INTERNAL REPORT 127

VARIATION IN AIR AND SOIL TEMPERATURES IN FOREST COMMUNITIES ON THE H.J. ANDREWS EXPERIMENTAL FOREST, 1970-1972
D. B. Zobel, W. A. McKee, G. M. Hawk, and
C. T. Dyrness

Oregon State University and
USDA Forest Service, Corvallis

> NOTICE: This internal report contains information of a preliminary nature, prepared primarily for luternal use in the US/IBP Coniferous FCrest Biome program. This information is not for use prior to nublication unless permission is obtained in writing from the author.

Variation in Air and Soil Temperatures in Forest Communities on the H. J. Andrews Experimental Forest, 1970-1972

Donald B. Zobe1, W. Arthur McKee, Glenn M. Hawk and C. T. Dyrness Orego: State University and USDA, Forest Service

ABSTRACT
Air temperatures at $I \mathrm{~m}$ and soil temperatures at 20 cm are reported for twenty-one forest stands in the central Western Cascader of Oregon. Records began in 1970 for some stands, in 1971 or 1972 for most. Temperature Growth Index for a stand based on temperature effects on Douglas-fir seedling growth, varies from 32 to 101, and ordinates the stands similarly for 1971 and 1972. However, the index is not closely related to stand position in a vegetation ordination. A strong nocturnal temperature inversion causes summer minima to increase with elevation up to 1100 m . All lapse rates are 10 w up to 1100 m . Comparisons with studies of montane forests in Arizona and Colorado show that the sites studied here lack the temperature variation, particularly the low minima, characteristic of the other areas.

INTRODUCTION

In the vicinity of the H. J. Andrews Experimental Forest in the Western Cascades of Oregon, twenty-three plant communities have been described (Dyrness et al., 1973). These communities have been analyzed by an ordination technique. The resulting classification of communities provides a useful and sensitive method of stratifying the landscape in the Experimental Forest for sampling and modeling of ecosystem structure and processes. Hovever, measurements of environment and observations of plant phenology in these communities will make
surb a stratlfirat lon more useful and provide some insight into the environmental situation represented by different communities. To obtain such measurements, "reference stands" were established in stands rerresenting approximately the modal conditions in each of several widespread or contrasting plant communities.

The relationship of plant moisture stress to plant communities on the Andrews is reportad by Zobel et al. (1973). Another major determinant of community distribution in Oregon vegetation is temperature (Waring 1969) and important variation within the vegetation on the H. J. Andrews appears to be associated with temperature conditions (Dryness et al. 1973).

This paper reports the temperatures measured and briefly discusses some of the relationships of temperature with elevation and plant communities. Brief comparisons: with similar measurements elsewhere in Western coniferous forests are made.

METHODS
Thermographs were installed in "Reference Stands" (RS) representing the plant communities and at the times outlined in Table 1 Their general locations are shown in Fig. 1. Within each reference stand, a spot closely resembling the average conditions for that type of community was chosen. A Partlow two-pen thermograph, using a 30 - or 31 -day circular chart, was installed at each location. The air temperature probe was protected under an insulated A-frame shield at 1 m above the ground, and the soil probe was buried 20 cm deep. With each chart change (every 3 to 4 weeks except in winter) the soil and ai: temperature were checked with a stanciard thermometer, and any discrepancy recorded. If the difference was 2 F or greater, the thermograph pen was adjusted.

Table 1. Forest Community, Elevation, Slope, Aspect and Date of Installation of Each Reference Stand

Ref. Stand	Forest Community
1	Pseudotsuga menziesii/Holodiscus discolor
2,17	Tsuga heterophylla/Rhododendron macrophyllum/Berberis nervosa
3	Isuga heterophylla - Abies amabilis/ Linnaea borealis
4	Abies amabilis/Tiarella unifoliata
5	Isuga heterophylla - Abies amabilis/ Rhododendron macrophyllum/Berberis nervosa
6,16	Isuga heterophylla/Castanopsis chrysophylla
7	Tsuga heterophylla/Polystichum munitum Oxalis oregana
8	Pseudotsuga menziesii .. Tsuga heterophylla/ Corylus cornuta var. californica
9	Tsuga heterophylla/Acer circinatum/ Polystichum munitum
10	Tsuga heterophylla/Rhododendron macrophyllum/Gaultheria shallon
11	Pseudotsuga menziesii/Acer circinatum/ Berberis nervosa
12	Abies amabilis/Vaccinium alaskense/ Cornus canadensis
13	Abies procera/Clintonia uniflora

Abbreviation	Elevation (m)	Aspect	Slope (deg)	Date
Psme/Hodi	490	S40W	30	April 7
Tshe/Rhma/ Bene	490,490	N70W, N20W	21,14	May 70 June 72
$\begin{aligned} & \text { Tshe-Abam/ } \\ & \text { L:bo } \end{aligned}$	945	S85W	5	April 7
Abam/Tiun	1310	N54W	20	June 70
Tshe-Abam/ Rhma/Bene	880	--	level	May 71
Tshe/Cach	610,640	S25W, S40W	30,35	$\begin{gathered} \text { *April } \\ \text { April } \end{gathered}$
$\begin{aligned} & \text { Tshe/Pomu- } \\ & \text { Oxor } \end{aligned}$	460	N30W	29	May 71
$\begin{aligned} & \text { Psme-Tshel } \\ & \text { Cococa } \end{aligned}$	490	S85W	39	April
Tshe/Acci/ Pomu:	460	N50W	41	April ${ }^{-}$
Tshe/Rhma/ Gash	610	--	le:el	Acril 7
Psme/Acci/ Bene	1010	S20W	11	May 71
$\begin{aligned} & \text { Aban/Vaal/ } \\ & \text { Coca } \end{aligned}$	1010	S4OW	8	July 71
Abpr/Clun	1310	S20W	23	Aug 71

Table 1 (cont.):

