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J IABSTRACT

A well defined suburban parking lot runoff-retention system was ikaten-

sively studied to better understand the removal and fate of heavy-metals in

retention ponds . Over six-hundred individual water, particulate, and sediment

samples were collected in this project, documenting runoff and pond behavio r

during the summer dry period and, subsequently, during and after three majo r

rain events in the fall and winter wet season . We have developed a genera l

picture of heavy metal inputs and outputs for the ponds;,, and have iddn►tifie d

the pattern of metal sedimentation and remobilization .

Our results indicated that relatively high levels of Cu were present i n

both water and sediments . Cd was present at negligible levels in the wate r

and at only modest levels in the sediments . Pb levels in runoff particle s

and sediments were significantly higher than in the native soils bunt 'Were

not as high as expected . Cu was identified as a useful "model" toxic meta l

that occurred in substantial concentrations and was relatively easy to analyze .

We chose to study Cu in detail ; other toxic metals were measured in , selected

samples . Given the time and resource constraints., our strategy was to learn

as much as possible about the overall behavior of Cu rather than to gai n

only limited information about a suite of different metals .

Dissolved metal concentrations varied during the course of the'samplin g

but were not dramatically different among three ponds . Dissolved metal m=t

centrations were generally highest in the input pond and lowest in the dis-

charge pond, suggesting relatively rapid removal in the first pond . Suspended

particles did 'not constitute a significant mass of Cu in the water colum n

but Cu and other metals accumulated rapidly in the pond sediments . These
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observations are consistent with a fast mean-settling tine for particle s

which of course translates into a' short particle residence-time in the wate.r .

The first storm of autumn washed high concentrations of metals into

the runoff from which they were rapidly removed by sedimentation in Heirs

pond .

	

I,.,i.ttle metal entered the, sediments of the second and third Windt .

Effluent concentrations to the receiving stream were- relatively ]I®w . Thus ,

ponds serve as a buffer to the CIA flux . When Cu inputs were high,,,+the ponds-

removed metals and ameliorated the concentrations exiting to the receiui ,

waters . When input concentrations were very low, the ponds occasionally - .

became a source of Cu to the stream because the steady ("buffered") oiutfldw . . - a
concentration was at times higher than the input . The adsorption/desorptio n

processes of the sediments appear to play a key role in regulating meta l

discharges .

Because sediment concentrations of metals declined so precipitously

from the input pond to the subsequent ponds, we investigated the spatia l

distribution of metals in the sediments within the input pond . Interestingly ,

we found that most metals were concentrated in relatively narrow "plumes" i n

the sediments extending axially from each of the storm-sewer inlet pipes .

Concentrations of metals in the sediments at the periphery of the input pon d

were much lower than at the center, and were comparable to the low levels o f

the second and third ponds . This showed that a relatively small pond (perhap s

half the size of the input pond) can remove most metals from parking-lo t

runoff, and demonstrated the desirability of constructing small, inexpensive

ponds at the outlets of suburban parking lots in order to preserve the integ -

rity of receiving streams .
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The Water Resources Research Institute, located on the Oregon State Uni -

versity Campus, serves the State of Oregon . The Institute fosters, eneourcags

and facilitates water resources research and education involving all aspects

of the quality and quantity of water available for beneficial use . The Inst -

itute administers and coordinates statewide and regional programs of mu1t-i =

disciplinary research in water and related lanai resources . The lusti-tut e

provides a necessary communication and coordination link between the agencie s

of local, state and federal government, as well as the private sector and th e

broad research community at universities in the state on matters of water -7

related research . The Institute also coordinates the interdisciplinary progra l

of graduate education in water resources at Oregen State University .

It is Institute policy to make available the results of significant wata -

related research conducted in Oregon's universities and colleges . The Institut e

neither endorses nor rejects the findings of the authors Of such research .

It does recommend careful consideration of the accumulated facts by thos e

concerned with the solution of water-related problems .
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1 . INTRODUCTION

WATER QUALITY PROBLEMS AND URBAN RUNOF F

Urban stormwater runoff severely degrades the quality of streams an d

other receiving waters . Although suspended solids, bacteria, and nutrient s

are major parts of the problem, heavy metals are the priority pollutants i n

runoff that present the greatest risk to aquatic biota and human health .

Continued urbanization in the Northwest, as elsewhere, increases non-point-

source runoff pollution from roads, parking lots, and other impervious sur-

faces . Although detailed studies specific to the climate of this region

are scarce, data from other areas of the country suggest that urban runof f

is extensively degrading the biological integrity of streams in and nea r

urban centers, and that escalating inputs of Pb, Zn, Cd, and other toxi c

metals are primarily responsible for this damage .

Non-point-source pollution such as urban runoff is difficult to control .

Runoff is especially problematic in suburban areas where centralized storm -

water drainage systems are non-existent . Retention basins are frequently

advocated as a cost-effective way of reducing the acute impacts of runof f

from isolated catchments such as parking lots . While it is relatively easy

to design a retention pond that allows the bulk of suspended solids to settl e

out, fine-colloidal and dissolved components may remain in the water that i s

discharged . Much research has indicated that aqueous heavy metals are pri-

marily associated with fine particles and with natural humic chelating mater -

ials . Thus retention ponds, as currently designed, may be ineffective a t

reducing the input of priority pollutants to receiving waters .

1



7

PURPOSE AND OBJECTIVES

The behavior of heavy metals in runoff retention ponds was characterized

through an intensive physical and chemical study of a hydrologically well -

defined parking-lot/retention-pond system in Beaverton, Oregon . Total concen -

trations of priority-pollutant metals were measured in pond influent, effluent ,

and sediments during a one-year sampling program . These data allow an overall

understanding of the behavior of metal contaminants in the system .

Our purposes in conducting the study were : 1) to quantify the amounts o f

metal pollutants that a non-industrial, suburban parking lot system contribute s

to receiving waters in the climate of the maritime Northwest, 2) to determin e

the efficacy of removing these metals in retention ponds, and 3) to bette r

understand the fate of metals retained in these ponds . We were; fortunate t o

have an excellent study site immediately adjacent to our laboratories . The

pond system was newly constructed, had no pre-existing sediments, was almost

certainly oversized with respect to solids and metals removal, and was divide d

into three discrete basins so that spatial variation in metal sedimentation

could be easily identified . Although constraints of time and money preclude d

an exhaustive study of the complex physical and chemical processes governing

metal behavior in the system we were able to achieve the goals we had set .

Our objectives in this report are to :

1) briefly review the most significant and relevant research reported i n
the literature on toxic metals in parking-lot runoff ;

2) describe the physical attributes of the study area, explain the approac h
used in the project, and discuss the rationale for the methods employed ;

3) determine the overall metal-removal efficiency of the 0GC retentio n
ponds throughout the seasonal variation in precipitation typical of th e
Pacific Northwest ;

4) describe the spatial and temporal patterns of accumulation of a mode l
heavy metal (Cu) in the sediments of the 0GC runoff-retention ponds ;

2



5) examine pond sediments as a possible source of heavy-metal pollutants
for the receiving waters ;

6) address the feasibility of designing retention ponds expressly for th e
purpose of reducing the discharge of priority-pollutant metals from parkin g
facilities and other impervious structures .

