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Abstract 24 

Brucellosis is a disease of veterinary and public health importance worldwide.  In sub-25 

Saharan Africa, where this disease has been detected in several free-ranging wildlife species, 26 

successful disease control may be dependent on accurate detection in wildlife reservoirs, 27 

including African buffalo (Syncerus caffer).  This study estimates the sensitivity and specificity 28 

of a commercial enzyme-linked immunosorbent assay (IDEXX, Brucellosis Serum Ab Test) for 29 

brucellosis based on a dataset of 571 serum samples from 258 buffalo located within the Kruger 30 

National Park, South Africa.  We defined a pseudo-gold standard test result as those buffalo that 31 

were consistently positive or negative on two additional serological tests, namely the rose bengal 32 

test (RBT) and the complement fixation test (CFT).  The ELISA’s cut-off value was selected 33 

using receiver operating characteristics (ROC) analysis, the pseudo-gold standard, and a 34 

threshold criterion that maximizes the total sensitivity and specificity.  Then, we estimated the 35 

sensitivity and specificity of all three tests using Bayesian inference and latent class analysis.  36 

We estimated the ELISA to have a sensitivity of 0.928 (95% BCI from 0.869-0.974) and 37 

specificity of 0.870 (95% BCI from 0.836-0.900).  Compared to the ELISA, the RBT had a 38 

higher estimated sensitivity of 0.986 (95% BCI from 0.928- 0.999), and both the RBT and CFT 39 

had higher specificities, estimated to be 0.992 (95% BCI from 0.971 to 0.996) and 0.998 (95% 40 

BCI from 0.992 to 0.999), respectively.  Therefore, this study shows that no single serological 41 

test perfectly diagnosed infection.  However, after adjustment of cut-off values for South African 42 

conditions, the IDEXX Brucellosis Serum Ab Test may be a valuable additional screening test 43 

for brucellosis in Kruger National Park’s African buffalo. 44 

Keywords: African buffalo, Bayesian, Brucellosis, Enzyme linked immunosorbent assay, Latent 45 

data, Sensitivity, Specificity  46 
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Introduction 47 

Brucellosis is an important veterinary public health issue and one of the most common 48 

zoonotic diseases worldwide (McDermott and Arimi, 2002).  Brucella abortus, the pathogenic 49 

bacteria responsible for bovine brucellosis, causes sub-acute to chronic disease in many ungulate 50 

species including African buffalo, elk, bison, eland, waterbuck, impala and cattle (Godfroid, 51 

2002).  Brucellosis transmission occurs primarily when bacteria are shed from infected animals 52 

around birthing periods.  Bacteria are shed in birth products, aborted fetuses, and intermittently 53 

through unpasteurized milk (Rhyan et al., 2009).  Infection is characterized by abortions, high 54 

morbidity rates, and context-dependent reductions in survival (Joly and Messier, 2005) and, as a 55 

leading cause of cattle morbidity worldwide, accurate disease detection is essential for public 56 

health (Godfroid et al., 2011).  These concerns have motivated successful ‘test-and-slaughter’ 57 

programs in industrialized countries that have virtually eliminated the disease except in areas 58 

adjacent to wildlife reservoirs.  Research efforts aimed at understanding infection in wildlife and 59 

minimizing transmission between wildlife and livestock are essential for disease management 60 

(Kilpatrick et al., 2009; Gomo et al., 2012).  As such, the development and evaluation of reliable 61 

diagnostic tests for brucellosis in wildlife is a priority. 62 

Brucellosis has been maintained endemically in African buffalo (Syncerus caffer) in 63 

Kruger National Park (KNP), South Africa (Chapparo et al., 1990), since its speculated 64 

introduction from European cattle (Gradwell et al., 1977).  In African buffalo, diagnosis is based 65 

on three indirect diagnostic tests that measure the host’s antibody response rather than the 66 

presence of B. abortus organisms: the rose bengal test (RBT), the complement fixation test 67 

(CFT), and the serum agglutination test (SAT; Herr and Marshall, 1981; Chapparo et al., 1990).  68 

We restrict our analysis to those tests routinely used in African buffalo (Chapparo et al., 1990) 69 
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although additional diagnostic tests have been used for brucellosis testing in cattle and American 70 

bison (e.g. Gall et al., 2000).  Information on antibody responses to B. abortus infection have 71 

been determined from experimental infections in cattle (Nielsen et al., 1984).  The Serum 72 

