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Mapping and imputing potential productivity of
Pacific Northwest forests using climate variables

Gregory Latta, Hailemariam Temesgen, and Tara M. Barrett

Abstract: Regional estimation of potential forest productivity is important to diverse applications, including biofuels sup-
ply, carbon sequestration, and projections of forest growth. Using PRISM (Parameter-elevation Regressions on Independent
Slopes Model) climate and productivity data measured on a grid of 3356 Forest Inventory and Analysis plots in Oregon
and Washington, we evaluated four possible imputation methods to estimate potential forest productivity: nearest neigh-
bour, multiple linear regression, thin plate spline functions, and a spatial autoregressive model. Productivity, measured by
potential mean annual increment at culmination, is explained by the interaction of annual temperature, precipitation, and
climate moisture index. The data were randomly divided into 2237 reference plots and 1119 target plots 30 times. Each
imputation method was evaluated by calculating the coefficient of determination, bias, and root mean square error of both
the target and reference data set and was also tested for evidence of spatial autocorrelation. Potential forest productivity
maps of culmination potential mean annual increment were produced for all Oregon and Washington timberland.

Resume: L'estimation regionale de la productivite forestiere potentielle est importante pour diverses applications, y
compris les stocks de biocarburants, la sequestration du carbone et les projections de la croissance forestiere. A l'aide des
donnees climatiques PRISM (Parameter-elevation Regressions on Independent Slopes Model) et des donnees de producti-
vite mesurees sur une grille de 3356 placettes du programme d'analyse et d'invcntaire forestiers dans les Etats de l'Oregon
et de Washington, nous evaluons quatre methodes d'imputation pour estimer la productivite forestiere potentielle :le plus
proche voisin, la regression lineaire multiple, les fonctions dinterpolation spline et un modele spatial autoregressif. Me-
suree par I'accroisscmeru annuel moyen potentiel (AAMP) maximum, la productivite est expliquee par I'interaction de la
temperature annuelle, des precipitations et de I'indice d'humidite du climat. Les donnees ont etc repartics au hasard dans
2237 placettes de reference et 1119 placettes cibles une trentaine de fois. En plus d'etre testee pour la presence d'autocor-
relation spatiale, chaque methode d'imputation a ete evaluee a l'aide du coefficient de determination, du biais et de
l'erreur quadratique moyenne calculecs pour les ensembles de donnees cibles et de reference. Les cartes de productivite for-
estiere potentielle de I' AAMP maximum ont ete produites pour I'ensemble du territoire forestier exploitable des Etats de
l'Oregon et de Washington.

[Traduit par la Redaction]

Introduction
Forest productivity is of interest in a wide variety of ap-

plications and, correspondingly, is measured in a wide vari-
ety of ways. Net primary productivity of forests, i.e., the rate
at which energy is produced by plants through photosynthe-
sis in excess of energy used in respiration and maintenance,
is a fundamental measure of productivity in ecology (Krebs
1985). Biomass productivity in forests is of increasing inter-
est for biofuels production and is closely related to the rate
of carbon sequestration, which is of importance to under-
standing climate change (Marland and Schlamadinger
1997). The potential for forested lands to produce wood
over time, which is the focus of this paper, has long been
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of interest to foresters and is closely related to these other
measures of forest productivity (Gower et al. 2001).

The temporal pattern of productivity for an even-aged
stand after initiation appears as (i) a period of slow but in-
creasing productivity as trees are established, (ii) an inflec-
tion point of maximum rate of productivity, and (iii) a
period of decreasing productivity as the stand fully occupies
the site (Moller 1947; McArdle et al. 1949)_Maximum long-
term wood productivity in managed even-aged forests is
realized when rotation length is set to the time of culmina-
tion of mean annual increment (Davis and Johnson 1987).
The potential mean annual increment (PMAI) of wood vol-
ume that occurs at this time of culmination is a measure of
the maximum potential forest productivity at a particular
site. It reflects the average annual productivity of wood vol-
ume that would be realized over the long term, if rotation
lengths were chosen to maximize wood production. Maxi-
mum potential forest productivity is affected by species mix
and silvicultural practices, such as thinning, fertilization, or
brush treatment, as well as by the basic factors that deter-
mine site, such as soils and climate.

