AN ABSTRACT OF THE THESIS OF CHOONG HOON CHO for the degree of MASTER OF SCIENCE in CHEMICAL ENGINEERING presented on June 5, 1979.

Title: OXYGEN ABSORPTION INTO WATER USING MULTIPLE PLUNGING JETS Abstract approved by _Redacted for privacy

Charles E. Wicks

A mathematical model which was developed by Hauxwell (3) to predict the absorption rate of a slightly soluble gas entrained by a plunging liquid jet was modified to verify the effect of the use of multiple jets on the mass transfer. To make the analysis less complex, the system was designed as a closed one in which the outlet stream was recycled to the control volume as the feed.

A mass transfer factor, $T F$, which was defined as the summation of the product of the mass transfer coefficient and interfacial area of all the entrained bubbles, was found to be proportional to the product of jet Reynolds number, N_{Re}, and Weber number, N_{We}. The product of these two dimensionless numbers represented the kinetic energy of the stream entering the control volume. Experiments with multiple nozzles were scheduled such that the amount of input kinetic energy was directly proportional to the number of jet streams. The mass transfer factor, $T F$, was found to increase directly with the kinetic energy of the entering stream at the high N_{Re} of 16000 ; however, there was smaller dependency between the mass transfer factor and the kinetic energy at the low N_{Re} of 5000 .

The arrangement of multiple nozzles was also found to have an effect on the mass transfer factor, TF. The closer the distance between the impact point of jet streams became, the more vigorous interaction between the bubbles entrained by each jet stream was observed. This interaction, which often produced the combination of two individual bubbles and the hindrance of some bubbles rising up to the pool surface by a neighboring bubble cone, was considered to be responsible for a slight increase in the mass transfer factor.

The jet length was also found to have a relation with TF. Shorter jet lengths resulted in a slight increase of transfer factor.

OXYGEN ABSORPTION INTO WATER USING
MULTIPLE PLUNGING JETS
by

CHOONG HOON CHO

A Thesis
Submitted to
Oregon State University

In Partial Fullfillment of
the Requirements for the
Degree of
Master of Science
June, 1980

Redacted for privacy

Professor of Chemical Engineering in charge of major

Redacted for privacy

Head of Department of Chemical Engineering

Redacted for privacy
$\frac{1}{\text { Dean of Graduate School }}$ June 5, 1979
for Choong Hoon Cho

Date thesis is presented

Typed by Y.S. Yoon

ACKNOWLEDGMENT

The author would like to acknowledge his indebtedness to the following institution and individuals, without whose assistance, this thesis could never have been written.

The Department of Chemical Engineering of Oregon State University for the opportunity and facilities for undertaking this research.

Dr. Charles E. Wicks for his good guidance.
One of the author's colleague, Dalkeun Park for his helpful advice and suggestions.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. THEORITICAL CONSIDERATION 3
III. EXPERIMENTAL EQUIPMENT AND PROCEDURE 10

1. General Description 10
2. Procedure 17
IV. ANALYSIS AND DISCUSSION OF RESULTS 19
V. CONCLUSION 33
VI. RECOMMENDATIONS FOR FURTHER STUDY 35
VII. BIBLIOGRAPHY 36
VIII. APPENDICES 37
Appendix I: Experimental Code 37
Appendix II: Equipment and Material Specification 38
Appendix III: Experimental Data 41
Appendix IV: Sample Calculation 79
Appendix V: Nomenclature 85

LIST OF FIGURES

Figure Page
III-1. Various arrangements of two nozzles 12
III-2. Various arrangements of four nozzles 13
III-3. Schematic drawing of the enclosed system 14
III-4. Schematic diagram of whole system 16
IV-1. TF with one nozzle 22
IV-2. Comparison between Shih's correlation and correlation of this work 22
IV-3. Comparison of TF's with different number of nozzles 23
IV-4. Comparison of TFS's with different number of nozzles 24
IV-5 TF with two nozzles at position 0 26
IV-6 TF with two nozzles at position A 26
IV-7 TF with two nozzles at position B 27
IV-8 TF with two nozzles at position C 27
IV-9 TF with four nozzles at position 0 28
IV-10. TF with four nozzles at position A 28
IV-11. TF with four nozzles at position B 29
IV-12 TF with four nozzles at position C 29
IV-13. Comparison of TF's at different position of two nozzles 30
IV-14. Comparison of TF's at different position of four nozzles 31
VIII-1. Determination of TTF83
VIII-2. Determination of TFS 84

LIST OF TABLES

Table \quad Page

1. Jet nozzle dimensions 11
2. Experimental jet conditions 19

OXYGEN ABSORPTION INTO WATER
USING MULTIPLE PLUNGING JETS

I. INTRODUCTION

Entrainment of gas by a plunging stream of liquid, an event which is commonly observed around us as in the waterfall or in a water stream from a kitchen faucet, may have a beneficial aspect from the point of efficiency in a vapor-liquid contactor.

The energy supplied by the plunging jet stream causes a great turbulence in the liquid pool; this action can aid blending within the pool and thus eliminate the need of other commonly used mechanical agitating devices. Aeration of wastewater tanks by aqueous jets is particularly favorable from that point.

Another important consequence of plunging jets is that the gas bubbles entrained by the jet stream will create a large interfacial area between the gas and liquid. Since mass transfer rates are directly related to the area of contact, the larger interfacial area should result in a more efficient vapor-liquid contactor.

The mass transfer from the bubbles entrained by a single jet plunging into an aqueous pool has been studied by previous investigators. This project was designed to extend the conclusions of the earlier studies by investigating the effect of the use of multiple jets and their arrangements on the mass transfer rate. It is hoped that the information gained
relative to the mass transfer rate may lead to direct application of this study to waste water treatment.

II. THEORETICAL CONSIDERATIONS

Hauxwell reported a general relationship between the absorption rate and the jet stream characteristics using a jet flowing from one nozzle. This investigation extended Hauxwell's study to verify the effect of the use of multiple nozzles on the mass transfer. A physical system similar to Hauxwell's was used in this experiment so that comparison could be made with the data obtained in the earlier investigation. Consider the absorption pool shown in Figure III-3 as a control volume. The oxygen gas above the pool surface is absorbed into the aqueous pool in three different ways; (1) through the free jet surface, (2) through the pool surface, and (3) through the surface of the entrained gas bubbles. In addition to those three absorption mechanisms, the entering jet stream may contain oxygen. The oxygen absorbed will be accumulated in the pool or be carried out of the control volume through the pool discharge line. A mass balance based on the oxygen in the control volume gives,

$$
\begin{equation*}
\frac{d\left(C_{L} V\right)}{d t}=r_{s}+r_{B}+\sum_{i=1}^{n} r_{J i}+\sum_{i=1}^{n} C_{J} Q_{J i}-Q_{E} C_{E} \tag{1}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{L}}=\text { oxygen concentration in the pool (ml/liter) } \\
& \mathrm{V}=\text { pool volume (liter) } \\
& \mathrm{t}=\text { time (min.) }
\end{aligned}
$$

```
Q Ji = volumetric flow rate of ith jet stream (liter/min.)
C
r}\mp@subsup{|}{i}{}= absorption rate through the ith jet stream surfac
    (m1/min.)
r
r}\mp@subsup{B}{}{\prime}=\mathrm{ absorption rate through the bubble surface (ml/min.)
Q = pool discharge volumetric flow rate (liter/min.)
C
```

When a constant pool volume, V, is maintained the flow rate of the summation of the input jet streams must be equal to the pool discharge flow rate i.e.,

$$
Q_{E}=\sum_{i=1}^{n} Q_{J i}
$$

If the pool is assumed perfectly mixed, the concentration of the discharge line will be equal to the pool concentration,

$$
C_{E}=C_{L}
$$

When the absorption process is operated on the basis of a closed system, i.e. pool discharge stream is recycled to supply the jet streams, the jet concentration will be equal to the discharge concentration or to the equivalent pool concentration,

$$
C_{L}=C_{J}
$$

and

$$
C_{E}=C_{L}=C_{J}
$$

The use of sparingly soluble oxygen gas, and a short, small diameter jet streams with a relatively high velocity produces relatively short exposure of the free jet stream. Accordingly, the free jet surface absorption rate, r_{J}, can be assumed negligible. Another assumption can be made such that the flow is distributed evenly to n number of nozzles,

$$
\begin{aligned}
\sum_{i=1}^{n} C_{J} Q_{J i} & =C_{J} \sum_{i=1}^{n} Q_{J i} \\
& =C_{J} \cdot n \cdot Q_{J} \\
& =C_{J} \cdot Q_{E} \\
& =C_{E} \cdot Q_{E}
\end{aligned}
$$

With these assumptions and operation restrictions, equation (1) simplifies to the following equation:

$$
\begin{equation*}
\mathrm{v} \cdot \frac{\mathrm{dC}_{\mathrm{L}}}{\mathrm{dt}}=\mathrm{r}_{\mathrm{S}}+\mathrm{r}_{\mathrm{B}} \tag{2}
\end{equation*}
$$

Whitman's two film theory was adopted to describe the absorption rate. For surface absorption

$$
\begin{equation*}
r_{S}=K_{L_{S}} A_{S}\left(C^{*}-C_{L}\right) \tag{3}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{L}}= & \text { overall mass transfer coefficient for } \\
& \text { surface absorption. }
\end{aligned}
$$

$A_{S}=$ area of the pool surface
$C^{*}=$ oxygen concentration of pool in equilibrium with the vapor phase above the pool

For the rate of absorption through the entrained bubble surface inside some j th bubble,

$$
\begin{equation*}
r_{B j}=k_{L j} A_{j}\left(C_{i j}-C_{L j}\right) \tag{4}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{Lj}}=\text { liquid film mass transfer coefficient for the } j \text { th bubble } \\
& \mathrm{C}_{\mathrm{ij}}=\text { oxygen concentration at gas-liquid interface } \\
& \mathrm{C}_{\mathrm{Lj}}=\text { oxygen concentration at the bulk liquid } \\
& \mathrm{A}_{\mathrm{j}}=\text { surface area of the } j \text { th bubble }
\end{aligned}
$$

The concentration at the gas-1iquid interface, $C_{i j}$, is equal to the equilibrium value, C^{*}, and the bulk liquid concentration, $C_{L j}$, is equal to C_{L}. By summing overall n entrained bubbles using the overall mass transfer concept, the absorption rate through the bubble surface becomes,

$$
\begin{equation*}
r_{B}=\sum_{j=1}^{n} K_{L j} A_{j}\left(C^{*}-C_{L}\right) \tag{5}
\end{equation*}
$$

To calculate r_{B} in equation (5) the product of the overall mass transfer coefficient and the surface area of each bubble must be known. Unfortunately these are difficult to define. Accordingly, the concept of transfer factor, $T F$, was used to represent the product of the mass
transfer coefficient and the surface area. This concept was successfully adopted by Jackson ${ }^{(4)}$ and Hauxwe $11^{(3)}$. This concept of $T F$ was practical and meaningful to simplify the complex process.

Let

$$
\begin{aligned}
& T F=\sum_{j=1}^{n} K_{L j} A_{j} \\
& T F S=K_{L} A_{S}
\end{aligned}
$$

then

$$
\begin{aligned}
& r_{B}=\operatorname{TF}\left(C^{*}-C_{L}\right) \\
& r_{S}=\operatorname{TFS}\left(C^{*}-C_{L}\right)
\end{aligned}
$$

and equation (2) reduces to

$$
\begin{align*}
\frac{\mathrm{dC}_{\mathrm{L}}}{\mathrm{dt}} & =\operatorname{TF}\left(\mathrm{C}^{*}-\mathrm{C}_{\mathrm{L}}\right)+\operatorname{TFS}\left(\mathrm{C}^{*}-\mathrm{C}_{\mathrm{L}}\right) \\
& =(\mathrm{TF}+\operatorname{TFS})\left(\mathrm{C}^{*}-\mathrm{C}_{\mathrm{L}}\right) \\
& =\operatorname{TTF}\left(\mathrm{C}^{*}-\mathrm{C}_{\mathrm{L}}\right) \tag{6}
\end{align*}
$$

where,

$$
\mathrm{TTF}=\mathrm{TF}+\mathrm{TFS}
$$

If equation (6) is divided by $C^{*} \cdot V$ to get a dimensionless concentration C^{+}, equation (6) yields,

$$
\frac{\mathrm{dC}^{+}}{\mathrm{dt}}=\frac{\mathrm{TTF}}{\mathrm{~V}}\left(1-\mathrm{C}^{+}\right)
$$

With the assumption that TTF is not a function of C^{+}, the solution of the differential equation with the initial condition $C^{+}=C_{o}^{+}$at $t=0$ results in

$$
\begin{equation*}
\ln \left(\frac{1-C_{o}^{+}}{1-C^{+}}\right)=\frac{T T F}{V} t \tag{7}
\end{equation*}
$$

Equation (7) shows that the data may be plotted as $\ln \left(\frac{1-C_{o}^{+}}{1-C^{+}}\right)$vs
time t, and a straight line through the origin should results with a slope of $\frac{T T F}{V}$.

Evaluation of the surface absorption rate, TFS, can be obtained using the same type of graphical analysis. By submerging the jet nozzle just below the pool surface with the same flow conditions which were selected for the entrainment process, the mass transfer can only occur through the surface. Without the bubble input, TTF is reduced to TFS. This procedure results in the following equation,

$$
\begin{equation*}
\ln \left(\frac{1-C_{o}^{+}}{1-C^{+}}\right)=\frac{T F S}{V} t \tag{8}
\end{equation*}
$$

When equation (7) and (8) are applied to the properly designed absorption studies, the transfer factor $T F$ as a function of jet stream characteristics can be found.

Hauxwe11 ${ }^{(3)}$ reported that the $T F$ values, resulting from the analysis of his work, had a significant correlation with the product of $N_{\text {Re }}$ and $N_{W e}$. The exponent on this dimensionless number product turned out
to be nearly unity which would indicate a linear variation of the transfer factor $T F$ with the supply of jet stream kinetic energy. TFS, also was found to correlate well with N_{Re}. In this work, the same analysis will be made to find a correlation of transfer factor with the supply of multiple jet stream kinetic energy.
III. EXPERIMENTAL EQUIPMENT AND PROCEDURE

1. General Equipment Description

The experimental equipment was designed to test the mathematical model which was developed to explain the absorption from entrained gas bubbles.

A 440 mm ID glass cylinder, with the height of 359 mm , was sandwitched between two 12 mm thick plastic plates. Gaskets and silicon rubber sealing were used to provide proper sealings. A pool depth of 300 mm was selected; this depth was chosen so that all of the bubbles entrained from the scheduled experimental jet flow rates would be retained within the pool. This depth was a little bit higher than those selected in the previous investigations, because experimental runs involving higher flow rates were scheduled to meet the desired experimental conditions. The pool volume for this depth was approximately 45.7 liters. Detailed pool volume as a function of depth is tabulated in Table II-4 of Appendix II.

