Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

The Faculty of Oregon State University has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOI</td>
<td>10.1016/j.ocemod.2015.07.004</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Version of Record</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>http://cdss.library.oregonstate.edu/sa-termsofuse</td>
</tr>
</tbody>
</table>
Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

L.H. Erikson a,∗, C.A. Hegermiller a,b, P.L. Barnard a, P. Ruggiero c, M. van Ormondt d

a United States Geological Survey, Pacific Coastal and Marine Science Center, 400 Natural Bridges Drive, Santa Cruz, CA 95060, USA
b University of California at Santa Cruz, Department of Ocean Sciences, 1156 High Street, Santa Cruz, CA 95064, USA
c Oregon State University, College of Earth, Ocean, and Atmospheric Science, 104 CEOAS Administration Building, Corvallis, OR 97331, USA
d Deltares-Delft Hydraulics, P.O. Box 177, 2600 MH Delft, The Netherlands

A R T I C L E I N F O

Article history:
Received 17 February 2015
Revised 28 June 2015
Accepted 7 July 2015
Available online 19 July 2015

Keywords:
Wave climate
GCMs
Climate change
Eastern North Pacific

A B S T R A C T

Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of climate change on coastal systems.

Published by Elsevier Ltd.

1. Introduction

Coastal planners, managers, and engineers increasingly require information about climate change to make better planning decisions and minimize future coastal hazards and economic loss, potentially affecting millions of people residing near the coast (National Oceanic and Atmospheric Administration, 2010). General circulation models (GCMs) are now routinely used for assessing climatological parameters, including changes in storm patterns, atmospheric variability, temperatures, and precipitation (Barnes and Polvani, 2013; Cayan et al., 2008; Chang et al., 2013; Feng et al., 2014; Maurer et al., 2010; Sillmann et al., 2013), but these models generally do not provide parameterizations of ocean wind-waves (Cavaleri et al., 2012). To generate wave projections, a growing number of studies have used GCM-simulated near-surface wind or sea-level pressure fields for downscaling, in conjunction with either numerical or statistical methods (Hemer et al., 2013a; Mori et al., 2010; Semedo et al., 2013; Wang et al., 2014). Most of these downscaling efforts were conducted on global scales and focused on mean wave conditions. However, for the purpose of assessing coastal risk, there is a strong need to increase efforts toward understanding how climate change will influence extreme wave conditions on regional and local scales along coastlines (Barnard et al., 2014; Hemer et al., 2013a).

∗ Corresponding author. +18313259654.
E-mail address: lerikson@usgs.gov (L.H. Erikson).

http://dx.doi.org/10.1016/j.ocemod.2015.07.004
1463-5003/Published by Elsevier Ltd.
The wave climatology of the eastern North Pacific (ENP) is influenced by large-scale atmospheric patterns. During boreal spring and summer, wave conditions are driven by prevailing northwesterly winds and southern hemisphere storms (Allan and Komar, 2006; Bromirski et al., 2005; Graham and Diaz, 2001; Hemer et al., 2013b; Raible et al., 2005). For the rest of the year, ENP wave climatology is dominated by mid-latitude North Pacific cyclones, Eastern Pacific tropical storms, and local winds (Adams et al., 2008; Alves, 2006; Bromirski et al., 2005; Fan et al., 2013, 2012; Shimura et al., 2013). Swell and intermediate period waves with peak spectral wave periods \((T_p) > 6 \) s dominate the wave energy spectrum throughout the year, especially during boreal winter when swell can be more than five times greater than local sea energy (Bromirski et al., 2005). Extreme events are linked to the Aleutian Low and other North Pacific atmospheric patterns (Graham and Diaz, 2001; Gulev and Grigorieva, 2006; Trenberth and Hurrell, 1994; Wang and Swail, 2001), such as the El Niño-Southern Oscillation (ENSO; Allan and Komar, 2006; Jien et al., 2015) and Arctic Oscillation (Thompson and Wallace, 1998). The Aleutian Low is a climatic feature of low atmospheric pressure centered near the Aleutian Islands (Mesquita et al., 2010) and represents one of the main centers of action in atmospheric circulation of the Northern Hemisphere.

Although Southern Ocean swell provides energy to the ENP wave climate (Alves 2006; Semedo et al., 2011), extreme wave conditions are typically dominated by swell generated by cyclones in the North Pacific during boreal winter (Bromirski et al., 2005; Bromirski et al., 2013; Cayan et al., 2009). Using reanalysis and in situ data, Graham and Diaz (2001) noted an increase in the frequency and intensity of December to March cyclones over the North Pacific Ocean, primarily west of the dateline between 30° and 55°N, during the latter half of the 20th century. Coincident with this time-period and extending into the first decade of the 21st century, a number of observation and reanalysis studies have also shown corresponding increases in significant wave heights (average value of top 1/3 wave heights, \(H_s \)) and wave period, particularly in the northern ENP (Allan and Komar, 2000; Bromirski et al., 2005; Gulev and Grigorieva, 2006; Menéndez et al., 2008; Ruggiero et al., 2010; Semedo et al., 2011; Wang and Swail, 2001). Yet some observation-based studies indicate weak decreasing signals or near-neutral wave conditions (Cayan et al., 2009; Gemmrich et al., 2011; Wang and Swail, 2001; Young et al., 2011). For the recent past, Sasaki (2014) also noted decreasing trends in both \(H_s \) and mean wave period \((T_m) \) from 1992 to 2012 for most of the mid-latitude North Pacific (30°-50°N, 150°E-110°W), North of 55°N, Sasaki (2014) identified increasing \(H_s \) and unchanging \(T_m \) along the Canadian and Alaskan coasts.