BACKGROUND AND RELATED RESEARC H

Although treatment of point-source wastes has improved the quality o f

many major rivers in recent years, small streams draining urban areas hav e

continued to decline in quality, a decline that is almost entirely attributabl e

to non-point-source runoff [Brown and Green 1980 ; Cole et al . 1984 ; McConnel l

1980 ]• Heavy metals appear to be the most important toxic substances of a

suite of contaminants found in urban runoff [Cole et al .1984] and most o f

the metals are attributable to automobile activity [Pitt and Bozeman 1980 ] •

In addition to possible human health effects, metals in runoff seriously damag e

natural populations of algae and aquatic animals [Jones and Redfield 1984 ;

Madeiros et al . 1984 ] . Suburban areas often have serious runoff contaminatio n

from large paved parking lots that are remote from any centralized collectio n

and treatment system . These parking lots collect heavy metals from oil an d

gas drippings, exhaust emissions, rust, debris from tires, brakes, metal and

rubber mechanical components, disintegrating vehicle bodies, mud and dus t

attached to vehicles [Pitt and Bozeman 1980] as well as collecting pollutant s

from air and rainfall [Halverson et al . 1984 ], A study of a shopping mal l

parking lot [Owe et al . 1982] revealed Pb, Zn, and Cu concentrations in runof f

in the range of 1 - 3 ppm, and Cd up to 0 .3 ppm, levels that are acutely toxi c

to aquatic biota and an order of magnitude or more greater than maximum per -

mitted levels in drinking water .

So-called "low-structural" management practices such as small detentio n

ponds often have been advocated as the most cost-effective control strategy



for urban runoff [Finnemore and Lynard 1982] but these ponds are primaril y

designed to reduce peak runoffs and thereby minimize the impact of pulses of

suspended solids and BOD in receiving streams [Griffin et al . 1980] . Such

ponds are frequently misapplied as a solution to all aspects of runoff pol -

lution [Jones and Jones 1984] . In particular, detention ponds are likely t o

be ineffective at removing very fine particles unless long retention time s

are designed . It is well known that metals in aquatic systems are primarily

associated with particles [Santschi 1984 ; Baccini 1984] and that the amount

of metals bound to particles varies inversely with grain size : the smalles t

particles contain the greatest proportion of metals [Horowitz and Elric k

1984] . This also is true in urban runoff . Sartor and Boyd [1972] studie d

particle transport across paved surfaces and found the largest percentage o f

the total heavy metals (28%) in the smallest particle-size range (< 43 pm) .

It also was observed that the smallest particles were carried across surface s

much faster than large ones and that the smallest particles moved rathe r

independently of the surface type or rainfall intensity . Thus, even small

rainfall events may be important in transporting metals since the smalles t

particles contain the highest concentrations of metals . In addition, metal s

are an example of contaminants that are not only "acute" pollutants (lik e

excess BOD), but also have impacts that are cumulative over time as they buil d

up in the sediments and the aquatic biota . Thus, reducing the peak of flow

intensity by a retention basin may not, by itself, eliminate the impact t o

the receiving stream . Finally, metals in both particulate and dissolved

forms tend to build up in surface slicks and microlayers [Armstrong and Elzer -

man 1984 ; Elzerman 1982 ; McNaught 1982 ; Pellenbarg 1981 ] . Surface films

will tend to carry heavy metals out of a detention basin .
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Although many studies have documented the presence of heavy metals in

parking lot runoff, very few investigations have been made of the effective-

ness of retention ponds in reducing metal inputs to streams . While ponds

are not currently designed for metal removal, it is known that long retention

times allow metal-bearing particles to coagulate and settle out [Randall e t

al . 1981 ; Santschi 1984 ] . Thus it may be possible to design cost-effective

ponds that would remove metals during times of low hydraulic loading, i .e . ,

during periods of intermittent rain, or during extended periods of low-inten -

sity rain . The maritime Northwest is an area where such precipitation patterns

tend to dominate, in contrast to the high-intensity convective storms and

snowmelt runoff of other regions . Therefore it was important to quantitatively

investigate the feasibility of using detention ponds to mitigate heavy metal

contamination in this region .
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2 . METHODS AND PROCEDURE S

STUDY AREA: OGC RUNOFF-RETENTION POND S

The study area was a connected series of three retention ponds, constructed

on the campus of the Oregon Graduate Center (OGC) in December 1986 (Fig . 1) .

OGC is located in a suburban/rural setting west of Beaverton, Oregon and 1 1

miles west of downtown Portland . The ponds receive runoff from a catchmen t

area of 43,546 m2 . About 65% of this area is paved parking lots, roofs o f

building, and other impervious surfaces . Parking lots constitute 33% of the

total catchment and 52% of the impervious surfaces . The parking lots are

used daily by approximately 500 automobiles and delivery trucks . The pervious

areas are vegetated and largely enclosed by curbing so contribute little t o

overland runoff . The ponds have only about 3,000 m2 of "natural" adjacent

watershed and most of this is pervious lawn with little direct runoff to the

ponds . The areas of various catchment surfaces were obtained by digitizin g

construction maps of the area (Table 1 ) .

Table 1 . Catchment areas for the OGC runoff-retention ponds, broken
down by surface category .

Category

	

Surface Area (m 2 )

	

% of Total Area

Roofs : Bldg . D2 4,202 9 .6%
Bldg . D3 4,223 9 .7%
Bldg . D4 (NW section) 1 .517 3 .5 %

Subtotal : roofs 9,942 22 .8%

Streets : 3,424 7 .9%

Parking Lots : 14,282 32 .8%

Subtotal : Impervious Area 27,648 63 .5%

Vegetation 15,898 36 .5%

TOTAL CATCHMENT AREA 43,546 100 .0%
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Fig . 1 . Map of the catchment of the OGC runoff-retention pond system showin g
parking lots and other impervious areas . The catchment is outlined
with a dark line .



The ponds discharge into a small stream which flows for approximately 0 .5 km

before entering Rock Creek . Rock Creek is a fourth-order stream and is a

tributary of the Tualatin River .

All runoff is channelled into Pond B and flows over _ small artificial -

rock "weirs" into Pond C (Fig . 2) . The ponds are designed to serve an aes-

thetic function, as well as for hydraulic retention, and therefore have smal l

fountains and pumped recirculation . Water is withdrawn from just below the

weirs in Pond C at 75 m3 /h and pumped up to a small fountain and a submerge d

outlet in the center of Pond A . From Pond A it returns both to Ponds B an d

C but the pump inlet near the entrance of Pond C probably intercepts most o f

the return-flow (see Fig . 3 ). Therefore, Ponds A and B are always slowly

recirculated (at approximately one pond-volume per day) whereas most of Pond

,C is relatively quiescent except for the runoff flowing through the system .

Fig . 2 . Map of the 0GC runoff-retention ponds . Main inlet receives
nearly all of the runoff ; secondary inlet drains only a fe w
hundred meters of Compton Drive .



Pond C does have two vertical fountains but the inlets are at the base o f

the outlets, and therefore these fountains serve mostly to aerate the wate r

rather than effect complete mixing (Fig . 3 ). All piping in the pumped system

is PVC plastic .

Pumphouse

Fig . 3 . Side-view of the pond system showing the pumped recirculatio n
system . Direct connection between Ponds A and C omitted fo r
clarity .

Ponds A and B are roughly circular with diameters of about 30 m . Pond

C is oblong, averages about 30 m wide and 80 m long . The area, depth, and

volume data for the ponds were calculated from digitizing architectural plans

and are presented in Table 2 .

