
AN ABSTRACT OF THE THESIS OF

David Metz for the degree of Master of Science in Electrical and Computer Engineering presented on

April 28, 1995. Title: Interface Design and System Impact Analysis of a Message-Handling Processor for

Fine-Grain Multithreading.

Abstract approved:
Ben Lee

There appears to be a broad agreement that high-performance computers of the future will be

Massively Parallel Architectures (MPAs), where all processors are interconnected by a high-speed

network. One of the major problems with MPAs is the latency observed for remote operations. One

technique to hide this latency is multithreading. In multithreading, whenever an instruction accesses a

remote location, the processor switches to the next available thread waiting for execution. There have

been a number of architectures proposed to implement multithreading. One such architecture is the

Threaded Abstract Machine (TAM). It supports fine-grain multithreading by an appropriate compilation

strategy rather that through elaborate hardware. Experiments on TAM have already shown that fine-grain

multithreading on conventional architectures can achieve reasonable performance.

However, a significant deficiency of the conventional design in the context of fine-grain program

execution is that the message handling is viewed as an appendix rather than as an integral, essential part

of the architecture. Considering that message handling in TAM can constitute as much as one fifth to one

half of total instructions executed, special effort must be given to support it in the underlying hardware.

This thesis presents the design modifications required to efficiently support message handling for

fine -grain parallelism on stock processors. The idea of having a separate processor is proposed and

extended to reduce the overhead due to messages. A detailed hardware is designed to establish the

interface between the conventional processor and the message-handling processor. At the same time, the

necessary cycle cost required to guarantee atomicity between the two processors is minimized. However,

the hardware modifications are kept to a minimum so as not to disturb the original functionality of a

conventional RISC processor. Finally, the effectiveness of the proposed architecture is analyzed in terms

of its impact on the system. The distribution of the workload between both processors is estimated to

indicate the potential speed-up that can be achieved with a separate processor to handle messages.

Redacted for Privacy

Interface Design and System Impact Analysis of a

Message-Handling Processor for Fine-Grain Multithreading

by

David Metz

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed April 28, 1995

Commencement June 1995

Master of Science thesis of David Metz presented on April 28, 1995

APPROVED:

Major ofessor, representing Electrical and Computer Engineering

Dean of Graduate Sch

I understand that my thesis will become part of the permanent collection of Oregon State University
libraries. My signature below authorizes release of my thesis to any reader upon request.

David Metz, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

This thesis is dedicated to my Lord Jesus Christ.

ACKNOWLEDGMENTS

Throughout my studies I have received encouragement from many people. Heart filled thanks go

to my parents, my sisters and my little brother for their prayers and moral support and for keeping me in

touch with the old world.

Special thanks go to my major professor, Dr. Lee, for helping guide my efforts and for

challenging me to develop new ideas. His classes, thoughtful advice, and availability helped me to see the

big picture. Many thanks to Dr. King for his flexibility and to Dr. Lu and Dr. Peterson for their

willingness to take out time for this defense.

I am vet)/ grateful to the Fulbright-Kommission for providing the much needed grants for my

entire study period in the United States. Without their support this dream would never have come true.

Deep thanks to my special friends - Mark and Christine, JP (Johan), Beth, Jim, Todd and Becky,

Pastor Phil, Steve, Jerome and Cynthia, Paul, Stephen (Yee-ha), Chris, Sheena, Peggy, Susanna, Yvonne,

Frank, Dale, Slant, Virgil and Cara Lynn, and Kent for making my stay at beautiful Oregon a pleasant and

unforgettable experience and for showing me "the real America".

Thanks to all my fellow students who have always been there for help. We all learned new ideas

from each other.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Thesis Organization 3

1.3 Typeface Conventions 3

2. TAM - THREADED ABSTRACT MACHINE 4

2.1 Background 4

2.2 Concepts of TAM 5

2.2.1 Storage 7

2.2.2 Threads and Inlets 7

2.3 Mapping TAM on the CM-5 9

2.3.1 The CM-5 Multiprocessor 9

2.3.2 Storage Model 10

2.3.3 Message Handling 10

2.3.4 Scheduling of Frames and Threads 12

3. PREVIOUS WORK 14

3.1 A Design for Efficient Thread Scheduling 14

3.2 Message Handling 16

3:3 Discussion 19

4. EFFICIENT INTERFACE DESIGN OF INLET-PROCESSOR 21

4.1 Access to Synchronization Counters 22

4.2 Access and Representation of LCV 24

4.2.1 POST-FORK Interference 25

4.2.2 POST-SWAP Interference 27

TABLE OF CONTENTS (Continued)

Page

4.3 The SWAP Operation 33

4.4 Enabling of Idle Frames 35

4.5 Suggestion for a Processor Node Architecture 36

4.6 Changes to the SPARC 38

5. SYSTEM IMPACT ANALYSIS 40

5.1 Results - Overview 41

5.2 Distribution of Control Time 42

5.3 Messages 44

5.4 Heap 45

5.5 Overhead 47

5.6 Memory 48

6. CONCLUSION AND FUTURE OUTLOOK 50

BIBLIOGRAPHY 52

APPENDICES 53

Appendix A TLO-Instruction Mappings to the SPARC Processor 54

Appendix B Mapping of Activation Frame and LCV to Memory 61

LIST OF FIGURES

Figure Page

2.1 Comparison of control-flow and dataflow execution model 4

2.2 TAM activation tree and embedded scheduling queue 6

2.3 Conceptual processor node design of the CM-5 9

3.1 Control transfer using FORK/SWITCH 14

3.2 Inlet-processor interface with system 17

3.3 Double-ended representation of the LCV 18

4.1 Timing example of a bus arbitration for the load-word instruction 21

4.2 A design for atomic access to synchronization counters 23

4.3 Modified representation of the LCV as a double-ended stack 26

4.4 Simple, hardwired comparison of 1 cv and lcvend 27

4.5 Optimized scheme for hardware comparison of 1 cv and 1 cvend 28

4.6 Decoding of condition for 1NCLCV and DECLCV 28

4.7 Final design for POST-SWAP interference including all control lines 31

4.8 Timing example for arrival of new inlet for terminating frame 32

4.9 Hardware required for the mo vi instruction 34

4.10 Queuing a frame in the ready queue 35

4.11 Suggestion for a processor node architecture 36

LIST OF TABLES

Table Page

2.1 Cost of SEND and RECEIVE on the CM-5 10

2.2 Cost of TLO heap-operations on the CM-5 11

2.3 Cost of FORK, SWITCH and STOP on the CM-5 12

2.4 Cost of SWAP and POST on the CM-5 13

3.1 Timing of cdbp instruction 15

4.1 Condition codes for the cb s instruction on the Main-processor 33

5.1 Distribution of processor time, original and modified 41

5.2 Distribution of control time on Main-processor and on Inlet-processor 43

5.3 Distribution of message cost on Main-processor and on Inlet-processor 45

5.4 Distribution of heap cost on Main-processor and on Inlet-processor 46

5.5 Overhead cost on Main-processor 47

5.6 Overhead cost on Inlet-processor 48

5.7 Distribution of memory penalty on Main-processor and on Inlet-processor 49

LIST OF APPENDIX FIGURES

Figure Page

B.1 Representation of the activation frame in the memory 62

B.2 Representation of the LCV in the memory 63

Interface Design and System Impact Analysis of a Message-Handling Processor
for Fine-Grain Multithreading

1. INTRODUCTION

1.1 Motivation

In the past years, the demand for high performance stimulated the design and development of

parallel computers. There appears to be a broad agreement that high-performance computers of the future

will be Massively Parallel Architectures (MPAs) [1]. It is not surprising that today's MPAs commonly

use von-Neumann style processors which have been and still are the most suitable technology for the

traditional single-processor architectures. Over the years, von-Neumann style processors have been highly

optimized by a variety of methods, such as pipelining, multiple functional units, and vector units [2].

Unfortunately, these highly efficient processors are often less than ideal for large-scale parallel

architectures. Their major drawback is the lack of mechanisms that specifically support scalable

interprocessor communication and synchronization [3] and their limited ability to support the exploitation

of parallelism in programs. For example, consider a parallel computer where a processor has to fetch the

contents of the memory on a remote processor. The requesting processor has to idle while waiting for the

reply. Furthermore, if synchronization is required because the requested argument is not yet available, the

idle time for the waiting processor is of unbounded latency. Thus, any large-scale parallel architectures

must rely on latency-hiding techniques in order to be scalable [4].

The classical solution for masking memory latency is to provide a cache holding copies of remote

locations. Although this helps, remote requests of unbounded latency (synchronizing loads) are still not

dealt with [1]. An alternative technique for hiding memory latency is to multiplex amongst many threads

of a program code waiting to be executed on each processor. This concept is called multithreading.

Whenever a thread issues a remote load request, the processor switches the execution to another thread.

The requesting thread can continue as soon as the reply has arrived. However, the effectiveness of

multithreading depends on rapid support of context (thread) switching [5].

An alternative to the control-flow concept of computation (which includes the von-Neumann

concept) is the dataflow model of execution. Conceptually, instructions are executed as soon as their

operands are available. Theoretically, operands are not stored in memory, but instructions produce tagged

tokens, where the tag indicates the destination of the token. The dataflow model is attractive for parallel

processing, because it exposes all forms of parallelism down to the instruction level [5]. On the other

hand, the dataflow approach has some drawbacks which prevent it from being a practical alternative to its

2

control_ flow counterpart. One is the heavy overhead involved in matching tokens. Another is the

inefficiency of the dataflow instruction cycle [5].

Multithreading can combine features of both execution models. It provides thread-level context

switching in a dataflow fashion and sequential instruction-scheduling within threads in a control-flow

fashion. Thus, besides tolerating unpredictable latencies, multithreading exploits the high, sequential

efficiency achieved on conventional processors. The level of parallelism exposed is higher when the

threads are shorter.

One such hybrid model, called Threaded Abstract Machine (TAM), has been developed at

UC Berkeley. TAM supports fine-grain multithreading by an appropriate compilation strategy rather than

through elaborate hardware [6]. It provides a means to map programs represented by dataflow graphs to

conventional hardware and yet obtain reasonable performance [7]. On the other hand, experiments on

TAM indicate a basic mismatch between the requirements for fine-grain parallelism and the underlying

conventional architecture. This suggests that considerable improvement is possible through hardware

support [8]. This has been further confirmed in a study that improves the execution of TAM control-

instructions by incorporating a special instruction in the ISA of the SPARC processor [9]. Another

significant deficiency of the conventional design in the context of fine-grain program execution is that the

message handling is viewed as an appendix rather than as an integral, essential part of the architecture.

However, considering that message handling in TAM can constitutes as much as 22% - 45% of total

instructions executed, special effort must be given to support it in the underlying hardware. One project at

MIT suggested the usage of a separate processor to handle messages [1].

In the light of the aforementioned discussion, this work presents the design modifications

required to efficiently support message handling for fine-grain parallelism on stock processors. The idea

of having a separate processor is proposed and extended to reduce the overhead due to messages. A

detailed hardware is designed to establish the interface between the conventional processor and the

message-handling processor. At the same time, the necessary cycle cost required to guarantee atomicity

between the two processors is minimized. However, the hardware modifications are kept to a minimum so

as not to disturb the original functionality of a conventional RISC processor. Finally, the effectiveness of

the proposed architecture is analyzed in terms of its impact on the system. The distribution of the

workload between both processors is estimated to indicate the potential speed-up that can be achieved with

a separate processor to handle messages.

Although the discussion is based on the SPARC processor, the design issues discussed in this

thesis apply to other RISC processors as well.

3

1.2 Thesis Organization

Chapter 2 gives a short introduction to the conceptual differences between the dataflow and the

control-flow execution model. This is followed by a detailed description of TAM.

Chapter 3 summarizes the thesis of S. Kotikalapoodi [9]. Some of the architectural proposals

from his work are described and integrated in the following discussions and analysis.

Chapter 4 proposes two specific hardware solutions to guarantee atomicity between the Main-

processor and the processor handling messages (i.e., the Inlet-processor). A number of other issues

concerned with processor interaction are discussed. Finally, a design of a complete processor node is

proposed.

Chapter 5 analyzes the benefits of having a separate processor to handle messages in the context

of the proposed processor node design. The distribution of the workload between the two processors is

estimated by means of the metric clock cycles per TAM instruction (CPT) on each processor.

Chapter 6 discusses the general significance of the results and other areas of possible future

research are pointed out.

1.3 Typeface Conventions

In order to avoid any confusion, three different font-styles are used. The typeface conventions are

as follows:

Names of control lines are in TIMES NEW ROMANS CAPS.

TLO-instructions (TAM pseudo-machine code) are in COURIER CAPS.

SPARC assembly instructions are in lower case courier.

4

2. TAM - THREADED ABSTRACT MACHINE

2.1 Background

Currently, programs are usually executed according to the control-flow execution model since all

common architectures are optimized for and based on this model. Control-flow simply means that a

program counter triggers the execution of instructions one after the other. In contrast, in the alternative

execution model, called dataflow, the execution of an instruction is initiated by the availability of the data.

Figure 2.1 illustrates the two different concepts by a simple example. The arcs indicate data

dependencies. A, B, E are assumed to already exist.

B A E

C=B+A

D=E+A

F=C+E

F G

i+3 G=D+C-\

F G

control-flow model dataflow model

Figure 2.1 Comparison of control-flow and dataflow execution model

What makes the dataflow method attractive is that synchronization of parallel activities is

implicit and self-scheduling [5]. The scheduling of instructions is only constrained by the data

dependencies. Thus, the dataflow program representation exposes all the possible instruction level

parallelism in a program. On the other hand there are some serious problems with the dataflow model

compared to its control-flow counterpart [5]. One drawback is the substantial cost required to detect

enabled instructions (i.e., all the data needed is available) and to communicate the results.

In practice, today's commonly used parallel architectures rely solely on processors, which have

been optimized for the control-flow execution model. Programs are usually divided into several large

blocks of instructions and then spread over the processors. There are two important issues that affect the

performance of this practice. First, if a program block on a certain processor requires synchronization, it

5

needs to wait for two or more blocks to terminate. Second, if an instruction needs to fetch data from

another processor, it needs to wait for the complete time it takes for the request to travel to the remote

processor, to be serviced, and finally to return the requested data.

To eliminate these high latencies, a method called multithreading was introduced. In

multithreading, each processor' holds multiple partitions of program code, called threads. Whenever a

thread has to busy-wait (i.e., it has requested data from a remote processor and waits for the reply),

another thread starts executing instead. Thus, the aforementioned latencies are hidden and all processors

can be fully utilized. Basically, threads can be of arbitrary length from several (fine- grain) to several

thousand (coarse-grain) instructions.

Conceptually, multithreading is a hybrid execution model since it combines aspects of the

control-flow and the dataflow execution model. Within the threads, instructions are scheduled in a

control-flow fashion whereas the threads themselves are scheduled in a dataflow fashion. (Thus,

multithreading exploits both the execution efficiency of the control-flow model and the exposure of

parallelism of the dataflow model.)

There are a variety of ways to implement multithreading. Two fundamental dimensions are:

First, multithreading can be implemented for all possible grain-sizes, from instructions (fine) to large

blocks of code (coarse). Second, it can be realized either in software, hardware, or arbitrary combination

of the two. One such hybrid execution model is Berkeley's TAM - Threaded Abstract Machine [6]. In the

following sections TAM is presented and discussed in more detail_

2.2 Concepts of TAM

TAM is a fine-grained parallel execution model that demonstrates, how the dataflow concept can

be mapped efficiently on conventional parallel machines. TAM defines a machine language of parallel

threads, called TLO, which is completely self-scheduled. TLO makes it possible to run programs

represented by dataflow graphs on conventional architectures.