Jet nozzles were placed on the cover plate with tube fittings which were designed so that the nozzles could be easily raised or lowered. The arrangement of the nozzles was determined to test the interaction between the bubbles entrained by the jet streams which were coming out of the neighboring nozzles. The distance between two nozzles and the diagonal distance for four nozzles, was initially 220 mm ; this was designated position 0 . The distance was then reduced by half, i.e., to 110 mm
and this arrangement was designated position A. A third position, designated position B, involved a distance of 55 mm . The last position, designated position C, was set at one eighth of the original distance, or 27.5 mm . The various types of nozzle arrangements are shown on Figure III-1, and Figure III-2. The nozzles were made of copper with a length long enough to insure a fully developed velocity profile. The diameter and L/ID ratio of the nozzle are listed in Table 1.

Table 1. Jet nozzle dimensions

ID (mm)	OD (mm)	L/ID
5.588	6.35	76.23

Three $1 / 8$-inch $O D$ stainless steel tubes were located within the cylinder at 154,51 and 102 mm from the center; these tubes provided pool sampling ports. The sample points, designated A, B, and C respectively were located 57,146 , and 216 mm above the bottom of the cylinder. One more tube, designated D, was located in the absorption pool discharge line, right on the bottom of the pool. A schematic drawing of the enclosed system for this experiment is illustrated in Figure III-3.

A small, shell-tube type heat exchanger was inserted between the discharge line from the pool and the pump to remove any heat which might come from the inefficiency of the pump and to maintain an essentially constant pool temperature. A pump was incorporated with a rotameter for

Figure III-1. Various arrangements of two nozzles.

Figure III-2. Various arrangements of four nozzles.

To Heat exchanger

Figure III-3. Schematic drawing of the enclosed system.
adjusting the flow rate of the stream. Pump specification and the rotameter calibration are tabulated in Table II-1, II-5 of Appendix II, respectively. After passing through the rotameter, the flow was distributed to n number of jet branches. Two and four branches were used for running multiple jets. The distributor was made of brass tube fittings.

City water was used in this experiment. It was felt that this would provide an aqueous stream and pool closer to what might actually be encountered in many environmental and industrial processes. Pure oxygen gas was fed continuously through a pressure control valve and then bubbled through a water-filled flask, to assure that the supplied oxygen was saturated with water vapor. From this saturator the oxygen was supplied to the cylinder.

A simply-designed, adjustable bubble device was used to control the pressure of the oxygen gas in the cylinder. The vapor pressure was measured by the water manometer. The schematic diagram of the whole system was illustrated in Figure III-4.

A YSI model 54 ARC oxygen meter, which uses an electrolyte-filled probe, was chosen to analyze the samples taken from the absorption pool. The electrode provided a rapid, accurate analysis of sparingly soluble gases such as oxygen.

Another small cylinder was prepared to saturate the distilled water with air under atmospheric pressure. The samples taken from the absorption pool were diluted with this air-saturated distilled water, whose oxygen concentration was measured prior to being used.

Figure III-4. Schematic diagram of whole system.

2. Procedure

The first step was to measure the oxygen concentration of the airsaturated distilled water which would be used to dilute the samples from the pool or discharge line. It was necessary to have the dilution process to measure the oxygen concentration of sample within the range from 0 to 20 ppm , a range limited by the capacity of the oxygen meter used in this investigation. The distilled water had been saturated with air for over four hours before beginning the experiment. The measurement was repeated two additional times, i.e. during the analysis and after the analysis, to check the consistency of the oxygen concentration.

Following the first step, the cylinder was filled completely with water to sweep all the residual gases out of the cylinder. Then, the proper jet, as well as the flow rate for the desired experimental condition was installed. Jet nozzles were set at 55 mm above the pool surface for the total absorption rate, and were set at 55 mm below the pool surface for the surface absorption rate. The cylinder pool was then drained to the operating level of 300 mm depth, while oxygen gas was fed simultaneously into the cylinder. Excess oxygen gas was supplied throughout the run to keep the oxygen in the cylinder from contamination by atmospheric gases. The pressure of the oxygen gas in the cylinder was maintained at 765 mm Hg , with the excess oxygen gas being bubbled out through the submerged bubble device.

The temperature of the water in the pool was controlled by the heat exchanger to $20 \pm 1^{\circ} \mathrm{C}$.

Individual samples were taken simultaneously in 50 ml glass bottles from sampling ports A, B, C, and D. The water in each sampling tube was drained just before taking the samples. The tubes were inserted to the bottom of the sample bottles; these bottles were then filled to the top. These sampled bottles were sealed with solid rubber stoppers to prevent exposure to the atmosphere. Sampling was repeated three additional times at 5 minutes intervals for the total absorption process, and intervals of 30 minutes for the surface absorption process.

The analysis of these samples was taken during the run or right after the run. The 50 ml sample was first transferred to a glass mixing bottle of 290 ml in volume and diluted up to 290 ml with the air-saturated distilled water. A magnetic stirrer was used to mix the solution as perfectly as possible. The oxygen concentration of the mixed solution was measured by inserting the oxygen probe into the mixing bottle; this concentration was recorded in ppm as shown on the scale of the oxygen meter. The probe was polarized and set according to the instructions. The probe was calibrated prior to being used, by following the instruction which was based on the probe temperature and the true local atmospheric pressure. The oxygen probe fitted exactly with the opening of the mixing bottle such that the solution was kept completely separated from the environment. The experimental results were obtained in the form of both time and sample position.

Once the run was over, the water in the cylinder and the lines was completely drained; the cylinder and the lines were then washed out with city water prior to the next run.

IV. ANALYSIS AND DISCUSSION OF RESULTS

The purpose of this study was to find the effect of the number of jets and their arrangements on the gas absorption as a function of time for various jet characteristics. For this investigation the following jet stream conditions, as listed in Table 2, were used.

The experiment was divided into two separate sections. One was for determining only the surface absorption rate and the other was for determining the combination of both surface and entrained bubble absorption rates.

Table 2. Experimental jet conditions

The number of jets	N_{Re}	N_{We}
1	5324	71
1	8908	198
1	13687	466
1	21044	1103
1	24837	1536
1	28819	2068
2	5251	69
2	7640	145
2	12419	384
2	14410	517
2	16401	670
4	5214	
4	6209	68
4	7205	96
4	8200	129
4	8698	167
		188

The entrained bubble absorption mass transfer rate was determined by subtracting the surface absorption rate from the total absorption rate.

It has been found that mass transfer by entrained bubbles is related to not only the properties of gas and liquid, but also the jet characteristics such as jet length, diameter and velocity. In this investigation, the mass transfer which occurs when using one nozzle was reinvestigated and, as an extended study, the effect of the number of jets and their arrangements on the mass transfer was investigated. Most of the experimental conditions were essentially identical to those used by the previous investigators, except for the jet length and the number of nozzles.

By setting the jet length constant throughout the runs, as well as by fixing the properties of liquid and gas, the emphasis of this investigation involved the effect of the number of jets and their arrangements on the mass transfer rate.

The assumption that the absorption pool was perfectly mixed turned out to be reasonable. The measurement of pool samples at four different positions did not vary significantly. In most cases, the variance among the four samples was less than 2%. An increase in the transfer factor TF was found when the jet length became shorter. This tendency is shown in Figure IV-2 where the results are compared with the previous investigator's ${ }^{(8)}$. Smith ${ }^{(9)}$ reported that the parameters determing the penetration depth were the velocity, the diameter of the jet at the point of impact, and the amount of entrained gas. It was observed that the entrained bubbles became finer as well as the penetration depth of the
plunging liquid increased as the shorter jet length was employed. The fine bubbles, which have less buoyancy momentum than bigger ones, tend to stay longer in the liquid; the fine bubbles also have larger interfacial surface area in total than the larger bubbles for same amount of entrained gas. These are two factors which could explain why higher mass transfer rates occurred when the shorter length of jet was used. Runs with multiple nozzles were scheduled such that input kinetic energy of jet streams was proportional to the number of jet streams. The kinetic energy of the flowing fluid, as represented by the product of Reynolds number $N_{R e}$, and the Weber number, $N_{\text {We }}$ could be established by fixing the diameter and velocity of jets. The results of the experiments with one nozzle, two nozzles, and four nozzles are shown in Figure IV-1, Figure IV-5, and Figure IV-9, respectively. All of these figures confirmed that the transfer factor $T F$ was strongly related to the product of $N_{R e}$ and $N_{W e}$.

As shown in Figure IV-3, the transfer factor increased as the number of nozzles increased. The mass transfer rate with two nozzles was higher than that with one nozzle within the specified range of $N_{R e}$. $N_{\text {We }}$ parameter and apparently tended to be proportional to the number of applied nozzles at the high value of $\mathrm{N}_{\mathrm{Re}} \cdot \mathrm{N}_{\mathrm{We}}$. There was a less noticeable tendency at the low value of $\mathrm{N}_{\mathrm{Re}} \cdot \mathrm{N}_{\text {We }}$, where the kinetic energy that was put into the pool was much lower.

As far as the runs with four nozzles were concerned, the results turned out less consistent with the results of two nozzles. The slope of the transfer factor with four nozzles was much steeper than expected when compared with the results using one and two nozzles. Due to the

Figure IV-1. TF with one nozzle

Figure IV-2. Comparison between Shih's correlation and correlation of this work.

Figure IV-3. Comparison of TF's with different number of nozzles.

Figure IV-4. Comparison of TFS's with different number of nozzles.
limitation of the quantity of water which could be pumped through the system, the experiments involving the four nozzles were done within a short range of $N_{R e} \cdot N_{W e}$; this might be responsible for some inconsistency on the results of four nozzles. Further study with a larger capacity rotameter and a more powerful pump is desirable. However, the data indicated also that higher mass transfer rates occurred as the number of nozzle increased.

It was also found that the surface absorption mass transfer rates increased as the number of nozzles increased. However, Figure IV-4 predicts that the transfer factor for surface absorption, TFS, did not increase as much as the amount of kinetic energy input even at the high Reynolds number, N_{Re} of 16000 .

Another investigation was done to verify how the arrangement of the same number of nozzles influenced the mass transfer rates. The results of these experiments, using four different positions with two nozzles, are illustrated from Figure IV-5 to Figure IV-8. At position 0, where the distance between the points of impacts is designated Z, there was no noticeable interactions between the bubbles entrained by the streams flowing from the neighboring nozzle appeared. Apparently, no interactions were observed with position A. However, when the jets were at position B, where the distance between two nozzles was $Z / 4$, the bubbles at the boundary of two bubble cones were observed to mix together and to rise simultaneously to the surface of the pool. When the impact point of the nozzles was at position C, where the distance was $Z / 8$, a larger amount of bubbles were found to intermix. Under this condition, the bubbles

Figure IV-5. TF with two nozzles at position 0.

Figure IV-6. TF with two nozzles at position A

Figure IV-7. TF with two nozzles at Position B

Figure IV-8. TF with two nozzles at position C

Figure IV-9. TF with four nozzles at position 0

Figure IV-10. TF with four nozzles at position A

Figure IV-11. TF with four nozzles at position B

Figure IV-12. TF with four nozzles at position C

Figure IV-13. Comparison of TF's at different position of two nozzles.

Figure IV-14. Comparison of TF's at different position of four nozzles
entrained by one jet stream seemed to prevent the bubbles entrained by another jet stream from rising to the pool surface; accordingly these bubbles were forced to stay longer in the pool than the bubbles formed with the jets located at position B. The same phenomena were observed in the experiments using four nozzles. The results are shown in Figure IV9 to IV-12. Unfortunately, when the multiple nozzles were used the turbulence was so vigorous, and the bubbles rose so rapidly that it was impossible to see whether the bubbles at the boundaries of each bubble cone combined with each other to make bigger bubbles. The mass transfer rate, which resulted from the possible interaction between the bubbles, turned out to be slightly higher than the runs without any possible interactions. Figure IV-13 and IV-14 showed that the transfer factor TF increased as the distance between the jet streams became closer.

V. CONCLUSION

The conclusions from the study of entrained oxygen absorption by multiple plunging jet streams are:

1. The mass transfer factor $T F$ was found to be proportional to the rate of kinetic energy supplied to the absorption pool by the jet streams which entrained the oxygen bubbles. The product of the jet Reynolds number $N_{R e}$, and the Weber number, N_{We}, represented the kinetic energy supplied.
2. The transfer factor $T F$ was affected by the length of jet. As shorter jet lengths were employed, bubbles became finer and penetrated more deeply down to the bottom of the pool; this resulted in a slight increase in the mass transfer rate.
3. An increase in the number of jet streams resulted in an increase of the transfer factor $T F$. The value of $T F$ tended to increase directly with the number of jet streams; in other words, it increased directly as the amount of input kinetic energy increased. This was especially true at the higher range of Reynolds number, but there was a smaller dependency at the lower range of Reynolds number.
4. The surface absorption rate, TFS, was also found to be related to the number of jet streams. Higher TFS values occurred as the number of jet streams increased. However, there was no direct relationship between TFS and the number of jet streams.
5. Higher transfer rates were found to occur when two jets were located closer to each other. When the bubble cones entrained by the jet streams were close enough to contact each other, there was intermixing of the bubbles, which resulted in an increase in the mass transfer factor, TF.

VI. RECOMMENDATIONS FOR FURTHER STUDY

1. The variation of the physical properties of liquid such as viscosity, and surface tension may have an effect on the transfer factor $T F$. Extended study based on these effects is desirable.
2. The geometry of jet stream turned out to be related to the mass transfer rate. Quantitative evaluation of the effect of jet length on TF should be studied.
3. More detailed study on the interaction between the bubbles, such as combination and hindrance will explain the phenomena precisely when the multiple nozzleswere used.
4. Application of this system to the chemical reactor is of great interest. It may be applied to the gas liquid contactor.

VII. BIBLIOGRAPHY

1. Bird, R.B., W.E. Stewart and E.N. Lightfoot. 1960. Transport Phenomena, Wiley International Edition, 780 p.
2. Draper, N.R. and H. Smith, 1966. Applied Regression Analysis, New York, Wiley. pp. 1-35.
3. Hauxwell, G.D., 1972. Pool Absorption of Gas Entrained by Plunging Liquid Jet. Ph.D. thesis. Corvallis, Oregon State University, 187 numb. leaves.
4. Jackson, M.L., 1964. Aeration in Bernoulli Type of Devices. AIChE Journal. 10:836-842.
5. Lange, N.A. (ed.), 1952. Handbook of Chemistry, 8th ed. Sandusky, Handbook Publishers Inc., 1998 p.
6. Perry, J.H. (ed.), 1963. Chemical Engineers Handbook, 4th ed., New York, McGraw-Hill.
7. Rand, M.C. (ed.), 1976. Standard Methods for the Examination of Water and Waste water. 14th ed. Washington D.C., American Public Health Association, 446 p.
8. Shih, C.C., 1978. Oxygen Absorption by Brine as a result of a Plunging Jet. M.S. thesis, Corvallis, Oregon State University, 82 numb. leaves.
9. Van de Sande, E. and J.M. Smith, 1975. Mass Transfer from Plunging Water Jets. The Chemical Engineering Journa1, 10:225-233.

