we obtain a value of the generalized number of 28.07. It is of
interest to point out that the system is still convecting at this low
number although the initial critical Rayleigh number was 60.15. This
can be attributed to the different type of thermal boundary conditions
(Figure 32). The isotherms across the boundary represent a thermal
condition which lies in between the cases with fully conducting and

fully insulated boundaries.

Heat Flow Calculation

The computation of the surface heat flow is of considerable
interest for the above model. Here we face some difficulties because
of discontinuities in the derivatives across the element boundaries.
Various techniques can be used to obtain the gradient at node points.
One procedure is to employ conjugate approximation theory (Oden and
Brauchli, 1971). However, although work is being carried out in this
field (Fischer, 1976; Larock and Herrmann, 1977) there is no definite
averaging rule available for computation. An alternative approach is
to use higher order interpolations over the elements, because differ-
entiation will then yield gradients that are functions of the coordi-
nates. The difficulties involved have, however, not often been

emphasized sufficiently. For example, suppose f(x) is given by

discrete values at four points. A polynomial of third degree passing




through the four discrete points and approximating the function

in the interval may be written

The approximation gives exact values at the points

AN
(Figure 33). But the derivative of f(x) may approximate the

derivative of f(x) quite poorly.
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0

to

X

3

f(x)

Figure 33. Given function f(x) and its approximate representation

f(x) = ZN. f..
i'i

To obtain the heat flow at the surface it is therefore better to

apply a finite difference technique which acts as a smoothing devise.
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Using this method, our results for the surface gradients in Figure 31
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are Ds = 46.5, 56.5, 72.0, and 90.6°C/km for the cases (a) to (d)
respectively. The ratio of the calculated surface heat flow to the heat
flow with no convection is shown in Figure 34. Clearly, the ratio
increases with the Rayleigh number. On the other hand, the ratio of
the maximums to minimums decreases as the Rayleigh number
increases and in transitions from one mode to the other, the ratio is
further reduced (Figure 34-d to 34-e, Figure 34-f to 34-g).

The results in Figure 34 correspond to the cases of one, two
and three convection cells. With practical applications in mind
further runs were made over a range of Rayleigh numbers with vari-
ous thicknesses of caprock. The resulting surface temperature
gradients and temperatures at the top of convective zones, are shown
in Figure 35. The data indicate a useful relation between the surface
gradient and the Rayleigh number which may in cases possibly be
applied to estimate the Rayleigh number from observational surface

temperature and heat flow data.
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VII. CONCLUDING REMARKS ON APPLICATIONS

The purpose of the present project has been to develop compu-
tational codes and techniques to be applied in the numerical analysis
of thermal convection in the natural environment, in particular, in
geothermal areas. This involves numerical data on critical field
functions and evolutionary processes at various types of field and
boundary conditions. Powerful methods for this purpose have been
derived and a number of results that have been displayed indicate the
capabilities of the techniques.

On the other hand, the analysis of actual field cases was not
contemplated. This would constitute a separate task that requires a
considerable amount of work. However, to provide a more satis-
factory conclusion to our theoretical efforts, we will in the following
few paragraphs very briefly outline two cases of application of our

results that appear to be of interest for the geothermal sciences.

Thermal Convection in the Imperial Valley, California

For our first case, we will turn to the Imperial Valley in
California where there is a considerable amount of geothermal
activity that has received attention in the literature. The East Mesa
geothermal field that'is of particular interest has been described by

Swanberg (1976) and further data on conditions in the region and
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mainly on the Salton Sea geothermal field are given by Schroeder
(1976).

The sketch in Figure 36 shows the location of the "hot spots" or
geothermal areas in the Imperial Valley north of the international
border. The most relevant characteristics of the areas is that they
are embedded in the sediments of the Salton Trough which is a struc-
tural depression that forms the northern extension of the Gulf of
California and the East Pacific Rise. According to Biehler et al.
(1964), the maximum thickness of the sediments is about 6.4 km.
The sediments are generally believed to be of the type where ‘Darcy’s
law can be applied to fluid movements.

The surface heat flow contours of the East Mesa field are
shown in Figure 37 .(Swanberg, 1976) and a few temperature-depth
profiles are given in Figq.re 38. Over a considerable section of the
anomaly the temperature at the depth of 2 km is 180°C to 200°C.

There is strong evidence that the geothermal "hot spots” in the
Imperial Valley are caused by local magmatic intrusions into the
basement below the floor of the Imperial Trough. Heat cqnducted
from the intrusive bodies raises the temperature in the overlying
sediments lea.ding to convection in the entire vertical section above
the hot bodies.‘ In other words, the temperature ﬂow-field is super-
critical, thaf is, the Rayleigh number is above the critical value.

We will apply this picture to the East Mesa geothefmal field and
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estimate the minimum permeability profile that will lead to a critical
Rayleigh number when we assume a temperature of, for example,
280°C at the top of the basement. This is a plausible temperature
at the top of a solidified silicic intrusion.

The heat flow contours in Figure 37 indicate quite strongly that
the East Mesa field is controlled by the Combs-~Hadley fault line and
that there is convection in an elongated vertical slab along the fault.
For the present purpose we assume that the slab has a thickness of
about 1.25 km and that it bottoms out at 5 km such that the aspect
ratio is 1/4. Moreover, we assume that the quadratic permeability
profile (c) in Figure 23 can be taken to represent the conditions in
the vertical sedimentary column.

On the basis of these assumptions, the data in Figure 27 are
relevant to the present problem. The critical Rayleigh number is
therefore 156 yielding an estimate of the minimum value of the sur-
face permeability of 292 millidarcy. Based on the form assumed for
the permeability profile the permeability at the bottom of the slab is
then estimated at 29 millidarcy. The latter value appears somewhat

high, but not implausible.

The Cumali Geothermal. System in Turkey

Reviewing the geothermal literature, we find that the Cumali

geothermal field in Turkey present a favorable setting where the
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application of our above results is quite straightforward. This case
has the additional advantage that a considerable number of boreholes
have been drilled in the geothermal anomaly and that therefore good
shallow temperature data are available. The area has been described
by Egder and §imgek (1976).

A geolocal section through the area is given in Figure 39 which
shows the general block structure and the location of some of the
boreholes. Temperature data from some of the boreholes are shown
in Figure 40.

Assuming that our results with regard to thermal convection in
tilted slabs with heat conducting boundary walls (page 42) are applica-
ble to the Cumali system, we have carried out a numerical analysis
of the temperature field in the main convective block there. Omitting
details of the calculation, we commence by deriving the temperature
field corresponding to a few values of the Rayleigh number. Com-
paring the results with the actual borehole temperature data, we then
select the most probable Rayleigh number and use this number to
carry out our complete numerical computation of the temperature
field.

The various temperature profiles corresponding to Rayleigh
numbers of 40 to 60 are shown in Figure 40. The final temperature
field results that are obtained on the basis of a Rayleigh number of

Ra = 50.4 and a permeability of 10 millidarcy are shown in Figure

41. The end results appear quite plausible.
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APPENDIX A

Imposed Boundary Conditions Due to the Elimination
of Velocity u

To eliminate the velocity u by the mainpulation of equations
(3.4), (3.5), and (3.6) resulting in equation (3.9), the natural
boundary condition of u has to be incorporated with (3.7) and (3.9).
Referring to the geometric configuration in Figure 5 for a porous
slab with a dip angle ¢, the boundary condition of u at wall 1
and 2 is

u = -w Cot ¢. (A. 1)

Where u and w are the horizontal and the vertical component of
the velocity. Eliminating pressure p from (3.5) and (3. 6), then

making use of (3.5) we have

B Aw | By 96 pdu 8 B, _
K 0x gﬁpru apfgax Koz uaz(K) 0 (A.2)

At the boundary walls 1 and 2, (A.1) is substituted into (A.2)

ap gK
ow f 3 ow Kw 9 1
WV e = = _ =X — +
o . 8x Cot ¢ Py . Cot ¢ 52 (K) gﬁpfw Cot ¢

The boundary condition can be reduced to dimensionless xo, zo, 90,

W, and by the substitutions as in Chapter III,



114

dwy  %Pe®o 17289
ox_ - R 9%,
0 %o 0
Ow K P
0 0 8 0
-C0t¢["—+_ (= )w_-gB B p p. H w ]
820 “oazoKoo 0 s f0"fs z O
or
9w 96 ow
0 1/2 770 0
—_—— o —_— - * + r Y
™ G(ZO)R ™ Cot ¢ [I(zo)w0 32 ]
0 0 0
where
ap K
G(ZO) __0"f0™0
Mo
B
__08 0
I(z.) = 5 (=) gﬁoﬁ PeoPes
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APPENDIX B

Thermodynamic Properties of Water

Convection of water in geothermal reservoirs and other struc-
tures often involves temperatures as high as 350°C and pressures of
the order of 500 bars. Kassoy and Zebib (1975), and Straus and
Schubert (1977) have emphasized that the assumption of constant fluid
parameters cannot be upheld under such conditions. In this Appendix
we discuss briefly the effects of temperature and pressure on the

properties of liquid water.

Viscosity

Although viscosity is both temperature and pressure dependent,
it varies more strongly with temperature than it does with pressure.
The following empirical equation for the viscosity has been suggested

by Mercer et al. (1975),

2
538 + 380A - 26A

T |~

>
f

(T-150)/100

where T 1isin °C and W is ingm/cm, sec. This equation is 3%
in error over the range T =0°C to 300°C. In this range, water
viscosity decreases by an order of magnitude between 25°C and 300°C.

The effect is particularly important because it enhances convective
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instability due to the reduction of the dissipative effects of viscosity.
Figure 42-a gives data on the viscosity of water as a function of depth
and the temperature gradient.

Density, Thermal Expansivity, Compressibility,
Specific Heat and Adiabatic Gradient

The density of water decreases with temperature due to thermal
expansion and increases with pressure due to compression. Several
empirical equations are available for the density. A detailed discus-
sion is given by Meyer et al. (1968) and Kinan (1968).

Figure 42-b to 42-f give data on the density, thermal expansiv-
ity, compressibility, specific heat and adiabatic gradient of water as

a function of depth and the temperature gradient.
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20

Depih{Km)

Figure 42.

Water parameters as a function of depth at various tem-

perature gradients D, assuming a surface temperature
of Ts = 25°C.

p = dynamic viscosity; p = density; a = thermal expan-
sivity; B = compressibility; Cp = specific heat at con-
stant pressure; g = gravity; T = temperature.

The subscript s refers to values at the surface.
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APPENDIX C

Flow Charts and Program Listings for the Stability Analysis

THE OVERALL PROGRAM LOGIC

START

RAYLEI
Link BAFORM
and ORGAN

Call BAFORM
Form matrix equations

Call ORGAN

-1 -
Form a matrix [A] = [D]  "[C][A] I[B],
solve eigenvalues and eigenvectors for [A]

Print results




Select boundary conditions, Boussinesq or non-
Boussinesq approximation, permeability func -
tions, temperature gradient, Hx, Hz, dip angle

etc.
Call GRID
Generate quadratic element data,
locate the node numbers, subdivide
the region into elements

|

Call HAMER
Given Hammer's formula for
numerical integration

120

Boussinesq
approximation?

Call EFGHI
Read coefficients of E(z),
F(z), G(z), H(z), I(z)

|

Compute element matrices by using Hammer's
formula, function BA2 and function DXZ2
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J

Add element matrices
to global matrices

Are
all elements
assembled ?

Modify system equations to account for
boundary conditions
Save information of total nodes, band

width, boundary points and all four
global matrices on disk file TAPEZ2
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Call READ
Obtain matrices [A], [B], [C],
[D] from previous saved file

TAPEZ2

Cail LINV1F, Call MULTI

For matrix inversion and matrix multi-
plication until

[a] = [D]-1[cllA]" 1[B] if formed

Call EIGRF
Calculate eigenvalues and
eigenvectors
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Definitions of Important Symbols and Explanations of
Program Listings

The following program names appear in the order in which they
are called. Parameters will not be defined if already defined in the
previous programs unless they need to be redefined. Numbers in
parentheses represent the corresponding commentary locations in the

original program listings.

Main program RAYLEI

Function: link subroutines BAFORM and ORGAN, solve eigenvalues
and eigenvectors for the onset of natural convection in a
porous slab with various conditions.

(1) KNEW=1 repeat the calculations of critical
Rayleigh number with different conditions.

KNEWX1 end the execution of all programs.

Subroutine BAFORM
Function: form stiffness matrices [A], [B], [C], [D] in band model.

AR area of an element.
ZN(i), WO(i) coefficients and weights respectively of Hammer's

formula for 1-D numerical integration (have not
been used in the current programs).

ZS(i, j), W(i) same as defined above except for 2-D.
PQR(i) integral stations.
NG (i) global node numbers.

XO(i), ZO(i),
X(i,j) Z(,j) coordinates.

NETRI(i) indexes of the most right elements.



NETL(i)

Y(i, j)
XCl(i, j), ZC(i, j)
NT (i), NW(i)
A(l,J)’ B(lrj)’
C(i,j), D(i, )

E(i), F(i), G(i),
H(i), RI(i)

(1)

(2)

(3)

(4)

(5)

IB2

(7)
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indexes of the most left elements.
global indexes of the 3 vertexes of the elements.

global coordinates of the 3 vertexes of the ele-
ments.

global indexes of the boundary nodes for the tem-
peratures and the vertical velocities respectively.

matrices of [A], [B], [C] and [D] respectively.

for coefficients of E(z), F(z), G(z), H(z) and I(z)
respectively at 3 vertexes of an element, see also
equations (3. 12) to (3. 15) and Appendix A.

IMP=1 for permeable top.

IMPX1 for impermeable top.

ITP=1 for non-Boussinesq approximation.

ITPXI1 for Boussinesq approximation.

options for permeability functions and temperature
gradients.

IPER=1,2,3,4 corresponding to permeability
functions of (a), (b), (c), (d) in Table 5 respec-
tively.

GRAD=temperature gradient.

Hz=depth; Hx=horizontal dimensions; ZT A=dip
angle.

see subroutine GRID.
maximum row dimension of a matrix.
see subroutine HAMER.

see subroutine EFGHI.
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(8) see function DXZ2.
(9) see function BAZ2.
(10) save NOD, IB2, NBCT, NBCW, NT(i), NW(i) and

matrices [A], [B], [C], [D] in disk file TAPE2.

Function BA2
Function: represent quadratic shape functions N; (i=1,2...6) by
area coordinate L; (i=1, 2, 3) at stations P, Q, R.

IEA index of shape function Ni (e.g. IEA=5 for N5).

P,Q,R stations for numerical integration.

Function DXZ2

Function: form derivatives of quadratic shape function N;
(i=1,2...6) in terms of area coordinate L, (i=1, 2,3) at
stations P, Q, R.

ND ND=1 for BNi/Bx; ND=-1 for 8Ni/8z-
Subroutine EFGHI
Function: obtain values of coefficients E(z), F(z), G(z), H(z) and

I(z) at each node.

KLOP number of intervals in Hz to approximate E(z),
F(z), G(z), H(z) and I(z).

(1) file TAPE 16 has been derived separately by pro-
gram EFGH, see program EFGH for details.

Subroutine HAMER

Function: provide stations and weights for numerical integrations.

AN(i), WO({) for 1-D element.

ZS(i), W(i) for triangular element.
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Subroutine GRID
Function: automatically generates element data for the system.

Y(i,j) global indexes for vertexes of triangular elements.
XC(i, j), ZC(i, j) global coordinates for vertexes of triangular
elements.

NETR(k), NETL(K) indexes of the most right and most left element
respectively.

Subroutine ORGAN 1 ]

Function: forms a matrix [A] = [D]” [c][A] " [B] and solve its
eigenvalues and eigenvectors. [A], [B], [c] anda [D]
are defined in Chapter III.

(1) IJOB=1 for eigenvalues and eigenvectors.
1JOBXI for eigenvalues only.
(2) see subroutine READ.
(3) LINVIF is one of the IMSL library subroutines in

CYBER 7300 system for matrix inversion, for
details see IMSL manual.

(4) see subroutine MULTI.

(5) EIGRT is one of the IMSL library subroutines in
CYBER 7300 system for eigenvalue and eigenvec-
tor solutions, for details see IMSL manual. Simi-
lar routines can be found in Matrix Eigensystem
Routines - EISPAC guide (Smith et al., 1974). 2

(6) MW=sequence index of the maximum eigenvalue.
ST=RC-=critical Rayleigh number.

(7) IVEL=1 for velocity calculations otherwise skipped.

2
B.T. Smith and others, Matrix Eigensystem Routines -
EISPACK Guide, 551 pp., Springer-Verlag, Berlin, 1974.
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Subroutine READ
Function: read in from file TAPEZ.

IRD =] for matrix [A]
=2 for matrix [B].
=3 for matrix [C].
=4 for matrix [D].

M, N column and row dimensions respectively of the
matrix to be read in.

Subroutine MULTI
Function: multiplication of two matrices [A] and [B] i.e.
[a]=[A] x [B].

MV, NV column dimensions of [A] and [B] respectively.

MH, NH row dimensions of [A] and [B] respectively.

Main program EFGH
Function: prepare data for functional coefficients E(z), F(z), G(z),
H(z), and I(z) in program RAYLEI.

E(i), F(i), G(i),
H(i), RI(i) magnitude of E(z), F(z), G(z), H(z) and I(z) at
z=(i)x(DEPTH)/(KLOP-1).

Subroutine PROPT

Function: water properties of Per @ B, C_, and p are derived from

f
the empirical equations given by Meyer et al. (1968) and
Mercer et al. (1975) if temperature and pressure are

known.
T1 temperature (°C).
Pl pressure (bar),
(1) RO=p;, AP=a, BA=B,CP=Cy, UE=y,

PER=permeability.
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1@

18

19

29

1
PROGRAN RRYLE!(INPUT-OUTPUT;TRPE!;TﬂPEZoTﬂPEB.TRPES;TRPE!S)
MAIN PROGRAM TO LINK SUBROUTINES "BAFORM" & “ORGAN"
T0 SOLVE CRITICAL RAYLEIGH HUMBERS FOR THE OHSET OF NATURAL
CONYECTIOH IH A SLaB
seeWRITTEN BY C. T. SHYUs®s JAN, 1378¢%s

~==T0 FORM A BAND MATRIX FOR THE SYSTEm---

CALL BAFORM

-=-T0 SOLYE CRITICAL RAYLEIGH HUMBERS(RAC)---

taLL ORGAN

WRITE 18

FORMATC(1X, *SOLVING RAC FOR DIFFERENT COMDITIONS? (YES=1)")
READ 19, KNE¥ <& —{
FORMATCIL) \
IFCKNES. NE. 1G0 TO 28

G0 TO 18

CONTINUE

END

128



2;C
3;
4;

6;
7i

9;C
19;
11;
12;
13;
14;
13;
16;
17
18;
19;
28;
21
22;
23
24;
25
26;
27;
28;
29;
39
31
32;
33
34;C
33
36;
37;
38;
39
49;
41;
42;
43;
44 ;
43;
4€;
47;
48;
49;
$¢;
St
$2;
$3;
54
89
$6;
$?;C
S8, C

BAFORM 3/ 2,79 17:. 8.39 PAGE 1

78

29

S8
59

338
18
19

S$7

ses

73
28

SUBROUTINE BAFORNM

CONVECTION IN A POROUS MEDIUM OF FAULT ZONES

COMNON AR, ZN(73,25C7, 3>, (7>, ¥0(7),PARC4)

COMMON NG(G):XO(S):ZO(S).K(S:5).2(5.5).RETR(G):NETL(G)
COnNMOR Y(3$:3):XC(3$.3):ZC(36.3).NT(3B):NU(38)

COMNMON a¢ss,$3),8(8%, $3>,C(85,53>, D85, 3>

COMMON EC3,F(I,G(3), H(,RI(ID

INTEGER Y

WRITE 78

FORMAT (1%, *PERMEABLE TOP2(YES=1)*)

READ 29, INP < { )
WRITE 29, InP \
WRITE 68

FGRMAT(1X, "CONSITERING TEMPERATUREZPRESSURE EFFECTS2(YES=137)
READ 29, ITP & {2 )
FORMATCI1) \
WRITE 29, ITP

IFCITP.NE.1)GO TO 338

VRITE S8

FORMAT(*PERM. CASES=? (1,2,3,0R 4>, GRADIENTCOC/KNI=2(FS, 03
READ $9. IPER, GRAD < [3 )
FORMATCIL,FS. @) \
WRITE 59, IPER, CRAD

WRITE 18

FORMAT (1, “HZ. HXCKM), DIPCBEG. )22 (3F5.8)")

READ 19, HZ, NX, 2TA <& _ {4 )
FORMATC3FS. 0O \
WRITE 57, ITP, HZ, NX, 2TA

ZT=2Tas180.¢3. 1415926536

FORMAT (1K, *1TP=®, 11, 1X, "H2=*, F6.3, IX, *HX=*, F6. 3. "2TR=",F6. 3>

HXHZ2=sHX/HZ
CALL GR!D(XHP.InﬂoIV;HKHZ.ZTA;NET.IB;NOD,NBCT.NBCH)<——< 5 )

CALL HAMER < —{ 6 )
182=2¢18-1 \
50 585 I=1,NOD

30 S95 J=1, 182

acl, J>=B(1, J)aCC(l, JI=DC1, d>=0.