Agglutination Test (SAT) was one of the first serological tests for brucellosis and is based 73 

primarily on IgM antibodies because they are the most active agglutinins (Nielsen, 2002).  This 74 

test causes many false positives and has been discontinued by the World Organization for 75 

Animal Health (OIE, 2008a).  The RBT and CFT are often used in combination for accurate 76 

diagnosis, with the RBT used as a screening test and the CFT used as a confirmatory test.  77 

However, application of the CFT requires precise measurements and specialized reagents, 78 

making it difficult to implement under field conditions.  As a result, it is being replaced by 79 

ELISA diagnostic tests (Godfroid et al., 2010).  All three tests (RBT, CFT, ELISA) are 80 

recommended by the OIE as valuable livestock diagnostic tests (OIE, 2008a), but the direct 81 

application of these tests from cattle populations to African buffalo populations is problematic. 82 

This is because test sensitivity and specificity will vary among species, and none of these tests 83 

has been validated in African buffalo.   84 

Traditional estimates of diagnostic test sensitivity and specificity are based on direct 85 

comparisons against an established gold standard test (detection of Brucella organisms by culture 86 

methods).  Because true gold standard test results are often costly or impractical to obtain, 87 

especially in wildlife systems, a new test’s accuracy is commonly estimated by comparing it to a 88 

reference test with a known error rate (Buck and Gart, 1966) or by comparison to multiple 89 

imperfect diagnostic tests (Enoe et al., 2000).  Techniques that estimate test accuracy or disease 90 

prevalence when there is uncertainty in the test’s sensitivity or specificity are called latent class 91 

analyses because they use the observed frequency of diagnostic test results to estimate a latent 92 
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variable, the true disease status, from which the new diagnostic test can be evaluated (Branscum 93 

et al., 2005).  Accurate estimates of a test’s sensitivity and specificity with latent class analysis 94 

requires correctly representing whether the outcomes of two tests for a given animal are 95 

independent or correlated (conditional upon the true state of the animal; Georgiadis et al., 2003).  96 

Therefore, we consider potential correlations among tests in this analysis.  This analysis also 97 

follows an increasing trend in the use of a Bayesian inference with latent class analysis; 98 

examples include the estimation of test accuracy for Foot and Mouth disease (Engel et al., 2008), 99 

tuberculosis (Alvarez et al., 2012), and brucellosis in cattle (Matope et al., 2011).  Bayesian 100 

inference could also be useful for diagnostic test evaluation in wildlife because it incorporates 101 

uncertainty about model parameters based on independently collected, or prior information.  102 

These techniques are recommended by the OIE to estimate sensitivity and specificity, but 103 

represent only one step in the validation process (OIE, 2008b).  The assumptions and 104 

modifications used in latent class analyses have been reviewed in general for latent class 105 

techniques (Enoe et al., 2000) and more specifically for latent class techniques with Bayesian 106 

inference (Branscum et al., 2005).  107 

This paper aims to evaluate the utility of an ELISA (IDEXX Brucellosis Serum Ab Test) 108 

for diagnosis of brucellosis in an important wildlife host, African buffalo.   First, we selected an 109 

ELISA cut-off value based on a pseudo-gold standard created from a subset of sampled buffalo 110 

that consistently tested seropositive or seronegative on both the RBT and CFT.  Second, we used 111 

latent class modeling to estimate the sensitivity and specificity of the ELISA, RBT, and CFT 112 

based on the entire dataset of diagnostic test results. 113 

Materials and Methods 114 
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Animal captures and test methods 115 

 Serum samples were collected from a cohort of 202 female buffalo from herds in two 116 

areas of southern Kruger National Park, South Africa, the Lower Sabie and the Crocodile Bridge 117 

area.  Buffalo were captured approximately every six months between 2008 and 2010 as part of 118 

an ongoing disease study.  Fifty-two animals died throughout the study period and were replaced 119 

with additional buffalo, resulting in 571 samples collected from 254 buffalo.  No buffalo were 120 

sampled less than six months apart.  We collected samples for diagnostic test evaluation between 121 

