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OPTIMUM TRANSIENT RESPONSE OF A 
KAPLAN TURBINE GENERATOR SYSTEM 

DETERMINED FROM MATHEMATICAL 
MODELS 

I. INTRODUCTION AND STATEMENT OF THE PROBLEM 

Introduction 

Most power systems show a predominance of a particular type 

of power generation. Thus, some power systems can be considered 

as being characterized by steam or thermal generation and others are 

predominantly hydroelectric in nature. The predominance of a partic- 

ular type of generation is dictated by economics and the available 

natural resources of the area. In areas such as the Pacific Northwest, 

an abundant supply of water power has resulted in predominantly hy- 

droelectric generation. 

The Northwest Power Pool (NWPP) totals approximately 17000 

megawatts of which only about 1400 megawatts consists of steam gen- 

eration (2, p. 765). The NWPP has unique distinction among hydro- 

electric power systems in that its hydraulic turbines are predominant- 

ly of the Kaplan type which have adjustable runner blades controlled by 

the governor. Thus the transient analysis of other hydro systems is 

not generally applicable to the NWPP. 

Any discussion of optimal response of a hydroelectric generating 
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unit will ultimately center about adjustments which can be made on the 

unit speed governor. This is because the existing water passages and 

machine dimensions cannot be changed. The speed governor of a Kap- 

lan generating unit connected to a large system functions essentially 

as a proportional load control device. In addition it maintains maxi- 

mum turbine efficiency for the operating head and gate position. This 

is accomplished by means of a cam which automatically drives the 

runner blades to the blade angle corresponding to maximum turbine 

efficiency at that head for the actual gate position. Thus a change in 

frequency will result in a corresponding change in turbine wicket gate 

position with a resulting change in turbine runner blade position. 

The criteria now used for adjusting the turbine governors is es- 

sentially the same as that used when the output of one machine actually 

represented a substantial portion of the generating capability of the 

entire power system. These criteria are no longer valid. The growth 

of the system has created a considerable problem which must now be 

dealt with if stable system operation is to prevail. The temptation is 

to consider the system as infinite when adjusting an individual gover- 

nor. This, coupled with a universal desire for increased speed of 

response, has a tendency to result in too little compensation in the 

governor adjustments. The destabilizing effect on the system is not 

immediately apparent due to the relatively small capacity of a single 

unit as compared to that of the system. The eventual result of this 
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policy, however, as more units are adjusted in this manner, is a grad- 

ual deterioration of the system stability. 

Two criteria for adjusting an individual governor have found 

rather general acceptance. One criterion is to provide a well- damped 

frequency characteristic when the unit is "off- line" to facilitate either 

manual or automatic synchronizing of the machine to the system. The 

"on- line" criterion is to provide fast response to load changes. These 

two criteria are generally incompatible with each other and their use 

has resulted in a widespread application of various means of altering 

the governor parameters once synchronization has been accomplished. 

This has occasionally resulted in the practice of removing the governor 

compensating dashpot from service altogether after the unit is con- 

nected to the system. 

Virtually since its inception the Northwest interconnected system 

has had occasional periods of frequency instability (2, p. 765). It has 

only been in relatively recent years however that these oscillatory 

periods have caused serious concern. Several trial- and -error tests 

on the system have resulted in agreements to operate with the compen- 

sating dashpots in service on all units not directly controlled by load - 

frequency control equipment. A five percent permanent speed droop 

on all units not directly participating in power system frequency con- 

trol must also be maintained (2, p. 765). These corrective measures 

have resulted in more stable system operation and have also shown the 
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need for an analytical approach to determine the governor parameter 

settings necessary to obtain the best response. 

A number of investigators have carried on extensive studies 

and have proposed various criteria for optimizing the response of 

water turbines (1, p. 9 -12; 4, p. 137; 5, p. 65; 9, p. 7; 10, p. 191). 

Although none of these studies are directly applicable in their en- 

tirety to Kaplan -type turbines, portions of them are applicable and 

can serve as a guide to a study of a linear model of this type of 

system. 