Projected 21st-century North Pacific cyclone activity has been examined with various GCMs and forcing scenarios (Favre and Gershunov, 2009; Ulbrich et al., 2009; Yin, 2005). Graham et al. (2013) provides a synthesis of such studies and suggests that cyclone activity is projected to decrease south of \(\sim 35 \) ° and increase north of \(\sim 40 \) °, especially in the western Pacific Ocean where meridional gradients in cyclone activity are strongest. North of \(\sim 40 \) °, the studies indicate considerable spatial variability with respect to the east–west direction (Graham et al., 2013). Consistent with projected decreases in North Pacific cyclone activity, some studies have projected decreases in future ENP wave conditions. For example, using an ensemble (Fan et al., 2013; Hemer et al., 2013b; Mori et al., 2010; Semedo et al., 2013; Wang and Swail, 2006) of CMIP3 model projections, Hemer et al. (2013a) assessed changes in wave height, period, and direction by comparing end-of-21st century projections with a recent historical time-period (1979 to 2009). Mean \(H_s \) and \(T_m \) were projected to decrease and increase, respectively, along ENP coasts, and incident mean wave directions \((D_m) \) were projected to rotate counter-clockwise in the ENP. One study with a particular focus on the ENP (Graham et al., 2013) projected strong latitudinal dependencies along the mainland coast, with upper quantile \(H_s \) increasing north of \(\sim 40 \) to 50°N and decreasing to the south. In contrast, other studies have projected increasing trends in both mean and extreme \(H_s \) along nearly all ENP coasts, including south of \(\sim 40 \)°N (Mori et al., 2013; Wang et al., 2014; Wang and Swail, 2006). The underlying causes for the contradictory results are not clear and may be related to factors including use of different methods of downscaling (dynamical or statistical), GCM forcing, and/or time-periods of comparison. Prior wave projection studies exhibit considerable variability within the ENP. Additionally, ENP coasts are heavily populated and have many coastal management and adaptation needs. Thus, specific attention to the ENP is required.

In this study, we use global and regional numerical wave models to quantify and assess projected trends in mean and extreme wave conditions within the ENP in response to the most recent Intergovernmental Panel on Climate Change (IPCC) climate scenarios. Recent historical (1976–2005) and future ENP wave conditions were dynamically-downscaled by forcing the WaveWatch III (WW3) numerical wave model (Tolman et al., 2002) on global (1.25° × 1°) and regional (0.25° × 0.25°) grids with GCM-simulated, near-surface (10 m height), 3-hourly wind fields under two representative concentration pathways (RCP) (RCP 4.5 and RCP 8.5) (Meehl and Hibbard, 2007; Moss et al., 2010; van Vuuren et al., 2011). Projected wave conditions for mid- and end-of-century time-periods (2026–2045; 2081–2100) were modeled; mean and extreme wave conditions are presented here from the combined 40-year 21st-century time-series. Because of high variability and uncertainty in GCM-simulated wind fields (Egli and Grunstein, 2013), four separate GCMs were used to force WW3 to develop future wave climate time series, and a multi-model mean was used to assess changes in projected wave conditions in response to radiative forcing scenarios.

This paper is outlined as follows. Details of the wave model and GCM-simulated winds are provided in Section 2: Data and Methods. Section 2 also includes explanations of the extreme value analyses employed and describes the method used for determining conditional relationships between wave parameters. In Section 3, model outputs from the historical time period are compared to ERA-Interim wave reanalysis values and wave buoy measurements within the ENP. Results pertaining to changes in near-surface winds and mean and extreme wave conditions are presented in Section 4. Finally, a summary and discussion of results and how they compare to previous studies are provided in Section 5, followed by conclusions in Section 6.

2. Data and methods

2.1. GCM-simulated near-surface wind data

Datasets of near-surface (10 m height) winds generated by four separate GCMs provided forcing to the wave model (Table 1). All global simulations used in this study follow the CMIP5 protocol for long-term simulations (Taylor et al., 2012). Only outputs from the first GCM simulation (r1) were used when multiple runs with differing initial conditions were available. Criteria for selection of the four GCMs were based on availability of projected near-surface winds.
to the year 2100, output frequency (3-hourly non-averaged synoptic winds), and completed GCM simulations at the onset of this study.

Wind data from three time-periods were used: 1976–2005 represents the post-industrial historical time-period, 2026–2045 represents the mid-21st century, and 2081–2100 represents the end of the 21st century. The mid- and end-of-century time-periods were simulated under RCP 4.5 and RCP 8.5. The scenarios represent trajectories of increasing global radiative forcing that reach, by the year 2100, +4.5 W/m² and +8.5 W/m² compared to pre-industrial (1850) conditions (Hibbard et al., 2007). RCP 4.5 and RCP 8.5 characterize medium stabilizing and high radiative forcing scenarios, respectively (Moss et al., 2010), and are roughly equivalent to the B1 and A2 emission scenarios of the IPCC CMIP3 Special Report on Emission Scenarios (SRES) (Meinshausen et al., 2011).

Grid resolutions of the GCM-simulated wind fields vary and, thus, were linearly interpolated to the wave model resolution. All winds were available as 10 m neutrally-stable fields and similar to many previous studies (Cheng et al., 2015; Dobrynin et al., 2012), no bias adjustments were made. It is noted here that Graham et al. (2013) found marked improvement when applying wind bias adjustments to CMIP3 wind fields. On the other hand, Hemer et al. (2013b) found no improvement in wave model results after bias adjustments of wind fields, though the wind fields used in that study were already dynamically-downscaled finer than the native GCM resolution.

2.2. Wave model

The third-generation, spectral wave model WaveWatch III (WW3; version 3.14; Tolman et al., 2002) was forced by historical and projected GCM-simulated winds. The model was applied over a near-global grid (NW3; latitude 80°S–80°N) with 1° × 1.25° spatial resolution, and a nested ENP grid with 0.25° × 0.25° spatial resolution (~27 km at latitude 37°N; Fig. 1). Bathymetry and shoreline positions were populated with the 2-min Naval Research Laboratory Digital Bathymetry Data Base (DBDB2) v3.0 and National Geophysical Data Center Global Self-Consistent Hierarchical High-Resolution Shoreline (GSHHS; V1.7). Wave spectra were computed with 15° directional resolution and 25 frequency bands ranging non-linearly from 0.04 to 0.5 Hz. Wind-wave growth and whitecapping were modeled with the Tolman and Chalikov (1986) source term package and nonlinear quadruplet wave interactions were computed with the Hasselmann et al. (1985) formulation. In consideration of large data storage requirements, only daily averages of spatially-gridded \(H_s \), peak period \(T_p \) and peak wave direction \(D_p \) were saved from the NWW3 and ENP grids. For extreme analysis, wave parameters \(H_s \), \(T_p \), and mean wave direction, \(D_m \) were saved hourly at 33 points along ENP coasts. The motivation for saving and assessing changes in \(H_s \), \(T_p \), and \(D_m \) was driven by the notion that storm impacts on coastal processes, including wave runup and erosion, are often investigated with these parameters (e.g., Bromirski et al., 2013). \(H_s \) and \(T_p \) are measures often used for calculation of runup (Ahrens, 1981; Mase, 1989; Stockdon et al., 2006; Van Der Meer and Stam, 1992), while \(D_m \) is a useful metric for wave-driven longshore sediment transport studies (e.g., Splinter et al., 2012).

