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ABSTRACT

The approximate equations for shallow motions are derived mainly by following the approach of Spiegel ar)d
Veronis and the subsequent development of Dutton and Fichtl. Other derivations are also briefly noted. While
each derivation assumes shallow flow, the conditions on the time scale and auxiliary assumptions vary between
derivations. In the present study, the shallow motion approximations are found to be valid for a wider range
of conditions than included in earlier derivations. i

The more restrictive Boussinesq or “shallow convection” approximations form a subclass of shallow motions.
Existing derivations of the full Boussinesq approximations do not apply to near-neutral conditions even thqugh
they are often applied to such conditions. The conditions required for the validity of the Boussinesq approximations
are reformulated into criteria that are easier to evaluate.

Finally, the use of the shallow motion approximations in concert with Reynolds averaging is examined in
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some detail. Additional necessary conditions resulting from Reynolds averaging appear to be violated only in

rather special situations, at least for atmospheric flows.

1. Introduction

The Boussinesq (1903) approximation is usually
summarized in two parts: (i) the variation of pertur-
bation density is neglected in the mass continuity

~ equation and in the equation of motion except through
its influence as a buoyancy term; and (ii) the influence
of perturbation pressure on buoyancy can be neglected.
Analogous approximations were used in the early study
of Oberbeck (1888).

Considerable work has been devoted to establishing
sufficient conditions for the validity of the Boussinesq
approximations. The construction of these conditions
has assumed a variety of forms and is not as straight-
forward as many would assume. Spiegel and Veronis
(1960) and others have shown that the depth of the
perturbation motion must be small compared to the
scale height of the basic state flow and that the pertur-

_bations of the thermodynamic variables must be small
compared to basic state values. :

These conditions are necessary but not sufficient.
(See Table 1, section 2.) The validity of the Boussinesq
approximations requires additional conditions includ-
ing restrictions on the time scale of the perturbation
flow. The development of Spiegel and Veronis implic-
itly assumes that the Eulerian time scale is the same
order of magnitude as the advective time scale. Ogura
and Phillips (1962) derive equations analogous to those
of Boussinesq by assuming that the time scale of the
flow is comparable to that of the Brunt-Viisild time
scale of the perturbation flow. Dutton and Fichtl (1969)
(see also Dutton, 1976) impose conditions on the Eu-
lerian and advective changes of density separately re-
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sulting in a series of conditions which appear to be .

 satisfied for a wide class of shallow atmospheric mo-

tions. Still other versions assume small Mach number,
which together with a variety of more restrictive aux-
iliary conditions, such as constant entropy, leads to the
Boussinesq approximation. A recent derivation in this
class is presented by Businger (1982).

The assumptions of small amplitude. of the ther-
modynamic perturbations, small depth of the flow, and
conditions on the time scale allow application of the
first part of the Boussinesq approximation. This allows
use of the incompressible mass continuity equation and
linearization of the ideal gas law. We will refer to this -
part of the Boussinesq approximation as the “‘shallow
motion” approximations. The second part of the
Boussinesq approximations requires additional con-
ditions, In particular, the existing derivations of these
approximations require the importance of the buoy-
ancy term in the vertical equation of motion. Following
Dutton and Fichtl, we will refer to this subclass of shal-
low motions, where the full Boussinesq approximations
apply, as “shallow convection.”

‘The above developments have led to substantial ad-
vances in atmospheric dynamics, which would other-
wise be impossible or more complicated. In some stud-
ies, failure to recognize the organization afforded by
the above developments has led to assumptions that
are inconsistent or incorrect interpretations of the
original heuristic arguments of Boussinesq. Sometimes
advection of momentum or the perturbation pressure
gradient in the momentum equation are incorrectly
excluded with misuse of the term “Boussinesq.” This
led to neglect of the perturbation pressure gradient
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without discussion in most studies of cold air drainage,
especially prior to Manins and Sawford (1979).

The present study reexamines the derivations of the
approximate equations for shallow motions developed
in Spiegel and Veronis and extended in Dutton and
Fichtl. These developments appear to be less specialized
than in other studies. It will be found that the require-
ments for application of the shallow motion approxi-
mations can be partially relaxed. At the same time ex-
isting derivations of the full Boussinesq approximations
do not apply to some situations where they are com-
monly applied. )

Certain Reynolds terms will be considered that have
been neglected in previous studies. The Boussinesq ap-
proximations have been frequently used with Reynolds
averaging. The validity of this use needs to be evaluated.
It will be found that several new restrictions are re-
quired, although it appears that such restrictions are
easily met for most atmospheric applications.