Statement of the Problem 

Develop a criteria for defining the optimal response of a 

Kaplan -type turbine -generator system. Make use of linearization 

techniques to construct the necessary linear mathematical models 

of the system and apply the criteria to determine the response of a 

Kaplan -type hydroelectric unit. 
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II. RESPONSE CRITERIA AND METHOD OF ANALYSIS 

Response Criteria 

The "optimum" response of a hydroelectric unit can be defined 

as that response which provides maximum initial recovery rate or 

speed of response with minimum overshoot and maximum rate of de- 

cay of the transient components. From the point of view of the user 

of large Kaplan- driven hydroelectric units this "optimum" response is 

subject to the following constraints: 

1. The "optimum" response must be consistant with the user's 

type of equipment. In virtually all cases of practical inter- 

est at the present time in the United States this involves a 

"temporary- droop" type of governor. The method of analy- 

sis presented here is applicable with appropriate changes in 

the governor equation to generating units utilizing the so- 

called "derivative stabilized" governors which have recently 

appeared on the market. 

2. The unit physical characteristics are fixed. (water starting 

time, machine starting time) 

Method of Analysis 

Speed of Response 

It has been shown by Hovey (7, p. 587) that assuming a unit 

connected to an infinite system and an idealized servo linkage, the 



governor equation can be written as: 

(1) -óT r DG= -An+o- G 
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In this case a step input to the speed changer causes the wicket gates 

to move to their final position in accordance with an exponential curve 
5T 

having a time constant equal to r . Thus it can be seen that for 
o- 

fast response the product of the temporary droop in per unit and the 

dashpot time constant in seconds should be as small as possible. 

In a practical governor the temporary droop can be varied from zero 

to about O. 65 per -unit while the dashpot time constant can be varied 

from approximately zero to about forty seconds. Normal operating 

ranges are not less than O. Z per -unit temporary droop and a dashpot 

time constant of not less than two seconds. It is evident that the 

dashpot time constant exerts a much greater relative influence on 

the speed of response of the unit than does the temporary droop. 

Thus, in practical applications maximum speed of response is ob- 

tained by utilizing the minimum dashpot time constant commensurate 

with stability. 

Minimum Overshoot 

Fast response of the turbine governor is required to minimize 

the frequency excursion following a disturbance. In a modern tur- 

bine governor the amount of compensation (output of the temporary - 

droop dashpot) is limited by allowing oil to bypass the small dashpot 
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piston. This allows the governor to respond at its maximum rate for 

the larger disturbances and inherently provides minimum frequency 

excursion following a disturbance. 

Maximum Rate of Transient Decay 

The determination of the maximum rate of decay of the transient 

components is a stability analysis. The root -locus method (3, p. 

192 -217) used to examine system stability makes it possible to obtain 

a measure of the transient characteristics of a system that is inde- 

pendent of the system disturbance. The method is based on the 

changes that take place in the roots of the characteristic equation of 

the system as the system parameters are varied. In this particular 

system the coefficients of the characteristic equation will always be 

real. The roots will either be real or appear as conjugate pairs of 

complex numbers. The real roots, a. , will contribute terms in 
ait 

the solution of the form Ai e A complex conjugate pair of roots 
ait 

would give rise to a term in the solution of the form Aie sin(ß. +0i). 

The a. and ßi are determined by the roots of the characteristic 

equation and convey information about the transient nature of the 

system. Any roots which lie in the right half of the complex plane 

represent terms in the solution which grow with time and thus repre- 

sent an unstable system. Roots which lie on the left side of the com- 

plex plane represent terms which decay with time. The larger the 
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absolute value of a negative a. the faster the term will die out. 

When time, in seconds is equal to 1/a the term will have decayed 

to approximately 37 percent of its initial value and when time is 

equal to 4/a the term will have decayed to less than two percent 

of its original value and can be neglected. To improve the transient 

response it is necessary to move the roots of the characteristic 

equation further to the left when plotted on the complex plane. The 

distance of the complex roots from the real axis indicates the fre- 

quency of the oscillatory terms in radians per second. 

The assumption is made that if each unit is stable when sup- 

plying an isolated load whose damping characteristics result in zero 

system damping then the system of interconnected units will also be 

stable. 
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III. DERIVATION OF THE MATHEMATICAL MODELS 

General 

A mathematical model is defined as an equation which mathemat- 

ically relates the relevant parameters of a physical system. In order 

for the model to be useful it must exist in a form suitable for the in- 

tended purpose. For this analysis two forms will be useful. One form 

consists of a model of a Kaplan unit feeding a reasonable approxima- 

tion of the existing power system. This model will be solved with a 

digital computer by the step -by -step method to predict the actual re- 

sponse of the unit to an arbitrary distrubance. The other form will be 

a linear model of the unit supplying an isolated load. The character- 

istic equation of this model will be solved with the digital computer. 

The roots of the characteristic equation for various parameter settings 

will be plotted on the complex plane to determine the relative transient 

stability of the unit. 