2.3. Extreme value analysis of \(H_s \)

Design codes stipulate that both offshore and nearshore structures should be designed to exceed specific levels of reliability, usually expressed in terms of return periods (RP). For this reason, both return values (RV) and upper quantile (95th and 99th) wave conditions were computed for evaluation of changes in extreme wave climate.

Return values were calculated by fitting the generalized Pareto distribution (GPD) to identified extreme values and assuming stationary signals. Stationarity was assumed based on analysis of annual mean extreme wave heights at each of the 33 output stations. Least-squares linear fits indicate that for RCP 4.5 and RCP 8.5 combined mid- and end-of-century time-periods, only 9% of the stations exhibit statistically significant \((p\text{-Value} < 0.05) \) trends. The time-series data of each climate scenario are thus predominantly stationary and as a result we assumed stationarity for extreme value analyses at all sites.

The GPD is commonly used for extreme value analysis of significant wave heights (Caires et al., 2006; Callaghan et al., 2008; Maruccioni et al., 2010; Méndez et al., 2006; Méndez et al., 2008; Ruggeri et al., 2010). The cumulative distribution function of the GPD is given by

\[
F_u(x) = \begin{cases}
1 + \kappa \sigma^{-1}(x-u)^{1/\kappa} & \kappa \neq 0 \\
\exp\left(-\frac{x-u}{\sigma}\right) & \kappa = 0
\end{cases}
\]

(1)

where \(u \) is the threshold and \(\sigma \) and \(\kappa \) are the scale and shape parameters, respectively, obtained by maximum likelihood estimates. When \(\kappa = 0 \), the GPD is the exponential distribution; when \(\kappa < 0 \), it is the Pareto distribution; and when \(\kappa > 0 \), it is a special case of the beta distribution (Caires and Sterl, 2004). In this study, the GPD most...
commonly took the form of the Pareto distribution, a finding similar to Izaguirre et al. (2011), who found similarly heavy-tailed behavior in swell-dominated areas not impacted by high cyclone or typhoon activity.

The GPD was fit through sets of 200 individual extreme wave events identified from the 40-year projection (20 years each at the mid- and end-of-century) of each separate GCM-forced wave time-series on the basis of allowing for an average of five independent events per year (40 years × 5 events/year on average = 200 events) – i.e., peak-over-threshold (POT). Independent events were defined as events that were at least three days apart, the approximate time scale of northeast Pacific extratropical storms (e.g., Méndez et al., 2006). Five events per year were selected based on work by Ruggiero et al. (2010), which found that extracting wave events greater than the 99.5th percentile of 30+ years of U.S. Pacific Northwest buoy measurements resulted in approximately 5 events per year.

Using the methods described above, eight return value curves were calculated for each location, one for each of the four GCM-forced wave time-series and each of the two radiative forcing scenarios, RCP 4.5 and RCP 8.5. For each scenario, return value curves from the four individual GCM-forced wave time-series were averaged at each location to obtain a multi-model return value curve relating \(H_s \) values to selected return periods (Fig. 2a). The four GCM-forced wave time-series were regarded as independent experiments and, as such, uncertainty associated with the multi-model curve was estimated as the standard deviation of the mean (\(\sigma_m \)),

\[
\sigma_m = \frac{s}{\sqrt{N}} \quad \text{where} \quad s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}} \quad (2)
\]

where \(N \) is the number of sample points (4 in this case) and \(x_i - \bar{x} \) is the deviation of each sample value from the arithmetic mean.

2.4. Extreme value analysis of \(T_p \) and \(D_m \)

There are two standard approaches to evaluating \(T_p \) and \(D_m \): either as values independently derived from time series (i.e., the 99th percentile \(T_p \) \((99^\text{th})\)) or as parameters that are conditionally related to \(H_s \). In coastal design applications, a conditional relationship is typically used (e.g., Cheng et al., 2015) to avoid the occurrence of physically unrealistic conditions. In this study, we evaluate changes of extreme \(T_p \) and \(D_m \) in both ways: as independent and conditionally-varying parameters.

With the goal of finding a most likely (and physically realistic) \(T_p \) associated with a median or extreme wave height value, conditionally-related \(T_p \) were determined following a modification of an approach from Callaghan et al. (2008). Callaghan et al. (2008) modeled wave period variability using three parameter log-normal distributions described by \(H_s \). Here, residuals decreased (better fits were found) when wave period variability is modeled with a normal distribution in which the mean, \(\mu \), and standard deviation, \(\sigma \), are a function of \(H_s \),

\[
(\mu, \sigma) = \left(\frac{aH_s}{H_c}, \frac{2c}{H_c}\right) \quad (3)
\]

where \(a, b, \) and \(c \) are fitted parameters. Fig. 2b compares the mean \(T_p \) associated with 0.5 m \(H_s \) bins (yellow asterisks) with the expected value of \(T_p \) using the best fit parameters from Eq. (3) (blue line). The model reproduces both \(T_p \) limits and a reduction in variance as a function of increasing \(H_s \) (Fig. 2b). This approach allows for selection of an expected value of \(T_p \) associated with any extreme return value of \(H_s \), as well as the 95% confidence intervals.

With the aim of identifying incident wave directions associated with extreme \(H_s \), wave directions were derived from the joint

Fig. 2. Derivation of return period values of \(H_s \), and dependent variables \(T_p \), and \(D_m \). Example plots are for RCP 4.5 at the Pt. Reyes buoy, N46214. (a) Return value plot using extreme \(H_s \) from each of the four GCM-forced wave simulations and the multi-model mean (black solid). (b) GFDL-ESM2M modeled \(T_p \) and \(H_s \) and Monte Carlo fit normal line relating \(T_p \) to \(H_s \). Blue diamond represents the 99th percentile \(H_s \) and \(T_p \), note that it falls outside the cloud of occurrences. The conditionally dependent \(T_p \) associated with the same 99th percentile \(H_s \) is shown with the green square and 95% confidence interval (arrows). (c) Selection of \(D_m \) based on maximum probability of \(D_m \) for a given \(H_s \) return value (example is for the 5 year return period and all four GCM-forced wave simulations combined). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
probability of H_s and D_m. Probability density plots were generated for several coastal output stations from modeled time-series data binned at ± 0.5 m, and 5° for H_s and D_m, respectively (Fig. 2c). Data from all four GCM-forced wave time-series were combined in each probability plot and D_m was obtained by finding the direction associated with the maximum probability of occurrence for the H_s of interest.