$\begin{array}{r}\text { Ref: } \\ \text { Stand } \\ \hline\end{array}$	Forest Community	Abbreviation	Elevation (m)	Aspect	Slope (deg)	Date
14	Abirs amabilis - Tsuga mertensiana/ Xerophyllum tenax	Abam-Tsme/ Xete	1430	N33W	27	Aus 71
15	Tsuga heterophylla/Polystichum munitum	Tshe/Pomu	760	N10W	33	$\begin{gathered} \text { ※【ay } 70 \\ \text { July } 72 \end{gathered}$
18	Pseudotsuga menziesii/Acer circinatum/ Whipplea modesta	Psme/Acci/ Whmo	1100			June 72
19	Pseudotsuga menziesii/Polystichum munitum	Psme/Pomu	378	E	26	July 72
DELTA	```a}\mathrm{ Pseudotsuga menziesii/Corylus cornuta- Symphoricarpos mollis/Polystichum munitum```	Psme/Coco-Symo/ Pomu	350	-	Flat	April 70
LOOKOUT	Not named: Pseudotsuga menziesii and Abies grandis are dominant	---	1370	S60E	35	April 70

a) From Hawk (1973)

* In 1970, the types represented by RS6 and 15 were sampled in other locations. These data are indicated as RS ${ }^{*} 6$ and RS ${ }^{*} 15$, and are marked with an asterisk throughout the report.

Fig. 1. Location of reference stands on the H. J. Andrews Experimental Forest.

Data from two other stands in the same area, being used in another study (Zobel, unpublishad data), are included to add perspective to the RS data. DELTA is on a valley-bottom terrace near the McKenzie Rj.ver, and LOOKOUT is in a young stand of Pseudotsuga and Abies grandis on an Elope directly above the McKenzie River Valley (Table 1). Data were collected and analyzed as with the RS data.

Thermographs were not serviced regularly during the winter of 1970-71. During 1971-72 and 72-73, charts were changed as regularly as conditions permitted. Because of heavy snowpack, $4-5 \mathrm{~m}$ in some stands, upper elevation air probe shelters were suspended $3.5-5 \mathrm{~m}$ above the ground and 2.6 m from a large tree during the dates shown in Table 2.

Thermograph charts were digitized and day and night means for air temperature were computed for each day as described by Cleary and Waring (1969), with the daylength defined for the H. J. Andrews Forest (Table 3). Mean daily soil temperatures were extracted from the charts manually.

Monthly means were calculated for soil temperature and for the following aspects of air temperature: day and night means, maximum and minimum, and daily range. Monthly extremes were determined for air and soil temperatures. Months with more than five days missing are not includtd in this compilation.

Monthly means were corrected in cases where the discrepancy between the chart temperature and the standard thermometer averaged 1.0 F or more for both ends of the record.

Using average day air temperatures and soil temperatures, a Temperature Growth Index (TGI) was computed for each site for each day during the "growing season". TGI, which weights temperature data according to its effect on growth of seedlings of Pseudotsuga menziesii in growth room conditions, was computed

Table 2. Dates and heights of elevation of air temperature sensors in higher elevation reference stands.

Ref. Stand	$\begin{aligned} & \text { Height } \\ & \text { (m) } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Dates of E } \\ & 1971-72 \end{aligned}$	$\begin{aligned} & \text { tion } \\ & 1.972-73 \\ & \hline \end{aligned}$
3	3.5	24	Nov. - 18 Apr.	10 Nov. -
4	4.5	23	Nov. - 25 May	6 Nov. -
5	4.5	23	Nov. - 20 Apr.	None
10	4.5	23	Nov. - 20 Apr.	None
12	3.5		Nov. - 8 May	6 Nov. -
13	5.0		Dec. - 21 June	6 Nov. -
14	5.0		Dec. - 21 June	6 Nov. -

Table 3. Time of sunrise and sunset and daylength, 15th of each month, for the H. I. Andrews Experimental Forest, Lat $44^{\circ} 15^{\prime} \mathrm{N}$, Long $122^{\circ} 15^{\prime}$, (Pacific Standard Time) (Data for 1966 from U.S. Naval Observ. 1946).

Monch	Time of Sunrise	(hr:min) Sunset	Daylength (hr:min)
Jar	$7: 42$	$16: 56$	$9: 14$
Feb	$7: 09$	$17: 38$	$10: 29$
Mar	$6: 22$	$18: 15$	$11: 53$
Apr	$5: 26$	$18: 53$	$13: 27$
May	$4: 42$	$19: 29$	$14: 47$
Jur.	$4: 24$	$19: 54$	$15: 30$
Jui	$4: 39$	$19: 15$	$15: 12$
Aug	$5: 11$	$18: 20$	$17: 04$
Sep	$5: 48$	$16: 26$	$12: 32$
Oct	$6: 23$	$7: 05$	$16: 31$

as in Cleary and Waring (1969). (TGI is the same index as their Optimum Temperature Days, under a new name.) The "growing season" began with bud break of the dominant understory conifers at each site and ended with the date of the second frost. Attempts to determine the end of cambial growth (Wolter, 1968; Cleary and Waring, 1969) resulted in data too fragmentary and equivocal to define the end of the growing season.

RESULTS

Daily Means and Continuous Records:

These are available from the senior author for the cost of reproduction, as tables (daily means) or charts, for months for which averages are listed in Appendix A. They are also available for certain other periods for which data are too fraçmentary to average.

Summary Measures:
Monthly averages for each RS are given in Appendix A. In Fig. 2 to 7 , monthly averages are plotted for four contrasting stands spanning most of the variation encountered.

Extreme annual temperatures are given in Table 4, dates of last spring and first fall occurrence of 32 F and 20 F are in Table 5, and length of season with soil at or below 32 F is in Table 6. Temperature Growth Index (TGI), with the summation period, is listed for 1971 and 1972 in Table 7.

