
AN ABSTRACT OF THE THESIS OF

Hubert J. Stier for the degree of Master of Science in Electrical and Computer

Engineering presented on May 3, 1995. Title: Design of a 80/250-Msample/s

FIR-Filter for a Pipe lined ADC-FIR Interface.

Abstract approved:

Shih-Lien Lu

With a growing demand for digital video signal processing applications,

the demand for fast low-cost analog-to-digital converters (ADCs) is increasing

rapidly. In order to meet this demand, recent research has provided a high
variety of pipelined ADC devices. In contrast to traditional ADC methods,
pipelined ADCs do not generate a parallel n-bit digital output, but n serial
outputs. Often, analog-to-digital converters can be found in combination with

digital filters that process the ADC output signals before they are further used.

The thesis project describes a pipelined FIR-filter that is designed to
process the serial outputs of pipelined ADCs. It is shown that the serial
architecture of the ADC can provide high-efficient FIR-filter architectures.

Improvements over traditional FIR-filter applications are achieved through 2-
dimensional pipelining and most significant bit first multiplication. Two pipelined

FIR-filter architectures designed in CMOSN standard cells are shown. They can

achieve a maximum sample rate of 80-Msamples/s and 250-Msamples/s and
thereby meet the sample rate requirements set by the current serial ADC
technology. By interfacing ADC and FIR-filter closely, further improvements in

speed, area, and power consumption can be made. Thus, in addition to a stand-

alone version of the FIR-filter, an interfaced version of ADC and FIR-filter is also

considered.

Redacted for Privacy

©Copyright by Hubert J. Stier

May 3, 1995

All Rights Reserved

Design of a 80/250-Msample/s FIR-Filter
for a Pipe lined ADC-FIR Interface

by

Hubert J. Stier

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed May 3, 1995
Commencement June 1995

Master of Science thesis of Hubert J. Stier presented on May 3, 1995

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Head of Department of lectricaLai d-Comfm.iteT Engineering

Dean of Gradud School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Hubert J. Stier, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENT

I would like to express my sincere appreciation and gratitude to my major

professor, Dr. Shih-Lien Lu, for his continual support throughout my thesis
project, Many thanks for his patience, understanding and encouragement along

the way.

I would also like to thank friends, family and the Department of Electrical

and Computer Engineering for their enduring support.

Special thanks as well to my sponsor, the Fulbright-Kommission, for their

financial support. Without their generous help, this dream would have never
come true.

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Outline of the Thesis 2

2. MOTIVATION FOR A PIPELINED ADC-FIR DESIGN 3

2.1 FIR-Filters 3
2.2 Parallel SA-ADC Method in Combination with DSP 4
2.3 Pipe lined ADC-FIR Interface 5

3. FEATURES OF A PIPELINED ADC-FIR DESIGN 7

3.1 Pipe lined SA-ADC 7
3.2 MSB-First Multiplication 9
3.3 Concepts for the Design 10
3.4 I/O Requirements for the Filter 13

4. FIR-FILTER DESIGN IN CMOSN 15

4.1 Goals and Properties 15
4.2 Design 1 16
4.3 Design 2 21
4.4 Device Setup 25
4.5 I/O Pins 26

5. DESIGN EVALUATION 28

5.1 Hardware Requirements 28
5.2 Speed 31

6. SUMMARY AND CONCLUSION 34

BIBLIOGRAPHY 35

APPENDICES 36

Appendix A Software Model Design 1 37
Appendix B Software Model Design 2 50

LIST OF FIGURES

Figure Page

1. Parallel SA-ADC Method with DSP 4

2. Pipe lined ADC-FIR Interface. 6

3. Pipe lined SA-ADC. 7

4. Example: Work-Sequence of a Pipe lined SA-ADC with
six Stages. 8

5. General Structure of the MSB-First Multiplier for a
Multiplication A x B. 9

6. Algorithm According to Equation (5). 11

7. Algorithm According to Equation (6). 12

8. Inputs/Outputs for FIR-Filter. 14

9. Design for FIR-Filter 1. 17

10. Pipe lined Array Multiplier (PAM1) 18

11. Pipe lined Adder (PAD). 20

12. Parallel Prefix Addition Network. 21

13. Design for FIR-Filter 2. 22

14. Pipe lined Array Multiplier (PAM2) 24

15. Setup Logic 25

16. I/O Pins. 26

17. AND/NAND Gates Required for both Designs 29

18. Latches Required for both Designs. 29

19. FAs/HAs Required for both Designs 29

LIST OF FIGURES (Continued)

Figure Page

20. Overall Hardware Cost of both Designs. 31

21. Clock Cycle Time of both Circuits 32

22. Latency of both Designs. 32

A1. Hierarchy of Design 1. 37

A2. FIR-Filter Design 1. 38

A3. Setup Circuit 39

A4. Pipe lined Array Multiplier 1 40

A5. AND-NAND Array with 1 Leading AND 41

A6. AND-NAND Array with 1 Leading NAND 42

A7. Pipelined Adder. 43

A8. PAD-Tree for Sum Vectors. 44

A9. PAD-Tree for Carry Vectors 45

A10. Array to Accumulate Carry and Sum Outputs of both
PAD-Trees. 46

A11. Parallel Prefix Addition Network Sheet 1. 47

Al2. Parallel Prefix Addition Network Sheet 2. 48

A13. Node for Carry Generation Matrix 49

LIST OF FIGURES (Continued)

Figure Page

B1. Hierarchy of Design 2. 50

B2. FIR-Filter Design 2. 51

B3. Module for Partial Product Generation MSB 52

B4. Module for Partial Product Generation all but MSB. 53

B5. Carry Save Adder 54

B6. Pipe lined Array Multiplier 2 Sheet 1. 55

B7. Pipe lined Array Multiplier 2 Sheet 2. 56

LIST OF TABLES

Table Page

1 Hardware Required for Design 1. 30

2. Hardware Required for Design 2. 30

Design of a 80/250-Msample/s FIR-Filter
for a Pipe lined ADC-FIR Interface

1. INTRODUCTION

1.1 Motivation

The successive approximation (SA) analog to digital conversion method is

an inexpensive and precise technique, extensively used in signal processing

applications. Often, analog to digital converters (ADCs) are found in combination

with digital filters. There are two major applications that suggest such an
arrangement. First, would be applications in which analog filters cannot meet the

requirements of a specific filtering process within the analog domain. So,
continuous-time signals are converted to digital in order to apply digital filters.

Second, would be applications in which digital processes require analog data as

input. In order to remove noise from the signal, the ADC is succeeded by a
digital filter.

The SA method generates a bit stream with the most significant bit (msb)

first. In general, SA-ADCs store the output stream of each conversion in
registers and thereby provide a parallel output. Thus, the filtering process
cannot be started before all bits of the conversion process are available.
Pipe lined SA-ADCs, in combination with serial FIR-filters that start computation

already when the first bit of the AID conversion is ready, would be able to
minimize the time required by this process. Such an architecture provides two

advantages. First, the filtering process can finish sooner as it already starts with

the first bit available. Second, the pipelined SA-ADC can read the next sample

already after the first bit is converted.

