AN ABSTRACT OF THE THESIS OF

Hubert J. Stier for the degree of Master of Science in Electrical and Computer

Enlgineering presented on May 3. 1995. Title: Design of a 80/250-Msample/s
FIR-Filter for a Pipelined ADC-FIR Interface.

Redacted for Privacy

Shih-Lien Lu

Abstract approved:

With a growing demand for digital video signal processing applications,
the demand for fast low-cost analog-to-digital converters (ADCs) is increasing
rapidly. In order to meet this demand, recent research has provided a high
variety of pipelined ADC devices. In contrast to traditional ADC methods,
pipelined ADCs do not generate a parallel n-bit digital output, but n serial
outputs. Often, analog-to-digital converters can be found in combination with
digital filters that process the ADC output signals before they are further used.

The thesis project describes a pipelined FIR-filter that is designed to
process the serial outputs of pipelined ADCs. It is shown that the serial
architecture of the ADC can provide high-efficient FIR-filter architectures.
Improvements over traditional FIR-filter applications are achieved through 2-
dimensional pipelining and most significant bit first multiplication. Two pipelined
FIR-filter architectures designed in CMOSN standard cells are shown. They can
achieve a maximum sample rate of 80-Msamples/s and 250-Msamples/s and
thereby meet the sample rate requirements set by the current serial ADC
technology. By interfacing ADC and FIR-filter closely, further improvements in
speed, area, and power consumption can be made. Thus, in addition to a stand-
alone version of the FIR-filter, an interfaced version of ADC and FIR-filter is also

considered.

°Copyright by Hubert J. Stier
May 3, 1995
All Rights Reserved

Design of a 80/250-Msample/s FIR-Filter
for a Pipelined ADC-FIR Interface

by

Hubert J. Stier

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Completed May 3, 1995
Commencement June 1995

Master of Science thesis of Hubert J. Stier presented on May 3, 1995

APPROVED:

Redacted for Privacy

Major Professor, representing Electrical and Computer Engineering

Redacted for Privacy

Head of Department of | lectrical and-Computer Engineering

Redacted for Privacy

Dean of GraduC(j School q

| understand that my thesis will become part of the permanent coliection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Redacted for Privacy

Hubert J. Stier, Author

ACKNOWLEDGMENT

| would like to express my sincere appreciation and gratitude to my major
professor, Dr. Shih-Lien Lu, for his continual support throughout my thesis
project, Many thanks for his patience, understanding and encouragement along
the way.

| would also like to thank friends, family and the Department of Electrical
and Computer Engineering for their enduring support.

Special thanks as well to my sponsor, the Fulbright-Kommission, for their
financial support. Without their generous help, this dream would have never

come true.

1. INTRODUCTION ... 1
1.1 MOtIVatION 1
1.2 Outline of the Thesis ... 2

2. MOTIVATION FOR A PIPELINED ADC-FIRDESIGN 3
2.1 FIR-FIREIs . 3
2.2 Parallel SA-ADC Method in Combination with DSP 4
2.3 Pipelined ADC-FIR Interface ..o 5

3. FEATURES OF A PIPELINED ADC-FIRDESIGN 7
3.1 Pipelined SA-ADC ... 7
3.2 MSB-First Multiplication ... 9
3.3 Concepts for the Design...........c..ooooiio e 10
3.4 1/0 Requirements forthe Filter..................ccocoiiiii 13

4. FIR-FILTER DESIGN IN CMOSN ... 15
4.1 Goals and Properties................oooiiiio e 15
4.2 DeSIgN T o 16
4.3 DeSIGN 2o 21
4.4 DeVICe SeIUD ... 25
4.5 HO PINS. .o 26

5. DESIGN EVALUATION. ..o 28
9.1 Hardware Requirements................oooiiooi oo 28
5.2 SPOOA ... 31

6. SUMMARY AND CONCLUSION ... 34

BIBLIOGRAPHY e 35

APPENDICES .. e 36
Appendix A Software Model Design 1...........oooooiioo 37

TABLE OF CONTENTS

Appendix B Software Model Design 2..............ccoooioiiiiioe 50

LIST OF FIGURES

Fiqure Page
1. Parallel SA-ADC Method with DSP..............cooo, 4
2. Pipelined ADC-FIR Interface.ooovvvveiieeeeee e 6
3. Pipelined SA-ADC. ... 7
4. Example: Work-Sequence of a Pipelined SA-ADC with

SIX S AGES. ... 8
5. General Structure of the MSB-First Multiplier for a

MURIPHICAtION A X B.. ..o 9
6. Algorithm According to Equation (5).............cccoeoiiiiiiiiiiccc 11
7. Algorithm According to Equation (6).............ccccccviiiiiiiiiiiiicceiiicee 12
8. Inputs/Outputs for FIR-FIlter.cccooco i 14
9. Designfor FIR-Filter 1. ..o 17
10. Pipelined Array Multiplier (PAM1)..........coiiiiiie e 18
11. Pipelined Adder (PAD).ooiiiiieie e 20
12. Parallel Prefix Addition Network.ccccoooeiiiiiiiiiieee, 21
13. Designfor FIR-FIlter 2.oooo i 22
14. Pipelined Array Multiplier (PAM2)..............cccoevviiieeei e 24
156, SetUP LOGIC. ... 25
16, MO PINS. .o 26
17. AND/NAND Gates Required for both Designs.............cccccoeevveinieennn, 29
18. Latches Required for both Designs.ooooviiiiiiiiiiii 29
19. FAs/HAs Required for both Designs...............ccooeeviiiiiiiccieecee . 29

Figure Page
20. Overall Hardware Cost of both Designs.c.cooo 31
21. Clock Cycle Time of both Circuits................coooviiiiiiiii e 32
22. Latency of both Designs.cccvvvieiiiiiiii 32
A1, Hierarchy of Design 1. ..o 37
A2, FIR-FIEr DESIGN 1. oooooooooeoeeooeoeeeeoeeeoeeeeeoeeeoeeeoeeoeoeoeeeo 38
A3, Setup CirCUIt..... ... e 39
A4. Pipelined Array Multiplier 1..............cccooiiii e, 40
A5. AND-NAND Array with 1 Leading AND.............ccooiiiiiiiee, 41
AB6. AND-NAND Array with 1 Leading NANDcoooveiiiiiiiiee 42
A7. Pipelined Ader.cc.ooiiiiiiiiie e 43
AB. PAD-Tree for SUM VeCtors.c..oooovieeeiiiiceeee e, 44
AS. PAD-Tree for Carry Vectors...........o.ommmmeeeeeeeee e 45
A10. Array to Accumulate Carry and Sum Outputs of both

PAD-TIEES. ... 46
A11. Parallel Prefix Addition Network Sheet 1., 47
A12. Parallel Prefix Addition Network Sheet 2...................c...cccoeiviine. 48
A13. Node for Carry Generation MatrixX..............ccccooooiiiiiiieiieeee e, 49

LIST OF FIGURES (Continued)

LIST OF FIGURES (Continued)

Figure Page
B1. Hierarchy of DeSign 2.c.c.coiiiiiiiiiiie e 50
B2, FIR-Filter Design 2. 51
B3. Module for Partial Product Generation MSB..................c........oo 52
B4. Module for Partial Product Generation all but MSB........................... 53
BS. Carry Save Adder.............ccoiiiiiiiiieee e 54
B6. Pipelined Array Muitiplier 2 Sheet 1.coiiiiii 55
B7. Pipelined Array Multiplier 2 Sheet 2.ccc.ccciiiiiii 56

LIST OF TABLES

Table Page
1. Hardware Required for Design 1.oooviiiiiiii e, 30

2. Hardware Required for Design 2.ocociiiiiiiii e 30

Design of a 80/250-Msample/s FIR-Filter

for a Pipelined ADC-FIR Interface

1. INTRODUCTION

1.1 Motivation

The successive approximation (SA) analog to digital conversion method is
an inexpensive and precise technique, extensively used in signal processing
applications. Often, analog to digital converters (ADCs) are found in combination
with digital filters. There are two major applications that suggest such an
arrangement. First, would be applications in which analog filters cannot meet the
requirements of a specific filtering process within the analog domain. So,
continuous-time signals are converted to digital in order to apply digital filters.
Second, would be applications in which digital processes require analog data as
input. In order to remove noise from the signal, the ADC is succeeded by a
digital filter.