We can define an approximate hydraulic residence time as the pond volume

divided by the volumetric flow rate . The calculation is approximate because

the runoff hydrograph tends to integrate and time-lag the small-time-scal e

variations in rainfall intensity so that runoff-inflow does not instantaneousl y

mirror the rainfall intensity . For practical purposes we use rainfall inten -

Vertica l
Fountain Vertica l

Fountain s

1

	

B / (1hrT)
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Table 2 . Physical dimensions of the OGC runoff-retention ponds . "Low"
surface elevations are the minimum for no-flow conditions, "High" elev-
ations are for the maximum design capacity of water . Elevations are in
feet above mean sea level . Volume given is for the no-flow condition ,
which is close to the average water-level observed .

Pond Surface
Area (m2 )

Volume
(ms )

Surface
Elev .

	

(ft)
Maximum
Depth (m )

A 895 1,130 193 .00 1 .83

B 821 905 Low -

	

190 .21 1 .83
'High-

	

190 .46

C 2,786 4,520 Low -

	

188 .00 2,44
High-

	

190 .46

sities that are averaged over a period of many hours as estimators of volu -

metric input flow rate . We can relate the approximate hydraulic residenc e

time ( Tr in h) to average rainfall intensity (I in cm/h) for a total imperviou s

catchment area ( AiT in m2) and a total pond volume of V (in m3 ) by the equation

Tr V / (AiT x I x 10 -2 ) . So, for example, a rainfall of one inch (2 .54 cm )

in 24 h yields T r = 224 h (9 .3 days) for the 0CC system .

For individual ponds, the pumped recirculation complicates the calculatio n

(and the physical meaning) of hydraulic residence times . Because Pond A

receives no direct input, its Tr is fixed by the fountain pump rate at a

constant 14 .6 h . Thus the volume of Pond A is recirculated roughly 1 .5 times

a day . Residence times for Pond B are a result of both pumping and runof f

input . Under no-input conditions (pumped flow only), Tr for Pond B is 23 . 4

h . Rainfall input decreases this residence time . At an average rainfal l

intensity of 3 .4 cm/day (1 .3 in/day) the input flow equals the pumped flo w

and the residence time is halved to 11 .7 h . Note that under no-input condi -

tions Ponds A and B together are essentially a closed, slowly recirculatin g

system, and collectively have an infinite hydraulic residence time . Pond C

11



is not significantly recirculated to other ponds and its residence time depend s

only on the flow rate of runoff passing through the system .

One additional complication that prevents an exact calculation of res-

idence times is the apparent input of ground water as "base flow" to th e

ponds . This seems to occur only after prolonged rain events and is evidence d

by a continued, slow outflow from the system for a week or more after th e

end of such a rain event . Apparently the local water table south of th e

ponds rises above the level of at least the lowest pond (Pond C) after pro -

longed rain . We were not equipped to sample or accurately measure this per -

iodic base flow but we estimated that it contributes on the order of 10% t o

the total input of water to the ponds during the rainy season . We believe

the base flow is probably a negligible source of heavy metals, but it may b e

a significant source of nutrients derived from lawn fertilizer and is a poten -

tial source of pesticides .

The 0GC pond system was advantageous for a detailed study of heavy metal

behavior in retention ponds . The catchment is well defined and consists o f

only impervious surfaces that are entirely on the property of the Graduat e

Center . The prime inputs of pollution to the catchment are restricted to

automotive sources, air pollutants, and rain contaminants . Access is guaran-

teed at all times and the proximity of the ponds to laboratories meant tha t

samples could be immediately size-fractionated and analyzed . This minimized

artifacts due to storage and transport to the laboratory, and logistically wa s

far easier than attempting on-site sample analysis at a remote location .

Because the ponds were newly constructed, there was minimal accumulation o f

sediments by the onset of the project in Summer 1987 . This greatly simplified

interpretation of sediment data acquired in the following study year .

12



FIELD SAMPLE COLLECTION

Water was sampled from two depths (surface and near-bottom) at single

locations near the centers of Ponds A and B, and at two locations in Pond C ,

termed C-east ( Ce) and C-west ( Cw) . Sediment samples were collected from the

same locations as the pond water samples . Triplicate samples were collecte d

for all times and locations . The sampling "stations" were marked by lengths

of polypropylene rope tethered to the bottom by a small concrete pier (pati o

or deck support pier) and held near the surface by plastic fishing floats .

Samples were taken from a plastic inflatable two-person boat . The boat wa s

maintained in position in the pond by tying up to the marker rope• . For a_

special, detailed sampling of Pond B in the spring, sediments at eleven dif-

ferent locations within the pond were sampled, as is described in the Result s

and Discussion section below .

Surface pond samples were obtained by hand-filling 125-mL polypropylen e

bottles just below the surface . Depth samples in the ponds were collected

using polypropylene bottles attached to a plastic extendable wand . The bottle

was closed with a cork connected to a length of nylon monofilament line .

The apparatus was lowered to just above the pond bottom and the cork pulle d

by a tug on the monofilament line . The bottle was narrow-mouthed and was

quickly returned to the surface so very little mixing of water in the bottle

occurred with near-surface water . All sample . bottles were acid-washed .

Sediment samples were taken with a spring-jawed bottom-sampling dredge .

The dredge was approximately 30 cm wide with a cylindrical diameter of 1 0

cm . It was constructed entirely of brass but was painted with epoxy pain t

to isolate any metal from the sample . The dredge was opened into a glas s

tray and funneled into a sample bottle for temporary storage . Each sediment

sample was thus a homogenized average of the top -10 cm of the sediments .

13



In addition to pond samples, samples were taken of influent water enterin g

Pond B from the catchment, effluent water discharging from Pond C after a

storm event, and water discharging into the receiving stream after passin g

through a 100 m concrete culvert . Influent and effluent discharges wer e

collected with a length of Tygon tubing attached to a hand-cranked peristalti c

pump, or in some cases, by grab-sampling with a polypropylene bottle .

Two different temporal sampling patterns were conducted, depending o n

the weather . In August through October there was essentially no rain s o

three samplings were made to collect baseline data on the status of the pond s

after a summer period of little runoff input . In these samplings, no influent

or effluent water samples could be taken but water and sediment samples were

collected . In September a single significant rainfall event occurred . With

this event we began a sampling pattern used several times in the fall an d

winter . The sampling pattern centered around each rain event . Water and

sediment samples were taken, if possible, prior to the event . Influent and

effluent samples were taken within a few hours of the beginning of the event .

Several influent samples were taken to provide a time-series of samples o f

the input of pollutants to the ponds . Just after the conclusion of the event ,

water and sediment sample were taken with the boat and additional effluen t

samples were taken . Water, sediment,and effluent samples were taken on th e

following day, and again two or three days later .

SAMPLE PREPARATION

Within one or two hours of collection, water samples of either 50 mL or

100 mL were vacuum-filtered through acid-washed Whatman GFC glass-fiber filter s

(25 mm diam .) . with a nominal particle-size cutoff of 1 .2 pm . The filter s

were retained and extracted as described below for the sediment samples .
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Filtered water samples were then placed in 125 mL acid-washed polypropylen e

bottles, acidified with 100 pL of SupraPur concentrated nitric aci d

(EM Science) and stored in a cold room at 4°C for later analysis (Fig . 4) .