2. Mass continuity

Conventionally, the total flow ¢ris decomposed into
a basic state part ¢, and the perturbation motion ¢

such that
or = ¢o T+ 9. (n

The basic state is assumed to be motionless and de-
pendent only on height as in the study of Oberbeck
(1888). '

The starting point is the mass continuity equation,
which we express in terms of a, the specific volume:

da o dag ow

— + .V —_— —_— = . PRSI

at ‘ Vu HO +w 3z +w 9z a()VH vy + Qg oz )
(2)

where vy is the horizontal velocity vector and V the
horizontal gradient operator; other symbols are defined
in the usual sense for Cartesian coordinates and we
have assumed that o < « as recorded in Table 1. Note
that the inequality Va <€ Vg does not follow. Here we
distinguish between Eulerian and advective terms,
which will allow easier generalization to cases of mul-
tiple time and velocity scales. .

In terms of usual scaling variables, the mass conti-
nuity equation can be written as

o* o* o* oo Vv |74

. +VL-iTWD+WH aoL+a0D,

" where o* is the perturbation scale for specific volume,

7 the Eulerian time scale, ¥ the horizontal velocity
scale, W the vertical velocity scale, L the horizontal
length scale, D the vertical depth scale and H the basic
state depth scale

3)

éao
H= _— .
B PP )

which for an isothermal basic state atmosphere is about
8 km.
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a. Spiegel and Veronis

Spiegel and Veronis assume that V-V scales the
same as d/dt in their mass continuity equation (their
Eq. 18). In other words the advective and Eulerian time
scales are the same order of magnitude

L D

T~ —~—

v W &)

TABLE 1. Assumptions for validity of shallow motion approxi-
mations using present notation, and the resulting relationships. Here
v is the three-dimensional velocity vector, @ the earth’s rotation vector
and the overbar and prime notation refer to the decomposition applied
in section 4.

Spiegel &
Dutton & Fichtl Veronis Present
Shallow motion relationships
* < do o* < o ¢* < ¢o
D<H D<H D« H
o* L a* L D
~wfs) -5 o> 8w 5.5
v L
—_ <= — —
W D
mass continuity Vev=~0
ideal gas law @« L.
ideal — =
gas ag v po
momentum & _
X — = —qyVp — 20xv — (ga/ag)k
equation dt

Shallow convection subclass

H~ H; H= Hil .]_za_@ <1
g 9z
P* < a* P* a* )
% h gao a°D~gao Fr<1
mass continuity Veva0
. . a T
ideal gas law — A
a To
momentum’ A Vp — 20xv — (gT/To)k \
equation dt o >olso

Auxillary assumption Reynolds term restrictions

*
V< Vaiv
@

(¢, Vo) < Vo'

V.oV €pV-7 or (33,34)

. op'

o o &g or (39)
0p'  _8m;

¢ o < o, or (40)

! Here H; is the depth of a fluid of constant density; this relationship
is actually a result of the derivation rather than an assumption.
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This condition also-appeared as a scaling argument in
the derivation of the simplified mass continuity equa-
tion presented in Businger (1982). Condition (5) along
with the assumption of shallow motion (D < H; o*
< ay) allows application of incompressible mass con-
tinuity.

- If the local time scale 7 becomes small compared to .

the advective time scales L/ and D/ W, then (5) is not
valid. That is, condition (5) is invalid when density
changes occur primarily due to effects other than mass
transport. Such violations include propagation of en-
ergy by pressure fluctuations and density changes due
to radiation flux divergence or phase change. Condition
(5) also does not include steady state conditions where
T becomes large compared to the advective time scale.

b. Modified Spiegel and Veronis

Condition (5), implicitly used by Spiegel and Veronis
and others, can be partially relaxed with no loss of
approximation by comparing the Eulerian- derivative
of densny directly with the largest of the dxvergence
terms in (3). The Eulerian density change can be ne-
glected if

£ 3
r> ~min[L/¥, D/ W], ©)
. 0

which is a weaker assumption than (5). Condition (6)
allows density changes due to compression and diabatic
heating to exceed density changes due to' mass trans-
port. Since o*/ay is generally O(1072) or less, (6) defines
a minimum time scale that is much smaller than the
advective or divergence time scale. At the same time
(6) allows the Eulerian time scale to be arbitrarily large
so that steady state conditions are allowed.