In the western US, potential forest productivity is assessed
by the Forest Inventory and Analysis (FIA) program
whereby site trees are selected to produce a site index for
forested field plots. The site index is then used in combina-
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tion with normal yield tables to determine PMAI, i.e., the
maximum potential cubic metre volume per hectare per
year that would be produced over the long term at a given
site for a normally stocked stand (Hanson et al. 2002).

While this method is useful in many cases, alternative
methods of estimating potential forest productivity are
needed. Users often prefer forest productivity maps with
continuous spatial coverage rather than the point-level esti-
mates provided by plots. In addition, it is common to be un-
able to find valid site trees at a plot. In the Pacific West
region (Alaska, Oregon, Washington, and California), ap-
proximately 20% of forested plots do not have PMAI esti-
mates because valid site trees cannot be found. There are a
number of reasons for the lack of site trees on plots. (i) The
trees present may be too young and, thus, boring would
damage the tree, or the available site index equations do not
cover this age range. (ii) Trees may be unsuitable for the
available site index equations because of poor form, sup-
pression, disease, or old age. (iii) Western hardwoods are
often impractical to bore because of rot, the difficulty of
reading rings, and a propensity for breaking borers.

Alternatives to using site index trees to estimate produc-
tive potential have been described in the published literature.
In the Rocky Mountain states, it is common to use habitat
typing to describe potential vegetation in the absence of
disturbance (Pfister et al. 1977), which is frequently cross-
walked to a site index or site class. The assumptions under-
lying habitat typing may limit general applicability (Cook
1996), and it is only available for portions of western North
America. For these reasons, habitat typing was eliminated as
a source for PMAI estimates for this study.

With recent advances in geographic information systems,
mapping forest productivity over large geographic regions
has become more common. Monserud et al. (2008) esti-
mated a linear model of site index explained by growing de-
gree days and mapped potential future changes in site index
under climate change. Wang et al. (2005) compared site in-
dex predictions for a variety of methods (least-squares re-
gression, generalized additive model, tree-based model, and
neural network model), using stem-analysis of lodgepole site
trees in Alberta. Nigh et al. (2004) created a suite of site in-
dex models, using weather data, PRISM data for precipita-
tion, and site index data. Studies using multiple linear
regression (MLR) to relate Douglas-fir productivity to geo-
graphic and climatic variables have been completed in
France (Curt et al. 2001), Portugal (Fontes et al. 2003), and
central Italy (Corona et al. 1998). Swenson et al. (2005) pre-
dicted site index for all of Oregon using a process-based
1 km2 resolution growth model with FIA plot data (fuzzed
coordinates), DAYMET weather inputs, and soil nitrogen.

As much of this past work uses nonspatial models, there
is the potential for a spatial component in prediction error,
as can be seen in errors such as those reported by Swenson
et al. (2005). In contrast, Monserud et al. (2006) created a
spatial model of site index for lodgepole pine (Pinus contorta
Dougl. ex. Loud.) in Alberta using Hutchinson's thin-plate
smoothing splines with inputs of latitude, longitude, eleva-
tion, and site index. Expanding on the work of these ear-
lier studies, we developed an autoregressive model to
reduce the spatial component of prediction error and com-
pared the model with thin-plate splining, such as those
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used by Monserud et al. (2006); nearest neighbour imputa-
tion; and the nonspatial multiple linear regression used by
most previous researchers.

The objective of this study was to examine and identify
the best practical method for using climatic variables to esti-
mate PMAI for forested plots in Oregon and Washington.
We also produced productivity maps for forested areas in
both states that can aid forest rnanagers in management de-
cisions. Four different imputation approaches were eval-
uated: nearest neighbour (NN), multiple linear regression
(MLR), thin plate splines (TPS), and a simultaneous autore-
gressive model (SAR).