June 2008 and August 2009 and again between March and October 2010.  All buffalo captured 122 

in those periods were tested with each diagnostic test.  Animals were chemically immobilized by 123 

research veterinarians and South African National Parks (SANParks) staff with M99 (etorphine 124 

hydrochloride) and ketamine.  Jugular blood was collected from each animal into blood tubes 125 

and immediately stored on ice in a cooler for transportation back to the laboratory.  The blood 126 

was centrifuged at 6,000 g for 10 minutes and sera samples were separated and stored at -20°C 127 

for subsequent disease testing.  Animal capture and data collection protocols were approved by 128 

Oregon State University, University of Georgia, and SANParks’ Institutional Animal Care and 129 

Use Committees. 130 

We used three serological measures of brucellosis infection. The rose bengal test (RBT) 131 

and complement fixation test (CFT) were conducted by the Onderstepoort Veterinary Institute’s 132 

diagnostic laboratories in South Africa according to OIE specifications (OIE, 2008a).  Briefly, 133 

the RBT is conducted by monitoring the agglutination response after mixing serum with rose 134 

bengal stained B. abortus cells.  The CFT is conducted by monitoring the degree of haemolysis 135 

after incubating inactivated test serum, antigen, and exogenous complement with sensitized 136 

sheep red blood cells (OIE, 2008a).  The Brucellosis Serum Ab ELISA tests (IDEXX P04130) 137 
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were conducted in the field laboratory at KNP according to kit instructions.  This assay detects 138 

antibodies to the lipopolysaccharide (LPS) antigen of smooth Brucella strains.  Test results are 139 

determined by a sample’s optical density (OD) read at 450nm and compared to the positive and 140 

negative controls according to this equation: 141 

Cut-off%= [100× μ(OD450 of the paired sample wells)- μ(OD450 of negative control 142 

wells)]/ [μ(OD450 of positive control wells) - μ(OD450 of negative control wells)].  143 

The cut-off value for determining seropositivity in cattle recommended by IDEXX is 120%.  144 

However, we explored test sensitivity and specificity at additional cut off values because as we 145 

were testing sera from a different species. 146 

Selection of ELISA cut off values with ROC curve analysis 147 

To select ELISA cut-off values, we defined a pseudo-gold standard that estimates true 148 

disease seroprevalence.  We combined the results from the CFT and RBT into a composite 149 

reference standard (Alonzo and Pepe, 1999).  Buffalo were identified as seropositive only if they 150 

remained both RBT and CFT positive over a six month period, and seronegative only if they 151 

remained negative on both tests over a six month period. Of the 254 individuals tested with all 152 

three diagnostic tests, 153 buffalo were sampled twice during a consecutive 6-month period and 153 

returned concordant test results using the RBT and CFT tests.  The ELISA’s test results at the 154 

end of the time period were compared to this pseudo-gold standard. 155 

We used receiver operating characteristic (ROC) curves to select the ELISA’s cut off 156 

value and two-graph receiver operating characteristic curves to display the relationship between 157 

sensitivity and specificity for various cut-off values. (TG-ROC; Gardner and Greiner, 2006).   158 

Selection of test cut-off values remains dependent on the intended use of the test, which may 159 
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vary for different decision-making situations (e.g. test-and-cull programs vs. surveillance).  For 160 

example, lower cut-off values may be advisable when there are consequences for false negative 161 

test results while higher cut-off values may be preferred when there are high costs for false 162 

positive test results (Greiner et al., 2000).  We report the cut-off value that maximizes the total 163 

sensitivity and specificity (Se+Sp).  ROC analysis and the TG-ROC plot were conducted with 164 

the package, DiagnosisMed (Brasil, 2010) for R statistical software (R Core Team, 2012). 165 

Clopper-Pearson binomial confidence intervals were drawn for test accuracy in the ROC curve 166 

analysis (Brasil, 2010).  Because estimates from the pseudo-gold standard analysis only include a 167 

subset of the animals with concordant test results on the RBT and CFT tests, the analysis may 168 

overestimate ELISA test accuracy.  This could occur if the reduced dataset excludes animals 169 

with lower antibody responses or animals that became infected during the study.  Thus, we used 170 

latent class models to estimate ELISA sensitivity and specificity from the test results of all 171 

collected samples. 172 

Latent class analysis and prior estimation 173 

 Latent class analysis allows evaluation of diagnostic tests in the absence of a gold 174 

standard. The simplest model presented here assumes that the outcomes of the tests for a given 175 

animal are independent, conditional upon the true state of the animal.  This model is referred to 176 

as the conditional independence model and is described in detail in the appendix.  A complete 177 

model specification and review of Bayesian approaches to estimation can be found in Branscum 178 

et al (2005); the models initial descriptions in two and three populations can be found in Hui and 179 