If condition (6) is valid, then only the additional
condition a*/ay < 1 is required in order that the first
three terms in (3) be small compared to the right-hand
side, in which case the scale version of the mass con-
tinuity equation becomes

o V w
W‘IT(;‘ = Oy Z + [2 4] B B
Note that the horizontal advection of specific volume
has been neglected by comparing with horizontal di-
vergence and so forth. Vertical advection due to the
basic state gradient can be neglected compared to the

)

vertical divergence on the right-hand side for shallow -

motion (D/H < 1) in which cdse the mass continuity
is approximately incompressible so that

ou, w ow_
ox dy 9z

In deep motions where D/H is O(1), the vertical ad-
vection term must be retained. Note that o can be
approximated as a constant coefficient for shallow mo-
tions while its height dependence must be included for
deep motions.

®
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‘ C. 'Dutton and Fichtl

Dutton and Fichtl consider the case where buoyancy
controls Eulerian accelerations (their Eq. 3.14) to the
extent that (in present notation)

T ~ Wl(ga*/ao), ©)

where we are assuming that momentum changes are
characterized by the same time scale as that for density
changes. Restriction (9) eliminates near-neutral flows
where the buoyancy influence is weak. Then the Eu-
lerian derivative of density or specific volume can be
neglected with the additional trivial condition

> D/g. (10)

However, advection of density is eliminated only after
the auxiliary condition

VD
LW

Since one intent of the development is to prove the
applicability of incompressible mass continuity for
shallow convection, this condition seems partially cir-
cular, although the practical limitations of this as-
sumption appear to be minimal.

In summary, use of condition (6) to derive the in-
compressible mass continuity approximation extends
the application of this approximation to include steady
state flows and flows where density advection is un-
important (excluded by 5) and to include near neutral
flows (excluded by 9).

< O(1). (1n

d. Nondive}gent Slow

The above developments are based on the usual as-
sumption that the horizontal flow can be described by
a single velocity scale. This assumption is not possible
if a significant fraction of the flow is horizontally non-
divergent, in which case the horizontal flow must be
decomposed as

Vi =Voon + Vdiv:
Vu-Vyg ~ Va/L.

The nondivergent part of the horizontal flow can be
associated with translation or rotation and could be
defined to absorb a basic state flow. Note that the time
scales for advection and divergence are no longer nec-
essarily the same order of magnitude.

The analysis leading to (6) can be restored by re-
placing ¥ with Vg, on the right-hand side of (6). Then
the horizontal advection term in (3) can be neglected
compared to the divergence term only if ’

. *
V“— < Vaivs N (F))
where V' is now the scale velocxty for the entire hon-
zontal flow. The ratio a*/aq is generally 0O(1072) or
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smaller, in which case (12) will be satisfied if the di-
vergent part of the flow is at least 10% of the total flow.
An example of a possible exception is “two-dimen-
sional” turbulence or certain vortex flows where hor-
izontal divergence is small by definition. Then vertical
motion forced by horizontal advection of density by
the nondivergent flow may become significant. In such
cases, the incompressibility approximation no longer
applies. While the problem of two-dimensional tur-
bulence is receiving increasing attention, it is difficult
to isolate such phenomena with observations and vi-
olation of (12) remains an unverified possibility.

3. Elimination of perturbation pressure

Use of incompressible mass continuity is one of the
two main advantages of the Boussinesq approximation.
The other main advantage is the expression of buoy-
ancy in terms of temperature instead of specific volume,
which is more difficult to measure.