DISCUSSION

Temperature Growth Index:

Use of the TGI accentuates the differences between sites seen in mean temperatures. There is relatively more variation within elevational zones and the overall rate of decline with elevation is considerably greater than

Fig. 2. Monthly mean night air temperatures at reference stands $1,3,7$ and 14 . Dots $=$ RS1, Arrows $=$ RS 7 , Stars $=$ RS3 and Squares $=$ RS14.

Fig. 3. Monthly mean day air temperatures at reference stands $1,3,7$ and 14 . Dots=RS1, Arrows=RS7, Stars=RS3, and Squares=RS14.

Fig. 4. Monthly mean of daily air temperature range at reference stands i,3,7 and 14. Dots=RS1, Arrows=RS7, Stars=RS3, and Squares=RS14.

Fig. 5. Monthly mean maximum air temperatures at reference stands $1,3,7$ and 14. Dots=RSl, Arrows=RS7, Stars=RS3 and Squares=RS14.

Fig. 6. Monthly mean soil temperature at reference stands $1,3,7$ and 14. Dots=RS1, Arrows=RS7, Stars=RS3 and Squares=RS14.

Fig. 7. Monthly mean minimum air temperatures at reference stands $1,3,7$ and 14. Dots=RS1, Arrows=RS7, Stars=RS3 and Squares=RS14.

Table 4. Annual Maximum and Minimum Air and Soil Temperatures. Minimum values in parentheses are based on the last 6 mo . of the year only.

SITE	AIR					SOIL				
	Maximum			Minimum		Maximum			Minimum	
	1970	1971	1972	1971	1972	1970	1971	1972	1971	1972
1	98	104	109	(21)	+1	65	65	68	(37)	36
2	94	100	104	(20)	-4	58	60	64	(33)	32
3	91	24	100	(18)	0	56	58	61	(32)	31
4	85	91	93	(15)	-7	55	58	59	(33)	32
5		92	97	(21)	0		61	60	(34)	33
6	*107	99	105	(19)	-1	*62	63	65	(35)	34
7		99	102	(20)	0		62	62	(35)	33
8		101	104	(22)	0		66	67	(36)	34
9		99	105	(19)	-4		63	62	(36)	34
10		98	101	(18)	+1		61	64	(33)	32
11		99	102	(20)	-2		65	65	(34)	32
12		92	94	(19)	+2		59	58	(32)	31
13			90	(14)	-6			61	(32)	32
14			89	(13)	-8			59	(32)	30
15	* 89		98		+3	* 59		66		(35)
16			105		+2			66		(37)
17			99		-3			61		(34)
18			100		-2			61		
19			92		+3			62		(37)

Table $4\left(\operatorname{con}^{\prime} t\right):$

SITE	AIR					SOIL				
	Maximum			Minimum		Maximum			Minimum	
	1970	1971	1972	1971	$\underline{1972}$	1970	1971	1972	1971	197?
DELTA	97	96	103	(21)	+1	62	64	65	(34)	32
LOOKOUT	85	92	97	(15)	-6	60	62	64	(34)	34

Table 5: Last spring and first fall occurrences of $32^{\circ} \mathrm{F}$ and $20^{\circ} \mathrm{F}$ air temperatures, and length of season between. N.O. = did not occur. $\quad M=$ no data.

TableSITE	Days with soil temperature $(-20 \mathrm{~cm})$ at or below. $M=$ missing data, but >0. ()$=$ estimated when few missing days.		
	1971	1972	
	Jul-Dec	Jan-Jun	Jul-Dec
2	0	8	0
3	14	125	0
4	0	M	0
10	0	31	0
11	0	M	0
12	31	132	0
13	(15)	122	0
14	53	(160)	0
DELTA	0	2	0

Table 7. Annual Temperature Growth Index (TGI) and the period of TGI summation for each year (bud break of understory conifers to date of second frost).

R.S.\#	$\begin{array}{r} \text { Veg } \\ \text { Zone } \end{array}$	1971					1972				
		TGI	Summation Period				$\begin{aligned} & \hline \text { TGI } \\ & \text { (days) } \\ & \hline \end{aligned}$	Summation Period			
		(days)	Start		End	Days		Start		End	Days
1	Tshe	94.7	19 May	16	Oct	150	101.5	19 May	29	Oct	163
2	Tshe	74.1	4 Jun	16	Oct	134	84.0	7 Jun	29	Oct	144
3	Trans.	56.2	24 Jun	14	Oct	112	57.3	17. Jen	27	Oct	132
4	Abam	33.8	22 Jul	26	Sep	66	37.6	8 Jul	23	Sep	77
5	Trans.	59.6	10 Jun	29	Sep	111	70.4	10 Jun	28	Oct	141
6	Tshe	84.5	23 May	16	Oct	146	93.4	28 May	28	Oct	153
7	Tshe	80.3	27 May	16	Oct	142	82.3	31 May	29	Oct	151
8	Tshe	82.5	19 May	15		149	97.9	23 May	30	Oct	160
9	Tshe	81.1	4 Jun	16	Oct	134	86.5	31 May	30	Oct	152
10	Tshe	76.0	28 May	15	Oct	142	82.9	31 May	29	Oct	151
11	Tshe	73.3	10 Jun	16	Oct	128	78.3	8 June	26	Oct	140
12	Abam	39.8	5 Jul	29	Sep	86	48.7	21 Jun	24	Sep	95
13	Abam						36.7	7 Jul	18	Sep	73
14	Abam						31.9	13 Jul		Sep	67
delta		93.3	2 May		Oct	168					
LOOKOUT		51.3	13 Jun	25	Sep	104					

any lapse rate for mean temperatures. However, the ordination of stands using TGI was essentially the same in 1971 and 1972. The only reversal of positions in the ordering was within RS 2, 10 and 7 , which were very close in 1972. TGI ordination does not correspond particularly wełl with either the X or the Y-axes of ':he vegetation ordination developed for the Tsuga heterophylla and transition zones (Dyrness et al., 1973). There is correlation over parts of both axes, but for about half the stands TGI and axis position are uncorrelated. Position on the Y-axis correlates partially with foliage nutrient content, but for five stands we still have no explanation of the possible meaning of the vegetation ordination axis. The X-axis position is a good indicator of the maximum plant moisture stress encountered in the stands (Zobel, et al., 1973). However, the three vegetation zones are exclusively defined by TGI: Tsuga heterophylla; >73 in 1971 and 278 in 1972; Transition, 56-60, and 67-70; and Abies amabilis, <40 and <49.