Methods
Data

Data for this study were obtained from the FIA databases
for Oregon and Washington. The FIA databases are part of
the national inventory of forests for the United States. A tes-
sellation of hexagons, each approximately 2400 ha in size, is
superimposed across the nation, with one field plot ran-
domly located within each hexagon. Approximately the
same number of plots is measured each year; each plot has
the same probability of selection. In the western US, plots
are remeasured every 10 years. Each field plot is composed
of four subplots, with each subplot composed of three nested
fixed-radius areas used to sample trees of different sizes.
Forested areas that are distinguished by structure, manage-
ment history, or forest type, are mapped as unique polygons
(also called condition-classes) on the plot and correspond to
stands of at least 0.4047 ha in size. PMAI is calculated from
the stand's site index, which is itself calculated from the age
and height of site trees (Hanson et al. 2002). For our study
area, there were 4557 forested FIA plots measured between
2001 and 2006, with PMAI values calculated based on 27
different tree species. Of the 4557 plots with PMAI values,
74% were estimated from either Douglas-fir (Pseudotsuga
menziesii (Mirb.) Franco), ponderosa pine (Pinus ponder-
osa C. Lawson), or western hemlock (Tsuga heterophylla
(Raf.) Sarg.). PMAI, elevation, and species identifier for
the 3356 forested FIA plots of these three primary species
in Oregon and Washington plots were obtained from the
FIA annual database.

Graphical analysis of plots with site trees of at least two
different species from the 3356 FIA plots indicated an up-
ward shift in the PMAI on plots where western hemlock
site tree measurements were used, while PMAI showed no
discernable trend on plots with both ponderosa pine and
Douglas-fir site trees. This upward shift in PMAI on plots
for which western hemlock trees were used is most likely
due to the shade tolerance of the species. To account for
this, an indicator variable for shade tolerance (ST) was used
for plots with PMAI calculated from western hemlock trees.

We used normal monthly temperature and precipitation
data for the period 1971-2000 produced by the parameter-
elevation regressions on independent slopes model (PRISM).
The PRISM data is provided on an 800 m grid, which pro-
duced differences between measured plot elevation and
overlaid PRISM grid elevation of up to 350 m in the moun-
tainous areas of Oregon and Washington. To account for
changes in climate due to these elevation differences, we
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utilized a process similar to that of Wang et al. (2006),
where we created a scale-free interpolation process using a
90 m digital elevation model and PRISM temperature and
elevation gradients of the larger 800 m grid. The result was
a 90 m monthly climate grid. Like Wang et al. (2006), we
used this procedure for temperature (T only and used a sim-
ple distance weighting method for precipitation (P).

As a measure of moisture availability, we used climate
moisture index (CMI), which is a measure of precipitation
in excess of evapotranspiration (ET). Hourly shortwave in-
coming solar radiation (SR) was calculated based on Coops
et al. (2000), utilizing latitude, longitude, slope, aspect, ele-
vation, and the PRISM monthly maximum and minimum
temperatures. These hourly values were then used to create
monthly averages. The daily evapotranspiration in month m,
ETm, was calculated using the Hargreaves method as pre-
sented in Narongrit and Yasuoka (2003) as

where mgs is the months in the growing season, Pm is the
precipitation in month     m, daysm., is the number of days in
month m, and ETm is the daily evaporation in month m. In
this study, the growing season months are those that have
growing degree days above 10oC.

Descriptive statistics for the geographic variables along

with the climatic variables used in the models are given in
Table 1 and maps are provided in Fig. 1. Correlation coeffi-
cients between selected variables are given in Table 2.

Nearest neighbor
Unlike the parametric prediction approaches, nearest

neighbour (NN) methods can retain both spatial and attribute
variance structures of the data (Moeur and Stage 1995; Te-
mesgen et al. 2003), do not restrict the form or shape of the
underlying distribution, and will always result in projections
within the bounds of biological reality (Moeur and Stage
1995). This approach is therefore feasible for imputing and
mapping potential productivity of forests as an alternative
to parametric approaches.

In this study, the 3356 sample FlA plots (n) were ran-
.domly divided as 2237 reference and 1119 target plots.
Reference plots refer to sampled plots that had both calcu-
lated PMAI values and climate attributes, while target plots
refer to unsampled plots that only had climate attribute data.
Reference plots formed the pool of potential data that could
be selected to impute site productivity of target polygons by
each method described below. The target plots were as-
sumed to be unsampled plots (missing site productivity
data) and were used to validate the accuracy of each imputa-
tion approach by comparing the observed PMAI with the
imputed PMAI. The random division of the data set was re-
plicated 30 times.

The NN approach linked a target plot to a reference plot
by selecting the reference plot with the smallest squared Eu-
clidian distance between the climatic variables on the refer-
ence plot and target plot, respectively. Let Xi be the vector
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of climatic variables (Ti, CMIi   TP   i, T2
i;,

, P2
i, ST

i
) on plot i.