Consider the ideal gas law Po, = RT which is lin-
earized by using the assumption that deviations of
variables of state are small compared to basic-state val-
ues. Then,

Pla T

Py ar To
Depassier and Spiegel (1982) have studied errors in
this relationship associated with significant relative
variations of the expansion coefficients for density (see
Spiegel and Veronis, Eq. 11). These errors become im-
portant in some laboratory flows containing motions
with relatively large horizontal scales. However, in the
atmosphere, significant errors in (13) due to horizontal
variations occur only on global scales where the con-

(13)

dition of shallow motion (D/H < 1) is normally not

appropriate. One geophysical exception to (13) results
from enormous horizontal temperature gradients de-
veloping at the edge of the Martian polar ice cap or in
response to shading by rather extreme Martian topog-
raphy. i

" With the shallow convection conditions, it can be
shown that the influence of pressure fluctuations in the
ideal gas law (13) can be omitted, leading to

o T

—=—, 14

o To (14)

Now buoyancy can be exclusively related to temper-

ature variations. To justify the neglect of pressure per-

turbations, Dutton and Fichtl as well as Spiegel and

Veronis begin with the vertical equation of motion for
the perturbation flow,

dw o« ap

21 b
dt o 09z

where the perturbation variables of state are again as-
sumed to be small compared to the basic state values,
and, viscous terms are neglected. For shallow motions,

(15)
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the vertical variation of basic state variables can be
neglected.

To study the role of pressure fluctuations in the ver-
tical equation of motion, the linearized ideal -gas law
(13) is substituted into (15) in which case one obtains

aw T D ap (16)

a. Spiegel and Veronis

Spiegel and Veronis compare the pressure contri-
bution to the buoyancy with the vertical pressure gra-
dient which in terms of present scale values yields the
ratio

gr*/po D
oop*/D  H;’

where p* is the scale value for pressure fluctuations
and the scale depth for the perturbation pressure is
assumed to be the same as that for density. This rela-
tionship implies that the pressure contribution to the
buoyancy is small compared to the pressure gradient
term in the vertical equation of motion if the motion
is shallow. No additional conditions are needed.
Spiegel and Veronis noted that this relationship (17)
can also be used to eliminate the pressure influence on
the buoyancy. Although not explicitly stated, this in-
ference requires that the buoyancy term must be the
same order of magnitude as the pressure gradient term.

1

b. Dutton and Fichtl

The requirement of important buoyancy was ex-
plicitly expressed in Dutton and Fichtl. They assume
that the motion is controlled by buoyancy (thus the
name “shallow convection™) to the extent that the scale
value of the pressure gradient is either of comparable
magnitude or less than the magnitude of the buoyancy
term (their Eq. 3.13) which in present notation becomes

*< a*
D8
0

This condition is related to relationship (9). Then using
the basic state ideal gas law pyay = RT,,.0ne obtains

(18)

£ 3 %
Dl
po H;a

H,= RTo/g, (20)

where H;is the depth of an isothermal atmosphere and
is generally the same order of magnitude as H, as dis-
cussed below.,

Then for shallow motion (D/H; < 1), the ideal gas
law for the perturbation flow

(19)

p . oa_T

21
Do a Tp @1
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becomes

T
e T

po as To @2)

and the potential temperature of the perturbation flow
becomes approximately
6 T

— ay —

6 To

This development shows that the buoyancy can be es-
- timated in terms of temperature or potential temper-

ature if the buoyancy term is at least as large as the .
pressure gradient term. In other terms, the vertical

pressure gradient is constrained by the vertical equation
of motion (16) and the assumed importance of buoy-
ancy (18). This restriction on the vertical gradient of
pressure and the condition of the shallow motion guar-
antee that the total pressure perturbation is sufficiently
small to insure result (22). If the buoyancy term is much
smaller than the pressure gradient term, then all three
terms in the linearized ideal gas law (21) might be re-
quired.

¢. Pressure influence

The development leading to (22) does not apply to
flows where the influence of stratification or buoyancy
is weak, such as turbulent motions with small temper-
ature fluctuations. In these flows, (18) breaks down
because vertical accelerations may be more controlled
by fluctuating pressure gradients than buoyancy effects.