3. Model Evaluations

3.1. Spatial comparisons

The ability of the models to represent recent past mean wave climate was assessed by comparing results of the GCM-forced wave model with ERAI Interim (ERAI), the latest global atmospheric reanalysis produced by the European Centre for Medium Range Weather Forecasts (Dee et al., 2011). ERAI wave parameters were produced from a coupled atmosphere–ocean wave model and high-resolution reanalysis winds. Post 1990 data includes wave spectra adjustments derived from satellite radar altimeter wave height data, and no adjustments with regard to buoy data. Mean H_s were calculated from ERAI archives of combined seas and swell at 6-hourly, 0.75° resolution. The time-period 1979–2005 was used in the comparison, as these are the years for which the ERAI data overlap with the GCM-forced historical wave simulations conducted as part of this study. For comparison with the GCM-forced historical wave simulations, ERAI was interpolated onto the WW3 ENP grid.

Compared to ERAI, three of the four GCM-forced wave simulations overestimate ENP annual mean H_s (\overline{H}_s; Fig. 3). The largest negative bias is obtained with GFDL-ESM2M, which underestimates by an average of -0.06 ± 0.06 m for the entire domain; the largest positive bias, accounting for both the spatial average and standard deviation, is obtained with MIROC5, for which the bias is 0.5 ± 0.22 m. The maximum biases attained at any grid point for these two models are 0.66 m and 0.88 m, respectively. Coastal regions are somewhat underestimated with GFDL-ESM2M and BCC-CSM1.1 and overestimated with MIROC5 and INM-CM4. The multi-model mean yields a lower combined bias and standard deviation compared to any of the individual models (0.05 ± 0.04 m), with a maximum -0.25 m along the mainland coast (Fig. 3e). All the models, and hence the multi-model mean as well, overestimate \overline{H}_s in the region surrounding Hawaii.

3.2. Point comparisons

Hourly wave conditions are compared to observation data from 15 buoys (Table 2) and ERAI data extracted from the closest grid cell to each of 33 coastal stations. Only buoys located in water depths greater than ~ 300 m (Graham et al., 2013) and distant from the coast are used for comparison with modeled waves to avoid land-sea interactions (e.g., orographic, katabatic) that could affect the wind fields (Chawla et al., 2013). In shallower water depths and/or closer to land, bathymetric and topographic interactions become important. These interactions are poorly simulated given the coarse resolution of the model.

Buoy data through the year 2005 are used. Depending on the particular buoy, the record lengths range from ~ 1 year (2004–2005 at NDBC46089) to 22 years (1983–2005 at NDBC46028) (Table 2). The observation records suffer from significant data gaps. Thus, co-located model output data were interpolated to the observation time stamps. To avoid unequally weighting the model data, we followed the analysis of Allan and Komar (2006), in which we omit all model and observation data in years when less than 80% of the winter (November–March) observation data were available.

For comparison of extremes, we limited the analysis to the months of November through March, when ENP extreme wave events typically occur (Bromirski et al., 2005). The timing of wave events modeled with GCM-simulated winds will not coincide precisely with observations. The discrepancy in timing is largely due to internal variations within the GCM runs and the fact that historical GCM runs are initiated from arbitrary times of quasi-equilibrium control runs (Taylor et al., 2012). In order to reduce the impact of precise timing between events, differences between model and reference (either observation or ERAI reanalysis), data are quantified by calculating the bias (model minus reference), root-mean-square difference (RMSD), and normalized variance (γ^2) from the cumulative distributions. RMSD is given by

$$\text{RMSD} = \sqrt{\frac{\sum_{i=1}^{N} (\text{obs}_i - \text{mod}_i)^2}{N}}$$

where obs_i is the observed value and mod_i is the modeled value of the ith occurrence, and N is the total number of bins (probabilities are graduated from 0.00 to 1.00 with a bin size of 0.01 resulting in $N = 101$). Normalized variance indicates the relative amplitude of modeled and observed variability and is given by

$$\gamma^2 = \frac{\gamma^2_{\text{mod}}}{\gamma^2_{\text{obs}}}$$

where γ^2_{mod} and γ^2_{obs} are the modeled and observed variances, respectively.

Biases between observed and modeled cumulative distributions were computed at each buoy station and bin-averaged across all sites, providing a coast-wide representation of bias as a function of probability of occurrence (Fig. 4). The three of the four GCM-forced wave simulations underestimate H_s at the lower tails of the distributions and overestimate H_s at the upper tails. GFDL-ESM2M consistently underestimates H_s, though bias approaches zero at the upper quantiles (Fig. 4a). The multi-model mean H_s bias at the 99th percentile is $+0.5$ m, and viewed in this manner does not perform as well as GFDL-ESM2M. All four models underestimate T_p in the upper quantiles and overestimate T_p in the lower quantiles (Fig. 4b). The multi-model

![Fig. 3. Model bias with respect to ERAI reanalysis (model – reference) of mean H_s for all months spanning years 1979 through 2005: (a) BCC-CSM1.1, (b) INM-CM4, (c) GFDL-ESM2M, (d) MIROC5, and (e) multi-model mean. Positive values indicate that the GCM model over-estimates ERAI.](image-url)
Table 2
Observational wave buoys used for comparison to modeled wave parameters (listed from north to south). Shading highlights buoy locations in the Pacific Northwest and Alaska, California, and Hawaii.

