AN ABSTRACT OF THE THESIS OF

Nancy Ann Fredricks for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on December 4, 1992. Title: Population Biology of Rare Mariposa Lilies (Calochortus: LILIACEAE) Endemic to Serpentine Soils in Southwestern Oregon.

1
Signature redacted for $\overparen{\text { privacy }}$.
Abstract approved:
Kenton L. Chambers
Population dynamics, plant communities, and abiotic environments of three narrowly endemic, allopatric mariposa lilies (Calochortus Pursh) are described and compared. All were restricted to ultramafic soils in southwestern Oregon with high concentrations of nickel, zinc, and chromium, and low calcium to magnesium ratios. Soils inhabited by the three species differed significantly ($\mathrm{p}<0.0001$) in pH and in concentrations of nickel, cadmium, manganese, magnesium, potassium, vanadium, molybdenum, strontium, and phosphorus.

During a nine-year demographic study of Calochortus howellii Watson, reproduction, recruitment, and mortality were evaluated, and possible limiting factors and causes of rarity were investigated. Reproduction fluctuates widely from year to year, with bud production correlated with spring (February to May) precipitation ($\mathrm{r}^{2}=0.80, \mathrm{n}=9, \mathrm{p}=0.01$). Recruitment and mortality were low and episodic, averaging 3.0% and 2.0%, respectively over 7 years. Capsule production averaged 3.8% during 1987 to 1991 , declining from 17.8% the previous 4 years. Growth rates, particularly of seedlings, were extremely slow. Using sizeclassified transition matrices, changes in population structure and stability were assessed. Three methods of classifying data for transition matrix analysis yielded similar results in equilibrium population growth rates; based on all analyses, the study population was stable ($\lambda=1.0$).

Taxonomically very distinct, yet only recently discovered, C. umpquaensis Fredricks and C. coxii Godfrey \& Callahan are serpentine endemics known from limited distributions. Despite its narrow edaphic restriction, C. umpquaensis occurs
locally within a wide range of habitats from meadows to forests. Based on a fouryear study of C. umpquaensis, bud production was highest, plants were most dense, and on average were larger in the ecotone habitat. Equilibrium population growth rates were slightly lower in the meadow habitat. Low capsule production and seedset, low recruitment, high mortality, and declining population trends ($\lambda=0.9$) indicate that C. coxii should be carefully monitored. The probability of local extinction of this taxon is high, if the years studied are typical.

Population Biology of Rare Mariposa Lilies (Calochortus: LILIACEAE) Endemic to Serpentine Soils in Southwestern Oregon

by

Nancy Ann Fredricks

A THESIS

submitted to

Oregon State University
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGEMENTS

I wish to extend my sincere thanks to the members of my graduate committee. Dr. Kenton Chambers has been a constant source of inspiration and guidance over the decade he has served as my major professor. Dr. Mark Wilson provided careful critiques of my manuscripts and kindly modified his computer program DEMOG for my use. Dr. C. David McIntire, Dr. Stella Coakley, and Dr. Paul Doescher provided stimulating discussions, valuable input, and were always a pleasure to work with.

The Oregon Department of Agriculture Plant Conservation Biology Program, The Hardman Foundation, The Mazamas, Oregon State University Herbarium, and The Native Plant Society of Oregon assisted with the funding of this research. Gary Fredricks served as devoted data collector and photographer throughout the ten-year study and provided helpful advice and discussion. Russ Holmes, Patty Turcotte and Phyllis Baxter also assisted with data collection.

The faculty in the Departments of Botany at Iowa State and Botany and Plant Pathology at Oregon State have provided a solid foundation to my career through coursework and discussion. I especially acknowledge the inspirational Dr. Lois Tiffany and Dr. Don Farrar for their long-standing interest in my career and support to pursue graduate school. Appreciation is extended to the Department of Botany and Plant Pathology for financial support through teaching and Herbarium assistantships; these opportunities contributed immensely to my experience at Oregon State.

Over the years, many friends and fellow graduate students have provided helpful discussion and expressed interest in my research: in particular, I would like to express my gratitude to Thomas Kaye, Dr. Robert Meinke, Dr. Edward Guerrant, Dr. Joseph Antos, Dr. Geraldine Allen, Katherine Marsden, Dr. Mark Chatfield and Elizabeth Chatfield. I also thank my Forest Service friends and the Wind River District staff for their support over the last three years.

My parents, Edgar and Ruth Ross, and my sister, Susan Ross, have been unfailing in their support throughout this and all other endeavors. I thank them for their enthusiasm, encouragement, and thoughtfulness.

Finally, this undertaking would not have been possible without Gary Fredricks: it is to him this work is dedicated.

TABLE OF CONTENTS

Chapter 1 Introduction 1
Chapter 2 The ecology and environment of three serpentine-inhabiting mariposa lilies of southwestern Oregon 6
ABSTRACT 6
INTRODUCTION 7
Ecological investigations of serpentine plant communities of southwestern Oregon 7
Geology and soils 9
Range and habitat 11
METHODS 15
Plant community data collection 15
Plant community data analysis 16
Soil sampling and analysis 16
Precipitation data 17
RESULTS 18
Community ecology of rare mariposa lilies 18
Calchortus umpquaensis 18
Calchortus coxii. 29
Correlations between soils and distribution 29
Calochortus howellii 29
Calochortus umpquaensis and C. coxii 33
Soil analysis 33
Heavy metals and macronutrients 34
Precipitation 38
Precipitation and Calochortus howellii 44
Precipitation and Calochortus umpquaensis and C. coxii 44
DISCUSSION 46
Similarities and differences in community structure among the three species 46
The abiotic environment and its relation to the distribution and reproduction of southwestern Oregon mariposa lilies 47
LITERATURE CITED 49
Chapter 3 A nine-year study of demography and reproduction in Calochortus howellii, a rare serpentine lily 54
ABSTRACT 54
INTRODUCTION 55
Range and habitat of C. howellii 56
Description of the study site 57
METHODS 58
Monitoring methods 58
Data analysis 60
Capsule and seed collection and analysis 62
RESULTS AND DISCUSSION 63
Life history of C. howellii 63
Germination 63
Recruitment of seedlings 63
Juveniles 74
Accounting for new juveniles and adults 74
Reproduction 75
Correlations between precipitation and reproduction 83
Mortality 87
Transition matrix modeling of C. howellii: A seven-year study 88
The model and its limitations 88
Comparison of different size-classifications 89
Analysis using empirically derived categories 89
Analysis using the raw data 99
Analysis using theoretically derived categories. 99
Sensitivity analysis 103
Elasticities 105
Practical application of the model, conclusions, and recommendations 108
LITERATURE CITED 112
Chapter 4 Comparative demography of rare mariposa lilies (Calochortus: Liliaceae) endemic to serpentine soils in southwestern Oregon 115
ABSTRACT 115
INTRODUCTION 116
METHODS 118
RESULTS 122
C. umpquaensis field studies: testing the initial hypothesis 122
Differences in reproduction in 1988. 122
Population Structure in 1988. 122
Preliminary results from long-term trend study 130
Reproductive Biology of C. umpquaensis. 130
Population biology of C. umpquaensis. 133
Population and reproductive biology of C. coxii. 138
Transition Matrix Analysis for C. umpquaensis and C. coxii 142
DISCUSSION 149
Habitat analysis for Calochortus umpquaensis 149
Limiting factors in C. coxii. 151
Evaluation of population stability for C. umpquaensis and C. coxii. 151
Evaluation of methods and recommendations for continued study 155
LITERATURE CITED 156
BIBLIOGRAPHY 157
APPENDICES 164

LIST OF FIGURES

Figure Page
II.1. Distribution of Calochortus howellii, C. umpquaensis, 13 and C. coxii, with serpentine areas delineated and weather stations identified.
II.2. Annual precipitation at Cave Junction weather station 39 for 1962 to 1991.
II.3. Annual precipitation at Little River weather station 40 for 1964 to 1991.
II.4. Annual precipitation at Riddle weather station for 41 1942 to 1991.
II.5. Annual precipitation at Sexton Summit weather station 42 for 1942 to 1991.
I.6. Average monthly precipitation (1978-1991) for Cave 43 Junction, Riddle, and Little River weather stations.
II.7. Precipitation (Feb-May) at Little River weather 45. station versus flowering for Calochortus umpquaensis.
III.1. Locations of permanent plots in Mariposa Meadow 59 study area, Josephine Co., Oregon.
III.2. Climate diagram illustrating mean precipitation 64 and temperature for Cave Junction weather station, based on data for 1963-1987.
III.3. Frequency distribution and reproductive stages 70 attained by Calochortus howellii based on leaf width for 1986.
III.4. Frequency distribution and reproductive stages 71 attained by Calochortus howellii based on leaf width for 1987.
III.5. Frequency distribution and reproductive stages 72 attained by Calochortus howellii based on leaf width for 1989.
III.6. Capsule length versus seeds produced per capsule 80 for Calochortus howellii, 1987 through 1991.
III.7. Reproductive stages attained by Calochortus 82 howellii for 1983 through 1991.
III.8. Annual bimonthly precipitation at Cave Junction 84 weather station for 1981-1991.
III.9. Spring precipitation (February-May) at Cave 85 Junction weather station versus bud production for Calochortus howellii for 1983-1991.
III.10. Comparison of lambda values for analysis of 98 Calochortus howellii plot data using various size-classifications.
III.11. Comparison of lambda values for analysis of 102 plot data from Mariposa Meadow using three different size-classifications.
IV.1. Flowering by habitat type for Calochortus 124 umpquaensis in 1988.
IV.2. Leaf width frequency distributions for Calochortus 126
umpquaensis in ecotone habitat at Ace Williams Mountain, Thunder Mountain Road, and Little River Road sites based on data collected in 1988.
IV.3. Leaf width frequency distributions for Calochortus 127 umpquaensis in meadow habitat for Ace Williams Mountain and Standley Road sites based on data collected in 1988.
IV.4. Leaf width frequency distributions for Calochortus 128 umpquaensis in forest habitat for Ace Williams Mountain and Watson Mountain sites based on data collected in 1988.
IV.5. Leaf width frequency distributions for Calochortus 129
umpquaensis by habitat illustrating flowering status, based on data collected in 1988.
IV.6. Reproductive stages attained by Calochortus 131 umpquaensis by habitat type for 1989 through 1991.
IV.7. Reproductive stages attained by Calochortus 134 umpquaensis in ecotone habitat for 1989 through 1991, by leaf width.
IV.8. Reproductive stages attained by Calochortus 135 umpquaensis in meadow habitat for 1989 through 1991, by leaf width.
IV.9. Reproductive stages attained by Calochortus 136 umpquaensis in forest habitat for 1989 through 1991, by leaf width.
IV.10. Reproductive stages attained by Calochortus coxii 140 by site for 1989 through 1991.
IV.11. Leaf width frequency distributions Calochortus coxii 141 by site for 1989 through 1991.
IV.12. Reproductive stages attained by Calochortus coxil for 143 1989 through 1991, by leaf width.

LIST OF TABLES

Table Page
1I.1. Classification and description of soil series on which Calochortus howellii, C. coxii, and C. umpquaensis occur. 12
II.2. Mean cover and frequency for associated species of 19 Calochortus umpquaensis based on 1988 transects in ecotone habitats.
11.3. Mean cover and frequency for associated species of 21 Calochortus umpquaensis based on 1988 transects in meadow habitats.
11.4. Mean cover and frequency for associated species of 23 Calochortus umpquaensis based on 1988 transects in forest habitats.
1I.5. Associated species of Calochortus umpquaensis within 25 permanent plots established at Ace Williams Mt. in ecotone, forest, and meadow habitats, with mean cover and frequency summarized by habitat.
II.6. Margalef diversity indices for habitats of 30 Calochortus umpquaensis and C. coxii.
II.7. Associated species of Calochortus coxii within permanent 31 plots established at two sites, Smith and Bilger Creek Rd., with mean cover and frequency summarized by site.
II.8. Elemental analyses for soils inhabited by Calochortus 35 howellii, C. coxii, and C. umpquaensis, ranked by species, sample depth, and location.
II.9. Soil colors for samples collected near Calochortus 37
howellii, C. umpquaensis, and C. coxii.
III.1a. Permanent plot data for Calochortus howellii, summarized 65 by plot for 1985 through 1991.
III.1b. Permanent plot data for Calochortus howellii, summarized 66 by plot for 1985 through 1991, in percent.
III.2a. Summary of data collected within all five plots at 68 Mariposa Meadow for Calochortus howellii between 1983 and 1991, including number of plants producing buds, flowers, and capsules, recruitment, and mortality.
III.2b. Summary of data collected within all five plots at 69 Mariposa Meadow for Calochortus howellii between 1983 and 1991, including percentage of plants producing buds, flowers, and capsules, recruitment, and mortality.
III.3a. Fate of 1 mm wide Calochortus howellii seedlings in width 73 recruited in 1987, 1988, and 1989 after 2 to 4 years.
III.3b. Fate of Calochortus howellii plants which had leaf widths 73 of 4 mm and 5 mm in 1985, 1986, or 1987 and their change in size in 1991.
III.4. Flower-bud formation in Calochortus howellii in relation 76 to previous years' reproductive fate.
III.5a. Seed and capsule analysis for Calochortus howellii based 77 on capsules collected outside of permanent plots.
III.5b. Analysis of effect of capsule position on length and seed 78 production for Calochortus howellii, 1991 and 1989.
III.6. Pearson correlation coefficients for Calochortus howellii 79 seed number and seed-set versus capsule length.
III.7. Pearson correlation coefficients for monthly and seasonal 86 precipitation versus bud, flower, and capsule production, mortality, and recruitment of Calochortus howellii.
III.8. Comparison of lambda values for analysis of Calochortus 90 howellii data from Mariposa Meadow by plot (1985-1991).
III.9. Comparison of lambda values for analysis of Calochortus 91 howellii data from Mariposa Meadow (1985-1991) using various approaches to size-category selection.
III.10a-f. Size-classified transition matrices for 1985-86 (a), 92 1986-1987 (b), 1987-1988 (c), 1988-1989 (d), 1989-1990 (e), and 1990-1991 (f), by plot, based on analysis using three empirically-selected categories.
III.11. Transition matrices for 1985-86, 1986-87, 1987-88, 1988-89, 100 1989-90, and 1990-91, based on actual leaf widths.
III.12. Size-classified transition matrices for 1985-86, 1986-87, 104 1987-88, 1988-89, 1989-90, and 1990-91 based on theoretically determined leaf-width categories, calculated using Moloney's algorithm.
III.13. Sensitivity values for Calochortus howellii population 106 at Mariposa Meadow, based on size-classified transition matrix analysis using three empirically selected categories.
III.14. Elasticity values for Calochortus howellii population at 107
Mariposa Meadow, based on size-classified transition matrix analysis using three empirically selected categories.
IV.1. Summary data for 1988 study of Calochortus umpquaensis by 123 site, habitat, and transect.
IV.2a. Summary of permanent plot data from Ace Williams Mountain 132 for Calochortus umpquaensis and C. coxii plots for 1989 through 1991.
IV.2b. Summary of permanent plot data from Smith and Bilger Creek 132 Road sites collected in 1989-1991.
IV.3. Change in leaf width after two years for small plants of 137
Calochortus umpquaensis by habitat and C. coxii.
IV.4. Microhabitat analysis for Calochortus umpquaensis by 139 habitat and C. coxii based on data collected from permanent plots.
IV.5. Size-classified transition matrix analysis by habitat 145 for Calochortus umpquaensis for two transition years: 1989-1990 and 1990-1991.
IV.6. Size-classified transition matrix analysis by habitat 146 for Calochortus coxii for two transition years: 1989-1990 and 1990-1991.
IV.7. Summary of lambda values from transition matrix 147 analysis by habitat for Calochortus umpquaensis and by site for C. coxii.
IV.8. Differences between stable and initial stage148 distributions (indices of dissimilarity) for Calochortus umpquaensis and C. coxii.

POPULATION BIOLOGY OF RARE MARIPOSA LILIES (CALOCHORTUS: LILIACEAE) ENDEMIC TO SERPENTINE SOILS IN SOUTHWESTERN OREGON

CHAPTER 1

INTRODUCTION

While searching for a suitable graduate research project in 1982, I encountered the following reference to Howell's mariposa lily: "C. howellii...belongs to a section with other uncommon species..and research exploring this group's systematic and ecological relationships may prove useful in deciphering the causes of specific rarity" (Meinke 1982). Over the next decade, this poorly known taxon became the focus of research specifically to examine its relationships with certain allied taxa and to evaluate various possible causes of its rarity.

In 1983, a long-term study was initiated within one of the largest known populations of C. howellii Watson. The goal was to monitor population trends of this species, which is a federal candidate for endangered species listing. Since this study began, closely related taxa have been discovered in southwestern Oregon (Fredricks 1989, Godfrey and Callahan 1988). Because of their limited distribution, restriction to serpentine-derived soils, and documented threats to population viability, these taxa were also considered for federal and state endangered species listing. In order to compare these newly described species, study population trends, and identify possible limiting factors contributing to rarity, long-term studies were initiated for C. umpquaensis Fredricks and C. coxii Godfrey and Callahan in 1989.

While the taxonomy and morphology of the genus have received attention since the turn of the century (Beal 1939, 1941, Beal and Ownbey 1943, Cave 1941, Hoover 1944, Ness 1989, Ownbey 1940, Painter 1911, Purdy 1901), until recently little has been published on the ecology of mariposa lilies. Although they make poor research subjects in the laboratory due to their slow growth and difficult propagation, their simple morphology, large entomophilous flowers and often
unique habitats make them highly suitable for ecological investigations in situ. Fiedler (1985a, 1985b, 1987) studied five species of Calochortus, including three serpentine endemics, with respect to their demography and accumulation of heavy metals. The reproductive ecology of Calochortus has been the subject of several graduate studies; eight Californian species were investigated by Jokerst (1981), while Holtsford (1985) focused on C. leichtlinii.

The recent proliferation of literature in the area of conservation biology has emphasized both the need to protect unique habitats and to understand the autecology of rare species. Demographic studies of rare plants, essential in documenting population trends, are finally being undertaken. Some have involved the application of stage-classified transition matrix models (Fiedler 1987;

Kuchenreuther 1990; Menges 1986, 1990), using approaches similar to analyses of rare animals including spotted owls and grizzly bears.

Because of the importance of documenting trends of rare species, transition matrix models are receiving attention by resource managers as well as scientists. They are being recognized and applied as a useful tool in predicting population trends, evaluating population stability; and identifying life history stages which may be limiting to rare taxa. Because information on many aspects of the life cycle are incorporated into these models, they provide effective frameworks for identifying bottlenecks to population growth. Analyses can be conducted which evaluate the sensitivity of various stages to changes in the environment. By incorporating stochasticity into these models, extinction probabilities under defined conditions can be calculated.

In Chapter 2, the ecology and environment of southwestern Oregon serpentine-inhabiting mariposa lilies will be described. Geology and soils, of crucial importance in defining their distribution, will be discussed and the relationships between precipitation and reproduction considered. The range and habitat of C. howellii, C. umpquaensis, and C. coxii are introduced in Chapter 2.

In Chapter 3, the nine-year studies of demography and reproduction in C. howellii are detailed, and the life history of this species described. The size-
classified transition matrix approach is applied to investigate population trends within five large plots, at a site referred to as Mariposa Meadow. By comparing several different size classifications and methods for calculating them, the robustness of the model is evaluated.

Chapter 4 compares the recently discovered C. umpquaensis and C. coxii to other mariposa lilies, including C. howellii. Because C. umpquaensis occurs along a continuum of habitats which differ in available resources, comparisons of reproduction, recruitment, growth, and mortality provide insights into factors limiting distribution. Analysis of demographic data using size-classified transition matrix models allow evaluation of population stability in forest, meadow, and ecotonal habitats. Two populations of C. coxii, a species primarily inhabiting ecotonal areas, are compared.

While the specific causes of rarity may continue to elude us, we now have a basic understanding of the life history of C. howellii and its recently discovered congeners. Yet the longer and more closely we study the interactions of co-existing members of the planet's biota, be they bottle-nosed dolphins, gray wolves, or rare mariposa lilies, the more we appreciate their complexity. This dissertation marks a preliminary step in our attempts at a scientific analysis of one such example.

LITERATURE CITED

Beal, J.M. 1939. Cytological studies in relation to the classification of the genus Calochortus. Bot. Gaz. 100:528-547.
\qquad . 1941. Cytological studies in relation to the classification of the genus Calochortus. II. Bot. Gaz. 102:810-811
\qquad . and M. Ownbey. 1943. Cytological studies in relation to the classification of the genus Calochortus. III. Bot. Gaz. 104:553-562.

Cave, M. 1970. Chromosomes of the California Liliaceae. Univ. Calif. Publ. in Bot. 57:1-58.

Fiedler, P.L. 1985a. An investigation into the nature of rarity in the genus Calochortus Pursh (Liliaceae). Ph.D. thesis, Univ. of California, Berkeley.
\qquad . 1985b. Heavy metal accumulation and the nature of edaphic endemism in the genus Calochortus (Liliaceae). Amer. J. Bot. 72:1712-1718.
\qquad . 1987. Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). J. Ecol. 75:977-995.

Fredricks, N.A. 1989. Morphological comparision of Calochortus howellii and a new species from southwestern Oregon, C. umpquaensis (Liliaceae). Syst. Bot. 14:7-15.

Godfrey, M.R. and F.T. Callahan. 1988. A new Calochortus from Douglas County, Oregon. Phytologia 65:216-219.

Holtsford, T.P. 1985. Nonfruiting hermaphroditic flowers of Calochortus leichtlinii (Liliaceae): Potential reproductive functions. Amer. J. Bot. 72:1687-1694.

Hoover, R.F. 1944. Mariposa, A neglected genus. Leafl. W. Bot. 4:1-5.
Jokerst, J.D. 1981. Reproductive strategies of Calochortus. M.A. Thesis, California State Univ., Chico.

Kuchenreuther, M.A. 1990. Population structure and dynamics of the threatened perennial Aconitum noveboracence. Bull. Ecol. Soc. Amer. Supplement 71:220-221.

Meinke, R.J. 1982. Threatened and endangered vascular plants of Oregon: An illustrated guide. United States Fish and Wildlife Service, Region 1, Portland, OR.

Menges, E.S. 1986. Predicting the future of rare plant populations: demographic monitoring and modeling. Nat. Areas J. 6:13-25.
___ 1990. Population viability analysis for an endangered plant. Conservation Biol. 4:52-62.

Ness, B. 1989. Seed morphology and taxonomic relationships in Calochortus (Liliaceae). Syst. Bot. 14:495-505.

Ownbey, M. 1940. A monograph of the genus Calochortus. Ann. Missouri Bot. Gard. 27:371-560.

Painter, J.H. 1911. A revision of the subgenus Cyclobothra of the genus Calochortus. Contr. U.S. Natl. Herb. 13:343-350.

Purdy, C. 1901. A revision of the genus Calochortus. Proc. Calif. Acad. Sci. 2:107-149.

CHAPTER 2

THE ECOLOGY AND ENVIRONMENT OF THREE SERPENTINE-INHABITING MARIPOSA LILIES OF SOUTHWESTERN OREGON

Abstract

The plant communities and abiotic environments of three narrowly endemic, allopatric mariposa lilies (Calochortus Pursh) are described and compared. Distribution patterns differ: C. howellii and C. umpquaensis are locally abundant, with restricted ranges, while C. coxii is not only restricted geographically but is locally sparse. Two species, Ranunculus occidentalis and Danthonia californica, showed high indices of association with all species in all habitats. Calochortus umpquaensis occurs over the widest range of habitats, from forest to meadow, while C. coxii inhabits transitional areas. Calochortus howellii is restricted to more heavily serpentinized soils, but soil analyses for all species confirmed their ultramafic derivation, including high concentrations of heavy metals (e.g. nickel, zinc, and chromium) and low calcium to magnesium ratios. Soils inhabited by the three species differed significantly ($\mathrm{p}>0.0001$) in pH and in concentrations of nickel, cadmium, manganese, magnesium, potassium, vanadium, molybdenum, strontium, and phosphorus. Precipitation patterns varied within the range of the three species and among species. Precipitation was lowest where C. howellii populations are smallest. Correlations between February to May precipitation and bud and flower production supported casual observations of higher frequency of flowering during years when spring seasons were moist ($\mathrm{r}^{2}=0.80$ for C. howellii buds, $\mathrm{n}=9, \mathrm{p}=0.01 ; \mathrm{r}^{2}=0.99$ for C. umpquaensis flowers, $\mathrm{n}=3, \mathrm{p}=0.02$).

INTRODUCTION

Of the approximately 60 currently recognized species in the western North American genus Calochortus, 17 taxa are currently candidates for federal listing under the Endangered Species Act (United States Department of Interior 1990). Many of these species are narrowly restricted edaphic endemics. At least 15 species inhabit ultramafic soils, with half of these restricted to them (Fiedler 1986). Recently, two new species endemic to ultramafic soils have been described (Fredricks 1989a, Godfrey and Callahan 1988). The relationship of these species, C. umpquaensis and C. coxii, plus an additional rare relative, C. howellii, to their environment was the subject of this investigation. These studies complement demographic research described in Chapters 3 and 4.

The goal of this study was two-fold. First, the plant communities inhabited by C. howellii, C. umpquaensis, and C. coxii are described and possible indicator plants, which have a high degree of association with these species, are identified. Second, abiotic factors, including soils and local precipitation are compared and correlations between these factors and distribution and reproduction are discussed. In sum, this investigation seeks to compare the biotic and abiotic environments of these rare mariposa lilies.

Ecological investigations of serpentine plant communities of southwestern Oregon

The Siskiyou Mountains comprise the northern-most range of the Klamath Mountains, straddling the border between Oregon and California. Despite the diverse and fascinating flora of the Siskiyou Mountains, the region has been rather poorly studied botanically and no current floristic treatment is available for the Oregon Siskiyous. An estimated 25% of the Klamath flora is endemic (Denton 1979) and 281 taxa in 42 families are restricted to northwestern California and southwestern Oregon (Smith and Sawyer 1988).

Whittaker concluded in his classic studies of community ecology of the Siskiyou Mountains $(1954,1960,1961)$ that the serpentine flora is climax, and that
trends in species diversity are based on substrate, with forb diversity higher on serpentine. Dramatic changes in vegetation occur along moisture gradients at low elevations on serpentine and diorite, and mesic broadleaf and sclerophyllous trees are absent on serpentine. Shrubs influence the distribution of herbaceous species in conifer woodlands occurring on serpentine-derived soils (Wilson 1988).

Many investigators have sought to define the soil-chemistry mechanisms responsible for the sharp vegetational gradients between serpentine and nonserpentine communities. Based on 36 transects intersecting this transition, heavy metals (including magnesium, chromium, and nickel) were found to contribute to serpentine soil infertility on 21 serpentine outcrops southern Oregon (White 1971). Legumes, in particular, were intolerant of these elements.

In some studies, descriptions of the serpentine communities have been incidental to larger landscape-scale investigations. Atzet (1979) described and classified the forests of the Illinois River drainage, and he has since expanded his preliminary classification to the Siskiyou National Forest (Atzet and Wheeler 1984). A classification for the central Siskiyous that is amenable to remote sensing analysis has been developed (Frenkel and Kiilsgaard 1984). Vegetation along the Illinois River has been classified and mapped (Emmingham 1973). Autecological studies, which include varying degrees of community analysis have been undertaken on the Klamath endemic Chamaecyparis lawsoniana (Hawk 1978, Zobel and Hawk 1980), and Siskiyou endemic Phacelia capitata (Shelly 1985, 1989).

While a paucity of recent literature exists on the plants of the Siskiyou Mountains, the flora of serpentine communities of the adjacent southern Oregon Cascade Range to the north is even more poorly documented. Ecological studies of serpentine areas in Douglas, Jackson, and northern Josephine County have not been published. One serpentine plant association was described for the southern Oregon Cascade Mountain province (Atzet and McCrimmon 1990) and a preliminary floristic survey of Douglas County was prepared by Hopkins and coworkers (1986). The juxtaposition of the Siskiyou and Cascade ranges, the eastern and western Cascade influences, and the ultramafic intrusions which characterize this area
contribute to high floristic diversity, which includes at least two endemic mariposa lilies and numerous disjunct taxa.

Geology and soils

The word "serpentine" has been widely used to refer to rock, soil, and vegetation of ultramafic affinity. The common usage of this term as synonymous with ultramafic appears throughout the literature (Brooks 1987, Kruckeberg 1984) and is followed here, after the technical distinction is made.

In the strict sense, ultramafic refers to dark-colored, igneous rocks containing greater than 70% ferromagnesian minerals (typically olivine and orthopyroxene) with less than 45% silica (Brooks 1987). Alteration of olivine and orthopyroxene results in the formation of serpentine-group minerals $\left(\mathrm{Mg}_{3} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}\right)$. These secondary minerals include chrysotile, antigorite, and lizardite. The conversion of olivine to serpentine (serpentinization) involves hydration and heat. The altered dark greenish rocks, containing serpentine-group minerals, are referred to as serpentinite and may contain varying degrees of olivine, pyroxene, hornblende, mica, garnet, and iron oxides. Peridotite is the ultramafic parent rock and includes harzburgite, dunite, (and pyroxenite) which differ in color and texture.

Ultramafics occur worldwide and are common in southwestern Oregon, where approximately 1200 square kilometers of serpentinitic ultramafic areas occur (Rai et al. 1970, Wagner and Ramp 1958, Walker and King 1969), typically in belts oriented along fault zones in metamorphic areas. Geologic maps delineating ultramafic areas in southwestern Oregon have been prepared by Beaulieu and Ramp (1972), Ramp (1986), Walker and King (1969), and Wells and Peck (1961).

These regions are noted for their unusual floras and high degree of endemism. Plants that inhabit ultramafic soils are often morphologically and physiologically specialized (Brooks 1987, Kruckeberg 1984). Morphological tendencies include shrubby growth form, stunting, greater development of root system, and increased glaucousness. A physiological feature includes the
accumulation of nickel and other metals within plant tissues and organs. In the extreme case of Sebertia acuminata, a tree native to New Caledonia, hyperaccumulation results in blue-colored sap containing up to 11.2% nickel in a nickel-citrate complex (Brooks 1987).

Nickel accumulation was also noted in serpentine-inhabiting Calochortus howellii, C. tolmiei, and C. uniflorus by Reeves and coworkers (1983). Fiedler (1985) reported high nickel and copper concentrations in C. pulchellus, C. obispoensis, C. tiburonesis, C. albus, and C. striatus. Concentrations of these elements are low for the soils inhabited by the latter two species, which are not serpentine-endemics.

Fiedler (1985) hypothesizes that heavy metal tolerance in Calochortus may be an exadaptation, which evolved early and has been repeatedly lost throughout the clade, rather than an evolutionary response by selected species to life on the ultramafic substrate. This suggestion seems plausible given the high degree of serpentine endemism and numbers of taxa occurring both on and off serpentine. Serpentine habitats clearly provide fertile ground for speciation within this genus, despite the actual infertility of their soils.

Physical and chemical properties of serpentine soils that may cause infertility include restricted rooting depth, stoniness, low levels of molybdenum, paucity of soil micro-organisms, low levels of available macronutrients (nitrogen, potassium, phosphorus and calcium), high levels of nickel, chromium, zinc, and magnesium, and low calcium to magnesium ratios (Rai et al. 1970). While some studies may seem to implicate a specific cause for the exclusion of many species on these specialized soils, a multiple-factor explanation, including physical, chemical, and biological causes is better supported (Kruckeberg 1987). Most research shows that in cultivation, serpentine endemics grow robustly on nọn-serpentine soil. Competition and the presence of pathogenic fungi not found on serpentine are most commonly suggested as factors limiting plants to serpentine soils.

Serpentine soils in southwestern Oregon fall into three soil orders: Inceptisols (embryonic soils with few diagnostic features), Alfisols (forest soils
with high base status), and Mollisols (grassland soils). A classification and description of soil series on which Oregon serpentine-inhabiting mariposa lilies occur is provided in Table II.1. As a result of the variation in degree of weathering among serpentine soils, there is wide range in the amount and kind of exchangeable cation and exchange capacity (Rai et al. 1970). They are typically reddish-brown, shallow, very stony or cobbly, fine textured, and well drained clay soils. Smectite (montmorillinite group) clays, which crack extensively, are typically formed when ultramafic rocks weather.

Range and habitat

Intensive field surveys for these species have been conducted by the author and others between 1983 and 1992 (Fredricks 1986, 1988, 1989b, 1989c). Their distributions are allopatric (Figure II.1). Calochortus howellii is restricted to the Illinois River drainage of the Siskiyou Mountains of Josephine County, Oregon. Calochortus umpquaensis is known from disjunct populations spanning 80 km , from Ace Williams Mountain near the town of Glide, southwest to Sexton Mountain. Calochortus coxii populations occur within a narrow 50 km -long band of serpentinite running northeast to southwest of the town of Myrtle Creek. Known individual populations span 16 km .

Calochortus howellii inhabits several community types (Fredricks 1986, 1988). The higher elevation sites are dominated by Pinus jeffreyi, Lithocarpus densiflora, Quercus vaccinifolia, and Vaccinium occidentale, with Pinus lambertiana and Pseudotsuga menziesii contributing to the sparse overstory. This corresponds best to Atzet and Wheeler's (1984) Pinus jeffreyi/Pinus monticola association. This community is well represented along Whiskey Creek/Wimer Road and the C. howellii population is large and vigorous at this site. In contrast, \boldsymbol{C}. howellii populations are small at shrub-dominated sites near Waldo and Democrat Gulch. A third community-type is grass/forb-dominated savannah, with scattered Pinus jeffreyi, Calocedrus decurrens, and Arctostaphylos. Populations of

Table II.1. Classification and description of soil series on which Calochortus howellii, C. coxii, and C. umpquaensis occur (sources: Borine 1983, U.S.D.A. Soil Conservation Service 1975, and Wert et al. 1977).