APPENDICES

APPENDIX I

Experimental Code

Coding form of each run was

$$
N-Z-x x x x x-\text { yyyy - C }
$$

where,

$$
\begin{aligned}
& N=\text { The number of nozzles } \\
& Z=\text { Distance between the nozzles } \\
& \text { (Diagonal distance for four nozzles) } \\
& 0=\text { Distance of } z \\
& A=\text { Distance of } z / 2 \\
& B=\text { Distance of } z / 4 \\
& C=\text { Distance of } z / 8 \\
& \text { * Z was skipped for one nozzle } \\
& \text { xxxxx }=N_{R e} \text { of one jet stream } \\
& \text { yyyy }=N_{W e} \text { of one jet stream } \\
& \text { C = Run purpose } \\
& S=\text { Surface absorption } \\
& B=\text { Entrained bubble and surface absorption }
\end{aligned}
$$

APPENDIX II

EQUIPMENT AND MATERIAL SPECIFICATION

Table II-1 Centrifugal pump.

Pump
Mfgr. Gorman-Rupp Co.
Model 81 1/2 E1 E3/4

Motor
Mfgr. General Electric Co.
Model 5 K 43 GG 3266
Size $\quad 3 / 4 \mathrm{HP}$

Table II-2 Oxygen meter

Mfgr.	Yellow Springs Instrument Co.
Model	54 ARC

Table II-3 Material Specification
Oxygen 99.999% pure

Table II-4 Pool Volume Calibration

Pool depth, h (mm)	Pool volume, V (1iter)
66	10
79.5	12
105.5	16
132	20
158	24
184.2	28
210.5	32
237	36
263.3	40
289.5	44
310.9	48
$\mathrm{~V}=(1.52479)\left(10^{-1}\right) \cdot \mathrm{h}$	

By interpolation
at $h=300 \mathrm{~mm}$,
$\mathrm{V}=45.7437$ 1iter

Table II-5 Calibration of Rotameter (Fischer \& Porter Co. No. B5-27-10/70G)

Meter indication, P $(\%)$	Flow rate, Q $($ liter $/ \mathrm{min})$.
90	10.392
80	9.23
70	8.162
60	7.124
50	5.982
40	4.962
30	3.893
20	2.889
10	1.894
$Q=(1.056025)\left(10^{-1}\right) \cdot P-(2.77714)\left(10^{-1}\right)$	
$R=.99983$	

Table II-6 Physcial Properties of Water at 1 atm (Ref.: Lange ${ }^{(5)}$)

	Temperature $\left({ }^{\circ} \mathrm{C}\right)$		
	$\underline{15.0}$	$\underline{20.0}$	$\underline{25.0}$
Density (gm/ml)	.999	.998	.997
Viscosity (centipoise)	1.1404	1.005	.8937
Surface tension (dynes $/ \mathrm{cm})$	73.49	72.75	71.97
$\rho / \mu\left(\mathrm{Sec} / \mathrm{cm}^{2}\right)$	87.60	99.30	111.56
$\rho / \sigma \mathrm{g}_{\mathrm{c}}\left(\mathrm{Sec}^{2} / \mathrm{cm}^{3}\right)$.01359	.01372	.01385

Table II-7 Solubility of oxygen in water exposed to water saturated by air (Ref.: Standard Method for the Examination of Water and Wastewater (7))

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Dissolved oxygen (mg/liter)
18	9.5
19	9.4
20	9.2
21	9.0
22	8.8

APPENDIX III

EXPERIMENTAL DATA

table measurehents of oxygen content of biluteil samples (ilatal,pph) ani III- 1 HMMENSIONLESS FOOL CONCENTKATION(IATAZ) FOR RUN 1-5324- 71 -B

SAMPLE POSITION

TIME (MIN.)

	0.		5.		10.		15.	
	IATAI	intal	IIATAI	IATA2	IATAI	IIATAZ	IIATAI	If TA2
A	8.62	. 20247	8.73	. 21679	8.81	. 22721	8.98	. 24934
E	8.68	. 21028	8.75	. 21940	8.89	. 23763	9.01	. 25325
c	8.68	. 21028	8.70	. 21289	8.87	. 23502	8.95	. 24544
II	8.69	. 21159	8.72	. 21549	8.80	. 22591	8.91	. 24023
average		. 20866		. 21614		. 23144		. 24706
S.II.		.00361		. 00235		. 00499		. 00482

TEAPERATURE : $19.75{ }^{\circ} \mathrm{C}$ OXYGEN CONCENTRATION OF air satukatell histilleil hater
$: 8.50$
8.53
8.58 average 8.537
table heasurements of oxygen content of inluten samples (inatal, fFM) ant III- 2 MIMENSIONLESS POOL CONCENTRATION(IIATA2) FOR RUN 1-5324- 71-S

$\begin{aligned} & \text { SAMPLE } \\ & \text { POSITION } \end{aligned}$	TIME (MIN.)							
	0.		30.		60.		90.	
	IATAI	IIATA2	datal	dataz	datal	IIATA2	IATAI	IIATA2
A	8.63	. 20944	8.74	. 22415	8.83	. 23620	9.95	. 25225
B	8.65	. 21211	8.72	. 22148	8.85	. 23887	9.00	. 25895
C	8.70	. 21880	8.70	. 21880	8.88	. 24289	8.97	. 25493
I	8.72	. 22148	8.75	. 22549	8.80	. 23218	8.91	. 24690
average		. 21546		. 22248		. 23754		. 25326
S.I.		. 00487		. 00257		. 00390		. 00437

TEMPERATURE : $21.00^{\circ} \mathrm{C}$ PRESSURE : 765 MM HG
OXYGEN CONCENTRATION OF air gaturated listilleli hatek
: 8.50
8.53
8.58 avERAGE
8.537
table measurements of oxygen content of illuted samples (liatal,fpm) and III- 3 IIIMENSIONLESS FOOL CONCENTFATION(IATAZ) FOR RUN 1- 8908- 198-B

SAMPLE
TIME (MIN.)
POSITION

	0.		5.		10.		15.	
	IIATAI	IIATA2	datal	IIATA2	IATAI	dataz	Intal	IATA2
A	8.70	. 20969	8.96	. 24414	9.12	. 26534	9.31	. 29051
B	8.75	. 21632	9.00	. 24944	9.20	. 27593	7.40	. 30243
	8.70	. 20969	8.85	. 22956	9.15	. 26931	7.27	. 28521
I	8.73	. 21367	8.95	. 24281	9.15	. 26931	9.42	. 30508
average		. 21234		. 24149		. 26997		. 295881
S.ll.		. 00281		. 00732		. 00381		. 00822

temperature : $20.55 \times \mathrm{C}$
PRESSURE : 765 MM Hg
OXYGEN CONCENTRATION OF alk saturatel distilleil water
: $8.65 \quad 8.60$
8.55
AVERAGE 8.600
tafle neasurements of oxygen content of illutel samples (iatal,fpm) and III- 4 IIMENSIONLESS FOOL CONCENTRATION(DATA2) FOR KUN 1-8908-198-S

SAMFLE FOSITION	time (MIN.)							
	0.		30.		60.		90.	
	IIATAI	dataz	datal	IIATA2	IIATA1	IIATAZ	liatal	IATAZ
A	8.72	. 21072	8.90	. 23438	8.95	. 24096	9.10	. 26068
H	8.68	. 20546	8.88	. 23175	8.95	. 24096	9.11	. 26197
c	8.75	. 21466	8.89	. 23307	9.02	. 25016	9.04	. 25279
II	8.72	. 21072	8.80	. 22124	9.00	. 24753	9.08	. 25805
average		. 21039		. 23011		. 24490		. 25838
S.II.		. 00327		. 00521		. 00405		. 00352

| TEMPERATURE : $20.20^{\circ} \mathrm{C}$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| PRESSURE : 765 MN HG | | | |
| OXYGEN CONCENTRATION OF | 8.65 | 8.60 | 8.55 |
| AIR SATURATEI IISTILLED UATER | AVERAGE | 8.600 | |

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEII SAMFLES(TATAI,FFM) ANII III- 6 UIMENSIONLESS FOOL CONCENTRATION(IATA2) FOR RUN 1-13687-466-S

SAMFLE POSITION	TIME (MIN.)							
					60.			
	0.		30.				90.	
	DATAI	dATA2	IIATAI	IIATA2	IATAI	IIATA2	IIATAI	IIATA2
A	8.71	.22162	8.80	. 23366	8.97	. 25641	9.21	.28852
B	8.70	. 22028	8.90	. 24704	9.00	. 26042	9.12	. 27648
C	8.80	. 23366	8.95	. 25373	9.07	. 26979	9.10	. 27380
1	8.65	. 21359	8.88	. 24436	9.10	. 27380	9.20	. 28718
AVERAGE		. 22229		. 24470		. 26511		.28150
S.II.		. 00724		. 00723		. 00699		.00644

```
TEMFERATURE : 21.00*C
PRESSURE : 765 MM HG
OXYGEN CONCENTRATION OF : 8.47 8.60 8.50
    AIR SATURATEI IISTILLED WATER
```

```
    AVERAGE 8.523
```

```
    AVERAGE 8.523
```

table measurements of oxygen content of imluted samples (iatal,pph) and III- 7 HIMENSIONLESS FOOL CONCENTKATION(IATAZ) FOR RUN 1-21044-1103-H

$\begin{aligned} & \text { SAMPLE } \\ & \text { POSITION } \end{aligned}$	time (MIN.)							
		0.		5.		10.		5.
	datal	IATA2	datal	IIATA2	datal	IATA2	DATAI	IATA2
A	8.81	. 21725	10.08	. 38349	10.75	. 47120	11.82	. 61126
B	8.75	. 20940	10.20	. 39920	10.88	. 48822	11.85	. 61519
c	8.76	. 21071	10.15	. 39266	10.65	. 45811	11.80	. 60864
II	8.75	. 20940	10.00	. 37302	10.70	. 46465	11.75	. 60210
average		. 21169		. 38709		. 47054		.60930
S.II.		. 00326		. 00986		. 01120		. 00476
$\begin{array}{ll} \text { TEMPERATURE } & : 20.00^{\circ} \mathrm{C} \\ \text { PRESSURE } & : 765 \mathrm{MM} \mathrm{Hg} \end{array}$								
AIR SATU	ATEI	STILLEX	ATEK	: 8.60 average	$\begin{aligned} & 8.65 \\ & 8.640 \end{aligned}$	8.67		

table measurements of oxygen content of iflutel samples(liatal,pph) anit III-8 UIMENSIONLESS POOL CONCENTRATION(IATAZ2) FOR RUN 1-21044-1103-S

SAMFLEPOSITION	time (MIN.)							
	0.		30.		60.		90.	
	If TAI	IIATA2	DATAI	IIATA2	datal	IATA2	IATAI	dataz
A	8.81	. 21820	9.15	. 26290	9.28	. 27999	9.42	. 29840
B	8.88	. 22740	9.00	. 24318	9.30	. 28262	9.35	. 28919
c	8.85	. 22346	9.08	. 25370	9.29	. 28131	9.37	. 29182
1	9.00	. 24318	9.05	. 24975	9.20	. 26947	9.40	. 29577
AVERAGE		. 22806		. 25238		.27835		. 29390
S.ll.		. 00932		. 00714		. 00521		. 00354
TEMPERATURE : $20.20^{\circ} \mathrm{C}$ PRESSURE : 765 MA HG								
OXYGEN CONCENTRATION OF				: 8.60	8.65	8.67		
alk satur	ATEII	Stilleil	ATER	average	8.640			

table neasurements of oxygen content of illutei samplegsiatal, ppa) and III-9 HMENSIONLESS FOOL CONCENTFATION(IATAZ) FOR FUN 1-24337-1536-B

$\begin{aligned} & \text { SAMPLE } \\ & \text { POSITION } \end{aligned}$	TIME (MIN.)							
		0.		5.		10.		15.
	IIATAI	dataz	datal	IIATA2	IATAI	If TAL	datal	IATA2
A	8.99	. 22749	10.66	. 44753	11.26	. 52659	12.00	. 62409
E	8.95	. 22222	10.53	. 43040	11.70	. 58456	11.75	. 59115
C	9.02	. 23144	10.52	. 42908	11.65	. 57797	11.80	. 59774
I	8.95	. 22222	10.40	. 41327	11.50	. 55821	11.90	.61091
average		. 22584		. 43007		. 56183		. 60597
S.II.		. 00338		. 01213		. 02254		. 01265
TEMFERATURE : $20.30^{\circ} \mathrm{C}$ PRESSURE : 765 MM HG								
oxygen concentration of				: 9.77	8.76	8.80		
air saturatel imstilleit water				average	8.777			

table measurements of oxygen content of dilutel sahples(iatal,ppm) and III-10 DIHENSIONLESS POOL CONCENTRATION(IATA2) FOR FUN 1-24837-1536-S

SAMFLEPOSITION	TIME (MIN.)							
	0.		30.		60.		90.	
	datal	IIATA2	datal	IATA2	liatal	IATAZ	IATAI	IATA2
A	9.05	. 23437	9.34	. 27241	9.48	. 29078	9.80	. 33276
E	9.05	. 23437	9.30	. 26717	9.53	. 29734	9.73	. 32358
C	9.07	. 23699	9.27	. 26323	9.45	. 28685	9.60	. 30352
1	9.10	. 24093	9.20	. 25405	9.51	. 29472	9.36	. 31439
averiage		. 23667		. 26422		. 29242		. 31931
S.II.		. 00268		. 00671		. 00398		. 00983
TEMPERATURE : $20.10^{\circ} \mathrm{C}$								
PRESSURE : 765 MH Hg								
OXYGEN CONCENTRATION OF				: 8.77	8.76	8.80		
alk satu	ATEII	IStilleil	ater	average	8.777			

TAFLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMFLES(IATAI, PFM) ANII III-11 IIHENSIONLESS POOL CONCENTFATION(IATA2) FOR RUN 1-28019-2068-b

$\begin{aligned} & \text { SAMFLE } \\ & \text { POSITION } \end{aligned}$	TIME (MIN.)							
	0.			5.	10.		15.	
	datal	dataz	dATAI	IIATA2	IATAI	IIATAZ	Ilatal	UATA2
A	8.65	. 23753	10.60	. 49559	11.55	. 62131	12.10	. 69410
E	8.70	. 24414	10.70	. 50882	11.60	. 627.93	11.80	. 65440
c	8.60	. 23091	10.80	. 52206	11.40	. 60146	11.90	. 66763
II	8.70	. 24414	10.80	. 52206	11.41	. 60278	11.80	. 65440
Average		. 23918		. 51213		. 61337		. 66763
S.I.		. 00549		. 01097		. 01150		. 01621
TEMPERATURE : $20.50^{\circ} \mathrm{C}$								
PRESSURE : 765 MH HG								
OXYGEN CONCENTRATION OF				: 8.20	8.30	8.35		
AIR SATU	Ratell il	STILLEI	ATER	average	8.283			

table heasurements of oxygen content of inluten samples (iatal, pfal ani III-12 IIMENSIONLESS FOOL CONCENTRATION(IATA2) FOR RUN 1-28819-2068-S