A comparison of two-dimensional environmental space (TGI and plant moisture stress) occupied by forest stands sampled in the H. J. Andrews and in the eastern Siskiyou Mountains (Waring, 1969) is given in Fig. 8. Generally the portion of the potential environment occupied by sampled stands is about the same in both cases, and is only about half the area available within the rectangle described by the ranges of TGI and moisture stress. Low water stress environments were not sampled above 99 TGI , nor were high moisture stress environments found at low TGI. Both of these studies sampled vegetation types of some regional importance, which irdicated that the types of habitats not identified may indeed be uncommon. That such habitats do exist, however, is shown by the position of L^{\prime}, an open stand of non-zonal vegetation near LOOKOUT. The positions of DELTA and Waring's 15 bar- 35 TGI

Fig. 8. Comparison of: Temperature Growth Index and late season predawn plant moisture stress for forest communities in the central Western Cascades and in the eastern Siskiyous (From Waring, 1969).

$\operatorname{cota} x$															
Em? frem!															

stand indicate that the limits of zonal forest may extend beyond the most frequently sampled area. However, that not all possible types of temperaturemoisture combinations are important, or even present, seems clearly demonstrated.

Dyrness et a1. (1973) conclude that "The location of the principal forest zones is largely a function of temperature... The distribution of individual communities within a zone is to a large extent controlled by the availability of moisture". Their former statement is well-supported by our data; the latter seems to be true for the Tsuga heterophylla zone, the only one for which more than two communities have been sampled for both moisture stress and temperature (Fig. 8).

Temperature Patterns in Time and Space:

For many sites and temperature means, the greatest month-to-month changes occur from June th July and from August to September, giving seasonal patterns a very distinct mid-summer peak. Whether the June-July change is usually this marked, or is peruliar to these two years of deep and late snowpack, awaits future sampling.

Another striking feature of the data presented is the "thermal belt" effect at mid-elevation stands. Here, the minima durirg the warmer months are high relative to low elevation stands: compare, for example, RS 3 at 945 m and 14 at 1430 m with RS 1 at 490 and RS 7 at 460 m in Eig. 2. Minima at RS 3 are higher than at RS 7 from July to October, and at 1 in are equal to 7 in July and August. The average minimum in July, plothed over mevation for all stands, increases up to 1100 m (Fig. 9).

Minimum temperatures at all elevations have been quite moderate except for early December, 1972, when all-time record lows of -12 F occurred at Salem and Eugene in the Willamette Valley, and lows east of the Cascades were about -30 F . Even then the minima at all stands were above the valley

Fig. 9. Relationship of elevation to air temperatures at reference stands in July, 1972. Symbols, from left to right, represent the minimum, mean minimum, mean night, mean day, mean maximum, and maximum.
bottom lows and the -17 to -20 F recorded with equipment similar to our study at 1100 m on the east slope of the Cascades (Zobel, unpublished data). Some mid-elevation stands (RS $3,5,11,12,18$) had higher minima than some at low elevations (RS 2,9) (Table 4). Average night temperatures in summer do decrease slightly with elevation, but more slowly than mean day or maximum temperatures (Fig. 9). Night means at RS 1 (Fig. 2) are sometimes exceeded during warmer months, most often by $\operatorname{RS} 6,8,9,11$ and 15 . Day means (Fig. 3) at RS 1 are exceeded occassionally by stands 2 and 8. Monthly day and night temperature means are lower than at RS 14 occasionally at RS 13 and only seldom at RS 12 . The different lapse rates for maximum and minimum emperatures result in a marked decrease in the July mean daily temperature range with elevation (-1.33 $\mathrm{F} / 100 \mathrm{~m}$). This difference in daily range is much smaller in the winter (Fig. 6). The daily range at RS 1 is usually the largest, but is sometimes exceeded in summer by RS 6 and 9 .

The length of the frostless season appears to vary by a factor of about two (Table 5). However, autumn in 1972 was warm very ?ate, except for an early September freeze at high elevations, perhaps accentuating the differences between high and low elevation stands.

Soil temperature shows its largest difference between stands in the spring due to a lag in high elevation snowmelt (Fig. 6). The July soil "lapse rate" is greater than that of day or night means. Rarely do monthly soil means exceed those at RS 1 ; no stands have had colder soil temperatures than RS 14. Only in a few stands does the soil fall to 32 F at the 20 cm level. Heavy snowpack insulates the soil and temperatures below 30 F have not been recorded even in the one long and the one cold winter sampled. However, where snownelt is late, the soil may remain at 32 F for several months (Table 6).

The stands at DELTA and LOOKOUT were included because they represent topographic positions not sampled in the Andrews study, and they might be expected to vary outside the limits shown by the other stands. The DELTA stand, in the McKenzie River valley bottom, is slightly warmer than RS 1 in spring but is cooler in summer and fall. This site is influenced by the river and associated fogs, as well as getting maximum cold-air drainage during summer-fall temperature inversions. The site at LOOKOUT has summerfall air temperatures about the same as the other high elevation sites. However, the soil. temperature on this steep ESE slope exceeds that of RS 4 , 13 and 14 by at least 2 F in summer and fall, the only months for which data are avallable.

Baker (1944) summarized data available from weather stations in the mountainous western U.S. He commented on the low July zemperature lapse rate on the west slope of the Oregon Cascades, $-0.75 \mathrm{~F} / 100 \mathrm{~m}$, compared to -1.15 for the region in general. Our data reinforce his conclusion, at least for the lower elevations. Lapse rates for the Andrews in July, 1972, were as follows for stands up to 1100 m : Minimum, $+0.33 \mathrm{~F} / 100 \mathrm{~m}$; Night, -0.17 ; Day, -0.60 ; Maximum, -0.98 ; and Soil, -0.85 . Lapse rates above 1100 m are considerably greater, based on the few data avilable.