2

However, this method requires a new approach in both the analog-to-

digital conversion, and the digital filtering process. Furthermore, in order to
reduce latency, area, and power consumption of the structure, the ADC and the

FIR-filter can be interfaced in a single device.

1.2 Outline of the Thesis

The next chapter presents some general considerations that show the

motivation for a pipelined ADC-FIR design in detail. Chapter 3 describes the
techniques suggested for a serial ADC-FIR design. Methods like pipelined ND

conversion, msb-first multiplication and two-dimensional pipelining, as well as

I/O formats, are explained in this section. Chapter 4 shows two different
algorithms for a n-bit pipelined FIR-filter. It also describes the single modules

used in the design and gives an overview of the logic applied. Chapter 5
evaluates the filter design. Information about hardware cost, speed, and

scalability is given for the implemented 8-bit version as well as for other sizes of

filters. Chapter 6 gives a summary and conclusion about the work. A short

analysis shows the performance perspectives of the pipelined ADC-FIR designs

in comparison to traditional methods. Appendices A and B show the
implementation of 2 different designs for an 8-bit pipelined FIR-filter by means of

Powerview tools [1].

3

2. MOTIVATION FOR A PIPELINED ADC-FIR DESIGN

2.1 FIR-Filters

Filter devices are used in a wide range of applications, such as removing

noise from signals, removing signal distortion due to the transmission channel,

and demodulating signals. Among all these applications two major families of

filters can be identified: analog filters and digital filters. Analog filters involve

signals in the analog domain (continuous-time signals), whereas digital filters

relate to signals in the digital domain (discrete-time signals).

Most digital filters are based on the following relation between the filter

input sequence X(n) and the filter output sequence Y(n):

N m
Y(n)=Iak*Y(n k)+Ibk*X(n k)

k=0 k=0

(1)

The first term on the right side of the equation determines the part of the output

that depends on the last N+1 foregoing outputs generated by the filter (infinite

impulse response-IIR), whereas the second term determines the part that
depends on the last M+1 foregoing inputs to the filter (finite impulse response-

FIR). For FIR-filters all ak are zero. Therefore, equation 1 reduces to

M
Y(n) = ybk * X(n k) (2)

k=0

where bk is the weighted factor for input X(n-k). Thus, the output of the FIR-filter

Y(n) is simply a finite length weighted sum of the current and the previous inputs

to the filter.

4

2.2 Parallel SA-ADC Method in Combination with DSP

Most applications use digital signal processors (DSPs) in order to
implement FIR-filters. DSPs are programmable multipurpose devices which

handle a variety of tasks like filtering, fourier transformation, floating point
arithmetic or digital sine wave generation. The traditional arrangement of a DSP

with a preceding SA-ADC process is shown in Figure 1.

Vin
tAnolog\

Input ,

Parallel SA-ADC

Clock

SA
Register

msb lsb

* * *

Digital Signal
Processor

DAC

DSP *

*

tal
,Output,

Figure 1. Parallel SA-ADC Method with DSP.

During the ADC stage, the parallel SA-ADC starts by enabling the digital

inputs of the D/A converter one bit at a time, starting with the msb. As each bit is

enabled, its amplitude is compared to the analog voltage, v,,, by the voltage

comparator. If the output of the D/A converter is greater than the analog voltage,

the msb is reset to zero, since it will not be required in the digital representation

of the analog input. If the D/A converter output is less than the analog input, the

msb is retained in the register.

5

After the ADC goes through this procedure once per bit, the DSP stage
starts. First, the digital signal processor reads the unfiltered digital signals.
Then, for each weighted factor a multiplication followed by the accumulation of

the product has to be performed, a total of M+1 multiplications and additions.

Finally, the accumulated result is sent to the output port.

This design is somewhat inefficient in two ways. First, the digital signal

processor cannot start its operation until all bits of the ADC are available. This is

due to the instruction set of the DSP which performs multiplication by means of

two complete operands. The ALU of the DSP, however, performs multiplication

bitwise through generation and accumulation of single partial products. Thus,

the ALU may stay idle until all bits are available for operation even though it can

process the bits only one by one. Second, as a single comparator has to
generate all n output bits, the conversion of a single sample requires n
consecutive conversion processes within the ADC. As a result, the total
conversion time sums up to a n-fold of the time required by the inner process.

The following paragraph will show an alternative design that takes a different

approach.

2.3 Pipe lined ADC-FIR Interface

The algorithm of the A/D converter in Figure 1 shows the characteristic of

a loop. In Figure 2, the same algorithm is implemented as a chain of serial ND

units. Thus, we get a pipeline of ND units, where each unit is made of a
comparator plus some more logic. Each ND unit generates a serial bit-stream

with the unit on the left generating the msb and the unit on the right generating

the Isb. In contrast to the looped version in Figure 1, the pipelined ADC in Figure

2 implements a full conversion each clock-cycle. The output bits of the serial ND

units are sent to the functional units of the FIR-filter. These units process the bit

stream immediately, generating a partial product each cycle. The FIR units

6

succeed the pipeline of the ADC, accumulating the partial products according to

the algorithm given in equation 2. Therefore, at the time when the DSP in Figure

1 starts its process, the pipelined FIR-filter in Figure 2 has only one bit to
process left. The A/D converter and the FIR-filter in Figure 2 form a single
pipeline. Thus, this circuit suggests an interface of ADC plus FIR-filter. A
interfaced architecture reduces area, power consumption and latency of the

device. The next paragraph describes the modules shown in Figure 2 in more

detail.

/Analog
Input

v.

Clock

S/H

Pipe lined A/D Converter

Serial
A/D
Unit SI 1111

A/D
Unit

2msb

Serial
* * * A/D

Unit Analog
Domainlsb

Digital
Domain FIR

Unit la 13Unit

Pipelined FIR-Filter

* * * FIR
Unit

Output

Figure 2. Pipelined ADC-FIR Interface.

7

3. FEATURES OF A PIPELINED ADC-FIR DESIGN

The architecture of a pipelined ADC-FIR design is characterized by two

techniques, pipelined SA-ND conversion and msb-first multiplication.

3.1 Pipe lined SA-ADC

Figure 3 describes the architecture of a pipelined SA-ADC. It shows two

serial successive A/D stages. There are two analog inputs, the signal input v,n,

and the reference voltage input vref /2, which is one half of the maximum
convertible signal.

Figure 3. Pipe lined SA-ADC.

The pipeline starts conversion with the msb in stage one, then the 2msb

in stage two and so on. While stage two generates the second msb of the first

input signal vir stage one already generates the msb of the second input signal

8

v,n. Each stage works as follows: First, the sampled signal vsa is compared to

Vrefi2. If Vsa is greater than vref /2, then the non-inverted output of the converter is

1. Thus, the digital output of this stage is set to 1 and the lower switch in the first

stage feeds the signal vsa vref/2 into the succeeding multiplier. If vsa is smaller

than vref/2, then, as the inverted output of the comparator is 1, the digital output

of the stage is set to zero. The upper switch feeds the sampled voltage directly

into the succeeding multiplier which doubles the signal before it is sampled for

the next stage. The following routine describes the function of each stage in
short. The diagram in Figure 4 gives an example with six stages. vsa of stage 1 is

equal to the original input via.