The equations which follow are in terms of per unit deviations 

about a given operating point. Per unit bases are rated head, rated 

horsepower, rated KVA, rated speed and frequency, rated servo- 

motor stroke and rated blade angle in degrees. 
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Differential Equation of Governor 

The differential equation describing the dynamic performance of 

the temporary droop type governor which is representative of virtually 

all domestic governor manufacturers can be obtained by noting that the 

gate velocity is proportional to the sum of the speed error signal, the 

output of the compensating dashpot and the permanent speed -droop sig- 

nal (8, p. 10). The transformed differential equation relating wicket 

gate servo -motor velocity to speed error is as follows: 

(2) -T GS = -nr + ng + o - G + T S + 1 
r 

óT r GS 

The block diagram illustrative of the governor action is shown in 

Figure 1. Limits are shown in Figure la for the gate velocity and for 

the output of the temporary droop dashpot. In the actual governor the 

gate velocity is limited by stop nuts on the oil distributing valve. The 

output of the compensating dashpot is limited by allowing oil to bypass 

the small dashpot piston for a given displacement. This form of 

governor model will be used in the step -by -step solution. 

Figure lb is a linear representation of Figure la and is in suit- 

able form for inclusion as a linear representation of the dynamic per- 

formance of the governor. 

g r 
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Gate 
Oil Distributing Valve Servo -motor 

-1 
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T 
g 

(a) 

ó Tr S 

Tr S + 1 

Perm. Droop 

S 

-(Tr S + 1) 

Tr TgS2 + (Tg +0-Tr +dTr) S+ Q- 

G 

(b) 

Figure 1. (a) Complete governor block diagram. 

(b) Reduced block diagram of governor. 

Differential Equation of Turbine 

11 

The change in turbine output as a result of a change in gate posi- 

tion can be determined by a modification of the slope constant method 

proposed by Paynter (6, p. 369). 

( 3) g= G+ áh h+ 
n 

n = al G+ al h+ al 
3n g g 2 

(4) m = G + h + 
ám 

ng = a21G + a22h + 

The rate of change of per -unit flow is proportional to head (5, p. 68). 

The transformed differential equation is as follows: 

(5) T 
w 

qS= - h 

g 

a23ng 
g 



where 
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Tw = 
V 

combine (5) and (3) and solve for h 

(7) h 
-al TwGS - al 3Twn 

g 
S 

_ 
al 2TwS + 1 

substitute (7) in (4) and collect terms 

(8) m [(al 2a21 

- a 23] ng 

- alla22)TwS + a21] -[ (al 3a22 a12a23)TwS 
al 2TwS + 1 

The block diagram descriptive of equation (8) is shown in Figure 2. 

(a12a21 - all a22) wS+ a21 

a TwS+ 1 

ng (a13a 
22 a12a23) T a wS 

23 

a12Tw S + 1 

Figure 2. Block diagram of turbine using variable 

slope constants. 

Thus it can be seen that the output of the turbine is composed of two 

components. One component represents the torque derived from the 

flow of water through the turbine. The other component represents the 

self- damping of the turbine as a function of speed. For a typical Kap- 

lan turbine the constants a1 
3 

and a23 are negligibly small. For 

(6) - gH 

`N 

G F m 

w 
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this study the range of speed variation will be small. Thus the damp- 

ing term can be neglected with negligible error. 

The rest of the a,. variables can be considered as constants for 
i 

small changes about the operating point if the blades remain "on- cam ". 

In actuality the blades are controlled by the gates and thus lag behind 

the gates in attaining their "on -cam" position. This momentarily de- 

creases the turbine output by an amount to which is a function of how 

far "off -cam" the blades actually are. This effect can be approximated 

by a single -order lag function whose initial effect is to subtract from 

the turbine output to compensate for this blade effect. The block dia- 

gram of a linear model to accomplish this effect is shown in Figure 3. 

1 

TB 

B 1 

S 
+A 

e 
De 

Figure 3. Block diagram of a linear model to include blade effect. 

The slope constants w and e are determined from the turbine 

test data at the desired operating point. The linear representation, 

obtained from the equations represented by Figure 3 is as follows: 

-, 
B - 



(9) 
eco Zt S ee B 

G cot BS+1 
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The step -by -step solution permits the use of tables derived from 

the turbine test data. The associated block diagram is shown in 

Figure 4. 

G + , 
Go 

Jr 
B 

i 

s 

B 
1 

e 

Figure 4. Block diagram to accomplish blade effect for step -by -step solution. 