Series	Cornutt	Dubakella	Eightlar
Great Group	mesic Ulitic Haploxeralfs	mesic Mollic Haploxeralís	mesic Typic Xerochrepts
Suborder	Xeralf	Xeralf	Ochrept
Order	Alfisol	Alfisol	Inceptisol
Depth	moderately deep	moderately deep	deep
Drainage	well drained	well drained	moderately well drained
Origin	alluvium and colluvium from ultramafics and altered sedimentary and extrusive igneous rocks	colluvium and residuum from serpentinite and periditite	colluvium derived from serpentinite and periditite
Location	mountainsides and alluvial fans	mountainsides and ridgetops	mountains
Surface Color (A1)	dark reddish brown gravelly clay loam	dark yellowish brown very cobbly clay loam	dark reddish brown and dark brown extremely stony clay
Surface Depth	2-6 ${ }^{\text {a }}$	$2^{\prime \prime}$	10^{11}
Subsoil Color (B1)	dark red	dark reddish brown	dark reddish brown and dark brown
Subsoil Texture	gravelly clay	very cobbly clay loam	extremely stony clay
Depth to Bedrock	40-60 ${ }^{\text {n }}$	20 to 40"	60+"
Elevation	800-5000'	1000-5000'	1350-4000'
Calochortus	C. coxii, C. umpquaensis	C. howellij	C. howellii
Series	Pearsoll	Peel	
Great Group Suborder Order	mesic Lithic Xerochrepts Ochrept Inceptisol	Vertic Haploxeralfs Xeralf Alfisol	
Depth	shallow to moderately deep	moderately deep	
Drainage	well drained	moderately well drained	
Origin	colluvium from serpentinite and peridotite	colluvium from serpentine	
Location	mountainsides	hillslopes and tootsiopes	
Surface Color (A1)	dark reddish brown extremely stony clay loam	very dark grayish brown clay loam	
Surface Depth	$5^{\prime \prime}$	9" ${ }^{\text {dark brown, dive brown }}$	
Subsoil Color (B1)	dark reddish brown	dark brown, olive brown and olive gray	
Subsoil Texture	extremely cobbly clay	gravelly silty clay and silty clay	
Depth to Bedrock	$14^{\prime \prime}$	$29^{\prime \prime}$	
Elevation	700-4000'	600-3500'	
Calochortus	C. howellii, C. umpquaensis C. coxii	C. umpquaensis	

Figure 1I.1. Distribution of Calochortus howellii (\bullet), C. umpquaensis (土), and C. coxii ($\mathbf{■}$), with serpentine areas delineated (after Wells and Peck, 1961). Weather stations (*) numbered as follows: Little River 1, Myrtle Creek 2, Sexton Summit 3, and Cave Junction 4.

C. howellii are most extensive here, where an open understory is maintained. The study site, Mariposa Meadow, is representative of this community.

Despite its narrow edaphic restriction to serpentine-derived soils, Calochortus umpquaensis occurs within a rather broad continuum of habitats from closed canopy coniferous forest to open grass-forb meadow. In the transitional zone between the forest and meadow, referred to as the ecotone, the abiotic environment is moderated (e.g. light and temperature tend to be less extreme) and community elements of both forest and meadow overlap. In ecotonal and forested habitats, the overstory is composed of Pinus jeffreyi, Pseudotsuga menziesii, Calocedrus decurrens, and Arbutus menziesii. Meadows are species rich and dominated by grasses and herbaceous perennials. Vegetation cover may be patchy, with litter, bare soil, rock, and moss openings of varying size comprising the matrix.

Calochortus coxii occurs in ecotonal and grassland habitats similar to C. umpquaensis, with somewhat different understory species composition. The overstory is composed of Pinus jeffreyi, Pseudotsuga menziesii, Calocedrus decurrens, and Arbutus menziesii. Grasses commonly found in association with C. coxii include Aira caryophyllea, Danthonia californica, Festuca rubra, Koeleria cristata, Melica geyeri, Stipa lemmonii, Trisetum canescens, V. microstachys, and Vulpia octoflora; typical forbs include Achillea millefolium, Arenaria cismontana, Aspidotis densa, Brodiaea spp., Cerastium viscosum, Collinsia grandiflora, Cryptantha intermedia, Epilobium minutum, Githopsis specularioides, Lomatium nudicaule, Lotus micranthus, Luzula campestris, Madia madioides, M. elegans, Microsteris gracilis, Mimulus guttatus, Orthocarpus hispidus, Perideridia oregana, Phacelia capitata, Plectritis congesta, Ranunculus occidentalis, Sedum stenopetalum, Silene hookeri, Viola hallii, and Zigadenus venenosus.

All three species inhabit a small subset of what appears to be suitable habitat. Intensive surveys of serpentine areas have failed to locate many additional populations (Fredricks 1988, 1989b, 1989c, Kagan 1992 pers. comm.). While the current distributions are the result of historical events which may remain unknown,
this study seeks to describe and characterize the occupied habitats in order to better understand the environment of these rare plants.

METHODS

Plant community data collection

At the onset of the study, only a few populations of C. umpquaensis were known, all within an area spanning 4 km . These populations range in size from 0.4 to 25 hectares. In 1988, preliminary sampling was conducted to compare plant communities and population structure and reproduction of C. umpquaensis at all known sites within the three habitats, forest, meadow, and ecotone. Sampling was conducted along belt transects which were subjectively located in areas of highest Calochortus density. The five sites known at the time were located within 3 km of Ace Williams Mountain (T26S R3W sec. 27). The largest known site was located near the summit of Ace Williams Mountain, where all three habitats were represented. The Watson Mountain site was forested and the Standley Road site was dominated by meadow vegetation. The transitional interface between the two habitats, or ecotone, was sampled at the Thunder Mountain Road and Little River Road sites. Both these sites are located near the base of Ace Williams Mountain. In each habitat, data were collected from $0.5-\mathrm{m}^{2}$ quadrants randomly selected within each meter along eight $10-\mathrm{m}$ transects.

In 1989, permanent plots were established along belt transects for both C. umpquaensis and C. coxii. Two $5-\mathrm{m}$ transects were selected for each habitat (forest, meadow, and ecotone) for C. umpquaensis at Ace Williams Mountain. Two $5-\mathrm{m}$ transects were selected for each of two sites separated by approximately 2.2 km for C. coxii: the Smith site (T29S R5W sec. 3, SW ${ }_{1 / 4}$ of $\mathrm{SW}_{1 / 4}$) and the Bilger Creek Road site (T28S R5W sec. 35, $\mathrm{W}_{1 / 2}$ of $\mathrm{SW}_{1 / 4}$). One quadrant was randomly selected within each meter along each transect, for a total of 30 plots for C. umpquaensis and 20 for C. coxii. Data collected within each 1.0 m by 0.5 m plot included (1) cover value for each species present (plus percent cover of rock, litter,
moss/lichen and bare soil) and (2) leaf width and reproductive status for each individual. The analysis of the later is discussed in Chapter 4.

Floras used to identify associated species include Peck (1961), Munz (1959), and Hitchcock and Cronquist (1973). In general, the taxonomy follows Hitchcock and Cronquist, but includes more recently published nomenclatural changes.

Plant community data analysis

To compare the three habitats for C. umpquaensis and the two sites for C. coxii, Margalef's (S / \mathcal{N}) diversity indices were calculated (Ludwig and Reynolds 1988). Jaccard's index of community similarity was implemented as an index of species association (Muller-Dombois and Ellenberg 1974). The correlation in presence and absence of species between the sample plots was calculated using the following formula: $I A_{f}=100 c /(a+b+c)$, where c is the number of plots where the two species occur together; a and b are the number of plots in which each species occurs alone. This index was also recalculated substituting cover values of individual associated species and the number of C. umpquaensis individuals for frequency ($\mathrm{IA}_{\mathrm{c}}=100 \mathrm{c} /(\mathrm{a}+\mathrm{b}+\mathrm{c}$), where a is total number of C. umpquaensis individuals in plots without the associated species, b is the total cover of the selected associated species in all plots without C. umpquaensis, and c is the total number of individuals of C. umpquaensis plus the total cover of the associated species in the plots with both species present.

Soil sampling and analysis

In order to confirm the serpentine derivation of the soils and analyze their composition, surface and subsurface soils were sampled within Calochortus populations. Soils were sampled in July 1989 at three locations within the Mariposa Meadow study area, near permanent plots established to monitor C. howellii, and at two sites on nearby Eight Dollar Mountain. Samples were collected near each of the four permanent transects for C. coxii and the six permanent transects established to monitor C. umpquaensis. In addition, soils were
sampled at three other populations of C. umpquaensis and one of C. coxii, for comparison.

Using plastic trowels to avoid metal contamination, samples were collected from the surface (depth of $0-3 \mathrm{~cm}$), where seed germination and seedling establishment may occur and from the subsurface ($10-14 \mathrm{~cm}$), where bulbs may establish. Soil samples (which were dry at the time of collection), were frozen to slow any microbial activity. Prior to processing, samples were thawed and screened with a 2 mm mesh soil sieve. Soil pH was measured with a glass electrode pH meter. Micronutrients were extracted from samples with diethylenetriamine pentaacetic acid (DTPA) and analyzed by Micro-Macro, International (Athens, Georgia) using an Thermo Jarrell Ash Model 9000 inductively coupled plasma emission spectrometer (ICP-AES). Dry color was determined using Standard Soil Color Charts (Oyama and Takehara 1967).

To determine if element concentrations differed with soil depth, the t-test procedure was applied to compare surface and subsurface means (SAS Institute Inc. 1988). Analysis of Variance, followed by the Tukey-Kramer test, which may be used with unequal sample sizes (Sokol and Rohlf 1981) was used to compare means of each element (surface and subsurface samples combined) for each species.

Precipitation data

Precipitation data were available from the National Oceanic and Atmospheric Administration weather stations within the range of C. howellii, C. umpquaensis, and C. coxii. The Cave Junction weather station (elev. 390 m) is located 8.3 km southwest of the Mariposa Meadow site and within 3.6 km of the nearest population of C. howellii. The Little River station (elev. 369 m) is located 3.8 km southeast of the Ace Williams site and within 2.9 km of the nearest population of \boldsymbol{C}. umpquaensis. Another population of this species is located 1.2 km west of the Sexton Mountain weather station (elev. 1169 m). The Riddle weather station (elev. 207 m) is located 3.1 km south of the nearest population of C. coxii and 20 to 22.6 km southwest of the two study sites.

In order to compare differences in precipitation among the sites, annual precipitation was graphed for the years available. Because seasonal precipitation may be more important to recruitment, reproduction, and mortality than total precipitation, pairs of months are illustrated for each of the four weather stations.

RESULTS

Community ecology of rare mariposa lilies

Calochortus umpquaensis. Data collected in 1988 from the five sites, within the three habitats, reveal differences in cover and frequency of associated understory species (Tables II.2-4, see Appendix II. 1 for cross-reference to scientific names and codes; Appendices II. 2-4 for raw data by plot). Based on $800.5 \mathrm{~m}^{2}$ plots ($20 \mathrm{~m}^{2}$ total area) per habitat, these results are representative of densest C. umpquaensis populations throughout the northern portion of its range. Cover and frequency data collected in 1989 and 1990 from Ace Williams Mountain differed only slightly within the permanent plots; therefore only 1989 data are reported (Table II.5). Both study years contrast the three habitats, the 1988 data compare five different sites (Tables II.2-4); however, the 1989 data provide further comparison of the habitats within the Ace Williams site only (Table II.5). Results were similiar for both years and are summarized below.

Due to the subjective placement of the plots within the densest populations of C. umpquaensis, frequency was high in all habitats, with 83,89 , and 75 percent of plots occupied in ecotone, meadow, and forest habitats, respectively in 1988 (Tables II.2-4). In 1989, at the Ace Williams Mountain site, C. umpquaensis occurred in 100% of plots within all habitats. Despite similar frequency values, density and bud production in C. umpquaensis differed significantly among habitats (Chapter 4).

In contrast to 1988, when average vegetation cover was highest in the

Table II.2. Mean cover (MEAN) and frequency (FREQ) for associated species of Calochortus umpquaensis (CAUM) based on 1988 transects in ecotone habitats. Frequencies greater than 50% are shaded. Species codes are defined in Appendix II.1; total vegetation (VEG), moss, rock, soil, and litter cover may be greater than 100%. CAUM\% values are based on cover, CAUM \# values are based on numbers of individuals. Species richness for Thunder Mt. Rd. $=31$ (40 plots), Little River Rd. $=20$ (20 plots), Ace Williams Mt. $=27$ (20 plots), and all ecotone plots combined $=50(80$ plots $)$.

Table II. 2

Sitenames	Thunder Mt. Rd.			Little River Rd.			Ace Williams Mt.			All ecotone plots		
Species code	MEAN	N	FREQ									
ACHMIL	0.43	6	0.15	0.85	9	0.45	1.15	8	0.40	0.71	23	0.29
AIRCAR	0.13	11	0.28				0.45	8	0.40	0.18	19	0.24
ASPDEN					1	0.05					1	0.01
BROELE							0.65	15	0.75	0.16	15	0.19
BROCAR	0.15	4	0.10							0.08	4	0.05
CALDEC	0.38	3	0.08				0.10	5	0.25	0.21	8	0.10
CALTOL							0.60	7	0.35	0.15	7	0.09
CERVIS			0.13	0.05	1	0.05	0.60	3	0.15	0.16	9	0.11
COLGRA							0.15	3	0.15	0.04	3	0.04
CRE							0.25	3	0.15	0.06	3	0.04
CRYINT	0.08		0.63					1	0.05	0.04	26	0.33
DACGLO	0.15	8	0.20	3.90	19	0.95	0.40	7	0.35	1.14	34	0.43
DANCAL	9.18	39	0.98	2.30		0.55	6.50	20	1100	6.79	70	0.88
EPIMIN	0.08	7	0.18				0.05	1	0.05	0.05	8	0.10
ERILAN	4.20	$28=$	0.70							2.10	28	0.35
ERYHEN	0.03		0.03							0.01	1	0.01
FESCAL							2.60	9	0.45	0.65	9	0.11
FESIDA							0.15	3	0.15	0.04	3	0.04
GALTRI		1	0.03								1	0.01
GITSPE							0.05	2	0.10	0.01	2	0.03
GOOOBL			0.03								1	0.01
HYPPER			0.05								2	0.03
IRICHR				0.05	1	0.05				0.01	1	0.01
LATPOL				0.55	8	0.40				0.14	8	0.10
LOTMIC	0.38	35	0.88	0.35	13	1.0 .65	0.05	7	0.35	0.29	55	0.69
LUZCAM	0.05	4	0.10				1.50		0.85	0.40	21	0.26
MADMAD	0.13	6	0.15	0.05	1	0.05				0.06	7	0.09
MICGRA			0.18								7	0.09
PANSCR				2.90	4	0.20				0.63	4	0.05
PERORE		9	0.23				0.15	2	0.10	0.04	11	0.14
PLECON	0.15	4	0.10					1	0.05	0.08	5	0.06
PSEMEN	0.13	2	0.05							0.06	2	0.03
RANOCC	2.43	39	0.08	1.20	16	080	4.80	20	100	2.70	75	0.94
SEDSTE							0.95	16	0.80	0.24	16	0.20
SIDVIR	1.90		0.53	5.95	16	0.80				2.44	37	0.46
SILHOO							0.75	15	0.75	0.19	15	0.19
SISBEL	0.03	1	0.03	9.10	20	I 1100				2.04	21	0.26
SYNREN	0.03	1	0.03	0.10	1	0.05				0.04	2	0.03
THLMON	0.10	2	0.05				0.35	9	0.45	0.14	11	0.14 0.31
TRIDUB	1.63	21	0.53	0.70	4	0.20				0.98	25	0.31
TRITRI		1	0.03	0.60	6	0.30				0.15	7	0.09 0.05
TRIMAC				1.80	4	0.20				0.45	4	0.05 0.01
VERBLA				0.10	1	0.05				0.03	8	0.01 0.10
VICAME				0.70	8	0.40				0.18	8	0.10 0.19
VIODOU							0.75	15	0.75	0.19	15	0.19 0.09
VIOHAL	0.08	7	0.18							0.04	7 34	0.09 0.43
VULMIC	11.00	33	1.0 .83				0.05	1	0.05	5.51	34	0.43 0.04
unknown 1 unknown 2		3	0.08	4.20	18	0.90	4.75	15	0.75	1.19	3 15	0.04 0.19
unknown 3							0.45	5	0.25	0.11	5	0.06
CAUM\%	0.93	28	0.70	4.20	18	0.90	4.45	20	1.00	2.56	66	0.83
	MEAN	N	FREQ									
VEG	34	40	1.00	35	20	1.00	33	20	1.00	34	80	1.00
MOSS	34	21	0.53				6	9	0.45	19	30	0.38
ROCK	,	2	0.05							0	2	0.03
SOIL	20	28	0.70				3	6	0.30	10	34	0.43
LITTER	12	12	0.30	65	20	1.00	58	19	0.95	36	51	0.64
CAUM \#	4.03	31	0.78	7.60	18	0.90	11.05	20	1.00	6.53	69	0.86

Table II.3. Mean cover (MEAN) and frequency (FREQ) for associated species of Calochortus umpquaensis (CAUM) based on 1988 transects in meadow habitats. Frequencies greater than 50% are shaded. Species codes are defined in Appendix II.1; total vegetation (VEG), moss, rock, soil, and litter cover may be greater than 100%. CAUM\% values are based on cover, CAUM \# values are based on numbers of individuals. Species richness for Standley Rd. $=30$ (20 plots), and Ace Williams Mt. $=32$ (60 plots) and all meadow plots combined $=41$ (80 plots).

Table II. 3

Sitenames	Standley Road			Ace Williams Mt.			All meadow plots		
Species code	MEAN	N	FREQ	MEAN	N	FREQ	MEAN	N	FREQ
ACHMIL				6.43	60	1.00	4.83	60	0.75
AIRCAR	0.15	7	0.35	2.10	44	0.73	1.61	51	0.64
ARECIS	2.151	12	0.60	0.27	12	0.20	0.74	24	0.30
AREDOU	3.05	5	0.25	0.18	4	0.07	0.90	9	0.11
ASPDEN	2.651	11	0.55	0.12	2	0.03	0.75	13	0.16
BROELE				0.30	33	0.55	0.23	33	0.41
CAMLEI				0.25	9	0.15	0.19	9	0.11
CENUMB	0.05	9	0.45				0.01	9	0.11
CERVIS		4	0.20	0.23	5	0.08	0.18	9	0.11
COLGRA		3	0.15	0.27	13	0.22	0.20	16	0.20
CRYINT		10	0.50	0.18	16	0.27	0.14	26	0.33
CYNECH					1	0.02		1	0.01
DANCAL	24.10	20	1.00	11.13		0.98	14.38	79	0.99
DODHEN			0.05					1	0.01
EPIMIN	0.051	17	0.85	0.40	44	0.73	0.31	61	0.76
ERINUD		1	0.05					1	0.01
FESIDA	0.20	8	0.40				0.05	8	0.10
GALAPA	0.05	1	0.05				0.01	1	0.01
GILCAP	0.10	3	0.15	0.02	5	0.08	0.04	8	0.10
GITSPE		10	0.50	0.13	35	0.58	0.10	45	0.56
LOLMUL	0.05	1	0.05				0.01	1	0.01
LOTMIC					2	0.03		2	0.03
LUZCAM		5	0.25	0.53	19	0.32	0.40	24	0.30
MADMAD		6	0.30	1.53	28	0.47	1.15	34	0.43
MIMGUT	1.90		0.65	0.07	7	0.12	0.53	20	0.25
ORTHIS					1	0.02		1	0.01
PERORE		5	0.25	0.05	2	0.03	0.04	7	0.09
PITTRI				0.03	9	0.15	0.03	9	0.11
PLECON	0.10	6	0.30	0.93	25	0.42	0.73	31	0.39
POA	0.20	1	0.05	3.87	16	0.27	2.95	17	0.21
RANOCC	4.95	20	1.00	3.57	51	0.85	3.91	71	0.89
SEDSTE				0.20	9	0.15	0.15	9	0.11
SIDVIR	0.20	1	0.05				0.05	1	0.01
SILHOO	0.10	3	0.15	0.97	44	0.73	0.75	47	0.59
SISBEL	0.95	7	0.35				0.24	7	0.09
THLMON				0.10	8	0.13	0.08	8	0.10
TRITRI		1	0.05					1	0.01
VIODOU				0.75	41	0.68	0.56	41	0.51
VULMIC		1	0.05	1.32	34	0.57	0.99	35	0.44
ZIGVEN				0.40	11	0.18	0.30	11	0.14
unknown 4	1.05	3	0.15	0.25	4	0.07	0.45	7	0.09
CAUM\%	0.80	20	1.00	1.63	51	0.85	1.43	71	0.89
	MEAN	N	FREQ	MEAN	N	FREQ	MEAN	N	FREQ
VEG	43	20	1.00	38	60	1.00	39	80	1.00
MOSS	7	3	0.15	41	59	0.98	33	62	0.78
ROCK		10	0.50	1	8	0.13	3	18	0.23
SOIL	39	16	0.80	9	24	0.40	16	40	0.50
LITER	3	3	0.15	11	25	0.42	9	28	0.35
CAUM \#	3.20	20	1.00	5.40	52	0.87	4.85	72	0.90

Table II.4. Mean cover (MEAN) and frequency (FREQ) for associated species of Calochortus umpquaensis (CAUM) based on 1988 transects in forest habitats. Frequencies greater than 50% are shaded. Species codes are defined in Appendix II.1; total vegetation (VEG), moss, rock, soil, and litter cover may be greater than 100%. CAUM $\%$ values are based on cover, CAUM \# values are based on numbers of individuals. Species richness for Ace Williams Mt. $=23$ (40 plots), and Watson $\mathrm{Mt} .=28(40$ plots $)$ and all forest plots combined $=35$ (80 plots).

Table II. 4

Sitenames	Ace Williams Mt.			Watson Mt.			All forest plots		
Species codes	MEAN	N	FREQ	MEAN	N	FREQ	MEAN	N	FREQ
ASPDEN	8.902	21	0.53	1.10	7	0.18	5.00	28	0.35
BROELE		6	0.15		2	0.05		8	0.10
CALDEC	0.03	3	0.08	0.03	5	0.13	0.03	8	0.10
CARINT		1	0.03					1	0.01
CERARV	0.05	3	0.08	0.05	2	0.05	0.05	5	0.06
CERVIS	0.15	3	0.08				0.08	3	0.04
CRE				0.43	7	0.18	0.21	7	0.09
CYNECH					1	0.03		1	0.01
CYSBUL		1	0.03					1	0.01
DANCAL	0.581	10	0.25	2.78	19	0.48	1.68	29	0.36
DELMEN				0.93	9	0.23	0.46	9	0.11
DODHEN				0.40	12	0.30	0.20	12	0.15
ERYHEN	0.05	9	0.23	0.03	1	0.03	0.04	10	0.13
FESIDA				0.05	2	0.05	0.03	2	0.03
GALAPA		1	0.03		2	0.05		3	0.04
GITSPE	0.10	3	0.08				0.05	3	0.04
GOOOBL	0.23	7	0.18	0.05	1	0.03	0.14	8	0.10
HIEPAR	0.15	4	0.10				0.08	4	0.05
IRICHR				3.38	24	0.60	1.69	24	0.30
LUZCAM		5	0.13	0.58	20	0.50	0.29	25	0.31
PERORE					2	0.05		2	0.03
POA				0.10	2	0.05	0.05	2	0.03
POLMUN	0.08	3	0.08	0.60	4	0.10	0.34	7	0.09
PSEMEN		1	0.03	1.05	4	0.10	0.53	5	0.06
RANOCC	0.28	12	0.30	0.80	21	0.53	0.54	33	0.41
SEDSTE	0.03	1	0.03				0.01	1	0.01
SIDVIR				0.05	,	0.03	0.03	1	0.01
SILHOO	0.05	1	0.03	0.48	15	0.38	0.26	16	0.20
SISBEL				0.23	2	0.05	0.11	2	0.03
SYNREN	1.75	11	0.28	5.05	25	0.63	3.40	36	0.45
THLMON	0.93	11	0.28				0.46	11	0.14
THUPLI	0.23	20	0.50	0.23	9	0.23	0.23	29	0.36
VIODOU				0.23	11	0.28	0.11	11	0.14
unknown 2				0.93	13	0.33	0.46	13	0.16
unknown 5	0.43	22	0.55	0.53	11	0.28	0.48	33	0.41
CAUM\%	1.55	35	0.88	1.40	25	0.63	1.48	60	0.75
	MEAN	N	FREQ	MEAN	N	FREQ	MEAN	N	FREQ
VEG	16	40	1.00	21	40	1.00	18	80	1.00
MOSS	21	38	0.95	14	20	0.50	18	58	0.73
ROCK	1	1	0.03	1	2	0.05	1	3	0.04
SOIL	1	3	0.08	1	3	0.08	1	6	0.08
LITTER	62	40	1.00	63	37	0.93	62	77	0.96
CAUM\#	5.63	36	0.90	4.15	25	0.63	4.89	61	0.76

Table II.5. Associated species of Calochortus umpquaensis within permanent plots established at Ace Williams Mt. in ecotone, forest, and meadow habitats, with mean cover (Mean) and frequency (Freq) summarized by habitat. Species codes are defined in Appendix II.1. Total vegetation (VEG), moss, rock, soil, and litter cover may be greater than 100%. Plot numbers are prefixed by habitat abbreviation; $\mathrm{T}=$ trace $(<1 \%)$. CAUM \# indicates total number of C. umpquaensis individuals within plot. All data collected in 1989.

Table II. 5

meadow habitats (39% for the meadow, versus 34% for the ecotone and 18% for the forest, Tables II.2-4), 1989 vegetation was densest in the ecotone, averaging 56% cover (32% in the meadow and 14% in the forest, Table II.5). In both years, litter covered over half the plots in the forest (62% for 1988 and 53% for 1989). Moss contributed up to 85% cover in some forest plots, but average cover was highest in the meadow (32.8% for 1988 and 47.4% for 1989).

In the ecotone permanent plots at Ace Williams Mountain, the species with highest frequency (greater than 50%, by decreasing frequency) were Ranunculus occidentalis, Danthonia californica, Lotus micranthus, Brodiaea elegans, Silene hookeri, Luzula campestris, Thlaspi montanum var. siskiyouense, Aira caryophyllea, and Koeleria cristata (Table II.5). Species unique to plots within the ecotone habitat were Cerastium viscosum, Dodecatheon hendersonii, Sidalcea virgata, Lotus micranthus, and Cynosurus echinatus. Danthonia californica contributed nearly 25% mean cover, followed by Ranunculus occidentalis with 10.4%. In 1988, cover in the ecotone plots was highest for Vulpia microstachys (dominant at one site only), Danthonia californica, and Sidalcea virgata (Table II.2).

Many species with high frequency in the ecotone habitat were also frequent in the meadow (Tables II.3, II.5). For example, Achillea millefolium, Danthonia californica, Koeleria cristata, and Ranunculus occidentalis were present in at least half the meadow plots in 1988 and 1989. Additional species with high frequency in the meadow included Aira caryophyllea, Brodiaea elegans, Epilobium minutum, Githopsis specularioides, Luzula campestris, Plectritus congesta, Silene hookeri, and Viola hallii. In 1989, Arenaria cismontana, Collinsia grandiflora, Epilobium minutum, Githopsis specularioides, Melica geyeri, Mimulus guttatus, Poa pratensis, and Madia madioides occurred only within the meadow plots and occupied few, if any, of the forest or ecotone plots in 1988. Cover was. highest in the meadow for Danthonia californica, Achillea millefolium, Koeleria cristata, and Ranunculus occidentalis.

Understory vegetation in the forest is sparse. Ranunculus occidentalis, Danthonia californica, and Aspidotis densa occurred in more than 50% of the plots,
with the later two contributing 5.6% and 5.1% cover in 1989 to the mean 13.7% total vegetation cover within the forest habitat. In 1988, Aspidotis densa and Synthyris reniformis contributed most to cover. Species richness is lowest in the forested habitat, relative to the ecotone and meadow. The dominant herbs and grasses found in association with Calochortus umpquaensis in the. 1988 forest plots were Aspidotis densa, Danthonia californica, and Synthyris reniformis. Additional species with high frequency included Dodecatheon hendersonii, Erythronium hendersonii, Iris chrysophylla, Luzula campestris, Thlaspi montanum var. siskiyouense, Ranunculus occidentalis, and Viola hallii. Synthyris reniformis and Cardamine pulcherrima were species unique to the forest plots.

Species with high indices of species association with C. umpquaensis across all habitats include Ranunculus occidentalis $\left(\mathrm{IA}_{\mathrm{c}}=0.98\right.$ based on cover, 0.97 based on frequency) and Danthonia california ($\mathrm{IA}_{\mathrm{f}}=0.88$ based on cover, 0.77 based on frequency).

Overall species richness (\mathbf{S}) at Ace Williams Mountain was highest in the meadow and lowest in the forest, based on permanent plot data collected in 1989. Because of the differences in plot number due to sampling limitations at several of the C. umpquaensis sites, overall species richness by habitat cannot be compared directly for 1988. Number of species per plot, however, was highest in the meadow for 1988, with averages of 9.8 and 10.0 species per plot for the Standley Road and Ace Williams Mountain sites, respectively (overall average was 9.9 species). In 1989, the Ace Williams meadow transects averaged 10.2 species per plot. The forest plots averaged 4.0 and 5.9 species for Ace Williams and Watson Mountain in 1988 (overall average 4.9), with 5.7 species at the former site in 1989. The intermediate ecotone habitat, which averaged 8.5 species overall, had $8.4,7.2$, and 10.0 species at the Thunder Mountain Road, Little River Road, and Ace Williams Mountain sites, respectively. In 1989, the average number of species in the ecotone habitat at the Ace Williams site was 10.9 , slightly higher than the meadow habitat.

Margalef's diversity index, which incorporates plot number (N), was applied
to the habitats of C. umpquaensis. Diversity was lowest in the forest, based on data collected in 1988 and 1989 (Table II.6). When data for all sites were combined, ecotone diversity was highest in 1988. In 1989, the meadow habitat was highest in species diversity.

Calchortus coxii. Ranunculus occidentalis was the only species present in more than half of the plots at both the Smith and Bilger Creek Road sites (Table II.7). Festuca rubra, noteworthy in its high cover and presence in all plots at the Bilger Creek site, was not found within the plots at the Smith site. Species richness, diversity, and average number of species per plot were lowest for the Bilger Road site, where C. coxii populations are being heavily grazed by deer (Table II.6). Average number of species per plot was 7.5 , with 8.3 species for the Smith site and 6.7 species for the Bilger Road site.

Correlations between soils and distribution

Calochortus howellii. Geological maps, prepared at a scale of 1:24,000 for a large portion of the range of C. howellii (Ramp 1986) were used to investigate the species' fidelity to specific geological formations and rock types. Calchortus howellii occurs on Josephine harzburgite tectonite and serpentinite (greater than 50% serpen-tinization) from the mid to lower Jurassic and nearby Pleistocene terrace gravel.

Josephine County soils maps at 1:20,000 scale (Borine 1983) were used to determine the soil series on which the species occurs. Six serpentinitic soil series have been identified in the county. Soil series on which C. howellii occurs (Table II.1) include Eightlar, Dubakella, and Pearsoll, which all originate from colluvium or residuum derived from serpentinite and peridotite. They are extremely stony clay loams or clays located on mountainsides with dark reddish brown subsoil. Other serpentinitic soils on which C. howellii did not occur include Brockman, Cornutt, Copsey, and Takilma variant. Cornutt soils which are deep and well-

Table II.6. Margalef diversity indices for habitats of Calochortus umpquaensis and C. coxii.

Habitat/Sitename	N	S	Margalef
Calochortus umpquaensis: 1988			
ECOTONE			
Thunder Mt. Rd.	40	31	4.90
Little River Rd.	20	20	4.47
Ace Williams Mt.	20	37	8.27
All ecotone plots	80	50	5.59
MEADOW			
Standley Rd.	20	30	6.71
Ace Williams Mt.	60	32	4.13
All meadow plots	80	41	4.58
FOREST			
Ace Williams Mt.	40	23	3.64
Watson Mt.	40	28	4.43
All forest plots	80	35	3.91
Calochortus umpquaensis:	1989		
Ace Williams Mt.			
ECOTONE	10	24	7.59
MEADOW	10	30	9.49
FOREST	10	15	4.74
Calochortus coxii: 1989			
Smith	10	27	8.54
Bilger Creek Rd.	10	18	5.69

Table II.7. Associated species of Calochortus coxii within permanent plots established at two sites, Smith and Bilger Creek Rd., with mean cover (Mean) and frequency (Freq) summarized by site. Species codes are defined in Appendix II.1. Total vegetation (VEG), moss, rock, soil, and litter cover may be greater than 100%. Plot numbers are prefixed by habitat abbreviation, $\mathrm{T}=$ trace ($<1 \%$). CACO \# indicates total number of C. coxii individuals within plot. All data collected in 1989.