IF Vsa > Vref/2 THEN
out := 1
Vsa := Vsa -Vref/2

ELSE
out := 0

ENDIF
Vsa := Vsa *2

Vsa

Vref/2

1
Output

0

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 4. Example: Work-Sequence of a Pipe lined SA-ADC with six Stages.

9

3.2 MSB-First Multiplication

A major feature of the alternative design is the serial multiplication within

the FIR-filter, which is able to provide a higher speed than the parallel register-

register multiplication performed in the DSP. There are two techniques that
perform low cost serial multiplication: the add and shift method and the quasi

serial method. These techniques perform multiplication with the least significant

bit first. The pipelined SA-ADC described in 3.1, however, generates the most

significant bit first and, therefore, requires another algorithm. This algorithm is

illustrated in Figure 5.

an-1 * B

an_2 * B

* B

ao* B

V \J

1 1 1

7:7 __J

Sign-Ext Result Vector

Figure 5. General Structure of the MSB-First Multiplier for a Multiplication A x B.

10

The msb-first multiplication algorithm applied [2] shows two special
features that cannot be found in other multiplication methods. First, the partial
products are not generated through straight AND operations, but through a
combination of AND and NAND operations. The most significant partial product

is generated in a AND-NAND array with all NANDs, but a single AND at the
leading bit. All other partial products are generated in AND-NAND arrays with all

ANDs, but a single NAND at the leading bit. Second, a logical '1' is added to the

(n+1) least significant bit as well as to the bits on the left of the (2n-1) result

vector. The on the left are needed to generate a correct sign-extension.

3.3 Concepts for the Design

Equation (2) in 2.1 described the general FIR-filter function. The last
product term in (2) can be also represented as shown in (3). In order to simplify

the notation and deriviation without loss of generality, we will assume X(n-k) is

an unsigned number.

X(n k)=Ix(n k).* 2m
m=o

With (3) in (2) we get a more detailed form of (2):

(3)

Y(n) bk * Ex(n k).* 2m] (4)
k=0 m=0

For practical use, (4) can be written in 2 forms:

M u-i
Y(n) Ebk* x(n k).*2m1 (5)

k=0 m=0

u-1 M

Y(n)= Ebk * x(n k).
*2m

(6)

m=0 k=0

11

Even though both forms of the equation are quite similar, they lead to

different algorithms. According to (5), first, k products are generated by
accumulating u-1 partial products which are shifted by m bits to the left. This first

part is represented by the inner part of the brackets. In the second step, all k

products are accumulated to a final result. In (6) all the partial products with the

same exponent m are accumulated first. In the second step, the resulting terms

are shifted by m bits to the left, before they are accumulated.

X(n-k+1)1

X(n -k)o

(Final
Result

1 1 1

bk-1

Summation of
m

Y(n) = * x(n k) *
k=0 m=0

Latch

Figure 6. Algorithm According to Equation (5).

12

Both algorithms are made of two stages, where each stage performs a
pipelined accumulation process. Thus, with the additional pipeline applied in the

ADC we get a total of three pipelines in each algorithm. The three pipelines
form a 2-dimensional matrix. Figures 6 and 7 show the matrixes according to

equations (5) and (6). The large black arrows represent the inputs to the rows

and columns of the matrix.

Figure 7. Algorithm According to Equation (6).

13

For both designs it is assumed that the number of ADC output bits is
equal to the number of factors (u=M+1). This assumption provides a squared
matrix that can be extended in size without structural changes. This assumption

is held throughout the whole work.

3.4 I/O Requirements for the Filter

Input X from the ADC

Input X is an n-bit 2's complement number that can be in the whole range

given by n.

Inputs for factors A
Input A has to be an n-bit number that can represent positive and

negative numbers. There are n inputs A with y, A = 1.

Output Y
Y has to be of the same format as X, with a stable input X, Y has to be

equal to X. With this definition, no conversion back to the input format is needed.

As both the inputs X and A can represent positive as well as negative numbers,

a full representation of the result can require more than n bits. In the case when

positive factors meet positive ADC outputs and negative factors meet negative

ADC outputs, the result can sum up to a maximum of n*X. In order to avoid
overflow, the output Y has to provide Iog2n additional bits. The design is
implemented to meet this requirement. In applications where the problem of
overflow does not exist, the output can be simply cut to n bits. Since the output is

in 2's complement representation, no error will occur.

As we can see, the only format that is not completely defined yet is the

format of the factors A. The task now is to define the format of the factors A in

such a way that the given format of the input X produces an output of format Y.

14

The solution found is a 2's complement format with a virtual decimal point behind

the most significant bit.

X.X)000(

The most significant bit of the format is the 2's complement sign bit. Each

factor can represent a decimal value in the range of -1 ... 0 ... 1-2-(n-1). The sum

of all factors has to be one. Thus, as we cannot represent a one in a single
factor; there have to be at least two non-zero factors. Figure 8 shows an
overview of all data inputs and outputs of the FIR-filter.

Zs Complement
Input X from ADC

it 2's Complement
Inputs a for Factors

/
FIR-Filter

2's Complement
Output Y

(n Bits Plus log2 n
Bits for Overflow)

n+log2 it

Figure 8. Inputs/Outputs for FIR-Filter.

15

4. FIR-FILTER DESIGN IN CMOSN

4.1 Goals and Properties

Before I explain the design in detail, I want to show the guidelines used in

the design process. Thus, it will be easier for the reader to understand the
specific solutions applied in the design. The most important goals are the
following:

Maximum speed

Minimum hardware

100% functionality

Straight forward design

Like in all pipelined circuits, there are two speed criteria that have to be

considered. First, there is the clock cycle time which is the only input to the
frequency of the circuit. Second, there is the number of clock cycles of the
pipeline, which, together with the clock cycle time, determines the latency of the

circuit (latency = clock cycle time * #cycles). A high frequency provides a high

number of conversions per time, whereas a low latency provides a fast response

to the input signals. Only a minimum of different modules are to be used. An
extension of the ADC-output width should not require changes in the structure of

the design.

Of course, there are some trade-offs between these goals. The trade-off

between speed and hardware is a characteristic that can be found in most
electrical designs. The analysis of both algorithms explained in 3.3 showed that

the structure of algorithm 1 suggests a high degree of speed optimization,

whereas the structure of algorithm 2 suggests a high degree of hardware
optimization.

16

4.2 Design

Design 1 is shown in Figure 9. It is the practical implementation of the

algorithm explained in Figure 5. n input-bits xi are broadcasted to all pipelined

array multipliers (PAM1) simultaneously. In general, a n-bit x n-bit multiplication

results in a (2n-1) bit product. The pipelined multipliers, however, generate two

result vectors of a different length. There are two aspects that require this
alternative solution:

As described in 3.4, in order to prevent overflow, log2n more bits have to be

spent for the output. It is a general rule that sign-extension for 2's
complement numbers has to be implemented before the numbers are
accumulated. Since the accumulation process of the partial products starts in

PAM1, the extension by log2n bits has to be implemented already within the

pipelined array multipliers.