<table>
<thead>
<tr>
<th>NDBC ID</th>
<th>Buoy owner</th>
<th>time-period used in analysis</th>
<th>Lat (DD,N)</th>
<th>Lon (DD,W)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46076</td>
<td>NDBC</td>
<td>2004–2005</td>
<td>56.074</td>
<td>152.572</td>
<td>3405</td>
</tr>
<tr>
<td>46205</td>
<td>ENVCA</td>
<td>1990–2005</td>
<td>54.170</td>
<td>134.330</td>
<td>2075</td>
</tr>
<tr>
<td>46075</td>
<td>NDBC</td>
<td>2004–2005</td>
<td>53.911</td>
<td>160.806</td>
<td>2487</td>
</tr>
<tr>
<td>46208</td>
<td>ENVCA</td>
<td>1990–2005</td>
<td>52.317</td>
<td>122.668</td>
<td>2590</td>
</tr>
<tr>
<td>46089</td>
<td>NDBC</td>
<td>2004–2005</td>
<td>45.893</td>
<td>123.819</td>
<td>2289</td>
</tr>
<tr>
<td>46213</td>
<td>SCRIPPS</td>
<td>1999–2005</td>
<td>40.294</td>
<td>124.740</td>
<td>125</td>
</tr>
<tr>
<td>46214</td>
<td>SCRIPPS</td>
<td>1996–2005</td>
<td>37.945</td>
<td>123.470</td>
<td>550</td>
</tr>
<tr>
<td>46042</td>
<td>NDBC</td>
<td>1987–2005</td>
<td>36.789</td>
<td>122.404</td>
<td>1574</td>
</tr>
<tr>
<td>46028</td>
<td>NDBC</td>
<td>1983–2005</td>
<td>35.741</td>
<td>121.884</td>
<td>1158</td>
</tr>
<tr>
<td>46059</td>
<td>NDBC</td>
<td>2003–2005</td>
<td>33.670</td>
<td>120.200</td>
<td>1021</td>
</tr>
<tr>
<td>46047</td>
<td>NDBC</td>
<td>1991–2005</td>
<td>32.403</td>
<td>119.536</td>
<td>1399</td>
</tr>
<tr>
<td>51004</td>
<td>NDBC</td>
<td>1984–2005</td>
<td>17.525</td>
<td>152.362</td>
<td>5082</td>
</tr>
<tr>
<td>51002</td>
<td>NDBC</td>
<td>1984–2005</td>
<td>17.094</td>
<td>157.808</td>
<td>5002</td>
</tr>
</tbody>
</table>

b Extensive data gaps in the observation set were identified and removed from the model time-series prior to comparisons; H_s and T_p data were used even in cases when directional data was not available.

A more spatially-detailed site-by-site depiction of H_s bias is presented in Fig. 5a and c. Here, the H_s bias (model – reference) at each coastal station was computed as the average difference between cumulative distributions of the model and reference data (Fig. 5). Data from the same 15 buoys presented above were used (Fig. 5a); ERAI data at the 33 coastal stations, inclusive of the 15 buoy locations, were also used (Fig. 5c). A striking difference between the biases is apparent. The multi-model mean exhibits very small bias with respect to buoy data at $\sim 35^\circ$N and underestimates H_s along the remainder of the coast. With respect to ERAI data, the multi-model mean overestimates H_s along the entire coast. This difference is related to the tendency of ERAI to underestimate larger wave heights (e.g., Stopa and Cheung, 2014), such as those represented here through limitation of the analysis to ENP winter wave conditions. Area-wide average biases are -0.15 m and $+0.32$ m for model-observation and model-ERAI comparisons, respectively. Associated RMSDs are 0.27 m and 0.51 m (Figs. 5b and d).

A similar evaluation of T_p shows a ± 1 s scatter in the bias about zero when using observation data as the reference dataset (Fig. 6). GCM-forced wave simulations underestimate T_p by ~ 1 s in comparison to ERAI. Normalized variances are at most 1.6 and average 1.3, indicating slightly greater variance in the simulated wave periods compared to observations (Table 3). Directional data is somewhat limited at the selected buoys with data available only at seven stations, located between ~ 32 and 46°N. RMSD ranges between $4 \pm 1.8^\circ$ and $9 \pm 2.2^\circ$. Normalized variances are again positive with a mean of 1.6, indicating greater variance in the simulated wave directions than in observations.

The largest discrepancies are at the northern end of the study site and surrounding the Hawaiian Islands. Generally higher errors in the north may be due to unprecisely located model output stations which were in some cases up to a couple hundred kilometers from actual buoy locations (stations marked with superscripts in Table 3). Bias surrounding the Hawaiian Islands might be related to the close proximity of these stations to ENP grid boundaries, which was one-way nested in the NWW3 grid (Fig. 1) or insufficient grid resolution for capturing wave shadowing or bathymetric change. Though 0.25° resolution does provide blocking of wave energy (note lower H_s south of Hawaii in Fig. 1 for example) and yields improved results compared to the global grid (not shown), further refinement would likely improve the results.

Though there are discrepancies between the multi-model mean and reference datasets, error statistics are within the range of other studies involving dynamical-downscaling using GCM-simulated
Table 3

Error statistics of observed and modeled winter (November through March) wave conditions. Modeled conditions represent the multi-model mean.

<table>
<thead>
<tr>
<th>NDBC ID</th>
<th>H_s</th>
<th>γ^2 (dimensionless)</th>
<th>T_p</th>
<th>γ^2 (dimensionless)</th>
<th>D_m</th>
<th>γ^2 (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46078a</td>
<td>26</td>
<td>0.8</td>
<td>0.7</td>
<td>1.2</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>46205a</td>
<td>50</td>
<td>0.7</td>
<td>0.7</td>
<td>1.0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>46075a</td>
<td>13</td>
<td>1.0</td>
<td>0.7</td>
<td>1.1</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>46208a</td>
<td>53</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>46089a</td>
<td>52</td>
<td>0.6</td>
<td>0.7</td>
<td>1.4</td>
<td>7</td>
<td>2.5</td>
</tr>
<tr>
<td>46213</td>
<td>34</td>
<td>0.6</td>
<td>0.7</td>
<td>1.5</td>
<td>9</td>
<td>2.2</td>
</tr>
<tr>
<td>46214</td>
<td>15</td>
<td>0.7</td>
<td>0.7</td>
<td>1.5</td>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>46042</td>
<td>16</td>
<td>0.8</td>
<td>0.8</td>
<td>1.5</td>
<td>7</td>
<td>2.0</td>
</tr>
<tr>
<td>46028</td>
<td>18</td>
<td>0.8</td>
<td>1.0</td>
<td>1.8</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>46069</td>
<td>17</td>
<td>0.7</td>
<td>0.7</td>
<td>1.4</td>
<td>5</td>
<td>0.7</td>
</tr>
<tr>
<td>46219</td>
<td>9</td>
<td>0.8</td>
<td>0.7</td>
<td>1.4</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>46047</td>
<td>7</td>
<td>0.9</td>
<td>1.0</td>
<td>1.6</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>51003</td>
<td>43</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>51004</td>
<td>26</td>
<td>0.7</td>
<td>0.7</td>
<td>1.1</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>51002</td>
<td>33</td>
<td>0.7</td>
<td>1.2</td>
<td>1.3</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

* Model output point located between ~100 km to ~200 km from observation buoy. ND: no data.
winds (e.g., Hemer et al., 2013a). Comparisons of results from the GCM-forced wave simulations with buoy observations and ERAI re-analysis indicate that the model is capable of producing realistic patterns in space and time, providing confidence in the ability of the model to simulate a realistic climate change signal.