Table II. 7

Sitename	Smith site plots															Bilger Creek Rd. site plots											
Species Code	1	2	3	4	5.	6	7	8		910		Mean	N		Freg		12	13	14	15	16	17	18	1920	Mean	N	Freg
ACHMIL							1					0.1	1		0.10			1			1		8	42	1.6	5	0.50
AIRCAR	T					T	2					0.2	3		0.30												
ASPDEN	15			20	5		7			4		5.1	5		0.50		T									1	0.10
CALDEC										10		1	1		0.10	20	3			20	7	7		2	5.9	6	0.60
CERARV	T												1		0.10						1		4	1	0.6	3	0.30
CYNECH	5	4	2			5	2	2	10			3	7		0.70												
CRYINT		1	1	T	1							0.3	4		0.40				T							1	0.10
CYNECH	T	2	3	1	1		1	2		42		1.6	9		0.90												
CYP						1						0.1			0.10												
DANCAL																								3	0.3	1	0.10
EPIMIN					T	T							2		0.20		T			T				1 T	0.1	5	0.50
ERYHEN	T	T								T			3		0.30												
FESRUB																	15	55	15	7	4	15	15	2530	18.8	10	1.00
																									0.2	1	0.10
GAL	T	T	1	T	T	T		T				0.1	8		0.80												
LOMMAC		T								T	T		2		0.20								4	4	0.8	2	0.20
LOMNUD				1		2						0.3	2		0.20			3				5			0.8	2	0.20
LUZCAM						1	1			T		0.2	3		0.30		2	2	1	T	2		2	21	1.4	9	0.90
MADELE																											
MADMAD		T			T	1	T					0.1	4		0.40												
MELGEY																1			1		3	4	4	3	1.6		0.60
PINJEF						1		1		T 1		0.3	4		0.40									15	1.5	1	0.10
PLECON	1				T	1	T					0.2	4		0.40												
RANOCC						2	2	1		1 T		0.6	5		0.50		1	2	2	2	3	7		11	2.1	9	0.90
RHUDIV																						T				1	0.10
SEDSTE	1					1		1		1. 1		0.5	5		0.50												
SILHOO		1			1							0.2	3		0.30			1							0.2	2	0.20
VULMIC						T							1		0.10												
ZIGVEN																						T				1	0.10
Unknown	3				3			5				1.4	5		0.50	1									0.1	1	0.10
VEG	20	4		20	5	5	12	2				9.4	10		1.8	20	3	1		20	9	7	12	45	8.1	15	1.5
LITER	60	80	90	90	70	70	5			585		58.5	9		0.90		80	40	80	80	80	70	50	4030	62	10	1.00
MOSS	7					30	85	90	45	52		25.9	6		0.60		3						8		2.8	5	0.50
ROCK	10		7		20			3		10		6	6		0.60				1	1			5		0.7	3	0.30
LOG		20										2	1		0.10												
SOIL					5							0.5	1		0.10						4			$8 \quad 5$	1.7	3	0.30
CACO	5	4	8	13	4	13	45	21	41	146		20	10		1.00		30	19	3	8	21	9	21	1212	14.3	10	1.00

drained, formed from colluvium, while Brockman, Copsey, and the Takilma variant are alluvial soils.

Three sites were mapped as Dubakella-Pearsoll complex (35 to 75% slopes), four included Eightlar extremely stony clay (5 to 35% slopes), four were EightlarDubakella complex (35 to 65% slopes), and four were Pearsoll-rock outcrop complex (20 to 90% slopes).

Calochortus umpquaensis and C. coxii. Calochortus umpquaensis occurs on three soil series, Cornutt, Pearsoll, and Peel, and their complexes, while C. coxii is known from the Cornutt and Pearsoll series. A soil survey of Douglas county is in preparation by the Soil Conservation Service. Soils have been mapped for portions of the range of C. umpquaensis and C. coxii by the Bureau of Land Management (B.L.M.) (Wert et al. 1977).

The portions of the range of C. umpquaensis which are managed by the B.L.M. and most of the C. coxii sites fall within two mapping units of the Pearsoll gravelly clay loam-Cornutt gravelly clay loam association. Pearsoll and Cornutt soils co-occur in a random fashion, with Pearsoll more prevalent on steeper slopes (Wert et al. 1977). Inclusions of deep black, sometimes poorly drained, unnamed serpentinitic soils comprise approximately 10% of both mapping units.

Soil analysis

While clear correlations exist between the distribution of serpentine soil series and the species considered, site specific soil analyses further confirm the ultramafic derivation of the soils inhabited by these species. Low macronutrient levels (potassium and phosphorus), low calcium/magnesium ratio, and above average concentrations of nickel, chromium, cobalt, and zinc were noted (Table II.8).

Surface soil ranged from dull reddish brown to brownish black (typically brownish black) for C. howellii and tended to have lower chromas and values than for the other two species (Table II.9). Soil were typically brown but ranged from

Table II.8. Elemental analyses for soils inhabited by Calochortus howellii, C. coxii, and C. umpquaensis, ranked by species, sample depth, and location. Subsurface samples were collected between 10 and 14 cm , surface samples within the top 3 cm . Numbers following sitenames refer to permanent plots ($F=$ forest, $E=$ ecotone, $M=$ meadow). See text for explanation. Means for each species, with subsurface and surface sampled pooled, are shaded.

Table II. 8 (continued)

Table II.9. Soil colors for samples collected near Calochortus howellii (CAHO), C. umpquaensis (CAUM), and C. coxii. Odd numbers were samples from surface ($0-3$ cm), even numbers were from depths $10-14 \mathrm{~cm} . \mathrm{V} / \mathrm{C}=$ value/chroma.

Species	Site number and name	Hue	V/C	Standard Soil Color Name
CAHO	1 Mariposa Meadow	7.5YR	2/2	brownish black
	2 Mariposa Meadow	7.5YR	3/2	brownish black
	3 Mariposa Meadow	7.5YR	3/3	dark brown
	4 Mariposa Meadow	7.5YR	4/4	dull reddish brown
	5 Mariposa Meadow	7.5YR	3/2	brownish black
	6 Mariposa Meadow	5YR	4/3	dull reddish brown
	7 Mariposa Meadow	7.5YR	3/2	brownish black
	8 Mariposa Meadow	7.5YR	3/2	brownish black
	9 Eight Dollar Mt.	7.5YR	2/2	brownish black
	10 Eight Dollar Mt.	7.5YR	$2 / 2$	brownish black
CACO	11 Smith site	7.5 YR	4/4	brown
	12 Smith site	7.5YR	4/4	brown
	13 Smith site	7.5YR	5/4	dull brown
	14 Smith site	7.5YR	5/4	dull brown
	15 Bilger Cr. Rd.	7.5YR	5/4	dull brown
	16 Bilger Cr. Rd.	7.5YR	5/4	dull brown
	17 Bilger Cr. Rd.	7.5YR	4/3	brown
	18 Bilger Cr. Rd.	7.5YR	5/4	dull brown
	19 w of Myrtle Cr. Beacon	5YR	3/6	dark reddish brown
CAUM	21 Grate Cr., Tiller	5YR	4/4	dull reddish brown
	22 Grate Cr., Tiller	5YR	4/4	dull reddish brown
	23 Grate Cr., Tiller	7.5YR	2/2	brownish black
	24 Grate Cr., Tiller	7.5YR	4/4	dull reddish brown
	25 Watson Mt.	7.5YR	4/3	brown
	26 Watson Mt.	7.5YR	4/3	brown
	27 Ace Williams Mt., Forest	7.5YR	2/1	black
	28 Ace Williams Mt., Forest	7.5YR	3/4	dark brown
	29 Ace Williams Mt., Meadow	7.5YR	3/4	dark brown
	30 Ace Williams Mt., Meadow	7.5YR	4/3	brown
	32 Ace Williams Mt., Forest	7.5YR	4/3	brown
	33 Ace Williams Mt., Meadow	7.5YR	5/4	dull brown
	34 Ace Williams Mt., Meadow	5YR	4/4	dull reddish brown
	35 Ace Williams Mt., Meadow	7.5YR	5/4	dull brown
	36 Ace Williams Mt., Ecotone	7.5YR	5/4	dull brown
	37 Ace Williams Mt., Ecotone	7.5YR	5/4	dull brown
	38 Ace Williams Mt., Ecotone	5YR	4/4	dull reddish brown
	39 sw of Lane Mt.	7.5YR	5/4	dull brown
	40 sw of Lane Mt.	7.5YR	5/4	dull brown
	41 s of Lane Mt.	7.5YR	5/4	dull brown
	42 s of Lane Mt.	7.5YR	5/4	dull brown

dull reddish brown to black soils for C. umpquaensis and dark reddish brown to brown (typically brown) for C. coxii.

Soils inhabited by Calochortus howellii differed significantly in pH from those inhabited by the other two species $(p=0.0001$), with a mean of 7.2 (Table II.8). On average, soils were more acidic in the vicinity of C. umpquaensis (6.9) and C. coxii (6.8), where density of conifers was higher and more organic matter was present. On Ace Williams Mountain, subsurface soil pH was lowest in the forest and highest in the meadow, but sample sizes were inadequate to be statistically valid.

Heavy metals and macronutrients

Analysis of 22 elements from soils inhabited by the three species revealed high variance (coefficient of variation values in Table II.8). Because variation was typically greater within subsurface and surface samples than between them (see Appendix II. 5 for results of t-tests), results were pooled for subsequent statistical analyses.

Analysis of Variance and multiple comparison tests revealed significant differences in soil element concentrations among soils of sites inhabited by different Calochortus species (Appendix II.6). Concentrations of nickel, cadmium, manganese, magnesium, potassium, vanadium, molybdenum, strontium, and phosphorus differed at the 0.0001 level. Cobalt and copper also differed significantly at the 0.0002 and 0.001 levels, respectively.

Nickel concentrations for soils inhabited by C. umpquaensis were the highest for all species, averaging 120.1 ppm (Table II.8). Averages for C. coxii and C. howellii were 73.5 ppm and 31.1 ppm , respectively. Based on Tukey-Kramer tests, nickel concentrations differed significantly among.all species, while cadmium, manganese, potassium, and copper differed for C. umpquaensis, and molybdenum, strontium, magnesium, vanadium, potassium, and cobalt differed for C. howellii.

Although average zinc concentration for soils inhabited by C. umpquaensis was 1.7 ppm , as compared with 0.4 and 0.8 ppm for those of C. howellii and C.
coxii, respectively, zinc values were not significantly different. Manganese concentrations, however, differed at the 0.0001 level, with averages highest for \boldsymbol{C}. umpquaensis (17.3 ppm) and lowest for C. howellii (5.1 ppm). The samples from Ace Williams Mountain were lowest in manganese and phosphorus in the meadow, but larger sample sizes are necessary to determine if differences among habitats are statistically significant.

The calcium to magnesium ratios were significantly different between \boldsymbol{C}. howellii and the other species $(\mathrm{p}=0.002)$. Means for potassium were 10.1 ppm , 33.2 ppm , and 38.0 ppm for C. howellii, C. coxii, and C. umpquaensis, respectively. Potassium, lead, and barium were the only elements which differed in concentration with soil depth when all species were pooled ($p=0.01,0.005$, and 0.003 , respectively). Phosphorus was significantly lower $(p=0.0001)$ at C. howellii sites (0.9 ppm versus 3.1 and 4.0 for C. coxii and C. umpquaensis).

Precipitation

Precipitation patterns varied among the four southwestern Oregon weather stations selected for their proximity to Calochortus populations (Figures. II.2-5, Appendices II.7-10; see Figure II. 1 for locations). In 1983, the highest annual precipitation in the history of the Cave Junction (Figure II.2, Appendix II.7) and Riddle (Figure II.4, Appendix II.9) stations was recorded. High precipitation was also received at Little River (Figure II.3, Appendix II.8) and Sexton Summit (Figure II.5, Appendix II.10) for 1983, but higher totals were reported at Little River in 1984, 1971, and 1964 and numerous years were wetter at Sexton Summit. Little River station totals show less variation. Cave Junction receives less rainfall in summer but higher precipitation during the other seasons, based on recent ten year average monthly precipitation (Figure II.6).

During the years of the monitoring studies for C. howellii at Mariposa Meadow (1983 to 1991), two precipitation extremes occurred. While 1983 was the wettest in the history of the nearby Cave Junction weather station (data only post1961), total precipitation was exceptionally low in 1985. Only 1976 was drier.

Figure II.2. Annual precipitation at Cave Junction weather station for 1962 to 1991.

Figure II.3. Annual precipitation at Little River weather station for 1964 to 1991.

Figure II.4. Annual precipitation at Riddle weather station for 1942 to 1991.

Figure II.5. Annual precipitation at Sexton Summit weather station for 1942 to 1991.

Figure II.6. Average monthly precipitation (1978-1991) for Cave Junction, Riddle, and Little River weather stations.

Precipitation and Calochortus howellii. Precipitation within the range of C. howellii varies widely (Froehlich et al. 1982). Average annual precipitation for the southwestern-most population, on the West Fork of the Illinois River, approached 254 cm . Density of C. howellii is highest at this site. The eastern-most Democrat Gulch and Waldo sites, where the populations appear to be dwindling, receive approximately 120 cm and 140 cm annually. Precipitation for other populations range from around 150 to 210 cm .

Seasonal precipitation follows a similar pattern (McNabb et al. 1982); for example, dry season (May to September) rainfall is lowest at the Democrat Gulch site (around 10 cm) and highest along the West Fork of the Illinois River (around 23 cm). Seasonal precipitation may reveal more meaningful correlations to population trends than monthly precipitation, and previous season precipitation may affect carbohydrate storage and formation of subsequent years' floral primordia. Analysis of correlations between precipitation and recruitment, mortality, and bud, flower, and capsule production (Chapter 3) reveal that late winter to spring precipitation (especially February to May) may be important to bud production (r^{2} $=0.80, \mathrm{n}=9, \mathrm{p}=0.01$), and precipitation may affect mortality and recruitment indirectly.

Precipitation and Calochortus umpquaensis and C. coxii. Although only three years of data are available for C. umpquaensis and C. coxii, correlations between February through May precipitation and flower production are evident for C. umpquaensis ($\mathrm{r}^{2}=0.99, \mathrm{n}=3, \mathrm{p}=0.02$; Figure II.7). Additional years of data will be necessary to test the prediction value of this variable, as well as to determine if correlations exist between precipitation and recruitment and mortality.

Figure 11.7. Precipitation (Feb-May) at Little River weather station versus flowering for Calochortus umpquaensis $\left(\mathrm{r}^{2}=0.99, \mathrm{n}=3, \mathrm{p}=0.01\right)$.

DISCUSSION

Similarities and differences in community structure among the three species

Distribution patterns differ among the three rare mariposas; C. howellii and C. umpquaensis are locally abundant, with restricted ranges, while C. coxii is not only restricted geographically but is locally sparse. Calochortus coxii also occupies a narrower habitat range, occurring most frequently in ecotonal areas. Community structure varies most for C. umpquaensis, which ranges from forested habitats with low vegetation cover and closed conifer canopy, through ecotonal areas with high vegetation cover, to grass-dominated meadows and more sparsely vegetated serpentine barrens. However, this species is most abundant in partially shaded ecotones. In forested habitats, C. umpquaensis is less vigorous. Calochortus howellii inhabits open Jeffrey pine savannah and is most sparse where shrub competition, particularly Ceanothus, is greatest.

One theory proposed to explain rare species is that they are poor competitors (Stebbins 1942, Griggs 1940). This hypothesis may have merit for C. howellii; limited light or moisture may reduce vigor, increase mortality, or limit recruitment, causing populations to dwindle where Ceanothus and other shrubs invade. The effect of competition on C. umpquaensis and C. coxii, however, is less obvious.

In 1989, the number of individuals of C. umpquaensis was highest in the ecotone, where vegetation cover was also highest. In the forest, where cover was lowest, C. umpquaensis was most sparse. For C. coxii, cover did not vary significantly between sites. Regressions of number of individuals and cover by plot for both species failed to reveal correlations. Although competition for space does not directly limit distributions of C. coxii or C. umpquqensis, reduced light within the forest habitat and decreased moisture within the meadow may be indirectly limiting.

Most known populations of C. howellii, C. umpquaensis, and C. coxii occur within relatively intact, undisturbed plant communities which are dominated by
native species. Some communities that historically have been grazed by cattle were lower in diversity. Serpentine communities may be somewhat more resilient to grazing pressure, due to the toxicity of their soils to many non-native invasive species (Rollé 1992, pers. comm.). The specific effect of grazing on Calochortus, however, is to reduce vigor (Fredricks, unpublished data) and, by lowering seed set, to reduce recruitment. Cattle grazing did not occur at the study sites during the years reported, but historic factors must be considered when assessing local rarity and distribution patterns. Prior to the establishment of the permanent plots, the C. howellii population was within a Forest Service grazing allotment (McLennan 1992, pers. comm.). During 1975 to 1982 the area was grazed from around April 15 to June 15. It was also frequently grazed by cattle and horses prior to 1975.

Mining may have contributed to the local extirpation of populations of C. howellii, which inhabit areas heavily mined for gold since the 1850s. In addition, bulbs of this species were collected by Purdy during the late 1800's. At his selfproclaimed collection rate of 4,000 bulbs a day (Purdy 1976), the impact on an extremely slow-growing, geographically limited species is apparent. While the two other species are newly described and obviously not referenced in Purdy's brochures, it is possible that their bulbs were collected, as well.

The abiotic environment and its relation to the distribution and reproduction of southwestern Oregon mariposa lilies

Intensive field surveys both on and off serpentine have failed to locate any populations of C. howellii, C. umpquaensis, or C. coxii on non-serpentine soils. This study also confirmed the close association of these three species to serpentine soils based on soil and geological maps and elemental analysis. The high nickel concentrations (especially for C. umpquaensis and C. coxii) and the low calcium to magnesium ratios (especially for \boldsymbol{C}. howellii) were the most obvious serpentine factors exhibited in these soils.

Soil color, pH , heavy metal and macronutrient concentrations differed among the serpentine-derived soils inhabited by the three species. Soil
concentrations of nine elements differed significantly at the 0.0001 level.
Calochortus howellii soils were most distinctive, but C. umpquaensis soils were characterized by highest nickel, cadmium, manganese, and potassium concentrations. The average pH for soils inhabited by C. umpquaensis (6.8) and C. coxii (6.9) were comparable to the mean pH of 6.8 for serpentine soils worldwide (Brooks 1987).

None of the species appeared to be restricted to narrow precipitation or elevational isolines, based on range maps overlaid on precipitation (Froehlich et al. 1982, McNabb et al. 1982) and topographic maps. Microsite and microclimate analyses are clearly necessary to study the potential relationships between distribution and soil moisture relations. However, correlations between local precipitation and recruitment, mortality, and reproduction seem to indicate that climate may affect the distribution of these species. However, because of the difficulty in propagating these species in the laboratory, and the undesirability of manipulative research on federal candidate species, long-term demographic studies of population trends and life history characteristics have proven to be a more fruitful method of investigating rarity in these species than environmental analysis. The next two chapters describe the results of this approach.

LITERATURE CITED

Atzet, T. 1979. Description and classification of the forests of the upper Illinois River drainage system of southwestern Oregon. Ph.D. thesis, Oregon State Univ., Corvallis.
\qquad . and D.L. Wheeler. 1984. Preliminary plant associations of the Siskiyou Mountain province. United States Department of Agriculture Forest Service, Pacific Northwest Region.
\qquad . and L.A. McCrimmon. 1990. Preliminary plant associations of the southern Oregon Cascade Mountain province. United States Department of Agriculture Forest Service, Pacific Northwest Region, Siskiyou National Forest.

Beaulieu, J.D. and L. Ramp. 1972. Geologic compilation map of Douglas County, Oregon. State of Oregon Department of Geology and Mineral Industries.

Borine, R. 1983. Soil survey of Josephine County, Oregon. United States Department of Agriculture, Soil Conservation Service.

Brooks, R.R. 1987. Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press, Portland, OR.

Denton, M.F. 1979. Factors contributing to evolutionary divergence and endemism in Sedum section Gormania (Crassulaceae). Taxon 28:149-155.

Emmingham, W.H. 1973. Lower Illinois River forest ecosystem study. Unpublished report prepared for the USDA Forest Service, Siskiyou National Forest.

Fiedler, P.L. 1985. An investigation into the nature of rarity in the genus Calochortus Pursh (Liliaceae). Ph.D. thesis, Univ. of California, Berkeley. . 1986. Concepts of rarity in vascular plant species, with species reference to the genus Calochortus Pursh (Liliaceae). Taxon 35:502-518.

Fredricks, N.A. 1986. Calochortus howellii: Ecology of a rare serpentine endemic, and comparison with the new species, C. umpquaensis (Liliaceae). Unpublished M.S. thesis, Oregon State Univ., Corvallis.
_. 1988. Species Management Guide for Calochortus howellii. Oregon State Department of Agriculture, Plant Conservation Biology Program, unpublished report to the Siskiyou National Forest, Grants Pass, OR.
\qquad - 1989a. Morphological comparision of Calochortus howellii and a new species from southwestern Oregon, C. umpquaensis (Liliaceae). Syst. Bot. 14:7-15.
\qquad . 1989b. Calochortus umpquaensis: Preliminary status report and summary of 1989 field studies. Unpublished report prepared for the Oregon Department of Agriculture and Bureau of Land Management.
\qquad . 1989c. Calochortus coxii: Preliminary status report and summary of 1989 field studies. Unpublished report prepared for the Oregon Department of Agriculture and Bureau of Land Management.

Frenkel, R.E. and C.W. Kiilsgaard. 1984. Vegetation classification and map of the central Siskiyou Mountains, Oregon. Final Report for NASA-Ames University Consortium Joint Research Interchange.

Froehlich, H.A., D.H. McNabb, and F. Gaweda. 1982. Average annual precipitation, 1960-1980, in southwest Oregon. Oregon State Univ. Extension Service Misc. Publ. EM 8220, Corvallis.

Godfrey, M.R. and F.T. Callahan. 1988. A new Calochortus from Douglas County, Oregon. Phytologia 65:216-219.

Griggs, R.F. 1940. The ecology of rare plants. Bull. Torrey Bot. Club 67:575-594.
Hawk, G.M. 1978. A comparative study of the temperate Chamaecyparis forests. Ph.D. thesis, Oregon State Univ., Corvallis.

Hitchcock, C.L. and A. Cronquist. 1973. Flora of the Pacific Northwest. Univ. of Washington Press, Seattle.

Hopkins, L., M. Thiele, J. Fosback, and M. Carlson. 1986. Flora survey of Douglas County, Douglas County Museum of History and Natural History, Roseburg.

Keyfitz, N. 1977. Index to the mathematics of populations. AddisonWesley. Reading, MA.

Kruckeberg, A.R. 1984. California serpentines: Flora, vegetation, geology, soils, and management problems. Univ. of California Press, Berkeley.
\qquad . 1987. Serpentine endemism and rarity. In: Conservation and management of rare and endangered plants. Proceedings from a conference of the California Native Plant Society, T.S. Elias, ed., California Native Plant Society, Sacramento.

Ludwig, J.A. and J.F. Reynolds. 1988. Statistical Ecology: A Primer on Methods and Computing. John Wiley \& Sons, Inc., New York.

McLennan, D. 1992. U.S. Forest Service, Siskiyou National Forest, Personal communication, July 7.

McNabb, D.H., H.A. Froehlich, and F. Gaweda. 1982. Average dry-season precipitation in southwest Oregon, May through September. Oregon State Univ. Extension Service Misc. Publ. EM 8226, Corvallis.

Muller-Dombois, D. and H. Ellenburg. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York.

Munz, P.A. 1959. A California flora. Univ. of California Press, Berkeley.
Oyama, M. and H. Takehara. 1967. Revised Standard Soil Color Charts. Research Council for Agriculture, Forestry, and Fisheries, Ministry of Agriculture and Forestry, Japan.

Peck, M.E. 1961. A manual of the higher plants of Oregon, 2nd edition. Binfords and Mort, Portland.

Purdy, C. 1976. My life and times. Privately published.
Rai, D., Simonsen, G.H. and C.T. Youngberg. 1970. Serpentine derived soils in watershed and forest management. Report the U.S.D.I. Bureau of Land Management, Department of Soils, Oregon State Univ., Corvallis.

Ramp, L. 1986. Geologic map of the northwest quarter of the Cave Junction quadrangle, Josephine County, Oregon. GMS-38. State of Oregon, Department of Geology and Mineral Industries.

Reeves, R.D., R.M. McFarlane, and R.R. Brooks. 1983. Accumulation of nickel and zinc by western North American genera contain serpentine tolerant species. Amer. J. Bot. 70:1297-1303.

Rollé, W. 1992. U.S. Forest Service, Rogue River National Forest, personal communication on May 24.

SAS Institute Inc. 1988. SAS/STAT User's Guide, Release 6.03 Edition. SAS Institute Inc., Cary, NC.

Shelly, J.S. 1985. Biosystematic studies of Phacelia capitata (Hydrophyllaceae), a species endemic to serpentine osils in southwestern Oregon. Unpublished M.S. thesis, Oregon State Univ., Corvallis.
\qquad . 1989. Biosystematic studies of Phacelia capitata (Hydrophyllaceae), a species endemic to serpentine soils in southwestern Oregon. Madroño 36:232-247.

Smith, J.P. and J.O. Sawyer. 1988. Endemic vascular plants of northwestern California and southwestern Oregon. Madroño 35:54-69.

Sokol, R.R. and F.J. Rohlf. 1981. Biometry. W.H. Freeman and Co., New York.
Stebbins, G.L., Jr. 1942. The genetic approach to problems of rare and endemic species. Madroño. 6:241-272.

United States Department of Agriculture, Soil Conservation Service. 1975. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436, Washington D.C.

United States Department of Interior, Fish and Wildlife Service. 1990. 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Review of Plant Taxa for Listing as Endangered or Threatened Species; Notice of Review. February 21, 1990. Federal Register 55(35):6192.

Wagner, N.S. and L. Ramp 1958. Occurrences of peridotite-serpentine in Oregon. The Ore Bin 20:13-20.

Walker, G.W. and P.B. King. 1969. Geological map of Oregon. U.S.G.S. Miscellaneous Geological Investigations. Map I-595.

Well, F.G. and D.L. Peck. 1961. Geological map of Oregon west of the 121 st meridian. U.S. Geol. Survey Misc. Geol. Inv. Map I-325.

Wert, S.R., J.A. Pomerening, T.S. Gibson, and B.R. Thomas. 1977. Soil inventory of the Roseburg District. U.S.D.I. Bureau of Land Management. Roseburg, OR.

White, C.D. 1971. Vegetative-soil chemistry correlations in serpentine ecosystems. Unpublished Ph.D. thesis, Univ. of Oregon.

Whittaker, R.H. 1954. The ecology of serpentine soils. IV. The vegetational response to serpentine soils. Ecology 35:275-288.
. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30:279-338.
. 1961. Vegetation history of the Pacific Coast states and the "central" significance of the Klamath region. Madroño 16:5-23.

Wilson, M.V. 1988. Within-community structure in the conifer woodlands of the Siskiyou Mountains, Oregon. Vegetatio 78:61-72.

Zobel, D.B. and G.M. Hawk. 1980. The environment of Chamaecyparis lawsoniana. Amer. Midl. Naturalist 103:280-297.

CHAPTER 3

A NINE-YEAR STUDY OF DEMOGRAPHY AND REPRODUCTION IN CALOCHORTUS HOWELLII, A RARE SERPENTINE LILY

Abstract

A long-term, continuing demographic study of the narrow serpentine endemic Calochortus howellii was initiated in 1983 to evaluate reproduction, recruitment, and mortality and to investigate possible limiting factors and causes of rarity. Using size-classified transition matrices, changes in population structure and stability are assessed. Three methods of classifying data for transition matrix analysis were compared. Theoretically derived categories, using Moloney's algorithm, yielded slightly higher average lambda values, but differences in results among methods were probably not biologically significant. Reproduction fluctuates widely from year to year, with bud production correlated with spring (February to May) precipitation ($r^{2}=0.80, \mathrm{n}=9, \mathrm{p}=0.01$). While seed germination is high in the laboratory, heavy capsule predation limits seedling recruitment, which averaged 3.0% over 7 years. Low mortality (mean 2.0%) contributes to stable population structure and equilibrium population growth rates. Natural disturbance, which has resulted in a dramatic increase in total mortality due to localized activities of valley pocket gopher (Thomomys bottae), provides opportunity to study population recovery of this extremely slow-growing, long-lived lily.

INTRODUCTION

Until recently, the importance of long-term ecological research has not been fully recognized. The reorganization of the National Science Foundation Biology Directorate to incorporate the Long-term Projects in Environmental Biology section, and the establishment of the Long-term Ecological Research Network and the Longterm Study Section of the Ecological Society of America represent noteworthy advances toward recognition of the vital importance of extended studies. Thus far, however, intensive demographic studies of plants have rarely spanned more than three years, yet they are the only way to answer basic life history questions: how long do plants live and when do they become reproductive, are there large fluctuations in recruitment and mortality, and if so, to what environmental parameters are they correlated, and are the populations stable over time. These questions are particularly important in the evaluation of rare species, in the event that intervention is deemed necessary to prevent species extinction.

A nine-year study was undertaken to investigate population trends of a federal candidate for endangered species listing, Calochortus howellii. This long-lived lily inhabits serpentine-derived soils in Jeffrey-pine savannah of southwestern Oregon. Recruitment, growth, reproduction, and mortality were investigated within one of the most vigorous populations of this species, and size-classified transition matrix models were applied to evaluate population stability.

Transition matrix analysis yields several statistics useful in the evaluation of population stability. Lambda (λ) refers to the equilibrium population growth rate and is calculated as the dominant eigenvalue of the matrix (Lefkovitch 1965). A population that is stable has a rate of 1.0 , while those with λ values greater or less than 1.0 are increasing or declining. A population with a λ of 2.0 , for example, will double in size over the time period indicated, while. one with a λ of 0.5 will be reduced by half, assuming age, stage, or size distribution is stable. Estimates of time to extinction may be extrapolated for populations on the decline, but long-term projections are clearly misleading.

The equilibrium stage structure is derived from the dominant right eigenvector
and is useful in comparing the current population structure. Populations are considered unstable if they deviate significantly from the projected stable structure at equilibrium. The relative importance of each stage to population growth is indicated by the reproductive values, which is calculated as the dominant left eigenvector of the matrix.

Sensitivity and elasticity values are perhaps the most useful parameters to management, since they aid in predicting population response to hypothetical changes in growth, reproduction, and survival of individual life-history classes. The contribution to lambda of each matrix value is evaluated, and therefore the importance to population growth of various stages and functions can be determined. Sensitivities are proportional to the product of the reproductive value of stage 1 and the abundance of stage 2 in the stable stage distribution (Caswell 1978, 1989). They are calculated for each value in the matrix as $\Delta \lambda / \Delta a_{\mathrm{ij}}$, where a_{ij} is the transition rate between i and j . Small increases in elements with large sensitivity values result in proportionally greater increases in lambda. Sensitivities values may be difficult to compare because they have no common scale: they may vary by several orders of magnitude and may be negative if reproductive values decline during the transition.

Elasticity values provide valuable information regarding the extent to which population growth depends on survival, growth, and reproduction at different stages in the life cycle (Caswell 1989). They are calculated as

$$
\mathrm{e}_{\mathrm{ij}}=\frac{\frac{\Delta \lambda}{\lambda}}{\frac{\Delta a_{\mathrm{ij}}}{\mathrm{a}_{\mathrm{ij}}}} \quad \text { where } \mathrm{a}_{\mathrm{ij}}=\text { parameter (e.g. transition rate } \text { between } \mathrm{i} \text { and } \mathrm{j} \text {, calculated for each value in matrix). }
$$

Elasticities are proportional sensitivities which sum to 1 . Because they are relative and have a common scale, they are more readily interpretable than sensitivities.

Range and habitat of \boldsymbol{C}. howellii

Calochortus howellii is restricted to the Illinois River drainage of the Siskiyou Mountains of Josephine County, Oregon (Figure II.1, Fredricks 1986, 1988). All
populations fall within the boundaries of ultramafic formations mapped by Wells and Peck (1961) and all known populations occur on serpentine-derived soils (Chapter 2). The majority of populations occur within a narrow band extending from Eight Dollar Mountain south to near Oregon Mountain, just north of the California border; the total range of the species spans approximately 30 km . Elevations range from 390 to 610 m .

The sites on which C. howellii occurs are typically rocky slopes with sparse vegetation. These serpentine "barrens" are characterized by scattered Jeffrey-pine and incense cedar, sclerophyllous shrubs including species of Arctostaphylos and Ceanothus, bunchgrasses, and a high diversity of perennial herbs, including many endemic species (Fredricks 1986).

Description of the study site

The study site, Mariposa Meadow, is located on land managed by the United States Department of Agriculture Forest Service approximately 3.6 km southwest of the summit of Eight Dollar Mountain (T38S R8W, nw $1 / 4$ of sec. 30). It is located near the northern extent of the range of the species. Due to the rocky terrain and sparse vegetation, plants at this study site could be easily monitored with minimal impact. Specifically, this site was selected for its high density of C. howellii (the population is one of the largest and most vigorous), level topography, ease of access, and relative lack of disturbance. Although the site was previously grazed, there is no obvious evidence of ground disturbing activity in the immediate area. However, other populations of the species have been impacted by mining, which has occurred throughout the area since the summer of 1850 . Gold was first discovered in Oregon within 1 km of the study site near the confluence of the Illinois River and Josephine Creek (Brooks and Ramp 1968), and the area has been subsequently dredged repeatedly.

Plots were located within a Jeffrey-pine savannah opening, situated on a bench above Josephine Creek, which is 0.5 km to the east. The gently sloping topography ranges from 440 m to 465 m in elevation. The Cave Junction weather station is
located within 8 km of the study site, and provides the best available estimate of precipitation.

Based on the high total herb cover, the study site falls within the Pinus jeffreyi/Ceanothus pumilus plant association of Atzet and Wheeler (1984), and the corresponding Pinus jeffreyi/Festuca rubra association of Frenkel and Kiilsgaard (1984). Sparse Pinus jeffreyi and Calocedrus decurrens comprise the overstory. The shrub layer is limited to widely scattered Arctostaphylos viscida, and herbs and grasses dominate the community. Species with high frequency within the plots include Ranunculus occidentalis, Camassia leichtlinii, Ceanothus pumilus, Horkelia sericata, Allium falcifolium, Senecio hesperius, and Viola cuneata. All but the first two species are considered serpentine endemics (Brooks 1987, Kruckeberg 1984, White 1971). Other endemics inhabiting this area are Arabis aculeolata, Balsamorhiza sericea, Microseris howellii, Hastingsia alba, Lewisia oppositifolia and Viola hallii. Bunchgrasses, including Deschampsia cespitosa, Festuca rubra, Melica geyeri, and Stipa lemmonii contribute to the high species diversity (Fredricks 1986).