If the buoyancy term is not of primary importance
in the vertical equation of motion, existing justification

for neglect of the influence of pressure effects on the

‘buoyancy does not apply. This case is of considerable

interest since small buoyancy effects in the vertical
equation of motlon may still lead to important buoy-
ancy effects in the kinetic energy equation, which is
derived from the vertical equation of motion. The
buoyancy flux term in the kinetic energy equation rep-
resents conversion between kinetic and potential energy
and is of the form

‘—g—wT—gwp

; T, Do

The second term is almost always neglected in atmo-
. spheric studies, and should not be confused with the
often-retained pressure transport term originating from
the pressure gradient term in the vertical equation of
motion. With neglect of the pressure contribution to
“the buoyancy, the buoyancy flux-term becomes pro-

" portional to the heat flux.
As an example of potential violation of this simpli-
- fication, consider the case where the shallow motions
are shear-driven turbulent eddies, in which the terms
in the kinetic energy equation are usually averaged over
. some longer time scale. Even a small buoyancy flux
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term in the kinetic energy equation for such motions
can completely alter their nature and associated transfer
coefficients. It is important that the existing justification
for the neglect of the influence of pressure fluctuations
on the buoyancy flux is not valid for the case of small
buoyancy flux. Direct determination of the pressure
fluctuations is needed to resolve this issue.

Therefore, it is of interest to establish conditions
when (18) is satisfied and the buoyancy flux can be
safely related to the heat flux. Since pressure variations
are usually difficult to measure it is useful to pose (18)
in a form where the pressure is related to vanables
which are easier to measure.

Since the hydrostatic part of the perturbation pres-
sure automatically satisfies (18), the validity of (18)
requires restrictions on the magnitude of the nonhy-
drostatic part of the pressure induced by the motion
itself. It is then useful to pose assumption (18) in terms
of the Froude number. This is done by noting that the
total derivative in the horizontal equation of motion
can be scaled in terms of the parcel time scale L/V for
the case of a single horizontal veloc1ty scale and neg-
]1g1b1e Coriolis terms. Then

V? p* ’
T~ (23)
Substituting (23) into the inequality (18), we obtain
e o
—<g— 24
D 8, (24)
or
a* .
F’= VZ/Dg(—-) < 1. (25)
Qo

This limitation on permitted values of the Froude
number expresses assumption (18) in terms of restric-
tion on the flow speed for a given magnitude of buoy-
ancy. Even with significant stratification, this inequality
may break down on sufficiently small scales.

In summary, the influence of pressure fluctuations
on the buoyancy term in the vertical equation of mo-
tion can be neglected compared to the pressure gradient
term for shallow motions with no additional assump-
tions, as shown by Spiegel and Veronis. However, the
influence of pressure fluctuations on the buoyancy and
in the ideal gas law cannot be categorically neglected
unless the buoyancy term is important in the vertical
equation of motion as explicitly assumed by Dutton
and Fichtl. The latter condition requires the Froude

‘number to be on the order of one or smaller. These

conditions are summarized in Table 1.

d. The two basic state depth scales

Note that incompressible mass continuity is a useful
assumption if the depth of the perturbation motion is

- small compared to the scale height of the basic state

specific volume, H, defined by (4). On the other hand,
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neglect of pressure perturbations in the buoyancy term

requires that the motion depth scale be small compared

to the depth of an isothermal atmosphere H;, defined
by (20). We now examine atmospheric situations where
H is significantly smaller than H;, in which case the
incompressible mass continuity incurs some error even
though the motion is shallow.
The relationship between H and H; can be shown
by differentiating the logarithmic form of the basic state
ideal gas law:
1 aao 1 Bpo _ 1 aTo
Do 0z Ty 9z

Using the hydrostatic condition for the basic state fluid
and definitions of H and H;, we obtain

(26)

2 7)) oz

1 9Ty
-1 _ H,'_l =—
H TO 0z
Rearranging,
HiaTo)
=H; [|l+-——).:
H Hl/( T() az

Appl};ing this relationship to an isothermal atmosphere,
we recover the result

H=H,'.

For the usual case where the basic state temperature
decreases with height

H> H,;

and the assumption of incompressible mass continuity
for the perturbation motion is valid for greater motion
depths compared to the usual example of isothermal
basic state. However, the value of H remains close to
that of H; (Dutton and Fichtl) since the temperature
decrease with height is limited by the dry adiabatic
lapse rate.

On the other hand, with strong inversion conditions
for the basic state fluid where temperature increases
with height

H < H;

and the conditions for application of incompressible
mass continuity become more restrictive. In particular,
the restriction

2l Ry a9k 1m®Te g, @7
z dz
must be satisfied. .