SAMPLE POSITION	time (MIN.)							
	0.		30.		60.		90.	
	Ifatal	dataz	IIATAI	Intaz	[iAtal	IIATA2	IIATAI	IIATA2
A	8.70	. 24414	8.90	. 27061	9.10	. 29708	9.45	. 34340
H	8.80	. 25738	9.10	. 29708	9.20	. 31031	9.35	. 33016
C	8.80	. 25738	8.90	. 27051	9.17	. 30634	9.45	. 34340
II	8.65	. 23753	9.00	. 28385	9.25	. 31693	9.37	. 33281
average		. 24911		. 28054		. 30767		. 33744
S.II.		. 00860		. 01097		. 00719		. 00603
TEMPERATURE : $20.50^{\circ} \mathrm{C}$								
PRESSURE : 765 MM HG								
OXYGEN CONCENTRATION OF				: 8.20	8.30	8.35		
alk satura	atell	Stillei	ater	average	2.233			

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMFLES(DATAI;PPM) ANI III-13 IINENSIONLESS FOOL CONCENTRATION(IATA2) FOR RUN 2-0-5251- 69-b

SAMPLE
POSITION

	0.		5.		10.		15.	
	IIATAI	IIATA2	IIATAI	IIATA2	IATAI	IIATA2	IIATAI	IATA2
A	8.75	. 21389	8.85	. 22712	8.90	. 23374	8.95	. 24036
B	8.78	. 21786	8.80	. 22050	8.91	. 23506	9.00	. 24697
C	8.70	. 20727	8.83	. 22448	8.90	. 23374	8.98	. 24433
0	8.65	. 20065	8.78	. 21786	8.85	. 22712	8.95	. 24036
average		. 20992		. 22249		. 23242		. 24300
S.II.		. 00655		. 00356		. 00310		. 00281

TEAPERATURE	$: 20.50^{\circ} \mathrm{C}$
PRESSURE	$: 765 \mathrm{HM} \mathrm{HG}$

OXYGEN CONCENTRATION OF aif saturatel ilistilleil hater
: 8.64
8.62
8.60 AVERAGE 8.620
table heasurements of oxygen content of inluted samples (iatal, pfm) and III-14 DIMENSIONLESS POOL CONCENTRATION(IIATA2) FOR RUN 2-0- 5251- 69-S

$\begin{aligned} & \text { SAMPLE } \\ & \text { FOSITION } \end{aligned}$	TIME (MIN.)							
	$\text { DATA1 } \stackrel{0}{\text { DATA2 }}$		30.		60.		90.	
			dATA1	IIATA2	DATAI	IIATA2	IATAI	dataz
A	8.85	. 22712	8.92	. 23639	9.01	. 24830	9.10	. 26021
B	8.81	. 22183	8.90	. 23374	9.00	. 24697	9.09	. 25888
c	8.82	. 22315	8.96	. 24168	9.08	. 25756	9.12	. 26285
[8.90	. 23374	8.95	. 24036	9.03	. 25094	9.13	. 26418
average		. 22646		. 23804		. 25094		. 26153
S.I.		. 00463		.00316		. 00408		. 00209

```
TEMPERATURE : 20.50%C
PRESSURE : 765 MM HG
OXYGEN CONCENTFATION OF : 8.64 8.62 8.60
AIR SATURATEII IISTILLED WATER
```

```
    AVERAGE 8.620
```

```
    AVERAGE 8.620
```

TABLE MEASUREMENTS OF OXYGEN CONTENT OF DILUTEI SAMFLES(IAATAI,PPH) AND III-15 UIMENSIONLESS FOOL CONCENTRATION(IATA2) FOR RUN 2-0-7640-145-B

SAMPLE FOSITION	time (MIN.)							
	0.		5.		10.		15.	
	datal	dataz	dATAI	IIATA2	IATA1	IATA2	IATAI	dataz
A	8.96	.21072	9.20	. 24227	9.40	. 26857	9.70	. 30801
H	9.00	. 21598	9.30	. 25542	9.43	. 27251	9.66	. 30275
C	8.92	. 20546	9.17	. 23833	9.49	. 28040	9.67	. 30406
II	9.00	. 21598	9.27	. 25148	9.50	. 28171	9.70	. 30801
average		. 21203		. 24687		. 27580		. 30571
S.II.		. 00436		. 00686		. 00546		. 00235

TEMPERATURE : $20.20^{\circ} \mathrm{C}$ PRESSURE : 765 NM HG

| OXYGEN CONCENTRATION OF | $: 8.87$ | 8.90 | 8.90 |
| :---: | :--- | :--- | :--- | :--- |
| AIR SATURATED IISTILLEII WATER | AVERAGE | $\mathbf{8 . 8 9 0}$ | |

table heasurements df oxygen content of iiluten samples (datal,pFn) ani III-16 IIMENSIONLESS POOL CONCENTRATION(IATA2) FOR KUN 2-0-7640-145-S

SAMFLE POSITION	TIME (MIN.)							
		0.		30.		60.		90.
	DATAI	dataz	IIATA1	IIATA2	IIATAI	IIATA2	liatal	dataz
A	8.91	. 20594	9.10	. 23114	9.23	. 24839	9.32	. 26032
H	8.98	. 21523	9.15	. 23778	9.21	. 24573	9.29	. 25634
C	9.00	. 21788	9.08	. 22849	9.25	. 25104	9.32	. 26032
II	8.99	. 21655	9.20	. 24441	9.24	. 24971	7.33	. 26165
average		. 21390		. 23545		. 24872		. 25966
5.J.		. 00469		. 00618		. 00196		. 00199
TEAFERATURE $: 20.60^{\prime} \mathrm{C}$ PRESSURE $: 765 \mathrm{NM} \mathrm{Hg}$								
OXYGEN CONCENTEATION OF				: 8.87	8.90	8.90		
aik saturated distilled water				average	8.890			

table measurements of oxygen content of illutei samples(matal,ppm) anil III-1, IIMENSIONLESS FOOL CONCENTKATION(DATA2) FOR RUN 2-0-12419-384-B

SAMpLE POSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	intal	IIATA2	dATAI	IIATA2	IATAI	dataz	Intal	IIATA2
A	9.05	. 21566	9.85	. 32084	10.50	. 40630	11.10	. 48518
B	9.02	. 21172	9.80	. 31426	10.45	. 39972	11.10	. 48518
C	8.95	. 20251	9.75	. 30769	10.39	. 39183	11.03	. 47598
I	9.03	. 21303	9.88	. 32478	10.55	. 41287	11.05	.47861
average		. 21073		. 31689		. 40268		. 48124
S.II.		. 00495		. 00651		.00780		. 00405

TEMFERATURE : $20.20^{\circ} \mathrm{C}$ FRESSURE : 765 MM HG OXYGEN CONCENTFATION OF : 8.95 8.97 8.94 air satukated histilleil water AVERAGE 8.953
table heasurehents of oxygen content of iiluted samples (iatal, fpm) and III-18 DIMENSIONLESS POOL CONCENTRATION(IIATA2) FOR RUN 2-0-12419-384-S

$\begin{aligned} & \text { SAMPLE } \\ & \text { FOSITION } \end{aligned}$	time (MIN.)							
	0.		30.		60.		90.	
	IIATAI	dataz	UATAI	IATA2	dital	IIATA2	IATAI	DATA2
A	9.10	. 22127	9.45	. 26708	9.52	. 27625	9.72	. 30243
	9.18	. 23174	9.43	. 26447	9.48	. 27101	9.60	. 28672
C	9.20	. 23436	9.35	. 25399	9.48	. 27101	9.58	. 28410
11	9.25	. 24090	9.35	. 25399	9.54	. 27886	9.65	. 29326
average		. 23207		. 25988		. 27428		. 29163
S.II.		. 00707		. 00596		. 00340		.00707

TEMPERATURE : $20.00^{\circ} \mathrm{C}$
Pressure : 765 Min hg
OXYGEN CONCENTEATION OF : 8.95 8.97 $\quad 8.94$ aik saturated itstilled hater average 8.953
table heasurements of oxygen content of illuted samfles (datal,ppm) anil III-19 IIMENSIONLESS FOOL CONCENTRATION(IATA2) FOR FUN 2-0-14410-517-G

SAMPLE FOSITION	time (hin.)							
	0.		5.		10.		15.	
	datal	dataz	datal	ilataz	IATA1	IATAZ	IATAI	IATA2
A	9.55	. 25706	10.52	. 38404	11.29	. 48483	11.89	. 56337
-	9.49	. 24921	10.52	. 38404	11.25	. 47959	11.72	. 54112
C	9.52	. 25314	10.50	. 38142	11.39	. 49792	11.78	. 54897
11	9.50	. 25052	10.39	. 36702	11.12	. 46258	11.72	. 54112
Average		. 25248		. 37913		. 48123		. 54864
S.II.		. 00300		. 00707		. 01267		. 00909
temperature : $20.00^{\circ} \mathrm{C}$								
PRESSURE : 765 MM HG								
OXYGEN CONCENTRATION OF				$: 9.20$	9.15	9.15		
AIF SATU	Rated	IStilleit	ater	average	9.167			

tafle measurements of oxygen content of illuted samples (iatal,ppm) and III-20 IIMENSIONLESS POOL CONCENTRATION(IIGTA2) FOK FUN 2-0-14410-517-5

SAMFLEPOSITION	time (HIN.)							
	0.		30.		60.		90.	
	datal	IATA2	datal	UATA2	IIATAI	dataz	DATAI	dataz
A	9.39	. 23561	9.65	. 26957	9.85	. 29569	10.09	. 32704
B	9.45	. 24344	9.62	. 26565	9.75	. 28263	10.05	. 32181
c	9.59	. 26173	9.60	. 26304	9.85	. 29569	9.95	. 30875
II	9.55	. 25650	9.65	. 26957	9.78	. 28655	10.00	. 31528
average		. 24932		. 26695		. 29014		. 31822
S.II.		. 01035		. 00277		. 00572		. 00587
TEMPERATURE : $19.90^{\circ} \mathrm{C}$								
PRESSURE : 765 MM HG								
OXYGEN CONCENTRATION OF				$: 9.20$	9.15	9.15		
alk satural	ATEII	Stilled	ATER	average	7.167			

table measurements of oxygen content of imlutel samples (iatal, fph) anil III-21 JIMENSIONLESS FOOL CONCENTKATION(IATA2) FOK FUN 2-0-16401-670-G

$\begin{aligned} & \text { SAMPLE } \\ & \text { FOSITION } \end{aligned}$	TIME (MIN.)							
	0.		5.		10.		15.	
	IIATAI	IAATA2	IIATAI	IIATA2	IATAI	IATA2	IATAI	IIATA2
A	9.22	. 22627	10.62	. 40993	11.55	. 53194	12.35	. 63689
B	9.28	. 23414	10.75	. 42697	11.42	. 51488	12.08	. 60147
c	9.22	. 22627	10.58	. 40469	11.28	. 49652	12.29	. 62902
II	9.23	. 22759	10.59	. 40600	11.15	. 47946	12.22	. 61983
average		. 22857		. 41190		. 50570		. 62180
S.I.		. 00326		. 00892		. 01966		. 01320
TEMPERATURE : $20.10^{\circ} \mathrm{C}$ PRESSUFE : 765 MH HG								
oxygen concentration of				$: 9.00$	9.10	9.07		
alr satur	ateil	Stilleil	ATER	avekage	9.057			

table measurehents of oxygen content of illutel samples (iatal, ffm) and III-22 IIMENSIONLESS FOOL CONCENTKATION(IATA2) FOR KUN 2-0-16401-670-S

SAMPLE POSITION	time (MIN.)						90.	
	0.		30.		60.			
	IATAI	iataz	IATAI	IATA2	IIATA1	Ilataz	IIATAI	Ilataz
A	9.29	. 23753	9.45	. 25870	9.65	. 28517	9.84	. 31031
B	9.20	. 22562	9.47	. 26135	9.65	. 28517	9.85	. 31164
c	9.25	. 23223	9.40	. 25208	9.64	. 28385	9.85	. 31164
I	9.30	. 23885	9.45	. 25870	9.60	. 27855	9.80	. 30502
average		. 23356		. 25771		. 28318		. 30965
S.II.		. 00521		. 00342		. 00273		. 00273
Jemperature : $20.50{ }^{\circ} \mathrm{C}$								
PRESSURE : 765 MH HG								
OXYGEN CONCENTRATION OF				$: 9.00$	9.10	9.07		
AIf Satu	rateil	Stilled	ater	Average	9.057			

TAELE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEII SAMPLES(IATAI, PFH) AND III-23 IIIHENSIONLESS POOL CONCENTRATION(IIATA2) FOK RUN 2-A- 5251- 69-8

SAMPLE POSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IATA1	dataz	IIATAI	IIATA2	IIATAI.	IIATA2	IIATAI	IIATA2
A	8.70	. 20172	8.78	. 21228	8.89	. 22681	8.96	.23605
B	8.68	. 19908	8.80	.21492	8.86	. 22284	8.95	. 23473
C	8.65	.19511	8.81	.21624	8.90	. 22813	8.97	. 23737
II	8.71	. 20304	8.80	.21492	8.85	. 22152	8.95	. 23473
AUERAGE		. 19974		. 21459		. 22483		. 23572
S.II.		. 00303		.00144		. 00272		. 00109

TEMPERATURE : $20.40^{\circ} \mathrm{C}$
PRESSURE : 765 MM HG
OXYGEN CONCENTRATION OF : 8.68 8.62 8.70
AIK SATURATEII IISTILLEII WATER
AVERAGE 8.667

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEII SAMFLES(IIATAI, FFM) ANII III-24 IIMENSIONLESS POOL CONCENTRATION(IATA2) FOR RUN 2-A-7640-145-B

SAMPLE POSITION	TIME (MIN.)							
					10.		15.	
	0.		5.					
	IIATAI	JATA2	IATAI	IIATA2	IATAI	IIATA2	IAATAI	IIATA2
A	8.83	. 21817	9.00	. 24054	9.30	.28003	9.48	. 30372
E	8.75	. 20764	9.02	.24317	9.25	.27344	9.45	. 29977
C	8.80	. 21422	8.95	. 23396	9.20	. 26686	9.50	. 30635
II	8.80	. 21422	9.00	.24054	9.30	.28003	7.51	.30766
AUERAGE		. 21356		. 23955		. 27509		. 30437
S.II.		. 00378		. 00340		. 00546		. 00302

| TENPEKATURE : $20.25^{\prime} \mathrm{C}$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| PRESSURE : 765 MK HG | | | |
| OXYGEN CONCENTRATION OF | 8.68 | 8.62 | 8.70 |
| AIR SATURATEII IISTILLEI WATER | AUEFAGE | 8.667 | |

TABLE HEASUREMENTS OF OXYGEN CONTENT OF IILUTED GAMFLES(IATAI,FPM) AND III-25 IIMENSIONLESS FOOL CONCENTKATION(IATA2) FOR FUN 2-A-12419-384-B

SAMFLE POSITION	tIME (MIN.)							
	0.		5.		10.		15.	
	IIATAI	IIATA2	datal	IATA2	IATAI	IIATA2	IATAI	IIATAZ
A	8.60	. 21359	9.20	. 29335	10.05	. 40633	10.85	. 51267
B	8.51	. 20163	9.30	. 30664	10.05	. 40633	10.75	. 49938
c	8.54	. 20562	9.40	. 31993	10.00	. 39969	10.60	. 47944
II	8.70	. 22689	9.25	. 30000	9.90	. 38640	10.90	. 50603
average		. 21193		. 30498		. 39969		. 49938
S.I.		. 00965		. 00983		. 00814		. 01243

```
TEMPERATURE : 20.70'C
PRESSURE: :765 MM HG
OXYGEN CONCENTRATION OF : 8.45 8.50 8.40
    AIF SATUKATEII IISTILLED WATER AVERAGE 0.450
```