METHODS

Monitoring methods

In 1983, five $5-\mathrm{m}^{2}$ plots were established within an area 400 by 200 meters. Approximate locations of permanent plots are identified in Figure III.1. The five plots incorporate the narrow range of microhabitats occupied by this species at this site, with soil moisture highest in plots 2 and 3, due to seasonal subsurface flow.

Beginning in 1983, each individual within the plots was assigned a number, tagged and mapped. Small aluminum tags with embossed numbers were attached to plastic coated wire stakes. These tags were inserted within 3 cm of each individual; they were found to be durable and inconspicuous, and were believed to pose minimal risk to the individuals and environment. To aid in relocation and interpretation of recruitment patterns (relative to seed production), each plant was mapped on graph paper. Coordinates were later entered into a computer, so that

Figure III.1. Locations of permanent plots in Mariposa Meadow study area, Josephine Co., Oregon (T38S R8W, nw 1/4 of sec. 30).

maps could be easily updated and graphics could be prepared illustrating patterns of mortality, recruitment and seed set.

A minimum of four visits were made to the study area each year, with specific timing of visits determined by plant phenology. During the first visit in mid to late April, presence/absence was determined for all previously tagged individuals, and new recruits were tagged and mapped. In mid to late May, morphological data were collected (leaf length from 1983-1985; leaf width from 1985-1991), and potentially reproductive individuals were identified by the presence of developing inflorescences. Leaf widths were measured to the nearest millimeter and ranged from 1 to 18 mm . In late June to early July, numbers of flowers produced per plant were recorded; and in mid to late July, capsules were counted and measured within the plots. At this time, capsules were also collected, as described below, for seed-set analysis.

Direct observations of predation on Calochortus were limited to insects, although herbivorous mammals were observed in the study areas grazing on vegetation outside of the plots. The height of vegetation removal, dentation patterns, knowledge of feeding habitats, and observations were used to evaluate predation on Calochortus within the study area. Removal of tissue by insects and mammals were in most cases easily distinguished.

Data analysis

Data were entered into a relational database for calculation of matrices and preparation for statistical analysis. Year of recruitment, year of mortality, and annual measurements for leaf width, bud, flower, and capsule production were recorded for each individual. The database also facilitated conversions of various leaf-width ranges to predetermined categories, generating size-classified matrices and enabling queries on growth rates, recruitment, and mortality per year by leaf width, transect, habitat, or site.

Inflorescences of Calochortus howellii begin to emerge in late April at the study site. By May, buds are well formed and are susceptible to grazing by deer
and jackrabbits. While bud production is a poor predictor of final seed set, the reproductive effort of bud production was investigated. The question asked was if the production of buds during one year influences the probability of bud production the subsequent year. The numbers and proportions of plants producing buds which had not initiated inflorescences the previous year were compared to those which produced buds, flowers, and capsules the previous year. In addition, plants producing buds three consecutive years and only alternate years are compared.

Transition matrices, incorporating information on recruitment, growth (change in leaf width between two consecutive years), and mortality were analyzed using the APL program DEMOG (Wilson 1992). Size-classified matrices were generated using three methods. First, categories were empirically selected based on evaluation of the life history of the species. The second approach involved theoretical derivation of categories, based on an algorithm developed by Vandermeer (1978) and improved by Moloney (1986) which minimizes the errors of estimation and errors of distribution resulting from inappropriate size classification. In the third approach, the raw leaf width data, which was recorded to the nearest millimeter, was not further classified into categories. This approach allowed sampling error to be quantified and the robustness of the model evaluated. The large data set (nine years and nearly 700 plants) provides a unique opportunity to compare different methods of selecting categories with minimal sampling error.

For the empirical classification analysis, three categories were selected which best represented life history stages of the species: seedlings, juveniles, and adults. The first category, seedlings, consists of plants with maximum leaf widths no greater than 3 mm . These individuals may remain in this category for many years.

An individual did not typically become reproductive until its leaf attained a minimum width of 6 mm . Plants with leaf widths greater than 3 mm and less than or equal to 6 mm were considered juveniles and comprised category 2. Plants above this threshold were classified as adults, category 3 , whether or not they actually were reproductive.

Reproduction in the transition matrix is calculated as the number of new plants
appearing in the plots the second year divided by the total number of plants in that category the first year. These numbers appear in the first row of the matrix and are typically largest for the adults (category 3). Occasionally, juvenile plants produce capsules (e.g. plot 3), therefore total seedling recruitment is represented by the second and third columns of the first row of the transition matrix. Capsule data were used to determine proportion of reproductive plants in each catagory. For example, if 10% of the capsule-producing plants within the plots were in the juvenile category, 10% of the seedling recruitment the subsequent year was attributed to category 3.

A small number of new juvenile and adult plants have appeared in the plots each year since the onset of the study. For the present analysis, these plants were ignored. Calochortus howellii does not typically spread clonally and although plants may occasionally produce offsets, this method of vegetative reproduction is far more common in other taxa (e.g. C. uniflorus, C. longebarbatus). Other possible explanations for the appearance of previously undetected juvenile and adult plants are discussed later.

In order to evaluate the impact of localized episodes of mortality and recruitment, data were analyzed separately by plot. This approach also allows standard deviations for lambda to be calculated. Standard deviation of the lambda values was also determined for the summarized data over time.

The software package RAMAS Stage (Ferson 1990) was used to calculate sensitivity and elasticity values, discussed below. CATSIZE, a computer program implementation of Moloney's generalized algorithm for determining category size, developed by Millstein (1992), was used to generate the size classification for the theoretically derived categories.

Capsule and seed collection and analysis

In order to estimate average numbers of seeds produced per plant for the demographic analysis, inflorescences were collected at the time of capsule maturity and prior to seed dissemination, at a location approximately 1.1 km from the study
plots. The number of capsules collected each year depended upon yearly variation in capsule production and predation and ranged from 20 to 75 . Capsules were measured, dissected, and seeds and ovules were counted. If more than one capsule was produced, their positions on the inflorescence were recorded in order to compare reproductive allocation among terminal and axillary fruits. To determine if capsule length was a good predictor of seed number or seed set, linear regressions were performed for capsule length versus seed number, seed set, and total number of ovules produced.

A subset of seeds collected were germinated in the laboratory using methods described in Fredricks (1986). Seedlings development was observed over two years, with some bulbs excavated and observed after the first growing season. Seeds not used in germination trials were deposited at the Berry Botanic Garden in Portland, Oregon, or returned to the site.

RESULTS AND DISCUSSION

Life history of C. howellii

Germination. Seeds require approximately 8 weeks at $5^{\circ} \mathrm{C}$. for germination (Fredricks 1986). Temperatures at the Cave Junction weather station, near the study site average $5^{\circ} \mathrm{C}$ or less during December and January (Figure III.2). In the laboratory, nearly 100% germination was achieved (Fredricks 1986). Small bulbs develop during the first season, and seedling leaves tend to wither as soil moisture decreases, typically by the end of May.

Recruitment of seedlings. Seedling recruitment is patchy and episodic (Table III.1), with new individuals typically arising within a short distance (less than 1 meter) of a plant which dispersed seed the previous year. In most cases, seedlings establish north and east of a seed-producing parent. This is likely explained by the prevailing southwesterly winds at the study area during late July when seeds are

Figure III.2. Climate diagram illustrating mean precipitation and temperature for Cave Junction weather station, based on data for 1963-1987.

Table III.1a. Permanent plot data for Calochortus howellii, summarized by plot for 1985 through 1991. Vegetative plants did not initiate inflorescence. Plants which produced buds, flowers, and capsules are tallied separately, by plot. Morts are defined as those individuals which failed to appear two consecutive years and are considered dead. Plants with leaves no wider than 3 mm appearing for the first time are new seedlings; larger plants new to the plots are referred to as new juveniles or adults, based on leaf width.

	1983					
Plot Number	1	2	3	4	5 All Plots	
Vegetative	0	3	6	33	6	48
Buds	22	13	26	36	65	162
Flowers	22	11	23	31	60	147
Capsules	5	7	10	10	31	63
All plants	22	16	32	69	71	210
	1984					

Plot Number	1	2	3	4	5	All Plots
Vegetative	80	38	55	86	96	355
Buds	24	25	36	58	37	180
Flowers	10	19	33	51	32	145
Capsules	2	13	7	9	11	42
Morts	0	1	3	0	2	6
New seedlings	2	12	8	2	12	36
New juveniles/adults	7	1	4	6	3	21
All plants	104	63	91	144	133	535
		1989				
Plot Number	1	2	3	4	5	All Plots
Vegetative	46	32	81	67	78	304
Buds	58	30	25	81	75	269
Fowers	22	21	12	34	38	127
Capsules	5	0	2	0	1	8
Morts	2	10	2	2	3	19
New seedlings	1	6	13	1	21	42
New juveniles/adults	2	4	4	5	2	17
All plants	104	62	106	148	153	573
		1990				
Plot Number	1	2	3	4	5	All Plots
Vegetative	69	21	79	70	98	337
Buds	33	19	34	73	61	220
Flowers	6	1	9	5	10	31
Capsules	1	0	3	3	1	8
Morts	3	21	7	9	0	40
New seedlings	1	0	8	1	5	15
New juveniles/adults	2	0	9	4	1	16
Total	102	40	113	143	159	557
		1991				
Plot Number	1	2	3	4	5 All Plots	
Vegetative	82	9	82	72	87	432
Buds	20	8	37	74	76	115
Flowers	11	8	22	23	36	64
Capsules	5	7	5	3	16	36
Morts	0	25	0	5	1	31
New seedlings	0	1	5	7	4	17
New juveniles/adults	0	3	1	1	1	6
All plants	102	17	119	146	163	547

Table III.1b. Permanent plot data for Calochortus howellii, summarized by plot for 1985 through 1991. All numbers are percentages. Vegetative plants did not initiate inflorescence. Plants which produced buds, flowers, and capsules are tallied separately, by plot. Morts are defined as those individuals which failed to appear two consecutive years and are considered dead. Recruits are plants appearing in the plots for the first time, regardless of size.

1983						
Piot	1	2	3	4	5	All plots
Vegetative	0.0	18.8	18.8	47.8	8.5	22.9
Buds	100.0	81.3	81.3	52.2	91.5	77.1
Flowers	100.0	68.8	71.9	44.9	84.5	70.0
Capsules	22.7	43.8	31.3	14.5	43.7	30.0
1984						
Plot	1	2	3	4	5	All plots
Vegetative	68.1	60.5	52.6	56.3	56.9	58.7
Buds	31.9	39.5	47.4	43.7	43.1	41.3
Flowers	17.0	34.2	39.5	40.8	36.9	34.4
Capsules	10.6	26.3	26.3	15.5	24.6	20.1
Morts	0.0	0.0	0.0	0.0	0.0	0.0
1985						
Plot	1	2	3	4	5	All plots
Vegetative	83.0	80.0	51.2	60.7	59.8	64.9
Buds	17.0	20.0	48.8	39.3	40.2	35.1
Flowers	14.9	17.8	41.9	36.4	35.1	31.3
Capsules	8.5	2.2	27.9	11.2	0.0	8.6
Morts	0.0	0.0	7.9	4.2	0.0	2.3
Recruits	0.0	15.6	18.6	36.4	33.0	25.4
1986						
Plot	1	2	3	4	5	All plots
Vegetative	58.4	42.2	52.7	48.4	42.1	48.7
Buds	41.6	57.8	47.3	51.6	57.9	51.3
Flowers	33.7	42.2	30.9	13.3	35.1	28.5
Capsules	25.8	2.2	9.1	7.0	14.0	12.5
Morts	4.3	2.2	4.7	0.0	2.1	2.1
Recruits	49.4	2.2	25.5	14.8	16.7	22.5
1987						
Plot	1	2		4	5	All plots
Vegetative	90.5	82.4	82.9	88.2	83.3	86.0
Buds	9.5	17.6	17.1	11.8	16.7	14.0
Flowers	1.1	5.9	2.4	2.2	6.7	3.5
Capsules	0.0	2.0	1.2	0.7	5.0	1.9
Morts	0.0	2.2	0.0	0.8	2.6	1.2
Recruits	6.3	13.7	32.9	6.6	7.5	12.0

1988						
Plot	1	2	3	4	5	All plots
Vegetative	76.9	60.3	60.4	59.7	72.2	66.4
Buds	23.1	39.7	39.6	40.3	27.8	33.6
Flowers	9.6	30.2	36.3	35.4	24.1	27.1
Capsules	1.9	20.6	7.7	6.3	8.3	7.9
Morts	0.0	2.0	3.7	0.0	1.7	1.2
Recruits	8.7	20.6	13.2	5.6	11.3	10.7
1989						
Plot	1	2	3	4	5	All plots
Vegetative	44.2	51.6	76.4	45.3	51.0	53.1
Buds	55.8	48.4	23.6	54.7	49.0	46.9
Flowers	21.2	33.9	11.3	23.0	24.8	22.2
Capsules	4.8	0.0	1.9	0.0	0.7	1.4
Morts	2.9	17.5	2.2	1.4	2.3	3.9
Recruits	2.9	16.1	16.0	4.1	15.0	10.3
1990						
Plot	1	2	3	4	5	All plots
Vegetative	67.6	52.5	69.9	49.0	61.6	60.5
Buds	32.4	47.5	30.1	51.0	38.4	39.5
Flowers	5.9	2.5	8.0	3.5	6.3	5.6
Capsules	1.0	0.0	2.7	2.1	0.6	1.4
Morts	4.8	35.5	9.4	6.8	0.0	8.2
Recruits	2.9	0.0	15.0	3.5	3.8	5.7
1991						
Plot	1	2	3	4	5	All plots
Vegetative	80.4	52.9	68.9	49.3	53.4	79.0
Buds	19.6	47.1	31.1	50.7	46.6	21.0
Flowers	10.8	47.1	18.5	15.8	22.1	11.7
Capsules	4.9	41.2	4.2	2.1	9.8	6.6
Morts	0.0	67.5	0.0	3.5	1.3	6.1
Recruits	0.0	23.5	5.0	5.5	3.1	4.2

disseminating. Capsule morphology facilitates wind dispersal; like other liliaceous genera including Camassia and Zigadenus, the elongated dried stem vibrates, shaking the capsule contents until the seeds are shed. Animals may aid in dispersal by further agitating the dried stems.

New seedlings contributed an average of 3.0% to the population from 1986 to 1991 (Table III.2). Seedling recruitment was highest during 1987 through 1989, then dropped sharply in 1990. A modest correlation ($\mathrm{r}^{2}=0.56, \mathrm{n}=7, \mathrm{p}=0.19$) between recruitment and February precipitation may indicate a need for adequate moisture during late winter, but precipitation in other months is negatively correlated with recruitment. Recruitment was modestly correlated to numbers of capsules produced during previous year ($\mathrm{r}^{2}=0.58, \mathrm{n}=7, \mathrm{p}=0.16$).

An increasing trend in the number of small C. howellii seedlings (1 to 2 mm leaf width) is evident between 1986 and 1989 (Figures III.3-5). Capsule production during previous years $(1986,1988)$ is correspondingly high (Tables III.1 and III.2). Reduced capsule production during 1989 and 1990 corresponds with reduced recruitment during the following two years (Table III.1).

Mortality of first year seedlings is high relative to established plants; 39, 48, and 44% of seedlings 1 mm or less recruited in 1987, 1988, and 1989, respectively, had died by 1991 (Table III.3a). Seedlings may vary in size depending on resource availability and may not increase in width for many years. For example, 82% of individuals which were 1 mm or less in 1987 which had not died by 1991, had not grown (Table III.3a). Growth rates accelerate somewhat later in life; only 15 and 29% of those individuals with widths of 4 mm and 5 mm respectively in 1987 were the same size in 1991 (Table III.3b). Often, decreases or failure to increase were due to partial or total leaf herbivory during previous years.

Growth of seedlings, as previously noted, can be extremely slow. Typically, there is a long period of little or no increase in leaf width, while resources are allocated for underground development of the bulbs. During this time, contractile roots effectively lower seedling bulbs through the soil profile. Once plants are well

Table III.2a. Summary of data collected within all five plots at Mariposa Meadow for Calochortus howellii between 1983 and 1991, including number of plants producing buds, flowers, and capsules, recruitment, and mortality. Seedlings are defined as individuals with leaves no wider than 3 mm , juveniles with leaves between 3.5 mm and 6 mm , adults with widths greater 6 mm .

Year	1983	1984	1985	1986	1987	1988	1989	1990	1991
Reproduction									
Buds	162	107	119	221	68	180	269	220	215
Flowers	147	89	106	123	17	145	127	31	100
Capsules	63	52	29	54	9	42	8	8	36
Total	210	259	339	431	484	535	573	557	547
Recruitment									
Seedling	------	4	2	31	36	42	15	17	
Juvenile	---	---	27	32	20	16	6	13	5
Adult	---	--	55	63	7	5	6	3	1
Total	------	86	97	58	57	54	31	23	
Mortality									
Seedling	---	--	0	0	0	5	7	13	5
Juvenile	------	0	1	0	0	1	5	2	
Adult	---	---	0	6	5	1	12	20	27
Total	------	0	7	5	6	20	38	34	

Table III.2b. Summary of data collected within all five plots at Mariposa Meadow for Calochortus howellii between 1983 and 1991, including percentage of plants producing buds, flowers, and capsules, recruitment, and mortality. Seedlings are defined as individuals with leaves no wider than 3 mm , juveniles with leaves between 3.5 mm and 6 mm , adults with widths greater than 6 mm .

Year	1983	1984	1985	1986	1987	1988	1989	1990	1991	Mean
Reproduction										
Buds	77.1	41.3	35.1	51.3	14.0	33.6	46.9	39.5	39.3	37.8
Flowers	70.0	34.4	31.3	28.5	3.5	27.1	22.2	5.6	18.3	24.1
Capsules	30.0	20.1	8.6	12.5	1.9	7.9	1.4	1.4	6.6	9.0
Recruitment										
Seedling	---	---	1.2	0.5	6.4	6.7	7.3	2.7	3.1	2.8
Juvenile	---	--	8.0	7.4	4.1	3.0	1.0	2.3	0.9	2.7
Adult	---	---	16.2	14.6	1.4	0.9	1.0	0.5	0.2	3.5
Total	---	--	25.4	22.5	12.0	10.7	9.4	5.6	4.2	9.0
Mortality										
Seedling	---	---	0.0	0.0	0.0	0.9	1.2	2.3	0.9	0.5
Juvenile	---	--	0.0	0.2	0.0	0.0	0.2	0.9	0.4	0.2
Adult	------	0.0	1.4	1.0	0.2	2.1	3.6	4.9	1.3	
Total	---	---	0.0	1.6	1.0	1.1	3.5	6.8	6.2	2.0

Figure III.3. Frequency distribution and reproductive stages attained by Calochortus howellii based on leaf width for 1986. The sum of the three upper bar segments are the total number of buds produced; upper two segments total for flowers. Most buds which failed to develop flowers or capsules were removed through grazing.

Figure III.4. Frequency distribution and reproductive stages attained by Calochortus howellii based on leaf width for 1987. The sum of the three upper bar segments are the total number of buds produced; upper two segments total for flowers. Most buds which failed to develop flowers or capsules were removed through grazing.

Figure III.5. Frequency distribution and reproductive stages attained by Calochortus howellii based on leaf width for 1989. The sum of the three upper bar segments are the total number of buds produced; upper two segments total for flowers. Most buds which failed to develop flowers or capsules were removed through grazing. Note recruitment of small plants.

Table III.3a. Fate of 1 mm wide Calochortus howellii seedlings in width recruited in 1987, 1988, and 1989 after 2 to 4 years, including actual numbers and percent which died, remained 1 mm , and grew. Percent mortality based on total; percent in remaining categories based on those alive that year.

Fate in 1991		Dead		1 mm		2 mm		3 mm	
4 mm									
Recruit year	Total	N	Percent	N	Percent	N	Percent	N	Percent
1987	18	7	38.9	9	81.8	2	18.2	0	0.0
1988	25	12	48.0	7	53.8	4	30.8	1	7.7
1989	23	11	47.8	8	66.7	4	33.3	0	0.0

Table III.3b. Fate of Calochortus howellii plants which had leaf widths of 4 mm and 5 mm in 1985, 1986, or 1987 and their change in size in 1991. Percent increases based on numbers present in 1991 (i.e. excluding missing plants).

Fate in 1991		Missing		= or <		1 mm increase		2 mm increase		3 mm increase		4+ mm increase	
0.4 cm	Total		Percent		Percent	N	Percent			N	Percent	N	Percent
1985	8	2	25.0	1	16.7	0	0.0	1	16.7	2	33.3	2	33.3
1986	9	0	0.0	2	22.2	5	55.6	0	0.0	1	11.1	1	11.1
1987	13	1	7.7	2	16.7	4	33.3	3	25.0	4	33.3	0	0.0
0.5 cm													
1985	19	3	15.8	0	0.0	3	18.8	1	6.3	6	37.5	6	37.5
1986	25	3	12.0	3	13.6	4	18.2	4	18.2	2	9.1	9	40.9
1987	21	6	28.6	6	40.0	3	20.0	5	33.3	3	20.0	4	26.7

established, accelerated above-ground growth has been observed, and occasionally seedlings may show leaf-width increases of several millimeters in successive years. However, growth is typically slow, and many additional years of study may be necessary to determine the average period of time necessary for seedlings to reach reproductive maturity. No seedlings recruited during the study have yet advanced beyond the seedling or juvenile stage.

Juveniles. Juveniles (leaves between 3.5 mm and 6 mm in width) do not make up a large proportion of the population, but they differ from the smaller seedlings in their reduced mortality rate. Average mortality for this stage over a six year period was 1.7%.

Once established, juveniles grow slowly until reproductive maturity is reached. Of the plants that were scored as juveniles in 1985, 1986, and 1987, the following percentages, respectively, had failed to increase in size when observed in 1991: 4.5, 16.1, and 29.6 (Table III.3b). In these juvenile cohorts of 1985, 1986, and 1987, a large increase in growth (4 mm or more in leaf width) was observed in only $3.6,3.2$, and 1.5%, respectively (Table III.3b.).

Accounting for new juveniles and adults. The high incidence of new adult individuals appearing in the plots during the earlier years of the study was thought to be explained by the poorly documented phenomenon of vegetative dormancy (Fredricks 1986). However, continued study has led to the conclusion that these adult individuals were not new to the population, but instead they were previously grazed at ground level shortly after emergence and therefore were unobserved. Once it became evident that herbivores could remove all aboveground organs, closer examination in the vicinity of apparently missing individuals often revealed stems present immediately below the surface (pers. obs.). Because the recruits in Table III. 1 include all plants newly observed in the plots, these numbers overestimate actual recruitment. The true dynamics of the population are better illustrated by transition matrix analyses which incorporate only seedling recruitment
and the leaf width frequency diagrams (Figures III. 4 and III.5). In addition, the appearance of a small number of new juveniles might reflect the difficulty in locating the tiny seedlings and their tendency to wither early in the season.

Reproduction. Bud, flower, and capsule production by leaf width is illustrated for three years: a good reproductive year for C. howellii, 1986, a poor reproductive year, 1987; and the year with the highest bud production and heavy predation, 1989 (Figures III.3-5). The increasing percentage of reproductive individuals as leaf width increases is particularly evident for 1986 and 1989. Most individuals which failed to produce flowers or capsules after initiating buds had been grazed.

On average, plants were more likely to produce buds if they had not initiated buds the previous year (Table III.4). However, large numbers of plants produced buds three consecutive years, suggesting that bud production does not drain carbohydrate reserves sufficiently to preclude repeated reproductive effort.

Reproductive effort in C. howellii is closely correlated to size: individuals rarely produce buds until leaf widths are 6 mm or greater. As leaf widths increase, the proportion of vegetative individuals decreases, and nearly all larger individuals are reproductive. Larger individuals are also more likely to produce two or more buds per inflorescence.

For many nonannual plants (monocarpic and polycarpic perennials), size is a good predictor of onset of flowering (Lacey 1986). As lifespan lengthens, the age at first reproduction is delayed for both plants (Harper and White 1974) and animals (Stearns 1976). In addition, the observation that larger individuals produce larger inflorescences and greater seed-set is not unexpected; Lacey (1986) provides numerous references that in many monocarps and polycarps, fecundity rises and mortality declines with increasing size.

Average seed-set varied from 29 to 58% for the six years sampled Table III.5a. A modest correlation (r^{2} from 0.49 to $0.52, \mathrm{n}=37$ to 75) exists between capsule length and seed number for 1989 to 1991 (Table III.6). In Figure III.6, capsule length versus the number of seed produced per capsule are plotted for three years.

Table III.4. Flower-bud formation in Calochortus howellii in relation to previous years' reproductive fate.
Actual data

Years	$1983-84$	$1984-85$	$1985-86$	$1986-87$	$1987-88$	$1988-89$	$1989-90$	$1990-91$
Buds following no reproduction	50	85	147	34	146	176	86	85
Buds 2 consecutive years	57	34	74	34	34	93	137	130
Buds following flowers	51	27	66	17	7	73	57	14
Buds following capsules	17	12	19	5	3	20	2	1
Years	$1983-85$	$1984-86$	$1985-87$	$1986-88$	$1987-89$	$1988-90$	$1989-91$	
Buds 3 consecutive years	23	11	24	85	19	49	85	
Buds alternate years	65	64	21	101	39	82	124	

Percentage based on total numbers of individuals producing buds for latest year.

Years	1983-84	1984-85	1985-86	1986-87	1987-88	1988-89	1989-90	1990-91	Average
Buds following no reproduction	46.7	71.4	66.5	50.0	81.1	65.4	39.1	39.5	57.5
Buds 2 consecutive years	53.3	28.6	33.5	50.0	18.9	34.6	62.3	60.5	42.7
Buds following flowers	47.7	22.7	29.9	25.0	3.9	27.1	25.9	6.5	23.6
Buds following capsules	15.9	10.1	8.6	7.4	1.7	7.4	0.9	0.5	6.5
Years	1983-85	1984-86	1985-87	1986-88	1987-89	1988-90	1989-91		
Buds 3 consecutive years	19.3	5.0	35.3	47.2	7.1	22.3	39.5		25.1
Buds alternate years	54.6	29.0	30.9	56.1	14.5	37.3	57.7		40.0

Table III.5a. Seed and capsule analysis for Calochortus howellii based on capsules collected outside of permanent plots. Totals for each year are sums of average seed number and undeveloped ovule number per capsule. Note high seed set and large capsules for 1987.

Year	N	Capsule Length (cm) Mean SD	Seeds		Undeveloped ovules Mean S.D.		$\begin{aligned} & \text { Total } \\ & \text { Seeds }+ \text { ovules } \\ & \text { Mean } \mathrm{SD} \end{aligned}$		Seed Set (\%) Mean S.D.	
1991	75	1.69	14.49	7.89	Mean	-9.D.			Mean	S.D.
1990	37	1.930 .26	14.29	7.48	23.50	7.95	37.79	14.96	0.35	0.07
1989	54	1.920 .30	17.78	9.19	32.39	9.41	50.17	11.42	0.35	0.16
1988	59	$2.00 \quad 0.33$	21.88	10.09	34.17	10.24	56.05	10.97	0.39	0.16
1987	20	$2.06 \quad 0.24$	25.90	7.83	22.30	13.49	48.20	14.43	0.58	0.19
1984	24		31.88	13.54	32.38	11.09	64.25	8.36	0.49	0.17
Mean	S.E.	1.920 .06	21.04	2.59	29.91	2.06	50.94	3.28	0.41	0.04

Table III.5b. Analysis of effect of capsule position on length and seed production for Calochortus howellii, 1991 and 1989. Numbers 1, 2, and 3 refer to position of capsule on inflorescence and correspond developmentally and chronologically, with 1 produced first in the terminal position, 2 subumbellate to 1 , and 3 being axillary. Not all individuals produce more than one bud. Statistically significant effect of position denoted by ${ }^{* *}$ ($\mathrm{p}<0.001$) or ${ }^{* * *}$ ($\mathrm{p}<0.0001$), based on Kruskal-Wallis test.

$\begin{array}{\|c\|} \hline 1991 \\ \text { Position } \\ \hline \end{array}$	N	Capsule Length (cm)		Seeds		Undeveloped ovules Mean S.D.		Total		$\begin{gathered} \text { Seed Set }(\%) \\ \text { Mean } \end{gathered}$	
		- Mean		Mean	S.D.			Mean	S.D.		
All	75	1.69	0.24 **	14.49	7.89 ***	34.69	9.34	49.19	8.54 ***	0.29	0.15
1's	49	1.76	0.21	16.92	7.24	35.35	9.62	52.27	7.57	0.33	0.14
2's \& 3's	26	1.55	0.22	9.92	7.09	33.46	8.83	43.38	7.24	0.23	0.16

1989 Position	Capsule Length (cm)			Seeds		$\begin{gathered}\text { Undeveloped ovules } \\ \text { Mean }\end{gathered}$S.D.		Mean Total S.D.		$\begin{aligned} & \text { Seed Set (\%) } \\ & \text { Mean } \end{aligned}$	
	N	Mean	S.D.	Mean	S.D.						
All	54	1.92	0.30	17.78	9.19	32.39	9.41	50.17	11.42	0.35	0.16
1's	28	1.94	0.36	19.00	9.57	30.57	8.37	49.57	12.04	0.37	0.15
2's \& 3's	26	1.91	0.24	16.46	8.76	34.35	10.22	50.81	10.91	0.32	0.16

Table III.6. Pearson correlation coefficients for Calochortus howellii seed number and seed set versus capsule length. For $1989 \mathrm{n}=55$, $1990 \mathrm{n}=37$, and $1991 \mathrm{n}=75$. Values were recalculated after one outlier for each year was deleted (cf. Figure III.7).

	Capsule Length		
	Year	All data	w/o outlier
	1989	0.51	
	1990	0.40	0.52
	1991	0.47	0.49
Seed set	1989	0.02	
	1990	0.07	0.24
	1991	0.32	0.49
Total	1989	0.49	
	1990	0.50	0.60
	1991	0.21	0.27

Figure III.6. Capsule length versus seeds produced per capsule for Calochortus howellii, 1987 through 1991. Correlation coefficients were calculated after outliers (denoted by x) were eliminated. See Table III. 6 for additional analysis. For 1989 and 1991, numbers 1, 2, and 3 refer to position of capsule on inflorescence and correspond developmentally and chronologically, with 1 produced first in the terminal position, 2 subumbellate to 1, and 3 being axillary. Note that capsules produced later tend to be smaller. For 1990, position was not recorded.

For 1989 and 1991, the effect of position of the capsule is compared. In 1991, those capsules which develop first were significantly larger $(p=0.0002)$, produced more ovules ($p=0.00003$), and set more seed $(p=0.00005)$ than those produced later, based on Kruskal-Wallis analysis (Table III.5b). Precipitation was over three times higher during June and July in 1991 than in 1989 (Appendix II.7). Average seed set was higher for 1989, but far fewer capsules were produced within the plots during the drier summer (8 capsules in 1989 versus 36 in 1991, Table III.1).

In 1987, 1989, and 1990 reproductive success was extremely low, with only $1.9,1.4$, and 1.4% of the plants producing capsules, compared to the average of 14.3% for the six other years (Table III.2; Figure III.7). An average of 21.5% of individuals producing buds produced capsules (S.D. $=15.0, \mathrm{n}=7$) and 34.4% of flowering individuals produced capsules (S.D. $=16.7, \mathrm{n}=7$) over all years studied. Holtsford (1985) reported that C. leichtlinii individuals typically produce two flowers, but mature only one fruit. In his experiments, second flowers produced seed when the first flowers were damaged or when soil moisture was supplemented. Watering also increased seed set. In C. howellii, precipitation was correlated with numbers of capsules produced within the plots ($\mathrm{r}^{2}=0.72$ for February-May, $n=9, p=0.03$), but was not correlated with seed set or numbers of seeds per capsule, based on data from capsules collected outside of plots.

Based on the consistent height of vegetation removed and dentation patterns on remaining inflorescences, herbivory accounted for most of the reduction in capsule production. Herbivores observed in the study area included blacktail deer (Odocoileus hemionus), blacktail jackrabbits (Lepus californicus), weevils (Carpocoris sulcatus: Pentatomidae) and mealy bugs. A small percentage of fruits failed to mature; this typically occurred on plants producing more than one capsule. Only three capsules aborted early in their development in 1991 and six were less than 1.5 cm at the time of dispersal. Ten were partially or totally eaten by insects.

If resources are not limiting, individuals of C. howellii might be expected to flower repeatedly during consecutive years. The large fluctuations in bud, flower, and capsule production (Table III.2, Figure III.7) suggest that extrinsic factors are

Figure III.7. Reproductive stages attained by Calochortus howellii for 1983 through 1991. The sum of the three bar segments are the total number of buds produced; upper two segments total for flowers. Most buds which failed to develop flowers or capsules were removed through grazing.

involved. The correlations between flowering and precipitation are discussed below.

Correlations between precipitation and reproduction

During the study period, annual precipitation varied from 87 cm to 262 cm for the Cave Junction weather station (Appendix 2). Precipitation over the 28-year period from 1963 to 1991 averaged 148 cm , with a maximum of 262 cm received in 1983 and minimum in 1976 of 75 cm . Average monthly precipitation peaks in December and gradually declines until July (Figure III.2). June, July, and August precipitation is typically very low with 28 year averages of less than 2 cm per month. Precipitation patterns are highly idiosyncratic, varying greatly from year to year (Figure III.8).

While annual precipitation varies widely both spatially throughout the species' range and temporally, precipitation still appears to play a role in annual reproduction and recruitment of C. howellii.