As a numerical example of strong inversion condi-
tions, we chose 87;/dz = 3 K/100 m. Then H = WwH;,
which leads to the restriction D < Y%2H, or D < 4 km.
The basic state atmosphere is most strongly stratified
over relatively thin layers so that motions confined to
such layers are also automatically thin. As an academic
example, stratification in the lower polar troposphere
sometimes exceeds an average value 3 K/100 m over
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a depth of 1 km. The application of incompressibility
to motions occupying such a layer would lead to eérrors
in excess of 25%. However, gravity waves may be the
most likely possibility since the vertical extent of other
motions would be seriously constrained by the strati-
fication. Since D is the scale value for vertical deriva-
tives, the appropriate value of D for gravity waves
would be one-half the vertical wavelength.

We conclude that the scale height for the basic state
specific volume is approximately equal to the depth of
an isothermal atmosphere; exceptions with shallow at-
mospheric motions are rather special.

4. Transport between scales

In actuality, shallow atmospheric motions occur si-
multaneously on a variety of horizontal scales with ex-
change of properties between scales. Then for mean-
ingful analysis, it is necessary to divide the perturbation
flow into an averaged part ¢ and a deviation part ¢'
such that

¢total = d)() + <7> + d),- (28)

The part ¢ generally includes the unresolved portion
of the flow. Since the basic-state flow is time-indepen-
dent, an equation for d¢/dt can be constructed by sub-
stituting the above decomposition into the equation
for ¢ and applying the averaging operator (an overbar)
to the entire equation. We will loosely refer to ¢’ as
turbulent fluctuations, although such terminology is
only mathematical. The component ¢’ may not satisfy
the physical requirements for turbulence and may in-
clude, for example, gravity waves. Such a decompo-
sition may involve the use of spectral filtering of actual
data, or definition of resolvable and unresolved motions
in a numerical model implying grid volume averaging.
Transport of ¢ by the turbulence leads to a mean con-
tribution to the change of ¢. Such terms are often re-
ferred to as Reynolds terms. In atmospheric studies,
this exchange is not usually considered in the mass
continuity equation but is often modeled as a diffusive
process in the momentum and thermodynamic equa-
tions where energy is transferred from the larger to
smaller scales. Exceptions include turbulence in strat-
ified flows where turbulence kinetic energy may be
transformed to larger scale gravity waves and two-di-
mensional motions (e.g., Lilly, 1983).

If the time or space scale of the averaged shallow
motion is sufficiently separated from that of the tur-
bulence, then it is useful to define the averaging op-
erator in terms of simple (unweighted) averaging. In
this case, the usual Reynolds’ averaging rules hold and
only the “turbulent™ transport V - v¢' results. Except
for vertical motion close to the ground, a separation
of scales does not occur systematically for atmospheric
variables.

Without a spectral gap or separation of scales, phys-
ical interpretation of actual data requires detrending
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and/or high-pass filtering in order to partially remove
sampling errors. With such operations included in the
averaging operator, additional terms result:

v¢' and V¢. (29)
The extra terms (29) are normally neglected without
comment, although their potential importance has
been noted by Thompson (1954), Charnock (1957),
Lester (1972) and others. For measurements of tur-
bulence in stratified flows, we have found the terms
(29) to be important when the record is not at least an
order of magnitude longer than the scale defining the
overbar operator. However, no general statements can
be made and this subject needs more attention.

a. Mass continuity
The mass continuity equation for the above decom-

position (28) is most conveniently applied in flux form

dp

—+ V-.pv=0.
o ov =0.
We substitute the above decomposition (28) into (30),
then average the entire equation, and neglect the extra
Reynolds terms (29). Noting that the basic state flow
is motionless and dependent only on height, we obtain

L Vp+w(a"+a—@)

(30)

o 9z oz
= (oo +P)V-V = V-(V). (31)

The analogy with (1)~(2) is not complete since the mean
variable ¢ is now formally defined in terms of an av-
eraging operator in contrast to previous sections where
such a commitment was not necessary.

The Reynolds term in (31) is generally neglected
without formal justification although molecular trans-
port of density is included in some treatments of lab-
oratory flows. Noting that the correlation coefficient is
bounded by unity, the magnitude of this term can be
estimated in terms of the basic length scales. Then

22 pd w g, o Oy H)
D L )’
where ¢ represents the standard deviation.