	 I SEDIMENT SAMPLEWATER SAMPL E

FILTRATION( 100ml )
1 .2 pm fiber glass

WET SIEVIN G
63 um & 125 nm

4'
DRYING at 50-60 °C

T	 T
[fraction < 125 ,1	"soluble phase' particulate phase fraction < 63

DIGESTIO N
HNO3/H202 /NHa c

[CENTRIFUGE'

AAS

Fig . 4 . Sample-handling protocol for all types of samples .

Sediments were stored initially in polypropylene bottles . Within the

same day as sampling, each sediment sample was wet-sieved into three siz e

fractions using sieves constructed of 8-cm diameter acrylic rings fitte d

with polyester mesh of 125 pm and 63 pm effective pore diameters (Gilson ,

Inc .) . These sizes correspond to the standard particle-size cutoff diameters

for fine sand and silt respectively . The fractions with grain sizes d < 63

pm (silt and clay)-and d < 125 pm (clay, silt, fine sand) were retained .

Fractionated samples were transferred to watch glasses and dried in an ove n

at 50-60°C . Each dried sample was scraped off the glass #nd 50-100 mg wer e

weighed out and transferred to a polypropylene snap-cap microcentrifuge tube .
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The sediment sample (or filter) was extracted overnight at room temperatur e

in 0 .5 mL of 30% hydrogen peroxide and 0 .5 mL of 6 .5% M nitric acid (SupraPur ,

EM Science) . After centrifugation for 5 min at 13,000 rpm the supernatant s

of all extracted samples were diluted tenfold with 0 .1 M ammonium acetate

(Fig . 4 ) .

This extraction procedure liberated most of the metal bound to particles

by sorption to iron or manganese oxides, clay or aluminum oxide surfaces ,

organic matter, or precipitated as carbonate or phosphate minerals . The

procedure was a modification of the standard method used for sediments by

the U .S . Geological Survey and was based on the methods of Ulrich Forstne r

[see for example Kersten and Forstner 1986] . Because all such extractions are

operationally defined, we systematically varied the extraction time and the

solids-to-extractant ratio in order to more fully characterize the scheme we

employed. This study is described in the Results and Discussion below .

ANALYTICAL METHODS

Metals in all samples were analyzed using a Varian Techtron atomic absorp -

tion spectrophotometer (AAS) in either an air-acetylene flame (for sedimen t

digestates) or with a Varian Model 63 graphite furnace (for the greater sen-

sitivity required by particulate and dissolved samples) . All samples wer e

analyzed for Cu . Selected samples were analyzed for Pb and Cd. Water sample s

were analyzed directly in the graphite furnace AAS . Sediment and particulat e

samples were first extracted according to the protocol described above an d

diluted to a satisfactory concentration range with 0 .1 M ammonium acetate/0 .6%

HN03 . Ammonium acetate minimized major-ion interferences in the graphite -

furnace atomization procedure, in part because it allowed Nat and Cl' ions to

be volatilized in the ashing step as ammonium chloride and sodium acetate .
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3 . RESULTS AND DISCUSSION

METALS IN RUNOFF AND IN POND EFFLUENT S

Dissolved Metal s

Dissolved metals, as -operationally defined by the' filtration process ,

were measured in the water entering and leaving the ponds from late stee r

through early winter . Most Cu in the water was dissolved and the dissolved

concentrations of this metal were studied in detail throughout the 2samplin g

program . Selected samples early in the program were analyzed for dissolve d

Pb and Cd, metals which were found to be more predominantly associated wit h

solid phases . Triplicate analyses of dissolved metals exhibited very littl e

variance and the standard error was almost always less than 10% . Thus, erro r

bars have been omitted from the graphs of dissolved metals for the sake o f

visual clarity .
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Fig. 5 . Rainfall data for the Oregon Graduate Center study area . Data
was collected on site daily with a standard rain gauge .

Metal concentrations in runoff water were especially high during th e

first storm event of the fall season and declined during the rest of the sam -

pling campaign . As shown in Fig . 5, the first significant rain event of lat e

summer 1987 occurred on September 14 . Although the total rainfall wa s
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Fig . 6 . Concentrations of dissolved Cu in water from the main inlet
(input), from the outlet from Pond C, and from the end of th e
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L .

only 3 mm, the duration was short and the intensity of the storm was cor-

respondingly high . A grab-sample taken at the end of this storm containe d

dissolved concentrations of Cu at 29 .3 pg/L, Pb at 1 .2 pg/L, and Cd at

3 .0 pg/L (Fig . 6 ), These levels were the highest observed in any water samples. '

during the project and presumably reflect the wash-off of several months o f

accumulated pollutants in the catchment area .

Several studies made in other climates suggest that the time betwee n

rain events, if longer than about two weeks, does not affect the concentratio n

of metals in runoff . However our findings indicate that the almost rain

free late-summer of 1987 allowed sufficient metals to accumulate such tha t

the "first flush" of the season produced a concentrated pulse of pollution .

A long dry spell followed by strong rain is not unusual in the maritime North -

west and is comparable to weather all along the Pacific coast . Hence, a

concentrated pulse of runoff metal pollution in the first storms of fall or ,

winter may be common in the far west of the United States .

The concentrations of metals in the outlet from the ponds and at th e

culvert entering the receiving stream were 73% - 98% lower than in the input

of runoff to the ponds (Table 3 ) . This is a natural consequence of the rela -

tively large pond volume and hydraulic residence time . As will be shown

later, the input of metals was diluted in the ponds, but also was diminishe d

by relatively rapid removal to the sediments . Effluent continued to flow

for about a day after the 9/14 storm and effluent samples taken on 9/15 sho w

uniformly lower dissolved metals than at the end of the storm .

We suspected that most of the metals in the runoff would be associate d

with the particulate phase . Of the metals analyzed, Cd and especially P b

were mostly bound to particles on a total concentration basis . In contrast ,

Cu was primarily found in the (operationally defined) dissolved state .

.r

ti
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Table 3 . Dissolved and particulate concentrations of Cu, Pb and Cd in
the inputs and outputs of the OGC runoff retention ponds . There was no
runoff (input) on Sept . 15 . All concentrations are in pg/L .

Inlet

	

Outlet

Dissolved

	

Particulate

	

Dissolved

	

Particulate
---------------------------------------------------------------------- -

Sept . 14

Cu 29 .3 3 .5 7 .7 3 . 8

Pb 1 .2 9 .2 <0 .1 0 . 2

Cd 3 .0 4 .4 0 .12 0 .16
---------------------------------------------------------------------- -
Sept .

	

1 5

Cu n .a . n.a . 4 .7 <0 . 1

Pb n.a . n.a . 0 .1 0 . 8

Cd n.a . n .a . <0 .01 0 .02

In the 9/14 runoff influent, dissolved Cu was 90% of the total Cu, dissolve d

Cd was 40% of total Cd, and dissolved Pb was only about 10% of total Pb (Tabl e

3) . These ratios were of comparable magnitude to those in the effluents

from the ponds and in water samples taken from the ponds .

After a period of immeasurably-low drizzle in mid-October a small outflo w

was observed at the Pond C outlet and a sample was taken on 10/22 for Cu

analysis . No significant parking-lot runoff was observed during this perio d

and the outflow probably stemmed from direct input of rain and perhaps a

small amount of baseflow . Dissolved Cu was 9 .2 pg/L, which was about twic e

the level of the 9/15 sample and 20% higher than the 9/14 sample . As will

be shown later for the samples from Pond C itself, dissolved Cu generally

diminished in the water column in the period following the pulse-input from

the 9/14 storm . The apparent increase in effluent Cu probably results from

2 0



the initial expulsion of relatively clean water from Pond C during and im-

mediately after the 9/14 storm, giving low Cu values . After the mixing and

equilibration of the ponds, the 10/22 effluent was higher by comparison ,

even though the Cu levels in the ponds were gradually decreasing in the perio d

between samples .