The squared Euclidian distance, dist., between target plot j
and reference plot i was calculated as

raster map, which can then be overlaid with data points to
impute values. Given that our data points were not on a
grid, we used ANUSPLIN to predict PMAI for a one-cell
grid at each of our data points. This eliminates any differen-
ces that may arise if the climate of the larger grid cell dif-
fers from that of the individual point to be imputed.

Simultaneous autoregressive model
Spatial autocorrelation is a frequent occurrence in spatial

vegetative modeling, as nearby observations are more simi-
lar than if they had been selected at random. The result is
that the OLS parameter estimates of the original models,
while still unbiased, are no longer the most efficient. While
testing for and correcting autocorrelation has been prevalent
in the econometrics literature for decades, it is just recently
gaining acceptance as a method for solving spatial models.
In a SAR model, the error term is composed of two compo-
nents: a stochastic error term and an error term that is a
function of the neighboring data error terms. The MLR
model described above was tested for the presence of spatial
autocorrelation, and a SAR model was generated, where the
PMAI on reference plot i, PMAI;, is given by

where x;p is the value of climatic variable p on plot i, xp is
the mean value of climatic variable p, and No. of var is the
total number of climatic variables. One of the best aspects
of the NN approach is that the PMAI imputed to the target
plot did actually occur on a reference plot with similar cli-
matic attributes.

Multiple linear regression
The linear regression model solves an equation for a set

of parameters that minimize the squared errors of a depend-
ent variable and its predicted value from the equation. Im-
puting PMAI using MLR consists of solving a linear
regression for the reference plots and then using that equa-
tion to calculate a predicted value for the target plots. Un-
like NN, the MLR approach may produce a PMAI value for
the target plot that is inconsistent with both the target plot
climatic attributes and any reference plot climatic attributes.
The PMAI on references plot i, PMAIi, are given by the
MLR model:

where Bl, ... ,B

7

are regression parameters, i is the set of re-
ference plots, and e; is a stochastic error on plot i. The
model is solved using ordinary least squares (OLS), and the
equation for predicting imputed PMAI for target plot j,
PMAlj, was

Let XLiP be the vecto~ of lagged terms for the variables
(hi' CMILi, TPL;, 7l" PL;, STL) on plot t. The lagged term
for the PMAI for plot i, PMAlL;, is calculated as

The model contains eq. 6 with the addition of the term
pu.; where p is the autocorrelation correction parameter,
and U; is the spatially autocorrelated error term (which
would be the ej in eq. 6). The autocorrelated error term is a
function of the lagged or neighbouring error terms, and for
plot i, U; is given as

Thin plate splines
TPS has been widely used for interpolating spatial data.

TPS minimizes prediction error by a generalization of the
standard MLR in which the parametric model is replaced by
a suitable smooth nonparametric model (Hutchinson 2006).
This is done by the process of generalized cross validation
(GCV) in which each data point is singularly removed and
the error for that point is estimated from a surface fitted to
the remaining data (Hutchinson and Gessler 1994). These
GCV estimated errors are then utilized to minimize the error
in the final fitted surface. We used the ANUSPLIN version
4.36 (Hutchinson 2006) package to impute missing site pro-
ductivity data. ANUSPLIN uses a set of data points, or
knots, to create its interpolated surface. While typically
ANUSPLIN will determine the best points in a data set to
serve as knots, for our 30 replications, the randomly chosen
reference plots were given to ANUSPLIN as the knots to
use. We used five independent spline variables (latitude,
longitude, T, CMI, and P) to generate a third-order spline
over one surface. The output from ANUSPLIN is a grid, or

where NW; is the neighboring window of observation (or
plot) i, PMAI is the PMAI value of observation (or neigh-
bor, plot) k within the neighboring window, Xkp is the value
of climatic variable p of neighboring plot k, and Wk is the
weighting term for observation (or neighbor, plot) k, given
as the inverse Euclidian distance between observation i and
its neighbor k. This distance is calculated using longitude
and latitude decimal degrees, and the neighboring window
is set to0.5o (in all directions). The model is solved using
nonlinear least squares.
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Comparison of approaches
For each of the four imputation methods, the random

separation of the data into target versus reference stands
was repeated 30 times. Fit statistics commonly used by
other authors are based on comparing observed with esti-
mated values in the simulated target data set, particularly,
the squared correlation between the actual and predicted
values. The average difference, often called bias, and root
mean squared error (square root of the average squared dif-
ference; RMSE) are often calculated. We calculated the fit
statistics for each imputation method for the reference and
target plots.