We now assume that both o,, and a,,, can be scaled
~ by the turbulent velocity scale g so that

V.oV < o( (32)

Oy AT Oyy ™~ (.

Since this is an order of magnitude restriction, it is
much weaker than assuming isotropic turbulence.
Classically, g is related to the most 1mportant mean
velocity scale such that

g = C max[V, W1.

For mean flows that are thin and principally horizontal,
turbulence is often generated by vertical shear of the
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horizontal flow in which case g is related to V. Next,
consider narrow convective thermals or plumes where
the turbulence is generated more by horizontal shear
of the.updraft than small scale buoyancy. Then, g is
related to W. In the intermediate case, V ~ W. In
practice C depends on relative position, the role of
stratification or small scale buoyancy generation of
turbulence, stage of development and so forth. Of im-
portance here is that Cis almost always small compared
to unity.

In the case of narrow convective flow, the turbulent
transport is dominated by the second term on the right-
hand side of (32) and horizontal velocity fluctuations
scale as a,,, ~ CW. Then the turbulent transport term
scaled by the mean divergence term is of the order

cw : o, D
%] /po(W/D) Cp0 I (33)

are both small, the turbulence transport term becomes
important only for extremely narrow convection.
However, turbulence may prevent the convection from
becoming narrower than a critical value. As an ex-
ample, consider typical boundary layer thermals where
C~ 10", a,/pp ~ 1072
indicates that the transport of density by the smaller
scale turbulence is estimated to be two orders of mag-
nitude smaller than the mean flow divergence.

In the case of thin horizontal flow, the ratio of the
turbulent transport to the mean flow divergence be-

‘comes

cZ1/p,

, Po
where again turbulent transport of density becomes
important only in the case of extreme aspect ratio.

We conclude that for conditions where the turbu-
lence can be described by a single velocity scale, which
is in turn proportional to the dominant mean velocity
scale, the Reynolds term in the mass contmulty equa-
tion can be neglected.

(34)

b. Equation of motion

To derive the appropriate form of the equations of
motion, we first substitute the decomposition (28) into
the equations of motion, average, neglect all extra
Reynolds terms (e.g., 29) and assume the turbulent
flow is approximated by incompressible mass conti-
nuity. Then we use the assumptions of basic state hy-
drostatic flow and « <€ ay. Neglecting viscous terms,
the resulting equation of motion in tensor form is

oy , O _
o 7 ax

'}
ox; ’
(35)

where repeated indices are summed. The extra term

, p
ax T o 80
Xi  Po

and D/L ~ 10. Then (33)

Since the usual value of C and the ratio of densities
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associated with correlation between density and pres-
sure gradient is usually neglected. This term is not au-
tomatically small, since the assumption

Vp' < Vp

does not follow from p’ < p.

The magnitude of the pressure fluctuations is difficult
to estimate but some information can be obtained by
decomposing p’ into hydrostatic and nonhydrostatic
parts

(36)

D' = Phon ¥ Phya- (37)

The hydrostatic part of the pressure fluctuation leads
to zero vertical acceleration by definition.

The nonhydrostatic part of the pressure fluctuation
can be most simply estimated from the usual scale
analysis (23). Applying this scaling to the horizontal
equation of motion for the fluctuating part of the flow
yields

p!non = poqd 2

where ¢ is again the turbulent velocity scale. Then the -

pressure correlation term in (35) becomes

L (@/a0d?
8x,- )

where [ is the turbulent length scale. Using (38), nu-
merous ratios can be constructed from (35) to indicate
the relative importance of the pressure correlation
terms.

A sufficient condition for neglect of the pressure cor-
relation term in the vertical equation of motion can
be derived by scaling with respect to the buoyancy term.
Then the pressure correlation term in the vertical
equation of motion can be neglected if

(38)

a 1 _ ’
a' al / (gae/ag) ~ £ q*/gl < 1.
VA o

_ Since g2 will normally be much smaller than g/, (39)
indicates that the pressure correlation term is at least
several orders of magnitude smaller than other terms
in the vertical equation of motion.