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEII SAMPLEG(IATAI,FPM) ANI III-26 JIMENSIONLESS POOL CONCENTKATION(DATA2) FOF FUN 2-A-14410-517-B

SAMFLE POSITION	TIME (MIN.)							
							15.	
	0.		5.		10.			
	IIATAI	ILTA2	IIATAI	In TA2	IATAI	IIATA2	IIATAI	IATA2
A	8.70	. 21394	9.60	. 33150	10.60	. 46211	11.00	. 51436
H	8.70	. 21394	9.70	. 34456	10.80	. 48824	11.40	. 56661
c	8.80	. 22700	9.90	. 37068	10.57	. 45820	11.40	. 56661
\square	8.68	. 21133	9.80	. 35762	10.70	. 47518	11.41	. 56791
average		. 21655		. 35109		. 47093		. 55387
S.II.		. 00613		. 01460		. 01181		. 02282
Temperature : 19.90 ${ }^{\circ} \mathrm{C}$								
PRESSURE : 765 MH HG								
OXYGEN CONCENTRATION OF				: 8.50	8.60	8.50		
alr satu	ATEII	STILLEI	ATER	average	8.533			

table measurements of oxygen content of illuten samples (iatal, pph) and III-27 IIMENSIONLESS FOOL CONCENTRATION(DATA2) FOR FUN 2-A-16401-670-F

SAMFLE FOSITION	time (MIN.)							
	0.		5.		10.		15.	
	IIATAI	Intaz	IATAI	lataz	intal	IIATA2	IIATAI	IATA2
A	8.85	. 23404	10.10	. 39767	11.20	. 54166	12.00	. 54638
B	8.73	. 21833	10.00	. 38458	11.00	. 51548	11.85	. 62674
¢	8.79	. 22619	10.15	. 40421	11.20	. 54166	11.80	. 62020
II	8.80	. 22750	9.95	. 37803	11.10	. 52857	12.00	. 64638
avekage		. 22652		. 39112		. 53184		. 63493
S.II.		. 00558		. 01035		. 01085		. 01169

TEMPERATURE : $20.00^{\circ} \mathrm{C}$ PRESSURE : 765 MM HG OXYGEN CONCENTRATION OF aik saturateil ilistillefi water
: 8.50
8.60
8.50
AVERAGE 8.533
table heasurements of oxygen content of uilutei sampleg(tatal, pph ani III-28 IIMENSIONLESS FOOL CONCENTFATION(IATA2) FOR RUN 2-5-5251- 69-E

$\begin{aligned} & \text { SAMFLE } \\ & \text { POSITION } \end{aligned}$	TIME (HIN.)							
	0.			5.	10.		15.	
	datal	datal	[IATAI	IIATAZ	datal	IIATA2	IIATAI	IATA2
A	8.55	. 19417	8.62	. 20337	8.71	. 21521	8.80	. 22704
B	8.57	. 19680	8.61	. 20206	8.75	. 22047	8.85	. 23361
c	8.59	. 19943	8.65	. 20732	8.75	. 22047	8.85	. 23361
11	8.56	. 19549	8.62	. 20337	8.69	. 21258	9.81	. 22835
average		. 19647		. 20403		. 21718		. 23066
S.II.		. 00194		. 00197		. 00342		. 00299
TEMPERATURE : $20.20^{\circ} \mathrm{C}$								
PRESSURE : 765 MM HG								
OXYGEN CONCENTRATION OF				$: 8.50$	8.60	8.54		
alk satu	rated	Stilled	ater	average	8.547			

TAFLE MEASUREMENTS OF OXYGEN CONTENT OF IIILUTEI SAMFLES (DATAI, PFY) ANII III-29 IIMENSIONLESS FOOL CONCENTKATION(IIATAZ) FOF RUN 2-E1-7640-145-B

SAMFLE FOSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IATAI	IIATAZ	IATAI	IATA2	dital	IIATAZ	[IATA]	IATA2
A	8.75	. 21999	8.85	. 23310	9.15	. 27246	9.45	.31182
E	8.68	. 21080	8.90	. 23966	9.18	. 27640	9.35	. 29870
c	8.70	. 21343	8.89	. 23835	9.25	. 28558	9.47	. 31444
II	8.80	. 22654	8.92	. 24229	9.19	. 27771	9.45	. 31182
average		. 21769		. 23835		. 27304		. 30919
S.II.		. 00611		. 00334		. 00476		. 00615

TEMFERATURE : $20.10^{\circ} \mathrm{C}$ PRESSURE : 765 MM HG OXYGEN CONCENTEATIOR OF
$: 8.50$
8.60
9.54 AVERAGE 8.547
aik saturatel iistillefl hatek

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMFLES(IATAI,PPM) ANI III-30 IIMENSIONLESS POOL CONCENTKATION(IIATA2) FOR RUN 2-E-12419-384-H

SAMPLE FOSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IATAI	dATA2	datal	[IATA2	IATAI	intaz	datal	IATA2
A	8.63	. 21376	9.15	. 28212	10.00	. 39387	10.75	. 49248
B	8.57	. 20587	9.35	. 30842	10.15	. 41359	10.65	. 47933
c	8.61	. 21113	9.55	. 33471	9.95	. 38730	10.68	. 48328
\square	8.69	. 22164	9.45	. 32156	10.15	. 41359	10.80	. 49905
average		. 21310		. 31170		. 40209		. 48853
S.II.		. 00569		. 01945		. 01174		. 00772
TEMPERATURE : $20.20^{\circ} \mathrm{C}$ PRESSURE : 765 MM HG								
OXYGEN CONCENTRATION OF				: 9.52	8.40	8.47		
alk satur	ateli	IISTILLEI	ATER	average	8.463			

table measurements of oxygen content of miluten samfles (tiatal,ffm) and III-3I IIMENSIONLESS POOL CONCENTEATION(IATA2) FOR RUN 2-H-14410-517-G

$\begin{aligned} & \text { SAMPLE } \\ & \text { POSITION } \end{aligned}$	time (MIN.)							
	0.		5.		10.		15.	
	Intal	IIATAZ	datal	IATA2	datal	dataz	UATAI	IIATA2
A	8.62	. 21384	9.60	. 34354	10.35	. 44279	11.40	. 58175
H	8.60	. 21120	9.70	. 35677	10.35	. 44279	11.20	. 55528
c	8.53	. 20193	9.65	. 35015	10.60	. 47587	11.10	. 54204
II	8.45	. 19134	9.62	. 34618	10.55	. 46926	11.15	. 54866
average		. 20458		. 34916		. 45758		. 55.693
S.II.		. 00883		. 00498		. 01507		. 01507
TEMPEFATURE : $20.50{ }^{\circ} \mathrm{C}$								
PRESSUEE : 765 MM HG								
OXYGEN CONCENTRATION OF				: 8.52	8.40	8.47		
AIf Satu	ateil	STILLE	tek	AUERAGE	9.463			

table measurements of oxygen content of illutel sampleg (iatal, pfm) and III-32 IIAENSIONLESS POOL CONCENTEATION(IATA2) FOK RUN 2-B-16401-670-B

SAMPLEFOSITION	time (MIN.)							
	0.		5.		10.		15.	
	IIATAI	nataz	latal	IIATA2	ilatal	IATA2	IIATAI	LIATA2
A	8.92	. 23127	10.00	. 37420	11.20	. 53301	12.25	. 67197
B	8.80	. 21539	10.00	. 37420	11.15	. 52639	11.95	. 63226
C	8.80	. 21539	10.40	. 42714	11.35	. 55286	11.90	. 62565
D	8.90	. 22863	10.40	. 42714	11.20	. 53301	11.95	. 63226
average		. 22267		. 40067		. 53632		. 64053
S.II.		. 00734		. 02647		. 00993		. 01835
TEMFERATURE : $20.50{ }^{\circ} \mathrm{C}$								
PRESSURE : 765 MM HG								
OXYGEN CONCENTRATION OF				$: 8.60$	8.70	8.70		
AIk Satura	ATED	STILLEI	ATER	AVERAGE	8.667			

TAFLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMFLES(IATAI,FPM) ANI III-33 IIMENSIONLESS POOL CONCENTKATION(IIATA2) FOR RUN 2-C- 5251- 67-B

SAMFLE

TIME (MIN.)
FOSITION

	0.		5.		10.		15.	
	IATAI	IIATA2	liatal	IIATA2	IIATAI	IIATA2	IIATA1	dataz
A	8.70	. 20211	8.80	. 21513	8.89	. 22685	0.95	. 23466
B	8.71	. 20342	8.81	. 21644	8.90	. 22815	7.00	. 24117
¢	8.73	. 20602	8.78	. 21253	8.86	. 22295	8.97	. 23727
\square	8.70	. 20211	8.78	. 21253	8.90	. 22815	8.99	. 23997
averige		. 20342		. 21416		. 22653		. 23824
S.II.		. 00159		. 00169		. 00213		. 00250

TEMFEFATURE : 19.75% C PRESSURE : 765 MH HG
OXYGEN CONCENTEATION OF: $\quad 8.66$ 8.65 8.60
tafle measurements of oxygen content of irluteli samples (iatal,pph) ani III-34 IIMENSIONLESS FOOL CONCENTEATION(IIATA2) FOR RUN 2-C- 7640-145-F

SAMFLE POSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IATAI	dataz	UATAI	dATA2	IATAI	IATAZ	HATAI	intaz
A	8.82	. 22133	9.14	. 26367	9.38	. 29544	9.53	. 31529
E	8.80	. 21868	9.15	. 26500	9.35	. 29147	9.55	. 31793
C	8.87	. 22794	9.12	. 26103	9.30	. 28485	9.45	. 30470
II	8.80	. 21868	9.17	. 26765	9.32	. 28750	9.49	. 30999
average		. 22166		. 26434		. 28981		. 31198
S.II.		. 00379		. 00239		. 00401		. 00508

```
TEMPERATURE : 20.50'C PRESSURE : 765 MM HG
```

OXYGEN CONCENTRATION OF $\quad: 8.66 \quad 8.65 \quad 8.60$

TAFLE MEASUFEMENTS OF OXYGEN CONTENT OF IILUTEII SAMPLES(IATAI,PPM) ANI III-35 GIMENSIONLESS FOOL CONCENTRATION(IATA2) FOR FUN 2-C:-12419-394-B

SAMFLE FOSITION	TIME (MIN.)							
	0.			5.	10.		15.	
	IATAI	dataz	IIATAI	IIATA2	dATAI	IIATA2	IIATAI	IATA2
A	8.50	. 22461	9.10	. 30402	10.25	. 45621	10.55	. 49591
H	8.51	. 22594	9.27	. 32651	10.10	. 43636	10.50	. 48929
c	8.48	. 22197	9.41	. 34504	10.10	. 43636	10.55	. 49591
I	8.54	. 22991	9.33	. 33445	10.05	. 42974	10.75	. 52238
averiage		. 22560		. 32751		. 43966		. 50087
S.I.		. 00287		. 01507		. 00993		. 01271
TEMPERATURE : $20.50{ }^{\circ} \mathrm{C}$								
FRESSURE : 765 Mm HG								
OXyged concentration of				$: 8.20$	8.21	9.25		
alk satu	ated	istillefl	ATER	average	8.220			

takle heasurements of oxygen content of bilutei samples (iatat, frm) and III-36 DIMENSIONLESS FOOL CONCENTRATION(DATA2) FOR RUN 2-C-14410-517-B

SAMpLE POSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IIATAI	IATA2	DATAI	dataz	datal	dataz	IATAI	IATA2
A	8.82	. 23180	10.05	. 39476	10.70	. 48088	11.40	. 57361
B	8.79	. 22783	9.95	. 38151	10.80	. 49412	11.35	. 56699
[8.65	. 20928	9.75	. 35501	10.70	. 48088	11.40	. 57361
II	8.85	. 23578	10.00	. 38814	10.65	. 47425	11.20	. 54712
AVERAGE		. 22617		. 37986		. 48253		. 56533
S.II.		. 01015		. 01507		. 00722		. 01086

$\begin{array}{ll}\text { TEMPERATURE } & : 20.55^{\circ} \mathrm{C} \\ \text { PRESSURE } & : 765 \mathrm{MM} \mathrm{HG}\end{array}$
OXYGEN CONCENTRATION OF $\quad: 8.50 \quad 3.55 \quad 8.58$ aif satukatel ilistilled hater
average
8.543
tafle heasurements of oxygen content of inluten samples (ilatal, pph) ani III-37 IIMENSIONLESS FOOL CONCENTFATION(IATA2) FOR RUN 2-C-16401-670-B

SAMFLE FOSITION

	0.		5.		10.		15.	
	IATAI	IATA2	IIATA1	IIATA2	DATA1	IATAR	liatal	IIATA2
A	8.60	.20310	10.25	. 42219	11.10	. 53505	12.05	. 66118
B	8.60	. 20310	10.30	. 42882	11.20	. 54832	12.00	. 65455
C	8.75	. 22302	10.20	. 41555	11.05	. 52841	11.90	. 64127
II	8.80	. 22966	10.00	. 38899	11.05	. 52841	11.92	. 64392
averiage		. 21472		. 41389		. 53505		. 65023
S.II.		. 01185		. 01512		. 00813		. 00804

```
temferature : 20.65`C
PRESSURE : 765 MM HG
```

OXYGEN CONCENTRATION OF $\quad: 8.50 \quad 8.55 \quad 8.58$
aik saturateif ilistilleg hater

```
    AUERAGE 8.543
```

TARLE MEASURERENTS OF OXYGEN CONTENT OF IILUTEII GAMPLES(DATAI, PFK) ANI HII-38 IIMENSIONLESS FOOL CONCENTRATION(IIATA2) FOR RUN 4-0-5214- 68-B

SAMPLE
FOSITION

	0.		5.		10.		15.	
	IIATAI	IATA2	IATAI	Intaz	IIATAI	hataz	Intal	nataz
A	8.85	. 20814	8.90	. 21476	8.97	. 22402	9.10	. 24122
H	8.80	. 20152	8.87	. 21078	8.95	. 22137	9.05	. 23461
c	8.78	. 19887	8.83	. 20549	8.98	. 22534	9.07	. 23725
II	8.78	. 19887	8.85	. 20814	8.95	. 22137	9.05	. 23461
average		. 20185		. 20979		. 22303		. 23692
S.II.		. 00379		. 00342		. 00172		. 00271

PRESSURE : 765 MM HG
OXYGEN CONCENTRATION OF aik saturated mistilled hater
$: 8.77 \quad 8.80$ average 8.793
table measurenents of oxygen content of iilutel samples (iatai, pph) and III-39 IIMENSIONLESS FOOL CONCENTRATION(DATA2) FOR RUN 4-0- 5214- 68-S