Cu concentrations were monitored in the influent and effluent durin g

and following a major storm on October 31-November 2 (termed the "11/1 storm") .

A graphical summary of the input/outlet Cu data for this and the other two

storms monitored in 1987 is presented in Fig . 6 . As with the 9/14 storm ,

the 11/1 storm produced a pulse of elevated Cu in the input runoff . The

value of 18 .2 pg/L measured near the beginning of the storm on 10/31 (durin g

the first strong flushing of runoff) was about 40% lower than that of th e

first storm of the season . Note however that the total rainfall was 47 mm ,

over fifteen times the volume of the 9/14 event . Because of the greatly

increased runoff, the total mass of metals added to the ponds during th e

11/1 storm was probably larger than from the 9/14 event, although an exac t

mass calculation is not possible without nearly continuous data and sampl e

collection during the event . The lower Cu concentration on 10/31 reflects a

greater dilution of the runoff as well as an initially cleaner catchmen t

compared to 9/14 . A second sampling, done on the second day of the stor m

(11/1), revealed that dissolved Cu had declined to less than 2 pg/L . This

is typical of large storms : the first flush removes most pollutants within a

short time and subsequent runoff is relatively dilute .

Effluent Cu concentrations during and after the 11/1 event closely re -

sembled those of the 9/14 event, both in magnitude and in diminution with

time (Fig . 6 ) . The initial value at 8 .9 pg/L was almost identical to th e
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prior sample taken on 10/22, reflecting a fairly stable concentration in the

ponds . As before, the effluent Cu declined in the period following the storm .

Mid-November brought a series of weak rain events without distinct inter -

vening dry periods . We did not attempt to sample during this time because a

single event could not be clearly isolated, as was possible in earlier fall ,

and the weather was not yet fully characteristic of winter . Instead we waite d

until December in order to sample a storm that was well into the winter patter n

of strong, frequent rains . On December 9, after a period of two days with

little rain, a major two-day event deposited 48 mm of rain . Rain on the

following four days was 5 .2 mm, 0 .2 mm, 0 mm, and 0 .2 mm . Thus the "12/ 9

storm" was reasonably isolated as a discrete event, but followed a two-week

period of heavy winter-type rains .

Samples taken on the morning of 12/10 at the height of the storm exhibite d

low dissolved Cu at 1 .0 pg/L . This increased insignificantly to 1 .4 pg/L on

the following day . Effluent concentrations on these days actually exceeded

the input concentrations . Dissolved Cu at around 4 pg/L on both days again

reflected the relatively stable, but gradually declining Cu in the pond system .

In this circumstance of low input levels, the buffering effects of the ponds

caused them to become, in a sense, a source of Cu relative to the highly

dilute runoff . Thus, while the ponds provide a valuable reduction in peak

loadings of pollutants, they store metals rather than eliminate them fro m

the system, and in fact contribute some of this stored material to the receiv -

ing waters in the form of desorbed or resuspended material . This has the

net effect of flattening the peak fluxes of metals from the catchment, bu t

also can elevate the minimum fluxes during the winter wet season .
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Particulate Metal s

Particulate metals were obtained by digestion of filters with a nomina l

size cutoff of 1 .2 pm, as described above . In contrast to the high precision

of the dissolved-metal measurements, particulate-metal analyses showed a

wide range of values among most sets of triplicates . Our samples always ha d

relatively low concentrations of suspended solids and apparently the hetero-

geneous distribution of particles in dilute suspension induced sampling vari -

ability . As a result it is more difficult to discern trends or statisticall y

significant differences among the particulate-metal data . This was anothe r

reason for focusing primarily on the behavior of Cu which largely was pre -

sent in the more precisely measured dissolved state . In all of the accompany -

ing figures, vertical bars representing the range of measured values are show n

bracketing the mean data points .

As discussed above, particles in the input runoff and outlet flow fro m

the 9/14 event contained only about 10% of the total Cu, but most of the Pb

and Cd (Table 3 ) . Reliable particulate-metal data could not be obtained fo r

the 11/1 storm so a detailed sampling was made of input and outlet water fo r

particulate Cu during a series of storm events from December 1 to Decembe r

10 . These storms were preceded by a four-week period of intermittent ligh t

rain and drizzle, as described above . The inlet concentrations of particulat e

Cu are not especially high at any point during the sampling (Fig . 7) and

are only slightly higher than the outlet levels . This approximated the behav-

ior of dissolved Cu during the protracted rainy period in December and confirms

the conclusion that the inputs of runoff metals by early December had drama- 4

tically diminished in intensity compared to the first storms of late summe r

and early fall . Although somewhat lower in the outlet compared to the input ,

particulate Cu was at comparable levels in both the inlet and outlet flows ,

y

	

'. 1
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Fig . 7 . Particulate Cu in the main runoff inlet and in the outle t
water from Pond C .

indicating that the ponds did not substantially reduce the already low, mid -

winter fluxes of metals to the receiving stream .

Particulate Cu was sampled at both the outlet from Pond C and approxi-

mately 100 m downstream at the point the culvert entered the receiving stream .

As shown in Fig . 8, no significant differences were noted at these two points

although the initial flow from the culvert may have been enriched with Cu

due to a flushing of particles settled within the culvert . In later samples ,

the output from the culvert appears to be slightly lower in particulate C u

than the input to the culvert from Pond C . A small amount of particle sedimen -

tation may occur within the culvert during moderate flows but this accumulate d

matter is probably washed out in large storm flows .
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Outlet and . Culvert
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Fig . 8 . Particulate Cu in the outlet water from Pond C and at the en d
of the culvert entering the receiving stream .

METALS WITHIN THE RETENTION POND S

Dissolved Metal s

Dissolved Pb and Cd were very low in all samples taken from the poisl s

and were most often below the detection limits (i .e ., Cd < 0 .05 µg/L, Pb <

0 .5 pg/L) . . Some representative values are presented in Table 4 . By com-

parison, dissolved Cu was greater than 1 .0 pg/L in all samples, occurred

frequently at 3 - 10 pg/L, and occasionally was as high as 15 pg/L . The

time-course profiles of dissolved Cu for Ponds A and B are presented in Figs .

9a and'9b . The samples from the surface (Om depth) have approximately th e
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Table 4 . Representative concentrations of dissolved and particulate P b
and Cd in 0GC runoff retention ponds . Concentrations are in ug/L .

Dissolved Particulate
Location

Pond A

Pb

<0 .5

Cd

<0 .1

Pb

0 .5

Cd

1 . 1

Pond B <0 .5 <0 .1 0 .6 0 . 9

Pond Ce 0 .5 <0 .1 0 .5 0 . 4

Pond Cw <0 .5 <0 .1 0 .5 0 .2

same Cu concentrations as the samples taken just above the sediments (2 m

depth) indicating that the ponds were well mixed . The only exception to

this pattern is for samples taken during the 9/14 storm in which the surfac e

samples in Pond B have substantially higher Cu than the bottom water . In

Fig . 10, the data for both Ponds A and B at both depths is plotted on th e

same graph to show that, within a certain amount of scatter, the dissolve d

Cu levels at all four stations are quite similar as a function of time .