A program in TLO consists of a collection of code-blocks, which contain threads and inlets2 (see

Figure 2.2). A code-block is typically represented by a function or a loop-body in the original high-level

language. When a code-block is invoked, an activation frame is dynamically allocated. The activation

frame is a key element of the TAM execution-model.

The activation frame provides the resources required for synchronization and scheduling of

threads as well as storage for local variables used by the invoked code-block. Once allocated to the

memory of a specific processor node, an activation frame remains in the memory for the rest of its

1 In the following, a parallel architecture is assumed.

2 Inlets are code to specifically handle messages. They are explained below.

6

execution. After a frame is allocated and initialized, arguments are sent to the frame. Then, its execution

can start. Since a caller can invoke several child code-blocks (callees) the call structure is represented by

a tree rather than a stack (see Figure 2.2). This structure is dynamic since the occurrence of various

conditions for a code-block invocation cannot be determined in advance. The child frames can be

distributed over several processors and can all be activated concurrently. Although the frames are the

basic unit of work distribution over the processors fine-grain parallelism is not wasted. This is because

within a frame, thread parallelism compensates communication latency. Moreover, within each thread,

instruction-level parallelism can be exploited (in superscalar processors).

Activation Tree Activation Frame Codeblock

Codeblock base
Function Foo

Synchronization
counters [Inlet 2

Local [Inlet 5
variables

Thread 3

[Thread 7
Ready frame link

rThread 14
Continuation
vector

Figure 2.2 TAM activation tree and embedded scheduling queue

A frame can be in one of three states. An idle frame has no enabled threads It becomes ready as

soon as one thread is enabled (i.e., the data needed to execute this thread has become available). A

scheduled frame is considered running or resident and is executed until it has no enabled threads.

Since each argument sent to a code-block can enable a thread, there can be several ready frames

on one processor. The execution sequence of ready frames waiting in a queue to be scheduled is

determined by a linked -list. Several threads within a single frame are scheduled by the sequence of their

starting addresses (relative to the frame) in the continuation vector (CV). After activating a frame, all

threads are executed according to the CV until no enabled threads remain. The last thread, called leave­

7

thread, deactivates the current frame and switches to the next frame in the ready queue. The number of

threads executing during a single residency of a frame is called a quantum. Usually, threads in a quantum

are related since they are from the same code-block. The advantage of having several related threads in a

quantum is that it promotes locality since registers can potentially be carried over from thread to thread

and since the processor can work in one frame as long as possible without context switches.

2.2.1 Storage

In terms of storage, TAM basically consists of four distinct regions: code-block storage, frame

storage, heap storage, and registers. The code-block storage representing the compiled program is

accessible for all processors through fast local operations (in theory). The frame storage (including local

data) is distributed over all processors, but each frame is local to one processor. In contrast to code-

blocks, frames are allocated to the processor dynamically during the program execution. Thus, the

corresponding frame for a certain code-block does not necessarily need to be on the same processor'.

Since the frames are distributed over all processors, communication between frames often requires

interprocessor communication.

Frames consist of local variables, entry counters for synchronizing threads, the ready frame link

(the pointer to the next ready frame), and the Continuation Vector (CV). If a frame is not running, the

CV is called the Remote Continuation Vector (RCV). The RCV is a stack containing pointers to all

enabled threads. When a frame is scheduled, the RCV is copied onto the Local Continuation Vector

(LCV). Basically, this means that the LCV is the CV of the running frame. The processor uses the LCV

to schedule all enabled threads in a quantum. An example of a frame layout is illustrated in

Appendix B.1.

Finally, the heap storage contains statically or dynamically allocated arrays. Large arrays are

distributed over the processors whereas small arrays are local. By definition each heap location holds

three presence bits (empty, full, deferred), which provide the possibility of element-by-element

synchronization. A heap element is generally accessed through a split-phase operation (except for local

accesses which are optimized). The response is handled by the corresponding inlet as explained below.

2.2.2 Threads and Inlets

Threads are sequences of instructions which follow the traditional concept of control-flow. By

definition the code within a thread must never suspend. This means instructions in a thread can be

This is not valid, if the entire program code fits on each processor-node's memory.

8

statically ordered and no operation of unbounded latency can occur in between instructions (e.g., a remote

reference). Each enabled thread is described by an instruction pointer in the RCV (or LCV). The

instruction pointer to the thread is an offset of the code-block's base-address which is stored in the frame.

In addition to the computational instructions threads contain additional control operations such as FORK,

SWITCH, and STOP. FORKs attempt to enable a thread in the running code-block only. If the thread is

synchronizing (i.e., it requires more than one synchronization events before all data needed is available),

FORK first decrements the synchronization counter. If the result turns out to be zero, the thread is enabled

(i.e., pushed onto the LCV). Otherwise the decremented synchronization counter is stored back'.

SWITCH conditionally forks one of two threads. STOP terminates a thread and starts the execution of the

next enabled thread by popping its pointer from the LCV.

At the bottom of the LCV is always the leave-thread. Thus, if the LCV is empty, the leave-thread

is executed. It contains the TLO-instruction SWAP which terminates the running frame, copies the RCV

onto the LCV2, and transfers control to the next ready frame (pointed to by the ready frame link).

Appendix A.3 gives the exact mapping of SWAP to the SPARC. Appendix B.1 shows the physical

organization of the frame in the memory. The following TLO-code illustrates a simple, common thread:

THREAD 7

SUB iregO.i = islotO.i 1.i % subtract 1 from islotO and write result

% into ireg0
FORK 9 . t % fork thread 9
STOP % pop next thread ptr. from LCV and start

% a new thread

Threads can also be enabled by arriving messages (from the local or a remote processor).

Messages are sent from other frames and contain arguments or returning results. Each message is

received by a special, corresponding inlet which is a compiler-generated message-handler. An inlet

usually contains three TLO-instructions: RECEIVE, POST, and STOP. RECEIVE extracts the data from

the message and stores it into the destination frame (which is not always the current one). Inlets enable

threads through POST, which is similar to, but distinct from FORK since POSTs enable threads from

frames in either state. This implies that an idle frame has to be queued in the ready frame queue if an

enabled thread is posted to the RCV of that frame3. The following sequence illustrates a common inlet

code in TLO:

INLET 3

RECEIVE islot7.i % store the arrived value in islot7
POST 11. t % post thread 11 to either RCV or LCV
STOP % pop next thread ptr. from LCV and start thread

The SPARC mapping for FORK is given in Appendix A.I.
2 This is valid for the frame representation we use. In other implementations the RCV and the LCV can be in the same, physical location.
3 The SPARC mapping for POST is given in Appendix A.4.
4 This is only valid in a uniprocessor system when arriving messages are detected by polling and thus are executed between two threads. If
messages interrupt threads, STOP would simply mean a return from interrupt. If a separate processor is dedicated to handle messages,
STOP would mean waiting for the next message. The SPARC mapping for STOP is given in Appendix A.2.

9

Observe that both threads (through FORK and SWAP) and inlets (through POST) cooperate in

scheduling frames and threads. Thus, they both need to have access to common resources such as

synchronization counters and the LCV. For this reason, atomicity between POST and FORK/SWAP must

be guaranteed by any dual processor TAM implementation.

2.3 Mapping TAM on the CM-5

2.3.1 The CM-5 Multiprocessor

The CM-5 is a massively parallel architecture with SPARC processors [8]. The processors are

interconnected in two disjoint, incomplete fat trees. Each processor node comprises a 33 MHz SPARC

RISC-processor chip set, 8 Mbytes of local DRAM memory, and a Network Interface. The SPARC chip

set includes FPU, MMU and a 64 Kbyte direct-mapped write-through cache. The Network Interface is

attached to the processor node's MBus (a SPARC standard [10]) and consists of a pair of memory mapped

FIFO queues. Figure 2.3 shows the basic processor node design [11].

Main other I/O
Memory Devices

Cache	 Network
Interface

i
SPARC from/to

Processor Network

Figure 2.3 Conceptual processor node design of the CM-5

10

2.3.2 Storage Model

Program code is placed on every processor. Frames exist in the local memory and probably

reside mostly in the cache. Small heap structures are local to a processor whereas large arrays are spread

over the processors. 110 registers are mapped on a single SPARC register window. The code generator

has to spill excess TLO registers to the activation frame. The register window is divided into special

purpose registers, thread registers, and inlet registers. The special purpose registers (g0-g7) hold

important variables and constants such as the pointer to the next ready frame (queue), the pointer to the

top of the LCV (icy), the processoriD, the current frame pointer (fp), and the pointer to the base address

of the current code-block (cbb a s e). Sixteen registers (i0-i7 and 10-17) are used by threads only. Another

eight registers (o0-o7) are used by inlets and may be temporarily used by threads. The 110 instruction

pointer (ip) and inlet instruction pointer (i ip) are both mapped to the SPARC PC-register.

2.3.3 Message Handling

The only 110 instructions that handle messages are SEND and RECEIVE. SENDs are limited on

the CM-5 to three words of arguments plus two words for the continuation (f p, ip). Thus, longer

messages are converted into multiple SENDs. Each SEND is paired with a corresponding RECEIVE in a

specific inlet generated at compile-time. Table 2.1 depicts the cost for both instructions respectively.

SEND a message to costs Handling a message arrived costs
instr. cycles from instr. cycles

local frame local frame'
overhead 4 4 inlet overhead 6 7

push one word 1 1 RECEIVE one word 1.5 3

remote frame remote frame
overhead 10 25 inlet overhead 6 13

push one word 0.5 4 RECEIVE one word 1.5 6

Table 2.1 Cost of SEND and RECEIVE on the CM-5. RECEIVE only stands for transferring message data
into the activation frame. The overhead of handling a message includes dispatching to the inlet and
returning form the inlet. The overhead of SEND includes determining if the destination is local or remote.
Push/RECEIVE one word assumes an average cost of 4 cycles for one word to be loaded from/stored to the
Network Interface.

Since we do not have the exact data the cycle cost for handling a local message is estimated. Instead of 4 cycles per word requiredto

access the Network Interface, 1 cycle per word is now assumed since the data resides already in registers. Thus, the local overhead is 6

cycles faster than the remote one since it involves loading two words: fp and ip.

11

The reason for remote SENDs/RECEIVEs being so expensive is that they need to access the

Network Interface. A load/store doubleword from/to the Network Interface incurs 8 cycles each.

Currently, the arrival of a message on the CM-5 is detected by explicitly polling the Network Interface at

the end of each thread (9 cycles). When a thread executes a SEND, polling is combined with the SEND (2

cycles + S END). Although messages could be detected by interrupts, this method is inadequate in the CM­

5 due to the prohibitive cost of interrupts.

Since heap access operations usually involve messages, they are also discussed in this section.

Each structure element is represented by 64 data bits and 3 presence bits. The tags are stored separately

from the data with a constant offset. An element can be empty, full or deferred indicated by the tag.

Deferred fetches are queued as a linked list where each link indicates processor node, inlet and frame of

the request. This information is used to satisfy the deferred read when the element is eventually written.

The head of the list is stored in the element itself. TLO instructions used for heap accesses are: I FETCH

(I-structure reads), I STORE (I-structure writes), IALLOC (I-structure allocation), and I FREE (I-structure

deallocation).

All of these instructions are basically special forms of SEND with some extended functions.

Their requests are received and serviced by generic inlets. For IFETCHes and IALLOCs, the service

additionally includes replying (i.e., SENDing back the requested value). The reply in turn is received by

an inlet on the processor that initiated the request. This final inlet is again a speciali7ed handler

corresponding to the initial request. Table 2.2 sums up the cost for I FETCHes and ISTOREs including

all necessary operations.

I-structure fetch (I FETCH) costs I-structure store (I STORE) costs
instr. cycles instr. cycles

local local
data present 8 11 no waiting fetches 9 15

data not-present 25 58 waiting fetches 18 30
remote remote

initiate request 18 38 initiate request 18 38
service - data present 29 91 service 13 44

- data not-present 39 115

Table 2.2 Cost of ILO heap-operations on the CM-5. The cost for remote requests include the request
send and receive by the serving processor. Remote service comprises the cost of the reply and the dispatch
to the inlet receiving the reply. The cost for a fetch of a non-present element represents both enqueuing
the fetch in a linked list and fulfilling the request after the element has been written.

12

2.3.4 Scheduling of Frames and Threads

As presented in Section 2.2 FORK, SWITCH and STOP are the TLO instructions which determine

the scheduling of threads. Table 2.3 shows the cost for each of the three instructions. The cost for FORK

varies. The last FORK in a thread is always specialized into a fall-through or a branch, thus, eliminating

the need for an explicit STOP. An exception to this is when a synchronization fails. Since a thread must

not suspend, FORKs within a thread can only push an enabled thread onto the LCV rather than branch to

it. Unsynchronizing and successful synchronizing FORKS always enable threads whereas failed

synchronizing FORKS only decrement the synchronization counter and store it back. Since SWITCH is

identical to FORK except that it has an additional conditional code at the beginning, it is not specifically

broken down into different categories. The detailed code for FORK is given in Appendix A.1.

Operation costs
instructions cycles

FORK

fall through 0 0
branch to thread

unsynchronizing 1 1

successful synchronizing 3 4
failed synchronizing (without required STOP) 4 8

push thread onto LCV
unsynchronizing 3 5
successful synchronizing 6 10
failed synchronizing 4 7

SWITCH one of two threads fork + 2 fork + 2
STOP - pop next thread from LCV 3 5

Table 2.3 Cost of FORK, SWITCH and STOP on the CM-5

A frame is scheduled by the TLO SWAP-instruction that basically invalidates the old (current)

frame pointer (fp) by replacing it with fp of the new frame to run (i.e., the next frame in the ready queue

pointed to by the ready frame link). It also copies the content of the RCV of the new running frame into

the LCV'. The basic SWAP copies the leave-thread plus the first three computational threads (4x16-Bit

offsets copied at a time with 'load doubleword'). If the RCV holds more threads, subsequent copy

operations incur additional costs (4 threads at a time). The costs for SWAP are shown in Table 2.4 and the

detailed code is given in Appendix A.3.

Other implementations are possible. See section 2.2.2.

13

Operation costs
instructions cycles

SWAP

basic (first 3 threads plus leave-thread) 14 26
per extra 4 threads 6 12

POST
without cost for synchronization

to idle frame 12 18
to ready frame 9 14
to running frame 5 7

cost for synchronization
successful 3 5

failed 4 7

Table 2.4 Cost of SWAP and POST on the CM-5

The cost of POST, which pushes enabled threads, varies depending on the state of the frame. If a

frame was idle (i.e., its RCV was empty), it is made ready by queuing it in the ready frame queue. For

running frames, the threads are pushed onto the LCV rather than the RCV. POST is more expensive than

FORK for two reasons. First, it must determine, if the inlet's frame is running by comparing the current

frame pointer (fp) with the inlet's frame pointer (i fp). Second, the pointer to the top of the RCV (rcv)

is kept in the frame rather than in a register like the pointer to the top of the LCV (1 cv). The cost for

POST is depicted in Table 2.4 and the detailed code is given in Appendix A.4.

14

3. PREVIOUS WORK

This section describes the work of S. Kotikalapoodi [9]. His proposals comprise of specific

architectural modifications to support fine-grain multithreading on stock processors. The proposals in

this chapter provide a number of key design components for the following chapters.

3.1 A Design for Efficient Thread Scheduling

Experiments show that TLO-control instructions are one of the greatest contributors to the

execution time of several benchmarks [6]. The time spent on control instructions accounts for as much as

27% of the total processor time. This cost is mainly due to three instructions: FORK, SWITCH, and STOP.

The main areas for improvements are FORKS to synchronizing threads and STOPs since they account for

about 30°4-40% of all control instructions. Successful synchronizing FORKS at the end of a thread are

combined with STOP and optimized to a branch (see Figure 3.1). But if the synchronization fails, a STOP

has to be executed explicitly. In this case, the overall cost for FORK plus STOP is 13 cycles (see also

Table 2.3), which is very expensive compared to the average cost for a FORK.

thread thread
instructions instructions

FORK thread FORK thread
1

Push this thread onto LCV and Push this thread onto LCV and
continue with the current thread. continue with the current thread.