Each stage of an array multiplier generates two output vectors, a carry vector

CO and a sum vector SUM. The elimination of one vector would require a

time consuming CLA-process. In order to avoid a loss in speed, both output

vectors are sent directly to the pipelined adder. As the two least significant

bits of the carry vector are eliminated during the accumulation process, the

sum vector requires two bits more than the carry vector.

The pipelined adder (PAD) generates the final result. Design 1 only requires two

different elements, PAM1, and PAM2.

Figure 10 shows the pipelined array multiplier in more detail. The inputs x

are generated in the SA-ADC; they are updated every cycle. x(n),_, is the most

significant bit, x(n-k)0 is the least significant bit. Three major modules are used to

implement the circuit: AND-NAND arrays, latches, and accumulation arrays. The

accumulation arrays are built of FAs which can handle up to 3 inputs. Thus, as

the accumulation process does not need to start before 3 inputs are available,

the two AND-NAND arrays at the top are not followed by an accumulation array.

The AND-NAND arrays form a parallelogram, where the array for the msb is

Figure 9. Design for FIR-Filter 1.

18

7777777
b1

7.7 777 7:7 7:7 77
01

Accumulation Array
n+2 CO SUM n+2

'Angggrg0005<45F-W5S9MWW"""

CO SUM

Figure 10. Pipe lined Array Multiplier (PAM1).

placed on the left top, the array for the lsb is placed at the right bottom. As
explained in 3.2, in order to implement msb-first multiplication, the circuit shows

two special features. First, the partial products are not generated in n-bit AND

arrays, but in AND-NAND arrays. Second, a logical '1' is added to the column

19

that represents the (n+1)Isb as well as to the columns that represent the (log2n)

most significant bits.

As we can see, there is another '1' added to the (n-1-log2n)Isb. This is

due to the rounding scheme. In Figure 9 we can see that the (2n-1+log2n) bit

input of the PAD produces a (n+log2n) bit output, which means that the result

has to be cut by (n-1) bits. In order to keep the maximum precision, the result

has to be rounded. In the general rounding process, a '1' is added to the msb of

the bits that are truncated afterwards. Such a final rounding process is very time

consuming as it requires a succeeding CLA addition process. Thus, it is

suggested that the '1' is already added before the final result is generated. The

`1' can not be added within the PAD as the full adders in the PAD offer no
unused inputs for this operation. Therefore, the '1' is added already during the

multiplication process within the pipelined array multiplier. When n is a power of

2, a '1', added to the (n-1-log2n)Isb in each PAM1 sums up to a '1' in the (n-1)Isb,

which is exactly what is needed. When n is no power of 2, a '1' has to be added

directly to the (n-1)Isb of a single PAM1. In both cases, no final rounding is
required.

Figure 11 shows the pipelined adder (PAD). It consists of two
accumulation trees, one for the carries and one for the sums. A solution with

only one tree but two accumulations arrays between the latches would be also

sufficient. However, since all other pipeline stages only apply one full adder in a

row, two consecutive accumulation arrays would increase the clock cycle time of

the circuit immensely. As a result, a more hardware-consuming 2-tree design is

applied. For the final addition, a parallel prefix addition network according to

Ladner/Fischer [3] is used. A general CLA network cannot be applied efficiently

as the clock cycle time available is less than the time required by each CLA

stage. The nodes of the parallel prefix circuit, however, meet the requirements of

the circuit. Figure 12 illustrates the structure of the parallel prefix addition
network. The three least significant bits of the carry vector are already
eliminated during the accumulation process, thus, they do not have to be

20

considered. In the first step, the generation terms gi and the propagation terms pi

are generated. Then, the parallel prefix matrix generates the carrys for all,
except the (n-1) least significant bits that are cut off through rounding. The single

nodes of the matrix are designed according to the Brent/Kung algorithm [4]. A

XOR operation generates the final result.

CO by * x(n)

co b * x(n-1) sum

b 2 * x(n-2)
Accumulation-Array

CO /SUM

CO

-U-

Accumulation-Array
SUM

gl" '0,24.0.1AMWAIME411:

55-65555.55.55,44

* x(n-k) SUM

Accumulation-Array

Eli
Accumulation-Array

CO SUM
afflaNFOVAMVAg'

'WS

Accumulation-Array
co SUM

:=3:magmetzwzgaigamecm,

Accumulation -Array

CO SUM

Parallel Prefix
Addition Network

y

Figure 11. Pipelined Adder (PAD).

21

SUM CO

V

gi= sum; + co;
pi= sum; + co;

g

Parallel Prefix
Matrix

Yi= SUMi co; Ci

Figure 12. Parallel Prefix Addition Network.

4.3 Design 2

Design 2 (Figure 13) shows the implementation of the algorithm described

in Figure 7. The inputs xi are pipelined to a number of AND-NAND arrays, which

generate the partial products. A carry save adder tree (CSA) [5] sums up all
partial products of each row every clock cycle. As all the partial products of one

row are generated with input bits of similar exponents, no shifting is required.

Thus, the length of the result vectors we get in design 2 is less than the
corresponding result vector in design 1. Again, there is no final CLA stage within

the process; therefore, the CSA tree generates two outputs, a carry output and a

sum output. All CSAs send their outputs to a pipelined array multiplier (PAM2),

where the final result y is generated.

8
8

A

N

4,4

8
A

A

A

8

sN
4+11

44N
y. sve.v.v.v.44,

4

r41

M
ff#083£03M

M
O

M
M

K
M

30M
3333K

$M
kk, W

M
:M

M
.483M

33M
3M

 M
iB

M
EM

O
"a.M

=K
3033:?*?&

M
M

IS

Pr
-

M
i&

W
SK

M
EM

S.
%

%
.%

w
 w

 ss%
%

%
.%

*:4, %
,444,44,44, ':,400%

.4.
%

s%
 %

%
sti.%

et)

3x
sx

22a)

U8CC
)

coa)
0M

23

Figure 14 shows the architecture of PAM2 in more detail. As the partial

products in design 2 are already generated earlier in the process, there are no

AND-NAND arrays needed within PAM2. The inputs to design 2 also form a
parallelogram, with the most significant pair of inputs placed at the left top, and

the least significant pair of inputs placed at the right bottom. The clock cycle time

of design 2 is determined by the time required for the CSA stage. As the CSAs

use several consecutive full adders in one stage, the clock cycle time in design 2

adds up to a value larger than in design 1. Therefore, we can apply two
consecutive accumulation stages between the latches without any increase in

clock cycle time. PAM2 offers some free full adder input lines, thus, the rounding

bit '1' can be added to the column that represents the (n-1)Isb directly.

The msb-first multiplication algorithm described in 3.2 does not meet the

requirements found in PAM2. Unlike in PAM1, the inputs to PAM2 are not just

single partial products, but a sum of M+1 partial products. Both pipelined
multipliers, however, show the same kind of structure. The most significant input,

generated by AND-NAND arrays with only one AND, is accumulated first,
whereas the less significant inputs, generated by AND-NAND array with only

one NAND, are accumulated later. PAM2 implements all the multiplications done

by n PAM1s in design 1 simultaneously; it is an n-fold duplication of PAM1.
Therefore, in order to get the correct result, we have to apply the corrective

addition process shown in 3.2 once per factor. Since the number of factors M+1

is equal to n, we have to add n x 1 to the column that represents the (n+1)Isb as

well as the columns that represent the (log2n) most significant bits.