4. Results

4.1. Projected changes in near-surface winds

Because changes in projected wave climate ultimately stem from changes in projected surface winds, it is useful to examine GCM-simulated wind fields. Future extreme wind conditions, represented by the 99th percentile (U^{99}), were computed for each of the GCMs and compared to the respective historical extreme wind conditions (Fig. 7). Upper quantiles represent boreal winter wind speeds (December–February) from the combined mid- and end-of-century simulations.

All projected GCM-simulated wind fields follow general patterns consistent with present or historical storm conditions. Highest over-ocean winds are in the North Pacific, followed by lower, but still substantial speeds in the Southern Hemisphere, and regional patches of increasing and decreasing U^{99} in the North Pacific (Fig. 7). Patterns are similar under both RCP 4.5 and RCP 8.5, but magnitudes differ depending on location.

All four models largely project decreasing U^{99} in the mid-Pacific equatorial region, increases in the Southern Hemisphere, and regional patches of increasing and decreasing U^{99} in the North Pacific (Fig. 7). A common region of projected U^{99}
increase during boreal winter amongst all models, except INM-CM4, is north/northwest of Australia. Specific to the ENP coast, H_s^{99} is projected to decrease along most of the U.S. mainland coast and increase north along the Canadian and southern Alaskan coasts. Considering the multi-model means (Fig. 7) and 7t), the entire Pacific basin is projected to experience decreasing U_{95}, except in the Southern Ocean, northwest of Australia, and in the vicinity of the Aleutian Low, where increases are projected. The patterns are similar for both RCP 4.5 and RCP 8.5, but more pronounced with the latter scenario. While less relevant for ENP storm climatology, the projected increase in H_s^{99} over the Arctic Ocean (Beaufort and Chukchi Seas) is noteworthy.

4.2. Projected changes in mean wave statistics throughout the ENP

Projected multi-model H_s under RCP 4.5 and RCP 8.5 (Fig. 8a, and c) exhibits patterns that are similar to historical observations (Allan and Komar, 2000; Bromirksi et al., 2005) and projected wave heights (Graham et al., 2013). Higher wave heights are projected in the northern ENP (\sim40 to 50°N) and lower wave heights to the south. A wave shadow zone is evident along the southern Alaskan coast. Projected changes are evaluated by subtracting modeled historical H_s from RCP 4.5 and RCP 8.5 H_s (Fig. 8b, and d). The pattern that emerges roughly reflects projected changes in near-surface winds (see previous section). H_s are projected to increase along the southern Alaskan coast and northwest of Hawaii, and to decrease elsewhere. An exception is along the Central American coast south of Baja, California, where H_s are projected to decrease and increase under RCP 4.5 and RCP 8.5, respectively. The stippled areas in Fig. 8 indicate where the magnitude of the multi-model mean exceeds the inter-model standard deviation. Inter-model standard deviation serves as a measure of agreement among the four projections. Agreement is high in regards to increasing H_s along the Aleutian Islands and southern Alaskan coast under RCP 4.5. Under RCP 8.5, there is also agreement, but over a much smaller region. Northeast of Hawaii, there is inter-model agreement of increasing H_s under RCP 8.5.

Projected multi-model annual mean T_p (T_p) show similar patterns under RCP 4.5 and RCP 8.5 (Fig. 9a, and c) that are consistent with previous studies using observations (Allan and Komar, 2000) and models (Hemer et al., 2013a). For both sets of simulations, T_p are shorter in the northern ENP. Within the southwestern ENP, T_p are longer (Fig. 9a, and c) and likely reflect greater contributions of wave energy from Southern Ocean swell (Alves, 2006; Semedo et al., 2011). Compared to historical wave conditions, T_p are projected to increase near Hawaii and along much of the Alaskan and Canadian coasts under RCP 4.5. The higher radiative forcing scenario, RCP 8.5, is projected to have a greater influence with respect to both magnitude and space. Of note are the southwest facing coasts of Hawaii, California, and Central Mexico, where significant increases in T_p are projected (Fig. 9b, and d).

4.3. Projected changes in extreme wave conditions along the ENP coasts

For assessing projected changes of extreme wave conditions, we turn to the hourly data extracted from the model at 33 locations along the coasts. Upper 95th and 99th percentiles of historical multi-model means show that maximum wave conditions occur at \sim52°N, offshore of British Columbia, Canada (Fig. 10a). North of \sim52°N, 95th and 99th percentile H_s (H_s^{95} and H_s^{99}, respectively) decrease with increasing latitude, and south of \sim52°N, extreme wave heights decrease with decreasing latitude along the mainland coast. H_s^{95} and H_s^{99} on the north and south sides of Hawaii are comparable to Central and Southern California, respectively. The two sites north of Hawaii are fully exposed to North Pacific storms, whereas the three sites on the south side are within the shadow zone of the Islands (Figs. 1b and 8a, and c) and thus under less influence of North Pacific storms.

Projected changes in upper quantile H_s are evaluated by subtracting historical multi-model extremes from future multi-model extremes under RCP 4.5 and RCP 8.5 (Fig. 10b, and c), H_s^{99} are projected to decrease south of \sim50°N under RCP 8.5. With the exception of the Hawaii sites, decreases are projected under RCP 4.5 as well. The greatest change is at \sim40°N, where H_s^{99} decreases of 0.45 m are projected under RCP 8.5. Larger decreases are projected under RCP 8.5 than under RCP 4.5, and inter-model agreement is greater under RCP 8.5 for H_s^{99} (Fig. 10b, and c). The sites surrounding the Hawaiian Islands are projected to experience increasing H_s^{99} under RCP 4.5, but little to no change under RCP 8.5. Extreme analysis represented with return values yields similar results, but with some notable differences (Fig. 10e–h, note the different x-axes scales). Projected changes in annual RVs are similar in both space and magnitude to projected changes in H_s^{99} (Fig. 10c, and e), but extrapolation to 50-year and 100-year RPs indicates greater decreases along the U.S. mainland coast from \sim45°N southward under RCP 8.5.
Fig. 10. Mean and extreme historical H_s and projected change in H_s along the ENP coasts under RCP 4.5 and RCP 8.5. (a) Historical mean and upper quantiles. (b, c) Projected change in upper quantile H_s. (d) Locations of points used in analysis. (e–h) The same as in (b, c), but for the annual, 20 year, 50 year, and 100 year return periods. Filled symbols in (b, c), and (e–f) indicate that the projected change is greater than the inter-model standard deviation. Note the different x-axes scales in (e–h).