FORK thread SWITCH thread
STOP STOP

FORK and STOP are SWITCH and STOP are replaced
replaced by a branch. by a branch, and depending on

the condition, this thread is
executed or else a thread is
popped from the LCV.

Figure 3.1 Control transfer using FORK/SWITCH

_ _

15

The original SPARC-code for failed synchronizing branches plus STOP is as follows (see

Appendix A.1 for the complete code):

(FORK:) ldb sync [fp] , tmpl (2) ; load synchr. counter into reg. trapl
subcc tmp 1, 1, tmpl (1) ; decrement synchronization counter
be thr_addr (1 or 2) ; branch to thr_addr, if synchr. count- O
stb tmp 1, sync [fp] (3) ; synchr. counter not zero, thus store it back

(STOP:) lduh [2+1cv] , tmp (2) ; load thread pointer (offset) from LCV
add lcv,2,1cv, (1) ; increment pointer to top of LCV (lcv)
jmp [tmp+cbbase] (2) ; jump to new thread at cbbas e+o f f s et

In order to substantially reduce the cost for failed synchronizing branches a new SPARC-

instruction was introduced: conditional double branch and pop - cdbp [9]. This instruction eliminates

the need to explicitly access the LCV for the aforementioned case. It is assumed that a register, called

r_ntp, holds the top of the LCV (i.e., the pointer to the thread that will be scheduled next). The register

holding the decremented synchronization counter (tmp 1 in the above code) is labeled r_cnt. The cdbp

instruction has the syntax cdbp thr_addr' and functions as follows: thr_addr' points to the

thread whose synchronization counter resides in r_cnt. If r_cnt is zero, cdbp branches to the thread

pointed to by thr_addr and nothing else needs to be done (2 cycles). If r_cnt is not zero, three

actions have to be taken. First, cdbp branches to the thread pointed to by r_ntp+cbbase. Second, the

next thread pointer is popped from the LCV into r_ntp. Finally, r_cnt is stored back (3 cycles

altogether). The cdbp instruction is used for all synchronizing FORKS optimized to branches. The

timing for the cdbp instruction is illustrated in Table 3.1.

cycle operation
i Fetch stage: cdbp instruction is fetched

i+1 Decode stage: cdbp is decoded; PC+thr_addr is computed; r_ntp and cbbase are
read from the register file; instruction in the delay slot is fetched (i.e., stb instruction)

i+2 if r cnt = 0 if r_cnt # 0
Execute stage: stb in the delay slot is Execute stage 1: PC4-r_ntp+cbbase
squashed; instruction at PC+thr_addr is
fetched (Fetch stage of that instruction)

i+3 Execute stage 2: 1 cv4-1 cv+2; instruction
at PC is fetched

i+4 Execute stage 3: put lcv+2 on address bus
and load data (new top of LCV) into buffer

i+5	 Write Back stage: write buffer into r_ntp,
and stb in the delay slot starts execute
stage (` stb` could not execute earlier
because cdbpwas still on the bus)

Table 3.1 Timing of cdbp instruction

16

Using cdbp, the code for synchronizing FORKS optimized to a branch now looks like this:

1db sync [fp] , tmp1 (2) ; load synchr. counter into reg. tmp 1
subcc tmpl, 1, tmpl (1) ; decrement synchronization counter
cdbp thraddr (2 or 3) ; if r_cnt = 0, branch to thr_addr, else

branch to (r_ntp)
stb r_cnt, sync [fp] (3) ; delay slot: synchr. counter not zero, thus

store it back

Another instruction proposed is a store with post-decrement capability - std. The syntax is:

std rd, rs ; store rd into [rs] and decrement rs

The std instruction accelerates by 1 cycle the pushing of enabled threads onto the LCV.

These two proposed instructions decrease the total processor time up to 3.4% (for Paraffins).

This can be done with slight modifications to the SPARC that do not compromise the original

functionality. This indicates that fine-grain parallelism on stock processors can be effectively

implemented by relatively inexpensive architectural support. A detailed discussion of the above proposals

including the hardware requirements can be found in the Master's thesis of S. Kotikalapoodi [9].

3.2 Message Handling

Another large percentage of the execution time comes from messages. Thus, the following

suggestions attempt to decrease the cost for messages. As discussed before, messages are sent and

received by the TLO instructions, SEND and RECEIVE (including heap accesses). SENDs are always

synchronous with the computation. In the CM-5 implementation, RECEIVEs are synchronous with

computation as well since the Network Interface is polled rather than having an arriving message

interrupt the computation. An alternative choice is to use a separate processor for receiving messages.

The idea of having an Inlet-processor to execute inlet code was proposed in MIT's *T architecture [1].

However, the essential issue of atomicity between the instructions FORK, SWITCH, SWAP, STOP and

POST were not adequately addressed. Thus, a complete node design with an Inlet-processor and basic

solutions in order to guarantee atomicity between the two processors was proposed in [9].

Figure 3.2 shows the suggested processor node design. Coherency between both processors is

supposed to be guaranteed by having all data in a common cache. The Network Interface has been

integrated into the Inlet-processor to decrease the network access cost which is expensive on the CM-5

(see 2.3.3).

The Inlet-processor executes all inlets. As discussed in Section 2, a typical inlet has three

instructions: RECEIVE, POST, and STOP. With an Inlet-processor, STOP is replaced by the new TLO-

instruction NEXT. The NEXT instruction waits for the next message to arrive and then dispatches it to the

appropriate inlet code.

17

Main other I/0

Memory Devices

1
Thread Instr. + Inlet
Common Data Instruction

Cache Cache

$ MICBus

Main- STOP Inlet-
processor LOCK processor

BHOLD

Network from/to
Interface Network

Figure 3.2 Inlet-processor interface with system

The problem of bus contention is resolved by two control signal between the processors: BHOLD

and LOCK. Usually the Main-processor is on the Mainprocessor-Inletprocessor-Cache Bus (MICBus).

Whenever the Inlet-processor needs the MICBus it sets BHOLD which stalls the Main-processor. On the

other hand, the Main-processor can atomically access the Common Cache for synchronization counters by

setting LOCK which stalls the Inlet-processor. LOCK is set when iclb' and s ub c c' occur right after

each other, which happens whenever a synchronization counter is accessed (see Appendix A.1 and A.4).

It is reset by either the zero-bit (i.e., r_cnt = 0 after successful synchronization) or the ' s tb' instruction

(i.e., after failed synchronization). If LOCK was applied right after the Inlet-processor loaded a

synchronization counter, then the Inlet-processor needs to load this synchronization counter again after

LOCK is reset, because the Main-processor may have potentially accessed and updated the same

synchronization counter.

Finally, another atomicity problem occurs whenever both processors access the LCV

simultaneously (i.e., FORK-POST interference) since the pointer to the top of the LCV (1 cy) resides in a

Main-processor register. Consider the case when both processors want to push different threads. The

18

Inlet-processor reads 1cv directly after the Main-processor reads it. Then they will push their thread

pointers onto the same stack slot. The result is a loss of one thread pointer.

leave-thread pointer (ltp) 4- ptr. to LCV bottom (lcvend)

last thread pointer

second thread pointer

< pointer to LCV top (1cv)

Main-processor Registers Inlet-processor Registers

next thread pointer (ntp) r_ntp lcvend

ltp r_ltp

icy

Figure 3.3 Double-ended representation of the LCV

To alleviate this problem, the LCV is proposed to be implemented as a double-ended stack (see

Figure 3.3), where the Inlet-processor appends thread pointers to the bottom of the LCV instead of

pushing them onto the top of the LCV. This is done by inserting the thread to be pushed between the last

computational-thread pointer and the leave-thread pointer, which is implemented as follows:

swap [lcvend] , reg (4) ; swaps thread pointer to be posted (in reg) and
; leave-thread pointer (ltp) which is at LCV bottom

addcc lcvend, 2, lcvend (1) ; pull stack down by one slot
s th reg, [lcvend] (3) ; store itp at LCV bottom

However, this operation requires an additional 4 cycles for every inlet posting a thread.

Although the double-ended implementation of the LCV eliminates the FORK-POST interference,

a problem can occur when the LCV becomes empty and the leave-thread pointer is popped into r_ntp.

The first instruction in the leave-thread has to check if the LCV is still empty, because a new inlet could

have posted another thread after the leave-thread pointer was popped (SWAP-POST interference). If the

LCV is still empty, SWAP in the leave-thread stalls the Inlet-processor by means of the STOP control-line

until the SWAP instruction has terminated.

19

3.3 Discussion

The introduction of cdbp and s td decreases the total processor time on the CM-5 without Inlet-

processor up to 3.4% (for Paraffins). Thus, the proposed instructions support fine-grain programs

efficiently without compromising the functionality of the conventional hardware.

The introduction of an Inlet-processor frees the Main-processor from the task of receiving

messages by either polling or interrupts and thus increases the overall performance.

Atomic memory access for the Main-processor is guaranteed by a simple LOCK signal. The

STOP control-line is supposed to guarantee atomicity between SWAP and POST.

However, some important questions remain. There are three fundamental disadvantages to the

simple LOCK approach: First, the Inlet-processor is always stalled for the complete synchronization

operation (i.e., read/modify/write) even though the probability is very high that both processors do not

access the same synchronization counter simultaneously. Second, whenever the synchronization operation

by the Inlet-processor has been preempted by the Main-processor (using LOCK), the Inlet-processor needs

to reload the synchronization counter and repeat the complete synchronization operation. Third, it is not

explained how 'reloading the synchronization counter' can actually be implemented. For example,

consider the following:

The Inlet-processor needs to keep track of how many instructions it has already advanced after

loading the synchronization counter since LOCK can occur at any time after the load.

Afterward, the Inlet-processor needs to know to which address PC must be reset to in order to

re-execute the synchronization code (starts with 1 db ').

This requires a substantial amount of hardware.

Somehow LOCK must be disabled during the execution of code other than the one for

synchronization.

In terms of the SWAP-POST interference another issue needs to be addressed in more detail. It is

assumed that the processors can read each other's registers. However; this is not a trivial assumption

since -major architectural modifications may be required to implement this capability. Moreover, under

certain circumstances, the proposed method will fail. For example, suppose a POST has just determined

that an inlet is destined for the running frame'. At this moment, the TLO-instruction SWAP (in a leave-

thread on the Main-processor) applies the STOP control-line thereby stalling the Inlet-processor. Then

SWAP switches to a new frame and updates LCV by copying the RCV of the newly running frame into it.

As soon as the STOP signal is reset the interrupted POST continues. Since POST had already determined

before that it is for the running frame (which, in reality, is not running anymore) it posts the thread onto

the updated LCV of a completely different frame (just switched to by SWAP).

The detailed code for POST is given in Appendix A.4.

20

A problem also occurs when POST had determined before that it is not for the running frame and

had already loaded the pointer to the top of the RCV (rcv) to push a thread on the RCV of the inlet's

frame. Now SWAP sets the STOP control-line right after rcv has been loaded. Then SWAP empties the

RCV by copying it onto the LCV. If this SWAP switches to the frame to which the interrupted POST is

for, then rcv read by POST before the interrupt has become invalid. If POST simply continues executing,

first, it will push the enabled thread into an RCV slot pointed to by the invalidated rcv and, second, it

will store back the invalidated rcv. Yet the old, invalidated rcv points to a wrong slot in the RCV and

implies there are more threads in the RCV than there actually are.

Finally, it must be considered that all local SENDS (from messages and heap accesses) are

optimized. This implies that these SENDS execute on the Main-processor. Two questions arise. First, how

can the Main-processor actually send a message, i.e., how can it access the Network Interface that is now

integrated into the Inlet-processor? Second, locally optimized SENDs imply that the corresponding inlets

are still run on the Main-processor instead of on the Inlet-processor. This would significantly increase the

cost of POSTS since they would have to distinguish additionally, if threads must be pushed onto the top of

the LCV (from inlet on Main-processor) or if they must be appended to the LCV bottom (from inlet on

Inlet-processor).

The following chapter addresses the issues described above by proposing specific, detailed

architectural support to guarantee atomicity between the two processors and to resolve the POST­

FORK/SWAP interference. Moreover, the issue of interprocessor communication (e.g., mutual reading of

registers) is addressed briefly in order to lay the foundation for an overall node design.

21

4. EFFICIENT INTERFACE DESIGN OF INLET-PROCESSOR

In this chapter specific hardware proposals are presented which solve the problem of atomicity

between the Main-processor and the Inlet-processor in the context of TAM. At the same time, the

proposed design also minimizes the utilization of the bus, which connects the Main-processor, the Inlet-

processor, and the Common Data Cache (MICBus). This bus is the bottleneck of the current processor

node design (see Figure 3.2).

The following assumptions are essential for the proposed solutions: First, we assume the

MICBus to be a new, separate bus. Second, it is reasonable to assume that a single, common clock is used

for both the Main-processor and the Inlet-processor because an asynchronous clock between the two would

increase the time penalty for bus accesses of either processor.

Finally, since the Inlet-processor operates completely independent of the Main-processor, a Bus

Arbiter is introduced that gives both processors the same priority. This is necessitated by the fact that the

MICBus will be fully utilized by the Main-processor alone, but the Inlet-processor will also carry a

substantial part of the workload. From here on, the following bus arbitration timing is assumed. The bus

is requested and granted in the Execute cycle of a memory-accessing instruction. It is released at the very

beginning of the Write-Back cycle. Figure 4.1 illustrates a timing example showing the pipeline stages of

the load-word instruction. The timing of the load-word instruction is consistent with the SPARC [11].

Fetch stage Decode stage Execute stage Write-Back stage

Il
1 1

Request Memory Release
Memory Granted Bus

Reserve
Bus

Figure 4.1 Timing example of a bus arbitration for the load-word instruction

Based on the aforementioned assumptions, the following operations must be atomic: Access to

synchronization counters and access to the LCV. The SWAP operation and enabling idle frames are other

sources of potential problems in the area of interprocessor communication. The following subsections will

discuss in detail each of these operations.

22

4.1 Access to Synchronization Counters

The TLO instructions that access synchronization counters are synchronizing FORKs and POSTs.

Since SWITCH is a conditional FORK, we do not mention it further. The parts of the SPARC assembly

code for FORK and POST that access synchronization counters are shown below (for the complete codes

see Appendices A.1 and A.4).

FORK (cycles) POST (cycles)
ldb sync[fp],tmpl (2) ldb sync[ifp],tmpl (2)

subcc tmp1,1,tmpl (1) subcc tmpl, 1, tmpl (1)

bnz, a continue (1 or 2) bnz, a continue (1 or 2)
(or cdbp thr_addr) (2 or 3) stb tmpl, sync [ifp] (3)
stb tmpl, sync [fp] (3)

Both sequences start by loading a synchronization counter from the frame and decrementing it.

If the decremented synchronization counter is not zero, it is stored back using the delay slot and the next

TLO instruction at continue executes. If the synchronization counter is zero, POST will push the

thread onto the LCV (if fp=i fp) or onto the RCV (if fpxi fp), while FORK will either branch to the

thread at thr_addr or push the thread onto the LCV'.

Atomicity problem due to the access of a synchronization counter will occur only, if both the

Main-processor and the Inlet-processor access the same synchronization counter. This means a problem

exists if one processor tries to load the counter that has just been loaded by the other processor, but has not

yet been stored back.