Baker also notes a 32 F diurnal variation which changes little with elevation. Our summer diurnal variation approaches this only at some of the low elevation sites, perhaps due to the effect of the canopy in our sampling. However, it drops about $1.3 \mathrm{~F} / 100 \mathrm{~m}$ over all elevations, rather than remaining constant as Baker concluded.

The summer temperature inversions found in this study may arise partially from cold-air drainage. Besides this, the inversions appear to be considerably influenced, especially in their more cxtreme form, by advection from the more
arid region east of the Cascade crest. Advent of a steady, warm, dry east wind has been oserved during some summer nights, and sites exposed to this advection sometimes show a truncated nocturnal temperature decline associated with the arrival of dry air. An example for the Lookout site is given in Fig. 10.

Comparisons with Other Studies:

Two studies of temperatures in natural vegetation in the mountainous west have been used for comparison with our data. Because data were taken by different mearis, and often in openings, whereas ours have been in forest of the usual density, and because the length and dates of study periods are much different, exact comparisons are impossible. However, some general differences in magnitude and pattern are evident.

Marr et al. (1968) give averages for 12 years collected in openings in ridgetop stands in three forest zones on the east slope of the Colorado Front Range: a) Lower montane (Pinus ponderosa) at 2200 m , ט) Upper montane (\underline{P}. ponderosa-Pseudotsuga menziesii) at 2600 m , and c) Subalpine (Picea engelmanniiAbies lasiocarpa) at 3050 m . Generally, there is much greater temperature variation than found on the H. J. Andrews sites. Specific comparisons of the Lower Montane zone with RS 1, and of the Subalpine zone with RS 14 will help illustrate differences. Colorado maxima are similar to RS 1 and 14 , or higher in some months, especially June and December. However, minima are lower for Colorado sites, except at low elevations during the suruner. Differences in winter minima are especially large. Lapse rates are generally higher in Colozado. Soil temperatures are warmer than on the Andrews in summer, but are colder during the winter (our 20 cm soil temperatures were compared with the average of che Colorado 6 and 12 inch readings).

Fig. 10. Air temperatures and relative humidities for four nights in July, 1971, in an opening near the LOOKOUT site. On the first night of each pair, the humidity dropped about the same time as temperature levels off. Before dawn of the 15 th a steady east wind was observed on the site, which is assumed to have caused the drop in humidity and the arrested decline in temperature. The second night is interpreted as belng a "normal" pattern developing by radiative cooling in the absence of the east wind.

Fig. 10 (Cont'd).

Pearson (1931) reports 1917 to 1919 temperatures from small forest openings for seve:al forest zones on San Francisco Peak, Arizona. Of particular interest are his data from the following forest types: a) Western Yellow Pine at 2230 m , b) Douglas-fir at 2710 m , and c) Engelmann Spruce at 3200 m (see his Fig. 14). General comparisons with our data show several differences. Again, minima are much lower than on the Andrews; all Arizona zones mentioned above had lower monthly average minima than RS 14 did for six months in $19 \% 2$. Temperatures of the Western Yellow Pine zone were compared to RS 1 and the Engelmann Spruce zone to RS 14. Maxima are similar in spring and fall, but on Arizona sites are lower in summer and higher in December. June is warmer than other summer months, a pattern also seen in some Weather Bureau data (Pearson, 1931, Fig. 15-17). This contrasts to the very marked July-August peak in our area. July maximum temperatures decreased with elevation in the Arizona study, but the minima showed a strong inversion pattern, similar to that on the Andrews. The Western Yellow Pine zone soil temperatures were below those of $R S 1$, except when similar in summer. Engelmann Spruce soil temperature was similar to RS 14, except lower in mid- to late winter.

Limitations of the Study:

Use of a single reference stand to represent most of the communities sampled, and sampling at a single location within each stand, presents some problems. Each sample- and subsample-of-one may misrepresent its particular community or stand, and we have few checks by replication to indicate this. We felt our limited resources would be more efficiently used in sampling sparingly throughout the range of vegetation types present than by intensive sampling within a few types. However, we did choose our stands to try to sample the modal vegetation conditiors in each community, which should help to assure that environment
of that stand does not misrepresent the overall conditions in the community. Two communities were replicated in July to December, 1972: RS 17 is the same as RS 2, and RS 16 the same as RS 6. For the six-month period, RS 17 has day temperatures 1.0 F (range of differences in monthly means were +1.7 to -3.3) below RS 2, while the night is only 0.3 F below (+1.2 to -1.8). Soil temperatures at 17 were consistantly below RS 2 , the difference averaging $2.0 \mathrm{~F}(-0.6$ to -3.1$)$. The level of agreement between RS 16 and RS 6 is similar. Day means are 1.9 F lower at 16 (-0.6 to -3.1). Night and soil means are close, but the relationship between stands fluctuates considerably from month to month: at night, 16 is 0.2 higher (-3.2 to +2.1), while the soil is 0.5 F cooler $(-1.6$ to +0.2).

We plan to assess soil temperature variation within each $R S$ in the summer of 1973.

Some stand temperatures may represent other than urdisturbed vegetation, being located clcse enough to roads, clearcuts, etc. to possibly be influenced by them. The major problem of this type lies with RS 1 and 8 , located above a reservoir which extends 150 m W and several km S and SW of the base of the slope. Drainage of this section of the reservoir has orcurred at different times each summer since it was filled in 1969, probably changing its influence from moderating to intensifying temperature extremes in the area.

Differences in temperature may also result from the winter elevation of air probes at some sites. This was necessary, however, to collect winter records of any length at higher elevations, given deep snowpack and infrequent visits to the sites.