In design 2, no parallel prefix addition network is applied to generate the

final result. As the clock cycle time is less critical as in design 1, a CLA-adder

can be applied without increasing the clock cycle time.

24

Ecn-k)u-i * bk
2 co

2 sum

2 co
ifx(n-lau_2 * bk
k=O

Accumulation-Array
CO SUM

Accumulation-Array
CO SUM

(n
Clog2rOmsb's (n+INsb*T)

co
itx(n-k)0* bk

2 sum

CO SUM

(n-I)lsb

Accumulation-Amy
CO SUM

Accumulation-Array
SUM

CLA-Adder

n+log2n.f

Figure 14. Pipe lined Array Multiplier (PAM2).

25

4.4 Device Setup

Before the FIR-filter is able to work, it has to go through a setup stage.

During the device setup, the FIR-filter reads k multiplication factors b, required

for the process. The design of the setup logic is shown in Figure 15. It is applied

for both circuits, design 1 and design 2.

CLK

LOAD

Input
Factor b

>a Register bk-i

lf

Register bk-2

Register bl

I
Register bo

FIR
Process

Figure 15. Setup Logic.

The setup logic requires k latched n-bit registers, each holding one

multiplication factor. Whenever the load signal is set to '1', the clock reaches the

registers. With the falling edge of the clock signal, all registers read the signals

at their inputs. The register on the top directly reads the input at the pins,
whereas all other registers read the signals held by the preceding registers. The

setup requires k cycles. The serial arrangement of registers requires the

26

implementation of a new setup for every modification of factors. With a parallel

structure or an additional address bus for the registers, modifications of single

factors could also be implemented during the process. On the other hand, the

serial structure only requires a minimum of input pins, Thus, in order to avoid
additional control inputs, a serial structure is used.

4.5 I/O Pins

Figure 16 shows the data pins required for a serial ADC-FIR interface.

Three major categories of pins are considered: pins for data input, pins for data

output, and pins for control and setup. Additional pins (e.g. power supply pins)

are not shown.

Vin
Vref/2
LOAD

CLK

b,

*

*

*

131

bo

ADC-FIR
Interface

Yr
Yr-1

*
*

YO

Figure 16. I/O Pins.

27

The ADC-FIR interface in Figure 16 shows a clock pin CLK. Even when
provided with an internal clock, the device still requires an synchronization
signal to the master process. However, this signal is only required during the
setup, when the registers have to be latched. As a result, the use of an external

clock is optional.

28

5. DESIGN EVALUATION

5.1 Hardware Requirements

Both designs only require a small variety of logic elements:

Full adders (FAs) and half adders (HAs) for the accumulation process.

D-flip-flops for the latches.

AND/NAND gates for the generation of the partial products.

CLA networks and XOR elements for the final addition stage.

Pull-ups, pull-downs and inverters for special features.

An analysis of the circuits showed that the hardware cost for CLA networks,

XOR elements, pull-ups, pull-downs and inverters adds up to less than 2% of the

total hardware cost of the design. Thus, the following analysis only shows three

groups of elements: AND/NAND gates, latches and FAs/HAs. Figures 17, 18,

and 19 show a graphical comparison between the two designs. Tables 1 and 2

show specific numbers for n = 4, 8, 12 and 16 bits.

Hardware requirements for design 9 (in order of n):

n3 + 10n AND/NAND gates

4n3 + 8n2 + 30n Latches

1.5n3 + n2 FAs/HAs

Hardware requirements for design 2 (in order of n):

n3 AND/NAND gates

5n2 + 2n Latches

n3 + n2 FAs/HAs

29

Figure 17. AND/NAND Gates Required for both Designs.

Figure 18. Latches Required for both Designs.

8000

6000
FAs/HAs

4000

2000

0
n = 4 n = 8 n = 12 n = 16

0 Design 1
a Design 2

Figure 19. FAs/HAs Required for both Designs.

30

Size (# of bits n) 4 8 12 16

ANDs/NANDs 104 592 1848 4256
Latches 504 2800 8424 18912
FAs/HAs 112 832 2736 6400

Table 1. Hardware Required for Design 1.

Size (# of bits n) 4 8 12 16

ANDs/NAND5 64 5122 1727 4096
Latches 88 336 774 1312

FAs/HAs 80 576 1872 4352

Table 2. Hardware Required for Design 2.

The number of AND/NAND gates is about the same for both designs.
Design 2 requires about 30% less FAs/HAs. The number of latches, however,

differs by a factor of 6 to 15. Here, the gap between both designs is so large

because the number of latches in design 1 grows in the order of n3, whereas the

number of the latches in design 2 grows in the order of n2.

The FAs/HAs are the most costly elements. According to the CMOSN Cell

Notebook [6], the size of one FA is 48g x 150g, one latch is 42g x 150g, and

AND/NAND gates are an average of 21g x 150g. By weighing the number of

elements with the area the elements require, we get some information about the

total cost of the logic. As the cost for both logic and wiring grows in the same

order, the data is also a good basis for the total hardware cost of both designs.

Figure 20 shows the results of the analysis. All numbers are scaled to 1. As we

can see, the hardware cost of design 1 exceeds the hardware cost of design 2

by factor 3.

31

Figure 20. Overall Hardware Cost of both Designs.

5.2 Speed

The clock cycle time and the pipeline depth are the input parameters to

the speed of the circuit. The clock cycle time t, is the only parameter that
determines the maximum frequency of the design. The product of the clock cycle

time t, and the depth of the circuit d determines the latency of the circuit. In most

application, for instance video signal processing, a high performance in

frequency is more important than a high performance in latency. In some

applications, for instance control units with feedback loops, the performance in

latency is more crucial. The simulation was implemented with Viewsim, the
simulation package within the Powerview software [1]. Using the simulation
parameters given in the CMOSN Cell Notebook [6], we obtained the data shown

in Figures 21 and 22.

Figure 21 shows the clock cycle time of both circuits. In design 1, the final

CLA stage of the PAD is pipelined. Thus, the most time consuming stages are

found within the accumulation process of the partial products. The accumulation

process only requires the sequential data flow through a latch and a full adder,

which takes a maximum of 4ns. So, design 1 provides a 250-Msample/s FIR-

filter. In design 2, there is another characteristic. The CSA stages and the final

32

CLA process are not pipelined. For n5_9, the final CLA in PAM2 consumes the

most time of all stages. When n>9, however, the CSA tree takes the position of

the critical path. This is due to the characteristic of the CSA method that grows

in depth when the number of operands increases. Figure 21 illustrates this
characteristic. When n exceeds 9, 13, 19 or 28 bits, the depth of the CSA tree

increases by one and the clock cycle time increases by 4ns. Figure 22 shows

the latency of both FIR-circuits. The figure does not include the latency of the

ADC. The latency is measured from the point where all n ADC outputs of a
conversion k are available to the point where the filtered signal y(n) is ready.

Clock
Cycle Time

(ns)

24

20

16

12

8

4

0

n = 6 n = 9 n = 13 n = 19 n = 28

0 Design 1
ID Design 2

Figure 21. Clock Cycle Time of both Circuits.