This confirms our notion that Ponds A and B are essentially a single body o f

water due to the pumped recirculation through these ponds . The similarity

among samples also reflects the relatively high precision and accuracy o f

the dissolved Cu analyses .
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Fig. 9 . a) Dissolved Cu at Om and 2m depths in Pond A .

b) Dissolved Cu at Om and 2m depths in Pond B .
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Dissolved Cu concentrations plotted in Figs . 11a and llb show that both

the east and west sampling stations in Pond C, and both sampling depths a t

these points, exhibit very similar variations with respect to time . Thi s

mirrors the behavior of Cu in Ponds A and B . In fact, a comparative plot o f

Cu variations in Pond B and in Pond C (Fig . 12) shows that Cu in both pond s

follows very much the same pattern during the late-summer to early-winte r
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Fig . 11 . a) Dissolved Cu in Pond C at the east sampling station (Ce) .
b) Dissolved Cu in Pond C at the west sampling station (Cu) .
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sampling campaign . Thus, all three ponds are a relatively homogeneous water

body with respect to dissolved Cu, and probably are similarly homogeneous

for other dissolved components as well . As we will see in a later sectio n

of this report, the sediments of the three ponds are fairly heterogeneou s

and there is clearly not a direct correlation between Cu in sediments and Cu

in the overlying waters .
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For all three ponds at the first sample-time (8/5), Cu was low in al l

samples . Concentrations rose significantly by the 8/21 sample-time . At most

locations, Cu continued to increase to the 9/1 sampling . This period of in -

creasing Cu in the absence of measurable runoff is not readily explained .

However, during this time we observed a substantial surge in the algal pop -

ulation of the ponds ; mats of decaying algae were noted . The sediments in

Pond B took on a noticeably anaerobic odor, probably due to art accumulation

of algal organic matter . We hypothesize that the onset of anoxic sediments

in at least Pond B caused the dissolution of ferric oxyhydroxides and manganes e

oxides in the mineral phase of the sediments These oxides are strongly adsor -

bent so the anaerobic dissolution could have liberated previously adsorbe d

Cu . It is also possible that the decay of the algae directly liberated C u

bound up in the biomass .

Cu concentrations fluctuate somewhat in early September, possibly as a

result of cycling through growing and decaying algal biomass . Input from

the 9/14 rain caused a pronounced increase in dissolved Cu in all three ponds .

Samples from the 11/1 and 12/9 storms show very similar Cu values in all ponds .

Thus, the ponds become very homogeneous as the wet season advances . The homo -

geneity stems from a combination of elevated hydraulic through-put and th e

enhanced mixing from fall and winter winds . In all samples we note a steady

decline in dissolved Cu as the season advances, with levels of only about 3

pg/L in all ponds on December 11 . Occasional grab samples taken in the spring

(not shown on the plots in Figs . 9-12) revealed that the Cu concentratio n

declined to less than 1 pg/L and remained constant near the detection limi t

of the analysis (0 .5 pg/L) through the last sampling on May 2, 1988 .
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From these data we conclude the following summary of metal behavior .

Late summer is a-dynamic time for Cu in the water column, probably as a resul t

of uptake and release by blooming algae and because of redox-coupled cyclin g

of Cu in the sediments . The first rainstorms of early fall introduce a drama -

tic pulse of Cu and other metals into the ponds by washing off the summer' s

accumulation of dust and dirt in the catchment . By "absorbing" the pulse o f

contaminants at this time the ponds provide the most critical protection o f

water quality in the receiving waters . If the 0GC runoff-were routed directly

to the natural drainage system, this pulse of pollutants would shock-loa d

the small receiving stream and Rock Creek to which the stream .connects,- The

contaminant pulse ultimately would add incrementally to the toxic-metal loadin g

of the Tualatin and Willamette Rivers . Later in the fall season, as th e

rains become more frequent, metal concentrations in the runoff decline t o

low levels and the metals in output from the ponds may actually exceed th e

input loading . During the winter the ponds undergo a prolonged period of

stable concentrations and gradual dilution . By late spring, metals are a t

very low levels in the ponds . Although we were not able to verify this in a

one-year study, we suspect that Cu and possibly other metals are mobilize d

from the sediments in the summer and the cycle we observed will repeat .

Particulate Metal s

As stated above, particulate Cu was rarely observed to be more than 10 %

of the total Cu in any of the summer or fall water samples . Nevertheless ,

in conjunction with the detailed input/output sampling of particles during

early December, we measured particulate Cu in the ponds to determine if there

were any significant fluctuations .in concentrations . In particular we sus-

pected that winter storms might stir up sediments, thereby increasing suspende d
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Fig . 13 . a) Particulate Cu in Pond A during early December .
b) Particulate Cu in Pond B during early December .
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Pond Cw - Both Depth s
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b) Particulate Cu in Pond Cw during early December .
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solids in the water column . As is shown in Figs . 13 and 14, we found no

evidence of substantial sediment resuspension during this storm period .

Particulate Cu fluctuates within a few tenths of a pg/L in all ponds but

these levels are not significantly higher than at any other time of year .

Particulate Cu in Pond B is somewhat higher on the average than in Ponds A

or C and approaches 30% of the total Cu in the water . As will be shown below ,

the sediments of Pond B are greatly enriched in Cu compared to Ponds A and C

so the slightly elevated levels of particulate Cu in Pond B probably reflec t

a small degree of sediment resuspension .

METALS IN THE POND SEDIMENTS

Grain-Size Effect s

Sediments in all three ponds exhibited a moderate inverse dependence o f

metal concentrations on the mean grain size . We obtained the=most complet e

data for Cu although the patterns seem to hold for Pb and Cd . Sediments

passed through a 125 pm sieve contain, on the average, 84% as much Cu as sed-

iments passed through a 63 pm sieve (Table 5 ). The data on which thes e

Table 5 . Ratios of the concentration of Cu in <125 pm sediments divide d
by the concentration of Cu in <63 pm sediments . Mean value s
and standard deviations for all sediment samples .

Pond Mean Std . Deviation

A 0 .84 0 .10

B 0 .85 0 .1 7

Ce 0 .83 0 .1 1

Cw 0,83 0,12

3 5



Pond B Sediment s

<123 f. nn

Fig . 15 . Representative sediment concentrations from Pond B in two
particle-size classes .

averages are based are typified by the bar graph presented in Fig . 15 which

shows a comparison of Cu concentrations in the two size fractions for the

sediments of Pond B .

Although the Cu content of different grain-size fractions does not appea r

to be large, these data indicate that particles between 63 pm and 125 pm

must be significantly depleted in Cu . Note that over 70% of the mass of th e

sediments is found in the smaller (<63 pm) size fraction, as shown in Fig .

16 . Only about 10-15% of the mass of the sediment is in the 63-125 pm (fin e

sand) range, yet the inclusion of this small amount of material in the <12 5

pm fraction causes a 15% difference in Cu between the <63 pm and the <125 p m
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Soil Pond B

Fig . 16 . Percentages of total mass of sediments and native soil in tw o
size classes ( d < 63 pm and 63 pm < d < 125 pm) .

fractions . By mass balance considerations we can therefore determine that th e

size fraction >63 pm contains only negligible amounts of Cu . Thus it is

important to sieve samples to a uniform size class (say <63 pm) in order t o

minimize variability that is due only to the percentage of the larger particle s

in the sample, and not due to intrinsic variation in contamination .