Acknowledgements:
We thank R. H. Waring and R. L. Fredriksen for the use of their thermographs, and J. F. Franklin for his aid throughout the project. Many other persons contributed to the collection and reduction of the data, and their efforts are appreciated.

REFERENCES CITED

Baker, F. S. 1944. Mountain climates of the western United States. Ecol. Monogr. 14:223-254.

Cleary, B. D. and R. H. Waring. 1969. Temperature: collection of data and its analysis for the interpretation of plant growth and distribution. Can. J. Bot. 47:167-173.

Dyrness, C. T., J. F. Franklin and W. H. Moir. 1973. Forest communities of the central nortion of the Western Cascades in Oregon. Bulletin, Coniferous Biome, International Biological Program. (In press)

Marr, J. W., J. M. Clark, W. S. Osborn and M. W. Paddoc'k. 1968. Data on mountain environments III. Front Range, Colorado, four climax regions, 1959-1964. Univ. Colo. Studies, Ser. in Biol. 29.*

Pearson, G. A. 1931. Forest types in the southvest as determined by climate and soil. U. S. Dept. Agr. Tech. Bull. 247.
U. S. Naval Observatory. 1946. Tables of sunrise, sunset and twilight. 1945. Supplement to the American Ephermis, 1946.

Waring, R. H. 1969. Forest plants of the eastern Siskiyous: their environmental and vegetational distribution. Northw. Scı. 43:1-17.

Wolter, K. E. 1968. A new method for marking xylem growth. For. Sci. 14:102104.

Zobe1, D. B., G. M. Hawk, W. A. McKee and C. T. Dyrness. 1973. Variation in plant moisture stress associated with forest commanities in the H. J. Andrews Experimental Forest. Internal Report 78, Coniferous Biome, International Biological Program.

Monthly average temperatures (${ }^{\circ} \mathrm{F}$) for reference stands. "ni:" indicates that 1 to 5 days data are missing for that average. Data for months with more than five missing days are not represented.

Ref.
3

Year Month
71 Aug
Sept
Oct
Nov
Dec

72 Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sept
Oct
Nov
Dec
------------- AIR TEMPERATURES
Mean Mean Mean Mean Mcan Day Night Max. Min. Max Min Range

Mean Max Min
55.65854
$49.8 \quad 51 \quad 42$
$43.8 \quad 49 \quad 38$
$36.3 \quad 3933$
$32.633 \quad 32$
$32.0 \quad 33 \quad 31$
$\begin{array}{lll}31.7 & 32 & 31\end{array}$
$\begin{array}{lll}31.8 & 32 & 31\end{array}$
$33.7 \quad 33 \quad 32$
$40.9 \quad 50 \quad 33$
$50.0 \quad 5248$
56.15953
$56.3 \quad 60 \quad 52$
$51.5 \quad 57 \quad 46$
$48.250 \quad 43$
$41.9 \quad 4339$
37.74134
$52.3 \quad 5547$
$52.4 \quad 54 \quad 50$
$47.251 \quad 45$
$50.3 \quad 57 \quad 44$
54.75851
$47.3 \quad 50 \quad 39$
$41.9 \quad 50 \quad 37$
$\begin{array}{lll}35.3 & 37 & 34\end{array}$
33.23433
$32.533 \quad 32$

Ref. Stand	Year	Month	Mean Day	Mean Night	AIr teiperatures				Mean Range	SOIL TEMPERATURES		
					Max.	Min.	Max	Min		Mean	Max	M1n
4	72	Aug	63.5	56.8	69.3	53.4	93	40	15.9	54.7	60	51
		Sept	49.9	47.6	54.8	42.3	79	28	$\underline{-1.5}$	48.3	55	40
		Oct	44.7	41.4 m	47.8	38.0 m	64	24m	9.8	44.6	48	39
		Nov	35.2	34.9	37.4	31.8	44	26	5.6	38.6	41	37
5	71	Jun	51.2	47.4	57.7	42.4	77	32	15.3	46.5	50	42
		Jul	65.0	59.4	73.1	54.0	86	44	19.1	53.1	58	49
		Aug	64.6	59.5	72.7	53.5	92	43	19.2	57.6	61	55
		Sept	53.4	48.4	57.9	43.9	70	31	13.9	52.2	54	45
		Oct	44.4	41.6	48.3	37.1	73	21	11.1	46.6	53	39
		Nov	35.9	35.5	39.3	32.0	50	25	7.3	39.5	42	36
		Dec	28.9	29.2 m	31.0	26.3 m	41	21 m	4.7	34.9	36	34
	72	J an	29.9 m	28.9m	32.2 m	26.1 m	41m	10m	6.1 m	33.9 m	35m	33m
		Feb	-	-	-	-	-	-	-	-	-	-
		Mar	38.0	37.0	42.0	32.2	57	22	9.8	35.9	40	33
		Apr	36.5	33.7	41.7	29.1	66	23	12.6	36.2	40	34
		May	51.2 m	46.3 m	57.7 m	40.4 m	84m	29m	17.3m	43.1 m	51m	39 m
		Jun	55.2	50.5	62.4	45.5	77	34	16.9	50.1	52	48
		Jul	64.1	60.5	72.8	53.7	86	41	19.1	54.6	57	52
		Aug	67.1	61.3	74.5	55.9	96	46	18.6	57.6	61	54
		Sept	. 5.2	50.8	60.7	45.9	85	35	14.8	53.8	59	48
		Oct	48.4	45.8	52.7	41.8	69	33	10.9	49.7	52	43
		Nov	40.1	40.2	42.9	36.8	50	30	6.1	42.9	46	42
6	* 70	Jun	62.6	55.3	74.6	49.3	105	38	25.3	51.9	56	48
		Jul	70.0	59.4	86.3	52.0	104	44	34.3	58.2	62	54
		Aug	70.0	59.2	87.9	50.8	107	46	37.1	60.1	61	59
	71	May	52.7	44.8	60.3	39.4	82	33	19.6	45.9	49	43
		Jun	57.6	48.1	64.8	44.9	85	39	19.9	50.2	54	47
		Jul	71.3	60.1	81.2	54.8	97	43	26.4	57.0	62	49
		Aug	70.6	58.7	80.1	53.7	99	42	26.5	61.2	63	60