KnE=1

DO 1990 KEst, NET

I2a=1

00 73 I=1,3

NGCId=YC(KE, 1)

X0¢1>=XC(KE, 1)

Z0C1)=2C(KE, 1)

IFCITP.KE.12G0 TO 73

ZNEB=Z2GCI)

CAatLL EFGHI(GRRD.IPER.ZHEU.HZ.EE:FE.GE.NE:RIE.KHE) 4%———( 7 )
KNE=18

ECI>=EE

FC(I)>sFE

GCI>=GE

H(])>sHE

R1(1)=RI1E

CONTINUE
FORHQT(IX,Izn12.12,IX.FS.S,FS.S,FS.G.FS.S.FS.S.FS.S)
CALCULATING THE ELEMENT STIFFHESS MATRIX IN ONE ELEMENT
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68;
(3
62;
63;
€4;
65
66;
67;
€8
€9;
79
71;
72,
?3;
74;
?5;
76
77
78;
78
8e;
81,
82
83;
84;
83
86
87
88
989

S1;
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BAFORN ‘ 3, 2,79 17. 8.39 PACE 2

19

SS
32

1?7

26

27

24

K0C4>=X0(1)
X0(3)>=X0(2)>
20(¢4)>=20(!)
20¢(53=20(2>
NGC4)>=(NGC1)+NGC2))/2
NG(SI>=(NGC2I+NG(3>) /2
NG(6>=(NG(1)+NG(3)) /2

AR=(20C2)X0¢33+20C15¢X0(¢2)>+%X0C12%20¢3)=-X0(1)+20(2)>-X0(22¢20(3)

@-X0(3>820¢1d)72.

AR=ABS (RR)

po 1@ I=1,5

B0 i@ J=1,S

XC1,J)=X0C1>-X0Cd)
2¢1,J3220(1>-20Cd)
DJRCO'Z(I;3)'X(2;3)-Z(2;3)'8(1; D
IF(2TA.ER.98.)>G0 TO 32

Do 53 INC=1,6

IF(KE. EQ. NETLCINC))1ZAa=2

IF(KE. EQ. NETRCINC)I>IZA=3

DO 23 [=1.,6

DC 1S J=1,6

SHImSHZeSN3IaSHE=SNSaR,

DO 16 K¥=1,7

P=2S (K, 1)

0828(CK¥, 23

R=2S (K¥, 3)

STP1=8.

STP2s=0.

STP3sy

STP4s=1.

STP5=8.

IFCITP.NE. 12360 TO 17
STP1=2PeE(1)+QeEC2)+R*E(3)
STP2aPsF(1)+0eF(2)+ReF(3)
STP3aP+GC1)+QeG(2)+R*eG(I)
STP4=PeH L) +QoH(2)+ReH(3J)
STPS=PeRICID+QIRIC2)+ReRI(3I)
SHI=D%22¢1, 1, P,Q,R>*DBKZ22C1,J, P, Q, RI+DK22¢(-1, 1, P, Q,RD
9‘DX22(‘1:J;P;0;R) {
SN2=-STP1%BA2C(], P, 0, RXSDX22(-1,J,P,Q,R)
9-STP2¢ER2C1, P, G, R)*BR2(J, P, 0, R) €
SM1I=SHI+(SNI+SNH2IsUW (KW)
SHM2sSTP3sDX22¢1, 1, P, Q,RI*DX22CL,J, P, @, RI®U(KYI+SN2
SK3I=STP4«BR2C(I, P, R, RY*BAZ(J, P, 8, RISUCKUI+SHI
SHe=SH4+SNIsB (K¥)D

GO0 TOC16.26,27), I2R
CL1=2SORT(X0(1)*e2+420¢(1)%32)
SL2=SORT(RDC(2)9#2+20(2)5%%2)
SLP=SL2~-SL1!

GO TO 24
SL1I=SORTC((XOC1)-HXH2I*%2+420(1)%22)
SL2=SORT((XO(ID-HXHZ)»+2+20(3)%22)
SLDssSL1-SL2

SLPasL1+SL2

SK=0.Ss(SLP+SLDSs2N(KU))
SLI=(SLD-SK)>/SLD

SLJ=SLK=1.~8L1

G0 T0(¢(36,36,37), 128

/\/‘L

0 o
~—
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i18;
119,
128,
121
122;
123;
124;
128,
126
12?7,
128.
128,
130,
131

132:¢C
133:¢
134;C

135,
136,
137
138
139;
148;
141,
142
143;
144;
145;
146;
147;
148;
149;
158,
181
182;
153
154;
188,
1356,
18?7,
158,
129,
168;
161
162;
163,
164
165,
166
167,
168;
169;
170;
b rd W
172;
173;
174;
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36

3?7
33
16

1S5
23

19088

118

116
185

282

213

216
2853

23

28
22

21

518

528

SLK=80.

60 TG 23

SLy=8.
SNSzSNS+STPS*BAZ(J, SLI, SLJ, SLK>*BA2(1, SL1,SLJ, SLKI*WO (KW
CONTINUE

1G=NGC DD

JE=NG (I

JB=JG-16+18

ACI1G, JB)=SKIwDJACO+ACIG, JBI+8. S¢SLD*SHS+(-1)9o(I1ZA-1)>+C0SC2T)
BC1G,JBY»SN2¢DJACO+B(IG, JB)
CCIG,JEY=SN3sDJACO+CCIG, JB)

DCIG, JBY>=SHa®BJACO+DCIG, JB)

CONTINUE

CONTINUE

CONTINUE

STIFNESS BATR1X IS FORMED WITHOUT CONCERNING B.C. YET
«*NOW TO INTRODUCE THE DIRICHLET B.C.ssee

s*8.C. FOR TENPERATURE=®

De 18% Is=1, HBCT

B0 115 10=1,N0D

JN=NT(I>~10+18

1F(JN.GT.IEB2.0R. JN.LE.8)GO TO 115
DCIO0,JNY=BC10), JN)=1 234567E28

CONTINUE

Do 116 JN=1,1B2

CONTCIS, JND=D(NT (L), dN>=1.234S567E289

CONTINUE

«#8.L. FOR YERTICAL VELOCITYe»

DO 2@5 I=1, NBCW

B0 215 10x1,NOD

JN=NNCID>-10+18

IFC(JN.GT.182. 0R. JN.LE.BXGD TO 21$
CC10.,JN>=ACID, JH)=t 234562E20

CONTINUE

PO 216 JN=1,1B2

ACNUCT), JNY)=BC(NUC(I), JNI=1 234S67E29

CONTINUE

URITECZ, 23)N0D, 182, NBCT, NBCWY pa /|°\
FORMAT(1X,12, 1%, 12, 1K, 12,1X, 12> \
D0 28 1=1,NBCT

YRITE(2, 22)NT (1)

FORMATC(1XK,12)

86 21 I=1,NBCW

URITEC2, 22)NUC T}

0 Si1@ I=1, NOD }
D0 S18 Jsi, 182

Jo=zJ+1-18

IFC(JO.LE.®.OR.JO.CT.NODYGO TO 518

SHImABS(ACI, JDI+ABS(BCI, JXI+ABSCC (I, JII+RBSC(D(I, )
IF(SM1.EQ.4.%1.234367E268)G0 TO Si8
IFCSML.GT.1.BE-123WRITE(2, 528>1,d, AC1,J2,BC1,43,CC1,d), DT, )
CONTINUE <~

1=sJ=g

SN1=6N2=SN3=SM4n.

YRITEC2,528>1, J, \A1,5n2, SK3, She

FORMATC1X, 12, 1%, 12, 3%,E15.8, 1X, E15.8,1X,E15.8, 1X, E15.8)
RE¥IND 2

RETURy




1?S;
1?6;¢C
127,
178,;¢C
1?79;
188;
181;
182,
183,
184;
185
186,
187
188;
189,
19@;
191;C
192;
193,¢C
184,;C
19S;C
13%6;
197
198;
199,
298;
281
292;
283
204
28S:;
286
207;
298
299;
218,
211;
212,
213;
214;
21S5;¢C
216,
217?;C
218;
21%;
228;
221
222,
223;
2Z4;
229
226,
227
22§
229;
238
231
232;

28

S8

i8

ie

Se

18

S1
18

52

132
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END

‘..‘..!“""'."..‘UO.'ll‘ll"'t".“‘l'...'t'.

FUNCTION BA2CIBA,P,Q,R)

8A2=SHAPE FUNCTIONS INTERMS OF AREA COORDINATES(PaL1;QaL2;R2l3)
CONMON AR, ZNC?), 28(7, 3>, W(?)>, WOC7), POR(4)

PRR( 1) =P

POR(2) =0

PARC3) =R

PORC4) =P

IFCIBA.GT.3360 TO 20

BA2=22, +PQRCIBAI*PARCIBAI-PARCIBA)

GO TO 38

KN=1BA=-3

BA2=4, $PUR(KHISPORCKN+1)

RETURN

EHD

SIS RANEEB ARSI VIE RNV IE B AR LERE NS EEERIEERBI S EES

FUNCTION DXZ2(ND.M.P,Q, R)

DX22=DERIVATION OF THE SHAPE FUNCTION *N* VITH RESPECT TO
ex* OR *2* IN TERMS OF ARER COORDINATES

ND=1 FOR D(H)/DX; NDs=1 FOR D(N>/D2

CONNON AR, ZNC?), 25C¢7, 3), BC(?), B0(?), PARC4D

CONMON NGCE), XOCS), 20CS), K5, 5>, 2¢S, 53, NETR(6), NETL(6)
1FCAR.LE.1.8E-12.0R.AR. GT. 1. BESIURITE 18, AR

FORMAT(1X, “AR*.E12.9)

PAR(1)=P

PARC(2)=Q

POR(3) =R

PAR(4) =P

IFC(ND.EQ.-1>G0 TO 18
IFCM.LE.3)DX22=C4. oPARCAI=1. D2 (N+2, N+1)/ (2. $ARD

KNzn-3
IF(N.GT.3)DX22%2. « CPARCKN+ 1> 2(KN+2, KN+ 1) +PORCKN) 82 (KN, KN+2)) /AR
GO TO S8

IFCM.LE. 3)DXZ2=C4. SPRR{MI-1. I #X(N+1, H42)/ (2. #ARD

KNst=3

1F (M. GT.35DX2222. # CPRRCKN+ 1) $XCKN+1, KN+2) +PQRCKN) $XCKN+2, KN33 /AR
CONTINUE

RETURN

END -
EIRRSEAESSRSERFE SRS U S LU SR SR BRERE R RE XX GRS AREEES
SUBROUTINE EFGHICGRAD, IPER, ZNEV,H2, EE, FE, GE, HE, RIE, KE

TO GENERATE COEFS. E,F.G,H.I FOR ERCH ELEMENT

PIMENSION 20LDC13), EC112,FC11),GC11), HC11),RICEDD
IF(KE.GE.2)G0 TO 52

KLOP=11

READC16, 195D, KPER

FORMATCFS.2,1%X, 11)

D0 S1 K=1,KLOP

READC16, 18YECK), FCK), GCK), HCKXL, RICK) € (1 )

FORMRT(1X,5¢CE12.3))

I1FCD.EQ. GRAD. AND.KPER .EQ.1PERIGO TO 32
20D=ZHENSHZ

20LD(1>=8.

Do i@ I=1,18

20LD(I+1)®8 S»]
2=(20D0-20LDCI)>>=(20D~-20LDCi*1 D)
1F(2.LE.2.8)G0 TO0 28



233;
234,
23%;
236,
237;
238;
239
2489
241
242 ¢C
243,
244;C
245, ¢C
ze6;
247
248;
249,
2358
2%t
2%2;
283,
2%4;
288,
236,
2S7;
$8;
2%9%;
269;
261,
262;
263
264;
2695,
266;
267
268;
2€9;
279
271;
272;
273;¢C
274;
2?7s.¢C
276 C
2?7i¢C
278;C
279.;¢C
288;
281,
282;
283,
284
28S;
286
287;
288;
289;
290,

BAFORN 3, 27?78 17. 8:39 PAGE S
18 CONTINUE
28 ZPOT=(20D-20LDCI3)7C20LDCI+13>~20LDCI))

18

19

EE=ECIX+ (ECI+1X~ECI))*2ZPOT
FE=F(I)+(F(I+1)=-F(1))*2P0OT
GE=G(IDX+(G(1+1)-8(I)>%2PCT

HE=HCI D+ CHCOI+1)-HCI D) #2POT
RIE=RICID+(RICI+1)=-RICI)>)>«ZPOT

RETURN

END

Y T Ty T Y Y T T e P I T T

SUBROUTINE HRMER

HAMMER’S FORMULA FOR NUMERICAL INTEGRATION IN ONE-D & TRIANGULAR

ELEMENT

COMMON AR, ZNC?),28¢7, 3>, 8(73,80C?>,PRR(4)

ZN(1)mp,

ZN(2)>=0. 4858451514

ZN(3)=6. 7415311836

ZN(4)=@ 94918791234

ZN(S)==2K(2)

ZNC(6)S=-ZN(3)

ZN(?)2-2N(4)

Yo(1)>=g. 41795918367

Y0(2)>=U0(3>=8,.381830803851

Y0(3>=W0(6>=8,275785391493

UO(4>ay0(?>=8. 125484966169

€138.3333333333

§2%9.79742699

§3%9.10128631

$4=9.8359713587

S35=8.47014286

25(C1,1)>228¢1,23=228(1,3)=S1

28¢2,1)»28(3,2)=25(4, 3)=52
28(€2,2>228(2,35=225(3,1>%25(3, 3)=28(4,13225(4,2>=282
28¢(35,2>%25(S, 3)825(6, 1)325(6,3>225(7,1)828(7.,2)>=5%
¥(1)>=9. 11285

U(2>=U(3)>=U(4)>20 86296939

9(SH>=U(6)=U (7528 86619788

RETURHN

END

SOPEBELL UGN EE RN AL B EE RS ERESE RIS EREREEXRES &
SUBROUTINE GRIDCIMP, IGD, IV, HXHZ,2TAR, NET, 1B, NOD, NBCT, NBCU)
-==T0 GENERATE ELEMENT DATA~--

~-=HXH2®HX/HZ: MNET=TOTAL ELDMENTS: I1B=BAND VIDTH.
~=~NOD=TOTAL NGDES: NBCT=TOTAL NODES AT B.C. FOR TEHNPT.:
-=-NBCV¥=TOTAL MODES AT B.C. FOR VELOCITY "¢ ----
~==INPUT: INP, IGD, HXHZ, NET~--0UTPUT: 1V, 1B, NOD, NBCT, NBCW--~
CONMON AR, ZNC(?7),2S(¢?7,35,8(7>,¥0(?)>,POR(4)

COMMON NG(6)>, X0CS3)>,20(¢57,%X(S,5),2(S, 8>, NETR(6), NETL(E)
COMMON Y(36,33,%C(36,3>,2C(36,3), NT(38),NUC38), NU(30)>
INTEGER Y, NT, NU

2T7sZTR/188. 3, 14159263536

WRITE 18

FORMART (1X, "GRIDI,GRID2, GRID3 OR GRID4?2(I1)>")>

READ 15, 146D

WRITE 19, IGD

FORMAT(IL)

URITE 28

133



291
292,
293,
294;
29S;
296;
297
298,
295;¢C
308;
k3 3
302;
383;
304
3es;
386
397
388;
399;
318
311
312;
313
314;
31S;
316
31?;
318;
319
228
321
222;
323;
324
328,
326
327;
320
329;
338
321,
332;
333,
334;C
33S;
33¢;
332;
338
339
348;
341
342;
343;
344:;C
345;
346;
347
348

134

BAFORM 3/, 2,79 1?. 8.39 PAGE 6
28 FORMAT(1X,"VERTICAL?(YES=1)*)

READ 19.1V

WRITE 19, 1¥

MRITE 38

38

39

12

13

14

218

211
212

228

221

FORMATC(1X, "HOW MANY ELEMENTS? (I2>%)
READ 39, NET

WRITE 35, NET

FORMAT(12)

18=11+C(IGB~1)98
NOD=NETe(18+8aICD~B)/ (48 IGD)>+(2#]1GD+1)
IFCIv=-1213,12, 13

Ha=HXHZ/1GD

V=4, ¢]GD/HNET

GO TO 14

H=1. 16D

Vel XH2*4«IGD/NET

NEN=NET-(4=ICD=-1)

NEPsHET»2/(4s1GD)+1

NJP=4s 0D

Nil=g

D0 218 1=1, NEN,NJP

NI=NI+1

D0 218 J=1, IGD

Iinl+4e(y-1)

IMe(NI-1)>e(2+8+]IGD)
YCI1,1)0mYCliel,10m1420Cd-10+1]N

YCI11,23mY (142,292 11+(1GB-1)%8+2%(J~1)+1IN
Y(X1.3)-Y(Il+l;2)8Y(1102.l)tY(Il03.2)-?04t(IGD-i)OZt(J-i)*IH
YCI1+1,308Y(11+43,1)23+2a(J~1)+]N
YCI142,3)2YC11+3,3>213+8(IGD~1)+2%(y=12+1IN
KC(It, 1)=XCCI1+1,1>8XC(11, 2)=XC(I11+2,2)=(J=1)*H
xccll.3>-xc<11+1.2)-xc<11+2.1)-xc<11+3.2>-nn<J-1)+a.s-u
KCCI1+1,3)=XCC11+3, 13aKC(11+42,3)=RC(11+3,3)eysi
2CCI1, 1)=2CC¢11+1,1)a2C(11+1,3)=20(11+3, 1)n(HI-1)n¥
zc(xx.3>-zc<11+1.2)-zc<x1+2.1>-zc(11+3.2)-(N1-1)-v+a.s-v
2C(11,2)%20C11+2,2)22C(11+2,3>=2CC[1+3, 3>aNlsV
CONTINUE

IFC2ZTA.EQ.96.)>G0 T0 212

po 211 I=f, NET

po 21t J=1,3

XCC1,d322CCL, JI/TANCZTI+XC (I, &)

CONT INUE

B8.C. NOBES FOR TEMPERATURE
NBCT=2+NEP+2¢(2=]GD~1)

DO 220 l=1, REP

NT(I>=1+Cl-1)>e(4=IGD*+1)

NT(NEP+I)>aNT(1)+2+«IGD

I1GF=2«1GD-1

po 221 1=1, IGF

NT(2¢NEP+I)=1+]

NTC2*NEP+IGF+1)=NOD-IGF+I~1

IFCIV.NE. $1)G0 TO 208

§.C. NODES FOR VELOCITY *¥°®

NBCU=2¢IGF+ 4

NNB=NBCH~/2

IFCINP.EQ.13G0 TO 223

DO 222 I=1, NNB



349
258;
251,
332,
s
354
33S5;
356
asv.
3%58;
339
369;
361,
362
363,
364
368,
366
367;
368,
369
378,
3L
372,
373,
374,
37?8

BAFORM 37 2,79 17. 8.39

222

223
22§

226

200

224

281
227

282

238
989

N¥(I)=]
NUC]+NNB)>aNOB~-NNB+1]

GO TO 226

DO 225 131, NNB
HUCTI)=2NOD-NNB+ ]
NBCUsNNB
IFC2TR.EQ.98. XG0 70 999
D0 S8 I=1.6
NETL(I)=14(I=1)2%4»[GD
NETR(1)>=[e4sIGD

G0 TO 999
IFCINP . EQ.1)G0 TO 20t
NBCU=2*HNEP

DO 224 I=1, NEP
HECID=1+(]-1)e(4e]GB+1)
NM(NEP+1)3NQ(]I)>+2=1GD
GO TO 282

Do 227 Isi, NEP
NVCI)=t+lI=1>8(4a]GB+1)+2=IGD
NBCU=NEP

DO 230 I=1, NET

po 230 J=1,3

XT=XC(1, J?
XC(1.,J222C(1.J)
2C(l,J)=sIGDeHN-XT

RETURN

END

PAGE

?
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31
32;
33;
34;
3s;
36;
37;
38;
39;
40
41;
42;
43;
44 ;
45;
46 ;
47;
48;
49;
S0
S
$2;
$3;
S4;
S
S6.
87
38