One way to guarantee atomicity is to do it in software, e.g., using `Test&Set'. Most modern

processors provide atomic load/store operations required in a multiprocessor environment where variables

are shared among several processors [1O]. Although these operations can be used to implement atomic

access to synchronization counters, their generality and (cycle) cost is unnecessary in a processor node

design using an Inlet-processor. First, synchronization counters in the context of TAM are stored in the

frame which resides in the local memory. Since remote processors can access the local memory only

through the Inlet-processor in the suggested processor node design, access to synchronization counters has

to be atomic only between the Main-processor and the Inlet-processor. Second, considering the special

circumstance in which the processors interact (e.g., the TAM code for synchronization), a specific and

inexpensive hardware can be designed to minimize the overhead for accessing synchronization counters,

e.g., busy-waiting. The following example proves the benefits of a hardware solution compared to a

software solution. Using the means provided by the SPARC, one of the cheapest ways for a software

solution would be the following code (e.g., for POST):

For details on when FORK branches to a thread or when it pushes a thread, see 2.3.4. For an explanation of cdbp, see 3.2.

23

start: ldstub sync [fp] , tmpl (4) ; atomically: tmp14-sync [fp] , then
sync [fp] 4-FFhe, (lock)

cmp tmpl, FFhe, (1) ; was sync [fp] locked?
be start (1 or 2) ; if sync [fp] locked, branch to start, else

continue synchronization
s ub cc tmp 1, 1, tmp1 (1) ; decrement synchronization counter
bnz, a continue (1 or 2); if not zero, execute delay slot and branch
s tb tmp1, sync [fp] (3) ; store back decremented synchronization counter

Compared to the original code for either POST. or FORK, this atomic synchronization will always

incur an additional 5 cycles for every FORK, SWITCH, and POST to a synchronizing thread. For example,

for the benchmark Gamteb, these instructions account for 28% of all TLO instructions. With a total

average cycle cost per TLO instruction of 13.6 [6], the above solution would increase the processor time by

more than 10% (5 x 0.28 / 13.6). This percentage will be even higher after the introduction of an Inlet-

processor. This is because most of the synchronization operations occur in FORKS and SWITCHes which

execute only on the Main-processor.

Based on the above discussion, a hardware solution is proposed to efficiently handle atomic

access to synchronization counters. Our design (Figure 4.2) allows one processor not accessing a

synchronization counter to continue to access the MICBus while the other processor accomplishes its

synchronization operation. The processor can even access another synchronization counter

simultaneously with only one exception, it must not access the same synchronization counter. Only in this

case, the processor has to busy-wait.

Main-
processor

SYNC OK

Bus
Arbiter

SYNC_OK

Inlet-
processor

set by lds S D SLOCK SLOCK D S set by lds

zero bit
set by stb

Address
L

t
c

CMP
L

HComparator 14_
t
c

Address4------­

OR
zero bit

let by stb

Figure 4.2 A design for atomic access to synchronization counters

24

The Bus Arbiter allows only one of the processors to access the MICBus. Whenever this

processor wants to access a synchronization counter, it puts the address of the synchronization counter on

the address bus. It also sets the S(ync)LOCK signal that is slightly delayed, so that the address can be

held by the appropriate edge-triggered latch. To ensure atomicity, the SLOCK signal remains set until the

synchronization counter is loaded, decremented and is either zero or stored back.

In order to set SLOCK, a new instruction is proposed that uses the existing control logic for the

common load-byte instruction (1db). This instruction, called 1 dsload synchronization counter, is

similar to 1db but additionally clears the zero bit and then sets SLOCK at the beginning of its bus access.

The zero bit must also be reset because it might have been set by previous instructions. SLOCK is then

reset whenever the zero bit is set (i.e., successful synchronization) or the s tb instruction completes (i.e.,

failed synchronization). The comparator basically detects if the same synchronization counter is being

accessed by both processors. Since both addresses are latched as long as SLOCK remains set, the

comparator detects conflicts during the entire synchronization operation. On the other hand, if the

addresses are not equal, the CMP signal remains zero and thus SYNC_OK remains one.

If SYNC_OK is zero, the processor that is just beginning its bus access must stall until the other

processor has reset SLOCK to zero which in turn causes SYNC_OK to be set to one. SYNC_OK becomes

only zero, if CMP is one and both SLOCK are one. Including SLOCK in the NAND condition is

important, since CMP might unintentionally stay one. This is because the latch is edge-triggered, i.e., the

latch holds the last address latched (even after SLOCK is reset to zero) until a new address is latched.

Except for the rare case when both processors access the same synchronization counter

simultaneously (the average entry count for Gamteb is only 2.5 (6j), our design basically reduces the

problem of atomicity to a problem of bus contention. Thus, whenever one processor accesses a

synchronization counter, the bus penalty for the other processor is simply one cycle due to the data load of

the ids instruction plus, if the synchronization fails, another two cycles for the data store of the s tb

instruction. Finally, the overhead is also reduced by simplifying it to a bus contention problem.

4.2 Access and Representation of LCV

Conceptually, having both processors access the LCV simultaneously creates two atomicity

problems. First, each push/pop on/from the LCV by the Main-processor potentially interferes with a push

onto the LCV by the Inlet-processor (i.e., POST-FORK interference). Second, a SWAP on the Main-

processor can execute during a POST on the Inlet-processor (i.e., POST-SWAP interference). If the POST

is to a terminating, yet still running frame, it might push a thread onto the just emptied LCV. Or, if the

POST is to the next ready frame, this could cause a problem that a thread is posted in the just emptied

RCV before SWAP could update rcv. In both cases the posted thread will be lost

25

4.2.1 POST-FORK Interference

Since the LCV and the RCV (i.e., the continuation vector that is about to become the LCV) are

actually in different memory locations, it is possible to alleviate the POST-FORK interference entirely and

simplify the design by having FORKS push threads only on the LCV and POSTS push threads on the RCV.

There are two possible implementations when POSTS push threads onto the frame's RCV (when fp=i fp)

instead of onto the LCV. First is to check at the end of the current quantum, if any new threads have been

posted in the RCV. In this case, the threads in the RCV are copied onto the LCV and the current frame

continues. The second possibility is to schedule these threads during the next quantum. However, both

methods will degrade performance because more than 50% of all threads posted (Gamteb) are for the

currently running activation [8] and 14%-32% of all threads are enabled by POSTs during the execution

of a quantum [6].

The first method would roughly double the amount of leave-threads and thus SWAPS executed.

This is because an additional SWAP would have to be executed as soon as one thread is posted during the

execution of a quantum. On the average, more than one thread is posted during a quantum [6]. Thus, at

least one additional SWAP will be executed in each quantum. For example, consider the benchmark QS

where SWAPS account for 0.53% of all TLO instructions at a cost of 26 cycles per SWAP and an overall

average of 15.1 cycles per TLO instruction (CPT)'. This would increase the overall CPT by about 1% (an

additional 0.53% SWAPS x 26 cycles per SWAP). In a system with an Inlet-processor and a workload

distribution of ideally 50/50, the relative increase in Main-processor time would be almost 2% (since all

SWAPs execute on the Main-processor). However, the 2% increase represents the most optimistic case.

The actual penalty would be higher. This is because many threads that are no longer posted during the

original quantum would have forked other threads. Consequently, these forked threads would have to be

scheduled later and thereby the average quantum size would decrease. Thus, the actual cost increase on

the Main-processor will be more than 2%.

The second method would also shorten the quanta, this time about 14%-32%, and thereby

increasing the number of SWAPs by 16%-47%. A more serious effect on the performance is the decrease

of locality since the current frame might not be directly re-scheduled next.

To eliminate the aforementioned overhead, the LCV is implemented as a double-ended stack (see

Section 3.2), where the Inlet-processor always appends thread pointers to the LCV bottom (if f p=i fp),

while the Main-processor pushes/pops them on/from the LCV top. The advantage of the double-ended

stack is the two processors do not have to share the pointer to the LCV (icy).

As mentioned in Section 3.2, one problem with the double-ended stack is whenever a thread

pointer is pushed onto the bottom of the stack, it must be inserted between the leave-thread pointer (1 tp)

These numbers are based on a system without an Inlet-processor. However, this does not invalidate the following argumentation.

26

and the last thread pointer. This operation requires four additional cycles for each POST compared to the

original single-ended stack used by TAM. To eliminate this additional cost, the proposed idea is to keep

the leave-thread pointer (ltp) in a Main-processor register, called r_ltp, rather than at the bottom of

the stack. 'ltp' is moved into the r_ntp rather than popping another (non-existent) thread from the

LCV as soon as 1 cv (in the Main-processor) and lcvend (in the Inlet-processor) are equal. Then, the

cdbp instruction schedules r_ntp. Figure 4.3 illustrates the modified, double-ended stack for the LCV.

leave-thread pointer (ltp) ptr. to LCV bottom (lcvend)

last thread pointer
a.

second thread pointer

4- pointer to LCV top (Icy)

Main-processor Registers Inlet-processor Registers

next thread pointer (ntp) r_ntp lcvend

ltp r_ltp

lcv

Figure 4.3 Modified representation of the LCV as a double-ended stack

The representation of the LCV as a double-ended stack eliminates the atomicity problem between

FORKs and POSTS; therefore, the only overhead resulting from this implementation is the bus contention

(which exists anyway because a bus is shared among processors). For the Main-processor, this cost

depends on whether POST on the Inlet-processor is to an idle (7 cycles), a ready (5 cycles), or a running

(2 cycles) frame, since the number of frame accesses required differs depending on the frame's state.

These costs represent only the time actually spent on the MICBus to load and store data since the Inlet-

processor fetches its instructions over a separate bus from the Inlet Instruction Cache. The cycle costs can

be confirmed by referring to the detailed SPARC code for POST in Appendix A.4.

27

4.2.2 POST-SWAP interference

SWAP occurs only in the leave-thread. Thus, it is initiated only when the LCV becomes empty,

which is indicated by the fact that 1 cv equals 1 cvend as mentioned in Section 4.2.1. The two basic

possibilities to determine if 1 cv is equal to 1 cvend is either through software or through hardware. A

software solution has the following disadvantages: First, a software compare would significantly increase

the control cost because one additional cycle must be executed for each FORK or swI TcH combined with

a STOP at the end of a thread (except for failed synchronization in FORKS and SWITCHes where 1 cv is

not adjusted). Second, the Main-processor would have to load 1 cvend from the Inlet-processor which

would cost both processors at least another additional cycle. Third, an additional atomicity problem

would be created - not in the cache, but between the processor registers.

Therefore, a hardwired compare is chosen rather than a software compare (Figure 4.4). The

comparison sets a control bit as soon as 1 cv and lcvend are equal. Since this control bit indicates that

the LCV is empty, it is called the stack-empty bit - STEM.

icy I Comparator lcvend

Main-processor Inlet-processor

STEM

Figure 4.4 Simple, hardwired comparison of 1 cv and 1 cvend

There is a disadvantage of having a directly connected, hardwired compare. It requires a 16-bit

bus between the processors. This is unacceptable for two reasons. First, 16 additional ports would be

needed for both processors which contradicts our objective to keep the changes to the original processor to

a minimum On top of this, the bus' sole purpose would be the comparison of only two registers. The

usefulness of this bus simply does not justify the amount of hardware and adjustments needed to

implement it.

To circumvent this problem a scheme is proposed that minimizes the change needed to the

original SPARC (see Figure 4.5). It is assumed the Inlet-processor loads both 1 cv and 1 cvend into

registers during the SWAP operation. In order to ensure coherence between the two 1 cvs, the Inlet-

processor is not allowed to access 1 cv at all. Instead, both 1 cvs are controlled only by the Main-

processor by means of two control linesINCLCV and DECLCV. This is done by having a 16-bit adder

in the Inlet-processor with the sole purpose of incrementing or decrementing 1 cv. Thus, whenever 1 ay

28

in the Main-processor is incremented or decremented, 1cv in the Inlet-processor is also incremented or

decremented during the same cycle. This allows both 1 cvs to appear entirely identical to both software as

well as hardware. INCLCV is set, if the decoded instruction is cdbp (used to pop threads) and the

decremented synchronization counter is not zero. DECLCV is set, if std (used to push threads) is

decoded and it addresses 1 cv. Figure 4.6 illustrates the logic needed for both control lines.

1cv cv

l Comparator H icvend

pop thread INCLCV(+)
Adder STEM

push thread DECLCV(-)
1

cdbp: pop ltp? STEM

Main-processor Inlet-processor

Figure 4.5 Optimized scheme for hardware comparison of 1 cv and 1 cvend

opcode cdbp opcode std
INCLCV DECLCV

zero bit = 0

Figure 4.6 Decoding of condition for INCLCV and DECLCV

Both control lines are asserted during the execute cycle because the STEM signal must be

available for the Main-processor at the end of the execute cycle of a 1 cv update. For successful

synchronization, this cycle is execute stage 2 of the cdbp instruction (see Table 3.1). This is because

execute stage 3 of cdbp must know if the LCV was emptied in the previous cycle. If the LCV is empty,

the leave-thread pointer (ltp) is moved from r_l tp into r_ntp during execute stage 3. This allows the

leave-thread to be scheduled next whenever 1cv equals 1 cvend. If STEM is zero, cdbp pops a thread

pointer from the LCV as discussed in Section 3.1.

As long as the Inlet-processor is not posting a thread, the leave-thread executes a SWAP and

begins the process of switching to the next enabled activation. However, a problem occurs if an inlet posts

29

a thread to the currently running frame (fp=i fp) when 1 cv and lcvend are equal. SWAP might switch

to the next frame although POST has just pushed a new thread pointer onto the LCV. This thread pointer

will be lost. Even if POST is not for the currently running frame, it might be for the next frame to which

the Main-processor wants to swap. Thus, if SWAP starts after POST pushed the tread pointer onto the

LCV, but before POST could store back the adjusted pointer to the RCV top (r cv), then this thread

pointer will also be lost.

The following four paragraphs will discuss in detail this interference. They are not essential for

the understanding of the later proposal and thus the reader might skip them for a first reading. Two

assumptions are made as a basis for the following explanations. First, the Main-processor can write to

Inlet-processor registers within one cycle by means of the movi instruction (move to Inlet-processor).

The Inlet-processor is stalled for one cycle during this operation. The movi instruction is proposed and

explained in Section 4.3. Second, the first instruction of the SWAP code (mov queue, fp) in the decode

stage causes the Inlet-processor to initiate the execution of the same instruction simultaneously (refer to

Appendix A.3 for the code of SWAP). This assumption is important, because this instruction changes fp

in both processors. Finally, note that both processors share the MICBus for data, but the Main-processor

also fetches its instructions over the MICBus. Also note that the Bus Arbiter grants the bus to the

processor that did not have it for the longest time.

As already mentioned before, the Main-processor moves 1 tp from r_l tp into r_ntp when the

stack is empty (STEM=1), so that the leave-thread will be executed next. The essential instruction in

every leave-thread is SWAP. SWAP accomplishes the entire process of switching to the next frame.

Basically, it invalidates the current frame pointer (fp), sets up the new fp, loads some important pointers

related to the new frame, and finally copies the new frame's RCV onto the LCV.

For the first interference, consider the concurrent execution of SWAP and POST with the

following timing. Only the crucial parts of code are listed below:

cycle SWAP (on Main-processor) POST (on Inlet-processor)
cmp fp , i fp

i+1 mov queue, fp set LthrLcbbase, tmp2
i+2 ld Fqueue [fp] , queue * Stall due to 'mov queue, fp' *
i+3 movi queueM, queuerl be is running
i+5 ld Fcbbase [fp] , cbbase sth tmp2, [lcvend]

add lcvend, 2, lcvend

copy RCVonto LCV (done)

POST first determines the thread is for the running frame (i f p= f p). Then, it calculates the relative

thread pointer (tmp2) and branches to the code for the case `is running'. Finally, the thread pointer is

pushed onto the LCV bottom and lcvend is incremented. SWAP first sets up the new frame pointer by

moving it from the queue register (ready-frame link) to the fp register which automatically is initiated

moves the contents of the queue register on the Main-processor into the queue register on the Inlet-processor.