Walter (1980) and Walter and Irwig (1988), respectively.  The validity of assuming two tests are 180 

conditionally independent requires further justification (Vacek, 1985).  The results of diagnostic 181 

tests that measure similar biological processes are likely to be correlated (conditional on the 182 
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animals true disease status; Gardner et al., 2000) and assuming independence may result in 183 

incorrect estimates of test accuracy (Georgiadis et al., 2003).  The RBT, CFT, and ELISA all 184 

measure the hosts’ antibody response to Brucella smooth LPS, but they use different methods of 185 

antibody detection (Godfroid et al., 2010; Nielsen, 2002).  Therefore, because we had little prior 186 

knowledge about the potential correlation between test outcomes, we consider models assuming 187 

both conditional independence and conditional dependence. 188 

We used model selection based on Deviance Information Criteria (DIC) to compare the 189 

fit of models assuming conditional independence and conditional dependence (e.g. Rahman et 190 

al., 2013).  DIC is a model assessment tool based on model fit and the effective number of 191 

parameters (Link and Barker, 2010).  Models with lower DIC values provide a better fit to the 192 

data, and we chose the model with the lowest DIC value (Spiegelhalter et al., 2002).  Prior 193 

distributions for diagnostic test sensitivity and specificity were represented as beta distributions 194 

and were defined using published results from test validations in cattle (Grenier et al., 2009; 195 

Table 1).  The prior distributions for each parameter are displayed in Table 1 and details of their 196 

specification are given in the appendix.  This prior information was combined with the full 197 

dataset of 571 samples (Supplement 2).  Median and 95% Bayesian credible intervals are 198 

presented for all parameters in the best fitting model.  We conducted sensitivity analyses on this 199 

model by (1) increasing the mode and lower bound of the each tests’ sensitivity and specificity 200 

prior distributions by 5 percentage points, (2) decreasing the mode and lower bound of the each 201 

tests’ sensitivity and specificity prior distributions by 5 percentage points, and (3) by specifying 202 

uninformative priors between the interval of zero to one, modeled as Beta (1,1), for each tests’ 203 

sensitivity and specificity parameter.  We also compared estimates generated from models fit 204 
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with only the first sample point for each of the 254 buffalo sampled to explore if the 205 

pseudoreplication in our dataset influenced the estimates of test accuracy. 206 

Results 207 

Selection of ELISA cut-off values with ROC curve analysis 208 

The pseudo-gold standard defined 28 positive and 123 negative animals (Table 2).  209 

Within this subset of buffalo, the sensitivity and specificity estimates when using the kit’s 210 

defined cut-off of 120% were 1 (95% confidence interval from 0.82 to1.00) and 0.87 (95% 211 

confidence interval from 0.80 to 0.92), respectively.   The ROC curve analysis shows that ELISA 212 

specificity was improved at higher cut-off values with minimal reductions in sensitivity.  The 213 

cut-off value with the highest sensitivity and specificity (Se+Sp) was 159% (Figure 1).  This cut-214 

off is associated with a sensitivity of 1 (95% confidence interval from 0.82 to 1) and a specificity 215 

of 0.93 (95% confidence interval from 0.87 to 0.97).   216 

Latent class analysis: 217 

The diagnostic test results used for latent class models were calculated based on the 218 

ELISA cut-off value of 159% and all 571 samples (Table 3).  The model assuming conditional 219 

dependence between the ELISA and CFT had the lowest DIC value (DIC= 59.24).  Neither the 220 

model assuming conditional independence (DIC= 63.24) nor the models with additional 221 

dependence parameters had lower DIC values (Supplement Table S1).  We, therefore, report the 222 

results of this model based on parsimony and model fit.   223 

Test accuracy varied among the diagnostic tests (Figure 2).  The ELISA’s sensitivity and 224 

specificity were estimated to be, Se= 0.928 (95% BCI from 0.869-0.974) and Sp= 0.870 (95% 225 