The SA method generates a bit stream with the most significant bit (msb)
first. In general, SA-ADCs store the output stream of each conversion in
registers and thereby provide a parallel output. Thus, the filtering process
cannot be started before all bits of the conversion process are available.
Pipelined SA-ADCs, in combination with serial FIR-filters that start computation
already when the first bit of the A/D conversion is ready, would be able to
minimize the time required by this process. Such an architecture provides two
advantages. First, the filtering process can finish sooner as it already starts with
the first bit available. Second, the pipelined SA-ADC can read the next sample

already after the first bit is converted.

However, this method requires a new approach in both the analog-to-
digital conversion, and the digital filtering process. Furthermore, in order to
reduce latency, area, and power consumption of the structure, the ADC and the

FIR-filter can be interfaced in a single device.

1.2 Outline of the Thesis

The next chapter presents some general considerations that show the
motivation for a pipelined ADC-FIR design in detail. Chapter 3 describes the
techniques suggested for a serial ADC-FIR design. Methods like pipelined A/D
conversion, msb-first multiplication and two-dimensional pipelining, as well as
I/O formats, are explained in this section. Chapter 4 shows two different
algorithms for a n-bit pipelined FIR-filter. It also describes the single modules
used in the design and gives an overview of the logic applied. Chapter 5
evaluates the filter design. Information about hardware cost, speed, and
scalability is given for the implemented 8-bit version as well as for other sizes of
filters. Chapter 6 gives a summary and conclusion about the work. A short
analysis shows the performance perspectives of the pipelined ADC-FIR designs
in comparison to traditional methods. Appendices A and B show the
implementation of 2 different designs for an 8-bit pipelined FIR-filter by means of

Powerview tools [1].

2. MOTIVATION FOR A PIPELINED ADC-FIR DESIGN

2.1 FIR-Filters

Filter devices are used in a wide range of applications, such as removing
noise from signals, removing signal distortion due to the transmission channel,
and demodulating signals. Among all these applications two major families of
filters can be identified: analog filters and digital filters. Analog filters involve
signals in the analog domain (continuous-time signals), whereas digital filters
relate to signals in the digital domain (discrete-time signals).

Most digital filters are based on the following relation between the filter

input sequence X(n) and the filter output sequence Y(n):

N
Y(n)=2ak*y(n—k)+ibk*X(n~k) (1)
k=0

k=0

The first term on the right side of the equation determines the part of the output
that depends on the last N+1 foregoing outputs generated by the filter (infinite
impulse response-lIR), whereas the second term determines the part that
depends on the last M+1 foregoing inputs to the filter (finite impulse response-

FIR). For FIR-filters all a, are zero. Therefore, equation 1 reduces to
M
Y(n)= Y b *X(n—k) (2)
k=0

where b, is the weighted factor for input X(n-k). Thus, the output of the FIR-filter

Y(n) is simply a finite length weighted sum of the current and the previous inputs
to the filter.

2.2 Parallel SA-ADC Method in Combination with DSP

Most applications use digital signal processors (DSPs) in order to
implement FIR-filters. DSPs are programmable multipurpose devices which
handle a variety of tasks like filtering, fourier transformation, floating point
arithmetic or digital sine wave generation. The traditional arrangement of a DSP

with a preceding SA-ADC process is shown in Figure 1.

Parallel SA-ADC . Digital Signal

Processor
Vin SA
Anclog Register
Input msb Isb

—»
* >
x x * * DSP *
= -
Sk pac | Ouiput

Figure 1. Parallel SA-ADC Method with DSP.

During the ADC stage, the parallel SA-ADC starts by enabling the digital
inputs of the D/A converter one bit at a time, starting with the msb. As each bit is
enabled, its amplitude is compared to the analog voltage, v, by the voltage
comparator. If the output of the D/A converter is greater than the analog voltage,
the msb is reset to zero, since it will not be required in the digital representation
of the analog input. If the D/A converter output is less than the analog input, the

msb is retained in the register.

After the ADC goes through this procedure once per bit, the DSP stage
starts. First, the digital signal processor reads the unfiltered digital signals.
Then, for each weighted factor a muiltiplication followed by the accumulation of
the product has to be performed, a total of M+1 multiplications and additions.
Finally, the accumulated result is sent to the output port.

This design is somewhat inefficient in two ways. First, the digital signal
processor cannot start its operation until all bits of the ADC are available. This is
due to the instruction set of the DSP which performs multiplication by mea;;"b'f
two complete operands. The ALU of the DSP, however, performs multiplication
bitwise through generation and accumulation of single partial products. Thus,
the ALU may stay idle until all bits are available for operation even though it can
process the bits only one by one. Second, as a single comparator has to
generate all n output bits, the conversion of a single sample requires n
consecutive conversion processes within the ADC. As a result, the total
conversion time sums up to a n-fold of the time required by the inner process.

The following paragraph will show an alternative design that takes a different

approach.

2.3 Pipelined ADC-FIR Interface

The algorithm of the A/D converter in Figure 1 shows the characteristic of
a loop. In Figure 2, the same algorithm is implemented as a chain of serial A/D
units. Thus, we get a pipeline of A/D units, where each unit is made of a
comparator plus some more logic. Each A/D unit generates a serial bit-stream
with the unit on the left generating the msb and the unit on the right generating
the Isb. In contrast to the looped version in Figure 1, the pipelined ADC in Figure
2 implements a full conversion each clock-cycle. The output bits of the serial A/D
units are sent to the functional units of the FIR-filter. These units process the bit

stream immediately, generating a partial product each cycle. The FIR units

succeed the pipeline of the ADC, accumulating the partial products according to
the algorithm given in equation 2. Therefore, at the time when the DSP in Figure
1 starts its process, the pipelined FIR-filter in Figure 2 has only one bit to
process left. The A/D converter and the FIR-filter in Figure 2 form a single
pipeline. Thus, this circuit suggests an interface of ADC plus FIR-filter. A
interfaced architecture reduces area, power consumption and latency of the
device. The next paragraph describes the modules shown in Figure 2 in more
detail.

Analog Pipelined A/D Converter
Input
Serial Serial Serial
Vin—>S/H—» A/D »S/H{—» A/D »S/H| » » &+ |AD |
Unit Unit Unit Anal
4 'msb 4 4 2msb 4 A b in
Clock 1 Do
............... ¥ A A A A 4
Digital
DogI:\am F[R > g FIR > =R F]R >
................ Unit 3 Unit ~ Unit
Digital
Output
Pipelined FIR-Filter P

Figure 2. Pipelined ADC-FIR Interface.