30

in the Inlet-processor as well. During the following two instructions, the pointer to the next ready frame

is loaded from the ready-frame link of the new frame into queue and then moved into the corresponding

Inlet-processor register (called queue as well). Further on, SWAP will copy the new frame's RCV onto

the LCV which SWAP assumes to be empty. Thus, SWAP deletes the just newly posted thread of the

previous frame by overwriting it.

For the second type of interference, the timing of POST and SWAP starts off the same way. This

example illustrates when the inlet's frame is the same one to which the Main-processor wants to swap to

(new fp=i fp).

cycle SWAP (on Main-processor) POST (on Inlet-processor)
cmp fp, i fp

i+1 mov queue, fp set Lthr-Lcbbase, tmp2

i+2 ld Fqueue [fp] , queue *stall due to 'mov queue, fp`*
i+3 movi queuem, queuesl be isrunning

i+5 ld Fcbbase [fp] , cbbase *delay slot flushed*
i+6 *ld data Fqueue on bus* id Frcv [i fp] , tmp3

i+7 *movi data queue on bus* *receive new queue*
i+8 *ld data Fcbbase on bus* cmp tmp3, i fp

i+9 *stall because Inlet-pr. has bus* *ld data rcv on bus*
i+10 ld Frcv [fp] , tmpl std tmp2, [tmp3]

i+11 ldfd -6 [fp] ,ftmp st tmp3,Frcv[ifp]

i+12 sub lcvbase, 2, lcv bnz continue

i+13 *stall because Inlet-pr. has bus* *std data tmp2 on bus (thread ptr.)*
i+14 *Inlet-pr. still on bus* *still storing*
i+15 *ld data tmpl on bus (rcv)* *want to store tmp3, but Main-pr. has bus*
i+16 *stall because Inlet-pr. has bus* *st data tmp3 on bus (rcv)*
i+17 *Inlet-pr. still on bus* *still storing*

(continues) (continues)

This case is very similar to the first one in that SWAP updates fp right after POST compared it with i fp

(i.e., again POST compares the wrong fp). Yet this time, POST determines initially, that it is not for the

running frame (i.e., fp*i fp). Thus, it does not branch to `is running', although, in fact, the frame is

running, because SWAP is in the process of switching to it (i.e., new fp=i fp). POST then pushes the

thread pointer onto the running frame's RCV (cycles i+13/14) and finally wants to store back the adjusted

rcv (cycles i+16/17). But here is the problem: SWAP has already read rcv before (cycle i+15). Thus,

the newly pushed thread pointer is lost.

By comparison, the implication of both these cases are the same. Clearly, no thread pointer must

be lost. Therefore, SWAP must stall the Inlet-processor in order to prevent it from executing a new POST

(e.g. due to the subsequent arrival of a message) until SWAP itself has terminated. Additionally, SWAP

needs to wait until any POST has terminated. In other words, whenever SWAP starts executing while a

POST is in process on the Inlet-processor, the Main-processor must be put in a wait state. Therefore, a

I moves the contents of the queue register on the Main-processor into the queue register on the Inlet-processor.

31

control signal WAIT is used to inform the Main-processor whether or not the Inlet-processor is executing

a POST.

On the other hand, when no POST is executing or as soon as POST has terminated (WAIT=9),

SWAP asserts the HOLD signal which irreversibly terminates the current activation and stalls the Inlet-

processor thus prohibiting it from executing any inlets. Figure 4.7 shows the final design for the POST­

SWAP interference.

lcv cv

Comparator lcvend

pop thread INCLCV(+)

Adder STEM

push thread DECLCV(-)

cdbp: pop ltp?
STEM

condition code
for cbs WAIT S cmp fp, ifp (i.e. POST start)

R next (i.e.
POST done)

cbs + S D HOLD stall the Inlet-processor
cdbp R

Main-processor Inlet-processor

Figure 4.7 Final design for POST-SWAP interference including all control lines

The WAIT signal is only set during the part of the POST sequence which must execute without

interfering with SWAP. This part starts with a test to see if the message is for the currently running frame

(i.e., cmp fp, ifp), and ends after either a thread pointer has been posted in the LCV or the RCV or a

new frame has been queued as a result of posting to the RCV. WAIT is reset by the next instruction,

which only exists in the inlet code. As illustrated in Section 2.2.2, inlets always end with a STOP. But in

contrast to the normal STOP needed in a system with uniprocessor nodes (see Appendix A.2), the STOP

on the Inlet-processor does not return to thread execution after an inlet. Instead, it dispatches to the next

inlet or waits until a new message has arrived. Thus, a TLO-s OP on the Inlet-processor is simply

translated to next.

32

As illustrated by the first atomicity problem described above, it is possible that POST pushes a

new thread onto the LCV while SWAP wants to switch to the next frame in the ready queue. Atomicity

between the two instructions is now guaranteed by the fact that SWAP is stalled by WAIT while a POST is

executing. But clearly, the newly posted thread must be allowed to execute since it may fork other

threads. Therefore, SWAP must check if the LCV is still empty (i.e., STEM=1), before it changes fp and

continues to switch to the next activation. If STEM has become zero, SWAP must terminate and load the

newly posted thread pointer into r_ntp. Then the execution continues from the new thread which

simply means the former fp stays valid and thread execution continues as usual. An example for the

aforementioned case is illustrated in Figure 4.8.

Mainprocessor Inletprocessor

cdbp increments 1 cv to pop thread pointer = 1

------- *from LCV. Since stack is empty, last --- 1 cv =1 cvend

computational-thread starts executing and STEM = 1
ltp is moved form r_1 tp into r_ntp.

thread execution
Message with ifp = fp arrives

and inlet starts executing.

inlet execution

Last comp.-thread is done. Since r_ntp holds Inlet posts a thread in LCV.
ltp, leave-thread starts executing. gince inlet is Thus 1 cv x lcvend.

executing, WAIT stalls Mainprocessor.

stalled -

.

STEM = 0
inlet execution

. Inlet is done.

WAIT =O
Since stack is not empty anymore, terminate

leave-thread and execute newly posted thread.

Figure 4.8 Timing example for arrival of new inlet for terminating frame

Unfortunately, SWAP is not always the only TLO instruction in the leave-thread. Sometimes,

registers might have to be saved before. This is why it is not reasonable to let SWAP check STEM and

WAIT because it might turn out that the leave-thread cannot continue and must be terminated after all.

Therefore, a new TLO instruction CHECK is proposed to accomplish the aforementioned task. It is always

the first instruction in a leave-thread. CHECK must examine both STEM and WAIT, and take different

actions depending on their conditions. Table 4.1 specifies the four possible cases.

33

In order to map CHECK onto the SPARC, a new conditional assembly instruction, cbs ­

conditional branch and stall, is proposed. The two control lines STEM and WAIT are used as the

condition code. Within format2 of the SPARC8 instructions (op-*.)) op2=5 has not yet been

implemented [10], so it can be used for this purpose. The cbs instruction basically uses the existing logic

for a conditional branch, except that it has the additional capability to stall the Main-processor, and it

takes its branch condition information from STEM and WAIT. The mapping of CHECK on the SPARC is

as follows:

CHECK

cbs, a stop (1 or 2) ; branch to stop' or continue with leave-thread (thus SWAP)
lduh [icy] , r_ntp (2) ; use delay slot to pop newly posted thread into rntp

Therefore, CHECK takes either 2 cycles, if the leave-thread continues, or 3 cycles (plus 4 cycles

for STOP), if the leave-thread is terminated.

WAIT = 0 WAIT = I
STEM = 0 Case 1 Case 2

The LCV is no longer empty and there The LCV is no longer empty and there is
is no inlet trying to post a thread. an inlet trying to post a thread.

Action Action
Terminate the leave-thread and continue Same as in the cases STEM=WAIT=3.
with the current activation by moving
the posted thread into rn tp and
executing the cdbp instruction.

STEM = 1 Case 3 Case 4
The LCV is empty and there is no inlet The LCV is empty but there is an inlet
trying to post a thread. trying to post a thread.

Action Action
Assert HOLD and continue with the Stall until WAIT is deasserted then go to
leave-thread. either Case 1 or Case 3.

Table 4.1 Condition codes for the cbs instruction on the Main-processor

4.3 The SWAP Operation

Although the proposed hardware solution guarantees atomic execution of POST and SWAP, some

questions remain about the SWAP operation itself. In the previous Sections it was mentioned that certain

values are assumed to be resident in both processors. These values are fp, icy, and queue. This

requires that these values are actually loaded into both processors during the execution ofSWAP.

The assembly code at `stop' is the TL O STOP.

34

Based on this, a hardware is required that makes the Main-processor capable of directly loading

data into the Inlet-processor registers. This is a problem because the Inlet- processor is not a slave of the

Main-processor. Additionally, the SPARC9 does not provide coprocessor instructions anymore [12] as

opposed to the SPARC8 [10]. In order to solve this problem, a new instruction is proposed for the Main-

processor which copies data from a Main-processor register into an Inlet-processor register, movi - move

to Inlet-processor with the syntax:

movi regM, regi ; regx (in Inlet-processor)4-regM (in Main-processor), 1 cycle

This instruction uses the existing hardware of the mov instruction'. Additionally, it sets a 'move to Inlet-

processor' control line (MOV1P) indicating to the Inlet-processor that the Main-processor wants to write

an Inlet-processor register. There will not be any interference with the execution of the Inlet-processor

instructions since the Inlet-processor will be stalled a during a SWAP anyway. Figure 4.9 shows the

hardware required for movi.

RegDestl Register RegDestl Register
File File

RegDest2 RegDest2 M

extended register address bus

MOVIP
opcode movi

Main-processor Inlet-processor

Figure 4.9 Hardware required for the movi instruction

The Main-processor reads regM (RegDst1). The 5-bit bus addressing RegDst2 is extended to the

Inlet-processor. Whenever MOVIP is set, the Inlet-processor writes back the data from the MICBus into

the register addressed by the extended register address bus (.regI)- If there is no Inlet-processor, movi has

no effect.

`movi' is executed two times during a SWAP operation. First, to ensure coherence of fp

between the processors and second, to initialize 1 cv in the Inlet-processor. The complete, modified

mapping for SWAP to the SPARC is listed in Appendix A.3.

I `mov' is a synthetic instruction. The actual instruction used on the SPARC8 would be o r.

35

4.4 Enabling of Idle Frames

Using an Inlet-processor causes a problem when POST wants to enable an idle frame and queue

it in the ready-frame queue. What the original PosT does is depicted in Figure 4.10. It takes the content

of queue', which points to the currently next enabled frame and stores it into the 'frame-link slot' of the

inlet's frame. Then it moves i fp into queue. Thus, after the currently running frame (Ft,,,,) has

terminated, the Main-processor will swap to the inlet's newly enabled frame (F,,) rather than to the frame,

which was originally scheduled next (F.) in the ready queue.

fPnext4 I fPnext3 fPnext 2

(queue) (queue) (queue)

Fnext3 Fnext2 F4ext

old ready queue:
(Fttnt) Fnext Fnext2 Fnext3

Itt< fp.
updated ready queue: fPin (queue)
(Fn.) Fin Fnext Fnext2 - (queue)

Frun Fin

Figure 4.10 Queuing a frame in the ready queue

Note that this method first assumes that queue resides in both processors which is no problem

due to the new movi instruction. In the Main-processor, queue is needed in order to switch to the next

activation. In the Inlet-processor, queue is needed to queue a frame in the ready-frame queue. Since the

Inlet-processor modifies queue during a queuing operation, there must be a way for it to update queue

in the Main-processor as well. Fortunately, the 5-bit register address bus already exists due to the

introduction of movi. So the only thing that needs to be done is to make this bus bi-directional and to

add one more control line from the Inlet-processor to the Main-processor, REGW - register write. Thus,

whenever the Inlet-processor needs to update queue, it sets REGW which stalls the Main-processor for

"queue' points to the next enabled frame in the ready queue. 'queue' is both the pointer itself and the register holding the pointer. This
is no problem since the register queue always holds the pointer queue.

36

one cycle and makes it write the data from the MICBus into the register indicated by the register address

bus. This does not cause any interference or atomicity problems, since the Main-processor accesses

queue only during SWAP when the Inlet-processor is stalled anyway.

4.5 Suggestion for a Processor Node Architecture

In this Section, a complete processor node design is presented based on the proposed

modifications discussed in the previous Sections (Figure 4.11). Additionally, we also propose another

modification: The Inlet-processor cache holds all Heap Data and the inlet instructions. Thus, the Main-

processor is isolated from Heap Data.

Main other I/O

Memory Devices

I
Thread Instr. + Inlet Instruction

Common Data and Heap Data

Cache Cache

MICBus

Compare y

Logic

Register Address Bus
Main- Inlet­

processor Control lines processor

Bus Network
Arbiter Interface

from/to
Network

Figure 4.11 Suggestion for a processor node architecture

37

Our motivation to place all Heap Data only in the Inlet-processor cache and to leave the Network

Interface integrated into the Inlet-processor rather than placing it on the MICBus is for the following

reasons. In the previous design (Figure 3.2), the high contention on the MICBus decreases the overall

system, performance, since it slows down the Main-processor which carries the most part of the work load

(assuming the Inlet-processor only executes inlets).

The Main-processor uses the MICBus to fetch its instructions as well as to access any data (frame

and heap). The Inlet-processor has to access the MICBus for the Common Data Cache for both frame and

heap data. Additionally, the Main-processor has to send all remote references (SEND, IFETCH, ISTORE,

etc.) over the MICBus whether the Network Interface is actually on the MICBus or it is integrated into the

Inlet-processor. The combination of allowing only the Inlet-processor to access both the Network

Interface and the heap data substantially decreases the MICBus contention.

This is because all remote memory requests arriving at the Network Interface can now be handled

by the Inlet-processor without the need to access the MICBus. Moreover, atomicity problem will no

longer exist between the Main-processor and the Inlet-processor due to simultaneous access to the same

heap element The fact that the Main-processor has to go through the Inlet-processor to access the heap is

not a problem for the following reason: The Main-processor can simply dispatch remote references and

SENDS to the Inlet-processor by using the movi instruction (see next paragraph). The Inlet-processor

holds several generic 'SEND message' handlers'. Thus, the actual execution of SENDS, IFETCHes,

I STOREs, etc. takes place in the Inlet-processor, including the decision if the destination is local or

remote2. If a message is local, the appropriate inlet is executed. Otherwise, the message is formatted and

passed along to the Network Interface. This method however increases the cost for messages due to the

required dispatch, but this drawback will be compensated by the fact that a large part of the workload is

shifted to the Inlet-processor. The Inlet-processor executes all inlets, which includes the service of and

replies to local and remote heap requests, which decreases the overall Main-processor time and thus

increases the performance.

However, there is a cost due to the Main-processor being stalled during a message dispatch

because the Inlet-processor is busy. For this reason, a short buffer in the MICBus-Inlet-processor interface

is proposed. The movi instruction writes only remote memory accesses and SENDS to the buffer. In

SWAP, znovi writes data directly to Inlet-processor registers (by-passing the buffer). This design affects

the functionality of the next instruction (see Section 4.2.2) on the Inlet-processor. All inlets terminate

by means of next, which then dispatches to the next inlet or waits for the arrival of a message. Since the

Main-processor dispatches all its messages over the MICBus into the buffer and remote messages can

simultaneously arrive at the Network Interface, next has to choose between the two, if both hold

All remote memory references are basically modified and extended forms of the SEND instruction.
2 In this design, it is not desired to optimize local messages on the Main-processor since this would cause inlets to execute on the Main-

processor which in turn would significantly degrade locality since inlet instructions are kept in the Inlet Instruction Cache.

38

messages. Clearly, priority is given to the Network Interface so that it can dispatch messages fast and

does not unnecessarily congest the network.