The importance of the pressure fluctuation term in
the horizontal momentum equation can be estimated
by scaling (38) with the advection terms. Then this
pressure fluctuation term can be neglected if the ratio

—— [_dw; o q* /. di
NVop i =~ L 750 4

« Hp/ j(’)xj [s7) ) jan ( O)
is small. As one example, consider the case where the
largest advection term scales as V?/L in which case the
above ratio (40) becomes

@ gL

O VZ / ’
Since a'/aq is of O(1072) and the ratio of velocity scales
is normally small compared to one, the pressure fluc-

L. MAHRT

39)
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tuation term appears to be generally unimportant. Very
small turbulent-length scale / usually implies very small
turbulent-velocity scale g so that it is difficult to con-
struct geophysical examples where the above ratio is
not small. '

Comparison of the pressure fluctuation term with
the usual Reynolds stress term also indicates that the
pressure fluctuation term is not likely to be important
for geophysical examples. However, the careful inves-
tigator may wish to evaluate (39)-(40) on an individual
flow basis.

The pressure fluctuation term can be avoided en-
tirely by posing the equation of motion in flux form

0 0 ' )

% (ou;) + 8_;, (puy) = — 5}% — pgos.
After using decomposition (28) and Reynolds aver-
aging, covariance terms involving the buoyancy flux
result in lieu of the pressure fluctuation term. The
buoyancy flux terms appear to be small although it is
difficult to construct general conditions which can be
readily evaluated for atmospheric situations.

5. Conclusions

The derivation of conditions for the validity of the

‘Boussinesq approximations is not as straightforward

as many would assume. In the literature, a variety of
sets of conditions have been assumed which, if satisfied;
allow application of the Boussinesq approximations.
The Boussinesq approximation can be divided into two
parts. The first group of assumptions allows use of in-
compressible mass continuity and linearization of the
ideal gas law, which are referred to as the shallow mo-
tion approximations. Additional restrictions allow ne-
glect of the pressure influence on buoyancy. This more
restrictive subclass of shallow motions is equivalent to
the full Boussinesq approximations, also referred to as
the shallow convection approximations.

The different derivations of the shallow motion ap-
proximations share the following conditions (Table 1):

(a) the perturbations of variables of state must be
small compared to basic state averaged values;

(b) the motion must be shallow compared to the
scale depth of the basic state flow; and

(c) restrictions on the time scale are required.

The condition on the time scale developed in the pres-
ent study (6) is less restrictive than in previous devel-
opments. Condition (6) still rules out a class of flows
where the density fluctuations are due primarily to
processes other than mass transport. Such violations
include compression waves and the special case of
strong diabatic heating with little motion. For most
shallow motions of atmospheric interest, condition (6)
on the time scale is easily satisfied, in which case in-
compressible mass continuity is a good approximation.

Following the approach of Spiegel and Veronis, no
additional assumptions are needed in order to neglect
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the influence of pressure fluctuations on the buoyancy
term in the vertical equation of motion. However, in
order to neglect the influence of pressure changes in
the ideal gas law and the expression for buoyancy, ex-
isting derivations require that the buoyancy term must
be important in the vertical equation of motion. This
" requirement for the full Boussinesq approximations
was implicitly assumed in Spiegel and Veronis and ex-
plicitly used in Dutton and Fichtl. This requirement
implies that present derivations of the full Boussinesq
approximations relevant to atmospheric flows do not
apply to near-neutral flows. Therefore, existing deri-
vations of the turbulence kinetic energy equation where
the buoyancy flux is linearly related to the heat flux
are not necessarily valid for the case where the buoy-
ancy flux is small but still exerts an important influence
on turbulent motions. A
In special circumstances, it may be necessary to test
additional criteria which have not been considered in
previous studies. Advection of density by the nondi-
vergent part of the flow could become important if
condition (12) is not satisfied. Notable possibilities in-
clude two-dimensional turbulence and vortex flows.
Relationship (27) shows that with strong basic state
stratification, incompressible mass continuity is valid
over a thinner depth compared to the depth over which
" one can neglect the influence of perturbation pressure
~ on the buoyancy. Certain Reynolds terms can be ne-

glected with certainty only if (29), (33)—(34) and (39)-
(40) are small. These extra terms, as well as the influ-
ence represented by (27), seem negligible for most
shallow atmospheric motions.

With some complications, the considerations pre-
sented above can be extended to include deep motions,
important Coriolis effects, large vorticity and more
complicated basic state flow.
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