Figure 22. Latency of both Designs.

33

As shown in figure 21, design 1 provides a constant clock cycle time of
4ns. Thus, the latency of this design only varies with the pipeline depth d. The

pipeline in design 1 consists of a basic number of stages plus some more
variable stages:

1 stage to generate the partial products.

1 stage to accumulate the partial products.

3 stages to accumulate the carry and sum output of the 2 PAD trees.

(log2n) + 1 stages to generate the carrys for the final addition.

1 XOR stage to generate the final result.

This makes a total of 8+log2n cycles. With a clock cycle time of 4ns the total
latency is 32ns+4(log2n)ns.

Design 2, in contrast, provides a constant number of stages but a variable

clock cycle time. The clock cycle time grows in order of o(c + log3,2n), where c is

the constant part, and log3,2n is the variable part that describes the increasing

depth of the CSA tree. The pipeline in design 2 only requires two stages:

1 stage to generate and accumulate the partial products.

1 stage to generate the final result.

As we can see in Figure 21, up to n5.9 bits, the total latency for design 2 is 24ns.

For n>9 bits, the total latency is 4ns+4(log3/2n)ns, where log3,2n has to be
rounded to the next integer.

34

6. SUMMARY AND CONCLUSION

The comparison mentioned in Chapter 5 showed the strengths and
weaknesses of both designs. Design 1 provides a high sample rate of 250-
Msamples/s, which has been achieved by a high degree of pipelining. This leads
to a certain overhead in hardware. About one third of the hardware as well as
the processing time in design 1 is consumed by latches. Design 2 limits this
overhead by decreasing the degree of pipelining. By means of one third of the
hardware required in design 1, design 2 processes about 80-Msamples/s which
is about one third the sample rate of design 1. A look at the performance of
pipelined ADC techniques, however, shows that the speed of design 2 is

absolutely sufficient. Pipe lined ADCs with 10 bits or more provide sample rates
in the range up to about 20-Msamples/s [7].

Both FIR-designs exceed the speed of digital signal processors (DSPs)
used for filtering by far. Even though DSP-FIRs provide a higher degree of
flexibility, their speed is limited to less than 1/30 of the speed provided by both
designs shown. Programmable DSPs are able to vary k, the number of samples
considered in each process, whereas both designs shown limit the number of
samples considered in the process to n. In other regards, both designs shown
provide the same flexibility as DSPs. As the weighted factors in both designs
can be set to zero, k can also be less than n. Inputs and outputs of both designs
shown are in 2's complement format. Thus, it is possible to limit the width of the
circuit to less than n. This can be simply implemented by extending the sign of
the most significant input bit available to the input bits not considered.

This work showed two pipelined FIR-filter architectures, designed for a
interfaced ADC-FIR device. Both design are featured by two techniques: msb-
first multiplication and 2-dimensional pipelining. Both designs meet the speed
requirements of the latest pipelined ADC circuits. It can be concluded that there
is a high potential in ADC-FIR devices. A further increase in speed of pipelined
ADCs will give the architectures proposed even greater potential.

35

BIBLIOGRAPHY

[1] View logic, Powerview Manual, View logic Systems Inc., 1992.

[2] Shih-Lien Lu, Jack Kenney, "Design of a Most-Significant-Bit-First Serial
Multiplier," Internal Research, Dept. of ECE, Oregon State University,
Corvallis, OR 97330, June 1994.

[3] Richard E. Ladner, Michael J. Fischer, "Parallel Prefix Computation," Journal
of the Association for Computing Machinery, vol. 27, no. 4, pp. 831-838, Oct.
1980.

[4] Richard P. Brent, H. T. Kung, "A Regular Layout for Parallel Adders," IEEE
Trans. on Computers, vol. C-31, no. 3, pp. 260-264, March 1982.

[5] C. S. Wallace, A Suggestion for a Fast Multiplier," IEEE Trans. on
Computers, vol. EC-13, pp. 14-17, Feb. 1964.

[6] The MOSIS Service, CMOSN Cell Notebook, Release 3.0A, 1991.

[7] Stephen H. Lewis, Scott Fetterman, George F. Gross, Jr., R. Ramachadran,
T. R. Viswanathan, " A 10-b 20-Msample/s Analog-to-Digital Converter,"
IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 351-358, March 1992.

36

APPENDICES

37

APPENDIX A: SOFTWARE MODEL DESIGN I

Appendix A illustrates the software model of design 1, implemented in

Powerview [1]. Figure Al shows an overview of the design. Figures A2-A13
show the schematics illustrated in Figure Al in detail.

FIR-Filter
Design 1

firl

Setup Circuit

load unit

Pipelined Adder

pad

Pipelined Array
Multiplier

paml

AND-NAND
Array with 1

Leading AND
lad 7nd

AND-NAND
Array with 1

Leading NAND
Ind lad

11

PAD-Tree for PAD-Tree for Array to Accum. Parallel Prefix Parallel Prefix
Sum Vectors Carry Vectors pad sum and Addition Addition

pad co Outputs Network Sheet 1 Network Sheet 2
pad sum pad co res_gen add matr.1 add matr.2

Node for Carry
Generation

Module

file name

Matrix
node

Legend

Figure Al. Hierarchy of Design 1.

FACT[7.01 LOAD_UNIT

LOAD

CI-K

-1
--111111=11I

F).CTO(7,01

VACT117,01

FACT217,01

VACT3(701
FACTS 17.01

FACTS(7.01

VACT6U,01
FACT71, 0)

X(7101

VAM1_

ROD_Ol/N1

tAM

PROO_M.r.

PROO_SUM6

PROD_HUM7 7101

IROID_All/16

VAOD_OUN)

IPROD_SOM2

PROID_Ol040

PAD

........
Y(17.71

Figure A2. FIR-Filter Design 1.

39

OLT<

LOAD

Lr 02X2
2%

POLO

FACT[70]

/NV16 rrirron
.1

2 L A T 2 WT

1111111taidirlia
NE ME El
2 _LAT]_WT 2 _LAT

gli 1111 ii
2 LAT

.1 .1

NE NE .

_LAT

2 _LAT

2 _LAT 2 _LAT

M

FACT7_(7,0)

FACT6_[7,01

2 _LAT

M

FACT5_(7x01

2 _LAT

2 _ LAT _ LAT 2 _LAT

_LAT 2 _,LAT

.1 .g '
11:6011140

ME ill
2_, AT]_WT

]_WT

FACT4_(7.01

_LAT

]_WT

FACT3_17:01

FACT2_[7:01

.1 .1
bdinallina

El
2 _LAT 2

2 _LAT

FACT1_f7:01

]_WT

a a

2 _L AT

a ea

FACT0_,(70]

Figure A3. Setup Circuit.

Figure A4. Pipe lined Array Multiplier 1.

41

FACT (7 : 07

CLIC

NDX2X1

TER
1.

NFACT 6 ND2X1
4,14

FACT 7

FACTS ND2 X1

FACT 4 ND 2 X1

arvi

FACT) ND2 X1

NFACT 2 D2 X1

A.X..