Another cost is the quantum size might be decreased slightly, since the computational threads

execute faster' . Thus, less responses due to remote memory references might return during the same

quantum.

To sum up, a significant performance increase can be achieved with the proposed architecture

due to the following reasons:

Any heap access is exclusively controlled by the Inlet-processor over its own cache bus

eliminating the need to go over the MICBus and thus decreasing the MICBus contention.

A substantial part of the workload of the Main-processor has been shifted to the Inlet-

processor resulting in a more balanced distribution of the workload between both processors.

The penalty to access the Network Interface has been cut down drastically since it is integrated

into the Inlet-processor.

Atomicity between the processors is guaranteed by efficient hardware solutions avoiding

substantial, additional cost of software solutions.

Note that the Main-processor is now basically isolated from all other processor nodes. It has

access to the network environment only through the Inlet-processor. At the same time, the interprocessor

communication is kept to a minimum. The Main-processor only needs to dispatch messages to the Inlet-

processor. The different storage hierarchies of TAM make it possible to separate Heap Data from

Common Data without decreasing the locality.

4.6 Changes to the SPARC

The following modifications were made to the SPARC:

A simple bus arbitration logic is used by all memory-accessing instructions (Section 4).

The 5-bit register address bus is extended off-chip to the Inlet-processor (bi-directional).

This bus also requires two new control lines, REGW and MOMP (Section 4.3 and 4.4).

Three new instructions are incorporated into ISA which to a large extent use already existing

control logic for similar instructions, so that the additional logic needed is minimal. These

instructions are:

1. lds: ldb plus sets SLOCK and, if SYNC_OK is one, it stalls (Section 4.1).

So far, inlets that were responses to remote memory references were in-lined in the computational code on the Main-processor when they
were local.

39

2. cb s : conditional branch using STEM and WAIT for condition and having the

capability to stall (Section 4.2.2).

3. movi: mov plus sets MOVIP thus using the extended register address bus

(Section 4.3).

The cdbp instruction is adjusted slightly to potentially set INCLCV. Additionally, cdbp

always resets WAIT to zero (Section 4.2.2).

Finally, the s td instruction is modified to potentially set DECLCV (Section 4.2.2).

Since the Inlet-processor is a completely independent coprocessor purely custom designed to primarily

support TAM, we were free to design and modify it arbitrarily in a reasonable manner according to our

needs.

40

5. SYSTEM IMPACT ANALYSIS

This Section analyzes the impact of the proposed processor node design (Figure 4.11) on the

average processor time' . The metric used for this analysis is average clock cycles per TLO instruction

(CPT), which is obtained by multiplying the instruction frequency of each instruction type by its cycle cost

and summing up these products. CPT can be viewed as a relative measure of the processor time because

CPT simply represents the processor time divided by the number of instructions2. The results obtained for

the modified design are compared against the average CPT on an original 64-processor CM-5 for two

benchmarks, Gamteb and Paraffins [6].

The data used for this analysis was from the results of several experiments by the TAM-group at

UC Berkeley. One source provides all information about the specific cycle costs of each instruction and

the average CPT [6]. The other source is a table of dynamic measurements of instruction mixes and is

available at a UC Berkeley FTP-site3. Combining the two sources makes it possible to compute the

average CPT for both the Main-processor and the Inlet-processor. However, since the program execution

is different each time due to TAM's dynamic nature and due to slightly different compilation policies, the

data of the two sources does not match perfectly. Therefore, the results of our computation were

normalized to the original average CPT, which will be the point of reference for all following calculations.

The following conventions are used: Original CPT stands for the total, original average CPT as indicated

in source 1. Computed contribution stands for a part of the total CPT due to a certain instruction category

as computed taking into account both sources. The computed contribution still has to be normalized by

multiplying it with a ratio of original CPT due to control instructions and computed contribution of

control instructions. This is illustrated briefly in the following example:

Source 1 indicates that all control instructions contribute 3.2 to the original CPT of 15.7.

According to the instruction frequencies of source 2 and the instruction cycle cost from

source 1, we compute a contribution to control instructions of 3.8 instead of 3.2. There

is a problem when the control instructions must be divided into the ones executing on

the Main-processor and the ones executing on the Inlet-processor, because their

computed contribution is obviously too high. This would prohibit a comparison between

the original and the modified CPT. Thus, the computed contribution of control

instructions is normalized by multiplying it with 3.2/3.8. Then, it can be compared with

the original CPT due to control instructions. The same method is applied to the other

instruction categories.

The Inlet-processor is assumed to provide the same performance as the SPARC.
2 The processor time says nothing about the execution time because it does not include processor idle times due to imbalances in the

distribution of the workload.
3 ftp.cs.berkeley.edu: /ucb/TAM/sethg/dists.tar.2

http:ftp.cs.berkeley.edu

41

Subsection 5.1 presents the overall result of the comparison. The following subsections examine

in more detail the contributions to the CPT of each instruction category. These Sections also mention the

proposed designs to access synchronization counters and for the POST-SWAP interference regarding their

effect on the processor time. Another issue examined is the new overhead introduced by interprocessor

communication and bus contention.

5.1 Results - Overview

The overall result of the comparison is presented in Table 5.1. The TLO-instruction types and

their respective percentages for both the original and the modified design are shown. For the modified

design, the workload distribution over the two processors is also shown and it includes all the effects of

the proposed designs (efficient access to synchronization counters, access and representation of the LCV,

less expensive network access, elimination of polling, and the dispatch of SENDs and heap operations to

the Inlet-processor) as well as the improvements due to the previous work (cdbp and s td instructions,

see Section 3.1). The reference point for all percentages (except for the workload) is the original CPT

(i.e., total cycle cost of a program / total number of instructions of a program). This is the reason why the

modified CPTs are so low (i.e., cycle cost on Main-processor or cycle cost on Inlet-processor / total

number of instructions of a program). Clearly, the real CPTs will not change significantly compared to

the original one, yet the presentation employed here allows for fast and easy comparison.

Gamteb, % of original processor time Paraffins, % of original processor time
original modified original modified

Main-proc. Inlet-proc. 1 Main-proc. Inlet-proc.
Overhead - 6.80% 1.10% - 7.21% 0.06%
Memory 13.97% 5.96% 8.01% 14.01% 4.67% 9.34%
Operands 8.09% 8.09% 7.64% 7.64% -
ALU 5.15% 5.15% - 1.27% 1.27% -
Messages 5.88% - 3.89% 0.64% - 0.35%
Heap 33.82% - 24.12% 49.04% - 37.20%
Control 27.21% 17.75% 6.67% 20.38% 14.20% 3.43%
Atomicity 5.88% - - 7.01% - -

Total 100.00% 43.75% 43.79% 100.00% 34.99% 50.38%
Orig'l CPT 13.6 5.95 5.96 15.7 5.49 7.91
Speedup 2.28 1.98

Workload I 100.00% 49.98% 1 50.02% I 100.00% 40.99% I 59.01%

Table 5.1 Distribution of processor time, original and modified

42

TLO instructions are divided into various categories. Overhead describes the cost incurred due to

MICBus-contention and the time needed to dispatch all message and heap instructions to the Inlet-

processor, which accounts for about 50%/20% of the overhead cost (Gamteb/Paraffins). Memory is a

result of the penalty cost from an assumed cache-miss rate of 5%. Operands also assumes a 5% cache-

miss rate for bringing operands into the ALU. ALU simply represents the time spent executing arithmetic

and logic instructions. Messages depict the cost of all explicit SEND and RECEIVE instructions. Heap

combines all heap related costs, such as allocation and heap accesses (such as fetching and storing heap-

elements). Control reflects the time spent for all thread scheduling instructions, such as FORK and POST.

Finally, atomicity represents the cost of polling. In the modified design, polling is no longer required

since the Network Interface is integrated into the Inlet-processor' . As can be seen, the largest

improvement comes from heap, control and messages as well as from the elimination of the overhead

atomicity (polling). In the following Sections, the results for control, messages, heap, overhead and

memory are discussed in more detail.

5.2 Distribution of Control Time

Table 5.2 shows the distribution of control instructions between the two processors. The

instructions are divided into the ones executing only on the Main-processor and POST which executes

only on the Inlet-processor. The improvement in cycle costs for FORK, SWITCH, and STOP is due to

cdbp and std assembly instructions (see Section 3.1). The new CHECK instruction, which performs a

conditional test on the WAIT and STEM signals, slightly adds to the cycle cost for the proposed design.

The modifications to the SWAP instruction, which were necessary due to the SWAP-POST interference also

slightly increase the cycle cost.

The double-ended representation of the LCV improves the performance because it avoids

additional software cost for atomic accesses to the LCV for two reasons. First, the double-ended nature of

the LCV avoids the POST-FORK interference altogether as far as pushing/popping thread pointers is

concerned. Second, the coherence problem of having two identical 1 c vs is solved completely by the

proposed design (see Section 4.2.2). The atomicity problem of having shared synchronization counters

between the processors has been eliminated by the proposed synchronization hardware (see Section 4.1).

Basically, the atomicity problem has been reduced to a problem of bus contention. This is true because the

design allows the processors to access the bus each cycle. The only exception is when they access the

same address in the same cycle. The probability of this is virtually zero. Since this cost can be viewed as

a problem of bus contention, it is included in the overhead (see Section 5.4).

It is assumed that the Network Interface simply sets an appropriate control signal when a message arrives. The Inlet-processor receives
the message as soon as the current inlet has completed. One study shows that accessing the Network Interface (NI) can be as cheap as
writing or reading a register, provided the NI is integrated into the processor [13].

43

Main-processor Gamteb Paraffins
cycle cost

original modified
FORK

fall through 0 0
unsynchronizing branch 1 1

synchr. branch - successf. 4 5

- failed' 13 9

unsynchronizing push 5 4
synchr. push - successful 10 9

- failed 7 7
SWITCH

unsynchronizing branch 3 3

synchr. branch - successf. 6 7

- failed' 15 11

unsynchronizing push 7 6
synchr. push - successful 12 11

- failed 9 9
SWAP

basic 26 31
per extra 4 threads2 12 12

STOP 5 4
SINIT 4 4
CHECK

continued 2
terminated (plus STOP) 7

computed contribution (on Main-processor)

Inlet-processor
POSTS without cost for synch.

to idle frame 18 17

to ready frame 14 13

to running frame 7 7
POST, only cost for synchr.

failed 7 7

successful. 5 5

computed contribution (Inlet-processor)
total computed contribution due to control instructions
original CPT
original CPT due to control instructions
normalized CPT on Main-proc. due to control instr.

% of original CPT
normalized CPT on Inlet-proc. due to control instr.

% of original CPT

in % of TLO-instr.
original modifiedI

1.11%
0.91%
2.34%
6.14%
0.04%
4.70%
3.73%

1.48%
1.28%
2.26%
1.54%
0.54%
2.20%

0.39%
0.17%
2.49%
1.74%

0.39%
0.05%

2.78 2.42

1.63%
0.98%
2.61%

2.74%

2.52%

0.93 0.91

3.71 3.33
13.6
3.7

3.7 2.41

27.21% 17.75%

0.91
6.67%

in % of TLO-instr.
original I modified

1.58%
3.86%
2.95%
10.97%
0.00%
2.85%
5.19%

2.87%
0.13%
0.11%
5.44%
0.00%
0.00%

0.04%
0.00%
2.85%
8.42%

0.04%
0.01%

3.21 2.69

0.13%
0.04%
5.84%

1.13%
2.67%

0.65 0.65

3.86 3.34
15.7
3.2

3.2 2.23

20.38% 14.20%

0.54

3.43%

Table 5.2 Distribution of control time on Main-processor and on Inlet-processor

The original cycle costs for failed synchronizing branches include the cost of the following STOP required. However, STOP is not needed
anymore in the modified design due to the cdbp instruction.

2 The cost for extra threads is an approximate value. The exact cycle count would be 2+Nx11.
3 The SPARC mapping of synchronizing POSTs is identical with the one for unsynchronizing POSTs except for some additional

instructions needed for synchronization (see Appendix A.4). Therefore, all POSTS that actually post a thread, i.e. all unsynchronizing
and successful synchronizing ones, can be combined for the purpose of this computation. Then the cost for the sequence handling the
synchronization can be computed separately.

44

To sum up, the effect of the proposed interface design is simply that there is no new overhead

cost due to atomicity or coherency despite the fact that both processors have to share common data.

As can be seen, the proposed modifications lead to 73/27 and 81/19 distributions of the workload

due to control instructions for Gamteb and Paraffins, respectively. The total control overhead has been

reduced by 10%/13% (Gamteb/Paraffins) The control overhead on the Inlet-processor has also been

slightly reduced by 2% for Gamteb. The proposed std instruction saves one cycle for each POST to a

ready or idle frame except for failed synchronizing POSTS.

5.3 Messages

Messages consist of the cost due to two TLO instructions: SEND and RECEIVE. Nevertheless, in

order to find out the time spent on messages for each processor, replies have to be distinguished from

SENDs, because SENDS originate only in the Main-processor whereas replies occur only on the Inlet-

processor. Thus, Table 5.3 divides the messages cost into three main contributors.

Local SENDS are optimized on a uniprocessor system. Thus, local RECEIVES are much cheaper

since the data is already in the processor registers and it does not have to be loaded from the Network

Interface. However, the data still has to be stored in the frame, which accounts for 3 cycles per word

(worst case).

Table 5.3 indicates that the total time spent on messages has been decreased 25%/30%

(Gamteb/Paraffms) although there is additional overhead due to the required dispatching of all SENDS

from the Main-processor to the Inlet-processor. This improvement is achieved through a significant cost

reduction in order to access the Network Interface. Instead of 8 cycles needed to load/store a doubleword

from/into the Network Interface, it is now 2 cycles for moving two words into/from a Network Interface

register from/into an Inlet-processor register. Thus, all remote overhead, which includes pushing the two

words fp and ip, is reduced by 6 cycles. Similarly, each remote push/pop word is reduced by 3 cycles'.

To dispatch a SEND, the Main-processor moves one word for the instruction type (here "SEND'),

two words for the destination (f p, ip), and one to three words of arguments to the Inlet-processor. This

operation accounts for a 3 cycle-cost for the overhead and a cost of 1 cycle per argument. Since

dispatching requires additional cost due to interprocessor communication, it is included in overhead

instead of in messages (see Table 5.1 and 5.5). One example for a SEND instruction is:

SEND pfslotl.pf[0.i/FIB.pc] < iregO.i

The argument to be sent resides in register i r eg0 . 0 . i/ FIB . pc' points to inlet0 of the code-block

FIB. Finally, the register pfslotl .pf holds the frame pointer of the code-block FIB.

' The cycle cost for the overhead of local RECEIVEs is estimated since accurate data was not available. It is obtained by subtracting 8
from the overhead for remote RECEIVEs taking into account that fp and i p are already in registers, so that one load-doubleword from
the NI is spared.

http:pfslotl.pf[0.i/FIB.pc

45

cycle cost Gamteb Paraffins
orig. modified in % of TLO-instr. in % of TLO-instr.