Extraction Procedures and Metal Recoverie s

Sediment samples in this study were extracted with nitric acid and per -

oxide rather than subjected to total digestion . Total digestion of the entir e

sediment, including mineral matrix, yields all metals present, includin g

metals that are completely bound into the matrix and that are unlikely to b e

available to biota under any circumstance . A partial extraction of the type
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Fig . 17 . Effect of repetitive extractions of sediment samples . Each
sample was extracted four times, 24 h each extraction .

described in the Methods section measures metals that are more likely to b e

potential hazards in the environment . However, partial extractions for sed -

iments are operationally defined and produce varying recoveries of metals .

We believed the best compromise was to choose an extraction scheme that remove d

nearly all metal that could conceivably be bound to the surface by adsorption

or precipitation, and then to be certain that the method always removed that

fraction in a consistent manner . Specifically, we tested our method to deter -

mine the extent to which the time of extraction and the ratio of sediment to

extractant affected yields of Cu . That is, we wanted to be certain tha t

variations in the amount of Cu in our extractions were mainly due to actua l

7SA63•

original

	

J redigl

• 24 hr . digestion

redig3redig 2
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differences in Cu in the samples, and not due simply to small variations i n

the extraction time or in the amount of sediment mixed with extractant .

In the first experiment, sediments of both size classes (<125 pm and

<63 pm) from three pond samples were extracted for the proposed standard 24 h

period . The extractant solution was removed and the sediment samples rinse d

twice with water which was pooled with the extractant for analysis . The sedgy

iments were placed in fresh extractant for 24 h . Samples were re-extracted

three times in this fashion . As shown in Fig 17, each re-extraction always -

removed a small additional amount of Cu from the sediment . Interestingly ,

this residual Cu was largely independent of the amount of Cu in the origina l

sediment . For example, sample "7SA63" (from Pond A) shown in Fig . 17 yielded _

the equivalent of 24 .5 mg/kg of Cu on the first extraction, followed by 3 . 4

mg/kg, 1 .6 mg/kg, and 0 .8 mg/kg . Sample "3SCe63" (from less contaminate d

Pond C) initially yielded only 9 .3 mg/kg, yet the re-extraction sequence was

very similar to sample 7SA63 : 2 .0 mg/kg, 1 .5 mg/kg, and 1 .0 mg/kg .

We then examined the effect of extraction time in combination with re -

extraction . Two sediment samples were each divided into three aliquots .

The first pair were extracted for 24 h and re-extracted three times for 24 h

each, as before . The second pair of aliquots was extracted for 48 h an d

again triply re-extracted for 24 h per extraction, and the third pair extracted

for 72 h with triple, 24-h re-extraction . For both sediment samples there wa s

no significant difference in the 24 h, 48 h, or 72 h extraction schemes (Fig.

18 ). For each sediment sample the results of all extraction sequences wer e

nearly identical, including the amounts of residual Cu in the re-extractions .

From these experiments we concluded that our standard 24 h extractio n

time gave reproducible results and was not sensitive to small variations i n

extraction time . Furthermore, the only significant variation among sample s
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Fig . 18 . Effect of extraction time on metal recovery . Multiple extrac-
tions with 24 h, 48 h, and 72 h extraction periods .

could be detected in the first extraction ; in subsequent extractions al l

samples looked virtually alike, and only insignificant metal was removed i n

the fourth extraction . From this we concluded that the first extraction

liberated the most "available", surface-bound metals and that metals in sub -

sequent extractions were simply the result of a gradual leaching of metal s

tightly bound to the surface . The residual Cu was so consistent that we

were able to calculate an accurate mean value for the Cu removed in three

subsequent extractions (- 4 .9 mg/kg) . We concluded that the concentration

from a single, 24 h extraction, corrected by addition of the mean-residual -

Cu would produce the desired information about metals in the pond sediments .
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in extraction : the ratio of sediment mass to extractant solution veto .

The absolute mass of sediments does not affect the accuracy of the extractic k

procedure as long as it is above the minimum mass of sediment that cai .b,e

easily handled . The important variable is the ratio of sediment to extractant'.

A high ratio yields a larger concentration of metal in the extractant, whidh

can be analyzed more accurately . However, a high sediment/extractant rati o

may "saturate" the extraction capability of the solution and yield artificially

low concentrations of metal . Conversely, a low ratio gives maximum extraction

yields, but results in low concentrations of metals that may be difficult to

distinguish from a blank . Either an optimal ratio range must be found, o r

else a correction factor determined if the optimal ratio is not suitable .

Four aliquots of a sediment sample were prepared with masses of 25 mg ,

50 mg, 100 mg, and 150 mg . Each was added to 1 .0 mL of extractant and sub -

jected to the quadruple (24 h) extraction scheme described above . In the

first extraction of each sample there appeared to be a dist4,ct decline i n

extraction yield with increasing mass of sediment or decreasin g

sediment/extractant ratio (Fig . 19) . This experiment was repeated for several

different samples, always with the same general results . The ratio o f

25 mg/1 .0 mL gave the maximum yield, but 25 mg was a small and unwieldy, sampl e

mass that could introduce errors in routine analyses . Increasing both the

mass and the extractant volume was an option, but would necessitate devising

a extraction vessel different from the clean, disposable 1 .5 mL microcentrifuge

vials used in the procedure, and, would consume proportionally more of th e

expensive, high-purity acid and peroxide .

We found that the sediment/extractant ratio effect was reproducible enoug h

that we could formulate a regression function to make the small cor -
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Fig. 19 . Effect of the ratio of sediment mass to extractant volume o n
metal recovery . Masses of 25 mg, 50 mg, 100 mg and 150 mg i n
1 .0 mL of extractant .

rection necessary for samples larger than 25 mg . We found that extraction s

of 50 mg or 100 mg samples gave satisfactory analyte concentrations and wer e

relatively easy to handle, so the appropriate ratio correction factor wa s

applied to all analyses .

Pond Sediment Dat a

Triplicate sediment samples were obtained on the same days as pond-wate r

samples between September 1, 1987 and December 13, 1987 . An additional spring

sampling was conducted at all stations on March 9, 1988, and a set was taken

from Pond B on May 1, 1988 . In order to get a sense of the non-contaminant ,
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Fig. 20 . Cu in sediments of Pond B throughout the sampling period for
both size fractionations . Concentrations are given as mg Cu
per kg dry-weight of sediment .

background levels in the sediments a triplicate set of "native" soil sample s

were taken from the surface directly adjacent to the ponds . Extractions

were performed as described in the Methods section and the results were cor -

rected as described above .

Sediments at all four sampling locations (A, B, Ce , and Cw) had Cu con -

centrations that were at or above the levels in the native soil, and thes e

concentrations increased significantly throughout the sampling period . Not

surprisingly, the greatest amounts of Cu were found in Pond B, the pond re -

ceiving direct input (Fig . 20 ). The first samples taken from Pond B in Sep -

tember contained about three to four times the Cu in native soil . These Cu

x
x
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Fig . 21 . Cu in sediments of Pond A throughout the sampling period for
both size fractionations . Concentrations are given as mg Cu
per kg dry-weight of sediment .

concentrations gradually increased during the subsequent six-month samplin g

period and reached a peak of 80 mg/kg in the 3/9 sample, or almost seven

times the background level . In the 5/1 sample Cu had dropped back to 55 mg/kg ,

but, overall, the data indicated a general trend of relatively rapid increase .