3. FEATURES OF A PIPELINED ADC-FIR DESIGN

The architecture of a pipelined ADC-FIR design is characterized by two

techniques, pipelined SA-A/D conversion and msb-first multiplication.

3.1 Pipelined SA-ADC

Figure 3 describes the architecture of a pipelined SA-ADC. It shows two
serial successive A/D stages. There are two analog inputs, the signal input v,
and the reference voltage input v, /2, which is one half of the maximum

convertible signal.

Figure 3. Pipelined SA-ADC.

The pipeline starts conversion with the msb in stage one, then the 2msb
in stage two and so on. While stage two generates the second msb of the first

input signal v, stage one already generates the msb of the second input signal

vi,. Each stage works as follows: First, the sampled signal v, is compared to
Vied2. If v, IS greater than v, /2, then the non-inverted output of the converter is
1. Thus, the digital output of this stage is set to 1 and the lower switch in the first
stage feeds the signal v, - v /2 into the succeeding multiplier. If v, is smaller
than v../2, then, as the inverted output of the comparator is 1, the digital output
of the stage is set to zero. The upper switch feeds the sampled voltage directly
into the succeeding muitiplier which doubles the signal before it is sampled for
the next stage. The following routine describes the function of each stage in
short. The diagram in Figure 4 gives an example with six stages. v,, of stage 1 is

equal to the original input v,

IF Vsa > Vref/l2 THEN
out:=1
Vsa = Vsa -Vref/2
ELSE
out:=0
ENDIF
Vsa:=Vsa*2

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

—— o — ———— - — — — — — ——— — —— —— - —— et veve e W e o — — — — —

Vsa

veet2r-—-———"—"1-—---"-—"-———"""-"fp—-—————t-—————7—————

Output

Figure 4. Example: Work-Sequence of a Pipelined SA-ADC with six Stages.

3.2 MSB-First Multiplication

A major feature of the alternative design is the serial multiplication within
the FIR-filter, which is able to provide a higher speed than the parallel register-
register multiplication performed in the DSP. There are two techniques that
perform low cost serial multiplication: the add and shift method and the quasi
serial method. These techniques perform muitiplication with the least significant
bit first. The pipelined SA-ADC described in 3.1, however, generates the most
significant bit first and, therefore, requires another algorithm. This algorithm is

illustrated in Figure 5.

apq *B U Y S eee
+ ap2*B \AWAWA ¥ X AW
[]
®
]
+ a*B T T eee T T
+ 2o*B T T T eee T T
+ -1 1 1
= | Sign-Ext. Result Vector

Figure 5. General Structure of the MSB-First Multiplier for a Multiplication A x B.

10

The msb-first multiplication algorithm applied [2] shows two special
features that bannot be found in other multiplication methods. First, the partial
products are not generated through straight AND operations, but through a
combination of AND and NAND operations. The most significant partial product
is generated in a AND-NAND array with all NANDs, but a single AND at the
leading bit. All other partial products are generated in AND-NAND arrays with all
ANDs, but a single NAND at the leading bit. Second, a logical ‘1’ is added to the
(n+1) least significant bit as well as to the bits on the left of the (2n-1) result

vector. The ‘1’s on the left are needed to generate a correct sign-extension.

3.3 Concepts for the Design

Equation (2) in 2.1 described the general FIR-filter function. The last
product term in (2) can be also represented as shown in (3). In order to simplify
the notation and deriviation without loss of generality, we will assume X(n-k) is

an unsigned number.

X(n—-k)= Six(n—k)m *2m (3)

m=0

With (3) in (2) we get a more detailed form of (2):

Y(n) = i[b,, * Six(n —k), * 2"‘] (4)

For practical use, (4) can be written in 2 forms:

Y(n)= i Ebk *x(n-k) *2" (3)
k=0 {_ m=0 i
u-t[M T

Y(m)= Y| b, *x(n—k), *2" (6)
m=0{_k=0 .

11

Even though both forms of the equation are quite similar, they lead to
different algorithms. According to (5), first, k products are generated by
accumulating u-1 partial products which are shifted by m bits to the left. This first
part is represented by the inner part of the brackets. In the second step, all k
products are accumulated to a final result. In (6) all the partial products with the
same exponent m are accumulated first. In the second step, the resulting terms

are shifted by m bits to the left, before they are accumulated.

Vin b[) bl bk_z bk—l
g
(o]
U - *
2 5 2
2
1 §
2 g s
2 g
< S
® AT
|
< Summation of
M| u-1
Y(n) = E[Ebk *x(n—k) * 2"‘] Latch
k=0 Lm=0

Figure 6. Algorithm According to Equation (5).

12

Both algorithms are made of two stages, where each stage performs a
pipelined accumulation process. Thus, with the additional pipeline applied in the
ADC we get a total of three pipelines in each algorithm. The three pipelines
form a 2-dimensional matrix. Figures 6 and 7 show the matrixes according to
equations (5) and (6). The large black arrows represent the inputs to the rows

and columns of the matrix.

&~
w %

13
g8 <
8
g =
ga
*x
n <
A T

Summation of
Y(n) = f[ibk *x(n—k)_* 2”‘] Result

m=0{_£=0

Figure 7. Algorithm According to Equation (6).

13

For both designs it is assumed that the number of ADC output bits is
equal to the number of factors (u=M+1). This assumption provides a squared
matrix that can be extended in size without structural changes. This assumption

is held throughout the whole work.

3.4 /O Requirements for the Filter

Input X from the ADC
Input X is an n-bit 2's complement number that can be in the whole range

given by n.

Inputs for factors A
Input A has to be an n-bit number that can represent positive and

negative numbers. There are n inputs A with >, A = 1.

OutputY

Y has to be of the same format as X, with a stable input X, Y has to be
equal to X. With this definition, no conversion back to the input format is needed.
As both the inputs X and A can represent positive as well as negative numbers,
a full representation of the result can require more than n bits. In the case when
positive factors meet positive ADC outputs and negative factors meet negative
ADC outputs, the result can sum up to a maximum of n*X. In order to avoid
overflow, the output Y has to provide log,n additional bits. The design is
implemented to meet this requirement. In applications where the problem of
overflow does not exist, the output can be simply cut to n bits. Since the output is
in 2's complement representation, no error will occur.

As we can see, the only format that is not completely defined yet is the
format of the factors A. The task now is to define the format of the factors A in

such a way that the given format of the input X produces an output of format Y.

14

The solution found is a 2's complement format with a virtual decimal point behind

the most significant bit.

The most significant bit of the format is the 2’'s complement sign bit. Each
factor can represent a decimal value in the range of -1 ... 0 ... 1-2". The sum
of all factors has to be one. Thus, as we cannot represent a one in a single
factor; there have to be at least two non-zero factors. Figure 8 shows an

overview of all data inputs and outputs of the FIRfilter.

2s Complement v
Input X from ADC ' 25 Complement
Output Y
(n Bits Plus log2 n
FIR-Filter ,_Bits for Overflow)
n 2's Complement ntlog2 n

Inputs a for Factors

o

Figure 8. Inputs/Outputs for FIR-Filter.