BCI from 0.836-0.900).  The RBT had the highest estimated sensitivity, (Se= 0.986, 95% BCI 226 
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from 0.928- 0.999), and both the ELISA and RBT had significantly higher sensitivities than the 227 

CFT (Se=0.374, 95% BCI from 0.294-0.460).  However, both the RBT and CFT had 228 

significantly higher specificities than the ELISAs, with estimated values of 0.992 (95% BCI 229 

from 0.971 to 0.996) and 0.998 (95% BCI from 0.992 to 0.999), respectively.  Prevalence in the 230 

Lower Sabie region was estimated as 0.235 (95% BCI from 0.183 to 0.292) and in the Crocodile 231 

Bridge region as 0.228 (95% BCI from 0.183 to 0.277).   232 

Sensitivity analyses showed that decreasing the mode of the ELISA prior distribution by 233 

5 decreased the median of the posterior distributions from sensitivity= 0.928 (95% BCI from 234 

0.869-0.974) to 0.925 (95% BCI from 0.867- 0.971) and from specificity 0.870 (95% BCI from 235 

0.836- 0.900) to 0.869 (95% BCI from 0.835- 0.900), with similar results when prior information 236 

was also relaxed to 70% (Table 4).  Increasing the mode of the ELISA prior distributions by 5 237 

resulted in only a minor increase to sensitivity= 0.930 (95% BCI from 0.871- 0.976) and 238 

specificity=0.870 (95% BCI from 0.836-0.901).  The estimates of ELISA accuracy also remained 239 

similar when the prior values for RBT and CFT accuracy were relaxed (Table 4).  When the 240 

model was fit to data with one test result per buffalo, test specificity remained similar but test 241 

sensitivity increased slightly to 0.960 (0.887- 0.993).  The 95% credible intervals overlap despite 242 

these perturbations, suggesting that the estimates of ELISA sensitivity and specificity were 243 

influenced by the frequency of test results and, to a lesser extent, the prior information. 244 

Discussion 245 

 The IDEXX ELISA was estimated to have a sensitivity of Se=0.928 (95% BCI from 246 

0.869-0.974) and specificity of Sp= 0.870 (95% BCI from 0.836-0.900 when using the cut-off 247 

value of 159%. At this cut-off value, the results show that the ELISA has a higher median 248 
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sensitivity than the CFT, similar but lower sensitivity to the RBT, but a lower specificity than 249 

both the RBT and CFT.  The estimates of test accuracy in this study are based on the selected 250 

ELISA cut-off value.  The cut-off value that maximized the total sensitivity and specificity 251 

(Se+Sp) was 159%.  Because test sensitivity and specificity are inversely related at a given cut-252 

off value, a different cut-off would result in altered estimates of test accuracy.  The selected cut-253 

off value should be taken into account when comparing diagnostic tests (Greiner et al., 2000).  254 

For example, at the suggested cut-off value for cattle, 120%, the ELISA had a lower specificity 255 

and a higher sensitivity.  This result emphasizes the importance of test optimization for each 256 

population and species to which it is applied. 257 

In addition to species-specific differences, there are three nonexclusive factors that 258 

explain why the cut-off value for cattle resulted in a higher number of miss-classified results.  259 

First, the test is being applied under field laboratory conditions.  Serum samples for these 260 

analyses were collected and frozen in the field at -20°C for one to three years, with temperature 261 

fluctuations possible due to a somewhat variable power supply (though to our knowledge no 262 

outright freezer failure occurred during the storage period of these samples).  Ideally, sample 263 

storage would use consistent and colder (-80C) temperatures; as such, sub-optimal storage 264 

conditions might have degraded the samples to some degree.  Second, brucellosis is endemic in 265 

this buffalo population and our sampling may have resulted in animals with a wider range of 266 

times since infection than those used for the tests’ validation in cattle.  Finally, all diagnostic 267 

tests are susceptible to cross-reactive antibodies.  Yersinia enterocolitica O:9 shares common 268 

antigenic epitopes with B. abortus, and is known to cross-react during diagnosis, but little is 269 

known about Yersinia’s presence in buffalo populations (Godfroid et al., 2002).  The evaluation 270 
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presented here allows these sources of variability to be incorporated into the estimates of test 271 

accuracy, allowing the estimates to be robust to problems inherent in most field conditions. 272 