ORGAN 3, 2779 17.12.53 PAGE 1

18

19

19

29

30

as

S52

SUBROUTINE ORGAN
DINENSION B(88,88)
CONMON VELCB8S, 80>, 2(89, 8085, ¥C80), ¥KC(168)
COMMON AC89,88), F(80, 88),E(88>
COMPLEX 2ZN. 2.4, MK
EQUIVALENCE ¢Z,8)
DO 3 Isi,880
ECI)aNCId> UK ()20,
D0 3 J=i, 880
VELCI, J>=ACL, JImBCI, J3aF (I, J3=2(l, Jr=8.
CONT INUE
DO 2 l=81,168
WKCI =8,
*«TO FORM A MATRIX *A°s1/DsCs(1/Rd>*B & SOLVE ITS EIGENVALUES
WRITE 18
FORMATC1X, *SOLVING FOR EIGEN VECTORS? (YES=1)®) /
READ 19, 1408 <« \l )
FORMATCI1)
DO S I=t,88
ECIy=e.
D0 S J=t, 889
ACl, J3mB (L, JIaFCl, J)m@.
CALL READCI, MV, HH) € {2 )
CaLL LINVIFCA, MV, 80,8,8,E, IERL) < \
CALL READ(2, NV, NH)
DO 18 I1=1,88 ____(3)
DO 18 J=1,80
[
\

S=8(1, )
4)

8¢, >sacl, ¥
ACl, J>ss

CALL MULTICHY, MH, NV, NH) <€
Do 29 I=1,88

Do 28 J=1,889

VYELCI, J3macl, ¥)

B(I: J)lﬂ(ll J)

CALL READ(3,MCVY, NCH)>

CALL MULTICHCY,MCH, NV, NH)

B0 3@ I=t,nCV

D0 38 J=t,NH

FCL, daacl, O

CALL READC4, MDYV, MDH)

CALL LINVIFCA,NDV,80,8,8.E, 1ER2)
DO 28 Iz1,88

DO 35 J=t,88

ACL, Jy=BCL, O

BCl, DafFlI, N

CALL MULTICHDY,MDH, NCV, NH>

CaLL EIGCRF(A, MDV,80,1J08.4,2,88, 4K, IER3) <%——————————( 5 )
S§T=0. ¢

DO 32 l=1.,MDY

IFCREALCU(CIX) . LE.ST3G0 TO S2
IFCABSCAIMAGCMC(ID)>)>.GT. 5. 9E~-18>G0 TO S2
ST=RERLCNCIN

=1

CONTINUE

ST=1./ST

WRITE 38, MV, ST <& {6 )
ZH=ZCL. MWD \

136



39;
69;
61;
62;
€3;
64
6S;
66;
67;
68;
69;
78;
71;
72;
73;
74
7S
76;
7
78,
?9;
88;
81
82;
83;
84;
85
86
87;
86
89,
98,
58
82,
53;
94
95;

$?7;
98;
99;
108;
101;
182;
183,
184;
185
186, C
187,
188,
199.¢C
118;
111
112;
113;
114;
118;
116,

ORGAN 3, 2,79 17:.12.83 PaGE

38

S3

281
28

61
68

63

63

648
2000

11

18

FORMART(1X, *ME=®, I3, IX, "RC=*, E14.7)
IFCIJOB.NE. 1)G0 TO 281

D0 S3 I=1,MDY,3

112144

I2=1+2

I3=143

ZCI, MUOI=2 (1, HUD/ 2N

2CI1, MO =2C1L, KUD/72H
2C12,M¥)>=2(12, KU >/ 2N

WRITE 38, 2C¢I. M), 2(11,00),2C12, H¥>
FORMATC(3(EL11.4,1%,E9. 2)>

WRITE 28

FORMAT(1X, *FOR VELOCITY? (YES=1)>*)

2

READ 19, IVEL €
IF(IVEL.NE. 1>G0 TO 28880

DO 68 I=1.NYVY

¥K(I)=g.

DO 61 Js=1,NH
UKCID=UKCIX+VELCL, JO*2(J, KW
UKC(I>=-SQRT(STH>s¥K ()

BC 63 Is=f,nvy,3

T1=[+1

[2=]4+2

URITE S8, ¥KCI),UK(I1),¥K(1I2)
D0 64 K=1,S

ST={. /REALCU(K))

URITE(S, 383K, ST

ZNsZ(1,K)>

DO 63 I=1,nDV
ZCI,K>=2(C1,K>72N

URITE(S, 648>(2(C1,K>,1=6,18)
URITE(S, 6485¢2(1., K>, 1=11,13)
URITE(S, 648)C2(1,K),1=16,28)>
URITE(S, 648)(2(1.K>,1221,2%)
URITE(S, 648>C¢2(1.K>, 1=%26,38)
URITE(S, 6483(2(1,K>,1I=31.3%
URITE(S, 648B32(36.K)>
FORMAT(IX,SCELL. 4, 1%, F9.2,1X))
CONTINUE

CONTINUE

REVINKD 2

REVIND 3

REWIND S

REVIND (6

RETURN

END
LEESREEBEIELEEELEL AL IS EREERERERERESET S OEERE SRR KE
SUBROUTINE MULTICHY, MH, NV, NH)>
COMMON AcB88,88),8(8@,808),F(B8,80>, E(80)
se"R=(R*B), NH=NY

DO 190 I=t.ny

DO 11 JH=1, NH

ECJNI=RCI, g

DO 18 J=f, NH

RCL, Jr=8.

DO 18 K=1,NV

RULLJI®ACT, JYFECKI®B(K, J)

—~~
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112;C
118;
119;
128;
121
122;
123;
124.C
12S;
126
127;
128;
129,
138
1315
132;
133
134,
13S;
136;
137;
138;
139
149
141;
142;
143;
144;
145;
146,
147;
148;
149,
158;
191,
132;
153
134
185
186;
157
188
159
168;
161,
162;
1€63;
164;
16S;
166;
167
168;
£69;
178;
171,
172;
173,
174;

ORGAN 3/, 27?3 17:12:33

Se

28

18

28

38

21
38

22
31

32

23
33

34

24

«*END OF MULTIPLICATIGNwex
D0 28 I=1,NV

ECI>=0.

DO 28 J=1,NH

B(l,d>=8.

RETURN

SUBROUTINE READCIRD, M, N>
DINENSION NVCS®),NT(S8), RBCD (&)
COMMON ACS88,88)

DO S6 I=1,88

DO 56 J=1,88

RCI, J)> =B,

REVIND 2
READC2,28)N0D, 1B2, NBCT, NBCW
FORMAT (1K, 12, 1X, 12, 1X,12,1X,12)
1B=C1B2+1)/2

DO 18 I=1,NBCT

READ (2, 18INTCI)

FORMATC1X, I2)

DO 28 I=1,NBCY

READC2, 18INNCI)

HaN=8

20 1888 IKK=l, 18808

PRGE

READC2, 3831, N, ARBCD (1), ABCD(2), RBCD (33, RBLCD(HD

FORMATC(IX, 12, 1%, 12, 3X,E1%5.8, 1X,E15.8,1X,E15.8, 1X,E15.8)

IF(I.EQ.8)GC0 TO 1081
IFCABCDCIRD). EQ.1.2348567E20>G0 TO 10982
JesJN+I-IB

[$=JS=2

GO TO (21,22,23,24),IRD
DO 38 K={,NBCW
IFCI.GT. NU(K))IS=]S+1
IFCJ.GT. NUCK) Y JSayS+1
I=I-1IS

J=Jd=J$s

ACI, J)=ABCD (1>
IFCI.GT. NHH=]
IFCJ.GT. NON=J

GO TO 1888

D0 31 K=1,NBCW
IFCI.GT.NUCKI>IS=[S+1
DO 32 K=1,NBCT
IFCJ.GT.NT(K)IJS=JS+1
ACI-1S,J-J8>=ABLD(2)
IF(I-1S.GT. MWO)H=]I-IS
IF(J=JS.CT. HIN=J-JS
GO TO t1eeés

PG 33 K=i,NBCT
IFCI.GT.NTC(K)>IS=[S+1
DO 34 K=1,NBCW
IFCJ.CT. NUCK)Y I JS=yS+1
ACI=-1S,Jd-JS>=ABCD(3?
IFCI-1S.GT. MON=I-IS
IF(J-JS.GT. NON=JY=JS
GO TO 1888

DG 35 K=1,NBCT

3
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178,
17€;
177
178;
179
188;
181;
182;
183;

ORGAN 3, 2779 17:12.53 PAGE

33

18e8
1081

IFCI.GT.NTC(K)>IS=15+t
IFCJ.GT. NT(K) >JS=JdS+]
ACI-1S,Jd-J5S>=ABLD(4)
[F(I-1S.GT. M) Mm]I=IS
IF(J=JdS.CT. NDNmJ=~JS
CONTINUE

REVIND 2

RETURN

END

139



140

PROGRAM EFGH
~-PREPARE CATA FOR FUNCTIONAL COEFFICIENTS ECZ:, FOZ», GLZX, HOZM.
-—I1{Z> IN PROGRAM "RAYLEI"

QOO0

DIMENSION FILERCZ)
COMMON Ti1. P, E<SB>, Fi6B>, G(EA1, HIE@), RIEA)
COMMON_RO, AP, BR, CP, UE, PER

COMMON DUT, DBAT, DBAF, DROT. DROF, TAPT. DAPP
DATA PERDS/1. BE-11/. GV./988. /', HZ/5000088. ~, T5/25.
c -—-PEROS=1. BE-11 IS AN ARRITRARY ASSUMPTION THIS PARAMFTER WILL

c ——BE CANCELLED ITSELF FINALLY
DATA FILEACL), FILEACZ2)~SHEFGHF, 44 SRCA
CAlLL ENTERt1, FILERD

WRITEC4, 189>
1@% FORMATCLX. “BOTTOM DEPTHIKMO>=7 (FS5. 23">
READ< 4, 182 2DEPTH

188 FORMAT(FI. 20
KLOP=11
KDZ2=51/CKLOP-1>

WRITE:4, S22
52 FORMATC1X, "PERMEABILITY CRSE=7 (41,2,Z,0FR 41")
REAC 4, SSHIPER

5% FORMATCI1)
WRITEC4, 28>
28 FORMATC(A1X, “GRADIENT=2C(0C/KMY ">

REACC 4. 2900
D=D2.0i390
2% FORMATCFS. 8>

KPWsKDZ~1
Z=DEPTH*108800. /56
PSU=1 B

TSU=2S.
PRE=8.
RO=A.

P1=PSU
0O 1@ I=1,%51
K=0

DEP=FLOATC I-10402
T1=TSU+D*DEF
PO1=P1

15 P1=FPO1+PRE
ROO=R0
CALl. PROPTC(L, 1>

IFCT. NE. 1°G0 T 14
ROO=RO
ROS=R)

APS=AP
BAS=RA
CPS=CP

UES=LIE
ADIAS=AFP*S80. *{T1+272 15>/CP
PERS=PERDS

s 44 CONTINUE
;3 C————=FOR PERMERBILITY PER———=—-
GO TO (51,52,53, 54, IPER

T i PER=PERDS
. OFPER7=9.
60 T S5

o B% PER=PEROSH(L =0 18WDEPWL BE=S)
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DPFERZ==H"18%1 GE-S*FERDS
GO TO SS

T2 PER=PEROS*(1 -8 IS*DEP#1. BE-S5+0. 3Z5+DEP*DEP*1. BE~12)
- DPERZI=PEROS*(-0. 3&6+1. BE-S+0. B@7T2+DEF+1. BE-18> -
GO TO 5S
—————-m4—PER=PER8:¥ki——é—@lé*BEF*BEF*t—BE-ig} -
DPFR4=PEROS*t—G BT Z2+DEP*1. BE~1G)

S CONTINUE
= FOR—E4 2N

£ I >=HZ# DwDUT AUE~DPERZ/PER~AP*D )
Cmmm=mFOR F(ZN)mmm—m——

e RIS BRI G Y= AR KL e (o DU T 2HE~DPER TP ER=BRRRO®GY Y ——
F(Ir=(F CID+RO*GY*{ D*DBAT+RO*GY*DBAP » »
FOI=F (1) +BRAKGY* (D*DROT +RII+GY*DROP

e PR EN2RC F I mDa D ORR TARDAG DR >
§ fe——eeFOR GCZNI——————
btI‘—HP*RO*UES*PER’tHPS*ROS*UE*PE 0z

H{I)=R0*(CP*U-HP*D*DEP*GV—HP*TS*GVh/(D*CPS*ROS)
C————FO0OR RIC(ZN)——————
o RICII=HZs(DRDUT AJE=BRRORGY=DPERT /PER)
) K=K+1
IFCT ECG. 12G0 TO 20
o PRE=ISQ.#{(ROU+ROCO I _S)xl000 /1G6060
' RTEST=ABS{ROO-RO> /RO
IF(RTEST. LE. 9. 599160 TO 20
GO_TO 15
28 IFCI NE 12G0 TO 12
ES=Fddin
ES=ELLD
GS=G{1>
HS=HC(L>
RIS=RICLD
PERS=PER
12 ROR=ROROS
APR=APAARE : e
BAR=BR-BAS
= CPR=CP./CPS
- UER=EZUES —
- ADIA=AP*32G. % T1+27Z 1S /CP
ADIAR=ADIA/ADIAS
ER=F{ 1 Y/ES
FR=F(I1)/FS
GR=GCI>/GS
HR=HC I /HS I
RIR=RICI)RIS
N DEP=DFF./1980803,
_________EEEiﬂsEﬁi*igﬂiﬁﬂﬂ+ﬁh TR e 2T T W D 1% 15151 5]
KPWeKPW+1
- IFCKPW. NE, KDZ>GO TO 18
”________uElIEiiﬁsleLlJ+ExI) GLId HCIN, RICTD
i 88 FORMAT2X, SCE12. S
KPid=ia .
18 CONTINUE B
© 1 CONTINUE
CALL CLOSE<CL)
END
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SUBROUTINE PROPT (HPROPT, NEFGHI >
- WPROPT=1, FOR LIQUID PROPERTIES; HEFGHI=1, FOR E,F, G, H, I<20> -
DIMENSION AC22), Cc12)
—v——GF—————¥H—PRB#%BE—4+EL4+VBR8BH*#m#}&—PR8PER?%ES*—EFFEE*EB“B#—¥EHF“—ﬂ—PPESE%——-

c FROM MEYER ET ALC1S63>
C RO=DEHSITY, RAP=EXPAMSIOUN COEF., BA=COMPRESSIBILITY
——4L————6P-5PEe%F%E—HFH*—ﬂ¥—EGN§¥——PRES£%——HE=ﬁ¥NﬁMiﬁ-ﬂ%SﬁB‘f*ﬁ“——————————
i [ INPUT “P1<(BAR>, TL(DEGRFE C>", OUTPUT "RO,AP,BA.CP IN C.G. S. "
i COMMON T4, P1, E<(E8), F(EB)>, G(EB)Y, H(EO)>, R1(68>
L —————COMMBN—ROr AP B EPTHE PER—< () :
L COMMON DUT, DBAT, DBAP, DROT, DROP. DAPT, DAPP SN

.5'

DATR A/~-5. 4220636573E2; —2. POES56285E4, 3. 941286787E4, -6, 733277739E4,
———————*“—99236&B2954r~&r€F€‘&i??4E576—59884166?E#——4—511168’42E4—‘
11, 418138926E4. -2. B17271113E3, 7. 982692717, -2. 616571843E~-2,

1. S22411790E~-3, 2. 2842790854E-2, 2. 421547003E2, 1. 269715G88E-10,

B ATGEIEIEEE—Tr R4 FYBRESSE— G 1S T D4 GE—0 T PO S LSS ES
| 1. ?881198?2E—5.6 ©4762633BE-14/, C/8. 438375405E~1, 5. 362162162E-4,
(1. 72, 7. 34227R489E-2, 4. 97585887E~2, 5. S371543E-1, 1. 15E-%5,

AR/, B24687741E3/
S=(T1+273. 15)/647. 3
B=R4pps 2
- WS=Y, =L (1) KSkS—C (2D WSk ~5)
“ ZRYS+SORT(C(3IWYSHYS—2, #T(4IRS+2, #CCSIHB)

U I P o PR N S T 0L LY 1
THrY

ovss=—¢.*cc1;—42.*c<2>*S**<—8>
- DZS=DYS+ UL (I xYSkDYS~-C4) » /SART(C (3D hYShYS—2 w42 %S+2, #C(SH>*Bx
=~ a2 = e - e O e g S ——
. D25S=DYSS+{C {3 IuDYSHDYS+C (I I wYSkDYSS ) /SO :
- DZSS=D2SS—CCLIIHYSHDPS=C(4) D2,/ (SHSHWSH ) &
;;————————BZP-Ef5%f5QR$€E€3+*¥§*¥5—2f*€€#9*5+2f*ef5%*B%——————————————————————;
- DKXS==(5. 217 >#ACL1dI*C(SIn(2nk( =22 /17. > >*DZS i

: DXRS=NKS+ CACLIDI+2, #RAC14IKS-RCLEIw1B. *(C(EI=S)wkS i
:f——————%—4Hﬂ£9*&9*5**tBféEé?9+S**t9BwﬂéBP————————————————————————————————4
. DXS=NXS+11. *CACL7 D42, #ACL18)I*B+3, #ACL1S Y#B%hB I wSwx10,/ (C{8)+Srskll > w2

N DRSHDKK~18. *ACZAI R (ShAl7I{C(OI+SHSIM(~3, /C(CCLRAI+BIwmd+C(11) >

e DREMDRS— 2 R 2B I NSHRL O A CEER IR e L =S C 2 B ——
) 1 =80, *AL22) S (=21 ) %BRxB*B -
DXB=(=S5. /17. DxACLLIORCCSIRDZBR 2wk =22 /17 >
f————————9N3=9¥B—427*3618§+6r*H%%9é*89#46%8%45**&&%———————————

DXRaDXB=RL{ 20 I} %Sl (C(RI+SkSI12/(C{1BI+BI**T

DXB=DXE+6. #R{(21D%(CCL2)=S)*B+12. #R{22 ) #BwB /S0

FOR_PENS I

X1=ACL1 > *CCSIm(Zwn( =5 /17 )

X1=X1+CACL2D+ACL3IHS+ACL1A I #SHS+ACLS I (C (5 =5 wklB+ACLED -

N et SN

“ $1=R1—CACL7I+2. #ACLSIHB+3. *ACLIIBHE) /(TSI +Shndl>

“ X1=X.=A (20 )% SHow1BIk(C (DI +SSIm(=3. /(CCLBI+BD#md+C (11>

f—————————x&-¥&+4—*ﬁé9&4*4e4&24—S4*B*E+4—*R4294*4S**4—2899*8*9*8—————————————

- RO=1. /(3. 17%X1> -

C=———=FOR FXPANSION COEF "AP" AND COMPRESIBILITY “BR"——=——o

e ARMRORI 4T ASAT IHDRS

- BA=—RO%3. 17,221, 2#DKBw1. BE—6 :

¥ C~———FDR SPECIFIC HFRT “CP* —— -

1————————45;-429F*¢&224*4amm4afsm*2a—9é2aa*esw*téameaasf*efea+aaef*s*sa*h____;

= €1, 7CCCLBI+B)##3+CC11)I%B) o
S1=ST- C242%(SHk20 3/ (CIBI+SHwll dk2=110%(ShkkD) /(CCBr+Snmll Ik D Y

AT OB R AR WD LS S HDRDNE> “

R SI=SI+Bk(2xAC14D+IDRALLSINCC (S I=SOmkB+P22KACLEI w(Swk3ED

12 CCLP D +Swm1 9 Ik Z=BA2HALLE I RS 7/ (CLT I +ShhL O Dok ) o

2 = =ICOPL P DL TS

P

47
1




SI=SI+A{11)%(24*DZS/ 2= 2 DYS YD ZSH Tk (=
SI=SI+AC11Ow {1242 /29=-YSim (2w (=5 /17, )*DZSS-S*(Z**(-ZZ /717, »>»D2ZS

 #[PSS1T
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SISST+2HACT ) +SHAC A IRSHL2%A (SO KSHk2+ 2R (6 ) %Sk 3+ IDRA (T dhSeand
SI—ql+42*ﬂ(8)*S**5+56*ﬂ(9)*Sm*a+?2*ﬂf19)*S**?—RB/S
2001 DI ATRSINS/RAT R HAES