SAMFLEFOSITION	time (MIN.)							
	0.		30.		60.		90.	
	IIATAI	IATA2	IATAI	IATA2	Intal	IATA2	IIATAI	IIATA2
A	8.68	. 19762	8.78	. 21082	8.90	. 22667	9.00	. 23987
B	8.60	. 18705	8.75	. 20686	8.88	. 22403	9.05	. 24648
¢	8.70	. 20026	8.85	. 22007	8.91	. 22799	9.02	. 24252
1	8.70	. 20026	8.80	. 21346	8.95	. 23327	9.01	. 24119
average		. 19630		. 21280		. 22799		. 24252
S.II.		. 00544		. 00481		.00337		. 00247
TEMPERATURE: $20.40{ }^{\circ} \mathrm{C}$								
OXYGEN CONCENTEATION OF				: 8.71	8.70	8.63		
AIk Satu	ated	STILLEI	ater	avekage	2.680			

table measurements of oxygen content of illuted samples (inatal,ppm) ang III-40 IIHENSIONLESS POOL CONCENTRATION(IIATA2) FOR RUN 4-0-6207- 96-F

SAMPLE POSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	datal	dataz	IATAI	dataz	datal	dataz	liatal	IATAZ
A	8.60	. 20418	8.70	. 21738	8.88	. 24115	9.05	. 26360
B	8.55	. 19757	8.80	. 23059	8.90	. 24379	9.10	. 27020
C	8.65	. 21078	8.72	. 22002	8.84	. 23587	9.08	. 26756
II	8.60	. 20418	8.70	. 21738	8.90	. 24379	8.95	. 25039
average		. 20418		. 22134		. 24115		. 26294
S.I.		. 00467		. 00544		. 00323		. 00761

$\begin{array}{ll}\text { TEMPERATURE } & : 20.40^{\circ} \mathrm{C} \\ \text { FRESSURE } & : 765 \mathrm{MM} \mathrm{HG}\end{array}$

| OXYGEN CONCENTRATION OF | $: 8.56$ | 8.50 | 8.51 |
| :--- | :--- | :--- | :--- | :--- |
| AIF SATURATEI UISTILLEI HATER | AVERAGE | 8.523 | |

tamle measurements of oxygen content of illuted samples (liatal,ppm) ani III-41 IIMENSIONLESS FOOL CONCENTRATION(IIATAZ) FOR FUN 4-0-6209- 96-S

TEMPERATURE:20.00 C FRESSURE: 765 MM HG OXYGEN CONCENTRATION OF $\quad: 8.10 \quad 8.15 \quad 8.09$ AIR SATURATEI IISTILLEI WATER

SAMFLE
POSITION

	0.		30.		60.		90.	
	dital	IIATA2	[\|ATAI	IIATA2	IATA1	IIATA2	IATA1	lataz
A	8.23	.19838	8.31	. 20885	8.48	.23111	8.61	. 24682
H	8.25	. 20100	8.30	. 20755	8.40	. 22064	8.58	. 24420
C	8.15	.18791	8.40	. 22064	8.47	. 22980	8.60	. 24682
1	8.20	.19446	8.35	.21409	8.45	. 22718	8.70	. 25991
AUEFAGE		. 19544		. 21278		.22718		.24943
S.II.		.00493		. 00515		. 00403		. 00614

TIME (MIN.)

TABLE HEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMPLES(IATAI,PFM) AND III-42 IIMENSIONLESS POOL CONCENTFATION(IATA2) FOR RUN 4-0-7205-129-B

$\begin{aligned} & \text { SAMFLE } \\ & \text { FOSITION } \end{aligned}$	TIME (MIN.)							
					10.		15.	
	0.		5.					
	IIATA1	IIATA2	IIATAI	[1ATA2	[IATAI	IIATA2	İATA1	diataz
A	8.90	. 22981	9.10	.25616	9.55	. 31545	7.76	. 34312
B	8.85	. 22322	9.20	. 26934	9.40	. 29569	9.75	. 34180
C	8.78	.21400	9.30	. 28251	9.50	. 30886	7.82	.35103
II	8.87	. 22586	9.23	. 27329	9.63	. 32599	9.80	. 34839
AVERAGE		. 22322		.27032		.31150		. 34609
S.II.		. 00582		. 00947		. 01098		.00377

TEMPERATURE : $20.30^{\circ} \mathrm{C}$
PRESSURE: 765 MM HG
OXYGEN CONCENTRATION OF : $9.60 \quad 8.62 \quad 8.72$ AIF SATUFATEII IISTILLEII WATER

AUEFAGE 8.647
table heasurements of oxygen content of inlutei samples(tiatai,ppm) ani III-43 IIMENSIONLESS FOOL CONCENTRATION(IATA2) FOK RUN 4-0-7205-129-5

SAMFLE FOSITION	time (MIN.)							
	0.		30.		60.		90.	
	IIATAI	iataz	datal	IIATA2	IIATAI	dataz	IATAI	Ilataz
A	8.79	. 22586	8.90	. 24035	9.00	. 25352	9.25	. 28647
B	8.70	. 21400	8.97	. 24957	9.10	. 26670	9.22	. 28251
	8.72	. 21663	8.82	. 22981	9.03	. 25748	9.20	. 27988
I	8.68	. 21136	8.90	. 24035	9.01	. 25484	9.18	. 27724
average		. 21696		. 24002		. 25814		. 28152
S.I.		. 00546		. 00700		. 00515		. 00341

temperature : 20.30ㄷ PRESSURE : 765 MM Hg oXygen concentration of alk saturated distilleif water
$: 8.50 \quad 8.60$
8.55 AVERAGE 9.550
tafle measurements of oxygen content of illutei samples(ilatai, fPM) and III-44 DIHENSIONLESS POOL CONCENTRATION(IATA2) FOR RUN 4-0-8200-167-6

SAMPLE FOSITION	TIME (MIN.)							
		0.		5.		10.		15.
	IIATAI	iataz	IIATAI	datal	IIATAI	IIATA2	IATAI	IATA2
A	8.80	. 21663	9.25	. 27592	9.70	. 33522	10.40	. 42745
B	8.86	. 22454	9.22	. 27197	9.80	. 34839	10.35	. 42086
C	8.75	. 21004	9.20	. 26934	9.75	. 34180	10.20	. 40110
I	8.87	. 22586	9.29	. 28119	9.69	. 33390	10.10	. 38792
average		. 21927		. 27461		. 33983		. 40933
S.II.		. 00639		. 00447		. 00578		. 01571
TEMPERATURE : $20.30^{\circ} \mathrm{C}$ PRESSURE : 765 AM HG								
OXYGEN CONCENTRATION OF				$: 8.60$	8.62	8.72		
air saturatel distilled water				average	8.647			

TAHLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMFLES (IATAI,FFM) ANII III-45 [IMENSIONLESS FOOL CONCENTFATION(BATA2) FOR FUN 4-0-8200-167-S

$\begin{aligned} & \text { SAHPLE } \\ & \text { POSITION } \end{aligned}$	TIME (MIN.)							
	0.		30.		60.		90.	
	UATAI	dataz	datal	Ihata2	liatal	IIATA2	IIATAI	Ilataz
A	8.42	. 20014	8.60	. 22371	8.75	. 24334	8.95	. 26952
E	8.50	. 21062	8.66	. 23156	8.75	. 24334	7.00	. 27607
C	8.40	. 19753	8.60	. 22371	8.83	. 25381	9.05	. 28261
II	8.40	. 19753	8.59	. 22240	8.81	. 25119	0.90	. 26298
average		. 20145		. 22534		. 24792		.27279
S.II.		. 00540		. 00363		. 00467		.00732
TEMPERATURE : $20.00^{\circ} \mathrm{C}$								
pressure : 765 Mn hg								
OXYGEN CONCENTRATION OF				: 8.36	8.30	8.32		
AIR SATU	atel id	Stilleil	ter	avekage	8.327			

TAFLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMFLES(IIATAI,FFH) ANI III-46 IIMENSIONLESS POOL CONCENTRATION(IATA2) FOK KUN 4-0-8698-188-B

SAMPLE POSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	datal	dataz	[IATAI	[1ATA2	datal	dataz	IIATAI	IIATA2
A	8.59	. 21681	9.05	. 27768	9.65	. 35709	10.21	. 43120
E	8.70	. 23137	9.12	. 28695	9.75	. 37032	10.20	. 42988
¢	8.70	. 23137	9.10	. 28430	9.60	. 35047	10.10	. 41664
II	8.71	. 23269	9.20	. 29754	9.70	. 36371	10.35	. 44973
average		. 22806		. 28662		. 36040		. 43186
S.I.		. 00652		. 00715		. 00740		.01178
TEMPERATURE : $20.50 \times \mathrm{C}$								
PRESSURE : 765 Mi he								
OXYGEN CONCENTRATION OF				: 8.33	8.42	8.45		
alr satura	ATEII	Stilled	ATER	average	8.400			

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IIILUTED SAMPLES(IATAI,FPM) ANA III-47 IIMENSIONLESS POOL CONCENTFATION(IIATA2) FOR FUN 4-0-8698-188-5

SAMFLE POSITION	IIME (MIN.)							
		0.		30.		60.		90.
	IATAI	diataz	[IATAI	IATA2	IATA1	dataz	IATAI	dataz
A	8.45	. 21004	8.60	. 22976	8.96	. 27709	9.03	. 28629
E	8.43	. 20741	8.71	. 24422	8.90	. 26920	9.05	. 28892
c	8.50	. 21661	8.80	. 25605	8.89	. 26789	9.10	. 29550
I	8.50	. 21661	8.72	. 24554	8.80	. 25605	7.00	. 28235
average		. 21267		. 24389		. 26756		. 28827
S.II.		. 00405		. 00936		. 00752		. 00477
TEmfekature : $20.20^{\circ} \mathrm{C}$								
PRESSURE : 765 MM HG								
OXYGEN CONCENTRATION OF				: 8.21	8.30	8.33		
aik saturateif distilled water				average	9.280			

TAFLE: MEASUREMENTS OF OXYGEN CONTENT OF IIILUTEII SAMFLES(IATAI, PPM) ANII III-48 IIMENSIONLESS FOOL CONCENTFATION(DATA2) FOR RUN 4-A- 5214- 69-B

SAMFLE
 POSITION

TIME (MIN.)

	0.		5.		10.		15.	
	IATAI	dataz	IIATAI	liATA2	DATAI	ditaz	IATAI	lataz
A	8.78	. 21279	8.85	. 22214	8.93	. 23282	9.00	. 24217
B	8.75	. 20879	8.81	. 21680	8.91	. 23015	9.05	. 24884
C	8.76	. 21012	8.79	. 21413	8.90	. 22881	9.00	. 24217
II	8.74	. 20745	8.82	. 21813	8.95	. 23549	9.03	. 24617
average		. 20979		. 21780		. 23182		. 24484
S.l.		. 00197		. 00289		. 00256		.00283

```
TEmpERATURE : 20.90'C
PRESSURE : 765 MM HG
OXYGEN CONCENTRATION OF
    AIK SATURATED IISTILLED WATER
```

```
: 0.70
8.70
8.65
average
8.693
```

```
AIR SATURATED IISTILLED WATER
```

table measurements of oxygen content of illuten samfles (latal,pph) and III-47 IIMENSIONLESS FOOL CONCENTRATION(IIATA2) FOR RUN 4-A- 6209- 96-B

$\begin{aligned} & \text { SAMFLE } \\ & \text { FOSITION } \end{aligned}$	TIME (MIN.)							
		0.		5.		10.		15.
	IATAI	iataz	datal	IATA2	IATAI	Ihataz	ilatal	IATA2
A	8.78	. 20977	8.82	. 21503	9.10	. 25189	9.30	. 27821
B	8.80	. 21240	8.90	. 22556	9.12	. 25452	9.20	. 26505
c	8.70	. 19924	8.90	. 22556	9.10	. 25189	9.23	. 26900
\square	8.79	. 21109	8.89	. 22425	9.13	. 25583	9.20	. 26505
average		. 20812		. 22260		. 25353		. 26933
S.ll.		.00521		. 00440		. 00171		. 00538
$\begin{array}{ll} \text { TEMPERATURE } & : 20.25{ }^{\prime} \mathrm{C} \\ \text { FRESSURE } & : 765 \text { MM HG } \end{array}$								
OXYGEN CONCENTFATION OF				: 9.65	8.70	8.70		
alr saturatel imstilled hater				average	8.693			

TABLE HEASUREMENTS OF OXYGEN CONTENT OF IILLUTEII SAMPLES(IIATAI,PFM) ANI III-50 IIMENSIONLESS POOL CONCENTKATION(IATA2) FOR RUN 4-A-7205-129-F

SAMPLE

TIME (MIN.)
FOSITION

	0.		5.		10.		15.	
	datal	IIATA2	IIATAI	IATA2	IIATAI	IIATA2	IIATAI	IIATA2
A	8.77	. 22762	9.00	. 25813	9.36	. 30587	9.40	. 31118
B	8.65	. 21171	9.10	. 27139	9.32	. 30057	7.55	. 33107
c	8.72	. 22099	9.15	. 27802	9.30	. 29792	9.40	.31118
II	8.68	. 21569	9.13	. 27537	9.30	. 29792	7.50	. 32444
average		. 21900		. 27073		. 30057		. 31947
S.II.		. 00597		. 00765		. 00325		. 00861

TEMFERATURE : 20.60ㄷ PRESSURE : 765 MM HG

| OXYGEN CONCENTRATION OF | : 8.45 | 8.57 | 8.55 |
| :--- | :--- | :--- | :--- | :--- |
| AIR SATURATEI IISTILLED WATER | AUERAGE | 8.523 | |

table measurements of oxygen content of imluted samples (iatal, pfal) ani III-51 IIMENSIONLESS POOL CONCENTRATION(IATA2) FOR RUN 4-A- 8200-16?-B

SAMFLE fosition	TIME (MIN.)							
	0.		5.		10.		15.	
	DATAI	IIATA2	datal	IIATA2	IATAI	IIATA2	IATAI	UATA2
A	8.65	. 21101	9.30	. 29694	9.70	. 34981	9.85	. 36964
H	8.70	. 21762	9.33	. 30090	9.90	. 37625	10.10	. 40269
C	8.80	. 23084	9.28	. 29429	7.85	. 36964	10.00	. 38947
11	8.70	. 21762	9.30	. 29694	9.82	. 36568	10.20	. 41591
avekage		. 21927		. 29727		. 36535		. 39443
S.II.		. 00720		. 00236		. 00973		. 01709
$\begin{array}{ll} \text { TEMPERATURE } & : 20.45^{\circ} \mathrm{C} \\ \text { PRESSURE } & : 765 \mathrm{HG} \end{array}$								
OXYGEN COACENTRATION OF				: 8.45	8.57	8.55		
air satu	ateli	Stillet	atek	average	8.523			

TAFLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEI SAMFLES(IIATAI,FPM) ANI III-52 DIMENSIONLESS POOL CONCENTRATION(IATA2) FOR RUN 4-A-8699-188-E