FACT I ND2 X1

"
.1,44

1\170 2 XiFACTO

ini _u

2_LAT

N
0

ri N
a a

CS

N

a a

2_LAT

ri N

J a

2_LAT

ri

0
N
a

E.E.17:07

PPO PP1 PP3 PP3 PP4 PPS PP6 PP7

Figure A5. AND-NAND Array with 1 Leading AND.

42

FACT [7 : 0]

CLK

FACT? NID2X1

FACT 6
NIDS2X1

bvri
NDM2X1

FACT 5
CaVa.r

NTDI2X1.
FACT 4

NDI2X1
FACT 3

NDI2X1
FACT

NDI2X1
FACT 1

NDI2X1
FACT 0

.a.zg ,aarz

2_1.AT

ri N

2 _LAT

N0

ri
rl

P
N
P

2_1.AT

rla N

p
N
P

N

PP[7:0]
PPO Pet PP2 PP3 PP4 PPS PPG PP7

Figure A6. AND-NAND Array with 1 Leading NAND.

CLK

PRop-sum7(17:0)
PROD_SUM6[17.0]

PROD_SUM5(17.0)

PROD_SUM4(1730]

PROD_SUM3(17.01

PROD_SUM2(17:0)

PROD_SUM1[17:0]

PROD_SUM0(17:0]

PA.D SUM

CL,K

PAD _C 0
PROD_C07[17:21 07117.21

PROD_C06[1722] 7.7111..._,Ianc2C,C011(
PROD_C05(17:2) (17111

CO...90.1(17121
PROD_C04(17.2) (17 21...F.......FROCI_CO
PROD_CO3(17:2)

CO_C0(17. 21
(1712imi_pft00_CO2

PROD_CO2(17+2) (17
1.............1pW012_,(22

PROD_C01(17:2] 1712 I
MIM....._,IPRCID_C011

PROD_C00[17:21 (17 21

IOW

sum_scni(17 : 01 RES GEN
UH0U3[17.0)

.1] R.9_SUM[17r
Um_00(17.11

RES_CO(173]
0_9:A4(1713]

" ' 3]

RES_SUM (17 : 0 1 ADD M.P.'rR
1111111111111.1=1"'"-9u"(17'0)Y[1.7.7]

[1723]

REP_CO [17: 31

Y(17:71

Figure A7. Pipelined Adder.

M11111101, MOM OM
1112 =I NM 11:11 NM EMI =1 = 1=1 NMI MCI MI2 ISM MCI 11:11 ECM 1:12

erITIFIF,F"IFITIFIT'iririr ITIFIFir lirIFgm on ezi co no UM 1121 EMI MM OM 1121 112 =I =I Mil Mil =I 012III IIIIIII I I I I I I II
=I 1C21 EM Ell Ea MCI 1=1 12 1112 =I K2 MI 111111 1C2 ICI WE 11111 =IAA AAA A A A A A A AA A A AAer er er er er er er er er er er er er er er er er MI
1111 =I = MI1 Mil = ES 111111 EN ES Mil 11111 E9 1119 E111 MEI II= 111111
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1- 112 21:11 =I 1119 K2 1112 1112 ME =I ES E2 22 E2 E2 MI 11191 =I
IF er er er er er er er er er er er er er IF er er MI

112 C1:1 EMI M:2 EMI MM 1=1 OM CM CMI =1 EMI 1212 NM EMI CM =I E9
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B12 =I 122 1E1 123 =I 1119 1121 ICE 212 =I 122 1= WE 2112 Ell 1112 1112AAAA AA AAA A A AA A AAIF er er er er er er er er er er er er er er er er ID
EMI EMI C12 1112 1=1 1112 I= I= =I Mil CMI CMI EMI =I =1 =1 EMI 1=1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

En ME ES =I 112 =1 112 1E1 112 E2 I= 1= 112 ES E2 1112 119 ESA A A A A A A A A A A A A A A A ACr er er er er er er er er er Er Er er er er er Er o
1119 =1 C211 EMI C1=1 129 219 11121 EMI 1112 1= 122 =I C=1 EZI =1 1=1 1112
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1112 112 =I =I CS =I E2 I= E2 11211 K2 =I I= ICE I= MI =I 12A A A A A A A AA A A A AA A A AIF er er er er it er er er er er er er er it er erE9 I= 119 En I= C19 I= 11111 1E1 EE E2 =1 2111 C121 EC 212 1= =
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2111 Ell E2 1E2 MO NEI SE E2 MI =I 2:11 E2 I= I= 11121 ES =I 122A A A A A A A A A A A A A A A A A
Cr Er er er er IF Er er IF IF OF IF IF Er IF IF IF o® ® ® ® C=1 1E2 1112 =I =1 =1 =1 =1 =1 UM 1= E11 = 1=
I I I I I I I I I 1 1 1 1 1 111
111111111111011111101111111111111010111111.111111

... A; DAD

1111111110 IN IN Ell MIEN III Er EINEM
En I= MEI NCI COI NEE MN 1119 MEE 1=1 MEN MEI Er NCI BEE I=

Er- -elIIIIIIIIIIIIIII
KC Il II Kt BF IF KB MC LI II It I!

FC II RI IF IFI...n ...AAAAAAAAAAAAAAEr IF IF Er 1r IF Er IF IF Er Er IF AlEr IF Er Ill
1
KI

.....

1 1 1 1 IIt II Ft It It I
IF

I III IF
1 1It 1 1 1 1 1It It It KI _.

AAAAEr AAAAAAAAAEr NW NW Er Ir Sr Er Er IF IF AiEr Er Er IF MI
MRIIIIIIIIIIIIIIIuuunuuulicurcurcuuu II.1

.1.141.141A41A
EE' IF 4144AIF IF Er Er AEr 411rEE" IF IF IF Er Ainor IF Ill
I
Fr

1 1It Fr
1 1
Fr Fr

IIt III I
Fr II III i I I 1

Ft Fr Fr It II 1ItAAAAAAAAAIF Er IF IF IF IF IF IF OF IF EllIF IF IF 41A41414141.11IF IF
I
Ft

1 I 1 I III II Fr II Fr III 1 III Fr
I 1
Fr Ft

III I
Fr

I I II
Fr Ft w.

IF IF IF IF IF IF IF IF er IF IF IF IF IF IF WI
1II I I I 111111iII BC IF CC IC CZ III II II WC It illII IIII IF

41.1.141414141.141.141AAAAIIF IF IF IF IF IF or IF IF IF IF IF IF
en

IF IFS

A A a

CIK

CO_CO(17131

111 11111 II 1111 IR 111.1 II IIHMI I= NEI MI UM MICII Ell =I MEI CM MEI 1111111 Min MI NMI
.1,. KW

CO_BUN(1721
SUM_ 0(17,11

O_CO (17 a 3

9um_sum[17,01

113:1 MI MI BEI CM MI MI 1113 ICI EMI all MI Ilin ICI MI MIN
0111tfjff

rr fr rr rr rejujny 7777u=A A A AAA A.A41.141.1.141.41A
A gforogifolarogigiamfogpoterpIII
agfavaraiwginmemonionoliMentatatiatillatailatatubentaMILotogrogiviimirompowgiforgymmi

RES_SUM(17.01

RES_CO(17 31

Figure A10. Array to Accumulate Carry and Sum Outputs of both PAD-Trees.