Bud production was highly correlated with February through May precipitation (Table III.7; $\mathrm{r}^{2}=0.80, \mathrm{n}=9, \mathrm{p}=0.01$). An outlying year, 1987, (Figure III.9) may be explained by the extremely low precipitation in April and May of that year, which corresponds to the lowest bud production during the entire study period. In addition, reproduction was exceptionally high during 1986. The previous year's reproductive effort, confounded by negligible precipitation during the time buds are being produced, may have acted synergistically to reduce dramatically the initiation of inflorescences in 1987. Correlations between flower production and precipitation are lower, but are similar to those of bud production (Table III.7).

Capsule production is more strongly correlated with late winter to spring precipitation (February through May $\mathrm{r}^{2}=0.72, \mathrm{n}=9, \mathrm{p}=0.03$) than with rainfall during the period of capsule development in June and July. This suggests that June and July moisture is not the most limiting factor to seed set. Observations also support the premise that the degree of flower and capsule herbivory may be the most limiting factor in C. howellii seed production. However, capsule production

Figure III.8. Annual bimonthly precipitation at Cave Junction weather station for 1981-1991.

Figure III.9. Spring precipitation (February-May) at Cave Junction weather station versus bud production for Calochortus howellii for 1983-1991.

Table III.7. Pearson correlation coefficients for monthly and seasonal precipitation versus bud, flower, and capsule production, mortality, and recruitment of Calochortus howellii. Statistically significant correlations denoted by ${ }^{*}(\mathrm{p}<0.10)$, ${ }^{* *}(\mathrm{p}<0.05)$, and ${ }^{* * *}(\mathrm{p}<0.01)$.

Precipitation	Jan	Feb	Mar	Apr	May	Feb-May	Jun	Jul	Previous Year Mar-June
Buds	0.16	0.64	0.61	0.39	0.11	0.80 $* * *$	-0.17	0.40	0.40
Flowers	0.04	0.59 $*$	0.60 $*$	0.43	-0.32	0.67 $* *$	0.13	0.39	0.51
Capsules	0.08	0.70 $* *$	0.53	0.42	-0.26	0.72 $* *$	0.08	0.41	0.66 $*$
Mortality	-0.15	-0.15	0.04	0.14	0.70 $*$	0.15	-0.25	0.38	0.51
Recruitment	-0.15	0.56	-0.06	-0.51	-0.32	0.23	0.10	-0.53	-0.09

remains well correlated with both bud and flower production ($r^{2}=0.73$ and $0.92, n$ $=9, \mathrm{p}=.03,0.0004$), indicating that herbivory does not overshadow initial reproductive effort in determining seed set for a given year. In other words, herbivores eat a fairly constant percentage of available inflorescences/ infrutescences.

Mortality. Because of the possibility that plants may not emerge every year or may be grazed shortly after emergence, before they can be measured, plants were not counted as dead until they failed to appear for at least two consecutive years. Mortality is calculated as the proportion of the previous years' plants which failed to emerge after two or more years during the study. From 1985 through 1988 mortality was very low, averaging 1.5% per year (Table III.2). In 1989, the dramatic increase in total mortality (3.9%) reflects an increase in valley pocket gopher (Thomomys bottae) activity within plot 2 (17.4% mortality). Mortality continued to increase within plot 2 in 1990 (35.4%) and is estimated at 67.5% for 1991 (Table III.1). It is suspected that in addition to burrowing and displacing large amounts of soil within this plot, the gophers are also feeding on the Calochortus bulbs. The highest mortality within the other plots occurred in 1990, which corresponded to the lowest combined precipitation for March and April and highest May precipitation during the study period.

Mortality due to pocket gophers may be indirectly correlated with precipitation. Pocket gopher activity is highest where soil is moist and more easily worked (Burt and Grossenheider 1976). Higher than average precipitation could conceivably result in pocket gopher activity in areas otherwise inaccessible, increasing Calochortus mortality. Lowest total precipitation for February through April occurred during 1988 (Appendix II.7); mortality during. this season was negligible. In addition to the potential indirect effects of precipitation on predation, pollinator activity may be affected by rainfall during May and June.

Correlations between precipitation and mortality may warrant further study. Total mortality was modestly correlated with previous years spring (February to

May) precipitation ($\mathrm{r}^{2}=0.51, \mathrm{n}=7, \mathrm{p}=0.24$) and current years May precipitation ($\mathrm{r}^{2}=0.70, \mathrm{n}=7, \mathrm{p}=0.08$). As noted earlier, seedling mortality increased dramatically in 1990 when May precipitation was exceptionally high. Based on greenhouse propagation, seedlings are known to be susceptible to rotting, which may cause mortality in the field, as well. Fiedler (1987) noted that seedlings of Calochortus often succumbed to common rots, such as Botrytis cinerea.

Seedling recruitment also appears to be affected by precipitation. Recruitment is negatively correlated with April precipitation ($\mathrm{r}^{2}=-0.51, \mathrm{n}=7, \mathrm{p}=0.24$), which also suggests that saturated soils may inhibit seedling establishment (i.e. seeds may germinate, but seedlings do not survive).

Distribution of C. howellii also suggests a relationship to soil moisture. Within plots 2 and 3, fed by subsurface water flow, the wettest portions of the plots were unoccupied or sparsely occupied by C. howellii (Appendix 1). Calochortus uniflorus, a species of moist meadows both on and off serpentine, occurred within the moister areas of these two plots.

Transition matrix modeling of \boldsymbol{C}. howellii: A seven-year study

The model and its limitations. Transition matrix models, developed for assessing population stability, are reviewed elsewhere (Caswell and Werner 1978, Bierzychudek 1982, Menges et al. 1986, Caswell 1989). They require specific information on mortality, recruitment, growth, and reproduction, and are therefore useful tools for identifying demographic bottlenecks. They provide a useful framework for organizing life-history information on a given population or species.

Using size-classified matrices rather than age-classified matrices is easily justified for long-lived herbaceous perennials. The time of first flowering becomes increasingly size-dependent and less age-dependent as the vegetative lifespan increases (Lacey 1986). The variability in growth and mortality during the early vegetative phases, discussed earlier supports the separation of categories of seedling, juvenile, and adult, rather than simply non-reproductive and reproductive.

While transition matrix models provide forecasting capabilities, the results are only accurate to the extent that the years studied are typical. The potential for misuse of the results is reduced if there is a clear understanding of the limitations of the model. Environmental stochasticity is not directly addressed here, nor is density dependence. Assumptions of transition matrix models are summarized well by Lefkovitch (1965), Bierzychudek (1982), and Caswell (1989).

Comparison of different size-classifications. The importance of selecting an appropriate size-classification is discussed by several authors (Vandermeer 1978, Moloney 1986, Ferson 1990). Some investigators use life-history stages, precluding the need for delineating categories within a size continuum.
Vandermeer's algorithm, which aids selection of categories that minimize errors of distribution and estimation, was used by Bierzychudek (1982) and Fiedler (1987). Moloney (1986) provides an example using categories derived from a modification of Vandermeer's method. Comparisons of results using different classifications are reported here as an evaluation of the robustness of the model, and to aid others in decisions regarding the design of similar studies.

Knowledge of life history parameters permits a defensible classification without requiring the time-consuming step of applying the Vandermeer/Moloney algorithms. Comparisons provided by the present study may be useful to those using life-history stages alone for analyses or deliberating whether theoretical classification is warranted.

Analysis using empirically derived categories. The average lambda value over the seven year period was 0.99 , based on all plants classified using the three life history categories: seedlings, juveniles, and adults (S.D: 0.034, Table III.8). Separate analyses reveal differences among plots (Tables III.9-10, Figure III.10). Plot 2, due to the high mortality as a result of pocket gopher activity, contributed the greatest variance; beginning in 1989 the lambda values plummeted sharply.

Table III.8. Comparison of lambda values for analysis of Calochortus howellii data from Mariposa Meadow by plot (1985-1991). Note declining values for plot 2 in later years.

Years	All plants	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Mean	S.D.
$1985-1986$	0.986	1.046	1.021	0.972	0.963	0.962	0.993	0.038
$1986-1987$	1.046	1.000	0.984	0.975	0.991	1.000	0.990	0.011
$1987-1988$	1.021	1.000	1.000	1.000	1.016	1.040	1.011	0.018
$1988-1989$	0.972	0.989	0.930	1.051	0.996	0.933	0.980	0.050
$1989-1990$	0.963	0.972	0.714	1.046	0.937	1.031	0.940	0.134
$1990-1991$	0.962	1.000	0.500	0.994	1.000	1.000	0.899	0.223
Mean	0.992	1.001	0.858	1.006	0.984	0.994		
S.D.	0.034	0.025	0.208	0.034	0.029	0.041		

Table III.9. Comparison of lambda values for analysis of Calochortus howellii data from Mariposa Meadow (1985-1991) using various approaches to size-category selection. See text for explanations of analyses.

Transition Years	Raw Data	Empirical	Theoretical
$1985-1986$	1.000	0.986	0.993
$1986-1987$	0.989	1.046	1.066
$1987-1988$	1.002	1.021	0.987
$1988-1989$	1.004	0.972	1.025
$1989-1990$	0.994	0.963	0.974
$1990-1991$	0.947	0.962	0.963
Mean	0.989	0.992	1.001
S.D.	0.022	0.034	0.038

Table III.10a. Size-classified transition matrices for 1985-86 by plot, based on analysis using three empirically-selected categories. Category $1=$ seedlings with leaf widths no greater than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and 6 $\mathrm{mm}, 3=$ adults with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (1985) to the row category (1986). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent of plants in each category which died during the transition. Initial category distributions (\%) are based on the numbers of plants in each category in 1985 (Init85); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

All plots		lambda $=$	0.986
Category	1	2	3
1	0.500	0.000	0.007
2	0.500	0.439	0.046
3	0.000	0.544	0.932
Morts	0.000	0.018	0.021
Init85	4		
Category Distribution			
Initial	1.2	16.7	82.2
Stable	1.3	8.0	89.9

Plot 3	lambda $=$		
Category	1	2	3
	0.963		
2	0.000	0.000	0.000
3	0.000	0.357	0.067
Morts	0.000	0.571	0.900
Init85	0.000	0.000	0.067
Category Distribution			
Initial	0.0	31.8	68.2
Stable	0.0	9.9	90.1

Plot 1	lambda $=$		
Category	1	2	0.960
1	0.000	0.000	0.000
2	0.000	0.667	0.028
3	0.000	0.167	0.944
Morts	0.000	0.000	0.056
Init85	0		
Category Distribution			
Initial	0.0	14.3	85.7
Stable	0.0	8.7	91.3

Plot 4	lambda $=$		
Category	1	2	3
1	0.000	0.000	0.000
2	1.000	0.429	0.034
3	0.000	0.571	0.966
Morts	0.000	0.000	0.000
Init85	1		
Category Distribution			
Initial	0.9	19.3	79.8
Stable	0.0	5.7	94.3

Plot 2	lambda $=$				1.000
Category	1	2	3		
1	1.000	0.000	0.000		
2	0.000	0.273	0.067		
3	0.000	0.727	0.900		
Morts	0.000	0.000	0.033		
Init85	2		11		
Category Distribution					
Initial	4.7	25.6	69.8		
Stable	100.0	0.0	0.0		

Plot 5	lambda $=$				1.000
Category	1	2	3		
1	0.000	0.000	0.011		
2	1.000	0.400	0.034		
3	0.000	0.600	0.954		
Morts	0.000	0.000	0.011		
Init85	1				
Category Distribution					
Initial	1.0	14.6	87.5		
Stable	1.1	70.0	91.9		

Table III.10b. Size-classified transition matrices for 1986-87, by plot, based on analysis using three empirically-selected categories. Category $1=$ seedlings with leaf widths no greater than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and 6 $\mathrm{mm}, 3=$ adults with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (1986) to the row category (1987). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent of plants in each category which died during the transition. Initial category distributions (\%) are based on the numbers of plants in each category in 1986 (Init86); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

All plots		lambda $=$	1.046
Category	1	2	3
1	0.750	0.000	0.087
2	0.250	0.575	0.061
3	0.000	0.425	0.925
Mort87	0.000	0.000	0.014
Init86	4		
73			
Initial	358		
Stable	0.9	16.8	82.3
Stablion	18.5	18.1	63.4

Plot 3		lambda $=$	0.975
Category	1	2	3
1	0.000	0.000	0.579
2	0.000	0.611	0.026
3	0.000	0.389	0.947
Mort87	0.000	0.000	0.000
Init86	0		
18			
Category Distribution			
Initial	0.0	32.1	67.9
Stable	35.6	4.3	60.0

Plot 1		lambda $=$	1.000
Category	1	2	3
1	0.000	0.000	0.000
2	1.000	0.538	0.059
3	0.000	0.462	0.941
Mort87	0.000	0.000	0.000
Init86	1		
Category Distribution			
Initial	1.2	15.9	82.9
Stable	0.0	11.3	88.7

Plot 4		lambda $=$	0.991
Category	1	2	3
1	0.000	0.000	0.019
2	0.000	0.542	0.048
3	0.000	0.458	0.943
Mort87	0.000	0.000	0.010
Init86	0		
Category Distribution			
Initial	0.0	18.6	81.4
Stable	1.7	9.4	88.9

Plot 2	lambda $=$				0.984
Category	1	2	3		
1	1.000	0.000	0.000		
2	0.000	0.667	0.077		
3	0.000	0.333	0.897		
Mort87	0.000	0.000	0.026		
Init86	2	6	39		
Category Distribution					
Initial	4.3	12.8	83.0		
Stable	74.3	5.1	20.7		

Plot 5		lambda $=$	1.000
Category	1	2	3
1	1.000	0.000	0.035
2	0.000	0.400	0.024
3	0.000	0.571	0.953
Mort87	0.000	0.000	0.024
Init86	1		
Category			
0.8		85	
Initial	0.8	28.9	70.2
Stable	99.2	0.0	0.8

Table III.10c. Size-classified transition matrices for 1987-88, by plot, based on analysis using three empirically-selected categories. Category $1=$ seedlings with leaf widths no greater than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and 6 $\mathrm{mm}, 3=$ adults with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (1987) to the row category (1988). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent of plants in each category which died during the transition. Initial category distributions (\%) are based on the numbers of plants in each category in 1987 (Init87); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

All plots	lambda $=$		
Category	1	$\mathbf{1 . 0 2 1}$	
1	0.794	0.011	0.097
2	0.059	0.425	0.008
3	0.000	0.563	0.989
Mort88	0.147	0.000	0.003
Init87	34	87	372
Category			
Distribution			
Initial	6.9	17.6	75.5
Stable	28.9	3.8	67.3

Plot 1	lambda $=$		
Category	1.000		
1	0.000	0.000	3
2	0.0007		
3	0.000	0.471	0.027
Mort88	0.000	0.529	0.973
Mnit87	0	17	0.000
Category Distribution			
Initial	0.0	18.9	81.1
Stable	2.5	4.8	92.7

Plot 4	lambda $=$				1.016
Category	1	2	3		
1	0.500	0.000	0.018		
2	0.500	0.476	0.000		
3	0.000	0.524	1.000		
Morts88	0.000	0.000	0.000		
Init87	2	21	114		
Category Distribution					
Initial	1.5	15.3	83.2		
Stable	3.2	2.9	93.9		

Plot 2		lambda $=$	1.000
Category	1	2	3
1	0.833	0.000	0.324
2	0.000	0.300	0.000
3	0.000	0.700	1.000
Mort88	0.167	0.000	0.000
Init87	6	10	37
Category Distribution			
Initial	11.3	18.9	69.8
Stable	66.0	0.0	34.0

Plot 5	lambda $=$				1.040
Category	1	2	3		
1	0.500	0.000	0.115		
2	0.250	0.350	0.010		
3	0.000	0.650	0.981		
Mort88	0.250	0.000	0.010		
Init87	4	20	104		
Category Distribution					
Initial	3.1	15.6	81.3		
Stable	16.4	7.0	76.6		

Table III.10d. Size-classified transition matrices for 1988-89, by plot, based on analysis using three empirically-selected categories. Category $1=$ seedlings with leaf widths no greater than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and 6 $\mathrm{mm}, 3=$ adults with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (1988) to the row category (1989). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent of plants in each category which died during the transition. Initial category distributions (\%) are based on the numbers of plants in each category in 1988 (Init88); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

All plots		lambda $=$	0.972
Category	1	2	3
1	0.766	0.018	0.100
2	0.125	0.052	0.050
3	0.000	0.439	0.919
Mort89	0.109	0.018	0.031
Init88	64		
Category Distribution			
Initial	11.9	10.6	77.6
Stable	30.6	7.5	61.8

Plot 3		lambda	1.051
Category	1	2	3
1	0.926	0.083	0.236
2	0.074	0.750	0.073
3	0.000	0.167	0.909
Mort89	0.000	0.000	0.018
Init88	27		
12			
Category Distribution	55		
Initial	28.7	12.8	58.5
Stable	57.1	19.7	23.2

Plot 1		lambda $=$	0.989
Category	1	2	3
1	0.000	0.000	0.012
2	0.500	0.533	0.037
3	0.000	0.400	0.951
Mort89	0.500	0.067	0.012
Init88	2		
Category Distribution			
Initial	2.0		15.2
Stable	1.1	82.8	90.4

Plot 4		lambda	0.996
Category	1	2	3
1	0.333	0.000	0.008
2	0.333	0.429	0.024
3	0.000	0.571	0.969
Mort89	0.333	0.000	0.008
Init88	3		
Category Distribution			
Initial	2.1	9.7	88.2
Stable	1.1	4.6	94.3

Plot 2	lambda $=$		
Category	1	2	0.930
1	0.765	0.000	0.182
2	0.118	0.250	0.061
3	0.000	0.750	0.848
Mort89	0.118	0.000	0.273
Init88	17		4
Category			
Distribution			
Initial	31.5	7.4	61.1
Stable	9.0	8.9	82.1

Plot 5		lambda	0.933
Category	1	2	3
1	0.667	0.000	0.181
2	0.133	0.500	0.078
3	0.000	0.500	0.914
Mort89	0.200	0.000	0.009
Init88	15		
Category			
Distribution			
Initial	10.5	8.4	81.1
Stable	32.9	18.8	48.4

Table III.10e. Size-classified transition matrices for 1989-90, by plot, based on analysis using three empirically-selected categories. Category $1=$ seedlings with leaf widths no greater than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and 6 $\mathrm{mm}, 3=$ adults with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (1989) to the row category (1990). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent of plants in each category which died during the transition. Initial category distributions (\%) are based on the numbers of plants in each category in 1989 (Init89); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

All plots	lambda $=$		
Category	1	2	3
1	0.667	0.000	0.041
2	0.111	0.481	0.035
3	0.016	0.426	0.918
Mort90	0.206	0.093	0.046
Init89	63		
Category Distribution			
Initial	13.0	11.1	75.9
Stable	11.0	8.4	80.6

Plot 3		lambda $=$	1.046
Category	1	2	3
1	0.700	0.000	0.163
2	0.133	0.529	0.020
3	0.000	0.412	0.980
Mort90	0.167	0.059	0.000
Init89	30	17	49
Category Distribution			
Initial	31.3	17.7	51.0
Stable	28.9	9.9	61.2

Plot 1	lambda $=$		
Category	1	2	3
1	0.000	0.000	0.018
2	0.000	0.333	0.091
3	0.000	0.444	0.909
Mort90	0.000	0.222	0.000
Init89	0		
Category Distribution			
Initial	0.0		
Stable	1.6	14.1	85.9

Plot 4		lambda $=$	0.937
Category	1	2	3
1	0.000	0.000	0.008
2	0.000	0.556	0.008
3	0.000	0.444	0.927
Mort90	1.000	0.000	0.065
Init89	1		
Category Distribution			
Initial	0.7	6.7	92.5
Stable	0.8	2.1	97.1

Plot 2	lambda $=$		
Category	1	2	3
1	0.400	0.000	0.000
2	0.133	0.333	0.000
3	0.000	0.167	0.714
Mort90	0.467	0.500	0.286
Init89	15		6
Category			
28			
Initial	30.6	12.2	57.1
Stable	0.0	0.0	100.0

Plot 5		lambda $=$	1.031
Category	1	2	3
1	0.882	0.000	0.045
2	0.059	0.500	0.054
3	0.059	0.500	0.946
Mort90	0.000	0.000	0.000
Init89	17		14
Category Distribution			
Initial	12.0	9.9	78.2
Stable	21.0	9.4	69.6

Table III.10f. Size-classified transition matrices for 1990-91, by plot, based on analysis using three empirically-selected categories. Category $1=$ seedlings with leaf widths no greater than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and 6 $\mathrm{mm}, 3=$ adults with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (1990) to the row category (1991). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent of plants in each category which died during the transition. Initial category distributions (\%) are based on the numbers of plants in each category in 1990 (Init90); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

All plots	lambda $=$		
Category	1	2	3
1	0.842	0.113	0.046
2	0.070	0.645	0.101
3	0.000	0.210	0.855
Mort91	0.088	0.032	0.044
Init90	57	62	366
Category Distribution			
Initial	11.8	12.8	75.5
Stable	36.4	21.5	42.1

Plot 1	lambda $=$		
Category	1.000		
1	0.000	0.000	0.000
2	1.000	0.500	0.145
3	0.000	0.500	0.855
Mort91	0.000	0.000	0.000
Init90	1	10	55
Category Distribution			
Initial	1.5	15.2	83.3
Stable	0.0	22.5	77.5

Plot 2	lambda $=$		
Category	1	0.500	
1	0.000	0.000	0.045
2	0.167	0.333	0.000
3	0.000	0.000	0.500
Mort91	0.833	0.667	0.500
Init90	6	3	22
Category Distribution			
Initial	19.4	9.7	71.0
Stable	7.7	77.0	84.6

Plot 3	lambda $=$		
Category	1	2	3.994
1	0.931	0.217	0.089
2	0.069	0.696	0.089
3	0.000	0.087	0.732
Mort91	0.000	0.000	0.000
Init90	29	23	56
Category Distribution			
Initial	26.9	21.3	51.9
Stable	74.5	19.1	63.0

Plot 4	lambda $=$		
Category	1	2	1.000
1	1.000	0.100	0.059
2	0.000	0.800	0.085
3	0.000	0.100	0.881
Mort91	0.000	0.000	0.034
Init90	1	10	118
Category Distribution			
Initial	0.8	7.8	91.5
Stable	100	0.0	0.0

Plot 5	lambda $=$		
Category	1	2	3
1	1.000	0.063	0.035
2	0.000	0.625	0.124
3	0.000	0.313	0.867
Mort91	0.000	0.000	0.009
Init90	20	16	113
Category Distribution			
Initial	13.4	10.7	75.8
Stable	99.5	0.1	0.4

Figure III.10. Comparison of lambda values among five plots established to monitor trends of Calochortus howellii at Mariposa Meadow.

During the last transition (1990-1991), all plots except number 2 converged to a stable growth rate (Figure III.10).

The difference between the initial population structure (based on actual data) and the predicted stable population structure provides an additional measure of population stability (Keyfitz 1977). The index of dissimilarity is calculated as the sum of the differences for all categories. The transition year 1990-1991 (33.4) yielded the highest value, while the lowest value was for the previous transition, 1989-1990 (4.7). The remaining indices were 7.7 for 1985-1986, 18.9 for 19861987, 22.0 for 1987-1988, and 18.7 for 1988-1989.

Analysis using the raw data. The lambda values for the raw data analysis were on average slightly lower than for the empirical analysis, but were not consistently lower when transition years were compared individually (Tables III.8, III.11, Figure III.11). Standard deviation was also lowest for this analysis. For the 1986 to 1987 transition, lambda is considerably lower for raw data analysis. Simulating increased reproduction and recruitment did not appreciably increase lambda for this transition. The errors of estimation, which would be expected to skew a finely delineated classification, may have been offset somewhat by the large sample size. However, the results from this analysis were reported for comparison only; because this is the most tedious and least accurate method of calculating lambda, it is not recommended. Analysis by plot, though not performed here, would undoubtedly reveal larger sampling error due to smaller sample sizes.

Analysis using theoretically derived categories. A computerized implementation of Moloney's generalized algorithm for determining category sizes (Millstein 1992), which minimizes errors of estimation and distribution, was applied to the C. howellii dataset. Because the program will not handle missing data points, small individuals are highly under-represented over the entire study year period. By using only the last four years of data, a greater proportion of small plants was included. When the algorithm was run on the subset of plants that had data for

Table III.11. Transition matrices for 1985-86, 1986-87, 1987-88, 1988-89, 198990, and 1990-91, based on actual leaf widths (to nearest 0.1 cm). Each number in the matrix is the proportion of plants which transfer from the column category (year 1) to the row category (year 2). Reproduction is incorporated into first row, as the percent of seedlings produced per individual for each leaf-width category. Mortality is the percent of plants in each category which died during the transition. Vector of initial numbers of plants for each leaf-width category (e.g. Init85) was multiplied by matrix to determine lambda.

1905-1908												lambda $=1.000$				
			Way	Water	\#"Wa	WWCTM	+ 6 68	Cac			12	W13	W ${ }^{\text {a }}$	H6	1161	W 1 17
0.1							0.029									
0.2																
0.3	1.000															
0.4		0.500	0.125													
0.5		0.500	0.750	0.158	0.133	0.014			0.023							
0.6			0.125	0.318	0.133	0.114	0.015	0.033								
0.7				0.388	0.500	0.271	0.162	0.017								
0.8				0.105	0.200	0.271	0.382	0.133	0.047							
0.9						0.249	0.221	0.333	0.186	0.087						
1.0						0.057	0.162	0.350	0.326	0.130	0.125					
1.1				0.053			0.029	0.050	0.256	0.304	0.375	0.167				1.000
1.2							0.015	0.050	0.093	0.261	0.375	0.333				
1.3									0.023	0.174	0.125					
1.4										0.043		0.333	1.000			
1.5									0.023					00		
1.7																
1.8												0.167				
Martality					0.033	0.029	0.015	0.033	0.023							
Init85	2	2	8	19	30	70	68	60	49	23	8	6	1	1		1

1906-1987											Lambda $=0.989$			
0.1				0.013	0.007	0.051	0.125	0.123	0.206	0.238	0.500	1.500		
0.2	0.500													
0.3	0.250													
0.4	0.250	0.200	0.042											
0.5		0.500	0.375	0.077	0.041	0.026			0.029					
0.6		0.300	0.417	0.231	0.135	0.051	0.014	0.015						
0.7			0.125	0.231	0.175	0.154	0.194	0.015	0.029					
0.8				0.333	0.324	0.308	0.153	0.046	0.059	0.048				
0.9			0.042	0.077	0.216	0.244	0.319	0.262	0.059	0.048	0.143			
1.0				0.051	0.054	0.167	0.208	0.385	0.294	0.288				
1.1					0.027	0.038	0.069	0.185	0.176	0.190				
1.2						0.013	0.028	0.046	0.176	0.149	0.288	0.250		
1.3								0.031	0.088	0.149	0.143	0.500	0.500	
1.4								0.015	0.059	0.095		0.250		
1.5											0.420			
1.6													0.500	1.000
Mortality					0.027		0.014		0.029	0.048				
Init86	4	10	24	39	74	78	72	65	34	21	7	4	2	1

Table III. 11 (continued)

1908-1909													lamboda $=1.004$			
										(1)		- 0.05	W		Natas	3. ${ }^{\text {a }}$
0.1	0.583						0.041	0.114	0.137	0.144	0.081	0.057		0.143		
0.2	0.250	0.444	0.100	0.111												
0.3		0.444	0.200													
0.4		0.056	0.500	0.667	0.043		0.027									
0.5			0.200	0.222	0.174	0.080	0.041	0.014								
0.6					0.478	0.160	0.082	0.029	0.068	0.019						
0.7					0.087	0.480	0.233	0.229	0.096	0.038	0.027					
0.8					0.130	0.160	0.370	0.271	0.219	0.106	0.081	0.029	0.071	0.143		
0.9					0.043	0.040	0.098	0.229	0.205	0.183	0.027	0.057		0.143		
1.0						0.040	0.096	0.171	0.233	0.346	0.189	0.171	0.143		0.167	
1.1									0.137	0.212	0.189	0.286		0.143	0.167	
1.2							0.014	0.014	0.014	0.058	0.216	0.114	0.214		0.167	
1.3						0.040			0.014	0.019	0.027	0.200		0.429		
1.4							0.014				0.135	0.057	0.286	0.143	0.500	
1.5											0.027	0.057	0.143			
1.6													0.071			
Mortality	0.167	0.056			0.043		0.027	0.043	0.014	0.019	0.081	0.029	0.071			
Init88	36	18	10	9	23	25	73	70	78	104	37	35	14	7		6

Figure III.11. Comparison of lambda values for analysis of Calochortus howellii plot data from Mariposa Meadow using three different size-classifications.

1988 through 1991, a classification resulted with the following leaf width categories:

$$
\begin{aligned}
& 1 \leq 6 \mathrm{~mm} \\
& 2>6 \text { and } \leq 7 \mathrm{~mm} \\
& 3>7 \text { and } \leq 10 \mathrm{~mm} \\
& 4>10 \text { and } \leq 13 \mathrm{~mm} \\
& 5>13 \mathrm{~mm} .
\end{aligned}
$$

Lambda values were then recalculated using this new five-category classification (Table III.8, III.12). As above, reproduction was incorporated into the matrix by estimating the proportion of seedlings produced per category during the transition period. These values were based on the proportion of plants producing capsules in each category the previous year. The number of new recruits per category was divided by the total number of plants which were in that category the previous year.

On average, the lambda values generated using the theoretically derived categories were slightly higher than those for other methods (Figure III.11, Table III.8). Standard deviation among years was also slightly higher for this classification method. The average index of dissimilarity (14.1) was lower than for the empirical analysis (17.6). The transition years 1985-1986 and 1990-1991 had the highest dissimilarity values; 40.2 and 43.8 , respectively. The remaining transitions averaged 11.2, with values of 8.0 for 1986-1987; 14.0 for 1987-1988, 12.5 for 1988-1989, and 10.1 for 1989-1990.

Sensitivity analysis. A sensitivity analysis allows an evaluation of the importance to lambda of each value in the matrix. One approach is to modify selected values in the matrix to determine the impact on population parameters. This approach has been used by other investigators to evaluate the significance of seed-set. Fiedler (1987) found that substituting the maximum number of seeds per capsule for an average would have little effect on the population growth rate for three rare species of Calochortus, but would increase the growth rate by 29 to 31% in the common species. Using sensitivity analyses, Bierzychudek (1982) discovered that the

Table III.12. Size-classified transition matrices for 1985-86, 1986-87, 1987-88, 1988-89, 1989-90, and 1990-91 based on theoretically determined leaf-width categories, calculated using Moloney's algorithm (category $1 \leq 6 \mathrm{~mm}$; category $2>$ 6 mm and $\leq 7 \mathrm{~mm}$; category $3>7 \mathrm{~mm}$ and $\leq 10 \mathrm{~mm}$; category $4>10 \mathrm{~mm}$ and \leq 13 mm ; and category $5>13 \mathrm{~mm}$). Each number in the matrix is the proportion of plants which transfer from the column category (year 1) to the row category (year 2). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent of plants in each category which died during the transition. Initial category distributions (\%) are based on the numbers of plants in each category in 1990 (e.g.Init85); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

1985-1986	lambda				
Category	1	2	3	4	5
1	0.475	0.129	0.035	0.000	0.000
2	0.361	0.271	0.070	0.000	0.000
3	0.131	0.571	0.731	0.162	0.000
4	0.016	0.000	0.146	0.730	0.333
5	0.000	0.000	0.006	0.108	0.667
Mortality	0.016	0.029	0.023	0.000	0.000
Init85	61	70	171	37	3
Category Distribution					
Actual	17.8	20.5	50.0	10.8	0.9
Stable	4.0	5.7	38.3	38.5	13.4

1988-1989	lambda				
Category	1	2	3	4	5
1	0.727	0.192	0.186	0.058	0.008
2	0.116	0.233	0.109	0.012	0.000
3	0.083	0.562	0.652	0.267	0.231
4	0.008	0.014	0.174	0.465	0.462
5	0.000	0.014	0.000	0.198	0.308
Mortality	0.066	0.027	0.024	0.058	0.000
Init88	121	73	247	86	13
Category					
Actribution					
Actual	22.4	13.5	45.7	15.9	2.4
Stable	32.7	10.1	36.7	15.9	4.6

1986-1987	lambda				1.066
Category	1	2	3	4	5
1	0.597	0.176	0.112	0.113	1.000
2	0.156	0.176	0.126	0.016	0.000
3	0.247	0.595	0.698	0.371	0.000
4	0.000	0.027	0.130	0.452	0.571
5	0.000	0.000	0.005	0.113	0.429
Mortality	0.000	0.027	0.005	0.032	0.000
Init86	77	74	215	62	7
Category Distribution					
Actual	17.7	17.0	49.4	14.3	1.6
Stable	24.6	11.3	48.1	13.2	2.7

1989-1990	lambda				
Category	1	2	3	4	5
1	0.641	0.087	0.146	0.056	0.052
2	0.111	0.245	0.095	0.014	0.052
3	0.094	0.631	0.604	0.295	0.105
4	0	0.035	0.218	0.478	0.052
5	0	0	0	0.126	0.736
Mortality	0.153	0	0.054	0.070	0
Init89	117	57	220	71	19
Category Distribution					
Actual	24.2	11.8	45.5	14.7	3.9
Stable	24.0	8.6	38.7	18.7	10.0

$1987-1988$					lambda
Category	1	2	3	4	5
1	0.554	0.036	0.135	0.048	0.091
2	0.273	0.273	0.078	0.016	0.000
3	0.099	0.691	0.717	0.339	0.182
4	0.033	0.018	0.189	0.516	0.455
5	0.000	0.000	0.004	0.129	0.364
Mortality	0.041	0.000	0.004	0.000	0.000
Init87	121	55	244	62	11
Category					Distribution
Actual	24.5	11.2	49.5	12.6	2.2
Stable	17.8	11.4	42.2	23.5	5.1

$1990-1991$			lambda	0.963	
Category	1	2	3	4	5
1	0.832	0.346	0.157	0.013	0.000
2	0.059	0.385	0.221	0.046	0.000
3	0.050	0.212	0.598	0.575	0.043
4	0.000	0.000	0.049	0.310	0.565
5	0.000	0.000	0.000	0.011	0.391
Mortality	0.058	0.044	0.046	0.000	0.000
Init90	119	52	204	87	23
Category					Distribution
Actual	24.5	10.7	42.1	17.9	4.7
Stable	64.9	14.1	19.5	1.5	0.0

greatest depression in population growth rate occurred when the condition of limited pollination was simulated.