$\begin{aligned} & \text { SAMPLE } \\ & \text { FOSITION } \end{aligned}$	time (MIN.)							
	0.		5.		10.		15.	
	dital	liatar	IATAI	IIATA2	datal	IATAZ	IATAI	dataz
A	2.68	. 21412	9.20	. 28293	9.90	. 37557	10.15	. 40866
H	8.65	. 21015	9.30	. 29617	9.90	. 37557	10.38	. 43909
C	8.60	. 20353	9.35	. 30278	9.80	. 36234	10.30	. 42851
II	8.75	. 22338	9.45	. 31602	9.97	. 38483	10.40	.44174
average		. 21279		. 29948		. 37458		. 42950
S.II.		. 00719		. 01193		. 00802		. 01301
TEMFERATURE : $20.50{ }^{\circ} \mathrm{C}$								
PRESSURE : 765 MM Hg								
OXYGEN CONCENTRATION OF				: 8.48	8.60	8.52		
alk satu	ATEI	Stilled	ATER	average	8.533			

TAFLE MEASUREMENTS OF OXYGEN CONTENT OF IILUTEL SAMFLES(IATAI,FFM) ANI III-53 IIMENSIONLESS FOOL CONCENTKATION(IATA2) FOR FUN 4-G- 5214- 68-G

SAMPLE FOSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IIATAI	If ${ }^{\text {a }}$ A2	IATAI	IATA2	IATAT	Ihtaz	IIATAI	IIATA2
A	8.65	. 19262	8.80	. 21247	8.90	. 22571	8.95	. 23232
F	8.70	. 19924	8.72	. 20189	8.85	. 21909	8.70	. 22251
C	8.72	. 20189	8.75	. 20586	8.80	. 21247	8.98	. 23629
II	8.70	. 19924	8.79	. 21115	8.95	. 23232	9.05	. 24556
AUERgGE		. 19825		. 20784		. 22240		. 23497
S.II.		. 00342		. 00424		. 00740		. 00719
tehperature : $20.50{ }^{\circ} \mathrm{C}$								
PRESSURE : 765 HM HG								
OXYGEN CONCENTRATION OF				$: 8.73$	9.65	8.70		
alk satu	ATED I	STILLEII	atek	average	8.693			

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IILLUTEI SAMFLES(JATAI, FFM) ANI III-54 IIMENSIONLESS FOOL CONCENTRATION(IIATA2) FOK RUN 4-E-6209-96-E

$\begin{aligned} & \text { SAMPLE } \\ & \text { POSITION } \end{aligned}$	TIME (MIN.)							
	0.		5.		10.		15.	
	IATAI	Ihta2	IIATAI	lataz	IATAI	IAATA2	IIATAT	dataz
A	8.50	. 21353	8.70	. 24003	8.90	. 26652	9.10	. 29302
F	8.50	. 21353	8.72	. 24268	8.80	. 25327	9.05	. 29640
C	8.55	. 22015	8.65	. 23340	8.85	. 25990	9.00	. 27977
I	8.48	. 21088	8.75	. 24665	8.92	. 26917	9.12	. 29567
average		. 21452		. 24069		. 26222		. 28871
S.II.		. 00343		. 00482		. 00617		. 00617

```
TEMFERATURE : 20.55'C
FRESSURE : 765 MM HG
OXYGEN CONCENTKATION OF : 8.32 8.35 0.30
    aik Satukateil ilistillel natek
    AVERAGE 8.323
```

TABLE MEASUREMENTS OF OXYGEN CONTENT OF IIILUTEU SAMF'LES(IIATAI,FPM) ANI III-55 HIMENSIOMLESS FOOL CONCENTRATION(IAATAZ) FOK KUN 4-B-7205-129-B

$\begin{aligned} & \text { SAMPLE } \\ & \text { POSITION } \end{aligned}$	time (MIN.)							
	0.			5.	10.		15.	
	IATAI	IATA2	IATAI	IATA2	datal	IIATAZ	IIATAI	IIATA2
A	8.65	. 20619	8.95	. 24542	9.30	. 29119	9.60	. 33041
E	8.70	. 21273	9.00	. 25196	9.40	. 30426	9.61	. 33172
[8.69	. 21142	9.05	. 25850	9.35	. 29772	9.70	. 34349
1	8.70	. 21273	9.05	. 25850	9.30	. 29119	9.73	. 34741
average		. 21077		. 25359		. 29609		. 33826
S.II.		. 00270		. 00542		. 00542		. 00734
TEmPERATURE : $19.95{ }^{\circ} \mathrm{C}$								
FRESSURE : 765 MMH HG								
OXYGEN CONCENTRATION OF				: 8.49	8.59	8.56		
alf satur	atel If	Stilled	ATER	AUERAGE	8.547			

table measurements of oxygen content of hiluten saifles (iatal,pph) anil III-56 UIMENSIONLESS FOOL CONCENTKATION(IIATA2) FOR FUN 4-E-8200-167-B

$\begin{aligned} & \text { SAMFLE } \\ & \text { FOSITION } \end{aligned}$	TIME (MIN.)							
		0.		5.		10.		15.
	UATAI	IATAZ	datal	IATAZ	Intal.	IATA2	IIATAI	IIATA2
A	8.45	. 21129	9.15	. 30403	9.40	. 33715	9.93	. 40737
B	8.53	. 22189	9.10	. 29741	9.60	. 36365	10.00	. 41664
C	8.45	. 21129	9.00	. 28416	9.55	. 35702	10.20	. 44314
II	8.48	. 21527	9.20	. 31065	9.60	. 36365	10.10	. 42989
average		. 21493		. 29906		. 35537		. 42426
S.I.		. 00433		. 00980		. 01086		. 01352
OXYGEN CONCENTRATION OF				: 8.25	8.30	8.30		
AIR SATU	ateli il	Stilled	ATER	average	8.283			

tafle measurements of oxygen content of dilutel samples (datal,fpm) ani III-57 IIMENSIONLESS PODL CONCENTRATION(IATA2) FOR KUN 4-H-9698-188-B

SAMF'LE POSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IATAI	lataz	datal	IIATA2	IIATAI	Ihataz	IIATAI	IIATA2
A	8.60	. 23091	9.42	. 33943	9.89	. 40163	10.20	. 44265
B	8.60	. 23091	9.30	. 32355	9.95	. 40957	10.40	. 46912
c	8.55	. 22429	9.25	. 31693	9.91	. 40427	10.40	. 46912
II	8.66	. 23885	9.45	. 34340	9.90	. 40295	10.42	.4717
autafge		. 23124		. 33083		. 40461		. 46317
S.II.		. 00516		. 01093		. 00301		. 01189

```
TEMPERATURE : 20.50'C
```

FRESSURE : 765 Mm Hg
OXYGEN CONCENTRATION OF $\quad: 8.25 \quad 8.30 \quad 8.30$
AUEKAGE B. 283
table heasurements of oxygen content of liluten samples (iatal,ffm) ang III-58 HIMENSIONLESS FOOL CONCENTFATION(IATA2) FOR RUN 4-C- 5214- 68-B

SAMFLE FOSITION

	0.		5.		10.		15.	
	IATAI	IIATA2	IIATAI	lataz	IIATAI	intaz	natal	dataz
A	8.87	. 22681	8.97	. 23996	9.08	. 25442	9.17	. 26625
E	8.90	. 23076	8.96	. 23865	9.05	. 25048	9.15	. 26363
C	8.82	. 22024	8.96	. 23865	9.03	. 24785	9.12	. 25969
II	8.88	. 22813	8.98	. 24127	9.06	. 25179	9.15	. 26363
average		. 22648		. 23963		. 25114		. 26330
S.l.		. 00388		. 00109		. 00237		. 00235

TEMFERATURE : $20.20^{\circ} \mathrm{C}$
PRESSUKE : 765 MM HG OXYGEN CONCENTRATION OF : 8.50 8.70 8.70 alr saturatel distillei water
average 8.633
table measurements of oxygen content of nilutel sahfles (iatal, fym) and III-59 HIMENSIONLESS FOOL CONCENTRATION(ILATA2) FOR RUN 4-C- 6209 - 96-H

SAMFLEFOSITION	TIME (MIN.)							
	0.		5.		10.		15.	
	IIATAI	dataz	UATAI	If TA2	datal	IATA2	IIATAI	IATA2
A	8.35	. 20060	8.50	. 22047	8.70	. 24697	8.90	. 27347
B	8.30	. 19398	8.48	. 21782	8.68	. 24432	9.05	. 29334
c	8.40	. 20722	8.62	. 23637	8.73	. 25094	9.00	. 28672
II	8.32	.19663	8.51	. 22180	8.65	.24035	8.95	. 28009
average		.19961		. 22412		. 24565		. 28340
S.ll.		. 00499		. 00722		. 00386		. 00741

TEAPERATURE : 20.55 º
PRESSURE : 765 Min HG
OXYGEN CONCENTRATION OF : $9.23 \quad 9.30 \quad 8.25$ alk saturated listillei hater average 8.260

TAFLE MEASUREMENTS OF OXYGEN CONTENT OF HILUTEI SAMPLES(IIATAI,PPM) AND III-60 HIMENSIONLESS FOOL CONCENTRATION(IIATA2) FOR KUN 4-C-7205-129-G

SAMPLE POSITION	tine (MIN.)							
	0.		5.		10.		15.	
	UATAI	IIATA2	IIATAI	IATA2	IIATAI	IATA2	IIATAI	IATA2
A	8.87	. 22681	9.20	. 27020	9.60	. 32279	9.93	. 36617
H	8.90	. 23076	9.22	. 27283	9.55	. 31621	9.90	. 36223
C	8.80	. 21761	9.25	. 27677	9.63	. 32673	10.10	. 38852
J	8.85	. 22418	9.25	. 27677	9.65	. 32936	9.90	. 3622.3
average		. 22484		. 27414		. 32377		. 36979
S.II.		. 00479		. 00279		. 00495		. 01094

TEMPERATURE : $20.20^{\circ} \mathrm{C}$ FRESSURE : 765 MM HG oxygen concentration of aif saturateil ilistilled mater
$: 8.50$
8.70
8.70 AVERAGE 8.633
table heasurements of oxygen content of niluten samfles (ilatal, pFM) and III-61 UIHENSIONLESS FOOL CONCENTKATION(IATAZ) FOR RUN 4-C-8200-167-H

SAMFLE FOSITION	TIME (MIN.)							
		0.		5.		10.		15.
	dATAI	IIATA2	datal	dataz	Ifatal	liataz	IATAI	IIATA2
A	8.82	. 21695	9.40	. 29370	9.90	. 35987	10.20	. 39957
B	8.80	. 21430	9.59	. 31885	9.92	. 36252	10.40	. 42604
C	8.76	. 20901	9.50	. 30694	9.89	. 35855	10.42	. 42867
I	8.90	. 22753	9.55	. 31355	10.00	. 37311	10.55	. 44589
average		. 21695		. 30826		. 36351		. 42505
S.II.		. 00675		. 00940		. 00572		. 01657
$\begin{array}{ll} \text { TEMPERATURE } & : 20.50^{\circ} \mathrm{C} \\ \text { FRESSURE } & : 765 \mathrm{MM} \mathrm{HG} \end{array}$								
OXYGEN CONCENTRATION OF				: 8.73	8.70	8.60		
aik saturateil imstillei water				average	3.677			

table heasurements of oxygen content of milutel samfles (iatat,fpm) and III-62 IIMENSIONLESS POOL CONCENTRATION(IATA2) FOR RUN 4-C-8698-188-E

SAMFLE POSITION	TIME (HIN.)							
	0.		5.		10.		15.	
	IATAI	dataz	datal	IIATA2	datal	IATAZ	IATA1	Intaz
A	8.79	. 21020	9.70	. 32906	10.20	. 39437	10.82	. 47536
B	8.80	. 21151	9.60	. 31600	10.25	. 40090	10.80	. 47274
C	8.85	. 21804	9.55	. 30947	10.25	. 40090	10.80	. 47274
II	8.85	. 21804	9.78	. 33951	10.38	. 41788	10.90	. 48581
average		. 21445		. 32351		. 40352		. 47666
S.I.		. 00362		. 01162		. 00871		.00539

```
TEMPERATURE : 19.90.C
FRESSURE : 765 MM HG
OXYGEN CONCENTRATION OF : 8.73 8.70 8.60
    aik SATURATED HISTILLED HATER AVERAGE 8.677
```

Table III-63. Values of TFS for one nozzle

Run Number	$\begin{gathered} \mathrm{TFS} \\ (\mathrm{ml} / \mathrm{min} .) \end{gathered}$	95\% Confidence Limits	Correlation Coefficient
1-5324-71-S	23.3	$\pm 1.2 \%$. 951
1-8908-198-S	33.0	+ 7.9\%	. 971
1-13687-466-S	41.4	+10.3\%	. 952
1-21044-1103-S	47.3	\mp 9.0\%	. 963
1-24837-1536-S	58.0	$\pm 7.1 \%$. 978
1-28819-2068-S	64.2	$\pm 7.7 \%$. 973

Table III-64. Values of TFS for two nozzles

Run Number	$\begin{aligned} & \text { TFS } \\ & (\mathrm{ml} / \mathrm{min} .) \end{aligned}$	95% Confidence Limits	Correlation Coefficient
2-0-5251-69-S	23.8	$\pm 9.0 \%$. 964
2-0-7640-145-S	32.5	$\pm 9.3 \%$. 961
2-0-12419-384-S	42.7	$\pm 10.0 \%$. 954
2-0-14410-517-S	46.2	†10.4\%	. 960
2-0-16401-670-S	52.2	$\pm 4.5 \%$. 991

Table III-65. Values of TFS for four nozzles

Run Number	$\begin{gathered} \text { TFS } \\ (\mathrm{ml} / \mathrm{min} .) \end{gathered}$	95\% Confidence Limits	Correlation Coefficient
4-0-5214-68-S	30.4	$\pm 7.9 \%$. 972
4-0-6209-96-S	33.9	$\pm 9.4 \%$. 963
4-0-7205-129-S	43.2	$\pm 7.6 \%$. 974
4-0-8200-167-S	47.0	$\pm 7.0 \%$. 979
4-0-8698-188-S	53.2	$\pm 8.2 \%$. 967

Table III-66. Values of TTF for one nozzle

Run number	$\underset{(\mathrm{ml} / \mathrm{min} .)}{ }$		Confidence Limits	Correlation Coefficient
1-5324-71-B	142.0		+ 12.1\%	. 952
1-8908-198-B	343.7		6.4\%	. 981
1-13687-466-B	883.4		7.1\%	. 979
1-21044-1103-B	2061.4		4.6\%	. 990
1-24837-1536-В	22.70 .9		7.9\%	. 973
1-28819-2068-В	2801.8		9.0\%	. 966

Table III-67. Values of TTF for two nozzle at position 0

Run number	$\underset{(\mathrm{m} / / \mathrm{min} .)}{\mathrm{TTF}}$	95\% Confidence Limits	Correlation Coefficient
2-0-5251-69-B	132.1	$\pm 11.3 \%$. 944
2-0-7640-145-B	388.0	耳 4.8\%	. 989
2-0-12419-384-B	1281.5	\pm 2.1\%	. 998
2-0-14410-517-B	1588.6	\pm \#	. 994
2-0-16401-670-B	2158.8	\pm 4.4\%	. 991