CLIP

Pprrr11111 CM En 11112kkkkIt VIP
ISO unik WI.
INI MI

ION MI
et it it it

NMI CM NMI MO
%, cle k ch.Pt it it it it et it it it it It

CARRY(17.7]

3 5 5 3 3 5 3 3' '3' 3 3 a 3 3 3 0 3

....k.I.J.E_.i.i.LiJJ<JJ
tit Ai tiw ti

C
--.',..._. 4__.

o

1_.... st....

-LI
8.

_ _

Y(17:71

Figure Al 1. Parallel Prefix Addition Network Sheet 1.

Figure Al2. Parallel Prefix Addition Network Sheet 2.

49

Figure A13. Node for Carry Generation Matrix.

50

APPENDIX B: SOFTWARE MODEL DESIGN 2

Appendix B illustrates the software model of design 2. Three of the
modules used in design 1 can be also found in design 2: The setup circuit and

both AND-NAND arrays. Figure B1 shows the hierarchy of design 2. Figures B2-

B7 show the schematics illustrated in Figure B1 in detail.

FIR-Filter
Design 2

fir2

I

Module for Module for Pipelined Array Pipelined Array
Setup Circuit Partial Product Partial Product Multiplier Multiplier

Generation MSB Gen.all but MSB Sheet 1 Sheet 2
load unit ppgen msb pp_gen pam2.1 pam2.2

AND-NAND AND-NAND Carry Save
Array with 1 Array with 1 Adder

Leading AND
lad Ind

Leading NAND
Ind lad pad

Module

file name
Legend

Figure B1. Hierarchy of Design 2.

IIIII 11 =WV IMI111111111111 1=IIII =1111113

11111111 =Mil =MO11111 1= Mall
MIN =NI I1I = II

011111 F.: h. PIIIII.

IF" MIAM MIMI" !MIMI iiiiiii111 11111L111 amaiiiii lAiiiiill

11111111 !milli filittfili 111/1111111111 11111111111111 1111111111111 1111111111111 rittliti

I tH-1-=7-11 trirri- 11

52

ClaK

FACTO[7:0

XN

O---]
_,AT

FACT1[7:0]

0---]

FACT2[7:0]

rILAT I

FACT3[7:03

FACT4[7:0)

FACT5[7:0]

WC-1, 7 01

,,,,.C.1.1 7 . n 1
17. 01

lAD 7ND

17 01
AD 7ND

1_LAT

FACT6[7:0]

^c-rtroi
17. 01

1.1
lAD 7ND

LAT

FACT7[7:0]

ACT,. 0117. 01
1 AD 7ND

AD 7NDI

17..1
,117, 1

lAD 700

PPO[7:0]

PP1[7:0]

PP2[7:0]

PP3[7:0]

PP4[7:0]

PP5(7:0]

PP6[7:0]

PP7[7:0]

Figure B3. Module for Partial Product Generation MSB.

53

XN
S

FACTO(7:0)

FACT1(7:03

FACT2C7:01

FACT3[7:0]

FACT4(7:0) L

FACT5[7:0]

FACT6[7:0]

I _LAT

FACT7[7:0]

1 _LAT

:Nn in

H7.111
cNO 7AD

1...,6,1701

ND 7A0

,A.C-1
1,101

c1.1D 7AD

PPOU7:0]

PP1[7:0]

PP2[7:0]

P23[7:0]

IND 7AD

g 7,11
IND 7 AO

1Nn /At,

1Ac,17 .1{7.01
MD 7AD

PP4(7))

PP5(7:0]

PP6[7.0)

PP7[7:0]

Figure B4. Module for Partial Product Generation all but MSB.

PP7_(7011

. . "-. ' - . -

x5__(7s01 .. , a . a . . a

.1111 Er .11 .fir .11 II IT II
PP4_,(7,01

SUM_(8a0]

0 V 0 0 TWO

A.1,1,1,1 AArr r rr r rr rr rrME ME Ma BE

0

CO___[0.111

0.014._

c _

.2__(7t0) pa., a_.. ra_. aa, ...

21__[7t01 . a_7 PN,_,I /Ia., a a . a_.

PPO__(7:0)

PAP PAD FAO PAP

AAALILLI
AA A
Ma WI ME ME OM Ma MI ME;gmins" Ar er.

w rr ET IF or mrso az moi mu BE 05
SUM[9t0]

cc. COO co, CO(9.2)

Figure B5. Carry Save Adder.

!MEMICIMMC=MMICEMME=MOCIMME2ME

6 MC2 0:2 1E2 CC211111writatAWN
rr rr rr rr err
MEI I:2 MCI MCI MCIAAAAA

CCM MEC CCM MC2 ME2 ME2
1111111:171117

magma
gmfarci

gggi
A A A IimpormaII
ZUMULTIElagresagolggggllAAAA I
isissisekum z

_ mma CCM

grogitrogitg
imionaloses
AAAAA I
rr Er Irg I I

amfaavagreg,
witelitEkalsokiettrryFrprymprfrirr
maimatomilaroi,rr rr rr rr rr rr

ICI MCI MCI MEI CI Mil MEI ICI CI 2:2 11:1AAAAAAAAAAA
CCM OC2 ME2 0E2 ME2 CE2 ME2 11:2 0:2 M22 CE2 122 CE2 IC2 MC211111111111 LIimminvissessisi
112 OEM MEI NEI 0:1 BEI 11:2 ICI MCI MEI MCI MEI MCI
rrrrr rr rr rr rr rr rr rr rr

AAAA AAAAAAA A
1E2 CE2 CC2 ME2 MC2 ME3 ME2 CC2 MEM 112 0:2 0:2 MC2 CE2 MC2 MC2

g 11

11111333
E rr rr rr rr1:1 m cmAAAAA
MC2 MEI MEI MCI MC2CM

1111111111111111:111111

I I

111111111153MMEEr r r r r r rr rr rr rr rr rr rr cr11:1 ms MCI MCI MCI MCI MCI MCI MCI MCI MCI MCI MCI CCMAAAAAAAA A AA AA
11111117:1[71111111111712111"CCM CE2 0:2 CE2 ® mC22 ME3 CE2 CC2 CCM CE2 CE2 MC2 MC2 CE2 MC2111111111111E II
11111111111113355533frrrrrrrr---Fr FE FE FE FE FE FE FE F E
MCI 0:2 MCI MCI MCI 11:21 MCI E2 =I MCI MCI CI 11:2 M=I E2 MCI MCIAAA AA AAAAA A AA AAA
MC2 CE2 0E2 CE2 CE2 MC2 CC2 1E3 CE2 MC2 1E2 CCM CE2 MEM MC2 MCM MC2 MC2ilLiggigiiggEgig1111MI111M1=111=1111IMIMINIIIMIMMIl

r. - -

CO(17121 C33 CO COS COICCO11. C 13C 13 ca,c4111C013C 17

`F.

SU/C(1712)

CLK

-ii

.W4
77.3

4 -4--4 -4

'"ti AOPC

Y(1717)
V V

V V1S V 71,

Figure B7. Pipelined Array Multiplier 2 Sheet 2.