Caswell (1978) has provided a more analytical approach, using a formula for calculation of sensitivity values which correspond to each element in the matrix. Sensitivities are defined as the partial derivative of the eigenvalue with respect to the value of the element; they measure the impact of small changes in the matrix elements on the asymptotic behavior of the population (Ferson 1990). These values, in conjunction with selective manipulation of matrix elements, provide a comprehensive analysis of population response to changes in life history events. Assumptions include linearity and time-invariance; density effects and temporal fluctuations in the environment are not considered. Sensitivity values for C. howellii are provided by year, with means and standard deviations provided for each element over the six transition years (Table III.13).

As Caswell and Werner reported for Dipsacus (1978), sensitivities for C. howellii tend to increase down rows of the matrix, with increasing size or stage. Elements with highest sensitivity to change are found in the lower right corner of the matrix, corresponding to adult plants (Table III.13).

Elasticities. Elasticity values provide a measure of the contribution of each element in a constant projection matrix to the magnitude of the equilibrium population growth rate of the matrix (Ferson 1990). Because elasticity values are proportional (i.e. sum to 1), they are more intuitively interpretable than sensitivities, which may increase asymptotically. Elasticities for the C. howellii matrices are consistently highest for the element representing the adult to adult transition (Table III.14), which contributes an average of 73% to lambda. The next most important element was the seedling to seedling transition, with an average elasticity value of 8.5%. Seedlings remaining in category 1 were particularly important in 1990-1991.

Recruitment of new seedlings was relatively unimportant based on this analysis; higher recruitment in 1987, 1988, and 1989 did not markedly increase elasticities.

Table III.13. Sensitivity values for Calochortus howellii population at Mariposa Meadow, based on size-classified transition matrix analysis using three empirically selected categories. Category $1=$ seedlings with leaf widths less than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and $6 \mathrm{~mm}, 3=$ adults with leaf widths greater than 6.5 mm . Mean and standard deviation are calculated for each element over the six matrices. See text for explanation.

1985-1986			
Category	1	2	3
1	0.013	0.090	0.920
2	0.013	0.088	0.894
3	0.013	0.088	0.899

$1986-1987$			
Category	1	2	3
1	0.151	0.147	0.514
2	0.178	0.174	0.609
3	0.198	0.193	0.675

$1987-1988$			
Category	1	2	3
1	0.091	0.012	0.213
2	0.353	0.046	0.820
3	0.371	0.484	0.863

Means of Sensitivities			
Category	1	2	3
1	0.108	0.075	0.414
2	0.206	0.111	0.658
3	0.264	0.206	0.781

$1988-1989$			
Category	1	2	3
1	0.120	0.030	0.242
2	0.198	0.049	0.401
3	0.412	0.101	0.831

$1989-1990$			
Category	1	2	3
1	0.046	0.035	0.333
2	0.105	0.080	0.770
3	0.120	0.091	0.874

$1990-1991$			
Category	1	2	3
1	0.229	0.135	0.264
2	0.391	0.231	0.452
3	0.469	0.276	0.541

Standard Deviations of Sensitivities			
Category	1	2	3
1	0.077	0.058	0.270
2	0.144	0.075	0.203
3	0.181	0.155	0.142

Table III.14. Elasticity values for Calochortus howellii population at Mariposa Meadow, based on size-classified transition matrix analysis using three empirically selected categories. Category $1=$ seedlings with leaf widths less than $3 \mathrm{~mm}, 2=$ juveniles with leaf widths between 3.5 and $6 \mathrm{~mm}, 3=$ adults with leaf widths greater than 6.5 mm . Values in each matrix sum to 1 . Mean and standard deviation are calculated for each element over the six matrices. See text for explanation.

$1985-1986$			
Category	1	2	3
1	0.007	0.000	0.007
2	0.007	0.039	0.042
3	0.000	0.049	0.850

$1986-1987$			
Category	1	2	3
1	0.108	0.000	0.043
2	0.043	0.096	0.036
3	0.000	0.078	0.597

$1987-1988$			
Category	1	2	3
1	0.071	0.000	0.020
2	0.020	0.019	0.007
3	0.000	0.027	0.836

Means of Elasticities			
Category	1	2	3
1	0.085	0.003	0.020
2	0.023	0.059	0.030
3	0.000	0.050	0.730

$1988-1989$			
Category	1	2	3
1	0.095	0.001	0.025
2	0.026	0.003	0.021
3	0.000	0.046	0.786

$1989-1990$			
Category	1	2	3
1	0.031	0.000	0.014
2	0.012	0.040	0.028
3	0.002	0.040	0.832

$1990-1991$			
Category	1	2	3
1	0.200	0.016	0.013
2	0.029	0.155	0.047
3	0.000	0.060	0.481

Standard Deviations of Elasticities			
Category	1	2	3
1	0.068	0.006	0.013
2	0.013	0.057	0.015
3	0.001	0.018	0.154

These results suggest that the low capsule production and seedling recruitment is not limiting to this population at present. This differs from results of a sensitivity analysis on the rare species Calochortus tiburonensis and C. pulchellus, where reduced seed number resulted in a great decrease in lambda (Fiedler 1987).

Of the limited number of studies which apply transition matrix models, few report elasticity values. Opportunities for comparisons among populations and species are awaited, since this may be a more useful value than the more standard lambda.

Practical application of the model, conclusions, and recommendations.

By tagging and tracking individuals of C. howellii over nine years we learned that this species is extremely long-lived and slow growing, has overall low mortality and recruitment, and currently has a stable population structure. No seedlings recruited during the study have yet advanced beyond the seedling or juvenile stage. For example, 82% of the individuals which were 1 mm or less in 1987 still had not grown by 1991. Despite nearly a decade of monitoring, the length of time required for plants of this species to reach reproductive maturity remains unknown. The harsh environment may contribute to this slow growth rate.

While few studies of this nature have been conducted on rare plants, Fiedler (1987) performed nearly identical investigations of three rare and one common species of Calochortus over a three year period in California. In addition, studies of two rare close relatives of C. howellii initiated in 1989 are discussed in the next chapter. Fiedler concluded that the four different Calochortus species she studied were idiosyncratic in their demographic properties, allowing few generalizations across taxa. Predation of bulbs and disturbance by pocket gophers, rotting of seedlings, and herbivory by black-tailed jackrabbits, blacktailed and mule deer, and various insects were phenomena noted both in the present study of C. howellii and in Fiedler's study of the three rare California taxa. She also reported that episodic flushes of reproduction punctuating long periods of low reproductive output may
characterize certain rare species and ensure their persistence. Reproduction in \boldsymbol{C}. howellii also appears to be episodic in this way.

Fiedler (1987) cautions against extrapolating the population data to the species as a whole. While I believe that the data for C. howellii reflect the dynamics of the population sampled, further generalizations would be misleading, since Mariposa Meadow was selected because it was among the most vigorous and densest known populations.

Results from transition matrix analysis indicate that the monitored population of C. howellii has been stable, but has been recently declining. A marked increase in mortality in one plot with high levels of pocket gopher disturbance, contributed most to the overall decrease in lambda values. Separate analysis by plot supports this conclusion. Localized mortality from natural causes reveals the vulnerability of the population to catastrophic loss; the slow growth and recruitment rates lead to slow recovery of populations following disturbance. Episodic mortality could serve to limit expansion of C. howellii, just as periodic bursts of recruitment may maintain population stability.

The difference in lambda values generated by the three approaches to category selection for transition matrix analysis (Figure III.11, Table III.8) are probably not biologically significant. This indicates a high degree of robustness of the model when using large data sets and supports tracking larger numbers of individuals, even if some precision in measurement must be sacrificed. The selection of biologically meaningful categories has merit and is defensible here, since the theoretically derived classification failed to produce significantly different results.

Results from this study also indicated that grazing by native herbivores plays an important role in suppressing seed production by removing buds, flowers, and capsules prior to seed-set. An average of 9% of the plants that initiated inflorescences produced capsules during the study period; and during three years, less than 2% of the plants successfully produced seed. Given that an average of 31% of individuals initiate inflorescences each year, the percentage of successfully reproducing plants is small. While this observation may not be unusual for long-
lived perennials, it serves to highlight the importance of the few capsules that survive predation in a given year and their potential contribution to the gene pool. It is worth noting that the sporadic and patchy recruitment also results from a limited number of capsule-producing plants.

This study did not specifically address management of habitat for C. howellii, but nonetheless it provides a valuable baseline for comparison with effects of prescribed treatments, such as fire or herbivore exclusion. While this long-lived species does not apparently require high recruitment to maintain stable populations, the small amount of seed which survives herbivory is undoubtedly important to the long-term stability of the population, particularly where episodic mortality is high. Removal of leaf tissue also reduces average leaf width of the grazed plants the subsequent year (unpublished data), suggesting that carbohydrate reserves may be depleted by herbivory. This observation, and the relatively small amount of seed which survives native herbivores, support the conclusion that the current practice of excluding livestock in C. howellii habitat should be continued.

The Jeffrey-pine communities inhabited by C. howellii historically experienced frequent ground fires at one to twenty year intervals (United States Department of Agriculture Forest Service 1991) and the Forest Service has indicated that it plans to reintroduce fire to the Jeffrey-pine savannah ecosystems within the northern portion of the species' range (United States Department of Agriculture Forest Service 1991). The limited fuel and sparse canopy preclude stand-replacement fires in this ecosystem, but fire suppression has increased stand density and fuels, creating greater potential for catastrophic fire in some areas. The impact of these intense fires during the growing season on C. howellii is unknown; controlled burns during the dormant season would clearly pose less risk. More subtle changes can occur through fire suppression; increasing stand density.could influence understory species by altering hydrology (e.g. reducing available soil moisture), increasing shading, and enhancing competition from bunchgrasses. Within some populations, understory competition and the relative sparseness of C. howellii suggest that fire may have been important in maintaining habitat for this species, but fire could
alternatively serve to stimulate germination of Ceanothus cuneatus, a species which appears to be outcompeting C. howellii at the Democrat Gulch site. Investigating the response of populations to prescribed fire would provide an important followup to the present study, and it is recommended that several of the established plots will be burned, so that the response of this species to fire can be scientifically documented. An opportunity exists also to study the effect of fire on other species within the established plots and perhaps begin to investigate the role of competition in limiting populations of C. howellii.

A rare species like C. howellii, having a limited distribution, requiring more than a decade to reach reproductive maturity, successfully producing very few seeds, and having low seedling recruitment, may require many decades of study. Investigating the species' response to fire may be key to successful management and may explain its absence or decline at other sites. The correlations between precipitation and reproduction, recruitment, and mortality suggest that climatic changes may influence distribution of this species. A slow-growing, local species with low fecundity may be slow to respond to environmental change. However, the responses of these plants to change may provide clues to specific causes of rarity that have heretofore eluded us. It is through baseline studies such as the one presented here that we can begin to evaluate scientifically the effects of factors such as climatic change and fire suppression, in order to manage better for biological diversity and perhaps unlock some of the mysteries of certain rare species.

LITERATURE CITED

Atzet, T. and D.L. Wheeler. 1984. Preliminary plant associations of the Siskiyou Mountain province. United States Department of Agriculture Forest Service, Pacific Northwest Region.

Bierzychudek, P. 1982. The demography of jack-in-the-pulpit, a forest perennial that changes sex. Ecol. Monogr. 52:335-351.

Brooks, H.C. and L. Ramp. 1968. Gold and silver in Oregon. Bulletin 61, State of Oregon Department of Geology and Mineral Industries, Portland.

Brooks, R.R. 1987. Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press, Portland, OR.

Burt, W.H. and R.P. Grossenheider. 1976. A field guide to the mammals. Houghton Mifflin Co., Boston, MA.

Caswell, H. 1978. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Population Biol. 14:215-230.
\qquad . 1989. Matrix population models: Construction, analysis, and interpretation. Sinauer Assoc., Inc. Sunderland, MA.
\qquad . and P.A. Werner. 1978. Transient behavior and life history analysis of teasel (Dipsacus sylvestris Huds.). Ecology 59:53-66.

Ferson, S. 1990. RAMAS/Stage. Generalized stage-based modeling for population dynamics. Applied Biomathematics, Setauket, NY.

Fiedler, P.L. 1987. Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). J. Ecol. 75:977-995.

Fredricks, N.A. 1986. Calochortus howellii: Ecology of a rare serpentine endemic, and comparison with the new species, C. umpquaensis (Liliaceae). Unpublished M.S. thesis, Oregon State Univ., Corvallis.
\qquad . 1988. Species Management Guide for Calochortus howellii. Oregon State Department of Agriculture, Plant Conservation Biology Program, unpublished report to the Siskiyou National Forest, Grants Pass, OR.

Frenkel, R.E. and C.W. Kiilsgaard. 1984. Vegetation classification and map of the central Siskiyou Mountains, Oregon. Final Report for NASA-Ames University Consortium Joint Research Interchange.

Harper, J.D. and J. White. 1974. The demography of plants. Ann. Rev. Ecol. Syst. 5:419-463.

Holtsford, T.P. 1985. Nonfruiting hermaphroditic flowers of Calochortus leichtlinii (Liliaceae): Potential reproductive functions. Amer. J. Bot. 72:1687-1694.

Keyfitz, N. 1977. Index to the mathematics of populations. Addison-Wesley. Reading, MA.

Kruckeberg, A.R. 1984. California serpentines: Flora, vegetation, geology, soils, and management problems. Univ. of California Press, Berkeley.

Lacey, E.P. 1986. Onset of reproduction in plants: size-versus age-dependency. Trends Ecol. Evol. 1:72-75.

Lefkovitch, L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21:1-18.

Menges, E.S. 1986. Predicting the future of rare plant populations: Demographic monitoring and modeling. Natural Areas Journal 6:13-25.
\qquad . 1990. Population viability analysis for an endangered plant. Conservation Biol. 4:52-62.
\qquad ., D.M. Waller, and S.C. Gawler. 1986. Seed set and seed predation in Pedicularis furbishiae, a rare endemic of the St. John River, Maine. Amer. J. Bot. 73:116.

Millstein, J. 1992. CATSIZE: A computer program implementation of Moloney's generalized algorithm for determining category size. Applied Biomathematics, Setauket, NY.

Moloney, K.A. 1986. A generalized algorithm for determining category size. Oecologia 69:176-180.

Stearns, S.C. 1976. Life-history tactics: A review of the ideas. Quart. Rev. Biol. 51:3-47.

United States Department of Agriculture Forest Service. 1991. Draft Environmental Impact Statement. Canyon Integrated Resource Project, Siskiyou National Forest, Grants Pass, OR.

Vandermeer, J. 1978. Choosing category size in a size projection matrix. Oecologia 32:79-84.
\qquad . 1982. To be rare is to be chaotic. Ecology 63:1167-1168.

White, C.D. 1971. Vegetative-soil chemistry correlations in serpentine ecosystems. Unpublished Ph.D. thesis, Univ. of Oregon, Eugene.

Wilson, M.V. 1992. Demog: A program for demographic analysis. Oregon State Univ., Corvallis.

CHAPTER 4

COMPARATIVE DEMOGRAPHY OF RARE MARIPOSA LILIES (CALOCHORTUS: LILIACEAE) ENDEMIC TO SERPENTINE SOILS IN SOUTHWESTERN OREGON

Abstract

Population dynamics of two rare Calochortus species from southwestern Oregon are analyzed using size-classified transition matrices, and the results are compared with those of similar studies on related taxa. Taxonomically very distinct, yet only recently discovered, C. umpquaensis and C. coxii are serpentine endemics known from limited distributions. Despite its narrow edaphic restriction, C. umpquaensis occurs locally within a wide range of habitats from meadows to forests. Preliminary studies in 1988 indicated differences in reproduction and recruitment in forest, meadow, and transitional ecotone habitats. During the following three years, permanent plots were monitored within these three habitats for C. umpquaensis and at two sites for C. coxii. Bud production was highest, plants were most dense, and on average were larger in the ecotone habitat. Mortality was significantly higher in 1991 than in 1990 for both species. Individual growth rates were higher on average in C. umpquaensis, and its tendency to be less habitatspecific suggests an ability to colonize. However, equilibrium population growth rates indicate that the population is stable rather than increasing. Low reproductive success, due to predation and low recruitment, and declining population trends indicate that C. coxii should be carefully monitored. The probability of local extinction this taxon is high, if the years studied are typical.

INTRODUCTION

Calochortus umpquaensis and C. coxii are recently discovered rare lilies occurring on serpentine-derived soils of southwestern Oregon (Fredricks 1989a; Godfrey and Callahan 1989). Both are highly localized and threatened by activities including logging, grazing, and bulb digging. In 1990, Calochortus umpquaensis was listed in Oregon as an endangered species under ORS 564.100-564.135 and is a Federal Category 2 species under consideration for listing under the Endangered Species Act by the U.S. Fish and Wildlife Service. Calochortus coxii is also under consideration for both state and federal listing. While these two species are not sympatric, they share similar habitats (Chapter 2). Both are restricted to serpentine soils derived from ultramafic parent material, which contain low macronutrient levels (potassium and phosphorus), low calcium/magnesium ratio, and above average concentrations of nickel, chromium, cobalt, and zinc (Table II.9). All known populations fall within intrusive serpentinite and minor peridotite geologic formations (Wells and Peck 1961, Beaulieu and Ramp 1972). Calochortus umpquaensis is known from disjunct populations spanning 80 km , from Ace Williams Mountain near the town of Glide, southwest to Sexton Mountain (Figure II.1). Calochortus coxii populations occur within a narrow 50 km -long band of serpentinite running northeast to southwest of the town of Myrtle Creek. Known individual populations span 16 km .

In Chapter 3, the results of a long-term monitoring study on another southwestern Oregon serpentine endemic, C. howellii, were reported. Similar methods and analysis allow comparisons among these taxa. Fiedler's (1987) study of three rare (including two serpentine-endemic) and one common Calochortus species provide additional congeneric comparisons. The remarkably high incidence of rarity in the genus has lead to a search for shared features or constraints, which might explain the disproportionate number of highly local endemics.

The perennial habit, simple growth form, lack of significant vegetative reproduction, and prolonged blooming period of C. howellii, C. umpquaensis, and C. coxii make them amenable to a long-term demographic study. Distinctive
pubescence on the undersurface of the solitary leaf aids in distinguishing vegetative adults and seedlings of these three species from other relatives.

Despite the narrow edaphic restriction to serpentine-derived soils, C. umpquaensis occurs within a rather broad continuum of habitats from closed canopy coniferous forest to open grass-forb meadow. In the narrow transition between the forest and meadow, referred to as the ecotone, the abiotic environment is moderated (e.g. light, temperature tend to be less extreme) and community elements of both forest and meadow overlap. In ecotonal and forested habitats, the overstory is composed of Pinus jeffreyi, Pseudotsuga menziesii, Calocedrus decurrens, and Arbutus menziesii. Grasses including Koeleria cristata, Festuca rubra, and Danthonia californica dominate the meadow and ecotonal understory, and species diversity is high (Chapter 2). By selecting plots within each habitat type, differences which may influence seedling establishment, reproductive success and mortality may be identified.

Calochortus coxii occurs in narrow ecotones between mixed coniferous forests and grass-forb meadows. As with C. umpquaensis, native grasses dominate the understory, and while composition differs somewhat, species diversity is also high. Sites inhabited by C. coxii are typically intact, relatively undisturbed plant communities.

Because of the legal protection and endangered status of these rare lilies and their vulnerability to human threats, it is important to begin collection of demographic data to document population trends. Changes in the number of populations and individuals are useful statistics; however, more sophisticated analyses are necessary to evaluate population stability, calculate extinction probability, and identify life history stages or events that may be critically sensitive to environmental changes or habitat modifications.

The objective of this study was to investigate the life history of rare southwestern Oregon mariposas, in an attempt to identify shared features that could account for their limited distribution. Recruitment, growth, reproduction, and mortality rates are compared. Limiting resources may determine distribution within
serpentine habitat. While narrow habitat specificity typifies C. coxii (ecotone) and C. howellii (meadow), C. umpquaensis occurs across a wide range of habitats, offering a unique opportunity to compare reproductive success, recruitment, and survival in habitats with different resources. Forest, ecotone, and meadow habitats differ in availability of light, moisture, pollen vectors, and nutrients. These potentially limiting factors are indirectly considered for C. umpquaensis. Finally, an evaluation of population trends was undertaken to determine if management intervention is warranted to maintain viable populations of C. umpquaensis and C. coxii.

METHODS

At the onset of the study, only four populations of C. umpquaensis were known, all within an area spanning 4 km . These populations range in size from 0.4 to 25 hectares. At one site, Ace Williams Mountain, C. umpquaensis occurs in forest, meadow, and ecotone habitats, but at other sites, its distribution was more limited. In 1988, preliminary sampling was conducted along belt transects to compare population structure and reproduction of C. umpquaensis at all known sites within the three habitats. At each one meter interval along $10-\mathrm{m}$ transects, a plot frame $\left(0.5-\mathrm{m}^{2}\right)$ was placed in a randomly selected quadrant. Data collected within each plot included (1) leaf width and reproductive status (including number of buds, flowers, or capsules) for each Calochortus individual and (2) cover value for each species present (plus cover of rock, litter, moss/lichen and bare soil). Results from the analysis of the cover data were discussed in Chapter 2.

The 1988 data were analyzed using Analysis of Variance procedures (SAS 1988) to determine if significant differences among habitats exist for numbers of individuals or for flower production. For each variable, the data were analyzed using the summary data (means for each of the transects), the Ace Williams data alone (the site with all three habitat types represented), and the unclassified data. Fisher's Protected Least Significant Difference separation of means tests were performed when results of ANOVA indicated statistically significant differences
among the habitat types. Data for transects, sites, and habitats were summarized, and leaf width frequency distributions for each site and habitat, and flowering by leaf width and habitat were graphed. Maximum leaf widths were measured to the nearest millimeter and ranged from 1 to 15 mm . To further compare differences in flowering among habitats, the number of individuals initiating inflorescences per meter was summed over all sites. The fate of buds was tallied by these categories: grazed, aborted, and number of successfully produced flowers.

In 1989, permanent plots were established to begin monitoring trends within a population of C. umpquaensis located on Ace Williams Mountain (T26S R3W sec. 27) under management by the Bureau of Land Management (B.L.M.). Because of the high seedling density and shallow bulb depth, it was considered undesirable to risk microsite disturbance and damage to the plants by tagging, so a method was employed to investigate population trends which minimized impact. Within each of the three habitat types, two five meter transects were subjectively selected within dense patches of Calochortus, avoiding steep slopes and deer trails. A permanent aluminum marker, with the plot numbers and the direction (relative to magnetic north) and distance to the transect was attached to a nearby tree in the vicinity of each transect. Each meter along the transect was divided into 4 quadrats and one of the four quadrats randomly selected for monitoring. Ten $0.5 \times 1.0 \mathrm{~m}$ plots for each habitat ($15 \mathrm{~m}^{2}$ total area) were sampled for this species. In each of the four plot corners, $6^{\prime \prime} \times 3 / 4^{\prime \prime}$ PVC pipe pieces were sunk into the ground, level with the soil surface. A mapping table, with telescoping legs ($1 / 2^{\prime \prime}$ base diameter), and a plexiglas surface was used to record the location of each individual on clear plastic sheets. The table was designed to fit into the sunken PVC pipe pieces, which allowed accurate repositioning and relocating of individuals throughout the season. As a backup to this method, all individuals were marked with a colored toothpick, which also facilitated mapping. This essentially tagless method was chosen to reduce impact on the site, allowing individuals to be mapped and relocated without disturbing them. The total numbers of plants mapped within the permanent plots on

Ace Williams Mountain were 286 in the ecotone, 149 in the meadow, and 236 in the forest habitat.

Twenty 1.0 m by 0.5 m permanent plots were established in 1989 to compare trends of C. coxii. Two sites were selected on federal land under management by the B.L.M., referred to as the Smith site (T29S R5W sec. 3, SW ${ }_{1 / 4}$ of $\mathrm{SW}_{1 / 4}$) and the Bilger Creek Road site (T28S R5W sec. 35, W $\mathrm{W}_{1 / 2}$ of $\mathrm{SW}_{1 / 4}$). At each of these two sites, separated by approximately 2.2 km , two five-meter transects were subjectively selected within dense Calochortus patches. Methods for plot establishment and data collection were identical to those for C. umpquaensis, with the exception that transects were not selected within specified habitat types, because C. coxii occurs primarily in ecotonal areas. A total of 374 plants were mapped for this species, with 215 and 159 at the Smith and Bilger localities, respectively.

Data collected annually on each individual of both species for 1989 through 1991 included maximum leaf width, number of buds per plant, number of flowers per plant, number and lengths of capsules per plant. Analysis of both maximum width and length of C. howellii leaves indicated that width provides the best longterm measure of growth; environmental factors (primarily precipitation) confound leaf length, and the high incidence of grazing further reduces the usefulness of this parameter (pers. obs.). Fiedler (1985) also used maximum leaf width in her analyses after demonstrating a modest but significant correlation between bulb wet weight and maximum basal leaf width.

When recording each individual for the first time, the microhabitat (moss, litter, bare soil, rock, or vegetation) was recorded. In addition, cover for each associated species was estimated in 1989 (analysis of these results are presented in Chapter 2). In general, plants were mapped and leaf widths measured in early May, once maximum width was attained, but before leaf width could be reduced by desiccation or increasing levels of herbivory. Flowering was monitored at its peak (mid-June), and capsules counted and measured near time of dehiscence (early August). Estimates of cover values for associated species within the plots were made in late May and early July. Associated species vouchers were deposited at
the Oregon State University Herbarium. Capsules of both C. umpquaensis and C. coxii were collected outside the plots in 1991. In the laboratory, each capsule was measured, and seeds and ovules were counted.

Direct observations of predation on Calochortus were limited to insects, although herbivorous mammals were observed in the study areas grazing on vegetation outside of the plots. The height of vegetation removal, dentation patterns, knowledge of feeding habitats, and demographic information from Oregon Department of Wildlife were used to evaluate predation on Calochortus within the study area. Evidence of tissue removal by insects and mammals was in most cases easily distinguished.

Size-classified transition matrices, incorporating information on recruitment, growth (change in leaf width between two consecutive years), and survival were analyzed using the APL program DEMOG (Wilson 1992). Three categories were used based on maximum leaf width: (1) seedlings with leaves 1 to 3 mm wide, (2) small adults with leaves larger than 3 mm , but no larger than 6 mm , (3) and large adults with widths greater than 6 mm . Occasionally, plants with widths as small as 3 mm produced buds, but most bud production occurred in larger plants. The matrices were constructed by calculating the proportion of plants in each category which remained that category, changed category, or died the subsequent year. Reproduction in the transition matrix is calculated as the number of new plants appearing in the plots the second year divided by the total number of plants in that category the first year. These numbers appear in the first row of the matrix. Total seedling recruitment is represented by the second and third columns of the first row of the transition matrix. Capsule data was used to determine proportion of reproductive plants in each category. For example, if 40% of the capsuleproducing plants within the plots were in category $2,40 \%$ of the seedling recruitment the subsequent year was attributed to that category.

Several statistics were calculated for each matrix. The equilibrium population growth rate or lambda (λ) is calculated as the dominant eigenvalue of the matrix. A population that is stable has a rate of 1.0 , while those with λ values greater or
less than 1.0 are increasing or declining, respectively. The equilibrium size structure is derived from the dominant right eigenvector and is useful in comparing the current population structure. Populations are considered unstable if they deviate significantly from the projected stable structure at equilibrium. The difference between the actual category distribution and the stable distributions, referred to as an index of dissimilarity (Keyfitz 1977), provides an additional measure of population stability.

RESULTS

Calochortus umpquaensis field studies:

testing the initial hypothesis

Differences in reproduction in 1988. Differences in flower production among habitats were highly significant for $1988(p=0.0001)$, with the ecotone and meadow, and ecotone and forest habitats differing at the 0.05 level using Fisher's Protected Least Significant Difference multiple comparison test. These results supported the hypothesis that differences exist in flower production among habitats (Table IV.1, Figure IV.1). Initiation of inflorescences and successful flowering was most frequent in the ecotone habitat and least common in the forest. Only the ecotone habitat produced individuals which bore more than two flowers per inflorescence (Figure IV.1). Losses of flowers to herbivory were nearly 50% for all habitat types. Capsule abortion was proportionately greatest in the forest.

When data from the Ace Williams site were analyzed separately, differences in flowering among habitats were less significant $(p=0.03)$. Only the forest differed from the other habitats at the 0.05 level.

Population structure in 1988. Differences in density and population structure among the three habitats for 1988 were less distinct. Mean numbers of plants per meter were $26.8,19.4$, and 23.4 for the ecotone, meadow, and forest habitats,

Table IV.1. Summary data for 1988 study of Calochortus umpquaensis by site, habitat, and transect. Flowering was not determined at the Thunder Mt. Rd. site, due to the high incidence of grazing. Summaries for flowering are based only on the Little River Rd. and Ace Williams sites for the ecotone habitat.

Habitat	Site name	Number of Plots	\bar{N}	Density $\left(1 m^{2}\right)$	Leaf - width (mm)		Flowering	
					Mean	S. D.	N	Percent
Ecotone	Thunder Mt. Rd.	40	163	16.3	3.9	2.20	--	--
	Little River Rd.	20	152	30.4	8.7	2.30	83	55
	Ace Williams Mt.	20	221	44.2	4.2	1.60	28	13
Meadow	Standley Rd.	20	64	12.8	4.6	2.30	11	17
	Ace Williams Mt.	20	105	21	4.5	1.80	31	30
	Ace Williams Mt.	40	219	21.9	4.2	2.00	24	11
Forest	Ace Williams Mt.	40	225	22.5	3.9	2.20	8	4
	Watson Mt.	40	242	24.2	4.7	1.70	11	5
Ecotone	Summary	80	536	26.8	5.4	1.6	111	30
Meadow	by	80	388	19.4	4.3	2.0	42	11
Forest	Habitat	80	467	23.4	4.3	2.0	19	4
Total		240	1391	23.2	4.7	2.4	350	25

Figure IV.1. Flowering by habitat type for Calochortus umpquaensis in 1988, including tallies for inflorescences grazed or aborted before flowering.

respectively (Table IV.1). Only the ecotone and meadow means differed significantly at the 0.05 level.

Population structure, based on leaf width, varied greatly from site to site, but not consistently within a habitat type (Figures IV.2-5). The leaf width frequency histograms suggest that the distributions at each site probably represent unique patterns of recruitment, growth, and mortality. The Thunder Mountain Road ecotone site (Figure IV.2), for example, may reflect a high level of recruitment, while the proportion of larger individuals decreases with increased leaf width. Population structure is skewed toward the smaller individuals, with the mean leaf width $3.9 \mathrm{~mm}(\mathrm{n}=161)$. In contrast, at the Little River Road site, mean leaf width was $8.7 \mathrm{~mm}(\mathrm{n}=152)$, with no individuals smaller than 3.0 mm . This lack of seedlings is noteworthy, in light of the fact that this site produced the largest number of flowers and abundant capsules, suggesting an adequate seed supply. In addition, 39% of the individuals had widths greater than 9.0 mm , as contrasted with the two other ecotone sites, with 1.2% and zero. The overall distributions for both the Little River Road and Ace Williams Mountain ecotone sites are bell-shaped, with the Ace Williams site shifted toward the smaller leaf widths.

Of the two sites sampled for the meadow habitat, density was lowest at the Standley Road site, averaging 12.8 plants per square meter (Table IV.1, Figure IV.3). The forested site on Ace Williams Mountain was similar to the Thunder Mountain Road ecotone site in being skewed toward the smaller age classes, reflecting higher recruitment or slower growth rate (Figure IV.4). The mean leaf width was $3.9 \mathrm{~mm}(\mathrm{n}=225)$, as contrasted with $4.7 \mathrm{~mm}(\mathrm{n}=231)$ for Watson Mountain, which exhibits a more bell-shaped distribution.

When all sites are summarized, the frequency distributions were bell-shaped for all habitats (Figure IV.5), despite variations among sites. The proportion of flowering plants is higher for all size classes in the ecotone and meadow habitats. While the proportion of non-reproductive plants tend to decrease with increasing leaf width in all habitats, the proportion of flowering individuals was by far the lowest in the forested habitat for all sites. The frequency histograms (Figure IV.5)

Figure IV.2. Leaf width frequency distributions for Calochortus umpquaensis in ecotone habitat at Ace Williams Mountain, Thunder Mountain Road, and Little River Road sites based on data collected in 1988.

Figure IV.3. Leaf width frequency distributions for Calochortus umpquaensis in meadow habitat for Ace Williams Mountain and Standley Road sites based on data collected in 1988.

Figure IV.4. Leaf width frequency distributions for Calochortus umpquaensis in forest habitat for Ace Williams Mountain and Watson Mountain sites based on data collected in 1988.

Figure IV.5. Leaf width frequency distributions for Calochortus umpquaensis by habitat illustrating flowering status, based on data collected in 1988. Note greater proportion of non-flowering plants in forest relative to other habitats, despite similar size distributions.

confirm that the differences in reproduction are not due to difference in population structure. In order to further investigate and quantify these differences, permanent plots were established in 1989.