Ref.
Stand

9

Year

71 Nov

72 Jan

Dec

Jan	31.8	30.7	34.2	27.0	43	16	7.2
Feb	37.1	34.4	40.4	31.0	50	14	9.4

| Mar | 40.0 36.7 45.4 32.3 64$\quad 28$ | 13.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Apr	42.5	38.3	48.6	33.4	74	28	15.2

May	58.6	51.0	67.9	44.0	92	35	23.9

Jun
Jul
Aug
Sept
AIR TEMPERATURES

| Mean | Mean Mean
 Day. Night Max. Mean
 Min. Max
 Min Mean
 Range
 39.4 36.7 42.8 32.6 50 26
 32.0 31.8 m 33.6 29.7 m 40 19 m | 3.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Oct
Nov
Dec
58.0
52.
49.8
45.4
56.9
44.8
33.1
40.5
28.8
41.8
29.9
63.0 55.
71.3
63.1
84.0
[
54.
54.1

10
105
47
$47 \quad 28.8$
33 2.l. 9
$29 \quad 17.9$
31
8.1
8.6

SOIL TEMPERATURES Mean Max Min $41.9 \quad 43 \quad 40$ $36.4 \quad 40 \quad 36$
$35.3 \quad 36 \quad 34$
$36.0 \quad 3934$
40.24436
$41.1 \quad 44 \quad 40$
$47.5 \quad 53 \quad 42$
$53.4 \quad 55 \quad 53$
$57.7 \quad 60 \quad 55$
$59.2 \quad 62 \quad 56$
$\begin{array}{lll}54.8 & 60 & 49\end{array}$
$49.9 \quad 52 \quad 44$
45.34644
39.14435

10	71	May	50.8	45.2	58.0	39.8	74	32	18.3	44.8	48	41
		Jun	5.5 .2	48.6	63.0	43.4	75	37	19.5	49.4	54	44
		Jul	67.7	58.2	77.2	52.5	92	44	24.7	55.0	60	50
		Aug	67.9	58.9	78.3	52.4	98	42	25.9	58.4	61	56
		Sept	56.4	49.3	63.6	43.9	78	36	19.8	52.8	55	47
		Oct	46.3	41.6	52.4	36.1	79	21	16.3	47.6	54	39
		Nov	37.8	35.1	41.9	31.1	51	25	10.9	40.3	43	38
		Dec	30.8	29.5 m	32.6	27.6 m	45	18m	5.1	34.3	38	33
	72	J an	31.2 m	28.9 m	33.6 m	26.3 m	43 m	13 m	7.3 m	32.6 m	34 m	32 m
		Feb	36.7	33.4	40.6	30.0	52	14	10.6	34.5	38	32
		Mar	41.4	36.6	47.0	32.3	67	27	14.7	39.0	43	32
		Apr	39.7	34.6	46.6	30.1	70	26	16.5	38.6	42	35
		May	54.7	46.5	63.1	40.0	89	31	23.1	46.6	53	40
		Jun	59.5	53.0	68.9	46.8	85	37	22.1	52.0	55	49
		Jul	70.4	61.0	80.8	54.1	93	46	26.7	57.0	59	54
		Aug	69.8	59.6	80.0	53.3	101	45	26.7	59.8	64	56

Ref. Stand	Year	Month	Mean Day	Mean Night	$\begin{aligned} & \text { AIR T } \\ & \text { Mean } \\ & \text { Max. } \end{aligned}$	EMPERAT Mean Min.	URES Max	Min	Mean Range	SOIL Mean	TEMPER Max	TURES Min
10	72	Sept	56.8	50.8	65.5	44.5	90	33	21.0	54.9	61	49
		Oct	50.7	45.5	57.8	40.2	75	28	17.6	51.0	54	44
		Nov	41.4	40.3	44.8	36.8	52	30	3.0	45.6	48	44
		Dec	30.1	29.1	33.3	24.7	47	1	8.6	39.3	44	36
11	71	Jun	51.2	47.0	58.6	42.2	79	32	16.4	47.1	53	41
		Jul	67.1	59.8	77.2	54.9	92	43	22.2	56.7	65	51
		Aug	68.2	61.9	76.9	56.3	99	45	20.6	61.4	65	58
		Sept	55.3	51.8	61.2	46.5	76	34	14.7	55.2	59	46
		Oct	45.7	43.2	50.1	38.0	76	20	12.1	49.0	57	41
		Nov	37.4	36.1	40.3	32.7	55	26	7.6	39.4	43	35
		Dec	30.0	28.9 m	31.7	26.0 m	44	20m	5.7	34.3	36	34
	72	Feb	36.4	34.1	39.3	31.2	52	25	8.1	32,5	33	32
		Mar	39.3	36.9	43.3	32.4	63	23	10.9	34.4	38	32
		Apr	$3 \% .4$	34.2	42.1	29.6	67	23	12.5	35.6	41	34
		May	51.9	49.3	59.7	42.1	87	31	17.6	45.2	53	37
		Jun	56.8	52.4	65.7	47.0	83	35	28.7	52.2	56	49
		Jul	$6 \% .2$	60.7	77.5	55.2	92	42	22.3	58.1	62	54
		Aug	66.7	62.7	76.6	56.2	102	44	20.4	60.6	65	55
		Sept	56.2	52.8	62.8	46.6	87	33	16.2	56.1	63	48
		Oct	49.2	45.5	53.4	41.4	70	25	12.0	52.1	56	43
		Nov	40.4	39.6	43.2	35.9	51	27	7.3	44.8	46	42
		Dec	30.2	28.3	32.3	25.0	52	-2	7.3	38.8	45	35
12	71	Aug	63.7 m	56.4m	72.4 m	51.2 m	92m	41 m	2.1 .2 m	55.4 m	59m	52m
		Sept	50.1	46.1	56.1	41.7	69	32	14.4	48.7	51	40
		Oct	41.8	39.3	46.0	35.1	66	19	10.9	44.4	51	39
		Nov	3\%. 2	33.5	36.5	30.7	47	23	5.8	36.4	39	33
		Dec	29.3	27.2 m	30.4	26.1 m	39	19m	4.3	33.0	33	33