=———F0F VYISCOSITY "UE"—e~—=—-

c

UE=G. 920901+ {241. 4*{10. **{247 8/(T1+133. 13503
LUEA=¢T1=158 >/ 10A

UED=S33. +380. #LIER=26. »UERMH3
UE=1.. /UED

I0 160
DZBR==C{S5Y*DZB/ (Z2-YS) %2
DZSRa~C{5)*(DZS~DYS) /(Z2-YSI kw2
DRSSz EBGRAC 2 ) kB Son2 2

DRSGmm~ ( L BHA THAL 2O ISl 5k CCSI+SHS I +I6HAC 2O I*Sanl B+3ITHAL20 I RSH*18)
{1123/ CCCL1DY+BO%ukd 3+DKSS
~ DXSS=DRESS+ (—22 Lk Shn2E/ CCCRD +Suonl ko1 1 AkSook D (LT +Soteoke o I DL )

cwCALATI4+2%AI 8 *E+3%A13 ) #BwB)
DXqS=d*R(14)#99*R(15)*(C(6)—5)**8*38*R(1b)*5**18/(Ck?)#S**lS)**‘
1= (ABRLSD HACLRIRSHkKL 7/ (L7 2+ Skl S )k 2+DXSS

DXSS=C110. /289. YHACLLI*CCS) 24k (39 /17, d%DZS*DZS+DKSS
DRSS=DXSS=C(S. /17. DRCLLI*CSIHDISS/Z#*(22. /17. )
DKYSB=—6%A{ 21 ) #B=240%H (22D 4B*B Sk

DRXSE=DIRSB—~ 18R 20 ) *Shd TR C (S I +SkS D+ 2R 20 ) %Skl
T 312/(CCAD>+BYwx5)
DXSR=DKXSB+11% (2#AC1E)+5#A 19D B IkSkk1D/CCCB I +Srhkkl] Ik

DXSB=DRXSB—(S. /17. I»ACL1LI%C(SO*DISB/ 24w (22. /17 O
DXSB=DRXSB+(118. /283 »*ACL1I*CL{SI*DZB*DIS 2wk {33. /17 2
DXRE=24%A{22) %B/SHH2B+EHA(21 2w <(C(12)~5)

DXBB=DXBB+50*A (20> % (CIII+SHkSIkSkk18/(CCLOI+B ) wwd
DRXRBRDRXEB=5%AC19) /(CCBI+Sww1l d=(S, /17, >*A(11)*C(S5>*DZBB/
(2w 22 AT D

DXBE=DXBB+(118. /289, »*A(L1)*C{S>#DZB*DZB/ 24+ (3. /17 >
DUT==(3. 8-8. 79%UER®UER >/ (UED+UED >
DROT==DXS/C647. 3%3. 17%X1%xX1)

DROP=~DXB/ (3. 17%2. 212E8%X1wX1)
DRAPT=3I. 17#(~DXS#*DKXS/ (3. 17#X1xX1)+RO*DKXSS) /(647 3*647. 27
DAPP=Z, 17#(~DXR*DXS/ (2. 17%X1%X1>+RO*DKSB) /(547 I#2 212E8)

36

DBAT=—2. 17%(~DXS#DXB/ 3. 17#X1mX1)+ROHDKSB )/ (647, 342, 212E8D
DRAP==3. 17*(—DXB*DXB/ (3. 17#X1#X1>+RO*DXBB) /(4. BI2244E16D
198 CONTINUE

RETURN
END
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APPENDIX D

Flow Charts and Program Listing for the
Time Dependent Model

The following programs are designed as an example to be
structurally similar to that in Figure 30, Chapter VI. Considering
the accuracy of the numerical integral algorithm (otherwise need to
be integrated by using the characteristic relationship of area coordi-
nates), we assumed both the hydrodynamic parameters and the
permeability are constant within an element. The final element sub-
division for the domain is shown in the figure on the following page.

Programs wrote in FORTRAN IV Below are originally run on a
ECLIPSE mini computer which has 32K 16-bit true work memory
(exclude system memory). Due to storage limitation an "overlay
technique " has been applied which can be found elsewhere in the
manual along with most of the mini computers. The whole programs
of the system are located in several overlay areas, only limited
files are loaded in the core during run time, although the whole pro-
gram listings become lengthy. Some programs need to be renamed

in different overlays because of the recognition of the programs

during load.
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THE OVERALL PROGRAM LOGIC

START

(root program)

CONVEC
Link overlays BASIC, START,
REVISE, MAIN, MAINZ, SOLVE

‘L (overlay BASIC)

Call GRID
Generate element data, locate node numbers, par-
tial element data are read in from file GRIDIN

L (overlay BASIC)
Call HAMER

Input stations and weights for
numerical integrations

J( (overlay START)
Call INIT

Input parametars of porous media and rocks,
boundary conditions, initial conditions, function
DENPRO has been called to provide hydrodynamic
parameters

i (overlay REVISE)

Call PROPT, set IDP=0
Revise hydrodynamic parameters
for update temperature and

pressure




Yes
IDP>17

No
(overlay MAIN2)

Call STIFP

BA2P, DXZ2P, COMPP, COMPB have
been used to form finite difference (in
time) equations

[A]‘P‘)n+ l:[B]lgnt-F

Save [A], [B], F on disk file AXAY

(overlay SOLVE)

Call EQSO, IDP=IDP+1
Read in from file AXAY and from

-n+1 -
[A]B® =[BIP+F=F"

+1 =
Solve for .l%’.n , update P

N

IDP>MCY ?

Yes
(overlay MAIN)

Call STIFF, ID=1
BA2, DXZ2, COM].:_"AC have been
used to form [A]Q=F

L (overlay SOLVE)

Call EQSO
Solve for a

!
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(overlay MAIN)

Call STIFF, ID=2

to form [A ]QZF

BA2, DXZ2, CE_\OMPAC have been used

L

(overlay SOLVE)

Call EQSO

Set IDP=0

Solve for W

L

(overlay MAIN)

Call STIFF, ID=4

an+1
to form [A]Tn =f

BA2, DXZ2, COMPAC have been used

(overlay SOLVE)

Call EQSO

-
Update T

—
Solve for T at ttat

L

necessary

Print results on disk file SHCON if

MCY = number of flow cycles per energy cycle.

n, ntl = time levels.
F = forcing functions or known vectors.
KEQGY = total time levels required.



Flow chart for subroutine STIFF

START

ID=1 for ¥, ID=2 for W, ID=4 for T
Evaluate integral equations numerically for

each element, select proper time increment
for-the marching scheme

l

Delete nodes associated with Dirichlet
boundary conditions, modify forcing functions

|

Insert element matrix equations
into global matrix system

Are
all elements
assembled?

149
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Definitions of Important Symbols and Explanations of
Program Listings

The following program names appear in the order in which they
are called. Parameters will not be defined if already defined in the
previous programs unless they need to be redefined. Numbers in
parentheses represent the corresponding commentary locations in

the original program listings.

Main program CONVEC

Function: link programs in overlay BASIC, START, REVISE,
MAIN, MAIN2 and SOLVE, evaluate temperature, flow
velocity and pressure solutions for time dependent
model of natural convection in a porous slab with various

conditions.
SHGOB disk file for the element data storage.
(1) see subroutine GRID.
(2) see subroutine HAMER.
(3) see subroutine INIT.
(4) see subroutine PROPT.
SHCON disk file for output of solutions.
SHGAB disk file for scrap use.
AXAY disk file for temporary storage of flow equations

in matrix form.

DTP,DT time increments in the flow and in the energy
equations respectively.

(5) see subroutine STIFP.

(6) see subroutine EQSO.
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NP (i) node indexes for pressure.

Pi(i), P2(i) pressure at time t and ttAt respectively.
YY(i) forcing functions in input, solutions in output.
(7) see subroutine STIFF.

NU(i) node indexes for velocity u.

Uu@i) horizontal velocity u.

NW(i) node indexes for velocity w.

Wi(i) vertical velocity w.

NT (i) node indexes for temperature T.

T1(i), T2(i) temperature at time t and ttAt respectively.

Subroutine GRID
Function: generate the element data for the structure.

GRIDIN disk file, provide partly node and element num-
bers, specify partly node coordinates.

IMD,IGD grid intervals in depth and the horizontal respec-
tively.

XP(i), ZP(i) node coordinates in the horizontal and depth
respectively.

ZTA dip angle of the slab.

NET total elements.

NOD total nodes.

Y(i,j) global node numbers, i=element number,

j=vertex number in a triangular element.

NF(i) node indexes in the domain of the porous slab.
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XC(i,j), 2C(i,j) the X and Z coordinates of the nodes, i=element
number, j=vertex number in a triangular element.
Subroutine HAMER
Function: provide stations and weights for numerical integrations.

1D =1 for 1-D element.

=2 for triangular element.

ZN(i) stations for 1-D element.
ZS(i,j) stations for triangular element.
WE(i) weights.

Subroutine INIT
Function: introduce material parameters, boundary conditions,
initial conditions.

FAI porosity.

BFAI vertical compressibility (cm2 /dyne).

ROS densitg of solid phase in the porous medium
(g /cm?).

CS specific heat of solid phase in the porous medium
(erg/g, °C).

COND conductivity of the porous medium (erg/cm, s, °C).

RORCK rock density (g/cm3).

CSRCK rock specific heat (erg /g, °C).

CONRCK conductivity of the rock (erg/cm,s, °C).

PERS permeability at the surface (cmz).

TS temperature at the surface (°C).

DTDZ temperature gradient (°C /km).
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GRAV =980 (cm/sZ).

(1) NT(i)=555 if temperature at node i is 2 known
value (Dirichlet conditions), so as NU(i) to
velocity u, NW(i) to velocity w, NP(i) to pressure

P.
o1 2

PER permeability (cm ).

PERI1, PERZ2 permeability coefficients associated with the first
order and the second order terms respectively in
Table 6.

NG(i) global node indexes in an element.

XO(i), ZO(i) node coordinates in an element

RAYLE Rayleigh number.

PERS1 =PERS.

Function DENPRO

Function: water properties of p,, @, B, C_, and p are derived from

f f
the empirical equations given by Meyer et al. (1968) and
Mercer et al. (1975) if temperature and pressure are
known.
3
IDT =1 for Py (g /cm™).
=2 for a (1/°C).
2
=3 for B (cm” /dyne).
=4 for Cf (erg/g, °C).
= 5 for p (poise).
TEMP temperature (°C).

2
PRESS pressure (dyne/cm).

AQ, A(i), C(i) coefficients for the empirical equations.
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Subroutine PROPT
Function: as stated in function DENPRO.

RO(i), AP(i), BA(i),
CP(i), UE(i), PER(i) pf’ a, P, Cf’ K, and permeability at node i

respectively.
Subroutine STIFP
Function: form matrix equations in a partial packing storage scheme
(this scheme was suggested by Key,3 1973) to solve for
pressure.
ISCH =1 for backward difference scheme.
=2 for Crank-Nicholson scheme.
(1) will form a system as [AX].I:\’n+l = [AY]-P)I'1 + f
MEQ total equations to be solved.
MROWX maximum row dimension of AX(i, j).
MROWY maximum row dimension of AY (i, j).
AR area of an element.
DJACO Jacobian determinant for coordinate transforma-
tion.
(2) average values of material properties in an
element.
P,Q,R temporary storage of ZS(i, j).
(3) see function BA2P and function DXZ2P.
AXE(,]) local (for one element) matrix of AX(i, j).
AYE(,j) local (for one element) matrix of AY(i, j).
3

J.E. Key, Computer program for solution of large, sparse,
unsymmetric systems of linear equations, Int. J. for numerical
methods in engineering, 6:497-509, 1973.
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(4) see subroutine COMPP and subroutine COMPB.

(5) write down information of YY (i), AX(i,j),
NCOAX(i,j), AY(i,j) and NCOAY(i, j) on disk file
AXAY.

Function BAZP
Function: represent quadratic shape functions Ni(i=1,2,. .. 6) by
area coordinates Li (i=1, 2, 3) at stations P, Q, R.

IBA index of shape function Ni (e.g. IBA=5 for N5).

P,Q,R stations for numerical integrations.

Function DXZ2P

Function: form derivatives of quadratic shape functions Ni
(i=1,2,...6) in terms of area coordinates Li (i=1, 2, 3) at
stations P, Q, R.

ND =1 for 8N.1/8x

=-1 for 8Ni/8z
M index of shape function Ni.
Subroutine COMPP

Function: insert a local matrix AE(i, j) into a global matrix A(i, j)
in a partial packing storage scheme.

AE(i, j) =AXE(i, j) defined in STIFP.
A, j) =AX(i, j) defined in STIFP.
NCOL(i, j) =NCOAX(i, j), column indices of A(i,j)-

Subroutine COMPB
Function: insert a local matrix AE2(i, j) into a global matrix A2(i, j)

in a partial packing storage scheme.

AE2(i, j) =AYE(i, j) defined in STIFP.



156
A2(i,j) =AY (i, j) defined in STIFP.
NCOL2(i, j) =NCOAY (i, j), column indices of A2(i, j).
Subroutine EQSO N
Function: solve matrix system equations [A] X=B, [A]:partial

packed matrix, B=known vector. Details of the program
was discussed by Gupta and Tanji (1977). 4

NPT total equations to be solved.

MROW maximum row dimension of A(i, j) in calling pro-
gram.

NNN maximum row dimension of A{i, j) in EQSO,
NNN>MROW.

ZTEST value below which element made equal to zero.

B(i) forcing functions in input, solutions in output.

IBANDW number of nonzero coefficients in each row.

NCOL(i,j) matrix containing indices of nonzero coefficients
of A(i,j).

NNCOL(i) one dimension array for pivotal row indices.

NPIV(i) one dimension array to store pivotal column.

AA() one dimension array used for pivotal row elements.

Subroutine STIFF
Function: form matrix equations in a partial packing storage
scheme.

D =1 for velocity u.

= 2 for velocity w.

4

S.K. Gupta and K. K. Tanji, Computer program for solution
of large, sparse, unsymmetric systems of linear equations, Int. J.
Numerical Methods in Engineering, 11:1251-1259, 1977.



=4 for temperature T.

(1) see function BA2 and function DXZ2.
UKNO velocity u at previous time.

WKNO velocity w at previous time.

PKNO pressure P at previous time.

(2) see subroutine COMPAC.

Function BA2
Function: as stated in function BAZP.

Function DXZ2
Function: as stated in function DXZZ2P.

Subroutine COMPAC
Function: as stated in subroutine COMPP.
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CONVEC 3, 2,79 9. 4 3 PAGE I
1;¢ POGRAN CONVEC —e-C. T. SHYU---HAY, 1978---
2;¢ a TRANSCIENT WODEL FOR CONVECTION IN POROUS MATERIAL CONFINED [N & SLAS
3.C ssosss YROTE BY C. T. SHYUY, MAY, 1378 ssesee
4 CONMON SGWL(22), SC¥2(12),5GU3
s; COMMON FAL, 8FAL, ROS,CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAV, DTD2Z
6i CONMON AR, ZNC?), 28(7. 3%, 4EC?), PQRC4), P, 4, R, NET, NOD, 2T0.XT0, IND, [GD, 2TA
by COMNON NG (6, XOCE), 20¢6), X(S, 93, 2(3, 5>, NF(223)
8; CONNON NT(223), NUC?7>, NBCZ7), NPC27)
3 COMNON UC?73, WC77), T1(223),T2(223),P1(27),P2(77)
19; COMNON ROC?7), AP (773, BAC??Y, CPC?7), UE(?7), PER(?7)
11 COMMON AXECE, 62, AKC179, 29, ¥¥ (223>, NCOAX(179,23)
12; EXTERNAL BASIC,START, NAIN, NAIN2, SOLVE, REVISE
13;¢ 29HATERIAL PROPERTIES ARE INPUT THROUGH SUBROUTINE *INIT®
14.C 9QUATER PROPERTIES ARE PROVIDED THROUGH SUBROUTINE *PROPT®
15 CALL FOPENC3S, *SHGOB®)
16; CaLlL OVOPH(21, *CONVEC.OL", 1ERD
17:C-----GENERATE FINITE GRID POINTS FROW GIVEN GEOMETRY---
19; CaLL 0VLODC21,BASIC, 8, IERS)
19; cALL GRID <— —(1 )
281 C-=--- INTRODUCE HANER’S FORMULA FOR NUMERICAL INTEGRATION---
215 caLL NANER(2) € { 2 )
32,C-----INITIALIZE SYSTENS AND PROVIDE INITIAL CONDITIONS--- \
23; caLL OYLODC21, START, 8, [ERST)
24; CALL INIT & {3 )
285 caLL 0VLODC21, REVISE, 8, IERS) \
26, caLL PROPT & —{ 4_)
277 Cmmmmemomnn DI S ceememmeeemammne- A A
28 CALL FOPENC38, *SHCON®)
295 CALL FOPENC31, "SHGAB®)
30: CaLL FOPENC33, "AXAY™)
31;Cemm-- CALCULATE NEY P AT T#DT===-=
12; ACCEPT-HOW MANY FLOW CYCLES PER ENEREGY CYCLE?". ACY
135 ACCEPT*TOTAL ENERGY STEPS2?°, KEGY
24; KTIHE=®
3%; 398 KTINESKTINE+L
36 1DP=9
37 DTP=BT/NHCY
39; 18@ IDP=IDP+1
39; IFCIDP.GT.13G0 TO 6
49 CaLL OVLODC21, NAIN2, @, [ERN2) |
o1 CALL STIFPC1, NEQ, NROWX, NROWY) € (s )
42; 6 CALL OVLOD(21,SOLVE,®d, LERS)
43; CALL E0SOCMER, NROUX,23,8.9) € {6 )
“ INDu@ \
43 ; Do 38 X-l:??
465 LFCNPCI). £0.5555G0 TO 39
47; INB=IND+1
485 PLCI)aP2CDD
49; P2(I)=YYCIND)
se; 39 CONTINUE
21 IFC1DP.GE.NCY)GO TO 191
w2; HHCa(HCY #1242
€3, IFCKTINE. EQ.1.AND. IDP.EQ.NHCIGO TO 181
54, Go TO 198
$S;C----- CALCULATE U---
s6; 181 CALL OVLODC21,MALN, 8, IERM) y
$7; caLL STIFF(2, 1,MEQ, AROW) <€ { 7 )

gcaLl OYLODC21, SOLVE, @, IERS)



CONVEC 37 27798 9. 4. 3 PAGE
39; CaLL EQSOCMEQ, MROW. 25,8. 8
68; [ND=9
6L, 0o 18 1=1,77
62; IF(NUCI).EQ.355)G0 TO 19
63; IND=IND+1
64; UCI)=YYCINDD

83, 1@ CONTINUE
66;C~-===CALLULATE y=---

67; CaLL OVLODC(21, MAIN, 8. IERN)
68 CALL STIFF(8, 2, MNEQ, NROW)
89 CALL OVvLODC21, SOLVE. 3, IERS)
79; CALL EQSOCMEQ, NROW, 25,9.8)
71 IND=@

72; D0 29 [=1,77

73 IF(NUCI) . EQ.593)G0 TO 29
74; IND=INB+L

73; (I =YY CIND)D

76, 29 CONTINUE
7?;C~==~~TENPERATURE AT T+DT---

78 CALL OVLODC21,MAIN, 9, [ERM)
79, CALL STIFF(1, 4, NEQ, NROW?
39, CALL 0OvLOD(2t, SOLVE.d, lERS?
81; CALL EQSOCMED., WROW, 25,09. )
82; IND=@

§3; D0 49 I=t,223

8¢; IF(NTCI>.EQ.533)G0 TO 4@
83; IND=[ND+ 1

36, TiC(IdatT2C 1>

87; T2¢(I>=YYCIND)

88; 48 CONTINUE

89; CALL OVLOD(C21,REVISE, 8, IERR)
39 CALL PROPT

81 DT=1. 2eDT

92; KTIME=KTINE+L

93 YRITE(IO, 18)KTINE

94 18 FORMAT(1X,*KTINE=", [3)

93; D0 S0 I=(,?