Latent class analysis allows the quantification of test variability and accuracy in the 273 

absence of a gold standard.  Like all model-based analyses, their implementation involves a 274 

tradeoff between the model complexity (number of parameters) and parsimony.  The model 275 

selection performed in this study shows that models including co-variance between the ELISA 276 

and CFT had a better fit to the data compared to the model assuming conditional independence.  277 

The lack of support for models representing dependence between the ELISA/ RBT and the RBT/ 278 

CFT, based on DIC values, is supported by the low conditional correlations among those tests.  279 

Because the tests measure antibodies through different mechanisms (Nielsen, 2002), it is 280 

plausible that the tests are conditionally independent of each other, given the true state of the 281 

animal.  However, those models also may have had higher DIC values because there was 282 

minimal data to estimate the conditional dependence terms; there were few samples with ELISA-283 

, RBT- and CFT+ test results or ELISA-, RBT+, CFT+ test results.  Previous work on brucellosis 284 

in sheep represented conditional dependence between the RBT and the ELISA and between the 285 

RBT and SAT (Rahman et al., 2013).  Other systems, however, have found the conditional 286 

independence model to be most appropriate (Muma et al., 2007, Rahman et al., 2013).  The 287 

results of this analysis show similar estimates of sensitivity and specificity in all models 288 

regardless of the test correlation assumptions (Table S1) and suggests that these estimates were 289 

robust to model assumptions. 290 

The uncertainty in how any of the diagnostic tests relate to active infection in wildlife 291 

represents a major hurdle to accurate diagnostic methods (Treanor et al., 2011).  Owing to these 292 

limitations, the results of this evaluation serve as a comparison among the serological tests 293 
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historically used.  Additional assays for brucellosis, including the FPA (Gall et al., 2000), PCR 294 

(Bricker, 2002), and alternative ELISA techniques (Nielsen, 2002) have shown improved 295 

accuracy in other systems and should be considered for future testing in African buffalo.  296 

Further, the estimates of test sensitivity and specificity presented in this analysis includes prior 297 

information (Figure 2).  Rather than a limitation, incorporating this information could be a 298 

valuable tool for wildlife studies given the sample size requirements and potential identifiability 299 

problems with latent class models (Dendukuri et al., 2010).  Our analysis also assumes that test 300 

sensitivity and specificity are consistent throughout the course of brucellosis infection and 301 

between populations.  As more information develops about the course of brucellosis in buffalo, 302 

future diagnostic tests evaluations should incorporate variation in detection rates between 303 

different stages of infection (Engel et al., 2010; Caraguel et al., 2012) or different populations 304 

(Munoz et al., 2012). 305 

The benefits of the ELISA are that it is relatively inexpensive, easy to perform in field 306 

conditions, and results in a quantitative test result.  The choice of an appropriate diagnostic test, 307 

however, is dependent on its intended use.  For example, with a specificity of 87%, the ELISA 308 

may not present an ideal diagnostic tool for screening of commercial buffalo herds because it 309 

would result in many false-positive animals being removed at an undesirably high cost to the 310 

farmer.  However, its use in combination with the RBT could improve current diagnostic 311 

methods by avoiding misclassifications.  For large-scale disease surveys, the ELISA’s 93% 312 

sensitivity and ease of use may make it a valuable screening tool for African buffalo.  Given the 313 

importance of brucellosis for public health in sub-Saharan Africa, further work establishing and 314 

validating improved diagnostic methods is needed for detection of B. abortus in one of its 315 

wildlife reservoirs, the African buffalo. 316 
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Tables 457 

Table 1. Prior distributions for the ELISA, rose bengal test (RBT), and complement fixation test 458 

(CFT), and the literature from which they were estimated.  Prior distributions were represented 459 

as beta distributions and estimated by defining the mode and lower confidence bounds based on 460 

estimates in the literature.  Population prevalence was defined for buffalo populations in the 461 