Table III-68. Values of TTF for two nozzle at position A

Run number	$\underset{(\mathrm{ml} / \mathrm{min} .)}{\mathrm{TTF}}$	95%	Confidence Limits	Correlation Coefficient
2-A-5251-69-B	144.1	+	6.1\%	. 983
2-A-7640-145-B	369.1	\pm	4.7\%	. 991
2-A-12419-384-B	1328.1	\pm	4.7\%	. 992
2-A-14410-517-B	1743.1	\pm	4.7\%	. 990
2-A-16401-670-B	2292.0	\pm	2.6\%	. 997

Table III-69. Values of TTF for two nozzles at Position B

Run number	$\underset{(\mathrm{ml} / \mathrm{min} .)}{\mathrm{TTF}}$	95\% Confidence Limits	Correlation Coefficient
2-B-5251-69-B	125.6	$\pm 9.1 \%$. 972
2-B-7640-145-B	366.4	$\pm 7.4 \%$. 982
2-B-12419-384-B	1291.8	+ 4.2\%	. 992
2-B-14410-517-B	1780.5	$\pm 3.6 \%$. 994
2-B-16401-670-B	2360.8	$\pm 4.1 \%$. 992

Table III-70. Values of TTF for two nozzles at position C

Run number	$\underset{(\mathrm{ml} / \mathrm{min} .)}{\mathrm{TTF}}$	$\begin{aligned} & \text { 95\% Confidence } \\ & \text { Limits } \end{aligned}$	Correlation Coefficient
2-C-5251-69-B	135.0	+ 5.3\%	. 988
2-C-7640-145-B	398.5	$\pm 6.4 \%$. 983
2-C-12419-384-B	1377.1	$\pm 4.6 \%$. 990
2-C-14410-517-B	1802.3	$\pm 3.7 \%$. 994
2-C-16401-670-B	2462.6	$\pm 2.7 \%$. 997

Table III-71. Values of TTF for four nozzles at position 0

Run number	$\underset{(\mathrm{m} 1 / \mathrm{min} .)}{ }$	95\% Confidence Limits	Correlation Coefficient
4-0-5214-68-B	129.8	$\pm 9.5 \%$. 968
4-0-6209-96-B	226.9	$\pm 8.9 \%$. 968
4-0-7205-129-B	536.4	$\pm 5.9 \%$. 984
$4-0-8200-167-$ B	816.6		. 986
4-0-8698-188-B	898.9	$\pm 5.5 \%$. 989

Table III-72. Values of TTF for four nozzles at position A.

Run number	TTF	(ml/min.)	Limits

Table III-73. Values of TTF for four nozzles at position B.

Run number	$\begin{aligned} & \mathrm{TTF} \\ & (\mathrm{ml} / \mathrm{min} .) \end{aligned}$	95\% Confidence Limits	Correlation Coefficient
4-B-5214-68-B	139.9	$\pm 14.8 \%$. 919
4-B-6209-96-B	298.7	+ 6.6%	. 980
4-B-7205-129-B	531.6	\pm + $\pm .1 \%$. 993
4-B-8200-167-B	940.4	\pm 5.1\%	. 988
4-B-8698-188-B	1129.2	\pm + 4.2%	. 992

Table III-74. Values of TTF for four nozzles at position C.

Run number	$\stackrel{\operatorname{TTF}}{(\mathrm{m} 1 / \mathrm{min} .)}$	95\% Confidence Limits	Correlation Coefficient
4-C-5214-68-B	149.1	$\pm 6.3 \%$. 982
4-C-6209-96-B	314.7	$\pm 8.7 \%$. 971
4-C-7205-129-B	705.7	$\pm 4.4 \%$. 991
4-C-8200-167-B	958.4	士 5.6%	. 986
4-С-8698-188-B	1254.1	$\pm 3.1 \%$. 996

Table III-75. Calculated values of TF for one nozzle

Run number	$\begin{gathered} \mathrm{TF} \\ (\mathrm{ml} / \mathrm{min} .) \end{gathered}$	Deviation of TF values
1-5324-71	118.7	+ 20.0 (16.9\%)
1-8908-198	310.7	± 24.7 (7.9\%)
1-13687-466	842.0	£ 67.0 (8.0\%)
1-21044-1103	2014.1	± 99.4 (4.9\%)
1-24837-1536	2212.9	± 183.2 (8.3\%)
1-28819-2068	2737.6	± 257.6 (9:4\%)

Table III-76. Calculated values of $T F$ for two nozzles at position 0

Run number	$\begin{gathered} \mathrm{TF} \\ (\mathrm{ml} / \mathrm{min} .) \end{gathered}$	Deviation of TF values
2-0-5251-69	108.3	+ 17.1 (15.7\%)
2-0-7640-145	355.5	± 21.6 (6.1\%)
2-0-12419-384	1238.8	± 30.6 (2.5%)
2-0-14410-517	1542.4	± 63.4 (4.1\%)
2-0-16401-670	2106.6	± 97.5 (4.6\%)

Table III-77. Calculated values of TF for two nozzles at position A

Run number	$\underset{(\mathrm{ml} / \mathrm{min} .)}{\mathrm{TF}}$	Deviation of TF values
2-A-5251-69	120.3	± 10.9 (9.1\%)
2-A-7640-145	336.6	± 20.4 (6.1\%)
2-A-12419-384	1285.4	£ 67.2 (5.2\%)
2-A-14410-517	1696.9	± 87.1 (5.1\%)
2-A-16401-670	2239.8	± 62.9 (2.8\%)

Table III-78. Calculated values of TF for two nozzles at position B

Run number	$\begin{gathered} \mathrm{TF} \\ (\mathrm{~m} 1 / \mathrm{min} .) \end{gathered}$	Deviation of TF values
2-B-5251-69	101.8	+ 13.5 (13.3\%)
2-B-7640-145	333.9	± 30.2 (9.1\%)
2-B-12419-384	1249.1	\pm 58.3 ($4.7 \%)$
2-B-14410-517	1734.3	± 68.3 (3.9%)
2-B-16401-670	2308.6	± 100.1 (4.3\%)

Table III-79. Calculated values of TF for two nozzles at position C

Run number	$\begin{gathered} \mathrm{TF} \\ (\mathrm{ml} / \mathrm{min} .) \end{gathered}$	Deviation of TF values
2-C-5251-69	111.2	± 9.4 (8.4\%)
2-C-7640-145	366.0	± 28.5 (7.8\%)
2-C-12419-384	1334.4	± 67.9 (5.1\%)
2-C-14410-517	1756.1	± 71.2 (4.1\%)
2-C-16401-670	2410.4	± 69.4 (2.9\%)

Table III-80. Calculated values of TF for four nozzles at position 0

Run number	$\begin{aligned} & \mathrm{TF} \\ & (\mathrm{ml} / \mathrm{min} .) \end{aligned}$	Deviation of TF values
4-0-5214-68	99.4	± 14.7 (14.8\%)
4-0-6209-96	193.0	± 23.4 (12.1\%)
4-0-7205-129	493.2	± 34.9 (7.1%)
4-0-8200-167	769.6	± 53.0 (6.9\%)
4-0-8698-188	845.7	± 53.4 (6.3\%)

Table III-81. Calculated values of $T F$ for four nozzles at position A

Run number	$\underset{(\mathrm{m} 1 / \mathrm{min} .)}{\mathrm{TF}}$	Deviation of TF values
4-A-5214-68	102.2	± 13.5 (13.2\%)
4-A-6209-96	213.1	± 23.7 (11.1\%)
4-A-7205-129	415.9	∓ 44.7 (10.8\%)
4-A-8200-167	791.5	± 67.8 (8.6\%)
4-A-8698-188	955.6	± 52.1 (5.5%)

Table III-82. Calculated values of TF for four nozzles at position B

Run number	$\begin{gathered} \mathrm{TF} \\ (\mathrm{ml} / \mathrm{min} .) \end{gathered}$	Deviation of TF values
4-B-5214-68	109.5	± 23.1 (21.1\%)
4-B-6209-96	264.8	± 22.9 (8.6\%)
4-B-7205-129	488.4	± 24.9 (5.1\%)
4-B-8200-167	893.4	± 50.8 (5.7\%)
4-B-8698-188	1076.0	± 51.5 (4.8\%)

Table III-83. Calculated values of TF for four nozzles at position C

Run number	$\underset{(\mathrm{ml} / \mathrm{min} .)}{\mathrm{TF}}$	Deviation of TF values
4-C-5214-68	118.7	± 11.7 (9.9\%)
4-C-6209-96	280.8	± 30.6 (10.9\%)
4-C-7205-129	662.5	± 30.9 (4.7\%)
4-C-8200-167	911.4	± 56.5 (6.2\%)
4-C-8698-188	1200.9	± 43.0 (3.6%)

APPENDIX IV

SAMPLE CALCULATION

Run $1-8908-198-B$ and $1-8908-198-S$ in Table III-3 and III-4 of Appendix III were used to illustrate the way of calculating values of TTF and TFS respectively.

16 samples in each table, which were taken at four different sample positions and at four different times with same time interval were analyzed with the average value of air saturated distilled water for each run.

If the oxygen concentration of a sample has a function of time and position, i.e. C (time, position), then the demonstrating oxygen concentration in Table III-3 is

$$
C(15, B)=9.40
$$

Since this oxygen concentration is measured in the diluted state, the actual concentration must be calculated using a simple mass balance equation.

$$
\begin{aligned}
\text { Actual Concentration }= & {\left[\binom{\text { Diluted sample }}{\text { Concentration }} \times\binom{\text { Diluted sample }}{\text { volume }}\right.} \\
& \left.-\binom{\text { Air saturated water }}{\text { concentration }} \times\binom{\text { Air saturated }}{\text { water volume }}\right] / \\
& (\text { Pool sample volume })
\end{aligned}
$$

where,

Diluted sample volume	$=290 \mathrm{ml}$
Air saturated water volume	$=240 \mathrm{ml}$
Pool sample volume	$=50 \mathrm{ml}$

then

$$
C_{\text {Actual }}(15, B)=\frac{9.4 \times 290-8.6 \times 240}{50}=13.24(\mathrm{ppm})
$$

The solubility of oxygen exposed to air saturated water at 760 mmHg , $20.55^{\circ} \mathrm{C}$ was found to be 9.09 by interpolation from Table II-7 of Appendix II. The actual solubility corresponding to the experimental condition is

$$
\begin{aligned}
\begin{array}{l}
\text { Actual } \\
\text { Solubility }
\end{array} & =9.09(\mathrm{ppm}) \times \frac{765 \mathrm{mmHg}}{760 \mathrm{mmHg}} \times \frac{99.999 \% \text { pure } 0_{2}}{20.9 \% \mathrm{O}_{2} \text { in Air }} \\
& =43.77852(\mathrm{ppm})
\end{aligned}
$$

Then the dimensionless pool concentration C^{+}is obtained by dividing actual concentration by actual solubility

$$
C^{+}(15, B)=\frac{13.24}{43.77852}=0.30243
$$

C_{0}^{+}, the average value of C^{+}at time $=0$, is one quater of the summation of all C^{+}at time $=0$, which were computed in the previous way. In this case,

$$
C_{\circ}^{+}=0.21234
$$

then

$$
\ln \left(\frac{1-C_{0}^{+}}{1-C^{+}}\right)=\ln \left(\frac{1-0.21234}{1-0.30243}\right)=0.12146
$$

The value, $\ln \left(\frac{1-C_{0}^{+}}{1-C^{+}}\right)$of the other samples are a function of time. To obtain the slope of this function, the data were analyzed by a linear regression method. In this work, subroutine RLONE in IMSL (International Mathematical and Statistical Library), which is based on the theory in the book, Applied Regression Analysis ${ }^{(2)}$, was used. The slope, $\frac{\text { TTF }}{V}$ turned out to be

$$
\frac{T T F}{V}=.00751408
$$

and

$$
\begin{aligned}
& \mathrm{TTF}=(.00751408) \cdot \mathrm{V}=(.00751408) \cdot(45743.7) \\
& =343.7218(\mathrm{ml} / \mathrm{min} .) \\
& \text { Upper confidence limit of } \frac{\mathrm{TTF}}{\mathrm{~V}}=.00799714 \\
& \text { Lower confidence } 1 \mathrm{imit} \text { of } \frac{\mathrm{TTF}}{\mathrm{~V}}=.00703102
\end{aligned}
$$

Then,

$$
\begin{aligned}
\mathrm{TTF} & =343.7218 \pm 22.0970(\mathrm{ml} / \mathrm{min} .) \\
& =343.7218 \pm 6.43 \%(\mathrm{ml} / \mathrm{min} .)
\end{aligned}
$$

TFS was calculated in the same way

$$
\begin{aligned}
\mathrm{TFS} & =32.9852 \pm 2.5993(\mathrm{~m} 1 / \mathrm{min} .) \\
& =32.9852 \pm 7.88 \% \quad(\mathrm{~m} 1 / \mathrm{min} .)
\end{aligned}
$$

Therefore, the calculated TF was

$$
\mathrm{TF}=\mathrm{TTF}-\mathrm{TFS}
$$

and

Then

$$
\begin{aligned}
\text { Upper C.L. of } \mathrm{TF} & =\text { Upper C.L. }{ }_{\mathrm{TTF}}-\text { Lower C.L. }{ }_{\mathrm{TFS}} \\
\text { Lower C.L. of } \mathrm{TF} & =\text { Lower C.L. }{ }_{\mathrm{TTF}}-\text { Upper C.L. }{ }_{\mathrm{TFS}} \\
& =343.7218-32.9852 \\
& =310.7366(\mathrm{ml} / \mathrm{min} .) \\
\text { Upper C.L. of } \mathrm{TF} & =22.0970-(-2.5993) \\
& =24.6963 \\
\text { Lower C.L. of } \mathrm{TF} & =-22.0970-2.5993 \\
& =-24.6963
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{TF} & =310.7366 \pm 24.6963(\mathrm{ml} / \mathrm{min} .) \\
& =310.7366 \pm 7.95 \% \quad(\mathrm{ml} / \mathrm{min} .)
\end{aligned}
$$

Fig. VIII-1. Determination of TTF

Fig. VIII-2. Determination of TFS

APPENDIX V

NONMENCLATURE

Symbo1
A

C
C.L.

D
g_{c}
h

K
k
L
N_{Re}
N_{We}
n

Q
R
r
S.D.
t
TF
TFS
TTF

Sifnificance

Interfacial area
Concentration of oxygen in water
95\% Confidence Limits
Diameter of jet
Newton's law conversion factor
Pool depth
Overall mass transfer coefficient
Mass transfer coefficient
Length of nozzle
Reynolds number of jet ($\mathrm{D}_{\mathrm{J}} \mathrm{V}_{\mathrm{J}} \rho / \mu$)
Weber number of jet ($\left.D_{J} V_{J}^{2} \rho / \sigma g_{c}\right)$
The number of jets
Volumetric flow rate
Linear correlation coefficient
Rate of oxygen absorption
Standard deviation
Time
Transfer factor
Surface transfer factor
Total transfer factor

Symbol
Significance
V
v

Greek
μ
ρ
σ

Subscript
B
E
J
L
0
S

Bubble
Exit Stream
Jet
Liquid
Initial condition
Surface

Superscript
*
Equilibrium value
$+$
Dimensionless value