The first sample at Pond A contained slightly less Cu than the native soil ,

but concentration increased in the following three months, approximately

doubling by December 13 (Fig . 21) . The data for Pond Ce and Cw sites were

almost identical in magnitude and trend to the data from Pond A (Figs . 22 a,b) .

Taken collectively, these data clearly indicate that significant amount s

of Cu built up in the sediments in only a few months but that the great bul k

44



Pond Ce Sediment s
(Copper)

Pond Cw Sediment s
(Copper )

1

	

4
2 0

1 6

1 6

14

2

10

soil 9/1 9/15 9/18 9/23 11/2 11/4 12/2 12/7 12/11 12/13 3/9

= <63 f.

	

<125 . .M

Fig . 22 . a) Cu in sediments of Pond C e throughout the sampling perio d
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b) Cu in sediments of Pond Cw . All concentrations are given
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Fig . 23 . Logarithm of the distribution coefficient (Kd) for Cu in Pon d
B . Kd is defined as Cu in sediment divided by Cu in water a t
2m depth .

of the Cu was deposited in the first pond in the system, Pond B . Because

input and pond-water data indicated that the Pb and Cd are roughly five t o

ten times more associated with particulate matter than is Cu, these metal s

are almost certainly building up in the sediments of Pond B, although at rate s

proportional to the smaller input fluxes .

It is interesting to note that Cu is deposited in substantially greate r

amounts in Pond B compared to Ponds A and C, even though the dissolved Cu

concentrations are similar for all three ponds . Presumably much of the inpu t

Cu settles relatively rapidly in Pond B while the dissolved Cu circulate s

through all three ponds, and may re-equilibrate with all sediments . A simple

coefficient (Kd) is often used to describe the distribution of organic con -
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taminants between water and sediments . A plot of the logarithm of the ratio

of sediment-bound Cu to dissolved Cu (log Kd) for Pond B as a function of

time shows that Kd varies rather widely (Fig . 23) . Obviously, an empirica l

coefficient like Kd is of no use in predicting sediment-water distributions .

Unfortunately, even the sophisticated models of metal adsorption currentl y

available are still too primitive to provide accurate predictions in complex

natural sediments .

Close inspection of the bar graphs in Figs . 20-22 reveals that Cu in th e

sediments of all ponds increased immediately after a storm event (marker arrow s

in Figs . 20-22) and then declined slightly in the subsequent inter-event period .

Thus we conclude that most Cu-bearing particles settle in Pond B, but particles ,

which escape Pond B settle rapidly throughout the other ponds . The slight

declines in sediment Cu between events could result from desorption of C u

from the sediments into the dissolved form . Although we usually observed a

decrease in dissolved Cu after storm-induced pulses, base-flow input of relat -

ively Cu-free water may have provided enough dilution to allow desorption an d

diminishing dissolved Cu to occur simultaneously . Another explanation, a t

• least for September and October is that algal growth contributed enough mas s

to dilute the Cu concentration in the sediments . Declines of sediment-Cu i n

November and December are unlikely to be caused by algal sedimentation bu t

the throughput of diluting water during that wet period was high enough t o

carry off desorbed Cu or Cu on resuspended sediments .

Cu Depositional Pattern in PondB

Because most Cu deposition occurred in the sediments of Pond B, we under -

took a spatially detailed sampling of those pond sediments in May 1988 . The

eleven sample points were selected to form longitudinal transeOts along th e
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Fig . 24 . Locations and concentrations for the detailed sampling of Cu
in sediments of Pond B for both size fractionations . Concentra-
tions are given as mg Cu per kg dry-weight of sediment .
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I
axes of the main and secondary storm-sewer inlets, and at peripheral point s

around these transects . The secondary-inlet axial transect also served as a

perpendicular transect to the axis of the main inlet (see Fig . 24 ) . Sedi -

ments taken from the point closest to the main inlet proved to be entirel y

gravel and coarse sand, indicative of the high inlet velocities during storm

events . This gravelly sample was not extracted or analyzed . Samples taken

at 7 m and 13 m axially from the inlet showed extremely high concentration s

of 133 mg/kg and 127 mg/kg (<63 µm fraction) respectively . The fourth sampling

point along this axis, 19 m from the inlet, was the central position at which

all of the routine samples were taken ; it had a sediment concentratio n. of

57 mg/kg which was comparable to all previous samples taken at that point .

As can be seen in Fig . 24, this transect and all the remaining samples reveal

a plume of highly contaminated sediments extending along the axis of th e

main inlet, with perhaps a minor plume emanating. from_ the. secondary inlet .

This plume is surrounded by peripheral sediments that have much lower Cu

concentration . In fact, the peripheral levels of Cu (20 - 30 mg/kg) ar e

very similar to those found in Ponds A and C . Thus, deposition of Cu occur s

so rapidly that many Cu-bearing particles do not even mix uniformly through

the relatively small area of Pond B but settle within 20 m of the source .

However the remaining particles settle much slower, slow enough to be dis -

tributed uniformly through all three ponds, giving a very uniform concentratio n

of sedimented Cu outside of the central plume .
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4 . CONCLUSIONS

1. Runoff from suburban parking lots such as those studied for this projec t

can contain concentrations of Cu that are high enough to be considere d

hazardous to the biota of natural streams . On the order of 90% of tota l

Cu in runoff and outputs from the pond was in the dissolved state an d

not associated with particles . Pb concentrations were generally very

low and were observed at lower concentrations than has been noted i n

the previous literature . We believe this is a result of declining us e

of lead in gasoline . Much of the Pb appears to be associated with th e

particulate phase . Cd was occasionally found at total levels in exces s

of 3 ug/L . Although this is a low level, the high toxicity of Cd indi -

cates that Cd may now be a more important runoff contaminant than Pb .

Cd was roughly evenly distributed between particles and solution .

2. In the climate of the maritime Northwest, long, relatively dry period s

in the late summer and early fall allow substantial build-up of metal s

on catchment surfaces . The first major storms of the fall produce runof f

that flushes high concentrations of contaminants off the catchment .

Subsequent storms generate runoff with progressively lower peak concen -

trations . By late fall or early winter the runoff is highly dilute an d

metal concentrations are on the order of 1 ug/L or less . Metals in

runoff remain low throughout the winter and spring, presumably unti l

the following fall .
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3 . Retention ponds are very effective at removing the high pulses of metal s

associated with early autumn storms . The effluents from the OGC ponds

were generally three to ten times lower in metals content than the input

runoff in those events . Most of the mass of metals appears to settl e

out very rapidly and there is dilution of the dissolved components .

For a catchment of the type and dimensions studied, a relatively smal l

pond, perhaps 20 m in diameter would probably provide removal efficiencie s

equal to those for the complete pond system studied at OGC . We recommend

that regulatory agencies investigate the use of such low-cost ponds a s

mandatory management practices for large suburban parking lots tha t

discharge runoff to receiving lakes and rivers .

4 We did not observe any significant remobilization of removed metals i n

concentrated form . That is, we did not observe large-scale resuspensio n

and wash-out of contaminated sediments during major winter storm events ,

nor was there evidence of substantial metal efflux by other processe s

such as surface films . We found preliminary evidence that Cu leache s

gradually from the sediments, maintaining a low but possibly significan t

level of metal in the ponds and the pond effluent . During the winter

months, pond effluent may therefore contain more Cu than the dilut e

runoff input . Overall, however, the tendency of the ponds to buffer

the output concentrations of metals at low and relatively steady value s

is of great value in preserving the integrity of receiving waters .
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