ELY J2s=ttel

27 J1242-19

98; 38 WRITECID, S8)X(UCJI, Jodl, )
92; 38 FORMATCIX, [1CELL. ¢, 1X))
160, b0 31 1st,7

181 J2={lel

182; Ji=Jj2-18

183; S1 WRITEC(3IG, 38)C¥CJS. yuJt, 42
104; D0 352 I=t,29

183; J2={1sl

186 Ji=42~-19

197; 32 WRITE(3S, S8X(T2¢J3,JmJdt, 423
189; WRITE(3IN, 39)3(T2¢J>, J=221,223>
189; 59 FORMAT(1X,3CE1l.4,1X))

119; IF(KTINE. GE.XEGY)GO TO 148
111 GO0 TO 388

112; 1908 CALL RESET
113 EMD

159



1;

3;:cC
4;C
3;C
6:C
7
8
9;
10
11
12;
13,
14
19,
{8
17
18
19;
29;
21
22
23
24
23;
2§
27;
28;
29;
20
kP O
32;
23;
34
38
kE-¥
317
38;
29
49
41,
12;
43;
44
45;
45
47
49;
49;
39;
L3
S2;
53,
T4
S
S6;
$?;
$8;

160

GRID 3+ 2779 9:57. 16 PAGE I

18

19

28

29

38

S8

s9

29

38
3

33
’8

34

OVERLAY BASIC

SUBRGUTINE 1GRID

«-=T0 GENERATE ELEMENT DATA---GRID SCALEsMsN=IMD=»IGD---
-=-=NETaTOTAL ELEMENTS. NOD=TOTAL NODS. [B=8AND WIDTH. 2TA=DIP ANGLE---
~==ZTQ=80TTON DEPTN: XTOaHORIZONTAL WIDTH---
--=QUTPUT=IMD, IGD, IB, ZTO0, XTO, Y, NET, NOD, XC, 2C-~~
[NTEGER Y

DINENSION Y (188, 3),XC(100,3),20¢180, 3>

COMMON SGW!L(22), SGW2(12),56¥3

COnRMON Fal,B8FAL,R0S,CS, COND, RORCK, CSRCK, CONRCK, PERS, 3T, DTP, TS, GRAV,DTDZ
COMNON AR, ZNC(?), 258¢?7,3),HEC?),PAR(4)>.P, @, R, NET,NOD, 270, XT0O, InD, IGD.2TA
COMMON NGC(E), X0C6), 20C62,X(3,3),2(3, 3), NF(22)

COMMON NT(2Z3), NUC77), NW(77), XP(7),2P(8>

CALL FOPEN(36, "GRIDIN®)

MRITE(18,13)

FGRMATCIX, “GRID DIMENSIONCHMeN), M, N=? (I1,1X,I§)*)>
READ(36,.19>INnD, IGD

TYPE ImD, IGD

FORMATCIL,1X, 11

YRITEC10, 28)

FORMATC(1X, "XP1,XP2, XP3, XP4, XP3, XP6, XP?722 7(F7.3,{X)"*}
READ(36,23)XP (1), XP(2), XP(3), XP(4),XP(S), XP(6),XP(?7)
WRITEC18,23)XP (1), XP(2), XP(3),.XP(4),XP(33,XP(6), XP(7}
FORMAT(7(F7.3, 1X))

WRITE(19, 38)

FORMAT (11X, "2P1.,2P2, 2P3, ZP4, 2PS, 2P637? 6(F7.3, 1X)"*3
RERD(36,29>2ZPC1)>,2P(23,2P(3>,2PC(4),2P(S), 2P (&)
URITEC19, 2922ZP (1), ZP(2),2P(3).,2P(4), 2ZP(3), 2P (8)
URITEC(10, 38

FORMAT(I1X,*“31P ANGLE(DEGREE)>=? (F3.2>*)
READ(34,33)2TA

FORMAT(FS. 3

URITE(19,39>2TA

2T22TA/189. 3. 14185926836

2T0=22P(6)

XTO=XP(?)>

NET=108

NGD=223

DO 9 I=t, {98

Do 9 J=1.3

YL, J3 =

Do 29 I=t,223

NF(1)=9

DO 31 KWM=1,S

bo 38 121,93

NF(EA+(KN=-1)821+[>=(KN-1)%17+]

IF(KMN. £EQ. 5. 0R.1.EQ.95G0 TD 383
NF(?272+(KN=1)821+])a(KA-1)817+]+3

COMTINUE

CONTINUE

Do 33 I=t.19

READ (36, 78)(YCI, J),d=1, 3D

FORMATC(I3,1X, 13, 1%, I3

B0 34 I=91, 100

READC(3S, 78)XCY (1, J),Jds1, 3}

CALL FCLOS(36>

DO 12 K=1,14,2

KlagK+22



39
690
61
62;
63
a4
63;
§6;
7
68;
63
79
14
72,
?3;
T4;
7S
76
?7;

bX- N
k-]

79;
88;
8t
92;
83;
94 ;
8S;
36
87
88
29;
se;
91
52;
$3;
34;
85
96
37
$8;
99;
189;
131
192;
193
134
185;
126,
197;
1489,
189;
119;
111
112;
113
114;
118
118

GRID 3/ 1,79 135.3%8:51

13
12

1S
14

KH=K/2

po 13 Isi,t@

D0 13 J=1,3

TF(YCL,J). EQ.KIXCCL, JI=XP(1)
IFCYCI, J). ER.KIZCCL, JI=2ZPC(1+KH)
IF(Y(!.J).EG.Kl)xCCI.J)=XP(2)
IFCYCL, 3. EQ. K13ZC (1, J)=ZPC1+KH?
CONT INUE

D0 14 K=191,291,2

Ki=K+22

KH=(K~198)/2

D0 15 =31, i88
IFCYCI,J). EQ. KDKC(L, 4)=XP(6)
IFCYCI, J) . EQ.KX2CC1, d>=ZPCL+KH)
TFCYCI,J). EQ. K1IKC LT, JI=XP(?)
IFCYCY,J) . EQ. K1XZCCL, JI=TP(1+KN)
CONTINUE

B0 218 J=1.4

Ni=8

00 218 [=1,3

NlaNI+i

Tis{i+4sCI=-1)+(J-1)229
IMn42e(J=1)+423+28(1~1)

YClt, (s

YCIl+1,1)3YCl1,12

Y(I1,2)=1IM+2

Y(11+42,2)3Y(11,2)
Y(I11,3>=2INM+2+28
YCI1+41,2)3¢YC1L1,3)
YCI1+2,123YC11,32
YC11+43,222Y(¢11,3>
YCI1+1,3)aIN+2+48
YCI1+3,10=Y(1i+L,3)
YCI142,3)2=IM+2+40+2
YCI1+3,3523Y(11+2,3>

RC(1L, 1)3XP(J+1D

KC(It+l, 1D=2XCLIL, 1D
XC(11,2)=%CC1L, 1)

XC(I1+2, 2)=xXCC1L, 1)
XC(II:3)3X?(J’l)’°.5‘(XP(J’2)‘KP(J’1))
XC(I1+l, 2>=XCC1L,3)

KC(I1+2, 1)=%XCC1L, 3D
KC(11+3,2>=XCCI11,3)

XC(I1+1, 3)=2XP(J+ 2D
KC(I11+3,1)=%C(C11+1,3)

KCCI1e2, 30=XCCLlL+1, 32
XCC(I1+3,3>=%xC(11+1,33
2CC11,1)=s2P(NI)

2C¢I1+1, 1>s2CCI11, 1)
2CCI1+1,33=2CC1L, 1)

2C0¢T1+32, 13=2CCIL, 1D
ZC(XI:3)‘29(“1)’0.5'(2?(NI01)'ZP(NI))
2C¢I1+1,25=2C(18,3>
2C¢11+2,15=2C0¢11.,3)
2C0(11+3,23=2CC18,3)
2C¢11,2)=2P(NI+1)
2C(11+2,2>=2C0¢148,23

PAGE

2
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1173
118,
119;
120;
121
122;
123,
124;
128,
126
12?2
128;
129
{29
1385
132;

GRID 3/ 1,79 15.32:51

219

211
212

229

2C0¢11+42,3>»2C<¢11.,2)
2C¢11+32.3532CC11, 20

CONTINUE

IFC2TA.EQ.99.)G0 TO 212

DO 241 T=!.NET

8o 211 J=1.3
XCCL,d222CC 1, JI/TANCZTY4XC (T, 2
CONTINUE

Do 228 I=f, NET

50 228 J=1.3
YRITE(3S, 68)YCL, J2, XCCI, 42, 2CCT. J3
CONTINLE
FORMAT(2X, 13, 2%, F3. 4, 2%, F3 . 4>
REVIND 35

RETURN

END

PAGE

3

162



File

36

9.9003088
8. 98000
98.29

801
223
293
883
8es3
827
8ev?
ge?
899
831
191
121
133
218
19¢
198
197
219
199
199

293
283
927
293
297
U1k
831
099
a1
811
213
193
19§
193
219
197
199
139
223
291

163

"GRIDIN"

5.08000 12.0000 12.62%0 13.2500 20.2380 23.2388
2.38000 1.359908 2.3008980 4.985098 S.30000 2.282994

923
923
829
827
827
929
829
331
831
833
213
213
2138
217
217
219
219
221
221
223



24,
2%
26
Z7i
28
29
25;
k3 O
22;
32
34
3S;
36
2?;
39
39;
18
41;
42;
43
44;
45,
18
4?7
48;
49
59

Sii

HARER
SUBROUTINE HAMERCID)
HANMER’S FORMULA FOR NUMERICAL INTEGRATION [N ONE-D ¢ TRIANGULAR

29

domaiN. E.G.

164

3/ 1779 15:33.31¢ PAGE |

IB=t1 FOR 1-D, ID=2 FOR TRIANGULAR

COMMON SCuWi(22),SGW2Ci2),5Gu3

COMNGON FRI,BFAl, ROS,CS, COND, RORCK, CSRCK,CONRCK, PERS, DT, DTP, TS, GRAV,DTDZ
COMNON AR, ZHC(7),28(7,33,¥E(?),.PAR(4)

IFCID.EQ.25G0 TO 29

ZNC1)2-2.86113631-8.1334853E~9

ZN(2)s~93,33998104-8.3584336€-8

ZNC3)a-2N<(2>
ZNC4)==ZN(1)D

VE(1)29,. 34783484+9.5137434E~8
YE(2)29.632143135+9. 4862346E-8

VE(3II=UE(D)
YE(4)=YEC(L)
G0 10 %o

$128.3333232333

$2%9.79742699
$3298.19128631
$4=9.083371387
$329.47314296

28¢1.,1)>=81
28(1,2)>s81
28¢1,3)»81
28(2,1)=82
28¢3.,23282
28¢4,33=82
28(¢2.,2)=83
25(2,3)383
28¢3,13a33
28¢3.3)=83
25¢4,1)283
25¢4,2)=82
28(S.,1)=54
28¢(6.23=S4
28(7,3)x54
25(S8,2)=883
28¢S5,3>=8S3
28¢6.,13=83
28¢6,32283
2S(?.1,%83
28¢7.,2>=2S83

$E(1)=9. 1123

VE(2)29,. 0862963539

WE(3)=WEC2)
VE(4)2YE(C2)

YE(S)>29. 96619798

WE(H)=§E(T)
WEC(?)=4E(S)
RETURN

END
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INIT 3/ 1773 15:35: 48 PAGE !
1 OVERLAY START
2; SUBROUTINE INIT
3.;¢C GRID DIMENSION=MeN=sInD=1GD, Z2TO=BOTTOM DEPTH, XTO=HORIZON. WIDTH
4;C INTRO. PARAMETERS OF POROUS MEDIiUM AND ROCKS, AND BOUNDARY CONDI.
S; COMMON SGU1(22), SG¥2¢12),85GU3
6i COMMON FAL,BFAI, ROS,LS, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, 78, SRAV, DTDZ
7 COMMON AR, ZNC7),2S¢?7,3),WE(?),PAR(4)>,P, 2, R, NET,NOD, ZTD, XTQ, IND. [GD,2TA
8; COMNON NGC(S), X0(8), 20¢6),X(S,5>,2(%, 5>, NF(223)
9; COMMON NT(223),NUC??), NW(?7), NP(?7)
19; COMMON UC?7), 877>, T1(223),T2(223).P1(77),P2(?7?)
11; COMMGN ROC77), AP(72),8A(772), CP(77),UE(?7),PER(?7)
12; COMMON AXE(S,6),2P(1881),PP(1301),AX(1948)
13 EXTERNAL DENPRO

{4iCevmcmmmmna sesesocco- e e et kgt R L L e b Lkt -
{SiC-=-FAl2POROSITY~--BFAI=vERTICAL COMPRESSIBILITY OF POROUS MEDIUNM
16,C-~-R0OS=ROCK DENSITY(IN PORO. >~=-CS=ROCX SPECIFIC HEAT(IHN PORO.)
{?,C-=~CONDsCONDUCTIVITY OF PORO. MEDIUM-~RORCK=ROCK DENSITY
18;C---CSRCaRORCK SPECIFIC HEAT--CONRCK=CONDUCTIVITY OF ROCK
{32;C---PERS=PERMEABILITY AT SURFACE--DT=TIME INCREDIMENT--TSaSURFARCE TENP.
Z29;C~~~GRAV2GRAVITY-~DTIZ=TENPERATURE GRADIENT AT INITIAL TIRE

S A e b el L DL L b L et b LD L L L P DL L e bl

22; Fal=e. 1
23; BFAl=2 SE-11

4 ROS=2. 7

28, CSx9.932

6 COND=S.1+4.185+10080.

27 RORCK=2. 7

28 CSRCK=@. 93

23; CONRCK=S. Se4. 195+19099.

30; ACCEPT*INITIAL DT FOR ENERGY CYCLES=?°,DT
31, ACCEPT*SURFACE TEMPERATURE(DEG.)s?%, TS

22; ACCEPT*TEMPERATURE GRADIENT(DEG. /KM)>32%,DTD2
235 CRAY2980.

34 Cmmmeememecemcmmm-mseesmmecmemmmmeeemmaeem- e amemme—em——m=——a—
3s; ACCEPTCRITICAL RAYLEIGH NUNBER=2?°,RAC

6 TYPE*RAYLEIGH NUMBER=*, RAC

37; 222270-1088.

18; DO 11 Iat,223

39; 1t NT(I>=8

18 20 12 l=1,77

a1 NUCII»9

42, 12 N4(1)=@

43;Cmmmm- 8. C. NODES FOR TEMPERATURE---

44 12=2«{¥D+1

45 ; D0 18 1=1,12 €

46; NT(1)38SS

47; 10 MT(212+1)s53S

48 NTC12) %883

49; NT(22)=58¢

S0 NT(202)%53S

1; HT(212)=55S

€2; D0 1S I=1.9 f( ')
53, NT(2881+2+41)25SS

T4i 15 NT(28e1+1+42+19)=585

2S;C-----8. C. NODES FOR YELOCITY U-=-

Y 20 28 I=1,9

2, HUCNF(66+1))>255S

S8 29 NU(CNF(159+13)>3583 &



INIT 3/ 1s/79 15:.33:4¢ PAGE 2
€9;Ce=---8.C. NODES FOR VELOCITY u---
1¥ DO 39 I=1,3 €
61; NMC(NF(67+21+(1-1))>283S
62, 39 NUW(NF(?75+21+C(1~1)))25SS
63;L-=="-~ 8. C. NODES FOR PRESSURE P---
64 DO 68 1=1.S5
€S, 68 NP(NF(218CI-1)+67))2855 £
66; Kinp=8

87 18 FORMATC(1X,*PERMEABILITY COEFFICIENTS3? 2(FS.8>*%)
68; 19 FORMAT(2FS. 92

§9;C----=-INPUT vALUES AT 8. C. FOR T, U, ¥, P---
79;Ce==~=CALCULATE PRESSURE WITH RESPECT TO DEPTH-------
71 p=1.

72; T2TS

73 2P(1)=9.

745 PP(1)aP

7S5 DO Si8 K=2,1881

76 2P(K)>=D2=(K~1)

77 PO=pP

78 DEN=DENPROCL, 1. T.PD

79; PaP+DEN®GRAVY=D2/10.

8@ TaT+D32+070Z

81; DENN=DENPROCL, 1. T, P)

82:; DP=C(BEN+DENN) /2. sDZ#GRAV/18.

83; P=PO+0P

g4 PP(K)3p

85; S19 CONTINKE
86, 123 KInPs=KINp+1

87; ACCEPT*PERMEABILITY AT SURFACE=?", PERS

38; TYPE PERS

59; YRITE(18, 18)

99 READC(11, 19)PERNL, PERN2

91;C-oom-- weemescncencaco= R L R kel bttt bbbttt
92 DO 1088 KE=1, NET

33; po 2S5 I=1,3

94; READ(3S, 69)NG (1), X0CI), 20CT)

99 25 CONTINUE
96; 69 FORMATC1X,13,2%, F8.4,2X.F8.4)

97 NGC43=(NG(1X+HG(2)) /2

98 NG(SI=(NG(2)+NG(3))~2

99; NG(6I=(NGC(1)+NG(3)>/2

108; X0(4)>=(X0(1)+X0(2)>~/2

194 X0(SI=(X0(2)+X0¢3>)~/2

182, X0(6)=(X0(1>+X0(3>)>~-2

133; 20¢4)=¢20(1>+20¢2>2 /2

194; Z0¢$)=(20¢2>+20(33>~,2

195 20(6>2(20¢1)>+20¢333,2

186; IF(KINP.GE. 2260 TO 33

107 ;Coon=- INPUT TEMPERATURE AT B. C. ~---
188; D0 198 1=1,86

199 T2¢(NGCI>)=TS+20([)»DTDZ

119; 108 TI(NG(I)>=3T2(NG(I))

111i6omm~~ INPUT YELOCITY U,¥ AT 8. C. ~---
112; DO 2988 I=1.8

113 IFC(NF(NG(I)). EQ.8)G0 TO 288
114; IFCNUCNFCNGCT))) . EQ. SISIUCNFING(TID D) 20,

11S; 208 CONTINUE
t186; D0 388 I=i.6

166
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112 IF(NF(NGC])). EQ.8)G0 TD 388

119; IF(NVCNF(NGCID)I) . EQ.SSSINCNFC(NGCI ) =8,
119; 386 CONTINUE

128iLe=m=" I¥PUT FRESSURE AT B. €. =---

121 D0 529 1=1.,6

122 JaNF(NGCID

123; 1F(J.£Q2.0)G0 TQo 329

124; DO 331 K={, {809

{28 SGN=(ZO0C1)=2P(KI I C20CI)=ZP(K+1))>/2P(K+ 1)
126 IF(SGN.GCT.1.8E~6)G0 To S31i

127, P2(JY=(PP(KI+CZDCIDI=ZP(K))/(ZP(K+1)=ZPCK) )= (PP(K+1>=-PP(K)))=1088008088.
128; PLINF(NGCI)))3P2(NF(NG(I)))

129; 331 COHTINUE

138; %28 CONTINGE

131;Ce===-1HPUT PERMEABILITY-"~

132, 35 Do 528 I=1,6

123, IF(HF(NG(1I))>. €ED.8)G0 TO 339

124; PERCNF(NGCI))>=PERS*(1. +PERN1%20CI)+PERN2=20(I}e20CI))
135, $38 CONTINUE

136; 1099 CONTINUE

137; REVIND 33

138; TaT2(109)

139 PsP2(3S>

148; RO3I=DENPROCL, B, T.P)

141 AP3=DENPROC2,9,T.P)

143; YEI=DENPRO(S, 8, T,.P>

144 TYPE*RQ, AP, CP, UE, COND", RO3, AP3, CP3, UEZ, COND
149; RAYLE=GRAYSAP3I*DTDIZ#(2T0)sn22(ROI»s2)«PERS*CP3I»180908. /(YEISCOND)
146 TYPE"CALCULATED RAYLEIGH NUMBER=*, RAYLE
147; PERSI=RACSPERS/RAYLE

148 TYPE*PERMEABILITY AT SURFACE SHULD BE )>=°,PERSH
149; IF(KINnP. GE. 2)G0 TO 12¢

129, GO TO 123

{S1;C-wmm=- {NTRODUCING DISTURBANT PRESSURE P ~--
152, 12 00 S8 [=2t,7?77

183; UCl)r=n.

154 39 H(I)=8.