Ref. Stand	Year	Month	AIR TEMPERATURES							SOIL TEMPERATURES		
			$\begin{aligned} & \text { Mean } \\ & \text { Day } \end{aligned}$	Mean Night	Mean Max.	Mean Min.	Max	Min	Mean Range	Mean	Max	Min
14	72	Jan	25.5	25.0	27.1	21.5	41	11	3.6	31.8	32	31
		Feb	-	-	-	-	-	-	-	-	-	-
		Mar	-	-	-	-	-	-	-	-	-	-
		Apr	28.4 m	26.4 m	32.0 m	22.4 m	m 45m	15m	9.6 m	30.2 m	31 m	30m
		May	-	-	-	-	-	-	-	-	-	-
		Jun	50.6	47.0	55.5	43.1	71	29	12.4	32.2	44	30
		Jul	60.9	56.3	66.9	51.5	79	37	15.5	48.3	54	43
		Aug	60.4	56.2	66.0	51.8	89	39	14.2	51.6	59	46
		Sept	49.1	45.9	52.7	41.4	74	30	11.4	45.5	52	38
		Oct	45.1	42.3	47.9	38.2	64	25	9.7	41.9	45	37
		Nov	34.7	34.6	36.9	31.6	46	23	5.3	35.1	36	34
15	*70	May	51.7 m	46.8 m	58.4 m	40.5m	78m	32 m	17.9 m	45.6m	50m	40m
		Jun	61.9	56.1	68.4	51.1	89	41	17.3	53.5	59	49
		Jul	65.7	61.8	76.3	53.2	89	47	23.1	57.2	59	53
		Aug	64.6	61.2	75.6	51.7	87	47	23.9	56.7	59	55
	72	Jul	68.6	63.7	76.5	56.9	89	46	19.6	60.2	65	54
		Aug	68.1	64.5	76.2	57.7	98	48	18.5	60.8	66	56
		Sept	54.4 m	53.0 m	60.4 m	46.7 m	84m	34m	13.7 m	-	-	-
		Oct	48.5	46.8	53.0	42.4	67	31	10.6	-	-	-
		Nov	41.7	41.3	43.2	38.3	49	29	5.9	45.9	48	43
		Dec	30.4	29.7 m	32.9	26.1 m	51	3 m	6.8	39.0	44	35
16	72	Jul	69.3	61.5	79.7	54.3	93	44	25.4	59.1	65	54
		Aug	70. 2	62.0	80.8	54.8	105	46	26.0	61.1	65	57
		Sept	55.4	52.1	65.1	45.2	90	35	19.9	56.0	63	48
		Oct	49.6	48.5	57.8	41.9	74	31	15.9	53.4	54	45
		Nov	41.3	40.8	44.3	37.3	51	28	7.0	46.3	47	43
		Dec	32.1	30.8 m	34.9	27.1 m	53	2 m	7.8	39.1	45	37

Mean	Mean	Mir TEMPERATURES	Mean		Mean
Day	Night	Max.	Min.	Max	Min
Dange					

Mean Max Min
$17 \quad 72$ Jul
Aug
Sep Oct

Nov
Dec
42.6
29.9
27.9
37.
81.7

51
9
96
030.7

56.5	59	54
57.8	62	55
53.1	58	49
48.7	51	42
43.8	45	42
36.3	42	34

$\begin{array}{lllllllllll}18 & 72 & J u: & 67.4 & 59.1 & 75.1 & 55.5 & 88 & 41 & 19.6\end{array}$
Ar:g $67.8 \quad 60$
60.17
75.1
55.

10
Eept
$53.6 \quad 49.0$
jet
44.
4.5
52.

83
31
14.9
5

54.3	61	48

50.25343

| 19 | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72 | Jul | 67.5 | 60.4 | 77.2 | 54.0 | 89 | 45 | 23.2 | 58.3 | 62 | 56 |
| | Aug | 67.7 | 61.2 | 76.3 | 54.5 | $9:$ | 49 | 21.9 | 59.6 | 63 | 58 |
| | Sept | 55.2 | 51.4 | 61.4 | 45.5 | $\boxed{4}$ | 36 | 15.9 | 55.6 | 60 | 50 |
| | Oct | - | - | - | - | - | - | - | - | - | - |
| | Nov | - | - | - | - | - | - | - | - | - | - |
| | Dec | 31.3 | 30.5 m | 34.1 | 26.9 m | 50 | 3 m | 7.2 | 40.3 | 45 | 37 |

(20)
31.3

AIR TEMPERATURES
Ref.
stand
Lookout

Year Month
Sept
Mean Mean

Mean Mean Day Night Max. Min. Max Min Range
39.969

27
12.7

Oct	41.1	38.1	44.2	33.8	72	15	9.8

Nov
$\begin{array}{lllll}33.1 & 31.3 & 35.2 & 29.1 & 52\end{array}$
21
6.1

72 Ju1

Ju1	65.5	60.8	71.5	54.9	85	41	16.4
Aug	64.9	58.3	71.1	54.8	97	41	16.1
Sept	51.6	46.8	56.6	41.5	83	31	13.9
Oct	44.7	41.1	48.1	37.6	69	23	10.5

SOIL TEMPERATURES

Mean Max Min
$49.1 \quad 52 \quad 40$
44.13338
$\begin{array}{lll}35.3 & 39 & 34\end{array}$
54.65850
$56.6 \quad 64 \quad 49$
$50.9 \quad 59 \quad 39$
$46.3 \quad 5138$