Table 4

Percent change (projected – historical) in multi-model H_s north and south of $\sim 53^\circ$N.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>1 year</th>
<th>5 year</th>
<th>10 year</th>
<th>20 year</th>
<th>50 year</th>
<th>100 year</th>
<th>95th</th>
<th>99th</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP4.5-historical</td>
<td>North</td>
<td>0.0</td>
<td>2.0</td>
<td>0.6</td>
<td>-0.9</td>
<td>-1.6</td>
<td>-2.4</td>
<td>-3.4</td>
<td>-4.2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>0.1</td>
<td>1.1</td>
<td>-2.0</td>
<td>-1.9</td>
<td>-1.7</td>
<td>-1.4</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.1</td>
</tr>
<tr>
<td>RCP8.5-historical</td>
<td>North</td>
<td>-0.5</td>
<td>1.6</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>0.9</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>-1.5</td>
<td>-1.3</td>
<td>-4.1</td>
<td>-4.5</td>
<td>-4.6</td>
<td>-4.5</td>
<td>-4.4</td>
<td>-4.3</td>
<td>-2.6</td>
</tr>
</tbody>
</table>

Though south of $\sim 50^\circ$N, extreme H_s are projected to be smaller under RCP 8.5 than under RCP 4.5 compared to the historical, north of this latitude, differences between extreme H_s under RCP 4.5 and RCP 8.5 are much less and reversed. The reversal is accentuated in analysis of RVs, where changes in RVs under RCP 4.5 are more negative than changes in RVs under RCP 8.5 north of $\sim 50^\circ$N, in contrast to the southern part of the study area (Fig. 10f–h). Averaged over the region south of $\sim 50^\circ$N, extreme H_s are projected to decrease by 0.5–2% and 2.6–4.6% under RCP 4.5 and RCP 8.5, respectively (Table 4).

Because the latitudinal plots are difficult to decipher in the northern part of the study area where the coastline orientation rotates, it is helpful to view the projected changes spatially. With the exception
of two stations, H_{99} under RCP 4.5 are projected to increase along the entire southern Alaskan coast and decrease further south, with a transition zone at -50°N (Fig. 11a). The largest increases are projected for the south-facing embayment where greater increases in U_{99} are projected compared to the rest of the region. Projected increases in H_{99} are likely associated with increasing local U_{99} (warm background colors in Figs. 7j, and t and 11), as well as distant North Pacific storms providing increased swell energy.

Upper quantile incident wave directions (D_{99}) exhibit little change along most of the Gulf of Alaska coast except at the most easterly points along the Aleutian Islands, where they are projected to rotate as much as 10° clockwise under RCP 8.5 (Fig. 11b). Inter-model agreement is significant along the eastern stations giving confidence in northward and/or westward displacement of major storm tracks, which has been noted in previous work (Favre and Gershunov, 2009; Graham and Diaz, 2001; Graham et al., 2013; Yin, 2005).

Referring to projected changes in D_m throughout the remainder of the study area (Fig. 12), incident wave directions associated with H_{99} are projected to rotate clockwise at $\sim53^\circ$N by as much as 9° (note filled marker, Fig. 12b), change slightly at the mid-latitudes ($30-50^\circ$N), and rotate counter-clockwise offshore of Southern California. This latter result is somewhat counter-intuitive to what one might expect under conditions of more northerly-located storm centers (Graham et al., 2013; Mori et al., 2013). A possible explanation might be that storm energy from the historically dominant westerly and northwesterly storms will be reduced along the Southern California coast as these systems travel poleward. Simultaneously, energy contributions from Southern Ocean swell are projected to increase (Hemer et al., 2013a; Mori et al., 2010; Semedo et al., 2013; Wang and Swail, 2006), possibly resulting in a regime shift and counter-clockwise rotation of D_{99} in this region. This speculation might be better supported with the use of incident wave directions associated with peak energy, D_p, rather than mean directions; however, D_p were not available at the time of this analysis and thus more detailed analyses are left for future work. Upper quantile wave periods are projected to increase along the entire coast under both RCP 4.5 and RCP 8.5 (Fig. 13a–c). Historical T_{95}^P and T_{99}^P range from 17.6 ± 0.5 s to 19.3 ± 0.4 s and are $6-8$ s longer than historical mean T_p.

![Fig. 12](image) Projected changes in incident wave directions along the ENP coast associated with multi-model mean and extreme H_s under RCP 4.5 and RCP 8.5. (a, b) Estimated change in direction (projected – historical) plotted as differences with respect to latitude. Filled symbols indicate that the change is greater than the inter-model standard deviation. (c–e) Incident wave angles associated with H_{95}, H_{99}, and H_{99} for the historical time-period and projected RCP 4.5 and RCP 8.5 scenarios. Arrows are scaled for viewing (not magnitude) and point toward incident wave directions to enhance readability.
Fig. 13. Mean and extreme historical T_p and projected change along the ENP coasts under RCP 4.5 and RCP 8.5. (a) Historical mean and upper quantiles. (b, c) Projected change in the 95th and 99th percentile T_p. (d–f) The same as in a–c but for a ‘most-likely’ T_p as derived from a conditional relationship with H_s.

5. Summary and discussion

The findings of this study indicate that, over the course of the 21st century, mean annual wave heights will decrease along most of the North American west coast and south of Hawaii and increase north of Hawaii and within the Gulf of Alaska, under both RCP 4.5 and RCP 8.5. Mean wave periods are projected to increase along most of the ENP coast, except north of Hawaii. Extreme wave conditions exhibit a similar pattern along the mainland coast, where H_s^{95} are projected to decrease south of $\sim 50^\circ$N and increase to the north under RCP 8.5. Results for the stabilizing radiative forcing scenario, RCP 4.5, are similar but less pronounced and yield little to no change between 45°N and 50°N and south of Hawaii.

The results presented here are consistent with some earlier studies, but differ compared to others, as there is a large variance in projected change patterns amongst other climate downscaling studies.
because forcing scenarios and methods of implementation (e.g., statistical versus dynamical), analysis, and presentation of results differ between studies, it is difficult to make direct comparisons and thus only gross patterns of spatial ΔH_s are compared. Table 5 and Fig. 14 summarize the general behavior (increasing, decreasing, or no change) of projected trends for four coastal regions where starkly different patterns were obtained: Gulf of Alaska, conterminous west coasts of Canada and the U.S., and north and south of Hawaii. The study by Dobrynin et al. (2012) differs from other studies in that a pre-industrial time-period (1850–1870) was used as a reference to derive change. Results from that study projected patterns of change similar to our projections under both RCP 4.5 and RCP 8.5. Interestingly, Dobrynin et al. (2012) found increased H_s for a hindcast period of 1989–1999 and consistent with historical buoy measurements within the ENP (see Section 1).