4. FIR-FILTER DESIGN IN CMOSN

4.1 Goals and Properties

Before | explain the design in detail, | want to show the guidelines used in
the design process. Thus, it will be easier for the reader to understand the
specific solutions applied in the design. The most important goals are the
following:

e Maximum speed

¢ Minimum hardware

e 100% functionality

¢ Straight forward design

Like in all pipelined circuits, there are two speed criteria that have to be
considered. First, there is the clock cycle time which is the only input to the
frequency of the circuit. Second, there is the number of clock cycles of the
pipeline, which, together with the clock cycle time, determines the latency of the
circuit (latency = clock cycle time * #cycles). A high frequency provides a high
number of conversions per time, whereas a low latency provides a fast response
to the input signals. Only a minimum of different modules are to be used. An
extension of the ADC-output width should not require changes in the structure of
the design. .

Of course, there are some trade-offs between these goals. The trade-off
between speed and hardware is a characteristic that can be found in most
electrical designs. The analysis of both algorithms explained in 3.3 showed that
the structure of algorithm 1 suggests a high degree of speed optimization,
whereas the structure of algorithm 2 suggests a high degree of hardware

optimization.

4.2 Design 1

Design 1 is shown in Figure 9. It is the practical implementation of the
algorithm explained in Figure 5. n input-bits x; are broadcasted to all pipelined
array multipliers (PAM1) simultaneously. In general, a n-bit x n-bit multiplication
results in a (2n-1) bit product. The pipelined multipliers, however, generate two
result vectors of a different length. There are two aspects that require this
alternative solution:

e As described in 3.4, in order to prevent overflow, log,n more bits have to be
spent for the output. It is a general rule that sign-extension for 2's
complement numbers has to be implemented before the numbers are
accumulated. Since the accumulation process of the partial products starts in
PAM1, the extension by log.n bits has to be implemented already within the
pipelined array multipliers.

¢ Each stage of an array multiplier generates two output vectors, a carry vector
CO and a sum vector SUM. The elimination of one vector would require a
time consuming CLA-process. In order to avoid a loss in speed, both output
vectors are sent directly to the pipelined adder. As the two least significant
bits of the carry vector are eliminated during the accumulation process, the
sum vector requires two bits more than the carry vector.

The pipelined adder (PAD) generates the final result. Design 1 only requires two

different elements, PAM1, and PAMZ2.

Figure 10 shows the pipelined array muitiplier in more detail. The inputs x
are generated in the SA-ADC; they are updated every cycle. x(n)..1 is the most
significant bit, x(n-k), is the least significant bit. Three major modules are used to
implement the circuit: AND-NAND arrays, latches, and accumulation arrays. The
accumulation arrays are built of FAs which can handle up to 3 inputs. Thus, as
the accumulation process does not need to start before 3 inputs are available,
the two AND-NAND arrays at the top are not followed by an accumulation array.

The AND-NAND arrays form a parallelogram, where the array for the msb is

bo b1 ® o 0 o o b\l\k_z b k-1
n |n n n
x(n) 1 1// o o - \ g
e =B
/
R RA N N G
[]
®
. PAMI PAMI1 PAM1 PAM1
®
[]
xn-k#1)., >
-kH); ~7
L
x(n-k)o 7 L. \ L \ L \
-3+ on-1+ -3+ onl4+ M3+ -1+ 23+ {21+
log2n log2n log2n log2n log2n log2n log2n log2n
co| |SuM CO ! "SUM CO" "SUM CO|} "SUM
y 4—,L PAD
ntlog2n
PAM: Pipelined Array-Multiplier
PAD: Pipelined Adder

Figure 9. Design for FIR-Filter 1.

Ll

Yy

VMY S e YV

A
R

wr

?UUQ..UUU

'?UUO.QUUU‘

+n
| Accumulation Array |

> \WAWAWE Y ¥ AVAWAW B
0 (log2n)msb's (n+Disb e 1sb
RN R 1 GrtrlogZu

| Accumulation Array |

Figure 10. Pipelined Array Multiplier (PAM1).

placed on the left top, the array for the Isb is placed at the right bottom. As
explained in 3.2, in order to implement msb-first multiplication, the circuit shows
two special features. First, the partial products are not generated in n-bit AND

arrays, but in AND-NAND arrays. Second, a logical ‘1’ is added to the column

19

that represents the (n+1)Isb as well as to the columns that represent the (log.n)
most significant bits.

As we can see, there is another ‘1’ added to the (n-1-logzn)isb. This is
due to the rounding scheme. In Figure S we can see that the (2n-1+log.n) bit
input of the PAD produces a (n+log,n) bit output, which means that the result
has to be cut by (n-1) bits. In order to keep the maximum precision, the result
has to be rounded. In the general rounding process, a ‘1’ is added to the msb of
the bits that’are truncated afterwards. Such a final rounding process is very time
consuming as it requires a succeeding CLA addition process. Thus, it is
suggested that the ‘1’ is already added before the final result is generated. The
1’ can not be added within the PAD as the full adders in the PAD offer no
unused inputs for this operation. Therefore, the ‘1’ is added already during the
multiplication process within the pipelined array multiplier. When n is a power of
2, a 1", added to the (n-1-log,n)isb in each PAM1 sums up to a ‘1’ in the (n-1)Isb,
which is exactly what is needed. When n is no power of 2, a ‘1’ has to be added
directly to the (n-1)Isb of a single PAM1. In both cases, no final rounding is
required.

Figure 11 shows the pipelined adder (PAD). It consists of two
accumulation trees, one for the carries and one for the sums. A solution with
only one tree but two accumulations arrays between the latches would be also
sufficient. However, since all other pipeiine stages only apply one full adder in a
row, two consecutive accumulation arrays would increase the clock cycle time of
the circuit immensely. As a result, a more hardware-consuming 2-tree design is
applied. For the final addition, a parallel prefix addition network according to
Ladner/Fischer [3] is used. A general YCLA network cannot be applied efficiently
as the clock cycle time available is less than the time required by each CLA
stage. The nodes of the parallel prefix circuit, however, meet the requirements of
the circuit. Figure 12 illustrates the structure of the parallel prefix addition
network. The three least significant bits of the carry vector are already

eliminated during the accumulation process, thus, they do not have to be

20

considered. In the first step, the generation terms g; and the propagation terms p;
are generated. Then, the parallel prefix matrix generates the carrys for all,
except the (n-1) least significant bits that are cut off through rounding. The single
nodes of the matrix are designed according to the Brent/Kung algorithm [4]. A

XOR operation generates the final result.

° ° °
° ° °
° °
; 23 e I
SUM r—% bk * x(n-k) ﬁﬁ

[Accumulation-Array | | Accumulation-Array |

| Accumulation-Array I
COo _{ /‘/ SUM

Parallel Prefix
Addition Network

n+tlog2n f
y

Figure 11. Pipelined Adder (PAD).

21

sum co

| g;=sum;+ co;
! pi=sum;+ co;
i

- B

Parallel Prefix
Matrix

-

\©

yi=sum;®co;®c;

il

Figure 12. Parallel Prefix Addition Network.