Main. Inlet. original modified original modifiedI I

SEND

local - overhead 4 3 4 1.10% 0.01%

- push one word 1 1 1 1.10% 0.01%

remote - overhead 25 3 19 2.15% 0.11%

- push one word 4 1 1 2.16% 0.15%

Reply (SEND)

local - overhead 4 - 4 0.13% 0.00%

- push one word 1 - 1 0.26% 0.01%

remote - overhead 25 - 19 0.26% 0.04%

- push one word 4 - 1 0.51% 0.11%
RECEIVE

local - overhead 5 - 5 1.36% 0.01%

- push one word 3 - 3 1.36% 0.02%

remote - overhead 13 - 7 2.67% 0.19%

- push one word 6 - 3 2.67% 0.26%

computed contribution (on Main-processor) 1.39 0.13 0.09 0.01
computed contribution (on Inlet-processor) - 0.92 - 0.05

total computed contribution due to messages 1.39 1.05 0.09 0.06
original CPT 13.6 15.7
original CPT due to messages 0.8 0.1
normalized CPT on Main-processor due to messages 0.8 0.07 0.1 0.01

% of original CPT 5.88% 0.55% 0.64% 0.07%
normalized CPT on Inlet-processor due to messages - 0.53 - 0.06

% of original CPT - 3.89% - 0.35%

Table 5.3 Distribution of message cost on Main-processor and on Inlet-processor

5.4 Heap

The heap cost includes all time spent on allocation, control, and access of the heap. Each of the

heap operations has two parts: The first part is the request operation which is basically a SEND from an

executing thread. The second part is the service operation. For ISTOREs and IFREEs, only one

RECEIVE is part of the service whereas for IFETCHes and IALLOCs, the service operation also replies

(basically a SEND) with the requested value. This implies that another RECEIVE is needed in the inlet

that finally receives the reply.

Thus, the cycle savings for SENDs and RECEIVES discussed in Section 5.3 can be applied to all

heap messages as well. It is assumed that each SEND /RECEIVE usually has 4 words to store/load to/from

the Network Interface (NI). For each word, 3 cycles are saved (see Section 5.3). Table 5.4 summarizes

the frequency and the amount of cycles saved for each heap message. Since all heap instructions occur in

threads (which execute on the Main-processor), they all must be dispatched to the Inlet-processor. A

46

general. 5-cycle penalty is assumed for each dispatch. This is reasonable since one word must indicate the

instruction type, two words the destination and another two words contain either the return address or the

data (heap elements are 64-bit wide).

There are no cycles saved for local heap operations since they do not access the Network

Interface. The overall reduction of the time spent on heap operations is 22%/14% (Gamteb/Paraffins),

which is enormous. Due to the high percentage of heap instructions, the effect on the original CPT even

without an Inlet-processor would be 7%. This illustrates the benefits of bringing the Network Interface

closer to the processor and thus avoiding many expensive uncached loads and stores.

Since the exact mappings of the heap operations are not available, the numbers in the following

table cannot be normalized which might slightly increase the error of this analysis. On the other hand, a

3 cycle saving for each word pushed/popped to/from the NI is a conservative estimate, since for all single-

word load/stores from/to the NI 6 cycles are saved which has not been considered':

cycles for cycle
dispatch savings Gamteb Paraffins
(Mainp.) (Inletpr.) in % of TLO-instr. in % of TLO-instr.

IFETCH

local 5 0 0.95% 0.38%

remote (2 SENDS, 2 RECEIVEs) 5 -48 2.66% 3.88%

I STORE

local 5 0 2.16% 8.67%

remote (1 SEND, 1 RECEIVE) 5 -24 0.02% 0.00%

IALLOC

local 5 0 0.31% 2.68%

remote (2 SENDs, 2 RECEIVEs) 5 -48 0.0% 0.00%

IFREE

local 5 0 0.16% 0.00%

remote (1 SEND, 1 RECEIVE) 5 -24 0.15% 0.00%

additional contribution to CPT (Main-processor) 0.32 0.78

reduction of contribution to CPT (Inlet-processor) -1.32 -1.86

overall effect on original CPT -1.00 -1.08

original CPT 13.6 15.7

original CPT due to heap instructions 4.6 7.7

original modifd. original modifd.
CPT on Main-processor due to heap instructions 4.60 0.32 7.70 0.78

% of original CPT 33.82% 2.35% 49.04% 4.97%
CPT on Inlet-processor due to heap instructions - 3.28 - 5.84

% of original CPT - 24.12% - 37.20%

Table 5.4 Distribution of heap cost on Main-processor and on Inlet-processor

1 It takes 7 cycles to load/store a single word from/to the NI, whereas the load/store doubleword from/to the NI takes 8 cycles.

47

5.5 Overhead

Overhead contains all the costs incurred specifically due to the introduction of the Inlet ­

processor'. These costs include the extra dispatch time required for messages (see Section 5.3) and heap

operations (see Section 5.4) by the Main-processor and stalls caused by both processors due to MICBus

contention and POST-SWAP interference. Table 5.5 shows the breakdown of the overhead for the Main-

processor.

The cost for POST and RECEIVE include only the cycles when the Inlet-processor is actually on

the MICBus. If POST has already started, CHECK always waits for it to finish. The penalty for this

operation can be computed by multiplying the frequency of CHECK (see Table 5.5) with the average

number of cycles spent on POST without the cost for synchronization when WAIT is set. This average

number varies from benchmark to benchmark depending on the number of POS Ts to idle, ready, or

running frames. In reality, the cost will be less since SWAP will not always occur at the beginning of a

POST. There is also an overhead cost for the Inlet-processor since it has to stall while the Main-processor

is executing a SWAP. The first instruction of the common leave thread is always CHECK2 potentially

followed by register-saves and finally followed by SWAP. Thus, the Inlet-processor sees at least the full

penalty of CHECK (when continued) and SWAP instructions. CHECK, when terminated, never sets HOLD,

thus it does not stall the Inlet-processor.

Main-processor cycle cost Gamteb Paraffins
in % of TLO-instr. in % of TLO-instr.

Stalls due to MICBus-accesses of Inlet-pr.
POST (without cost for synchr.)

to idle frame 7 1.63% 0.13%
to ready frame 5 0.98% 0.04%
to running frame 2 2.61% 5.84%

POST (cost for synchronization)
successful 1 2.52% 2.67%
failed 3 2.74% 1.13%

RECEIVE (local and remote) 2 7.96% 7.22%
CHECK waiting for POST to finish 11.25 / 7.26 0.44% 0.05%
contribution to CPT 0.53 0.34

% of original CPT 3.90% 2.17%
other overhead in % of original CPT

message-dispatch cost (see 5.3) 2.35% 4.97%
heap-dispatch cost (see 5.4) 0.55% 0.07%

Main-processor overhead in % of original CPT 6.80% 7.21%

Table 5.5 Overhead cost on Main-processor

Since it is a new cost, the overhead CPT cannot be normalized, so its absolute value is taken.
2 In the Seal leave thread, the CHECK instruction stands after SEND and FFREE.

48

Inlet-processor cycle cost Gamteb Paraffins
in % of TLO-instr. in % of TLO-instr.

Stalls due to CHECK
continued 2 0.3 9% 0.04%

Stalls due to SWAP
basic 31 0.39% 0.04%
per extra 4 threads 12 0.17% 0.00%

CPT due to overhead on Inlet-processor 0.15 0.01
original CPT 13.6 15.7

Inlet-processor overhead in % of original CPT 1.10% 0.06%

Table 5.6 Overhead cost on Inlet-processor

Note that it is safe to assume no additional costs exist for the Inlet-processor when the Main-

processor accesses synchronization counters or the LCV. This is because the Inlet-processor fetches

instructions from the Inlet Cache. Thus, it needs to access the MICBus only for frame data (in Common

Cache), which does not occur very often compared to the total processor time. In contrast, the Main-

processor uses the MICBus not only to access the frame, but also to fetch its instructions. Since the Bus

Arbiter gives each processor equal priority, it is highly likely that the Inlet-processor will always be

granted the bus immediately.

5.6 Memory

The memory cost considers the penalty due to a 5% cache-miss rate on general memory accesses.

The only exception are loads bringing operands into the ALU, which is indicated by operands. The

memory penalty accounts for about 14% of the original processor time for both Gamteb and Paraffins.

The time spent on each processor in the modified design is used to divide the memory cost up onto the

Main-processor and onto the Inlet-processor. Not included in this computation are operands and the part

of overhead coming from bus contention and stalls (see Section 5.5) since they do not represent memory

accesses.

49

Gamteb Paraffins
in % of original processor time in % of original processor time

Main-proc. Inlet-proc. Main-proc. Inlet-proc.
ALU 5.15% - 1.27% -
Heap 24.12% - 37.20%
Messages - 3.89% - 0.35%
Overhead 2.90% - 5.04% -
Control 17.75% 6.67% 14.20% 3.43%
% of CPT causing memory penalty,
each processor 25.80% 34.68% 20.51% 40.98%
combined % of CPT causing
memory penalty 60.48% 61.49%
relative distribution of CPT causing
memory penalty on processors 42.66% 57.34% 33.36% 66.64%
original CPT 13.6 15.7
original CPT due to mem. penalty 1.9 2.2

% of original CPT 13.97% 14.01%

distribution of CPT due to memory
penalty on processors in % of
original CPT 5.96% 8.01% 4.67% 9.34%

Table 5.7 Distribution of memory penalty on Main-processor and on Inlet-processor

50

6. CONCLUSION AND FUTURE OUTLOOK

In this thesis, some of the most fundamental problems occurring due to the interaction of the

Main-procissor and the Inlet-processor were presented and solutions to these problems were proposed.

The design to access synchronization counters and the representation of the LCV as a double-ended stack

reduce the problem of atomicity between FORK and POST to a problem of bus contention eliminating

completely the need for the programmer or compiler to use software mechanisms. These solutions

increase performance by avoiding additional cycle cost due to more expensive atomic instructions that

would be needed without hardware support for atomic memory accesses. A software solution would

increase the Main-processor's CPT by more than 10% (see Section 4.1). The design required to

guarantee atomicity between SWAP and POST also improves the performance. This is achieved by

providing hardware to solve the problem which keeps down the additional cost due to necessary processor

interaction. The alternative solution as discussed in Section 4 to post a thread pointer for the running

frame in the frame's RCV instead of the LCV would require significantly more SWAP operations thus

increasing the Main-processor workload.

The architectural proposals minimize the time penalties due to necessary processor interaction

and communication. At the same time, the additional hardware and the modifications were successfully

kept to a minimum so as not to disturb the original functionality of the SPARC. Although the

modifications are many, this does not invalidate the aforementioned argument since most of the changes

are minimal and build on already existing logic.

The need to add a bi-directional register address bus in order to enable both processors to write to

the other one's register reconfirms the basic mismatch between conventional processors and the

requirements for the interaction with a message-handling processor in the context fine-grain

multithreading. Although many processors support a coprocessor, this does not help since coprocessors

are always treated as slaves whereas the Inlet-processor must be viewed as a tightly-coupled, yet

independent and equal processor.

The analysis in Section 5 proves that an Inlet-processor to handle messages significantly reduces

the workload of the Main-processor. Under TAM, this is even more evident, since TAM' s storage

hierarchy allows the Inlet-processor to execute all heap operations as well without sacrificing locality.

The results clearly confirm that it is essential for the success of executing of fine-grain programs to bring

the Network Interface close to the processor due to the large message overhead. We chose to integrate the

Network Interface completely into the Inlet-processor rather than connecting it to the MICBus to avoid

further bus contention caused by the additional traffic of accessing the network. If the MICBus contention

could be significantly decreased by letting the Main-processor have an own instruction cache, then it

might be more attractive to have the Network Interface on the MICBus. A variation of this would be to

51

dispatch incoming messages over an extra bus to the Inlet-processor (since it is the only one receiving

messages), but to still send all outgoing messages (form both processors) to the Network Interface over the

MICBus. This approach would be similar to the conceptual node design of the *T

The analysis illustrates clearly the benefit of dispatching all messages (including heap requests)

to the Inlet-processor, which is possible since the Inlet-processor is assumed to have the same, basic

datapath as the Main-processor. This method causes the workload to be much more balanced (for Gamteb

even close to 50/50) and thus will improve the overall performance significantly.

To sum up, the two major implications of this work are: First, a separate processor to handle

messages for fine -grain parallelism improves the performance significantly by releasing the Main-

processor of a large percentage of the workload. The separate processor should provide about the same

performance and datapath as the Main-processor. However, it needs to be tailored to the special need of

the fine-grain execution model. Second, despite the necessity for minor modifications, stock processors

can be used efficiently to support fine -grain parallelism without the need to compromise their original

functionality.

The way the node design is implemented plays a decisive role in the performance and thus the

success of fine-grain multithreading. Therefore, areas of future research are to examine the use of

different node architectures and different processors in terms of their impact on the performance of fine-

grain execution models (e.g., a separate instruction cache for the Main-processor). Another challenge is

the implementation of an Inlet-processor. The question is if the design should follow conventional

processor architectures or if it would be more reasonable to follow a new approach determined by the

distinct purpose to handle messages.

52

BIBLIOGRAPHY

[1]	 R. S. Nikhil, G. M. Papadopoulos, and Arvind, "*T: A Multithreaded Massively Parallel
Architecture," Proc. 19th Annual Int'l Symp. on Computer Architecture, 1992, pp. 156-167.

[2]	 J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, San Mateo,
CA: Morgan Kaufmann Publishers, Inc., 1990.

[3]	 G. M. Papadopoulos et al., "*T: Integrated Building Blocks for Parallel Computing," Proc.
Supercomputing 93, 1993, pp. 624-635.

[4]	 K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-
Hill, Inc., 1993.

[5]	 B. Lee, A. R. Hurson, "Dataflow Architectures and Multithreading," IEEE Computer, August 1994.

[6]	 D. E. Culler et al., " TAMA Compiler-Controlled Threaded Abstract Machine," Journal of
Parallel and Distributed Computing, June 1993.

[7]	 D. E. Culler et al., "Fine-Grain Parallelism with Minimal Hardware Support A Compiler-
Controlled Threaded Abstract Machine," Proc. 4th Conf Architectural Support for
Programming Languages and Operating Systems, 1991.

[8]	 E. Spertus et al., "Evaluation of Mechanisms for Fine-Grained Parallel Programs in the I-Machine
and the CM-5," Proc. of the 20th Annual Int'l Symp. on Computer Architecture, 1993.

[9]	 S. Kotikalapoodi, "Fine-Grain Parallelism on Sequential Processors," MS thesis, Oregon State
University, September 2, 1994.

[10] SPARC International, Inc., Menlo Park, CA, The SPARC Architecture Manual Version 8,
Englewood Cliffs: Prentice Hall, Inc., 1992.

[11] B. J. Catanzaro, The SPARC Technical Papers, Springer Verlag, 1991.

[12] SPARC International, Inc., Menlo Park, CA, The SPARC Architecture Manual Version 9,
Englewood Cliffs: Prentice Hall, Inc., 1993.

[13] D. S. Henry and C. F. Joerg, "The Network Interface Chip," Computation Structures Group at MIT,
Memo 331, June 1991.

53

APPENDICES

54

A. TLO-INSTRUCTION MAPPINGS TO THE SPARC PROCESSOR

This section lists the mappings of some TLO instructions that are relevant to this work.

Specifically, these instructions are FORK (including SWITCH), STOP, SWAP, and POST. The numbers in

brackets indicate the cycle cost for each assembly instruction. Both the original mappings used in [6] and

the modified mappings are shown to illustrate the changes made.

A.1 FORK mappings

SWITCH is not listed since it is identical to the FORK mapping. The only difference is that

SWITCH has additionally a conditional branch at the beginning of the FORK code accounting for an extra

2 cycles to be added to the cost ofFORKs.

A.1.1 Original FORK mapping

Branch to an unsynchronizing thread:

ba thr addr (1) ; branch to thread address

Branch to a synchronizing thread:

1db sync[fp],tmp1 (2) ; load the synchronization counter into register tmpl
subcc tmp1,1,tmpl (1) ; decrement the synchronization counter
be thr_addr (1 or 2) ; if count zero, branch and annul stb in delay slot
stb tmp1,sync[fp] (3) ; store back the (non-zero) synchronization counter
Note that failed synchronizing branches require a STOP additionally.