188, PR2(NF(89))=1_ 983sP{(NF(39))

136 P2INF(131))x8._ 9SsP1(NF(131))

187 P2(NF(38))s1_ 1sP1(NF(98))

199 P2(NF{132))=8. 9sP1(NF(132))

1389; PZCNF(S1)) =1, (3P (NF(I1))

168, P2(NF(133))208.  85sP1(NF(133))

161 P2(NF(32>)=1 2ePL{(NF(32))

162; P2(NF(134))=8_8sP1(NF(134))

163; P2(NF(S3>)>=t 25#P1(NF(93))

164 P2¢(NF{13S))=8_?SsP1(NFC135))

163 P2(NF(94) ) )=1 28P1(NF(94))

166 P2(HF(136))=0 8sP1(NF(136,)

167; P2C(NF(9S)>)=1_ 1sP1(NF(3S))

168; PR2C(HF(137))>=8 98PI(NF(13?7))

169; RETURN

178; EHD

1?21,
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DENPRO 37 1/79 15:48:.21 PAGE |

FUNCTION DENPROCIPT, IBAR, TEMP,PRESS)

TO PROVIDE THE HYDRODYNAMIC PROPERTIES EFFECTED BY TENP. & PRESS.
ROSDENSITY, APaEXPANSION COEF., BA=COMPRESSIBILITY

CPwSPECIFIC HEAT AT CONST. PRESS., UE=DYNAMIC VYISCOSITY

IPT=1{ FOR RO, 2 FOR AP, 3 FOR BA, 4 FOR CP, S FOR UE

INPUT TEMPC(DEG. C>, PRESS(C.GC.S.)> IF IBAR=8, (BAR) IF [8aR=l
QUTPUT “RO.AP.BAR.CP,UE IN C.G.S.°

CONMON RC223,C(12),A8

"CONMON FAI,BFAI,RO0S,CS, COMD, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAY,DTDZ

COMMON AR, ZNC?7)>,25¢7,3),8E(7)>,PGR(4),P,Q, R, NET,NOD, 2TO0, XTO, IND, IGD.ZTA
CONMON NG(6E), X0C6),20(6),4Y(S,5),2V(5,8), NF(263)
COMMON NT(263),RUC?77),.NUC?7). KP(77)

COMMON UC??),8(77), T1(263),T2¢263>,P1(7?2),P2(7?7)
CONMON ROC77),AP(77),BAC??),CP(773,UE(77),PER(??>
AC1)=~-S. 422963673E2

A(2)2-2, 09666620SE4

R¢3323.941286737E4

AC4)=2=6_ 733277739E4

A(3)>=9 992381028E4

RC62a=1.9893911774€S

A(7)=9 S5988416567E4

A(8)=s=-4 511168742E4

AC9)>=t 418138926E4

AC19)>=~-2,9817271113€3

ACl1)=7 982892717

AC1233-2.616571843E-2

AC13)=t, S22411798E-3

ACl14)32 284279054E-2

RC15)22, 421647003E2

ACt6)=t, 269716088E~-19

AC17)=22 874838328€E-7

AC19)>s2. 17432035€E~-9

AC19)>=t. 195719498E-9

AC20)=21, 293441934E1

AC21)=1. 388119072E-9

AC22)36. B47626338E-14

CC(1)29 438375485E-1

C(2>%% 362162162E~4

C(3Iy=1.?72

CC4)>27 342278489E~2

CC(S>a¢ 97383887E-2

C(6)26.5371543E~1

C(?)={ 1%E-6

C(9)=t.S198E~S

C(9>=!{. 4199€E~-1

CC(13)>=7 982753163

CC113=2, 995284926E-4

€(12)s2.  84E~1

A6 . 824687741E3

Su(TENP+273.15)/647.3

IFCIBAR.EQ. 9)PRESS=PRESS/1808080089.

BspRESS,2281.2

¥YS8at . -C(1)58e8=-C(2)e8es(~6)
22YS+SQRT(C(3I)sySaYS-2, sC(4)#S5+2. #C(5)>28)

DYSm~2 8C(1)8S+6.0C(2)8S28(~7)

DYSS==2,  sCC1)~42.8C(2)sSs8(-8)
D2S=DYS+C(C(3>+YSeDYS-C(4))/SART(C(I>*YSeYS~2, sL(4)28+2 +L(5)%8)
SQ=aSART(C(INIeyYSeYS-2. sC(4288+2, 8L (53 *8)
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59 D2SS2BYSS+(C(3>eDYS+DYS+L(I>nYSsDYSSH/SA

68; B2SS3D2SS~(L(3I>eySuDYS-C(4))ue2/(SQAeSA=SA)>

61, D28=C(3)/SART(C(3I>sYSsYS=2. #L(4)x5+2, =L (5>+0)

62 INS#=(S. /717 )@ 11)>8C(S)e(2sw(=22, 717.))¢D2S

63; DXS=DXS+(A(13>+2. ¢QLi4)%5-AC15)ei) s(C(6)-8)8ss9

64, :=QAC16)¢1988es(§/(C(7)+Sus]9)en?)

68 DRS=DXS+11. 8C(AC17)+2. *A(18)+B8+3.+A(19)+BsP)*Sse13/(C(B)+Sexitlen
66; DXS3DXS~18. *A(208)8(SE21 7)) (C(9)+32S)2(~-3. /(C(18)+B)e24+C(11))
§7; DXS=BXS~2.+A(28)93s8{9x(~3 . /(C(18)+B)se4+5(11))-32A(21)+0s8
68; :=88.38(22)8S2e(-21)>+B28s8

69, DXB=(~-5. /17 .38AC11)6C(S)sDZBx(Zsx(-22./17.3)

79; DX8=DIXB~-(2. 2QAC18)+6.¢AC193%8)/(C(8)+Sen]])

71 DXBuDXB-A(20)5S8e188(L(9)+S0$)212/(((10)+8)naf

?2; DXBsDXB+6.%aC21)8(C(12)~-S>28+12_ #q(22)=8s8/5s82d

73iCevem~- FOR BENSITYewowaa

74 X13Q(11)8C(338(Zs8(~=F.717.))

78 X13X1+(AC123+Q(1I>8S+A(14)2Se5+QC(15)8(L(6)-S)nslB+R(16)~/

76 1 {CC(?73+Se519))

27 X1=X1-C(AC173+2.6QC18)28+3_2Q(19)+8e8)/(C(8)+Ssei])

79; X13X1~-AC29)#(S9w19)8(L(9)+S58S)e(~-3 /7(C(10)+D)en4+C({1))

79; X12X1+43.8Q¢21)>8(C(12)~-S)9828+4_ sQ(22)e(Sss(-28))udsds8

89 DENSITY=1. /(3. 17+K1)

81 DENPRO=DENSITY

82; IFCIPT.LE.1)GO0 TO S@

83;Ceweem= FOR -EXPANSION COEF “aP* AND COMPRESIBILITY "BAt«<ee--

84 ; DENPROSDENSITY®3 . 17/647.38DXS

83 IFCIPT.LE.2>G0 TQ S@

86 DENPRO=-DENSITY®3, 17/221.2=DXBsetl. BE-6

87 IFCIPT.LE.3)G0 TO S0

88;C~==~=-FOR SPECIFIC HEQAT °“CP*® ~=ww=-

89; SI=4290.5QC22)5(Bes4),58822-A(28)0(S8816)0(386. 6C(9)+388. sSsS5)
99 1 €1./7CCC1aX+82083+4C(11)28)

91, SI=S[-(242%(S+¢29)/(C(8)+S2x11)w83~-1108(Ss%3)/(C(F)+Sxxil)es2)e
92; :CRCL?I48+A(18)28#0+Q(19)+80898)

53; SI=SI+8¢(2%AC14)+982Q(13)8(L(6)~-5)0e8+722%A(16)0(58836)

94; 17€C(7)+S8219)083-3422QC16)8S*nl?7/(L(?)+Ses13)ee2)

9S; SI=SI+AaC11)8(17eD288/29~-172DYSS/12)%(2us(12./17.))

96 SI=sSI+AC11)8(249D28/29-22BYSre02S%(2ve(~-5 /17 3)

9?; SIaSI+AC11)8(1202/29-YS) 0 (28 (~5. /17, )8D28S5~35n(2nu(=22./17.))eD2S
9e; :%D28/17)

99 SI=SI+2%Q(3)+62Q(4)85+120Q(5)*S2e2+282A(5)8S2x3+338Q(7)eSexd¢
109; SI=51+428A(8)8S683+36+A(3)*Sx26+722A(18)2S8%7-Q8/S

181, DENPRO=~221.2%3.17%S1s5/647. 381 BEG
1982; IFCIPT.LE.4)G0 TO Se

103;C~===~FOR VYISCOSITY “YE®~wrw~--

104:C UECNFIND =9 0300001 8C241. 42(19. (247 3/(T2¢CINDX*+133.15))>))
185; UEA=(TENP-1%0.)/1880.

186, UED=S539. +390. sUEQR~-26. sUEAs*3
197; DENPRO=1. YUED

199; S8 RETURN
189; END
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1; OVERLAY REVISE
2; SUBROUTINE PROPT
3;¢ TO PROVIDE THE HYDRODYNANIC PROPERTIES EFFECTED BY TEMP. & PRESS.
4;C RO=DENSITY, AP3EXPANSION COEF., SAsCOMPRESSIBILITY
$:C CP=SPECIFIC HEAT AT CONST. PRESS., UE=DYNAMIC YISCOSITY
6:iC INPUT *P2(C.G.S.)>, T2(DEGREE £)>*,0UTPUT "RO, AP, BA,CP IN C.G.S."
7 COMMON AC22),C(C12), 40
9, COMMON FAL,BFAQI,RO0S.CS, COND, RORCK, CSRCK,CONRCK, PERS,DT,DTP, TS, GRAY,DTD2
9; COMMON AR, ZNC?73,25¢7, 3>, 8E(73,PAR(4),P, Q, R, NET,NOD, 270, XTO, IMD, 16D, 2TA
18; CORMON NG(6), X0(8),20C65,%XV(S,8),2V(S, %), NF(22D
11, COMMON NT(223),NUC77), NNC(?7). NP(?7)
12; COMMON UC?7), 8773, T1(2233,T2¢2233.,P1(C?27),P2¢?7)
13 COMMON ROC?23,AP(77), 8AC773,CP(773,UEC??7>,PER(??)
14; D0 198 IND=i, NOD
13; NFINDSNFCIND)
16 IF(NFIND.EQ.8)G0 TO 199
17; S=(T2CIND>+273.135)/647.3
18; B=P2(NFCIND)> /(221 29108008898.)
19; YS=1.-C(1)eS83-C(2)8Sss(~6)
20; 22Y¢S+SART(C(IIsYSeYS~2, sC(4)%$+2, »C(S) =8
21 DYS2-2.%C(1)88+6. 8C(2)8Sse(-7)
22; DYSS==-2. sC(1)>-42.%C(2)s39es(-8)
23 D2SaDYSH+(C(3)wYS2DYS-C(4)>/SART(C(IIsYSeYS-2. sC(4)eS5+2. *«C(%)1%8)
24 SU=SORT(C(3)eYSsYS~2, sL(4)8S+2. sC(5)¢8)
23 DZSSaBYSS+(C(I>*DYSeDYS+C(3I)sYS=sDYSS)/SQ
26 DZSS=2DZSS-(C(3>eYSeDYS-C(4))e82/(SQA5SQ98Q)>
27 DZBaC(S)/SART(C(I>eYSeYS=-2. 2C (412542 . sC(5)%8)
28; DXS=-(3./17.0%AC11)9C(S)s(2ee(-22./17.)>)>eD02S
29; DXS=DBXS+(AC13>+2. #A(14)8S-A(15)81B.2(C(E)-S)nsd
39; :=A(18)%1 9852218/ (C(7)+S52819)8s2)
31 DXS=BXS+11.9CAC173+2,. *A(18)%8+3.2Q(19)828)%S2313/(C(8)+5snli )nn?
32; DAS=JKS~18,. sA(20)2(Se217)8(C(3)+S%8)#(-3. /(C(1@)+8)am4+L(11))
33; DXS=DXS-2. +A(20)+S%0192(~-3. /(C(183+8)s24+C(11))=-32A(21)*Bug
34; :=80. 8A(22)sS8e(~21)28s5¢8
33 DXB=(~5./17.38AC11)9C(3)sD2Be(2es(-22./17.3)
36 DXB=DXB-(2. *AC18)+6 =A(19)283/(C(8)>+Ssx1])
37 DXB=DXB~A(29)s5es188(C(I)>+523)¢12/(CC(103+8)%sS
38; DXB=DXB+6.%Q¢21)>+(C(12>~-92#8+12. sQA(22)288/ 5229
39iC-==~=~F0R DENSITYeoww=-
49; X12Q(11)>2C(3)8(Z2ee(~-F . /17.3)
41; XK1sX1+CAC12)+A13I8S+A(14)28883+AC13)(C(E)~-SI*n{B+ACL16)/
42; 1 (C(7)+Seeid))
43; X13X1=-CAC17)+2.8QC(18)88+3. 3Q(19)+828)7/(C(8)+Ses11)
44; K13X1-QC€28)s(S#513)a(C(I)+S%S)8(~3.7(C(183+B)sed4+C(11))
13 K12X1+3, 3Q(21)8(C{12)~-S)s8%B8+4_2A(22)¢(Se»(~-20))sBsBs8
46 ; ROCNFIND)>=t. /(3. 17%X1?
47;C-~-~-~-~FOR EXPANSION COEF "aP®* AND COMPRESIBILITY "8A%*-c---=-
48; AP(NFIND>=RO(NFINDY®3.17/647. 3sDXKS
49; BRACNFIND)=-RO(NFIND)>*3. 17/221.2¢DKBs1. BE~-6
$8;C-==~<-FOR SPECIFIC HEAT “CP*®" -wew=-
31 SI=d28.5Q(22)%(B*24)/58022-A(20)¢(Ses16)e(306.sC(9)>+380. «SeS)»
s2; : €1, 7CCC18)+8)%83+C(113e8)
33 SImSl-(242%(S2328)/(C(8)+Se5]11)se3-1188(8589)/(C(8)+Santii)and)e
S4; :CRCL7I#8+AC18)2808+4(19)+82828)
-1 SIaSI+8%(23QC14)+90sQ(15)8(C(6)-S39884+47220AC16)8(Se2I6}
S6; 1 7€CC73+4802193883-3428QC16)8882l7/(C(7)+Ses{3)un2)
7 SInSI+AC11)8(17¢D0258/29-17+DYSS/12)8(2Z%e(12./17.))

38

SI=SI+R(11)(242D28/29-24DYS)eD2Se(Zen(~5./17.))
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PROPT 3/ 1779 15:42: 43 PRGE 2
29; S1agI+AC1138C1282/29-YS)*(Zea(~3./17.)8D2S5~38(Zee(-22./17.))%028
68 +#D2S/17D
61; SI=SI+29A(3)+62A(4)8S+12+A(S)sSxn24202A(6)8S883+3P2A(7)050 04
62; $1251+422A(8) S+ 25+568A(9)#Sex6+722A(1B)850e7-40/5
63 CPC(NFIND)>==-221.2+3. 17+S1#5,/647.3%1.0E6
§4;Commme FOR VYISCOSITY “YE"--===-
65:¢C YECHFIND)=9.886801¢(241. 42 (10 .98(247. .8/ (T2(INDI+133.150 >0
86 UEA=(T2(INDY-158.) /189,
67 UED=338. +389. sUEA-26. sUER®*3
68; YE(HFIND)>=i./UED
69; 180 CONTINUE
78; RETURN

71 END
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STIFP
OVERLAY MAIN2

SUBROUTINE STIFPCISCH,NEQ, MROVWX, NRQJY)

CONVECTION IN A POROUS MEDIUM OF FAULT ZONES

T8 FORM STIFFNESS MATRICES FOR PRESSURE "P* SOLUTIONS

19

ISCH=1

172

3/ 1s79 15:49:.48 PAGE

FOR BACK DIFF. SCHEME, I1SCH=2 FOR CRANK-HICHOLSON SCHENE

MEQ=TOTAL EGNS. TO 8BE SOLYED; AMROW=MAX. DIMENSOION OF RO¥S--

CoONMON
COMMON
COMMON
COMMON
COMMON
CONMON
COMMON
COMMON
ConmMoN

SGU1(22),8G¥a(12),5GCH

FAl, BFAl, ROS,CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAY, 0TDZ
AR, INC7),28¢7,3),¥EC7),PAR(4),P,Q, R, NET, ¥0D, 2T0, XTO, IMD, IGDB,2TA
NGC6)>, X0(6),20¢6),%X(S,9>,2¢3, %), NF(223>

NT (223>, NUC?773, NUC77), NP(C?77)

U775, 9¢?773, T1€223),T2¢223),P1(?77),P2(?77)
ROC?77),APC(77), BAC?7), CP(77),UEC?7),PERCT77D

AXE(S,6), AX(?77,23), NCOARX(?77,23), YY(??)

AYE(S, 6), AY(77,25), NCOAY(?77,2%)

EXTERNAL BA2P, DXZ2P,CONPP, CONPO

DTi=t./DTP
pT2=t. /BT

D0 388

134,77

YY(I)=@.

D0 S94

J=1, 23

AX(I,J)=8.
NCORXC(I, J)=8
RYST,Jd329,
NCOAYCL, J)=@
CONTINUE

CONTINUE
D0 1880 KEst, NET -

A

00 295 I=1,3

REARD (3T, 69)NGCT), X0CI), 20C >
FORMATC(1X, 13, 2%, F8. 4, 2X,F8. 4)

[F(KE.GE. S1.AND.KE. LE. 54)G0 TO t8es

IF(KE. LE. 34 . 0R.KE.GE. 71)G0 TO 149@

CALCULATING THE ELENMENT STIFFNESS MATRIX IN ONE ELEMENT
£0C4r=2x0<¢1)

X0¢(3)>2x%0(2)

20¢4>=220¢1)

20(35>=20¢2)

NGC(4)=(NG(1)+NG(2)) /2

HGE(SI=(HG(2)+HG(3I 2

NG(8)=(NG(1)+NG(3)),2
RR=(20(2>#X0(33+20¢1)*X0(2)+X0(1>*20(3)-4£0C1)«20(2)~-%X0¢2)*20C >

#-X0¢3)+20(13)/2.

AR=ABS (AR)

Do 19 I=%,5

00 19 J=t(,S

XCI, =0 (1)-X0cCJ)

2C1, J4>=220C13X~20Cd)
BJACO=2(1,33eX(2,3>~2¢2,3>*X(1, 3}

RAB1=0.
RAB2=8.
RABI=Q.
RASS=3.
RAB6=.

3333333+ (ROCNFINGCLIII+ROCNFING(233)+RO(NF(NG(3I)I)))

3333333+ AP (NFING(L3)II+AP(NF(NG(2) D) +AP(NF(NG(I) )

33333332 (BACNF(NGCL)I>X+BACNFING(2)))+BR(NFING(II)> ) < 2 )
333333IsCUEINF(NGCLIIIHYECNF(NGC(2)))+UE(NF(NG(3)) )}

3333333 PERCHF(NGC LI I I+PERINF(NG(2I D )I+PER(NFING(I) )

00 1S I=1,§

YNG=@.

00 17 J=1.6



$9;
68
61
§2;
" 63;
64
S
66,
67
68
£9;
792;
?1;
72,
73;
74;
73;
76
77
78,
79;
89,
81,
82,
83
84,
83,

§7:¢

98
89;
99,
31,
52,
33;
S4;
L
36,
97;
93;

180,
191,
102;
183;
184;
183,
186,
187;
188;
189;
119,
111
112
113,
114;
118;
{16,

STIFP 37 1779 15:49:448 PAGE 2

16

17
13

1ee9

31

31

58

$3
52

S$1=9.

SAX=0.

SAY=9.