4.3 Design 2

Design 2 (Figure 13) shows the implementation of the algorithm described
in Figure 7. The inputs x; are pipelined to a number of AND-NAND arrays, which
generate the partial products. A carry save adder tree (CSA) [5] sums up all
partial products of each row every clock cycle. As all the partial products of one

| row are generated with input bits of similar exponents, no shifting is required.
Thus, the length of the result vectors we get in design 2 is less than the
corresponding result vector in design 1. Again, there is no final CLA stage within
the process, therefore, the CSA tree generates two outputs, a carry output and a
sum output. All CSAs send their outputs to a pipelined array multiplier (PAM2),

where the final result y is generated.

g

g

g

PAM2

g

y
CSA: Carry Save Adder Tree
PAM: Pipelined Array-Multiplier

g

Figure 13. Design for FIR-Filter 2.

44

23

Figure 14 shows the architecture of PAM2 in more detail. As the partial
products in design 2 are already generated earlier in the process, there are no
AND-NAND arrays needed within PAM2. The inputs to design 2 also form a
parallelogram, with the most significant pair of inputs placed at the left top, and
the least significant pair of inputs placed at the right bottom. The clock cycle time
of design 2 is determined by the time required for the CSA stage. As the CSAs
use several consecutive full adders in one stage, the clock cycle time in design 2
adds up to a value larger than in design 1. Therefore, we can apply two
consecutive accumulation stages between the latches without any increase in
clock cycle time. PAM2 offers some free full adder input lines, thus, the rounding
bit ‘1’ can be added to the column that represents the (n-1)Isb directly.

The msb-first multiplication algorithm described in 3.2 does not meet the
requirements found in PAM2. Unlike in PAM1, the inputs to PAM2 are not just
single partial products, but a sum of M+1 partial products. Both pipelined
multipliers, however, show the same kind of structure. The most significant input,
generated by AND-NAND arrays with only one AND, is accumulated first,
whereas the less significant inputs, generated by AND-NAND array with only
one NAND, are accumulated later. PAM2 implements all the multiplications done
by n PAM1s in design 1 simultaneously; it is an n-fold duplication of PAM1.
Therefore, in order to get the correct result, we have to apply the corrective
addition process shown in 3.2 once per factor. Since the number of factors M+1
Is equal to n, we have to add n x 1 to the column that represents the (n+1)Isb as
well as the columns that represent the (logzn) most significant bits.

In design 2, no parallel prefix addition network is applied to generate the
final result. As the clock cycle time is less critical as in design 1, a CLA-adder

can be applied without increasing the clock cycle time.

24

2co0 A\

M
z"(n'k)u-l » bk

cOo
M 2
2x(nK)y-2 * by [Accumulation-Array |
- > suM co SUM

g\

2x(n-kKly * by | Accumulation-Array |

CLA-Adder

n+loszq'/
y

Figure 14. Pipelined Array Multiplier (PAM2).

25

4.4 Device Setup

Before the FIRfilter is able to work, it has to go through a setup stage.
During the device setup, the FIR-filter reads k multiplication factors b, required
for the process. The design of the setup logic is shown in Figure 15. It is applied

for both circuits, design 1 and design 2.

Input
Factor b

CLK

)
c

Register by,

LOAD

T Register by.,

® FIR
: Process

LT Register b,

LT Register b,

Figure 15. Setup Logic.

The setup logic requires k latched n-bit registers, each holding one
multiplication factor. Whenever the load signal is set to ‘1’, the clock reaches the
registers. With the falling edge of the clock signal, all registers read the signals
at their inputs. The register on the top directly reads the input at the pins,
whereas all other registers read the signals held by the preceding registers. The

setup requires k cycles. The serial arrangement of registers requires the

26

implementation of a new setup for every modification of factors. With a parallel
structure or an additional address bus for the registers, modifications of single
factors could also be implemented during the process. On the other hand, the
serial structure only requires a minimum of input pins, Thus, in order to avoid

additional control inputs, a serial structure is used.

4.5 /O Pins

Figure 16 shows the data pins required for a serial ADC-FIR interface.
Three major categories of pins are considered: pins for data input, pins for data
output, and pins for control and setup. Additional pins (e.g. power supply pins)

are not shown.

Vin
Vref/2
L OAD—“— r
CLK— { r-1
b ADC-FIR .
b r Interface "
r-1
* y.’
* _Vo
b,
by

Figure 16. 1/0 Pins.

27

The ADC-FIR interface in Figure 16 shows a clock pin CLK. Even when
provided with an internal clock, the device still requires an synchronization
signal to the master process. However, this signal is only required during the
setup, when the registers have to be latched. As a result, the use of an external

clock is optional.

28

5. DESIGN EVALUATION

5.1 Hardware Requirements

Both designs only require a small variety of logic elements:

o Full adders (FAs) and half adders (HAs) for the accumulation process.
e D-flip-flops for the latches.

o AND/NAND gates for the generation of the partial products.

o CLA networks and XOR elements for the final addition stage.

o Pull-ups, pull-downs and inverters for special features.

An analysis of the circuits showed that the hardware cost for CLA networks,
XOR elements, pull-ups, pull-downs and inverters adds up to less than 2% of the
total hardware cost of the design. Thus, the following analysis only shows three
groups of elements: AND/NAND gates, latches and FAs/HAs. Figures 17, 18,
and 19 show a graphical comparison between the two designs. Tables 1 and 2

show specific numbers for n = 4, 8, 12 and 16 bits.

Hardware requirements for design 1 (in order of n):
e n°+10n AND/NAND gates
e 4n°+8n’+30n Latches

e 15n°+n?* FAs/HAs

Hardware requirements for design 2 (in order of n):
e« n° AND/NAND gates

e 5n°+2n Latches

e N°+n° FAs/HAs

—&— Design 1

~—i— Design 2

Figure 18. Latches Required for both Designs.

FAs/HAs

—&— Design 1
—— Design 2

Figure 19. FAs/HAs Required for both Designs.

30

Size (# of bits n) | 4 8 12 16
ANDs/NANDs 104 | 592 1848 | 4256
Latches 504 | 2800 |8424 | 18912
FAs/HAs 112 | 832 2736 | 6400

Table 1. Hardware Required for Design 1.

Size (# of bits n) | 4 8 12 16

ANDs/NANDs 64 | 5122 | 1727 |4096
Latches 88 |336 774 1312
FAs/HAs 80 | 576 1872 | 4352

Table 2. Hardware Required for Design 2.

The number of AND/NAND gates is about the same for both designs.
Design 2 requires about 30% less FAs/HAs. The number of latches, however,
differs by a factor of 6 to 15. Here, the gap between both designs is so large
because the number of latches in design 1 grows in the order of n°, whereas the
number of the latches in design 2 grows in the order of n°.

The FAs/HAs are the most costly elements. According to the CMOSN Cell
Notebook [6], the size of one FA is 48u x 150y, one latch is 42p x 150y, and
AND/NAND gates are an average of 21y x 150u. By weighing the number of
elements with the area the elements require, we get some information about the
total cost of the logic. As the cost for both logic and wiring grows in the same
order, the data is also a good basis for the total hardware cost of both designs.
Figure 20 shows the results of the analysis. All numbers are scaled to 1. As we
can see, the hardware cost of design 1 exceeds the hardware cost of design 2

by factor 3.

31

Hardware ;o / —e— Design 1

Cost R
(Scaled to 1) / ®— Design 2

Figure 20. Overall Hardware Cost of both Designs.