Projected decreases in ENP H_s are prevalent throughout the dynamical downscaling studies. With the exception of the Gulf of Alaska, all of the dynamical downscaling studies project no change or decreasing ENP H_s (Table 5; Fig. 14). Starting with the first dynamical global wave climate projection, Mori et al. (2010) projected decreases in H_s throughout the ENP, except in the area immediately surrounding the Aleutian Islands. Results from Mori et al. (2010) were used by Hemer et al. (2013a) in a seminal paper that presented ensemble results from three additional dynamical downscaling
with a particular focus on the Canadian and U.S. west coasts using the ENP, but similar to the work presented here, there was a great deal of variance amongst the models (Hemer et al., 2013a).

Graham et al. (2013) conducted a dynamical downscaling study with a particular focus on the Canadian and U.S. west coasts using winds simulated by three GCMs under the 2007 IPCC A2 scenario to force WW3 on the global NW3 grid. Their results, based on projected H_{sp} and H_{pp} during January through March, exhibit strong latitudinal dependencies with 10–15% decreases in H_{sp} south of 40°–45°N (Graham et al., 2013). At higher latitudes, Graham et al. (2013) projected increases in H_{sp} and H_{pp}, although patterns were less uniform. The findings of Graham et al. (2013) closely reflect our findings, particularly with respect to changes in H_{pp} with latitude, high agreement between models projecting decreasing H_{pp} to the south, and lower confidence but general increases to the north. In this study, the transition zone was found to be 5–10° further north and H_{pp} decreases are projected to be smaller, on the order of <5%.

Considering results from earlier works and the addition of results from this study, there are a growing number of studies that tend toward the projection that \overline{H} will undergo little change or decrease along the west coasts of Canada and the U.S. during the 21st Century. Results from this study are also consistent with nearly all previous studies, which indicate decreasing H_{pp} south of Hawaii. North of Hawaii and within the Gulf of Alaska, model results show more disagreement and future conditions are more uncertain.

6. Conclusions

Near-surface winds simulated by four separate CMIP5 GCMs (BCC-CSM1.1, INM-CM4, MIROC5, and GFDL-ESM2M) under two climate change scenarios, RCP 4.5 and RCP 8.5, were used as inputs to the WaveWatch III numerical wave model. Wave simulations were completed on the NW3 grid (1° × 1.25°) and a one-way coupled ENP grid (0.25° × 0.25°). Though the entire globe was included in simulations, the focus of this study was the ENP coastline (south coast of Alaska, west coast of Canada and the U.S., and Hawaii). RCP 4.5 and RCP 8.5 characterize global radiative forcing by 2100 relative to the pre-industrial (1850) period and represent intermediate and high radiative forcing pathways, respectively. The wind-wave climate was modeled for three time-periods: historical (1976–2005), mid-century (2026–2045), and end-of-century (2081–2100). All results presented use the combined mid- and end-of-century time-periods for a single representation of the future. The overall aim of this study was to evaluate possible changes in the wave climate along the coasts within the ENP in response to climate change. The primary findings are as follows:

- The projected multi-model means of near-surface wind speeds are similar under both RCP 4.5 and RCP 8.5 within the Pacific Ocean basin: increases in wind speed in the northern and southern storm regions and small regions of decreases or no change in the remaining parts of the Pacific.
- Mean annual wave heights are projected to increase along the southern Alaska coast and northeast of Hawaii by >0.5 m and to decrease elsewhere. Increases in mean annual wave periods of 1–2 s for the mainland coast and >2 s south of Hawaii are projected. Inter-model agreement is high over approximately half the coastline.
- Extreme wave heights, represented by upper quantiles and extreme return period estimates, are projected to decrease along ENP coasts south of ~50°N. Projections under RCP 8.5 consistently yield greater changes compared to projections under RCP 4.5, the stabilization scenario, and indicate that the wave climate is responding to the climate change signal. North of ~50°N and within the Gulf of Alaska, results suggest weak, but increasing extreme wave heights. Upper quantile peak periods are projected to increase along the entire study area. Inter-model confidence is high south of ~45°N under both RCP 4.5 and RCP 8.5, though projected changes are small (~0.5 s).
- Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. It is speculated that the clockwise rotation near the Aleutian Islands is in response to a northward and/or westward displacement of storm tracks and that the counterclockwise rotation offshore of Southern California is a reflection of decreasing wave energy from North Pacific-generated storms and the concurrent increase of Southern Ocean energy.

Projected changes to ENP wave conditions are conceptually similar to several previous works that have evaluated the response of waves to climate change: decreasing annual mean wave heights along most of the coast except Alaska (Dobrynin et al., 2012; Graham et al., 2013; Hemer et al., 2013a; Mori et al., 2013, 2010); increasing annual mean peak or mean periods (Hemer et al., 2013a); increasing extreme wave heights in the Gulf of Alaska and decreasing extreme wave heights elsewhere (Dobrynin et al., 2012; Fan et al., 2013; Graham et al., 2013). Yet, other studies have noted different patterns, either in projected mean or extreme wave heights, peak periods, or mean periods (Caires et al., 2006; Hemer et al., 2013; Wang et al., 2014; Wang and Swail, 2006). Some studies show similarities with one parameter, but not another. To address these differences and to try to reduce uncertainty, a larger suite of wave climate projections using atmospheric forcing from different climate models, from multiple runs from each of these models, and from different radiative pathways is needed. In an effort to support a framework that enables systematic validation, inter-comparison, and improved estimates and uncertainty of wave projections, the Coordinated Ocean Wave Climate Project (COWCLIP; Hemer et al., 2012) was established. The global and regional dynamical wave downscaling results of this study contribute to the COWCLIP ensemble effort (Hemer et al., in this issue).

Acknowledgments

We thank Jorge Perez of IH Cantabria for assistance in model evaluation. We also thank Sean Vitousek and Joseph Long of USGS and two anonymous reviewers who provided helpful constructive suggestions and criticisms. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. This work was funded by the USGS Coastal and Marine Geology Program.

References