SYY=9,
SYYBGRROW=8,
D0 16 Kki¥=t,7?
P23 (KY, 1)
Q=23 (KN, 22
R=ZS(KY, 3
SAA=SAX+UECKUI *BA2P (JI*BA2P(I) &

173

SAY3SAY-WECKN)I®(DXZ2P (1, J)*DXZ2PC( 1, [)+BX22P (-1, J>*D%2
SYYSORROU=STYYBCRROWSTUE(KY)*BAR2P (Jr*8R2P(I)
CONTINUE
SAKT=3AKe(~-BFAL+FAl*RAB3)»RAB1+RABSRABS
SAYT=SAY*RABL sRABI*RABE

SAX=DT s [SCHeSAXT-SAYT
SAY=DT1e[SCHRSAXTH+(ISCH=1)#SAYT
DTBTa(T2CNGCJId=TLI(NGCJ) ) 2DT2
YNG=YNG*FRI*RABISRAB2*RABS*RABSsSYYBORROW*DTDT
AXECL, J)=Sax*DJACO

AYECI, J)2SAYSDJACO
YYCNFCNGCII D) =YY(NF(MGCID) I+ YNG*DJACT

CONTINUE

CONTINUE

| (3)

CALL conpp
CALL cgnues

AA

>(4)

CONTINUE
REVIND 383

---MODIFY THE EQUATIONS AND INTRODUCE B.C. VALUES---
20 39 I=1,77
IFCNPCI) . NE.SSS)GO TO 39

20 31 J=1,29
IF(NCOAXCI, y>. NE.1GO TO 31
YYCID=AXCL, J)eP2¢I)*1_BE3R
AXCT, )=t 9E3B*AXCI, )

GO TO 39

CONT INUE

COMT INUE

MEQ=77

HROWX=9

DO S8 I=1,MEQ

MR=@

00 St J=1,28

IFC(NCOAXCI, J).EQ.8)60 TO $1
MR=NR+ 1

CONT INLE

IFCHR. GT. NROWXINROVX=NR
CONTINUE

AROVY=9

D0 52 I=1,MEQ

nR=Q

D0 $3 J=t,28

IF(NCOAYCI, J).EQ.8)G0 TO S3
MReNR+1

CONT INUE

IFCHR. GT. NROYY)IMROUY=HR
CONT INUE

HROVSNROVK



117
119
119;
129;
121;
122,
123;
124
129
126;
127

STIFP 37 1779 15:49. 480 PAGE

60

39

IFCHROVX. LT . HROVY) NROVaNROVY

D0 69 I=1,nEQR &
URITE(33, 38>YYCDD

D0 6@ J=i,NROV

YRITEC33. 39)aXC1,J)>, HCOAX(I. 42, AYCL, J) . NCOAY (L, J)
CONTINUE €

FORMAT(IX,E13.6)
FORMATC1X,E13.6, 1X, 12,1%,E13. 6, 1X, [2>
REWIND 33

RETURN

END

174
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19;
18
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13;
{4,
19;
i16;
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29

58

FUNCTION BA2PCIBA)

BR2PaSHAPE FUNCTIONS INTERMS OF AREA COORDINATES(P=L1;Q@=L2;R=L3)
CONMMON SGU1<22), SG¥2(12),SG¥3

COMMON FALl,8FAl,R0S8,CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAY,DTIZ
COMMON AR, ZNC?), 28¢7, 3>, WE(?),PAR(4),P, 3, R, NET,NOD, 270, XTO, IND, IGD, 2TA
PAR(1) =P

PAR(2)=Q

PAR(3>=R

PAR(4) =P

IFCIBA.CT.3)G0 TO 26

BRr2P=2.*PAR(IBAI*PAR(CIBAI~PAR(IBAD

GO TQ 59

KN=1Ba-3

BA2P =4 *PQR(KNI*POAR(KN+1)

RETURN

END
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18

19

sJe

FUNCTION DX22P (ND, M)

DXZ2P=BERIVATION OF THE SHAPE FUNCTION *"N® WITH RESPECT TO

*X* OR *2°* IN TERMS OF AREA CODRDINATES

ND=1 FOR D(N)/DX, ND=-i FOR D(N)~/D2

COMMON SGU1(22), 56U2¢(12),5GU3

COMMON FAL,BFAL, ROS,CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, BTP, TS, GRAV,DTDZ
CONMON AR, ZNC7), 2SC7, 33, WEK?), PQRC4).P, @, R, NET, NOD, 270D, XTO, IND, IGD, 2TA
COMMON NGC6), X0(6),20¢8),%(5,9),2¢3,

IF(AR.LE. 1. 9€-10 . OR.AR. GT. 1. BESIURITE(2S, 18)AR

FORMAT(IX, "AR",E12. D)

PAR(1) =P

PAR(2)=Q

PAR(3I =R

PQR(4) =P

IF(ND.EQ.-1)>G0 TO 1@

IF(M.LE. 3)DX22Pu(4, sPOR(MI=1.)eZ(N+2,M+1)/(2. #AR)

KNan-3

1FCN.GT. 3)D%X22P=2. s (PAR(KN+1)#Z(KN+2, KN+1)+PAR(KNISZ(KN, KN+2))/AR
G0 TG 29

IF(M.LE. 3)DXZ2P=C4. sPER(M) =1 deX(N+1,N+2)/(2. *AR)

KNsn-3

IFCH.GT. 3)DXZ2P=2, s (PARCKN+1) sX(KN+1, KN+2)+PAR(KN)I*X(KN+2, KNI )/AR
CONTINUE

RETURN

END




1;
2;C
3;C
4;C
3
6
7;
8,
9;
18;
11;
12;
13;
14
1S,
16
17;
18;
19;
28
21
22;
23,
24
29;
26;
27
28;
29;
30;
31
32;
33
34;
3S;
36
37;
38;
39;
48;
41
42;
43;
44 ;
4S;
46
47;
48,
49;
S8
St
s2;
$3;
S4;
33
S8
$?7;

79

71

16

17

18

19

11
18
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SUBROUTINE COnpPP

INSERT AE(SE, 6> IN TO ACIN, 17D
"HCOL®=COLUMN INDEX OF *"a”

*NG*=GLOBAL NODE INDEX

COMMON SGN1(22), SGU2(12),8GU¥3

CONNON £Fal, BFAl, ROS, CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAY, DTDZ
CONMON AR, ZN(7),28¢7, 3), WEC?),PAR( 4>, P, 2, R, NET, NOD, ZT0, XTO, KD, IGD.2ZTA
COMMGH NG(6), X0C6),20(6),X (S5, 5),2¢S, 53, NF(223)
COMMON NT (223, NUC77)>.NE(?77), NP(77)

COMMON UC?77), WC?7), T1(223),T2(2233,P1(77),P2(727)
COMMON ROCZ?7), AP(77),BAC?73, CP(?7),UE(?7), PER(Z?7)
COMMON AECSE,6)>,AC77,29), NCOL(?7,25), YY(?7)
COMMON AE2(E, 6), ARC77.2%5), NLOL2(77.,2F)
ShF=4.

DO 79 I=t.,§

00 78 J=1,6
IFCABSCAECI, J) ). GT. SDFISBF=ABS(AEC(L, J3)
CONTINUE

Do 71 I=1.6

Do 7t J=1.6

S=AE(I, J4I/8DF

1F(ABS(SY.LE. 3.8E-6)AE(], J)=0.

CONTINUE

DO 1@ K=1,6

In=NFC(NG(K))

IFCIN.LE. 3)G0 TO 1@

Do tt L=t.4

IFCABSCAECK, L) ). LE. 3. 8E-381360 TO 11
JHaNF(NGCL)Y)

IF(JM.LE. 83G0 TO 1t

DO 16 JC=t, 18

IFC(NCOLCIN, JCY . EQ. 8GO0 TO 17

1FCJM. LT, HCOLCIN, JCHIGO TO 18

IFCJN. NE. NCOL(IN, JC)I)GO TO 16

ACIN, JCI=ACIN, JCO+AE(K, LD

Go TO 1t

CONTINUE

JC=JdC-1{

ACIN, JCY=RECK, L)

NCOLC(IN, JCY=JM

GO TO 1t

LA=NCOL(IN, JC>

Ata=acIn, J€>

80 19 ML=JC, 17

NX=NCOLCIN, nL+ 1)

ANX=a(IN, RL+1D

HCOL (IN, HL*1) =LA

ACIN, AL+ 1)=aLA

IF(NX.EQ.92G0 TO 29

LasNX

ALA=ANX

ACIN, JCOI=AE(K, LD

NCOLCIM, JCXsdH

CONTINUE

CONTINUE

RETURN

END
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1; SUBROUTINE ConP8

2.;€C INSERT AE2(6,6) IN TO AR2(INM, 17

3;C SNCOL*=COLUMN INDEX OF “A“

4;C *HG*sCLOBAL NODE INDEX

3; COMMON SGU1L(22), SGW2¢12)>,SGH3

§; COMMON FAl,BFAL, ROS,CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, BTP, TS, GRAV, DTD2Z
7; CONMON AR, ZNC?3,28¢7, 3>, 8E(73,PRR(4>, P, Q, R, NET, H0D, 270, XT0, InB, I1GD,ZTA
8; COMMON NG(6), X0¢6>,20¢(6>,X(S,53,2¢S3, 53, NF(223>
9; COMMON NT(223),NUC?7?2),N¥(?2), NP(77)

19; COMMON UC?73,8¢77), T1(223>,T2¢223)>,P1C(773,P2(7?7)
11, COMMON ROC?73,APC77), BR2(77),CP(?73, UE(?73, PER(?7)
12 COMMON AE(6.63,AC77,2%), NCOL(?7,23),YYC(77)

13; CONMON RE2¢6.6), R2(77,2%)>, NCOL2¢(?7,2%)

14; SDF=@.

15; 30 78 I=t.,56

16 00 78 J=1,6

17; IF(ABSCAE2¢CI, J3).GT.SDFYSHF=ABS (AE2(, J3)

18; 79 CONTINUE

19; DO 71 I=1,6
29; 30 7t J={,6

21 S=mAE2(I, J)/SDF

22; IFCABS(S).LE. 3.9E~63RE2(], J)=@,
23; 71 COMTINUE

24 D0 19 K=t.,6

- INsNF(NGCK))

26; IF(IN.LE. 8)GD TO 19

27; Do 11 L=t,6
28; IFCABSCAE2(X, L3> . LE.S.BE-59>G0 TO t1
29; JHsNF(NGCL))

39 IFCJN.LE. 82GD TO (1

3t po 16 JC=t, 28

32; IF(NCOL2CIN,JC). EQ. XG0 TO (7

33; IFCJM. LT. NCOL2CIN, JC3)GO TO 18
34; IFC(JN.NE.NCOL2(IN, JC))GO TO (5§

3s; A2¢CIN, JCOI=A2(IN, JCO+AE2(K, L)

36 GO0 TO {1

37; 16 CONTINUE
38; JCaJg-1
39; 17 A2CIN, JCHY=AE2¢(K, L)

49 MCOL2¢ IN, JCI=JM

41; G0 TO {1

42; 18 LAsSNCOL2<CIN,JC)

43; ALA=A2CIN, JO)

44 DO 19 ML=JC., 24

45; HXsNCOL2CIN, HL+1)

46 ANXsA2CIN, AL+ 1)

47 NCOL2C¢IN, nL+1)s=LA

48; A2¢IN, ML+ 1) =ALA

49; IF(NX.EQ.25G0 TO 28

58, LA=NX

L3 19 ALA=ANX

$2; 29 A2(¢IM, JCI=AE2¢(K., L)
33 NCOL2¢IN, JCO=Jn
54 11 CONTINUE

8 18 CONTINUE

S6; RETURN

g?; END
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Easo 37/ 1/?79 (6. 1:16 PRGE 1
OYERLAY SOLVE
SUBROUTINE EQSOCHPT, MROU, NNN, 2TEST)
COMNON SGU1(22), 3GW2¢12)>,SG¥3

COMMON FRIL,BFAL,ROS,CS, COND, RORCK, CSRCK, CONRCK, PERS, BT, DTP, TS, GRAV, DTD2Z

179

COMMON AR, ZNC(?7)3,28¢?7, 3>, 4EC?>,PARC(4)>,P, @, R, NET,NO3, ZT0, XTO, IND, 16D, 2TA

CONMON NGC6), X0( 63, 20¢6), XED(S, $>, 2(S, $3, NF (22>
COMMON NT(223),NUCZ?7), NN(??7), NPP(77)

COHMON U273, W(?73, T1(2233.T2¢223),P1(?27),P2(?7)
COMMON ROC?7), APC?7), BA(77)3, CPC?7),UE(?7), PERCTD)
CONMON AXE(S,6), AC179,252,8(223>, NCOL(179,25)>
DIMENSION NPIV(179) IBﬁNDU(I?S):ﬂNCOL(l?S),ﬂR(l?S)

12 Ce=mmmm oo e e e eeee e D e SR ————————

13; ¢
14;C
15;¢C
i6;¢C
17:¢
18;C
19;C
28;¢C
21;¢C
22;C
23;¢C

SOLYES *R°Xse8

AsPARTIALLY PACKED MATRIX OF NON-ZERO COEFF. -~-(INPYUT)
B=KHOUN VECTOR---CINPUT>,SOLUTIONSCOUTPUT)

AR=SINGLE DIMEHSIONED ARRAY FOR PIVOTAL ROY ELEMENTS
IBANDU=NO. OF NONZERO COEFF. IN EACH ROW

NCOL=INDIGCES MATRIX OF NONZERO COEFF. OF °®A"---(INPUT)
NNCOL=ONE COLUNN ARRAY FOR PIVOTAL ROV INDICES
NNNsCOLUNN DIMENSION FOR A & NCOL IN MAIN PROGRAM-=~(INPUT)
NPIV=0NE COLUMM ARRAY TO STORE PIVOTAL COLUMN
NPT2TDOTAL EQUATIONS, TOTAL UNKNOUNS

ZTEST=VALUE BELOV YHICH ELEMENT NADE EQUAL TO ZERO

R e e i Lt TP PP R

CSiCO0PQORINITIALIZE THE BANDTH COUMTER 90990000000000000900790000009099

26
27
28
29;
29;
31
22;
33;
34
3%.;¢C
36,
37;
ki: H
29;
48;
41
42;
43;
44;
43;
46;
47
43;
49;
38:C
31
$2;
33;
S4;
3S;
38
¥
$8;

IF(NPT.NE.?7G0 TO 198
00 191 Is=t, 179
8¢1)=9.
AA(II=g.
HPIV(I)=8
30 (91 J=1,2S
ARCTI, JI)=0.
HCOL (I, J) =@
181 CONTINUE
CALL FOPEN(33, *AXAY")
DO 299 I=t,??
READ(33, 39838¢C D)
BO 261 J=1, MROW
READCIZ, 389XACI, J), HCOLCI, Jd), RRCJI, NPTV (JD
201 CONTINUE
Sun=9.
B0 282 J=1i, NROW
IF(NPIV(J). EQ. 8GO0 TO 283
292 SUM=SUN+QACJY®PRINPIVIY))
283 B8CI)=8(I)+SUN
289 CONTINUE
388 FORMAT(EL3.6)
329 FORMATC(EL13.6,1X%, 12, 1X,E13.6,1%, 12>
REVIND 33
{68 DO 372 I=t, 1793
RACI Y=g,
NPIV(I)=3
18ANDU (I ) =8
NNCOL(I)>=9
972 CONTINUE
IFCABS(ZITEST).GT. 2. 8991 )2TEST=0.2
NSTOP=9
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%9; HAXUID=d

60 0O | Ist, NPT

61; 1 I18AaNDYUCI>=d

62; 30 S =1, NPT

83; B0 2 J=1, NNN

64; NC=NCOLCI., J>

63 IF(NC.E2.9)G0 TO 3

66 IBANDU(I)=d

873 2 CONTINUE

68, 3 IF(HAXVID.LT. JONAXUID=Y

89; IFC(J.NE. 1)G0 TO 3

79; WRITE(31, 1831

71 18 FORMAT(I®, "ALL ELEMENTS IN ROM",14,"EQUAL TO ZERO,SINGULARITY")
72; NSTOP=t

?3; S CONTINUE

74; IF(NSTOP.EQR.1)STOP

73; NPTL=NPT~1

76; D0 23 LL=t, NPT

77:£9999% FINDING THE ROV WITH HINI. BANBUIDTH 290800400009000200%020
78; KK=1890@

79; 80 6 I=tL.NPT

89; IC=tBANDUCI)

81, IF(IC.LE. 9GO0 TO §

82; IFCIC.GE.KK)GO TO §

83 RINRQU=(

34; KK=[C

89; 6 CONTINUE

66,090999 INTERCHANGE ROMUS VITH LL 200090000070080000000009990000020@0000¢
87, LM=IBANBUCLL)

98; n=AINROCY

89; Do 7 I=t,LN

98; NHCOLC [)=NCOL (N, ID

91; NCOLCH, I aNCOLCLL, 1D

52; RACTI=AA, 1D

93 Acl, Id>=acle, ID

94; 7 CONTINUE

25 SAVE=B(LL?

36; BCLL>=B(N)

97; B(H)>3SAVE

98, IBANDUCLLI=IBANDUCH)

99: [BANDE (N> =LY
180;C949908 FINDING SIG A IN NINROV 900990099909000900004200094000900900200¢@9020¢
131, NC2IBANDU(LL)
192 HRCOL(NC?» () =8
133; HINROU=LL
{e4; Ri=9.9
198 I=NTIHROY
196; 00 8 J=1,NC
197 AARSABSCARCYY)D
188 IF(ARA.LT.A1)G0O TO 8
199 Al=A4R
118; IY{=d
111; 8 CONTINUE
112; HAXCOL =NNCOLCIY)
1135 NPIVCLL)=NAXCOL
$114:C2008008 NORMALIZE THE MINROV 230000000000 002900000000000000000004000909
115; L=qacIY?
116 10 2 J=1,NC

180



181

EQSO 3/ 1779 16: 1:1§6 PAGE 3
117; RARCJI=RACII /X
118 HCOULCMINRON, JI)=NNCOLCY)
119; 3 ACHINRON, JX=AACJ)D
129; B(MINRONI>=B(NMINROV) /X
128 ACHIHRON, I1Y>=1. 9
122; ARCIYI=l. @
123:C20000 FINDING THE ROUS WHICH CONTAIH MAXCOL 99000990000090090000900000¢
124; Llisbli+t
1235 DO 22 I=LL{,NPT
126 IFCIBANDY (D). £E0.8>G0 TO 22
127; HC=IBANDU (L)
128; B0 21 J=1,KC
129; IFCNCOLCT, J>-naAKCoL 21, 18, 22

139;:C209@9 IF NCOLCI,J> IS EQUAL TO MAXCOL THEN ROV CONTAINS THE VARIABLE
121:C90009 NOPROE=THME ROU BEING OPERATED 20009900029002909909039000222089¢29
132; 19 HOPROW={

133; JKOP=1

134; JKpI=y

138 C=-a{NOPROW, J)

136 B(NOPROV)=B(NINROW)sC+B(NOPROW)
137; 11 CONTINUE

138; IF(NNCOLCJKPI) . EQ.8)G0 TO 22

139; IF(NCOL(NOPROW. JKOP) . ER. 8)G0 TO 12
148; IFCHRCOLCJKPII-NCOL C(HOPRON, JKOP)) 12, 14, 28
141; 12 IBAMDVCI>=IBANDUCI) *!