5.2 Speed

The clock cycle time and the pipeline depth are the input parameters to
the speed of the circuit. The clock cycle time t. is the only parameter that
determines the maximum frequency of the design. The product of the clock cycle
time t. and the depth of the circuit d determines the latency of the circuit. In most
application, for instance video signal processing, a high performance in
frequency is more important than a high performance in latency. In some
applications, for instance control units with feedback loops, the performance in
latency is more crucial. The simulation was implemented with Viewsim, the
simulation package within the Powerview software [1]. Using the simulation
parameters given in the CMOSN Cell Notebook [6], we obtained the data shown
in Figures 21 and 22.

Figure 21 shows the clock cycle time of both circuits. In design 1, the final
CLA stage of the PAD is pipelined. Thus, the most time consuming stages are
found within the accumulation process of the partial products. The accumulation
process only requires the sequential data flow through a latch and a full adder,
which takes a maximum of 4ns. So, design 1 provides a 250-Msample/s FIR-

filter. In design 2, there is another characteristic. The CSA stages and the final

32

CLA process are not pipelined. For n<9, the final CLA in PAM2 consumes the
most time of all stages. When n>9, however, the CSA tree takes the position of
the critical path. This is due to the characteristic of the CSA method that grows
in depth when the number of operands increases. Figure 21 illustrates this
characteristic. When n exceeds 9, 13, 19 or 28 bits, the depth of the CSA tree
increases by one and the clock cycle time increases by 4ns. Figure 22 shows
the latency of both FIR-circuits. The figure does not include the latency of the
ADC. The latency is measured from the point where all n ADC outputs of a

conversion k are available to the point where the filtered signal y(n) is ready.

24
20
Clock 16 —&— Design 1
CycleTime 12 % —— Design 2
(ns) 8
16— Oo—¢o— 00—
0 T - T |
n=6 n=9 n=13 n=19 n=28

Figure 21. Clock Cycle Time of both Circuits.

50 -
o ‘/_’______.,/o——"‘"'
— r
30 .____’__.—_————‘.'/*é
La(te';cy 2 ' —— - —e— Design 1
ns,
—i— Design 2
10
0 T

Figure 22. Latency of both Designs.

As shown in figure 21, design 1 provides a constant clock cycle time of

4ns. Thus, the latency of this design only varies with the pipeline depth d. The
pipeline in design 1 consists of a basic number of stages plus some more
variable stages:

o 1 stage to generate the partial products.

1 stage to accumulate the partial products.

3 stages to accumulate the carry and sum output of the 2 PAD trees.

(log2n) + 1 stages to generate the carrys for the final addition.

1 XOR stage to generate the final result.
This makes a total of 8+log,n cycles. With a clock cycle time of 4ns the total
latency is 32ns+4(logzn)ns. ‘ |

Design 2, in contrast, provides a constant number of stages but a variable
clock cycle time. The clock cycle time grows in order of o(c + logsn), where ¢ is
the constant part, and logs.n is the variable part that describes the increasing
depth of the CSA tree. The pipeline in design 2 only requires two stages:

¢ 1 stage to generate and accumulate the partial products.
o 1 stage to generate the final result.
As we can see in Figure 21, up to n<9 bits, the total latency for design 2 is 24ns.

For n>9 bits, the total latency is 4ns+4(logszn)ns, where logs.n has to be

rounded to the next integer.

6. SUMMARY AND CONCLUSION

The comparison mentioned in Chapter 5 showed the strengths and
weaknesses of both designs. Design 1 provides a high sample rate of 250-
Msamples/s, which has been achieved by a high degree of pipelining. This leads
to a certain overhead in hardware. About one third of the hardware as well as
the processing time in design 1 is consumed by latches. Design 2 limits this
overhead by decreasing the degree of pipelining. By means of one third of the
hardware required in design 1, design 2 processes about 80-Msamples/s which
is about one third the sample rate of design 1. A look at the performance of
pipelined ADC techniques, however, shows that the speed of design 2 is
absolutely sufficient. Pipelined ADCs with 10 bits or more provide sample rates
in the range up to about 20-Msamples/s [7].

Both FIR-designs exceed the speed of digital signal processors (DSPs)
used for filtering by far. Even though DSP-FIRs provide a higher degree of
flexibility, their speed is limited to less than 1/30 of the speed provided by both
designs shown. Programmable DSPs are able to vary k, the number of samples
considered in each process, whereas both designs shown limit the number of
samples considered in the process to n. In other regards, both designs shown
provide the same flexibility as DSPs. As the weighted factors in both designs
can be set to zero, k can also be less than n. Inputs and outputs of both designs
shown are in 2’s complement format. Thus, it is possible to limit the width of the
circuit to less than n. This can be simply implemented by extending the sign of
the most significant input bit available to the input bits not considered.

This work showed two pipelined FIR-filter architectures, designed for a
interfaced ADC-FIR device. Both design are featured by two techniques: msb-
first multiplication and 2-dimensional pipelining. Both designs meet the speed
requirements of the latest pipelined ADC circuits. It can be concluded that there
is a high potential in ADC-FIR devices. A further increase in speed of pipelined
ADCs will give the architectures proposed even greater potential.

35

BIBLIOGRAPHY

[1] Viewlogic, Powerview Manual, Viewlogic Systems Inc., 1992.

[2] Shih-Lien Lu, Jack Kenney, “Design of a Most-Significant-Bit-First Serial
Multiplier,” Internal Research, Dept. of ECE, Oregon State University,
Corvallis, OR 97330, June 1994.

[3] Richard E. Ladner, Michael J. Fischer, “Parallel Prefix Computation,” Journal
of the Association for Computing Machinery, vol. 27, no. 4, pp. 831-838, Oct.
1980.

[4] Richard P. Brent, H. T. Kung, “A Regular Layout for Parallel Adders,” |EEE
Trans. on Computers, vol. C-31, no. 3, pp. 260-264, March 1982.

[5] C. S. Wallace, “ A Suggestion for a Fast Multiplier,” IEEE Trans. on
Computers, vol. EC-13, pp. 14-17, Feb. 1964.

[6] The MOSIS Service, CMOSN Cell Notebook, Release 3.0A, 1991.
[7] Stephen H. Lewis, Scott Fetterman, George F. Gross, Jr., R. Ramachadran,

T. R. Viswanathan, “ A 10-b 20-Msample/s Analog-to-Digital Converter,”
IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 351-358, March 1992.

APPENDICES

36

APPENDIX A: SOFTWARE MODEL DESIGN 1

Appendix A illustrates the software model of design 1, implemented in

Powerview [1]. Figure A1 shows an overview of the design. Figures A2-A13

show the schematics illustrated in Figure A1 in detail.

FIR-Filter
Design 1
firl
Pipelined Array
Setup Circuit Pipelined Adder Multiplier
load_unit pad paml
AND-NAND AND-NAND
Array with 1 Array with 1
Leading AND Leading NAND
lad _7nd Ind 7ad
PAD-Tree for PAD-Tree for Array to Accum. Parallel Prefix Parallel Prefix
Sum Vectors Carry Vectors pad_sum and Addition Addition
pad_co Outputs Network Sheet 1 Network Sheet 2
pad_sum pad_co res_gen add_matr.1 add_matr.2
Node for Carry
Generation
Module Matrix
node
file name
Legend

Figure A1. Hierarchy of Design 1.