To evaluate the results for each simulation, coefficient of
determination (r.

2)

, bias (average difference), and RMSE
were calculated separately for both the reference and target
data sets for each replicate as follows:

of each of these three statrstics were summarized over the
30 sampling replications.

Analysis of spatial autocorrelation
Spatial autocorrelation is the correlation between the

model's error term and the error term of nearby observa-
tions. The presence of spatial autocorrelation violates one of
the assumptions of the classical linear regression model -
that the disturbance term relating to any observation is not
influenced by the disturbance term relating to any other ob-
servation. Some of the possible causes of spatial autocorrela-
tion include measurement error, omitted variables, incorrect
functional form, and incorrect data transformations. Auto-
correlation in an OLS regression will still result in unbiased
coefficient estimates; however, they may no longer be the
most efficient unbiased estimators. This potential ineffi-
ciency would lead to standard errors that are no longer ap-
propriate, and any hypothesis testing using these standard
errors may be misleading. A commonly used measure of
global spatial autocorrelation is Moran's   I.     Like a correla-
tion coefficient, the values of Moran's   I vary from -1 to 1,
depending on the direction and magnitude of the spatial au-
tocorrelation. Negative values indicate dispersal and positive
values indicate clustering.

The equation used to calculate Moran'sI is given as fol-
lows:

where n is the number of plots in either the reference or tar-
get data set.

The mean, minimum, maximum, and standard deviation

whereIs Moran'sItatistic, E; and Ej are the observed
PMAI minus the predicted PMAI on plots i and j, respec-
tively, with E as its mean, and wij is the inverse Euclidian
distance between observations i and j if the distance is less
than 0.5°, otherwise O. The standard error for Moran's 1
with a symmetric weighting matrix assuming normality of
the variance is calculated by

this data set, with  r2 values of 0.50 and 0.49 and RMSE val-
ues of 3.14 and 3.15 m3·ha-l·yearl for the reference and tar-
get data sets, respectively. The MLR model had very similar
performance on both the reference and target data sets with
RMSE values of 2.45 and 2.46 m3·ha-l·yearl, respectively,
and an   r2 of 0.64 for both. Both the TPS and SAR models,
which use additional information regarding each plot's error
term, outperformed the simpler NN and MLR models. The
TPS model had an r2 of 0.71 for the reference data, while
its ,.2 for the target data fell by 2.6% to 0.69 for the target
data. None of the other three models exhibited a drop in    r2
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Results and discussion
Evaluation of imputation methods

Table 3 has the r.2, RMSE, and bias values for each of the
modeling methods. The NN model performed the worst on

A Z score can then be calculated to represent the statisti-
cal significance of the I value. The Z score is given as



from the reference to the target data of more than 0.5%.
Likewise, the TPS model had a reduction of precision of
3.2%, as RMSE increased from 2.21 to 2.28 m3·ha-1·year-1

from the reference to the target data sets. The highest loss
in precision among the other models was 0.7%. The top per-
forming model for both the reference and target data sets
was the SAR model with r2 values of 0.74 and 0.73 and
RMSE values of 2.09 and 2.11 m3·ha-1·year-l, respectively.

Among the four imputation methods examined, the NN
method resulted in the widest range of bias for both the
reference and target data sets (Table 3). The wide range of
bias resulting from using the NN method has also been re-
ported in estimating other variables, including stand density
(LeMay and Temesgen 2005), stand tables (Eskelson et al.
2008), and abundance of cavity trees (Temesgen et al.
2008).

Predicted error maps
While most studies present statistics supporting how wel1

their models fit the data, very few present the spatial struc-
ture of the model error. Figure 2 maps out the observed
PMAI minus the predicted PMAI to give a spatial represen-
tation of the overestimation and underestimation of the four
models. The NN, MLR, and TSP models al1 tend to under-
estimate PMAIs for productivity on the western side of the
border between Oregon and Washington. These three mod-
els also tend to overestimate productivity in the far south-
western end of Oregon. The NN and MLR methods also
tend to overestimate productivity through the west side of
the Cascade Mountains in west central Oregon. The overes-
timation of productivity in the Klamath Mountains of south-
western Oregon is consistent with the error map produced
by Swenson et al. (2005), which also showed a tendency to
overestimate productivity there as well. The SAR model er-
rors are more dispersed, not displaying any trends or pat-
terns.