The function f(b) relates the "on -cam" position of the blades to the 

actual gate position. The function f(AB) is determined from the tur- 

bine efficiency curve at various blade angles. 

Representation of the System 

The representation of the system used by Concordia and 

Kirchmayer (4, p. 1 33) is used in this study with only minor modifica- 

tions. The acceleration of the machine, in per unit, is proportional 

to the accelerating torque. 

( 1 0 ) T Dn=m - T m e 

ci-(B) 



The block diagram of the system is shown in Figure 5. 

m 1 

T m S 

n 

Figure 5. Block diagram of system. 
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Mathematical Model for Step -by -Step Solution 

+A M 

The system of equations describing the transient performance of 

a power generating unit driven by a Kaplan turbine prime mover deter- 

mined from Figures la, 2, 4, and 5 is as follows: 

(11) n=n -n 
g r 

ST G-y 
(1 2) Y T - K4 Ç Y K4 r 

(13) G=n+crG+y -1 < 
G 

< 1 

- T t t 
g g g 

(14) (a1 2a21 - al l a22) TwG + a21 G = al 2TwPw + Pw 

(15) h. =G +Go 

(16) B = TLU of h 
(17) ek = B' - B 

Te 

+6 

- 

ns 

-0+ 

5 



(18) B = 
e -1 < 

B 
< 1 

tB tBC tBO 

(19) Ae = TLU of ek 

(20) m = P - e 
w 

(21) n 
m - T 

e 
-D n 

e m g 

Tm 

( 22) Ts = K2(n 
g 

- ns) 

( 23) T = D (n - n )+ T - AT Te 
e g s s s 

( 24) ns 
K3AM + K30Ts Dsns 

Tms 
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The block diagram for this system of equations is shown in Appendix A. 

Characteristic Equation for Root -Locus Analysis 

The block diagram of a unit supplying an isolated load is shown 

in Appendix B and can be obtained from Figures lb and 2 and equations 

9 and 10. The characteristic equation is obtained from the equations 

represented in Appendix B by assuming n r equal to zero and solving 

for the ratio of n to T . 
e 

The characteristic equation is as follows: 
g 

(25) C. E. = Al S5 + A2S4 + A3S3 + A4S 2 + A5S + A6 

where 

Al = a12TgTmTrTw 

e 

- 

= 



17 
al 

2 
T 
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IV. COMPUTER PROGRAMS 

General 

Programs for both models were developed for the IBM 1920 

computer system. Use was made of existing programs as subroutines 

where possible. Both programs will ultimately become a part of the 

users library. 

Root -Locus Program 

A flow chart, as shown in Appendix C, is intended to show in a 

very general way the make -up of this program. This program calcu- 

lates the coefficients of the characteristic equation from the input data 

and then uses program number 7. 0. 040 from the 1620 General Pro- 

gram Library to calculate the roots of the auxiliary equation by 

Bairstow's method. Various parameters are automatically stepped 

through a range of values and the roots printed out. These roots must 

then be manually plotted on the complex plane to obtain the root -locus 

plot. 

Step -by -Step Solution 

A flow chart of the salient feature of this program is shown in 

Appendix D. This program has the option of either printing all the 
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variables in tabular form or plotting not more than five of the variables 

by a standard plot subroutine. The program is a step -by -step solution 

of the differential equations of the machine connected to the system and 

takes into account the limits of gate and blade velocity and compensat- 

ing dashpot output. A table - look -up routine of the blade -gate relation- 

ship and the off -cam efficiency relationship is used. 
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V. APPLICATION OF CRITERIA 

A typical Kaplan- turbine generating unit was analyzed by the 

root -locus method for various settings of the governor parameters 

Tg , T r , 6 and 5. 

Changes in the parameter T did not materially affect the root- 

locus plot. This parameter is a measure of the sensitivity of the gov- 

ernor and its adjustment can be left to the judgement of station opera- 

tors with little affect on system performance. A representative value 

for T is 0. 15. 
g 

Variations in the permanent droop parameter had a significant 

effect on the root -locus plot. Increased values of permanent droop 

made all roots more negative which would increase the relative stabil- 

ity and speed of response. This can be predicted from Equation 1 and 

thus a root -locus plot is not shown. The typical hydro governor can 

be adjusted to a maximum of five percent permanent speed droop and 

thus it appears beneficial to set all permissible units at the maximum. 