FACT(7:0] FOAD_UNIT|
1

acTr_47i04

LOAD

"~

FACT7i7:0]

FACT6{7:0)
in eacTe_t3.0) FACTS[7:0])

rACTE (7,08 FACTA4(7:0)

sacra_svios FACT3(7:0)

vactr_avios FACT2{7:0]

racTa_qv.ep FACT1{7:;0)

CTO(7:0)

CcLK
o P
X{7:0)

; 3 1 E

7 PAMT T PAMT 3 PART _ 7 PAMT 3 PAMT T PRAMT 7 PAMT T

. H ¢ 2 H 3 2 ¢ ? q :

: ik { SNt N I A O T B O B L

i H H H H = it H 4 H =i

§ : § § A Pl A :
H S H H I LI £ H s
4 [[g i
i H iR
I Pt

3
PROD_ _BUM7(17:10] PAD

oo aunr i3 00
Prov_corins.an
L aco_sumeinrion
}ava_canisr.a
moo_eums iYL er
o _cUtabT)

s COS Iy ¥i172.:7)

b sumsinron

PROD_sUN3

SN T}
koo wuma (17,00
w0 OBIAY At
e _wums 189,01
RO
TR

woB LouL Tk

Figure A2. FIR-Filter Design 1.

8¢

39

CLK

FacT(7:0] vaTe eaere racrs eacre acrs saces racTs PACTS

“FACT7_(7:01

[
FACT6__(7:0)
racTe_s
[4
| 2__LAT]
FACTS_(7:01
racrs_t
A
o
3l
2_LAT] [2__LAT l [Z_LAT
Ral o I o Bl " b L]
e re_e s . FACT4_(7:01
vacTe_s sacva_s

FACT3_{7:0])

FACT2_(7:0)

FACT1__(7:0])

wac

FACTO_(7:0]

Figure A3. Setup Circuit.

1L

i

T

SUEHEE L —

bt
I T

oD ||
A T

.

T

. l-—fﬁm

(PP

i L A
L e
T s T T

ﬁiﬁzﬁﬁﬁﬁ%#ﬁﬁﬁ%@w

; BACO_uuM{17.0]
PROD_CO117.2)

iy

st

S

drtir i i s g iy g
i

P

i L i

=]
.

N I-—f_‘:—""

Figure A4. Pipelined Array Multiplier 1.

FACT(7:0]

PPO PPl PP2 PR3 PP4 PPS PP6 PP

) PP[(7:0]

Figure A5. AND-NAND Array with 1 Leading AND.

FACT[7:0]1

PP{7:0])

Figure A6. AND-NAND Array with 1 Leading NAND.

ELK

SUM_SUM[17:0]

RES_GEN
suM_SuM (1701

RES_SUM([17:0]
[suM_co 271

RES_CO({17:3)
co_suM(17:2]

o _co[17:3)

CLK .
x
PAD__SUM
PROD_SUM7 [17:0) gy iewoo_sum?|17.0)
PROD_SUM6({17:01] M ——{FRoC-sums 1170
PROD_SUMS (17:0]) -—_‘plon_auhsl 1,01
BUM_SUMEL17:0])
PROD_SUMA [17:0) puy lroo sumiriziol
BUM_CO(17:1)
PROD_SUM3 [(17:0] -—1‘“00_8”"“ 17:00
PROD_SUM2([(17:0) -____ca-on_suuz(17:01
PROD_SUM1 [17: 0] gy hsoo_sumi(i7.ol
PROD_SUMO (17:0] gy lwon sumoqtiio)
CLK
o
PAD_CO
PROD_CO7{17:2] . roc-soT (AT
PROD_CO6[17:2] -_b-on_conx'uzl
PROD_COS(17:2] g —-fRoC-cos 172
CO_8UM{1713]
PROD_CO4[(17:2]) ...ll-—“plon_co‘(lhz'
cO_COo{17:¢3]
PROD_CO3([17:21} -_v-on_co:uv.zl
PROD_CO2(17:2) {7 oS0 A
PROD_CO1(17:2) -___PlOD_COl(x’h:l
PROD_COO(17:2) ___pnon_cooln.n

RES_SUM(17:0]

RES_CO[17:3)

!
o
i)

—— R —
— . —

ADD_MATH
RES_SUM({17:0}
Y(17:7)
RES_CO(17:3]

¥Y[(17:7]

Figure A7. Pipelined Adder.

194

44

PROD_eUNT (17101

g ——

3 e 1e et td st S ettt mmm_mAls b cimst ave_smrs revams | mem et | manomrre R

_ BEECEERgEEEgEEEEn

—

W

S el el alel e Sl LS

D D D D D P G

A g

#ROD. (17:0) i i i i i I i i i i i i i i i i i

_ gk A

[L] L] (o] (o] D] (o] L] (] (o] (o] (o] (][] (o] L] (o] [52]

p 3 3 FE 2 E 3 E 2 3 EE p

gy 'ﬁﬂ?&“&“&“&'ﬂ?&'ﬂ:‘&“&'ﬁ?&'ﬂ?f

Figure A8. PAD-Tree for Sum Vectors.

PROD_COT 17121 romwwrtr semamvis soomcasis simmimorvs mmamss rmsmownis | reris cvemmwite | rvare emmmwa rsaewe | g e eeerave reearis et
1 1 L)| 1] 1)|)|] i] i 1 Il 13
_ear et v [o~ ar ear e _ear _iar [R _tar o o tar
E . E 9 o q E E L < 1 L
PROD_COS (17321 fummers pommmes fomameis poasmars fmomers pommess pomirmoss pamimis fpaatomms premmes poams framoves paemcess poanares pmams pommomes
I 1 I | N L ! 1 ! 1 1 I 1 i { ! L
PROD_COS (1712) - - ross oo -

PROD_CO4 (17:2

PROD_CO3 (17:2

PROD_CO2(2712)

a E g :

g

l[
t EE ﬂs u ﬂ ISE ﬂ: EEL i

3

AT - iav A —Lar - v T i —ar tar ot R e o tar
PROD_COO(17:2] . - v - s -t e
van oas can [.o van res ran was
AT A ar AtaT kAT LT AT AT A sav ALtar LAY L il AT Arar L —LAT
E 3 3 q E q E q E: 3 3 3
P o]
. - Co—SuN (17131
- cO_CO1743)

Figure AS. PAD-Tree for Carry Vectors.

CO_Cco({17:3) ca_cory ww_core ca_gors cosere co_cona co soua neun co_cure co_cos vu_cue

Comm. CO__CO{(17:3)

CO_8SUM(17:13]) . e . e s Cu_sumn . < . > N . - .
e ——————— ——
S8UM_CO([(17.1) » - . N e
e —————
SUM_SUM[17:01} . » s _am s ome] | sncama] | oauwsane » N v mma oy o om_aimne
g
E]
=
. -
o j
® & b

bo__cor

a_ 3 2_taT 2
E P o o o o
d of E
e ol ol - o o of o o o] o o o A -1 o
2| _zJ 2] 2| 2| 2| I 1 2} 2
ran ' AL I raD | ran | rao I rao I rao I YN
of ol of of of el 3
C g o o o g & 4 J i g
° ° ° ° ° ° ° \ ° \
o R o o nI A o 4
N : 8 3 dl B Zl A E A
z [Al 2_tar 2 T v T) v

- ““““““m““““““ —
o

RES_SUM{17.:0Q)

RES_CO({17:3])

14

Figure A10. Array to Accumulate Carry and Sum Outputs of both PAD-Trees.

g A ol
a_taT
P

H .I:J Axin
H
i, o
TE . - /
xOR
= xoR

oF

[)'M.r a_tar
B

g

WAL

o | []

B By gy oy
LA &
LA A AR

g a a o A o
a_rar I_iaT a_LaT
0] - A o
o o o

.
H .
H LJ T
H 1rg, e
) v .
XOR
xoRr

AT

‘ : 3 Adgd 144
-
e

1 o 4 k= B of o " ol ol 4 o o

ALK

o o o o
== [z_m

-] nl a
2_LaT

xonr

M A&

o o o o of
a_rar 2_taT 2_Lar
q o o ol
of o o o o
o o o o oA o
P P

17

AL AL &

o
P

o of 3§ A ol o
a_taT a_iar a_rar 2_LaT a
o P P o P
o o o

ANAY

= SR be

AN

o o { o ol ol o
o] o o P A o
PN P PN o

B

= I.i.:] Lz_mu:] [somr] [oome

() (28 () (-

G

]
'R
_Lar bar
8 q
« 37

of o o of
_caT 3 taT a_raT

WA

deddgddddds

Figure A11. Parallel Prefix Addition Network Sheet 1.