142; IFCMAKNID.LT. IBANDUCI ) )MAXUID=IBANDY (1)
143; IF(HAXVID.GT. HNN)GO TO 31

i144; [I=IBANDYCI)

148; JKL=JKOP+1

146; 13 [¥=11-1

147; ACNOPROY, I1)=ACHOPROY. IX)

148; NCOLCNOPROY, I1)=NCOLC(NOPROW, IX)
149; II=1X

190 [FCIX. GE. JKL)GO TO (3

151 ACNOPROU, JKOP)=AACJKPI)=C

152; NCOUL (NOPROW. JKOP)ISHNCOL (JKPI)

133; IX=NCOL(NOPROWY, JKOP)

134; G0 TO 19

185, COFRQ9MTHROV AND THE ROV SEING CONSIDERED CONTAIN THIS ELEMENT SHIFTING
156;C29899 0F BOTH ROVS [S DONE AND NOPROW IS OPERATED 27208282980989e209032
137; 14 IX=MCOL(NOPROV, JKOP)

138, IFCIX. EQ. MAXCOLOGO TO 1S
139 AsARCJKP I CraCNOPROY, JKOP)
160 ACHOPROV, JKOP ) =X

161;:C39999 TESTING TO SEE IF ANY OTHER ELEMENTS WERE ELIMINATED OTHER THAN
162;C38820 MAXCOL IN THE NOPROV 2920Q200080039090992020900992022299230200004928

163; ATEST=ABS (X)-ZTEST

164 IFCATEST. GT.9.3G0 TO 19

165 1S IBANDUCNOPROUI=IBANDUINOPROV) -1
166, IFCIBANDVUC(NOPROU)) 16, 16,17

167; 16 WRITE(3IL, 283HIHRAN, NMAXCOL, NOPROW
168; 29 FORMAT("MATRIXN IS SINGULAR®, "MINROUs“, 14, "MAXCOL=", [4, "ROV

1693; SOPERATED". [ &)
179; st0°P

121 17 IX=IBANDUCHOPROW)D
172; D0 3§ NK=JKOP, IX
1?23; ACE, NKX=ACT, NK+12

174 3§ HCOLCI, NKX=HCOLCT, NK+1D
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179; [X=lX+1
176 NCOL(CI, IX)>=8
177 ACL, I1X>=0.9
178; JKPI=JKPI+}
179 G3 10 1t
180; 19 JKPI=JKPI+t
181,09G099 NINROWU DOES NOT CONTAIN THIS ELEMENT SHIFT NOPROV AND CONTINUE
182; 29 JKOP=JKOP+1
183 Gg T0 11
184; 21 CONTINUE
189; 22 CONTINUE
186; 23 CONTINUE
187:C399Q99 ELININATE MINROV AND MAXCOL FROM BEING CONSIDERED AGAIN 2899
138; HPIVI(NPTI=NCOL (NPT, 1)
189; YRITECIL, 3I8)XNAXNID
199; 38 FORMATCIX, *MAXYID=*, 14, *ROV DIMENSIONS OF & & NCOL®)>
121,0009@9 BACK SUBSTITUTION 298094000909 00000000028902029000099000000099009
192; D0 24 I=t,NPT
193; 24 AA(IN=g. 0
194; B0 27 I=1,NPT
193; [1=NPT-12+1
196, LH=[BaNDBuUCII)
19?7, NP=HPIVC(ILI)
198; IFCNP.EQ. 9GO0 TO 27
199; D0 26 Js=ti.LA
288; NN=NCOLCIL, 4)
29t IFCNN.EQ. NP)GO TO 2%
282; BCII)SBCIId~AACNN) *=AC 1L, J)
203, GO T0 26
234 25 IJd=y
203; 26 CONTINUE
296 RACNPY 28 CILIX7ACTIL, LU
287 27 CONTINUE
289;C80990 STORE THE SOLUTION IN °B° YECTOR 999000080000 00009Q00490R204090999
289 30 37 Is=t{,NPT
219; 37 B(I>=aa(l)
211 G0 To 33
212; 31 WRITE(31, 3811
213; YRITE(3L, 68>5LL
214; $T0P
219; 58 FORMATCIX, "COLUMN DIMENSIONS OF NCOL & A EXCEEDED IN ROU*, 14)
216; €8 FORMAT(1IX, *YHILE THE NUMBER OF ROUS OPERATED UERE", I4)
217; 33 RETURN
218 ENB

182
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3;C
4;C
giC
6i;C
2?3
8
9
10;
11;
12,
13;
14,
18;
18.C
17

19;
29
21
22;
23;
24
23
26;
27
28
29;
39;

32;
33;
34
38;¢C
36
37;

39;
48
41,
42;
43;
44;
49;
46 ;
47;
48;
49;
38;
i
82,
33,
S4;
33
56,
$7;
28

ST

Se4
ses

23
639

18

183

IFF 37 1779 15:.36.56 PRGE 1

OYERLAY MAIN

SUBROUTINE STIFFCISCH, 1D, REQ, HROW>

CONVECTIOMN IN A POROUS MEDIUM OF FRULT ZONES

TO FORM STIFFNESS MATRICES: ID=t FOR *U°®, [D=2 FOR °V*, I[D=4 FOR *T*
{SCHel FOR BACK DIFF. SCHEME. ISCH=2 FOR CRANK-NICHOLSON SCHEME
MEQ=TOTAL EAQMS. TO BE SOLYED, MROVU=MAX. DIMENSOION OF ROWS--

COMNON SGU1¢22),83GUW2(12),8GH

COMMON FAI, BFAI, ROS,{S, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAY, DTDZ
CONNMON AR, INC?7),28(7?,3),¥E(?),PUR(4)>,P, Q, R, NET, NOD, ZT0, XT0, IND, IGD, ZTA
COMMOKR NG(E), X0¢6), 20¢63, X3, 3>,2(S, 3>, HF(22)

COMMON NT(223>, NUC?7), NUC?7)., NP(77)

COMMOM UC77),8C77), T1(223>,T2(223),P1(?73,P2¢77)

COMMON ROC77),AP(77), Bac77), CP(77>,UE(?7),PER(?D)

COMMOM AXECE,6), AX(179,25), YY¥(223), NCORK(179,2%5)

EXTERMAL 8a2,DXZ2

3Ti=1./07TP

DT2=1. /DT

B0 303 I=t,179

YYCI)=d,

B0 S84 J=1,23

ARCL, Jr=a.

NCOAX(I, Jo)=@

CONTINUE

CONTINUE

DO {948 KE=1, NET

NTOP=@

Do 23 (=t,3

READC3IY, §9)NGC1), X0CI), 20C D)

FORMAT(1X, 13, 2X,F8. 4, 2X,F3. 4)

[FCKE.GE. S1.AND.KE. LE. S4 )HTOP=13@
IFCID.NE. 4. AND_KE. LE. 34>G0 TO 1980
IF(ID.NE. 4. AND.KE. GE. 71)G0 TO (988
IF(ID.NE. 4. AND_NTOP EQ. 198)G0 TO (898

CALCULATING THE ELEMENT STIFFNESS MATRIX IH ONE ELEMENT
X0C4)>=X0(1)

X0¢(3)>=%x0¢2)

20C4)>=20C 1)

20(33320¢2)

NGC(4)=(NG(1)+NG(2))> /2

NG(SI=s (NG (2)+NG(3) )2

NG(EI)S(NGC(L1IY+NG(3I))>,2
AR=(20¢2)%X0(3>+20C1)3X0(2)+%X0(15220(3)-XK0(1)*20¢2>~-X0¢2)+20¢3)>
§-X0¢332s20<C1))/2.

AR=ABS (AR)

DO 19 I=t,S

20 19 J=1,S

XCI, d)=X0CI)-R0CJ)

2¢1,Jd)320<C1)-20C -
DJACD=2(1,3)8%(2,3)-2(2,333X(1, 3>
IFCKE.LE. 34 . OR.KE.GE. 71)G0 TO 29

IF(NTOP.EQ. 180)G0 7O 20

RAB128 3333333¢C(ROCNF(NGCL)I)>*ROCNFINGC2)I)+ROCNFINGC(3))>)»)
RAB2=@. 333333IsC(APCNFING(L)) ) +APCNFING(2)))+AP(NF(NG(3))> )
RAB328.3333333(BACNFING(L1)))+BACNFINGC2)))+BACNF(NGC(32)>))
RAB428, 3333333 (CPINF(NGCLI)))SCPINFI(NGC2)I)+CP(NF(NC(3))))
RABS=0. 3333IIII*(YECNFINGCLI D)) )*UECNF(NGC(2))I+UECNF(NG(3))))
RABE=0. 333333 Is(PER(NFINGCLD)II+PERC(NF(NGC(RII>+PERCNFCNGC(IIID)
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STIFF 3/ 1/79 15.%6.56 PAGE 2

$9; RAB12=9, 3333333#(1. /PERCNFC(NG(LIIII+L. /PERC(NFING(2)))+1. /PER(NF(NG(I) )
69, 20 DO 1S I=1,6

61; YNG=g.

62; DO 17 J=1.,6

63; Sl=9.

64 SAX=d.

69 Saysa.

66 Syy=@.

62; SYYBORROY=3.

68; 00 16 Ku=i,?

69; PaZS (KW, 1)

79; Q=28 (X¥, 2)

71, R=22S(X¥, 3>

72; GO TO ¢1.,2,3, 4>, 1D

73 1 SAX=SAX+UE(KY)*BA2(1)*B8A2(J) € S I)

74; SAYsSAY-UE(KY)I#DXZ2(1,JX#BA2(]) & (

7S GO TO 16

78, 2 SAX=SAX+WE(KY)*3A2(1)«8a2( P

27 SAY=SAY-WE(KY)I*DX22(~1, J)*BAZ(L)

78; SYY=SYY+UECKY)I*BA2C(D)

79; GO0 TO 16

§0; 3 SAX=SAX+VUECKY)I*BAa2(J)*BA2CD)

81; SAYSSAY-VECKNI*C(DX22C1, JD*DX22(1, [)+DX22¢-1, JX)*BK22(-1, 13>

82; SYYBORROU=SYYDORROW+VECKY)I*BAR2CJI =LR2( D)

83; GO0 TO 16

G4 4 [FC(KE.LE.34.0R.KE.GE.?1) GO TO S

83 IF(NTOP.EQ. 190)C0 TO S

86 SAX®SAX+VE(KUISC(FAI*RAB1I*RAB4+(1. -FAI)»ROS*CSI*8A2(J)*BAR2(])
87; UKNO=8.

a9; YKNO=9.

39; PKNO=@,

$9; DO 12 xNO=1,6

91; UKNO=¢KNO+8A2 (KNO> sUCNF CNGCKNO) 3D

92; YKNOaWKNO+B8A2 (KNOY 2UCNF (NG C(KNO) »)

$3; 12 PKNO=PKNO+BAR2CKNO) S (P2(NFU(NEC(KNO)))>~-PL(NF(NGC(KNO>)>>)=DTt

94 SAY=SAY-YECKY)I SCOND®(DX22¢1, J)*DX22C1, [3+DX22(¢~1, J)*#BXK22¢~1, I
5 SAY=SAY-VECKN)*RAB1 eRABIS(UKNO®DXZ2C 1, JI+WKNO®DX22( -1, J))#BR2(])
9¢; SAYESAY+UECKN)ISRAB23(RADLI*CRAV*YKNO-RABS*RAB 12 (UKNO == 2+ UKNO=#2) ) »
97, (BA2(JI*8A2( D)

98; SAYSSAY+YECKU)*RAB2*PKNO*8AR(J) *BA2( )

99 GO TO 16
108 S SAX=SAX+UECKE ) *RORCK*CSRCK*B8AR2CJ) =8A2¢ 1)

121; SAYSSAY-VE(KY)sCONRCK*(DX22(1,Jd#DX22(1, 1) +D%22(~1, JI=BX22(-1.1)}
182; 16 CONTINUE
183; G0 TO (S1,51,5%3,54>, 1D
184; S1 YNGaYMGeSAYSP2(NF(NG(J) )
18S; AXECI, J)=SAX*DJACO=RABS

136; GO TO 17
187 $3 SAXKT=SAXs (~BFAL+FAl*RAD3I)*RASI*RABI*RABS
188, SAYTsSAYSRABL*RABS*RABE

189 SaXsPTis[SCHeSAXT-SAYT

119; SAYSDBT1¢ [SCHeSAXT+(ISCH~1)SAYT
1115 DTDT=(T2(NGCJ))-TIC(NC(J)))=DT2
1125 YNGSYNG+SAYSP2(HF(NGC(J)I ) )*FAI*RAB I SRAB2*RABS*RABS*SYYBORROU»DTDT
113; AXE( [, J)uSAX®DBJIACO
114; GO TD 17

118 54 SAXTsSAX
116, SAYTa8AY



117;
119;
119;
129;
121;
122;
123;
124;
123
126;
127;
129;
129;
139;
138,
132;
133,
134;
133,
136
137;
138;
129;
149
141;
142,
143,
144
143;
146;
147
148
149;
158,
1388,
182
133;
154
13%;
156
1387,
138,
139;
169;
161,

162,;¢

163;
164;
163;
166
167;
168,
169;
179;
171;
172;
1723,
174;

185

STIFF 37/ 1/79 13:56:36 PAGE 3

17
61
62
§3

64
13

31

32

33

34

37

33
36

39
69

63
39

1988

9

73
74

SAX=DT2e ISCH*SAXT-SAYT
SAY=DT2¢[SCHOSAXT+C ISCH-1) aSAYT

YNG=YNG+SAY #T2(NGCJ))

AXECL, J)=3aXeDJACS

CONTINUE

GO TOC61,62,63,64), 1D
YYCMFCNGCD) D) =YY CNF CNGCI)) )+ YNGORABE 2 DJACO

GO TO 15

FYCHFCNGCID ) =YY (NFCNGC D)) )+ (YNG+SYYSRABL *GRAV)I *RABE*DJALD
Ga To 13

YYCHFCNGCID D) =YY (NFCNGCT)) )+ YNE#DJACO

GO TO 5

YYCNGCID Y=Y YCNGCD) ) +¥NG#DJACO

CONTINUE

---BELETE BOUNDARY NODES AND MODIFY FORCE FUNCTIONS---
20 38 11,6

G0 TO (31,32, 33,3410

IFCNUCNFCNGCI))) . HE. 538760 To 39
YYCNFCNGCI) D) UCNFCNGCID))

Go To 37

IFCHNCNFCNGCI))) . NE. 555560 TO 39
YYCMFCNGC YY) =UCNFCNGCID))

Go To0 37

IFCNPCHFCNGCI) ). NE.5332G0 To 3@

YYCNFCNGCII)) 2P2(NFCNGCI)))

Go To 37

IFCNTCNGCI) ). NE. 333560 TO 30

YYCNGCI) ) =T2(NGC 1))

D0 36 J=1,$6

IFCID.€Q. 4360 TO 33

YYCNFCNG () DI =YY CNF CNGCJ) ) I=AXECJ, 1) oYY (NFCNGCT)))
Go To 38

YYCNGCUI I aYYCNGCJD I =AKECS, DI YV CNGCID)

COMT INUE

IFCID. €Q.4G0 TO 39

YYCNFCNGCI) D) =1, 234367620

GO TO 6@

YYCNGCI))=1.234567E20

20 63 J=1,6

AXECL, Jy=8.

AXECJ, 1) =g,

CONTINUE

CALL COMPACCID) ( 2 )
CONT INUE

REVIND 33

TO 08TAIN INFORMATION OF NO. OF EQNS.CMEQ)., & MAX. ROV DINENSIONSCMROU)-
80 79 I=1,179

IFCHCOAXCI, 1).€Q.82G0 TO 73

nEG=(

CONTINUE

G0 TO 74

MEQ=[-1

HROU =8

30 77 I=1,MEQ

KNO=@

20 79 J=i,18

IFCNCOAXCI, J). €Q. 8GO TO 78

KNO=KNO+1




179;
176,
12?;
178;
179;
186;
181,
192;
183;
134
188
186
187
189;

STIFF 37 1779 15:.56:56

79
78
(&4

66

67

68

CONT INUE
IFC(XNO.GT.AROWINROUSKND
CONTINUE

129

1=+t

IF(I.GE. 2233G0 TO 68
IFCYYCID . NE. 1. 234867E29)G0 TO €6
B0 67 IpP=l, 222
YYCIP)=YYCIP+1)

Isl-1

GO T0 66

REWIND 32

RETURNM

END

PAGE

4

186
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Ba2 3/ 1479 15.58:11 PAGE |
1 FUNCTIGN Ba2(IBaA)
2;¢C BR2=SHAPE FUNCTIONS INTERRS OF AREA COORDINATES(P=C1;Q=L2;R=LI)
3; COMNOM SGU1(22),8CW2(12),8G43
4; CONMON FAIL, B8FAL, ROS,CS. COND, RORCK, CSRCK,CONRCKX, PERS, BT, DTP, TS, GRAV, DTDZ
S CONNOM AR, ZINC7), 28¢7, 3),HEC?),PARC4),P, Qs R, NET, NOD, ZT0Q, XTO, {nD, 16D, 2TA
6 PARC 1) nP
7i PuR{zi=l
8; POR(3II =R
9; POR(4) =P
19; IF(IBA.GT.3)G0 TO 28
113 BA2u2_ +PARCIBAI=PARCIBAI-PARCIBA)
12; G0 TOo S8
13 29 KN=[BaA-3
14; BR2=4. sPARCKNI*PARC(KN+1)

15 S8 RETURN
ié; END



188

px2Z2 37 1279 15.958.31 PAGE 1

1 FUNCTION DXZ2<(ND. N>

2;C DXZ2=BERIVATION OF THE SHAPE FUNCTION °*N° VITH RESPECT TO

3;C *%* OR *2° IN TERNS OF AREA COORDINATES

4;C ND=f FOR D(N)/DX; MNB=~-1 FOR D(M)/DZ

3 COMNON SCB1(22), SGH2¢12),8GH3

6 CONMON FAI,BFAI,ROS,CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAV,DTD2
r] COMMON AR, ZNC?>,28(¢7, 33, MEC?),PARC4),P, O, R, NET, NOD, ZT0, XTO, IND, IGD,2TA
93 IFCAR.LE. 1. 9E-10_ 0OR.AR. GT. 1. BEJIURITE(2Y, 18)aR

19; 18 FORMATCLIX, “AR",E12. %)

11, PARC L) =P

12; PAR(C2) =@

13; PER(I) =R

14; PAR(4) =P

13 IF(MD.EQ.-1)G0 TOQ 19

16; IF(M.LE. 3)DXZ2=( 4. sPARCN)I~1. )2 (N+2, R+ 1)/ (2. 4R)

17 KN=K-3

18, IF(N.GT.3)DXZ2=22. s (PARCKN+ 1) ®2CKN+2, KN+ 13 +PARCKN)I*Z (KN, KN+2)) /AR
19; C3 TO <8
29 10 IFCN.LE.3)DXZ23C4. sPARCN)I~1. d)sK(N+1, N+2)/ (2, #AR)
21; KN=sH-3

22; IFCH.GT. 33DX2232. s (PARCKN+ LI XC(KN+ 1, KN+2)+PAR(KNI o X (KN+2, KN3) /4R
23; 59 CONTINUE

24, RETURN

23 END



|
2;C
3;C
4;C
S;
6,
7
8;
9;
19;
11
12;
13;
14;
19;
16
i17;
18,
19
29;
2L;
22;
23;
24;
33
26;
2?2;
28;
29;
39;
31
32;
33;
J4;
38,
36;
317
28;
39;
49
41
42;
43;
44 ;
43;
46;
47
48;
49;
29
2 &
$2;
33
T4
39
g6
S?7;
8,

’3

71

39

31

32

69

&1
L1
§3
54

66
$3S

189

9: 11401+ 3/ 1,79 15.58.52 PRGE 1

SUBROUTINE COMPAC(ID)
INSERT RE(S.6) IN TO ACIN, 17D
*HCOL*=COLUNN INDEX OF “a*
*NG*=CLOBAL NOBE INDEX
CONNON SGU1(22), SGU2(125,8GV3
CONNON FAl,BFAl,ROS,CS, COND, RORCK, CSRCK, CONRCK, PERS, DT, DTP, TS, GRAY, DTDZ
COMMON AR.ZNC?7),28(7, 3>, UEC?>,POR(4),P, Q, R, NET, NOD, 270, XT0, InD, 1GD,2ZTA
CoAYMCH NGL8Y, XG{5Y, 20¢8), %5, 83,2(S,5), NF(223)
COMMON NTC(223), NUC?7?),NNC27), NPC22)
COMMON UC?273.9C223, T1¢2235,T2(223),P1(?773,P2¢C77)
COMMGH ROC?73.AP(77),BACZ7),CP(27),BE(?7),PER(?7)
CONMCN AE(6,8),AC123, 233, 7YC223), HCOL(179.23)
SUF=@.
j0 79 I=1.,§
20 79 J=1,6
[F(ABSCAE(L,J)).GT.SDF)SIF=ABSCRE(L, J})
CONTINYE
30 71 I=t,$§
00 71 J=t.6
$34E(I, J)/9DF
1FCABS(S3.LE. 3.8E-6)A4E(1.,J)=0,
CONTINUE
DO 18 K=t,6
[M=NFONGCKY)
IFCID. HE. 43GD TO 39
[HeNG(KD
KIS=9
00 %@ [S=i, N
GO TO (¢St,32,93,94,33),1)D
IFINUCIS).NE, S353G0 TO 39
GO TO 36
IF(NYCIS) ME. S339)G0 TO J@
GO T0 S§
IF(NPCIS).NE. 388360 TO $9
GO0 T0 36
IFCNTCIS> . NE.3333G0 TO Se
KIS=KIS+1
CONTINUE
IN=IN-KIS
IF(IN.LE.8)GD TO 18
80 131 L=t.,§
IF(ABSCRECK, L) ). LE. 5. 9E~20)G0 T0 1!
JASHF(NG(L))
IFCID. NE. 4360 TO 68
JUHSNG(LY
i5=9
00 SS IS=1,JN
G0 TO0C61.62.63,64,63),10
IFCNUCIS) . NE. S3S3G0 TO SS
G0 TO 46
IFCNUCIS) . NE. S333G0 TO §9
GQ TO &6
IFCNPCISY . NE. SSY3G0 TO S§3
GQ TC 46
TFCHTCISI. NE. 333060 T S35
KIS=KIsS+1i
CONTINUE
JH=JdN-K1S
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coneac 37 1,79 15:.58.952 PAGE 2
39; IF(JN.LE. 83G0 TO 1t
(1 1 00 16 JC=t,28
61 IF(NCOLCIN, JCY.EQ. 8)G0 TO 17
62; IFCJN.LT. NCOLCIN, JCO360 TO 18
§3; [F(JN. RE. NCOLCIN, JC3)GO TO (6
64 ACIN, JCY=AKIM, JED+AECK, LD
63 GO0 TO it
56; 16 CONTINUE
87 JCaJC-1}
68; 17 ACIN, JCISAECK, LD
63; NCOLCIN, JCY=JN
‘ 79; GO0 TO 11
7t 18 LA=NCOL(IN, JC3
72; aLasacIn, Joo
73 00 19 RL=JC,2¢
74; HX=sNCULCIN, L+ 1)
79; ANK=ACIN, ML+1)D
78 HCOL(IM, ML+ 1) sLA
?7; acIn, ML+ id=alA
78; IFCHX.EQ. 92G0 TO 29
79; LasNX

38 19 aLasalX

91 28 RCIN, JCI=AECK, LD
82; NCOLCIN, JCI=JN
83; 11 CONTINUE

34 19 CONTINUE

83 RETURN

36; EHD