Lower Sabie region (LS) and the Crocodile Bridge region (CB).  Prior values are given for each 462 

tests’ sensitivity (Sens) and specificity (Spec). 463 

Parameters Mode   Lower Limit Beta (a, b) Source 

ELISA>159 Sens 0.976 > 0.60 6.29, 1.13 a 
Spec 0.975 > 0.60 6.31, 1.14 a 

RBT Sens 0.981 > 0.21 1.94, 1.02 
8.08, 1.01 

a, b 
a, b Spec 0.998 > 0.688 

CFT Sens 0.960 > 0.23 2.08, 1.05 
2.56, 1.00 

a, b 
a, b Spec 0.998 > 0.306 

Prevalence LS 0.30 >0.10 2.35, 4.14 c 
 CB 0.35 >0.10 1.96, 2.78 c 
a.  Grenier et al., 2009,  b.  Nielsen, 2002,  c.  Chapparo et al., 1990 464 

  465 



 24

Table 2. Pseudo-gold standard test result frequencies and 95 % confidence estimates of test 466 

accuracy.  Results were calculated with the ELISA cut-off value recommended for cattle (cut-467 

off= 120) and the cut-off value selected based on receiver operating characteristic analysis (cut-468 

off= 159).  Test accuracy was improved with a higher cut-off value. 469 

Pseudo-gold standard status 
ELISA Cut-off > 120 ELISA Cut-off > 159 

Positive Negative Positive Negative 
Positive 28 0 28 0 
Negative 16 107 9 114 
# Misclassified/ Accuracy 16/ 89.4% 9/ 94.0% 
Sensitivity 1 (0.82-1.00) 1 (0.82-1.00) 
Specificity 0.87 (0.80-0.92) 0.93 (0.87- 0.97) 
  470 



 25

 Table 3. ELISA, rose bengal test (RBT), and complement fixation test (CFT) results classified 471 

for the Lower Sabie region (LS) and the Crocodile Bridge (CB) region. 472 

ELISA/RBT/CFT + / + / + + / + / - + / - / + + / - / - - / + / + - / + / - - / - / + - / - / - 
Lower Sabie 24 28 0 19 0 3 0 161 
Crocodile Bridge 21 47 0 39 3 6 0 220 
Total 45 75 0 58 3 9 0 381 
  473 



 26

Table 4. Sensitivity analyses of prior information and model assumptions.  Results include the 474 

consequence of adjusting prior information about each tests’ accuracy and re-fitting the model to 475 

a subset of the samples were each of the 258 buffalo are represented once.  In analyses adjusting 476 

test accuracy, the mode and lower bound were increased/decreased by 5 percentage points. 477 

Model Specification ELISA Se (95%Crl) ELISA Sp (95%Crl) 
CD between ELISA & CFT 0.928 (0.869- 0.974) 0.870 (0.836- 0.900) 
Priors decreased by 5   
  ELISA 0.925 (0.867- 0.971) 0.869 (0.835- 0.900) 
  RBT 0.933 (0.873- 0.977) 0.870 (0.836- 0.900) 
  CFT  0.927 (0.869- 0.974) 0.870 (0.836- 0.900) 
Priors increased by 5   
  ELISA 0.930 (0.871- 0.976) 0.870 (0.836- 0.901) 
  RBT 0.927 (0.868- 0.974) 0.870 (0.836- 0.974) 
  CFT 0.928 (0.869- 0.975) 0.870 (0.836-0.900) 
Uniform Priors   
  ELISA 0.925 (0.864- 0.974) 0.869 (0.834- 0.899) 
  RBT 0.928 (0.869- 0.975) 0.870 (0.836- 0.900) 
  CFT 0.927 (0.868- 0.974) 0.870 (0.836- 0.900) 
No pseudo-replication 0.960 (0.887- 0.993) 0.855 (0.801- 0.900) 
  478 
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Figure Legends 479 

Figure 1. Two-graph receiver operating characteristic curve that plots sensitivity (Se), specificity 480 

(Sp), and their non-parametric confidence bands as a function of test cut-off value. Vertical 481 

dashed lines show the cut-off value selected by ROC analysis for further investigation (cut-off= 482 

159%). 483 

Figure 2. Summary of prior and posterior distributions for latent class analysis of ELISA, rose 484 

bengal test (RBT), and complement fixation test (CFT) accuracy.  Prior information for the 485 

sensitivity and specificity of each test is summarized by the median and 95th percentile of their 486 

distribution.  Median parameter estimates and 95% Bayesian credible intervals for (a) sensitivity 487 

and (b) specificity are displayed for the model assuming conditional dependence between the 488 

ELISA and CFT. 489 
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