-E

[R
ER: R q g
HODE Imn" N

I
3 FENR(JFE
E

L3
{ o l

il

LITTIT

Figure A12. Parallel Prefix Addition Network Sheet 2.

48

49

NV1i

oUT

PIN GIN
InNa
IN1
U
GH . IN2
by X1
Ny UTL
PH INZ ouT2
NDI2X1
rPOUT

N1
ouT
1Nz
1

GouT

Figure A13. Node for Carry Generation Matrix.

50

APPENDIX B: SOFTWARE MODEL DESIGN 2

Appendix B illustrates the software model of design 2. Three of the
modules used in design 1 can be also found in design 2: The setup circuit and
both AND-NAND arrays. Figure B1 shows the hierarchy of design 2. Figures B2-

B7 show the schematics illustrated in Figure B1 in detail.

FIR-Filter
Design 2
fir2
Module for Module for Pipelined Array Pipelined Array
Setup Circuit Partial Product Partial Product Multiplier Multiplier
Generation MSB| |Gen.all but MSB Sheet 1 Sheet 2
load_unit Pp_gen_msh pp_gen pam?2.1 pam2.2
AND-NAND AND-NAND Carry Save
Array with 1 Array with 1 Adder
Leading AND Leading NAND
lad 7nd Ind_7ad
Module
file name
Legend

Figure B1. Hierarchy of Design 2.

51

cLK

-—

FACT(7:0)

LOAD
—d

rrrir.a

f

L

X{7:01

gl

Pe_cEN P

!

——eiv.0t

xs

il

PP_cEN erevtv.0)
p— <

-1
g f———1
——— ———
g — p—
——— ——
iy

i ———
L —

conieray]

xe

erertr.a1

maaieiny

HINN

ve_tvian

focis 2

L

x3

4

Y1747

e3v0r. 01

corie.a

s ———

pesles E———

P p——

pe—- T o
3

x2a

rrir.el

i

poroivier

“nae e

[

x1

1

Ly

I

|

umariveol

x0

Il

Figure B2. FIR-Filter Design 2.

52

FACTO (7

FACTL (7

FACT2 (7

FACTI3 (7

FACTA4 (7

FACTS (7

FACTS (7

FACT7 (7

PPO(7:0]

PP1(7:0]

PP2(7:0)

PP3[7:0)

PPR{7:0)

PPS[7:0])
[

PP6(7:0]
[

CLK XN
1 _LAT
: 0
Aot T o0
veU
~
LAD 7ND
~
1_tAT
:0f
facri7 a1
retr.n)
"
[LAD _7ND
X
n
1 AT
: 0
Facrisi o
YL
-
Lao_7nD
~
1_LAT
:0p
FACT(7.0}
er(7.01
bLaD_nD
A
1_LAT
: Of)
FACT (7.0}
er(7:0]1
Lap _7wno
; I
1_LAT
;0
facria o0
eri7o00
bLap_7no
~
1_LAT
: 0f)
ACT(T 101
rei7.04
»
Lao_-sn
Al
1_LAT
:01]

ACT (7
oL

'n
uy

RLAD _TND

PP7(7:0]

Figure B3. Module for Partial Product Generation MSB.

53

CLK

FACTO (7 :0]

AT)
1T oa)

FACT1(7:0(

PPO{7:0]
—— R

~
1ND /AL

ACT (7 0}y
LIETY

PP1(7:0]
e ————

FACT2(7:0{0

ND_TAD

pactir.an
eririol

FACT3 [(7:0)

PP2(7:0]
—

LND _7AD

pacrir.on
PPi7, 00

PP3([(7:0]

FACT4{7:0]

LND_7AD

pacrir o)
erT0)

FACTS (7 :0(p

—LAT

PP4A(7:0]

LND _7AD

FacTi7io)
[LTEALT)

FACTS {7 :0(

PPS(7:0]
-]

N A0

prcetaiat
B

FACT7(7:0]

LN sAD

PP6(7:0)

pacrir.on
LIS T
d

PP7(7:0]
I ——aaa

AND_T7AD

Figure B4. Module for Partial Product Generation all but MSB.

PP?7_(7:0])

22 er_a vrr_e

PPE_(7.:0])

PP5_(7:0]

PPA_(7:0)

SUM_(8:0]

co-te:1) *

co_s co_z co_a ca_s coe co_s cua co_s

PP3_([(7:0)

PP2_(7:0)

PP1_[(7:0)

ol
¢
PPO__{7:0) j

e
o o o
2f 2] %
raAD
o
o &
a
z] 2
b
¥aD
E
[

ers_y ror_e s ra_.
ez rea_e vea_e e

vvas

ers_a

A

Eﬂ EE Z
m e

co.

ATV -

nums

o o
z} 2z
raD

N
Ny

of 3] 3
of & gy
cu_s

B

z] 2z

raD

3

2]

SUM[9:0]

e wno

co[9:2])

Figure B5. Carry Save Adder.

vS

55

i

co7_(9.i21 - - - - - - - -
aum7_(910} ETE R RN P T = = e
1 I 1 I i e e e 1 1
d“.;_‘] il i s s e lea i (I_—j...
coe_tsi2) 3 - — - ~ - - — 9

%%@%ﬁ#;éw

e

iy)

b

gkl
A

S |

I

- e

PSS T T
LR EEEEEETE]

e PEDHEAE

e S

—_—

e PR EPPPEEEREEEBEEE

L S g g

Figure B6. Pipelined Array Multiplier 2 Sheet 1.

calecoly coracers <culscorscorecar?

co{17.:2) coz cod coe cas Loa o cus cos

L
poma s pane Joime e foume s fome houms - P T
L R y
S8UM(17:2) l , I
- as as 23
L _umy _iuny
Ja, e P na
” a n
Aua ioe. Aa
e Lo Lna,
appco | g, apnco | ., ADDCO | o0 appco |
it Ane ey
+
sz, AN, ina)
uLU Py Y i —
aa ™ Acail oy
b £ o S S b
Nva

_eat

n
4
%
r
Id
>
.,[
L]
. =
C ke
2 b
L*]
T
y
2
L=
[e
gt
[e
L
>
- Ra
T
2.
"

23
Qu
-5 gaam
Q2
Q
Z
21
]
Q3
g3

¥Y(17:7)
_

vs vio via vis via ¥ie s vie w17

Figure B7. Pipelined Array Multiplier 2 Sheet 2.

9g