If values of 0. 15 for T and 0. 05 for 6 are selected the prob- 

lem is reduced to a two dimensional problem. Root -locus plots for 

various values of Tr and 6 are shown in Appendix E. From this 

plot it can be seen that there are two roots which are relatively close 

to the imaginary axis, a.1± jß1, and a2. Increasing the temporary 

droop to about 0. 3 makes al, and rx2 both more negative with 

g 

g 
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beneficial results on the transient response. Higher values of Smake 

a2 more negative but a becomes less negative thus 0. 3 is selected 

as the optimal value of 6. Increasing the dashpot time constant 

makes al, more negative but makes a2 less negative. Equation 1 

prescribes that the minimum Tr consistant with stability be used. 

At best the selection of Tr is an arbitrary one depending on the sta- 

bility margin desired. A dashpot time constant of four seconds 

would appear appropriate in this case. A more sophisticated means 

of selecting Tr is not justified as actual operating experience has 

shown that it is subject to rather wide fluctuations due to temperature 

changes. 

Using these values of temporary droop and dashpot time constant 

the speed of response of the unit to a change in load setting is shown 

in Appendix F. 
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VI. CONCLUSIONS 

The determination of the optimal response of a Kaplan turbine 

is essentially a stability analysis. To be successful this analysis must 

be an analystical one as the effects of varying the individual turbine 

governor adjustments is well obscured by the stabilizing effect of the 

rest of the system until a major percentage of the governors in the 

system have been changed correspondingly. 

The root -locus method can be used to define the limits of stabil- 

ity. Once absolute stability is obtained the degree of relative stability 

is one of choice in which the stability margin is obtained at the expense 

of fast return to equilibrium conditions. 

The adjustment of the governor sensitivity within the range pro- 

vided on modern governors has very little effect on the system perfor- 

mance and can be adjusted to provide minimum regulating effort for 

the particular machine. 

When possible the permanent speed droop should be set at its 

maximum of five percent contributing to increased stability and speed 

of response. 

The temporary droop and dashpot time constant should be ad- 

justed, consistent with stability, so that their product is a minimum. 

In practice this will result in the minimum permissible dashpot time 
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constant as it dominates the product. A considerable margin of sta- 

bility should be provided in practice to compensate for rather wide 

fluctuations in this parameter after it is adjusted. 
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APPENDIX E 

Root -locus plots 
on S -plane 

Notes 

1. j. = o is plotted as a zero "band" to permit 
separation of the plots on the real axis. 

2. Split abscissa plotted to permit plotting of 
all roots. 
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APPENDIX G 

List of Nomenclature 

a.. Slope constants from turbine test data 'J 

Bo Blade deviation necessary to saturate blade relay valve 

B Blade deviation starting position 

B' Blade "on -cam" position 

AB Blade deviation from "on -cam" position 
d 

D Operator dt 

De Generator electrical damping 

D Turbine self -regulation m 

(a1 3a22 
- al 2a23)TWS - a23 

a1 2TWS + 1 

Ds System damping 

e Turbine efficiency deviation slope constant 

ek AB 

De Decrease in turbine efficiency due to blades being "off -cam" 

G Gate deviation from starting position 

g Acceleration of gravity 

Go Initial gate position 

Actual gate position 

h Instantaneous per unit head 

..gif 

s 
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H Rated head 

K1 a1 2a 21 
- al 1 a 22 

K2 Power constant 

K3 Constant relating per unit base of unit to per unit base of system 

K4 Limit on output of dashpot 

L Length of water passage 

m Per unit torque deviation 

AM Step load change on system 

n Per unit speed error 

n Per unit speed deviation of generator 
g 

n r Per unit reference speed deviation 

n 
s 

Per unit speed deviation of system 

Input torque to turbine 

q Flow 

S Complex variable 

tB BotBC 

TB wtB 

tBC Blade timing in the close direction 

tBO Blade timing in the open direction 

Te Output power or torque, per unit 

t Gate timing of governor 
g 

T ßt 

Pw 

B B 

e 
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T Machine starting time m 

T Equivalent system inertia ms 

Tr Dashpot relaxation time constant 

Ts Electrical power or torque transmitted to system, per unit 

T Water starting time 
w 

OT Load rejection constant used in computer program 

TLU Table look up 

V Velocity of water in section 

y Output of compensating dashpot 

a Partial derivative 

Slope constant determined from turbine blade -gate relationship 

o- Permanent droop 

6 Temporary droop 

(3 Speed deviation necessary to "saturate" governor distributing 
valve 

w 

r 

s 

s 