Spatial autocorrelation
Spatial autocorrelation is a relationship between the error

terms of nearby observations. We investigated the spatial re-
lationship of the residuals of the four models, as presented
in Fig. 2. We used Morans's I to test for the presence of
spatial autocorrelation. An important component of Moran's 
 I is the weighting of the observations. Weights are typically
defined as a geographic window of influence, some sort of
inverse distance function, or a combination of both. We em-
ployed both the commonly used inverse distance function as
well as a window of influence, which we set at 0.50 of lati-
tude and longitude. The window of influence was deter-
mined by examining the residuals from the NN, MLR, and
TPS models. In particular, the 0.50 represents the approxi-
mate radius of the clusters of underestimation errors found
on the far western border of Oregon and Washington and
also that of the overestimation cluster found in the far south-
west of Oregon in the three models.

Table 4 gives the Moran's I value and Z scores for the
four models for both the reference and target data sets. The
NN, MLR, and TPS models al1 display significant clustering
of the errors terms, corroborating what Fig. 2 showed. The
MLR model has both the highest magnitude and most signif-
icant levels of spatial autocorrelation. The SAR model has
significant but low levels of dispersion of the error term, as
indicated by the -0.01 value of Moran's  I.

Regional mean annual increment maps
Figure 3 contains the PMAI maps for the four imputation

methods along with the actual plot PMAI values given in
Fig. I. As seen on the map, in general, the regression tech-
niques of the MLR and SAR methods produced much
smoother transitions between the PMAI classes. The NN
map has the least smooth PMAI class transitions, as each in-
dividual pixel is assigned a class independent of the neigh-
bouring pixel values. The overestimation of PMAI in the
southwest of Oregon (as seen in Fig. 2) for both the NN
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and MLR models appears to be the result of high coastal
PMAI values, which are not found in the TPS and SAR
maps. Conversely, the underestimation of PMAI (from
Fig. 2) at the mouth of the Columbia River on the western
border of Oregon and Washington by the NN, MLR, and
TPS models is abated by higher PMAI values in the region
predicted by the SAR model.

Conclusions and recommendations
This study compared the performance of four techniques

to impute site productivity based on climatic variables in
the Pacific Northwest. Based on 30 random divisions of the
data into reference and target data, the SAR model outper-
formed the NN, MLR, and TPS models in both r2 and
RMSE, while at the same time it had the lowest bias of the
four modeling techniques. The SAR model also had the least
problem with spatial autocorrelation, which was significant
and visible in the error maps of the other three methods.·

As concern over the impact of climate change leads to in-
creased efforts to model climate change effects across the
landscape, spatial modelers will need to become more so-
phisticated in their techniques. Inflated standard errors of
coefficients estimated by OLS with spatial autocorrelation
present in the model could lead to errors in interpreting the
impacts on productivity of changes in climatic parameters,
and entire regions mapped using the model could be prone
to systematic errors. Methods such as the SAR model esti-
mated in this study could prove invaluable in their ability to
potentially identify regions more susceptible to climatic
change. Elasticities of changes in productivity with respect
to changes in climatic variables could be mapped, and stat-
istical significance for those elasticities could be presented.
Elasticities could also be paired with climate model data,
such as the Special Report on Emissions generated for the
4th Assessment Report of the Intergovernmental Panel on
Climate Change, to map and quantify changes in future pro-
ductivity under various scenarios.
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List of symbols

CMI growing season precipitation in excess of evapo-
transpiration, em

E prediction error of the models
ET potential daily evapotranspiration, mm-day-1

L lagged value indicator for SAR model
mgs months of the growing season

n    number of plots
NW neighborhood window for SAR model

P annual precipitation, ern
P

m total precipitation in month, m, em
PMAI potential mean annual increment at culmination,

m3·ha-l·ycar-1

SR . incident solar radiation, MJ·m-2·day-1
ST shade tolerance indicator variable 0,1

T average annual temperature, °C
Tm average temperature in month, Ill, °C

w    weight for SAR model
x the vector of climatic variables (T, CMI, TP, T2, p2,

ST) .
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