Preliminary results from long-term trend study

Reproductive biology of C. umpquaensis. The pattern of reproductive success of C. umpquaensis within the plots during 1989, 1990, and 1991 (Figure IV.6, Table IV.2a) is similar to that observed in 1988 (Figure IV.1, Table IV.1). In all years, the total numbers of individuals and the percentage of reproductive plants are greatest for the ecotone habitat, and lowest for the forest.

Within the permanent plots, the proportion of reproductive individuals was highest for all habitats in 1989, corresponding to the year of highest spring precipitation, then declined sharply in the following years (Table IV.2a). Bud production was higher in the ecotone (40.4\%) than meadow (26.2\%) in 1989, but resulting capsule production that year was nearly the same for both habitats. A similar pattern emerged in 1990. In 1991, although nearly twice as many buds were produced in the ecotone, heavy predation resulted in greatly reduced capsule production. Average capsule production over the three years was similar for the ecotone and meadow habitats, despite consistently lower bud production in the meadow. Predation, probably mostly by deer based on observations, was responsible for 99% of the loss of buds, flowers, and capsules in the ecotone and meadow in all years, with the remaining 1% aborting.

No capsules were produced in the forest habitat plots for 1989 or 1990, and only one capsule was produced in 1991. Flowering in the forest habitat was uncommon and those individuals which did flower rarely produced seed. Typically, after the flowers in the forest habitat lost their petals, the pistils remained erect. This was in contrast to those in the meadow and ecotone, which often became pendent before the petals dropped.

The average seed set for capsules collected at the study site, outside of the

Figure IV.6. Reproductive stages attained by Calochortus umpquaensis by habitat type for 1989 through 1991. Compare data for 1988, illustrated in Figure IV.1.

Table IV.2a. Summary of permanent plot data from Ace Williams Mountain for Calochortus umpquaensis and C. coxii plots for 1989 through 1991. Recruits are individuals appearing in the plots for the first time, regardless of size. Morts for 1990 also failed to appear in 1991, norts for 1991 may overestimate actual mortality.

Actual number of plants								Percent of total					
Year	Total Vegetative Buds Flowers Capsules Recruits Morts							Vegetative Buds Flowers Capsules Recruits Morts					
Ecotone				Flowers	Ues	ruts							
1989	235	140	95	28	22			59.6	40.4	11.9	9.4		
1990	267	206	61	15	13	39	7	77.2	22.8	5.6	4.9	14.6	2.6
1991	255	184	71	19	10	12	24	72.2	27.8	7.5	3.9	4.7	9.4
Forest										7.5	3.9	4.7	9.4
1989	125	117	8	4	0			93.6	6.4	3.2	0.0		
1990	142	136	6	1	0	21	4	95.8	4.2	0.7	0.0	14.8	2.8
1991	138	135	3	1	1	3	7	97.8	2.2	0.7	0.7	2.2	5.1
Meadow												2.2	
1989	141	104	37	18	15			0.0	26.2	12.8	10.6		
1990	185	168	17	6	5	67	23	90.8	9.2	3.2	2.7	36.2	12.4
1991	173	152	21	16	15	28	40	87.9	12.1	9.2	8.7	16.2	23.1
All habitats									12.1		8.7	16.2	23.1
1989	501	361	140	50	37			72.1	27.9	10.0	7.4		
1990	594	510	84	22	18	127	34	85.9	14.1	3.7	3.0	21.4	5.7
1991	566	471	95	36	26	43	71	83.2	16.8	6.4	4.6	7.6	12.5

Table IV.2b. Summary of permanent plot data from Smith and Bilger Creek Road sites collected in 1989-1991.

Actual number of plants								Percent of total											
Year Total Vegetative Buds Flowers Capsules Recruits Morts	Total Vegetative Buds Flowers Capsules Recruits Morts							Vegetative Buds Flowers Capsules Recruits Morts											
Smith site																			
1989	196	111	85	61	12			56.6	43.4	31.1	6.1								
1990	202	115	87	27	3	12	6	56.9	43.1	13.4	1.5	5.9	3.0						
Bilger Cr. Rd. site																			
1989	145	104	41	4	0			71.7	28.3	2.8	0.0								
1990	142	87	55	0	0	4	7	61.3	38.7	0.0	0.0	2.8	4.9						
1991	136	73	63	4	1	10	16	53.7	46.3	2.9	0.7	7.4	11.8						
Both sites																			
1989	341	215	126	65	12			63.0	37.0	19.1	3.5								
1990	344	202	142	27	3	16	13	58.7	41.3	7.8	0.9	4.7	3.8						
1991	332	202	130	28	6	17	29	60.8	39.2	8.4	1.8	5.1	8.7						

plots, in 1991 was $50.1 \% ~(~ n=24)$. Seed number averaged 38.6 per capsule and mean capsule length was 2.7 cm . A modest correlation was found between capsule length and number of seeds produced ($r^{2}=0.51$). Mean capsule lengths within plots were similar for all three years: 2.7 cm for meadow and 2.5 cm for ecotone in 1989, 3.7 for meadow, 2.8 for ecotone in 1990, and 2.5 cm for meadow, and 2.3 cm for ecotone in 1991.

Population biology of C. umpquaensis. While some annual variation in population structure within each site is evident (Figures IV.7-9), overall patterns are similar, as expected for a long-lived perennial. A noteworthy increase in the 1 mm individuals in the meadow habitat in 1991 (Figure IV.8) represents a pulse of recruitment. A similar pulse is shown in 1989 in the forest habitat (Figure IV.9). Because of the slow growth rate of plants in this habitat, the actual year of recruitment of these individuals probably preceded 1989.

The fate of these smaller individuals (i.e. what proportion survive, decline, or grow) over a three year interval differs among habitats (Table IV.3). The majority of plants increased in size in the meadow and ecotone, but remained the same or decreased in the forest. The growth rate for small meadow- and ecotone-inhabiting individuals contrasts with C. howellii seedlings, which often remain the same size for many years. For example, 81.8% of the plants with leaves 1 mm wide in 1987 which were still alive in 1991, had not increased in size (Chapter 3).

While the leaf width frequency distributions are similar among habitats (Figure IV.7-9), subtle differences may be significant. The forest and meadow habitat distributions are skewed toward the smaller size classes, with the mean 1989 leaf widths 3.2 mm and 3.4 mm , respectively. In contrast, the mean leaf width for the ecotone in 1989 was 4.7 mm , with the distribution skewed towards the larger classes. A downward shift in the mode (4 mm) and mean (4.0 mm) widths may reflect reduced spring precipitation in 1991. As in 1988, the density in the ecotone habitat was highest, and differs notably from both the forest and meadow (Table III.2).

Figure IV.7. Reproductive stages attained by Calochortus umpquaensis in ecotone habitat for 1989 through 1991, by leaf width. Number of individuals are provided above each bar.

Figure IV.8. Reproductive stages attained by Calochortus umpquaensis in meadow habitat for 1989 through 1991, by leaf width. Number of individuals are provided above each bar.

Figure IV.9. Reproductive stages attained by Calochortus umpquaensis in forest habitat for 1989 through 1991, by leaf width. Number of individuals are provided above each bar.

Table IV.3. Change in leaf width after two years for small plants of Calochortus umpquaensis by habitat and C. coxii, in percent of total number of plants of that width. Calculations exclude plants which died between 1989 and 1991.

Calochortus umpquaensis						
Forest						
	1991					
1	Leaf width	0.1 cm	0.2 cm	0.3 cm	0.4 cm	0.5 cm
9	0.1 cm	68.8	18.8	12.5	0.0	0.0
8	0.2 cm	11.1	66.7	22.2	0.0	0.0
9	0.3 cm	0.0	16.0	44.0	20.0	20.0

Meadow								
1991								
1	Leaf width	0.1 cm	0.2 cm	0.3 cm	0.4 cm	0.5 cm	0.6 cm	0.8 cm
	0.1 cm	15.4	38.5	46.2	0.0	0.0	0.0	0.0
8	0.2 cm	6.7	40.0	26.7	20.0	6.7	0.0	0.0
9	0.3 cm	5.0	15.0	25.0	30.0	10.0	10.0	5.0

Ecotone							
1991							
1	Leaf width	0.1 cm	0.2 cm	0.3 cm	0.4 cm	0.5 cm	0.6 cm
9	0.1 cm	0.0	66.7	16.7	16.7	0.0	0.0
8	0.2 cm	8.3	25.0	50.0	16.7	0.0	0.0
9	0.3 cm	3.8	11.5	19.2	26.9	26.9	11.5

Calochortus coxii								
1991								
1	Leaf width	0.1 cm	0.2 cm	0.3 cm	0.4 cm	0.5 cm	0.6 cm	
9	0.1 cm	0.0	0.0	0.0	0.0	0.0	0.0	
8	0.2 cm	9.1	81.8	0.0	0.0	9.1	0.0	
9	0.3 cm	0.0	17.1	37.1	37.1	5.7	2.9	

Summary of changes in leaf width from 1989-1991 for plants 1-3 mm in 1989

Species	C. umpquaensis			C. coxii
Status in 1991	Forest	Meadow	Ecotone	
No change	56.0	27.1	19.6	47.8
Decreased	10.0	10.4	10.7	13.0
Increased	34.0	62.5	69.6	39.1

Microhabitats strongly influence seedling establishment. The average percent cover of litter, moss, soil, and vegetation within the plots were compared with the percent of seedlings and older plants established in those microsites (Table IV.4). In all habitats, plants rarely established in close proximity to other vegetation. In the forest habitat, distribution of plants corresponded closely to the availability of microsites (e.g. ca. 50% of seedlings occurred on litter, which comprised 47.8% of the ground cover). In the meadow, where desiccation may pose a greater threat to young seedlings, plants were more likely to occur on mossy microsites. Litter, on the other hand, was the most common substrate for plants established in the ecotone.

Mortality is highest in the meadow habitat both in 1990 and 1991, but recruitment is also higher there (Table IV.2a). Exposure to desiccation could also play a role in increased mortality, particularly in dry years. Mortality for plants recruited in 1989 was 18.0% ($7 / 39$) and $16.4 \%(11 / 67)$ in the ecotone and meadow habitats, while only 4.8% in the forest $(1 / 21)$.

Population and reproductive biology of Calochortus coxii.

Bud production of \boldsymbol{C}. coxii differed significantly between the two sites (Table IV.2b, Figure IV.10), with plants at the Bilger site producing only 48% and 63% as many buds as those at the Smith site in 1989 and 1990. However, bud production in 1991 was similar at both sites. Flower and capsule production was highly reduced at the Bilger site during all three years. Only four plants produced flowers in 1989 and 1991 and none flowered in 1990. Predation was primarily responsible for the low percentage of capsules produced at both sites; only 14.1% of plants which produced buds, or $6.1 \%(n=12)$ of the individuals tagged produced capsules at the Smith site in the best year, 1989. The high rate of predation at the Bilger site, resulting in the production of only one capsule within the plots over three years, has not resulted in significantly lower recruitment, and mortality did not differ between the two sites (Table IV.2b). Frequency distributions based on leaf widths (Figure IV.11), however reveal larger numbers of

Table IV.4. Microhabitat analysis for Calochortus umpquaensis by habitat and C. coxii based on data collected from permanent plots. Figures are percentages of total number of plants in each size-category that established in litter, moss, soil, and vegetation. Actual cover values for these categories are based on 1990 plot data.

Calochortus umpquaensis

Microhabitat	Litter	Moss	Soil	Vegetation
FOREST				
Cover	47.8	39.4	1.0	12.8
Leaf widths < = 3 mm	54.9	37.3	7.8	0.0
Leaf widths > 3 mm	70.4	28.1	1.6	0.0
MEADOW				
Cover	16.5	48.4	2.8	40.4
Leaf widths < = 3 mm	11.0	85.7	0.0	3.3
Leaf widths > 3 mm	17.0	74.5	4.3	4.3
ECOTONE				
Cover	34.5	18.8	1.0	51.5
Leaf widths < = 3 mm	77.0	9.2	0.0	13.8
Leaf widths > mm	68.5	12.1	2.0	17.5

Calochortus coxii

Microhabitat	Litter	Moss	Soil	Vegetation
Cover	59.8	14.4	1.1	28.4
Leaf widths < $=3 \mathrm{~mm}$	67.2	27.9	0.0	4.9
Leaf widths > 3 mm	61.0	31.3	0.4	7.3

Figure IV.10. Reproductive stages attained by Calochortus coxii by site for 1989 through 1991.

Figure IV.11. Leaf width frequency distributions Calochortus coxii by site for 1989 through 1991. Note lower numbers of small plants at the Bilger Creek Road site.

smaller individuals at the Smith site. Individuals with leaf widths less than 4 mm are under-represented at the Bilger site, perhaps indicative of a longer term limitation of seedling recruitment.

As leaf widths increase, the proportion of plants producing buds increases (Figure IV.12). Plants with leaf widths as small as 3 mm occasionally produced buds.

The low production of capsules at the study sites made it difficult to collect them for seed-set analysis. Based on nine capsules collected, the mean seed set was 52.5% (S.D. $=31.4$), with an average of 34.4 seeds produced per capsule. Capsule length, which averaged 2.6 cm , was correlated with seeds produced ($\mathrm{r}^{2}=$ $0.73)$.

Growth rates of small plants of C. coxii appear slower than those of \boldsymbol{C}. umpquaensis, especially when comparing across the same habitat, the ecotone (Table IV.3). Ninety-one percent of those plants with leaves 2 mm wide or less in 1989 had not grown by 1991. Because removal of photosynthetic surface area tends to result in reduced width in subsequent years (unpubl. data), it is not clear if the apparently slow growth rate of small plants is genetically or environmentally induced.

Microhabitats commonly occupied by C. coxii included both litter and moss (Table IV.4). Litter comprised the greatest cover within the plots, with a corresponding high occupation of both seedlings and larger plants within this microsite. While the transects were located in partially shaded habitats, approximately 30% of all plants established on the more desiccation-resistant moss layer, which comprised 14% of the ground cover.

Transition matrix analysis for C. umpquaensis and C. coxii
In Chapter 3, several approaches to determining size categories for transition matrix analysis were evaluated. Categories for C. howellii were calculated using Moloney's algorithm (Moloney 1986) which minimizes the errors of estimation and errors of distribution resulting from inappropriate size classification. Because the

Figure IV.12. Reproductive stages attained by Calochortus coxii for 1989 through 1991, by leaf width. Data for the two sites are combined. Number of individuals are provided above each bar.

sample size was large, and thus the errors of distribution minimized, the unclassified data were also analyzed to compare the results of this extremely finely delineated classification. Finally, the data were classified using life history information, which resulted in three categories: seedlings, juveniles, and adults, based on leaf widths. The results using theoretically optimal categories were similar to those using categories based on life history information, so Moloney's algorithm was not applied here to determine the size categories for C. umpquaensis and C. coxii.

While vegetative reproduction occurs in many other members of the genus, it is rare in the three species studied here. In addition, vegetative dormancy (i.e. bulbs which fail to produce leaves every year) has not been confirmed. A small number of large new plants were noted in the plots in 1990 and 1991. These plants were not incorporated into the analysis. These individuals may actually represent plants that were grazed in previous years before the plots were visited.

Transition matrices were compiled and compared for the years 1989-1990 and 1990-1991 using three size categories based on leaf width: seedlings, small adults, and larger adults for C. umpquaensis (Table IV.5) and C. coxii (Table IV.6). Matrices were calculated by habitat for C. umpquaensis and by site for C. coxii (Table IV.7). Average lambda values were highest for the ecotone and lowest for the meadow for C. umpquaensis and were highest consistently across habitats for the 1989-1990 transition. The Bilger Creek Road site had the lowest lambda values for C. coxii. This species also exhibited lower growth rates during the 1990-1991 transition.

Indices of dissimilarity were lowest for C. umpquaensis in the forest habitat for both transition years (Table IV.8). The meadow habitat population structure differed most from stable, averaging 19.9. Differences were greatest during the first transition (1989-1990) for C. umpquaensis, but were markedly lowest for C. coxii during 1990 to 1991, when data from both sites were combined. The average index of dissimilarity for the Smith and Bilger Creek Road sites were 21.8 and 13.1 , respectively.

Table IV.5. Size-classified transition matrix analysis by habitat for Calochortus umpquaensis for two transition years: 1989-1990 and 1990-1991. Category $1=$ seedlings with leaves up to 3 mm wide, 2 = plants with leaf widths greater than 3 mm and no greater than $6 \mathrm{~mm}, 3=$ plants with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (year 1) to the row category (year 2). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category. Mortality is the percent in plants in each category which failed to appear during the second year. Initial category distributions (\%) are based on the numbers of plants in each category the first year (e.g. Init89); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

1989-1990

Ecotone			
Category	1	lambda $=1.053$	
1	0.444	0.036	3
2	0.444	0.643	0.133
3	0.000	0.286	0.842
Mortality	0.000	0.048	0.025
Init89	9	56	158
Stage Distribution (\%)			
Initial	4.0	25.1	70.9
Stable	18.2	34.7	47.1

Forest			
lambda $=0.998$			
Category	1	2	3
1	0.611	0.161	0.062
2	0.222	0.613	0.062
3	0.000	0.226	0.923
Mortality	0.167	0.097	0.015
Init89	18	31	65
Stage Distribution (\%)			
Initial	15.8	27.2	57.0
Stable	18.2	20.3	61.4

Meadow			
lambda $=0.990$			
Category	1	2	3
1	0.385	0.019	0.657
2	0.615	0.566	0.239
3	0.000	0.189	0.567
Mortality	0.000	0.189	0.194
Init89	13	53	67
Stage Distribution (\%)			
Initial	9.8	39.8	50.4
Stable	26.3	51.0	22.8

1990-1991

Ecotone						
Category	1	lambda $=0.918$				
1	0.214	0.053	0.020			
2	0.643	0.539	0.144			
3	0.000	0.289	0.771			
Mortality	0.143	0.118	0.085			
Init90	14				76	153
Stage Distribution (\%)						
Initial	5.8	31.3	63.0			
Stable	4.2	32.2	63.6			

Forest			
lambda $=0.948$			
Category	1	2	3
1	0.714	0.026	0.014
2	0.286	0.737	0.087
3	0.000	0.158	0.855
Mortality	0.000	0.079	0.058
Init90	21		
38			
Stage Distribution (\%) 69			
Initial	16.4	29.7	53.9
Stable	7.5	34.2	58.3

Meadow			
lambda $=0.883$			
Category	1	2	3
1	0.660	0.058	0.362
2	.0 .240	0.493	0.121
3	0.000	0.203	0.569
Mortality	0.100	0.246	0.310
Init90	50	69	58
Stage Distribution (\%)			
Initial	28.2	39.0	32.8
Stable	44.2	33.9	21.9

Table IV.6. Size-classified transition matrix analysis by habitat for Calochortus coxii for two transition years: 1989-1990 and 1990-1991. Category $1=$ seedlings with leaves up to 3 mm wide, 2 = plants with leaf widths greater than 3 mm and no greater than $6 \mathrm{~mm}, 3=$ plants with leaf widths greater than 6 mm . Each number in the matrix is the proportion of plants which transfer from the column category (year 1) to the row category (year 2). Reproduction is incorporated into first row, as the percent of seedlings produced per individual in each reproductive category.
Mortality is the percent in plants in each category which failed to appear during the second year. Initial category distributions (\%) are based on the numbers of plants in each category the first year (e.g. Init89); stable distributions (\%) and lambda values were calculated using DEMOG. See text for further explanation.

1989-1990			
Smith site			
Category	1	lambda $=0.971$	
1	0.364	0.048	3
2	0.636	0.710	0.121
3	0.000	0.194	0.802
Mortality	0.000	0.065	0.017
Init89	11	62	116
Stage Distribution (\%)			
Initial	5.8	32.8	61.4
Stable	8.3	42.8	48.9

Smith site			
	lambda $=0.925$		
Category	1	2	3
1	0.455	0.090	0.017
2	0.273	0.746	0.248
3	0.091	0.104	0.675
Mortality	0.182	0.060	0.060
Init90	11	67	117
Stage Distribution (\%)			
Initial	5.6	34.4	60.0
Stable	12.2	58.8	29.0

Bilger Creek Road site			
lambda $=0.917$			
Category	1	2	3
1	0.500	0.000	0.038
2	0.400	0.703	0.019
3	0.000	0.270	0.846
Mortality	0.100	0.027	0.096
Init89	10	37	52
Stage Distribution (\%)			
Initial	10.1	37.4	52.5
Stable	6.8	19.3	73.8

Bilger Creek Road site			
lambda $=0.871$			
Category	1	2	3
1	0.273	0.023	0.041
2	0.455	0.500	0.219
3	0.182	0.295	0.644
Mortality	0.091	0.182	0.096
Init90	11	44	73
Stage Distribution (\%)			
Initial	8.6	34.4	57.0
Stable	5.3	39.3	55.4

Both sites			
lambda $=0.955$			
Category	1	2	3
1	0.429	0.020	0.052
2	0.524	0.707	0.087
3	0.000	0.222	0.820
Mortality	0.048	0.051	0.041
Init89	21	99	172
Stage Distribution (\%)			
Initial	7.2	33.9	58.9
Stable	7.1	35.2	57.7

Both sites			
lambda $=0.904$			
Category	1	2	3
1	0.364	0.063	0.026
2	0.364	0.649	0.241
3	0.136	0.180	0.660
Mortality	0.136	0.108	0.073
Init90	22	111	191
Stage Distribution (\%)			
Initial	6.8	34.3	59.0
Stable	7.9	50.5	41.6

Table IV.7. Summary of lambda values from transition matrix analysis by habitat for Calochortus umpquaensis and by site for C. coxii.

Calochortus umpquaensis			
Habitat	Ecotone	Forest	Meadow
$1989-1990$	1.05	1.00	0.99
$1990-1991$	0.92	0.95	0.88
Mean	0.99	0.97	0.94
S.D.	0.10	0.04	0.08

Calochortus coxii			
Sitename	Smith	Bilger	Both sites
$1989-1990$	0.97	0.92	0.96
$1990-1991$	0.93	0.87	0.90
Mean	0.95	0.89	0.93
S.D.	0.03	0.03	0.04

Table IV.8. Differences between stable and initial stage distributions (indices of dissimilarity) for Calochortus umpquaensis and C. coxii. Only positive differences are summed.

Calochortus umpquaensis

$1989-1990$				
Category	1	2	3	Sum
Ecotone habitat	-14.2	-9.6	23.8	23.8
Forest habitat	-2.4	6.9	-4.4	6.9
Meadow habitat	-16.5	-11.2	27.6	27.6

$1990-1991$				
Category	1	2	3	Sum
Ecotone habitat	1.6	-0.9	-0.6	1.6
Forest habitat	8.9	-4.5	-4.4	8.9
Meadow habitat	-16.0	5.1	10.9	16.0

Calochortus coxii

$1989-1990$				
Category	1	2	3	Sum
Smith site	-2.5	-10.0	12.5	12.5
Bilger Cr. Rd. site	3.3	18.1	-21.3	21.3
Both sites	0.1	-1.3	1.2	1.3

$1990-1991$				
Category	1	2	3	Sum
Smith site	-6.6	-24.4	31.0	31.0
Bilger Cr. Rd. site	3.3	-4.9	1.6	4.9
Both sites	-1.1	-16.2	17.4.	17.4

DISCUSSION

Habitat analysis for Calochortus umpquaensis

Both C. umpquaensis and C. coxii are restricted to serpentine-derived soils, but despite the limited occurrence of these soils in southwestern Oregon, a considerable amount of apparently suitable unoccupied habitat remains (Fredricks 1989b). While historical factors are important in explaining present distribution, the current investigation of microhabitats and demography has proven useful in explaining why these species are not more widespread.

For C. umpquaensis, differences in reproductive success, recruitment, and survival in forest, meadow, and ecotone habitats may result from limiting resources. By determining what resources are necessary for stable, reproducing populations, we can consider why apparently suitable habitat is unoccupied. Resource limitation may not be the primary cause of rarity in C. umpquaensis, but it may be responsible for the affinity of the species to the transition between forest and meadow. Light, moisture, pollen vectors, nutrients, and temperature are among the resources which may be limiting. These potentially limiting resources are considered here in the context of results from this study.

Individuals of C. umpquaensis are densest, produce more buds, and are on average larger in the ecotone habitat. The higher density did not seem to result from direct competition, since vegetation cover was highest in the ecotone.
Although mossy sites were occupied in greater proportion to their availability in the meadow, the majority of plants had established on litter in the forest and ecotone. Calochortus umpquaensis may be most successful in ecotonal habitats because this area affords the combination of adequate moisture and safe sites necessary for seedling survival and light required for adult reproductive success.

Forest habitats produced the fewest buds, flowers, and capsules. The shaded forest habitat may limit floral initiation in this species. The high incidence of capsule abortion in the forest habitat suggests that pollinators may also be less
active in the cooler, shaded forest habitat.
The recruitment of C. umpquaensis within the forest is paradoxically high considering the low seed set in this habitat. The density of seedlings in the forest and their sporadic distribution suggests that if seeds are produced, the probability of landing within a safe site is high. In addition, mammalian and insect predation may be lower relative to the other habitats. Leaf width distribution in the forest is skewed toward smaller individuals. This could suggest that plants are on average younger in the forest. A more likely interpretation of the smaller leaf widths is that the forest populations are less robust, with smaller leaf widths for comparable ages. Higher growth rates in meadow and ecotone indicate that light may be limiting to growth, as well as reproduction, in the forest habitat.

While light may limit floral initiation in the forest, the cause of low bud production in the meadow habitat relative to the ecotone is not clear. Inadequate moisture could limit reproduction in this habitat, since it is exposed to greater desiccation than the forest or ecotone. The correlation between spring precipitation and bud production for C. umpquaensis, C. coxii, and C. howellii (Chapter 2) supports the premise that moisture may limit reproduction in these species.

The high mortality observed in the meadow in 1990 and 1991 is also unexplained. The tendency of C. umpquaensis to establish on mossy microsites suggests that the moisture-retaining ability of moss could aid recruitment of seedlings, particularly when spring precipitation is low. Actual microsite measurements of environmental parameters including soil temperature, moisture, and macronutrients are necessary to investigate further the consistently lower bud production and higher seedling mortality in the meadow habitat.

Capsule predation is the most important limiting factor in the ecotone habitat. The heavier predation within this habitat (especially evident in 1989 and 1991) may reflect ecotonal grazing preferences by deer. Deer populations in Douglas County are high (Beiderbeck 1993, pers. comm.), due in part to timber harvest, agricultural development, and long-standing declines in predator populations. Because the timber stand in the vicinity of the Ace Williams population provides thermal cover
that is highly limited in the vicinity, it may serve to concentrate deer populations, resulting in artificially high predation.

Soils analysis of 22 elements including the macronutrients calcium, iron, magnesium, phosphorus, and potassium showed little differences among habitats (Chapter 2). Phosphorus was higher in both surface and subsurface soil in the ecotone, than in the forest or meadow, but differences were not statistically significant. Further investigations of this element, as well as nitrogen could reveal habitat differences. While nitrogen generally tends to be low in serpentine soils, due to their low productivity (Brooks 1987), the ample litter and moss layer suggest that nitrogen may not be limiting at C. umpquaensis sites. In the meadow, where pH tends to be more alkaline, manganese may leach readily, resulting in deficiencies of this element.

Limiting factors in Calochortus coxii. While bud production is higher in this species than in the meadow or forest habitats of C. umpquaensis, capsule production and recruitment are significantly lower. Grazing and predation of capsules of C. coxii contribute to this low fecundity. The high variability (S.D. $=$ 31.5) in seed set may indicate that pollination may also be limited; unlike other species of Calochortus, which are frequently visited by beetles and bees, insect visitors to C. coxii are rarely observed. The sparseness of flowering individuals may reduce pollination and subsequent seed set.

Evaluation of population stability for C. umpquaensis and C. coxii. Several methods were used to evaluate stability of selected populations of C. umpquaensis and C. coxii. Leaf-width frequency distributions were illustrated. Current population structure, mortality and recruitment were compared. Transition matrix models were applied to reveal equilibrium population growth rate, stable size distribution, and the degree of sensitivity of various categories to changes.

The bell-shaped size distributions of C. umpquaensis and C. coxii populations are similar to those observed in C. howellii and C. longebarbatus var. peckii
(unpubl. data). While the paucity of small individuals may at first appear alarming in rare species, slow, steady recruitment of smaller individuals into the population is sufficient to maintain its stability, if mortality does not exceed recruitment.

Calochortus umpquaensis has a greater ability to colonize than the other species studied. The recruitment rate of C. umpquaensis far exceeded C. howellii, particularly in the meadow. However, mortality in that habitat was also higher than for either C. coxii or C. howellii. The occurrence of this species in slightly disturbed areas and its ability to tolerate a wide range of habitats indicates that \boldsymbol{C}. umpquaensis may be more resilient and adaptable than its close relatives with narrower habitat specificity.

Lambda values for C. umpquaensis were highest in the ecotone habitat. The minimal seed set occurring in the forest habitat did not appear to influence the equilibrium population growth rate or stable population structure. The average index of dissimilarity was in fact lowest for the forest, indicating that by this measure this habitat had the highest stability.

Lambda values were lowest in 1990 to 1991 for all three habitats of C. umpquaensis and both C. coxii sites. Late winter to spring precipitation was lowest during these years, which may have affected reproduction and mortality (Chapter 2). Mortality doubled in 1991 for both species (C. umpquaensis: 5.7% for 1990 and 12.5% for 1991 ; C. coxii: 3.8% for 1990 and 8.7% for 1991 for C. coxii, Table IV.2), which contributed to lower lambdas for the 1990-1991 transition.

The results of the transition matrix analysis indicate that the Ace Williams population of C. umpquaensis is stable, based on equilibrium population growth rate, but population structures. While the C. coxii population at the Smith site is also near stable $(\lambda=0.95)$, the Bilger Creek Road population is clearly declining ($\lambda=0.89$).

The average lambda value for C. howellii over six transitions (Table III.8, based on empirically-derived size-categories) was 0.99 . Average lambda values for two transitions (1982-1984) for three other rare Calochortus species were somewhat higher: C. obispoensis 1.02, C. pulchellus 1.10, and C. tiburonensis 1.16 (Fiedler
1987). A fourth common species, C. albus had an average value of 1.11. Indices of dissimilarity, which reflect stability of the population structure, were high for three of the four species Fiedler studied-indicating instability; only C. tiburonensis values were lower than those of C. umpquaensis or C. coxii.

Fiedler reported that mean number of seeds per capsule did not differ significantly among the species she studied; the range was from 35 to 40 . Mean number of seeds per capsule for two species investigated here were similar: 38.6 for C. umpquaensis and 34.4 for C. coxii, but C. howellii averaged only 21.0 seeds per capsule (Table III.5a). The common species, C. albus had a much greater seed output--individuals had a greater probability of survival to reproductive size and produce more capsules per plant.

Calochortus albus has the life-history characteristics of a colonizer (Fiedler 1987). Based on observations and analyses, C. umpquaensis exhibits a similar capacity to colonize, yet unlike C. albus, remains highly localized. It exhibits higher recruitment, appears to persist in slightly disturbed habitats and shows less habitat specificity, and has higher growth rates than the other species studied here. On the other hand, C. howellii may be most comparable to C. tiburonensis and \boldsymbol{C}. obispoensis, which share characteristics of low seedling establishment, low adult mortality, and slow growth. All inhabit serpentine grasslands with extremely limited ranges: C. tiburonensis is known only from Ring Mountain on the Tiburon Peninsula near San Francisco, while C. obispoensis occurs on at few isolated sites in the Santa Lucia Mountains of central coastal California (Fiedler 1987).

During this study, noteworthy range extensions for C. umpquaensis were discovered. This species is now known from widely scattered serpentine areas spanning 80 km (Figure II.1). Most populations are small, but one located on public land is extensive. This large population (Callahan Meadows) and the one at Ace Williams Mountain are particularly critical to the viability of the species, since smaller populations are more vulnerable to stochastic genetic change.

Morphological differences among the widely separated populations indicate that this species may be diverging genetically, lending additional significance to the
protection of these distinct races. Most newly discovered populations occupied ecotonal habitats, but heavily serpentinized, open sites were also located, strengthening the premise of lower habitat specificity for C. umpquaensis. While the range is larger than previously believed, the small area inhabited by this species and the documented threats from human activities support its continued status as endangered.

At Ace Williams Mountain, recruitment in C. umpquaensis was adequate, during the 1988 to 1990, to balance mortality. Low capsule and seed production do not result in population instability and may be typical for long-lived perennials. The greatest threat to this species is habitat alteration, particularly changes involving soil-moisture relations. By properly maintaining habitat for C. umpquaensis, avoiding direct disturbance (e.g. timber harvest, mining, bulb digging) and curtailing additional non-native grazing pressure within its extremely limited range, extinction probability for the species should be minimized.

Analyses indicate that C. coxii is at greater risk. Fewer populations are known and none are extensive. Demographic and reproductive data corroborate our prior concerns that the small populations are declining. The differences in leaf-width frequency distributions of C. coxii indicate that the heavy predation at the Bilger site may be reducing the recruitment of seedlings over time, skewing the distribution toward larger individuals. Analysis of the data using size-classified transition matrices indicates that the equilibrium population growth rate at the Bilger Creek Road site is perilously low, and the actual category distributions, especially in the 1990-1991 transition were far from stable. These results serve to demonstrate the vulnerability of C. coxii, particularly at the Bilger Creek Road site. Remedial measures, such as setting up exclosures or offering special controlled deer hunts to reduce grazing pressure, may be necessary if populations fail to stabilize, particularly if this species is listed as federally endangered.

Evaluation of methods and recommendations for continued study

While use of the mapping table is awkward at times, this method was successful in minimizing impact to the sites and plants. Despite vandalism at one site, which resulted in the PVC pipe markers being removed, it was not difficult to relocate individuals except where densities were very high. In these cases, occasionally I had to compare similar sized individuals and match with previous years data, but it is unlikely that this affected overall results.