Push an unsynchronizing thread:

set Lthr-cbbase,tmp2 (1) ; tmp2 gets thread pointer
sth tmp2, [icy] (3) ; push thread pointer on LCV stack
sub lcy,2,1cy (1) ; decrement the pointer to the top of the LCV (1 cv)

Push a synchronizing thread:

1db sync[fp],tmpl (2) ; load the synchronization counter into register tmpl
subcc tmp1,1,tmpl (1) ; decrement the synchronization counter
bnz, a continue (1 or 2) ; if tmpl # 0, branch and execute stb in delay slot
stb tmpl,sync[fp] (3) ; store back the (non-zero) synchronization counter

set Lthr-cbbase, tmp2 (1) ; tmp2 gets thread pointer
sth tmp2 [icy] (3) ; push thread pointer on LCV stack
sub icy, 2,1cy (1) ; decrement the pointer to the top of the LCV (1 cv)

continue:

55

A.1.2 Previous FORK mapping

This is the modified mapping according to S. Kotilcalapoodi [9]. It includes the proposed cdbp

and std instructions.

Branch to an unsynchronizing thread:

ba thr_addr (1)

Branch to a synchronizing thread:

ldb sync [fp] , tmpl (2)

subcc tmpl, 1, tmp1 (1)

cdbp thr_addr (1 or 2)
stb tmpl, sync [fp] (3)

Note that failed synchronizing branches do

Push an unsynchronizing thread:

std r_ntp, [lcv]

set Lthr-cbbase, rntp

Push a synchronizing thread:

ldb sync[fp],tmpl

subcc tmp1,1,tmp1

bnz,a continue

stb tmpl,sync[fp]

std r_ntp,[lcv]
set Lthr-cbbase,rntp

continue:

A.1.3 Final, modified FORK mapping

(3)

(1)

(2)

(1)

(1 or 2)

(3)

(3)

(1)

; branch to thread address

; load the synchronization counter into register tmpl
; decrement the synchronization counter
; if count zero, branch and annul s tb in delay slot
; store back the (non-zero) synchronization counter

not require a following STOP- anymore.

; first push existing thread pointer on LCV

; r_ntp gets new thread pointer

; load the synchronization counter into register tmpl
; decrement the synchronization counter
; if tmpl # 0, branch and execute stb in delay slot
; store back the (non-zero) synchronization counter
; first push existing thread pointer on LCV
; r_ntp gets new thread pointer

The only difference to the previous FORK mapping (A.1.2.) is that ldb sync, [fp] is

substituted by lds sync, [fp] . 'ids' is required in order to set the SYNC control line.

Branch to an unsynchronizing thread:

ba thr_addr (1) ; branch to thread address

56

Branch to a synchronizing thread:

lds sync[fp],tmpl (2) ; load the synchronization counter into register tmpl
subcc tmp1,1,tmpl (1) ; decrement the synchronization counter
cdbp thr_addr (2 or 3) ; if tmpl 0, branch to thr_addr and annul stb

in delay slot, else branch to thread pointed to by
r_ntp and pop next thread pointer into r_ntp

stb tmpl,sync[fp] (3) ; store back the (non-zero) synchronization counter

Push an unsynchronizing thread:

std r_ntp,[lcv] (3) ; first push existing thread pointer on LCV
set Lthr-cbbase,r_ntp (1) ; r_ntp gets new thread pointers

Push a synchronizing thread:

ids sync[fp],tmpl (2) ; load the synchronization counter into register tmpl
subcc tmp1,1,tmp1 (1) ; decrement the synchronization counter
bnz,a continue (1 or 2) ; if tmp 1 # 0, branch and execute s tb in delay slot
stb tmpl,sync[fp] (3) ; store back the (non-zero) synchronization counter

std r_ntp,[lcv] (3) ; first push existing thread pointer on LCV
set Lthr-cbbase,r_ntp (1) ; r_ntp gets new thread pointer

continue:

A.2 STOP mappings

There is only two STOP mappings, the original one and the one modified by S. Kotikalapoodi.

STOP has not been further modified in this work.

A.2.1 Original STOP mapping

lduh [2+1cv],tmp (2) ; load next thread pointer from LCV
add icv,2,icv (1) ; increment the pointer to the top of the LCV (l cv)
jmp [tmp+cbbase] (2) ; compute absolute thread address and jump there

A.2.2 Modified STOP mapping

xnorcc gO,g0,g0 (1) ; clear the zero flag
cdbp nowhere (3) ; unconditionally branch to thread pointed to by

r_ntp and pop next thr. offset addr. into r_ntp

57

A.3 SWAP mappings

In the following the original and the modified SWAP mappings are shown. However; since we

had only some fractions of the original SWAP mapping, the code below might differ from the 'teal,

original" mapping. Here is a rough description of what the code does: First, the frame pointer (fp) is

replaced. Second, the pointers to the next ready frame (queue), to the codeblock base address (cbbase)

and to the top of the RCV (rcv) are loaded. Then the leave-thread and the first three computational

thread pointers are copied from the RCV onto the LCV and rcv is reset to fp (which indicates the RCV

is empty). If there are still more thread pointers in the RCV, then another four tread pointers are copied

and so on until the RCV is empty. Also, the pointer to the top of the LCV (1 cv) is updated. Finally,

SWAP transfers control to the enter-thread. Frame slots holding specific variables, e.g. rcv, are called 'F'

plus the name of the variable, e.g. Frcv.

A.3.1 Original SWAP mapping

mov queue, fp ; setup fp register 4- head of ready frame queue
ld Fqueue [fp] , queue ; queue next ready frame pointer
ld Fcbbase [fp] , cbbase ; setup thread address base register
ld Frcv [fp] , tmpl ; tmpl 4- pointer to top of RCV (rcv)
ldfd -4 [fp] , ftmp ; get 4 bottom thread pointers (one is leave-thread)
sub lcv, 2 , lcv ; adjust pointer to top of LCV (1 cv)
stfd ftmp, -4 [lcv] ; stash the 4 bottom thread pointers
sub fp, trapl, trapl ; tmpl- number of thread pointers in RCV
cmp tmp1, 6 ; number of computational threads s 3(each 2bytes)?
lduh Fenter [fp] , tmp2 ; tmp2 <- enter-thread pointer
st fp, Frcv[fp] ; reset rcv
ble, a lessthan4 ; if RCV empty, execute delay slot and branch
sub lcv, tmpl, lcv ; adjust 1 cv

set -12, tmp3 ; initialize loop counter (copy-loop)
morethan4 :

ldfd tmp3 [fp] , ftmp ; get next 4 thread pointers
addcc tmpl, tmp3, tmp4 ; tmp 9 (- number of thread pointers left
stfd ftmp, tmp3 [icy] ; stash the next 4 thread pointers
cmp tmp4 , 2 ; any thread pointers left ?
bg, a morethan4 ; if yes, execute delay slot and branch to morethan4
sub tmp3, 8, tmp3 ; decrement loop counter

sub lcv, tmpl, lcv ; adjust 1 cll.
les sthan4 :

jmp [tmp2+cbbase] (2) ; jump to enter-thread

Note: The leave-thread pointer is always at the bottom of the RCV (in Fl eave) which is at

+2 [fp The first computational thread pointer is at [fp] , the next at -2 [fp] and so on..

58

A.3.2 Modified SWAP mapping

This is the final, modified SWAP instruction mapping. Note the changes compared to the

original SWAP: queue and 1 cv are loaded into both processors by means of the proposed movi

instruction. The leave-thread pointer is loaded explicitly into r_1 tp. This is why the pointers to the first

four (instead of three) computational threads are copied from the RCV onto the LCV during the first copy-

process. Finally, the cdbp instruction is used to jump to the enter-thread. The following assumptions are

made. They are not further explained in detail.

A register icvbase exists in both processors which holds the base address of the LCV.

The HOLD control line automatically initiates two immediate processes in the Inlet-processor:

Reset lcvend by movinglcvbase to lcvend.

Set up the new fp by moving queue to fp.

mov queue, fp

ld Fqueue [fp] , queue

movi queueM, queue'

ld Fcbbase [fp] , cbbase

ld Frcv [fp] , tmpl

ldfd -6 [fp] , ftmp

sub lcvbase,2,1cv

stfd ftmp, -6 [lcv]

sub fp, tmpl, tmpl

cmp tmp 1 , 8

lduh Fenter [fp] , r_ntp

lduh Fleave [fp] , r_ltp

st fp, Frcv [fp]

ble lessthan5

set -14, tmp2

morethan5:

ldfd tmp2 [fp] , ftmp

addcc tmpl, tmp2, tmp3

stfd ftmp, tmp2 [lcv]

cmp tmp 3 , 2

bg, a morethan5

sub tmp2, 8, tmp2

lessthan5:

subcc lcv, trnpl, lcv

movi lcvm,

cdbp nowhere

; setup fp register *- head of ready frame queue
; queue 4- next ready frame pointer
; move new queue to Inlet-processor
; setup thread address base register
; tmpl 4- pointer to top of RCV (rcv)
; get 4 bottom thread pointers (all computational!)
; adjust pointer to top of LCV (1 cv)
; stash the 4 bottom thread pointers
; tmpl<- number of thread pointers in RCV
; number of computational threads < 4(each 2bytes)?
; r_ntp <- enter-thread pointer
; r_1 tp leave-thread pointer
; reset rcv
; branch, if RCV empty
; initialize loop counter (copy-loop)

; get next 4 thread pointers
; tmp3 <- number of thread pointers left (+2)
; stash the next 4 thread pointers
; any thread pointers left ?
; if yes, execute delay slot and branch to morethan5
; decrement loop counter

; adjust lcv (also sets zero-flag)
; move lcv to Inet-procssor
; unconditionally branch to enter-thread (in r_ntp)
and pop next thread pointer into r_ntp

59

A.4 POST mappings

Since the main parts of POSTs to both synchronizing and unsynchronizing threads are identical,

only one mapping is shown. The only difference of the synchronizing POST is additional code at the

beginning (4 instructions) for the synchronization operation. A brief description of what POST does:

First, it determines if the inlet is for the running frame. If yes, thread pointers are posted to the LCV.

Otherwise, thread pointers are posted to the RCV. In the latter case, if the RCV was empty (i.e. the frame

was idle), then the frame pointer is queued in the frame ready queue. For Po sTs to synchronizing

threads, the appropriate synchronization counter is decremented first. If it becomes zero, the thread

pointer is posted. If it is not zero, the decremented synchronization counter is stored back only. Note that

thread pointers are 16-bit offsets of cbbase.

A.4.1 Original POST mapping

Code for POSTS to synchronizing threads only:

1db sync[ifp],tmpl (2) ; tmp 1 4- synchronization counter
subcc tmpl,1,tmpl (1) ; decrement synchronization counter
bne,a continue (1 or 2) ; if count * 0, execute delay slot + branch to continue
stb tmpl,sync[fp] (3) ; store back decremented synchronization counter

Code for all POSTs:

amp fp,ifp (1) ; is inlet's frame running?
set Lthr-Lcbbase,tmp2 (1) ; tmp2 4- thread pointer
be isrunning (1 or 2) ; if inlet's frame running, branch
ld Frcv[ifp],tmp3 (2) ; tmp3 - pointer to top of RCV (rcv)
sth tmp2,[tmp3] (3) ; push thread pointer
amp tmp3,ifp (1) ; is inlet's frame idle?
sub tmp3,2,tmp3 (1) ; update rcv (in tmp3)
st tmp3,Frcv[ifp] (3) ; store back adjusted pointer
bnz continue (0)' ; if frame is not idle, branch to continue
st queue,Fqueue[ifp] (3) ; store back old ready frame link
mov ifp,queue (1) ; make inlet's frame next ready frame
imP continue (0)' ; jump to continue

is running:

sth tmp2,[lcv] (3) ; push thread pointer onto LCV
sub lcv,2,1cv (1) ; update pointer to top of LCV (1 cv)

continue:

The cost for these instructions is included in the cost for inlet overhead as indicated in Table 2.1.

60

A.4.2 Modified POST mapping

POST changed due to the introduction of s td [9]. Note that s td automatically updates the

pointer to the top of the RCV (rcv).

Code for POSTS to synchronizing threads only:

(2) ; tmpl (- synchronization counter
(1) ; decrement synchronization counter

(1 or 2) ; if count # 0, execute delay slot + branch to continue
(3) ; store back decremented synchronization counter

(1) ; is inlet's frame running?
(1) ; tmp2 <- thread pointer

(1 or 2) ; if inlet's frame running, branch
(2) ; tmp 3 4,- pointer to top of RCV (rcv)
(1) ; is inlet's frame idle?
(3) ; push thread pointer and update rcv
(3) ; store back adjusted pointer

(0)' ; if frame is not idle, branch to continue

(3) ; store back old ready frame link
(1) ; make inlet's frame next ready frame

(0)' ; jump to continue

(3) ; push thread pointer onto LCV
(1) ; update pointer to top of LCV (1 cy)

ldb

sub cc

bne,a

stb

sync[ifp],tmpl

tmp1,1,tmpl

continue

tmpl,sync[fp]

Code for all POSTs:

cmp

set

be

ld

cmp

std

st

bnz

st

mov

is running:

sth

sub

continue:

fp,ifp

Lthr-Lcbbase,tmp2

isrunning

Frcv[ifp],tmp3

tmp3,ifp

tmp2,[tmp3]

tmp3,Frcv[ifp]

continue

queue,Fqueue[ifp]

ifp,queue

continue

trip2,[lcv]

lcv,2,1cv

The cost for these instructions is included in the cost for inlet overhead as indicated in Table 2.1.

61

B. MAPPING OF ACTIVATION FRAME AND LCV TO MEMORY

B.1 The Activation Frame

Figure B.1 illustrates how the activation frame is mapped on the local memory. The sequence

how synchronization counters, local variables, Fqueue, Fcbbase, and Frcv mapped on the memory as

described by Figure B.1 might differ from the actual implementation in 161 since we do not have the

accurate data available. Conceptually, this is not important anyway. However; we do have the exact data

(derived from SWAP mapping in A.1.3.) about where the RCV starts (fp) and to what direction it extends

fp).

62

4 32 Bit

fp + n

Slots

for

local

variables

,

16-Bit slots for
synchronization coutners

Fqueue

holds fp pointing to the next frame in the ready queue

Fcbbase

holds cbbase pointing to the codeblock base address

Frcv

fp +4 holds rcv pointing to the top of the frame's RCV (currently fp - 4)

pointer to 2. Fleave holds
fp computational thread 1 tp pointing to leave-thread,

pointer to 1.
fp -4 computational thread

RCV

Remote Continuation Vector

holds pointers (16-Bit offsets of cbbase) to enabled threads

*

fp - m

Figure B.1 Representation of the activation frame in the memory

63

B.2 The LCV

Figure B.2 illustrates a specific example of the mapping of the modified LCV to the memory.

The example shows how the LCV would look like after SWAP had copied the RCV (as indicated in

Figure B.1) onto the LCV. The pointers relevant to the LCV are depicted as well.

The pointer to the bottom of the LCV-1 cvend. It is needed in the Inlet-processor to append

enabled threads to the LCV.

The pointer to the top of the LCV -1 cv. It resides in both processors. In the Main-processor

it is needed to push threads on top of the LCV. In the Inlet-processor it is needed to be

compared with 1 cvend in order to determine if the LCV has been emptied.

The pointer to the base address of the LCV-1 cvb a s e. It is needed in both processors to

reset 1 cv and lcvend (see also A.3.2.).

32 Bit

1 cvbas e + i 0
LCV

Local Continuation Vector

holds pointers (16-Bit offsets of cbbase) to

all enabled threads of the running frame

lcvbase + 4 0
1 cvend/

lcvbase 0

pointer to 2.

icy 0 computational thread

lcvbase -j 0

Figure B.2 Representation of the LCV in the memory

Note: First, the leave-thread pointer (ltp) is not at the LCV bottom, but in the register r_ltp,

which is specifically assigned to hold 1 tp. Second, the pointer to the first computational thread has

already been popped into r_ntp by cdbp at the end of SWAP (see A.3.2.).