It is still uncertain whether the small number of adults appearing in the plots for the first time are actually plants which were previously missed, because they were grazed at ground level, or if a small number of plants may occasionally remain dormant, but the former explanation seems most plausible. Several unanswered questions, such as this, remain. When studying long-lived species in variable environments, long-term studies are essential. The results presented here are only introductory.

Because of the still uncertain future of C. umpquaensis and C. coxii, scientific data on trends of other populations of these species are still needed. The methods applied here for data collection may be considered too time consuming to apply to additional sites, but a streamlined modification of this approach is recommended in order to provide a more comprehensive monitoring program for these species. Because it is desirable to maximize number of sites and individuals sampled, it may be adequate to record size categories rather than exact leaf widths. This method would save time in the field, in data entry, and in analysis. While the information gained here on growth rates is useful, the comparison of size-classifications (Chapter 3) support this simpler, more efficient approach.

It is hoped that botanists connected with the B.L.M. will continue to collect data on these species, since three years are inadequate to draw strong conclusions or generalizations on population trends, particularly with the high degree of variability evident during the study. It is the responsibility of the land management agencies, including the B.L.M. and the Forest Service, to manage these populations to insure their continued viability.

LITERATURE CITED

Beaulieu, J.D. and L. Ramp. 1972. Geologic compilation map of Douglas County, Oregon. State of Oregon Department of Geology and Mineral Industries.

Beiderbeck, H. 1993. Oregon Department of Fish and Wildlife, personal communication on January 28.

Brooks, R.R. 1987. Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press, Portland, OR.

Fiedler, P.L. 1985. An investigation into the nature of rarity in the genus Calochortus Pursh (Liliaceae). Ph.D. thesis, Univ. of California, Berkeley.
\qquad . 1987. Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). J. of Ecol. 75:977-995.

Fredricks, N.A. 1989a. Morphological comparison of Calochortus howellii and a new species from southwestern Oregon, C. umpquaensis (Liliaceae). Syst. Bot. 14:7-15.
\qquad . 1989b. Calochortus umpquaensis: Preliminary status report and summary of 1989 field studies. Prepared for the Oregon Department of Agriculture for submission to the Bureau of Land Management, Roseburg District.

Godfrey, M.R. and F.T. Callahan. 1988. A new Calochortus from Douglas County, Oregon. Phytologia 65:216-219.

Keyfitz, N. 1977. Index to the mathematics of populations. Addison-Wesley. Reading, MA.

Moloney, K.A. 1986. A generalized algorithm for determining category size. Oecologia 69:176-180.

SAS Institute Inc. 1988. SAS/STAT User's Guide, Release 6.03 Edition. SAS Institute Inc., Cary, NC.

Wells, F.G. and D.L. Peck 1961. Geological map of Oregon west of the 121st meridian. U.S. Geol. Survey Misc. Geol. Inv. Map I-325.

Wilson, M.V. 1992. Demog: A program for demographic analysis. Oregon State Univ., Corvallis.

BIBLIOGRAPHY

Atzet, T. 1979. Description and classification of the forests of the upper Illinois River drainage system of southwestern Oregon. Ph.D. thesis, Oregon State Univ., Corvallis.
\qquad . and D.L. Wheeler. 1984. Preliminary plant associations of the Siskiyou Mountain province. U.S.D.A. Forest Service, Pacific Northwest Region.
\qquad . and L.A. McCrimmon. 1990. Preliminary plant associations of the southern Oregon Cascade Mountain province. U.S.D.A. Forest Service, Pacific Northwest Region, Siskiyou National Forest.

Beal, J.M. 1939. Cytological studies in relation to the classification of the genus Calochortus. Bot. Gaz. 100:528-547.
\qquad . 1941. Cytological studies in relation to the classification of the genus Calochortus. II. Bot. Gaz. 102:810-811
\qquad . and M. Ownbey. 1943. Cytological studies in relation to the classification of the genus Calochortus. III. Bot. Gaz. 104:553-562.

Beaulieu, J.D. and L. Ramp. 1972. Geologic compilation map of Douglas County, Oregon. State of Oregon Department of Geology and Mineral Industries.

Beiterbeck, H. 1993. Oregon Department of Fish and Wildlife. personal communication on January 28.

Bierzychudek, P. 1982. The demography of jack-in-the-pulpit, a forest perennial that changes sex. Ecol. Monogr. 52:335-351.

Borine, R. 1983. Soil survey of Josephine County, Oregon. U.S.D.A. Soil Conservation Service.

Brooks, H.C. and L. Ramp. 1968. Gold and silver in Oregon. Bulletin 61, State of Oregon Department of Geology and Mineral Industries, Portland.

Brooks, R.R. 1987. Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press, Portland, OR.

Caswell, H. 1978. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Population Biol. 14:215-230.
\qquad . 1989. Matrix population models: Construction, analysis, and interpretation. Sinauer Assoc., Inc. Sunderland, MA.
\qquad . and P.A. Werner. 1978. Transient behavior and life history analysis of teasel (Dipsacus sylvestris Huds.). Ecology 59:53-66.

Cave, Marion. 1970. Chromosomes of the California Liliaceae. Univ. Calif. Publ. in Bot. 57:1-58.

Denton, M.F. 1979. Factors contributing to evolutionary divergence and endemism in Sedum section Gormania (Crassulaceae). Taxon 28:149-155.

Emmingham, W.H. 1973. Lower Illinois River forest ecosystem study. Unpublished report prepared for the USDA Forest Service, Siskiyou National Forest.

Ferson, S. 1990. RAMAS/Stage. Generalized stage-based modeling for population dynamics. Applied Biomathematics, Setauket, NY.

Fiedler, P.L. 1985. An investigation into the nature of rarity in the genus Calochortus Pursh (Liliaceae). Ph.D. thesis, Univ. of California, Berkeley.
\qquad . 1985. Heavy metal accumulation and the nature of edaphic endemism in the genus Calochortus (Liliaceae). Amer. J. Bot. 72:1712-1718.
\qquad . 1986. Concepts of rarity in vascular plant species, with species reference to the genus Calochortus Pursh (Liliaceae). Taxon 35:502-518.
\qquad . 1987. Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). J. Ecol. 75:977-995.

Fredricks, N.A. 1986. Calochortus howellii: Ecology of a rare serpentine endemic, and comparison with the new species, C. umpquaensis (Liliaceae). Unpublished M.S. thesis, Oregon State Univ., Corvallis.
\qquad . 1988. Species Management Guide for Calochortus howellii. Oregon State Department of Agriculture, Plant Conservation Biology Program, unpublished report to the Siskiyou National Forest, Grants Pass, OR.
. 1989. Morphological comparision of Calochortus howellii and a new species from southwestern Oregon, C. umpquaensis (Liliaceae). Syst. Bot. 14:7-15.
. 1989. Calochortus umpquaensis: Preliminary status report and summary of 1989 field studies. Unpublished report prepared for the Oregon Department of Agriculture and Bureau of Land Management.
\qquad . 1989. Calochortus coxii: Preliminary status report and summary of 1989 field studies. Unpublished report prepared for the Oregon Department of Agriculture and Bureau of Land Management.

Frenkel, R.E. and C.W. Kiilsgaard. 1984. Vegetation classification and map of the central Siskiyou Mountains, Oregon. Final Report for NASA-Ames University Consortium Joint Research Interchange.

Froehlich, H.A., D.H. McNabb, and F. Gaweda. 1982. Average annual precipitation, 1960-1980, in southwest Oregon. Publication EM 82:20, Oregon State Univ. Extension Service, Corvallis.

Godfrey, M.R. and F.T. Callahan. 1988. A new Calochortus from Douglas County, Oregon. Phytologia 65:216-219.

Griggs, R.F. 1940. The ecology of rare plants. Bull. Torrey Bot. Club 67:575-594.
Harper, J.D. and J. White. 1974. The demography of plants. Ann. Rev. Ecol. Syst. 5:419-463.

Hawk, G.M. 1978. A comparative study of the temperate Chamaecyparis forests. Ph.D. thesis, Oregon State Univ., Corvallis.

Hitchcock, C.L. and A. Cronquist. 1973. Flora of the Pacific Northwest. Univ. of Washington Press, Seattle.

Holtsford, T.P. 1985. Nonfruiting hermaphroditic flowers of Calochortus leichtlinii (Liliaceae): Potential reproductive functions. Amer. J. Bot. 72:1687-1694.

Hoover, R.F. 1944. Mariposa, A neglected genus. Leafl. W. Bot. 4:1-5.
Hopkins, L., M. Thiele, J. Fosback, and M. Carlson. 1986. Flora survey of Douglas County. Douglas County Museum of History and Natural History, Roseburg, OR.

Jokerst, J.D. 1981. Reproductive strategies of Calochortus. M.A. Thesis, California State Univ., Chico.

Keyfitz, N. 1977. Index to the mathematics of populations. Addison-Wesley. Reading, MA.

Kruckeberg, A.R. 1984. California serpentines: Flora, vegetation, geology, soils, and management problems. Univ. of California Press, Berkeley.
\qquad . 1987. Serpentine endemism and rarity. In: Conservation and management of rare and endangered plants. Proceedings from a conference of the California Native Plant Society, T.S. Elias, ed., California Native Plant Society, Sacramento.

Kuchenreuther, M.A. 1990. Population structure and dynamics of the threatened perennial Aconitum noveboracence. Bull. Ecol. Soc. Amer. Supplement 71:220-221.

Lacey, E.P. 1986. Onset of reproduction in plants: size-versus age-dependency. Trends Ecol. Evol. 1:72-75.

Lefkovitch, L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21:1-18.

Ludwig, J.A. and J.F. Reynolds. 1988. Statistical Ecology: A Primer on Methods and Computing. John Wiley \& Sons, Inc., New York.

McLennan, D. 1992. Siskiyou National Forest, Grants Pass, OR. Personal communication, July 6.

Meinke, R.J. 1982. Threatened and endangered vascular plants of Oregon: An illustrated guide. United States Fish and Wildlife Service, Region 1, Portland, OR.

Menges, E.S. 1986. Predicting the future of rare plant populations: demographic monitoring and modeling. Nat. Areas J. 6:13-25.
\qquad 1990. Population viability analysis for an endangered plant. Conservation Biol. 4:52-62.
\qquad ., D.M. Waller, and S.C. Gawler. 1986. Seed set and seed predation in Pedicularis furbishiae, a rare endemic of the St. John River, Maine. Amer. J. Bot. 73:116.

Millstein, J. 1992. CATSIZE: A computer program implementation of Moloney's generalized algorithm for determining category size. Applied Biomathematics, Setauket, NY.

Moloney, K.A. 1986. A generalized algorithm for determining category size. Oecologia 69:176-180.

Muller-Dombois, D. and H. Ellenburg. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York.

Munz, P.A. 1959. A California flora. Univ. of California Press, Berkeley.
Ness, B. 1989. Seed morphology and taxonomic relationships in Calochortus (Liliaceae). Syst. Bot. 14:495-505.

Oregon Department of Fish and Wildlife. 1992. Personal communication.
Ownbey, M. 1940. A monograph of the genus Calochortus. Ann. Missouri Bot. Gard. 27:371-560.

Oyama, M. and H. Takehara. 1967. Revised Standard Soil Color Charts. Research Council for Agriculture, Forestry, and Fisheries, Ministry of Agriculture and Forestry, Japan.

Painter, J.H. 1911. A revision of the subgenus Cyclobothra of the genus Calochortus. Contr. U.S. Natl. Herb. 13:343-350.

Peck, M.E. 1961. A manual of the higher plants of Oregon, 2nd edition. Binfords and Mort, Portland.

Purdy, C. 1901. A revision of the genus Calochortus. Proc. Calif. Acad. Sci. 2:107149.
\qquad . 1976. My life and times. Privately published.

Rai, D., Simonsen, G.H. and C.T. Youngberg. 1970. Serpentine derived soils in watershed and forest management. Report the U.S.D.I. Bureau of Land Management, Department of Soils, Oregon State Univ., Corvallis.

Ramp, L. 1986. Geologic map of the northwest quarter of the Cave Junction quadrangle, Josephine County, Oregon. GMS-38. State of Oregon, Department of Geology and Mineral Industries.

Reeves, R.D., R.M. McFarlane, and R.R. Brooks. 1983. Accumulation of nickel and zinc by western North American genera contain serpentine tolerant species. Amer. J. Bot. 70:1297-1303.

Rollé, W. 1992. personal communication on May 25.
SAS Institute Inc. 1988. SAS/STAT User's Guide, Release 6.03 Edition. SAS Institute Inc., Cary, NC.

Shelly, J.S. 1985. Biosystematic studies of Phacelia capitata (Hydrophyllaceae), a species endemic to serpentine osils in southwestern Oregon. Unpublished M.S. thesis, Oregon State Univ., Corvallis.
\qquad . 1989. Biosystematic studies of Phacelia capitata (Hydrophyllaceae), a species endemic to serpentine soils in southwestern Oregon. Madroño 36:232-247.

Smith, J.P. and J.O. Sawyer. 1988. Endemic vascular plants of northwestern California and southwestern Oregon. Madroño 35:54-69.

Sokol, R.R. and F.J. Rohlf. 1981. Biometry. W.H. Freeman and Co., New York.
Stebbins, G.L., Jr. 1942. The genetic approach to problems of rare and endemic species. Madroño. 6:241-272.

Stearns, S.C. 1976. Life-history tactics: A review of the ideas. Quart. Rev. Biol. 51:3-47.

United States Department of Agriculture Forest Service. 1991. Draft Environmental Impact Statement. Canyon Integrated Resource Project, Siskiyou National Forest, Josephine Co., OR.

United States Department of Agriculture, Soil Conservation Service. 1975. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436, Washington D.C.

United States Department of Interior, Fish and Wildlife Service. 1990. 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Review of Plant Taxa for Listing as Endangered or Threatened Species; Notice of Review. February 21, 1990. Federal Register 55(35):6192.

Vandermeer, J. 1978. Choosing category size in a size projection matrix. Oecologia 32:79-84.
\qquad . 1982. To be rare is to be chaotic. Ecology 63:1167-1168.

Wagner, N.S. and L. Ramp 1958. Occurrences of peridotite-serpentine in Oregon. The Ore Bin 20:13-20.

Walker, G.W. and P.B. King. 1969. Geological map of Oregon. U.S.G.S. Miscellaneous Geological Investigations. Map I-595.

Wells, F.G. and D.L. Peck 1961. Geological map of Oregon west of the 121st meridian. U.S. Geol. Survey Misc. Geol. Inv. Map I-325.

Wert, S.R., J.A. Pomerening, T.S. Gibson, and B.R. Thomas. 1977. Soil inventory of the Roseburg District. U.S.D.I. Bureau of Land Management. Roseburg, OR.

White, C.D. 1971. Vegetative-soil chemistry correlations in serpentine ecosystems. Unpublished Ph.D. thesis, Univ. of Oregon, Eugene.

Whittaker, R.H. 1954. The ecology of serpentine soils. IV. The vegetational response to serpentine soils. Ecology 35:275-288.
\qquad . 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30:279-338.
\qquad . 1961. Vegetation history of the Pacific Coast states and the "central" significance of the Klamath region. Madroño 16:5-23.

Wilson, M.V. 1988. Within-community structure in the conifer woodlands of the Siskiyou Mountains, Oregon. Vegetatio 78:61-72.
___ 1992. Demog: A program for demographic analysis. Oregon State Univ., Corvallis.

Zobel, D.B. and G.M. Hawk. 1980. The environment of Chamaecyparis lawsoniana. Amer. Midl. Naturalist 103:280-297.

APPENDICES

Appendix II.1. Associated species of Calochortus umpquaensis and C. coxii cited in text and figures, including codes and family names (\bullet indicates species included in Tables II.3-6,8).

Species	Code	Family
\bullet Achillea millefolium L.	ACHMIL	ASTERACEAE
Agoseris grandiflora (Nutt.) Greene	AGOGRA	ASTERACEAE
Agrostis microphylla Steud.	AGRMIC	POACEAE
- Aira caryophyllea L.	AIRCAR	POACEAE
Allium amplectens Torr.	ALLAMP	LILIACEAE
Allium siskiyouense Ownbey	ALLSIS	LILIACEAE
Anthoxanthum aristatum Boiss.	ANTARI	POACEAE
- Arenaria cismontana Meinke \& Zika sp. nov.	ARECAL	CARYOPHYLLACEAE
\bullet Arenaria douglasii T. \& G.	AREDOU	CARYOPHYLLACEAE
- Aspidotis densa (Brackenr.) Lellinger	ASPDEN	POLYPODIACEAE
Brodiaea congesta Smith	BROCON	LILIACEAE
Brodiaea elegans Hoover	BROELE	LILIACEAE
Bromus carinatus Hook. \& Arn.	BROCAR	POACEAE
Bromus mollis L.	BROMOL	POACEAE
Bromus rigidus Roth.	BRORIG	POACEAE
Bromus tectorum L.	BROTEC	POACEAE
Calocedrus decurrens Florin	CALDEC	PINACEAE
Calochortus tolmiei Hook. and Am.	CALTOL	LILIACEAE
-Camassia quamash (Pursh) Greene	CAMQUA	LILIACEAE
-Cardamine integrifolia (Nutt.) Greene	CARINT	BRASSICACEAE
-Centaurium umbellatum Gilib.	CENUMB	GENTIANACEAE
-Cerastium arvense L.	CERARV	CARYOPHYLLACEAE
-Cerastium viscosum L.	CERVIS	CARYOPHYLLACEAE
-Collinsia grandiflora Lindl.	COLGRA	SCROPHULARIACEAE
- Crepis sp.	CRE	ASTERACEAE
- Cryptantha intermedia (Gray) Greene	CRYINT	BORAGINACEAE
- Cynosurus echinatus H.\& A.	CYNECH	POACEAE
- Cystopteris fragilis (L.) Bernh.	CYSFRA	POLYPODIACEAE
- Dactylis glomerata L.	DACGLO	Poaceas
- Danthonia californica Boland.	DANCAL	POACEAE
- Delphinium menziesii DC.	DELMEN	RANUNCULACEAE
- Dodecatheon hendersonii Gray	DODHEN	PRIMULACEAE
Elymus caput-medusae L.	ELYCAP	POACEAE
- Epilobium minutum Lindl.	EPIMIN	ONAGRACEAE
- Eriogonum nudum Dougl.	ERINUD	POLYGONACEAE
- Eriophyllum lanatum (Pursh) Forbes	ERILAN	ASTERACEAE
- Erythronium hendersonii Wats.	ERYHEN	LILIACEAE
Erysimum asperum (Nutt.) DC.	ERYASP	BRASSICACEAE
Eschscholtzia californica Cham.	ESCCAL	PAPAVERACEAE
- Festuca californica Vas.	FESCAL	Poaceae
Festuca idahoensis Elmer	FESIDA	POACEAE
- Festuca rubra L .	FESRUB	POACEAE
Galium ambiguum Wight	GALAMB	RUBIACEAE
- Galium aparine L.	GALAPA	RUBIACEAE
- Galium triflorum Michx.	GALTRI	RUBIACEAE
- Gilia capitata Dougl.	GILCAP	POLEMONIACEAE

Species	Code	Family
- Githopsis specularioides Nutt.	GITSPE	CAMPANULACEAE
\bullet Goodyera oblongifolia Raf.	GOOOBL	ORCHIDACEAE
- Hieracium parryi Zahn.	HIEPAR	ASTERACEAE
Holcus lanatus L.	HOLLAN	POACEAE
Hordeum jubatum L.	HORJUB	POACEAE
Horkelia congesta Hoover	HORCON	ROSACEAE
Hypericum perforatum L.	HYPPER	HYPERICACEAE
- Iris chrysophylla Howell	IRICHR	IRIDACEAE
- Koeleria cristata Pers.	KOECRI	POACEAE
-Lathyrus polyphyllus Nutt.	LATPOL	FABACEAE
Linum angustifolium Huds.	LINANG	LINACEAE
Lithophragma parviflorum (Hook.) Nutt.	LITPAR	SAXIFRAGACEAE
-Lolium multiflorum Lam.	LOLMUL	POACEAE
Lomatium hallii (Wats.) Coult.\& Rose	LOMHAL	APIACEAE
-Lomatium nudicaule (Pursh) Coult.\& Rose	LOMNUD	APIACEAE
Lomatium utriculatum (Nutt.) Coult.\& Rose	LOMUTR	APIACEAE
-Lotus micranthus Benth.	LOTMIC	FABACEAE
- Luzula campestris (L.) DC.	LUZCAM	JUNCACEAE
- Madia elegans D. Don.	MADELE	ASTERACEAE
- Madia madioides (Nutt.) Greene	MADMAD	ASTERACEAE
- Melica geyeri Munro.	MELGEY	POACEAE
Micropus californicus Fisch. \& Mey.	MICCAL	ASTERACEAE
- Microsteris gracilis (Hook.) Greene	MICGRA	POLEMONIACEAE
- Mimulus guttatus DC.	MIMGUT	SCROPHULARIACEAE
Orthocarpus hispidus Benth.	ORTHIS	SCROPHULARIACEAE
\bullet Panicum scribnerianum Nash	PANSCR	POACEAE
- Perideridia oregana Nutt.	PERORE	APIACEAE
Phacelia capitata Kruckeb.	PHACAP	FABACEAE
\bullet Pinus jeffreyi Grev. \& Balf.	PINJEF	PINACEAE
- Pityrogramma triangularis (Kaulf.) Maxon	PITTRI	POLYPODIACEAE
-Plectritis congesta (Lindl.) DC.	PLECON	VALERIANACEAE
-Poa pratensis L.	POAPRA	POACEAE
\bullet Polystichum munitum (Kaulf.) Presl	POLMUN	POLYPODIACEAE
- Pseudotsuga menziesii (Mirbel) Franco	PSEMEN	Pinaceae
-Ranunculus occidentalis Nutt.	RANOCC	RANUNCULACEAE
\bullet Rhus diversiloba T. \& G.	RHUDIV	ANACARDIACEAE
Saxifraga integrefolia Hook.	SAXINT	SAXIFRAGACEAE
Scutellaria angustifolia Pursh	SCUANG	LAMIACEAE
Sedum laxum (Britt.) Berger	SEDLAX	CRASSULACEAE
- Sedum stenopetalum Pursh	SEDSTE	CRASSULACEAE
- Sidalcea virgata Howell	SIDVIR	MALVACEAE
- Silene hookeri Nutt.	SILHOO	CARYOPHYLLACEAE
- Sisyrinchium bellum Wats.	SISBEL	IRIDACEAE
Sitanion jubatum Smith	SITJUB	POACEAE
Stellaria jamesiana Torr.	STEJAM	CARYOPHYLLACEAE
Stipa lemmonii (Vasey) Scribn.	STILEM	POACEAE
- Synthyris reniformis (Dougl.) Benth.	SYNREN	SCROPHULARIACEAE
- Thlaspi montanum L.	THLMON	BRASSICACEAE
- Thuja plicata Donn.	THUPLI	CUPRESSACEAE
Thysanocarpus curvipes Hook.	THYCUR	BRASSICACEAE
-Trifolium dubium Sibth.	TRIDUB	FABACEAE

Species	Code	Family
Trifolium eriocephalum Nutt.	TRIERI	FABACEAE
Trifolium howellii Wats.	TRIHOW	FABACEAE
- Trifolium macraei H. \& A.	TRIMAC	FABACEAE
Trifolium microcephalum Pursh	TRIMIC	FABACEAE
- Trifolium tridentatum Lindl.	TRITRI	FABACEAE
-Trisetum canescens Buckl.	TRICAN	POACEAE
- Verbascum blattaria L.	VERBLA	SCROPHULARIACEAE
- Vicia americana Muhl.	VICAME	FABACEAE
Vicia sativa L.	VICSAT	FABACEAE
-Viola hallii Gray	VIOHAL	VIOLACEAE
- Viola douglasii Steud.	VIODOU	VIOLACEAE
- Vulpia microstachys Nutt.	VULMIC	POACEAE
-Zigadenus venenosus Wats.	ZIGVEN	LILIACEAE

Appendix II. 2 Associated species data by plot for Calochortus umpquaensis, ecotone habitat for 1988. $\mathrm{a}=$ Thunder Mt. Road site, $\mathrm{b}=$ Little River Road site, c = Ace Williams Mt. site.
a.

b.

C.

ACRONYM	1	2	3	4	5	6	7	78	88	910	11	12	13	14	15	16	17	18	10	
ACH.MIL								2	3	3	31	1	2	6				2		
AIR.CAR						1	1	T	23	32	2									1
ARE.CAL																				
aresidou																				
ASP.DEN																				
BRO.ELE					1	1	T	T		T. T	1	T	1	1	1	1	1	2	2	1
BRO.HYA																				
BRO.CAR																				
CALDEC			1															T	T	
CAM.LEI		1	1	4	3	1			11	1										
CAR.INT																				
CEN.UMB CER.ARV																				
CER.VIS													8	3			1			
COLGRA																		1		1
CRE			2	3							T									
CRY.INT											T									
CYN.ECH																				
CYS.BUL																				
dac.glo	T	2	2	1	1	1				1										
DAN.CAL	1	3	1	2	3	5		325	518	185	6	8	5	6	10	8	5	6	4	6
DEL.MEN																				
DOD.HEN																				
EPI.MIN										1										
ERINUD																				
$\begin{aligned} & \text { ERI.LAN } \\ & \text { ERY.ASP } \end{aligned}$																				
ERY.HEN																				
FES.CAL	3	1	9	2		4	16	68	3 T	T 9										
FES.IDA												1	1		1					
GALAPA																				
GAL.TRA																				
GIL.CAP																				
GIT.SPE												1								T
GOO.OBL																				
HIE.PAR																				
HYP.PER																				
IRI.CHR																				
KOE.CRU																				
LATPOL																				
LOLMUL																				
LOM.HAL																				
LOM.NUD																				
LOT.DUB								T			T		,	T		T	T	T		
LUZ.CAM	1	1				2	2	22	2	22	T	1	1	2	1	2			2	3
MAD.EXI																				
MIC.GRA																				
MIM.GUT																				
ORT.HIS																				
PAN.SCR																				
PER.ORE			2																	
PIT.TRI																				
POLMUN																				
PLE.CON								T												
PSEMEN																				
RAN.OCC	3	2	2	4	4	4	3	3	5	54	10	7	4	4	5	6	7	6		6
SED.STE	T					3	T	T T	1	11	2	1	4	1	T	2	2	1	1	
SID.VR																				
SIL.HOO	1		1		2	1	2			2	1	1	1	1	1	1		T	T	T
SIS.BEL																				
STE.JAM																				
SYN.REN																				
THA.MON										1	1	2	1	T		1	1	T	T	
TRI.DUB																				
TRI.TRU																				
TRI.MAC																				
vER.BLA																				
VIC.SAT																				
VIO.DOU	1		1	1	1			1	2	2	1		1	T	1	1	1	1	1	1
VULMiC		1																		
GRASS 1		1	3	3											2				T	
GRASS2	5	5	8	2	3	1					7	18	5	7		8	5	5	6	9
CAUM\%	10	5	5	5	8	5	5	5	8	3	1		2	5	5	4	1	3	3	2
PLOT*	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18	20
VEG	10	13	25	20	15	23	28	45	34	28	26	23	30	24	22	22	23	22	17	18
moss											62	6	8	7	16	4	4			16
ROCK																				
BARESOIL											4	10	12				6		9	10
LITTER	90	87	75	80	85	77	72	55	66	71		61	50	69	62	74	67	78	70	55
CAUM:	34	16	10	8	24	7	11	12	22	217	4		5	10	10	8	3	7	7	6

Appendix II.3. Associated species data by plot for Calochortus umpquaensis, meadow habitat for 1988. $\mathbf{a}=$ Standley Road site, $b=$ Ace Williams Mt. site.
a.

b.

Appendix II.4. Associated species data by plot for Calochortus umpquaensis, forest habitat for 1988. $\mathrm{a}=$ Ace Williams Mt. site, $\mathrm{b}=$ Watson Mt. site.
a.

b.

Appendix II.5. Probability values for differences in elemental concentrations with depth for Calochortus coxii (CACO), C. howellii (CAHO), and C. umpquaensis (CAUM), and all species combined, based on t -test procedure.

Element	CACO	CAHO	CAUM	ALL
pH	0.13	0.47	0.28	0.44
Al	0.38	0.43	0.70	0.37
Ba	0.00	0.55	0.02	0.00
Ca	0.82	0.20	0.14	0.07
Cd	1.00	0.20	0.61	0.96
Co	0.38	0.50	0.19	0.37
Cr	0.05	0.41	0.23	0.75
Cu	0.02	0.30	0.30	0.30
Fe	0.49	0.42	0.89	0.46
K	0.01	0.10	0.00	0.01
Mg	0.64	0.95	0.69	0.75
Mn	0.32	0.74	0.02	0.13
Mo	1.00	0.76	0.10	0.51
Na	0.49	0.97	0.30	0.26
Ni	1.00	0.23	0.62	0.72
P	0.21	0.24	0.01	0.09
Pb	0.05	0.37	0.00	0.01
Si	0.69	0.42	0.02	0.52
Sr	0.10	0.70	0.99	0.37
V	0.70	0.53	0.44	0.81
Zn	0.42	0.10	0.27	0.24
$\mathrm{Ca}: \mathrm{Mg}$	0.96	0.32	0.97	0.85

Appendix II.6. Elemental soil ANOVA and Tukey-Kramer separation of means test for soils inhabited by three rare Calochortus species. Commas separate species for which means were significantly different. $\mathrm{H}=$ C. howellii, $\mathrm{U}=C$. umpquaensis, C = C. coxii.
Sorted by Element

Element	p	Tukey	Element	p	Tukey
pH	0.0001	H, UC	pH	0.0001	H, UC
Al	0.2665	HUC	Ni	0.0001	$\mathrm{H}, \mathrm{U}, \mathrm{C}$
Ba	0.5871	HUC	Cd	0.0001	U, CH
Ca	0.1432	HUC	Mn	0.0001	U, CH
Cd	0.0001	U, CH	K	0.0001	U, CH
Co	0.0002	H, UC	Mo	0.0001	H, UC
Cr	0.6974	HUC	Sr	0.0001	H, UC
Cu	0.0010	HC, U	Mg	0.0001	H, UC
Fe	0.4843	HUC	V	0.0001	H, UC
K	0.0001	U, CH	P	0.0001	H, UC
Mg	0.0001	H, UC	Co	0.0002	H, UC
Mn	0.0001	U, CH	Cu	0.0010	HC, U
Mo	0.0001	H, UC	$\mathrm{Ca}: \mathrm{Mg}$	0.0020	H, UC
Na	0.0049	UC, CH	Pb	0.0025	H, UC
Ni	0.0001	$\mathrm{H}, \mathrm{U}, \mathrm{C}$	Na	0.0049	UC, CH
P	0.0001	H, UC	Si	0.0326	HUC
Pb	0.0025	H, UC	Ca	0.1432	HUC
Si	0.0326	HUC	Zn	0.2082	HUC
Sr	0.0001	H, UC	Al	0.2665	HUC
V	0.0001	H, UC	Fe	0.4843	HUC
Zn	0.2082	HUC	Ba	0.5871	HUC
$\mathrm{Ca}: \mathrm{Mg}$	0.0020	H, UC	Cr	0.6974	HUC

Appendix II.7. Monthly precipitation at Cave Junction weather station.

CYEAR	Jan	Feb	Mar	Apr	May	Jun	Uul	Aug	Sep	Oct	Nov	Dec	Total
1963	12.57	16.10	18.31	22.73	12.55	1.12	0.08	0.00	0.43	9.83	34.01	10.46	138.20
1964	37.82	2.03	12.04	1.45	2.16	1.52	0.43	0.15	0.05	2.62	31.47	76.61	168.35
1965	0.00	4.01	1.83	17.32	0.53	1.65	0.05	4.44	0.00	4.80	23.83	33.30	91.77
1966	41.45	7.14	26.67	6.58	0.05	0.41	0.66	0.38	3.61	2.39	32.79	28.65	150.77
1967	39.32	5.38	19.79	11.20	3.02	1.24	0.00	0.00	1.32	13.13	9.37	17.78	121.56
1968	36.14	18.01	14.91	1.32	5.26	0.13	0.05	9.37	1.78	8.86	24.43	40.67	160.93
1969	40.31	14.60	2.97	4.93	0.00	1.37	0.25	0.00	3.12	13.36	5.92	38.74	125.58
1970	63.02	7.19	6.86	5.51	2.59	0.20	0.00	0.00	0.00	10.03	46.08	36.04	177.52
1971	36.04	8.56	29.24	15.32	2.24	3.33	0.00	0.94	6.96	2.92	29.08	21.26	155.88
1972	26.44	25.12	20.52	11.66	0.00	2.11	0.00	1.35	0.00	0.00	0.00	36.14	123.34
1973	30.91	12.67	14.68	0.69	1.37	0.58	0.00	0.08	7.67	12.32	76.53	44.22	201.73
1974	43.41	29.08	35.89	10.64	2.24	0.08	0.66	0.00	0.00	3.86	10.31	23.80	159.97
1975	19.61	42.27	41.25	9.75	3.45	0.18	0.43	0.89	0.71	21.36	18.92	17.09	175.92
1976	13.69	22.56	12.57	3.45	1.47	0.69	1.80	6.91	1.47	2.41	4.75	2.95	74.73
1977	7.19	15.29	12.07	1.70	6.50	0.13	0.64	1.47	16.43	7.14	34.85	49.07	152.48
1978	32.82	32.21	11.63	15.72	5.38	0.46	0.53	4.22	14.66	0.00	7.44	5.26	130.33
1979	16.05	36.30	4.98	9.73	13.13	0.79	1.17	1.85	1.50	26.67	27.23	32.94	172.34
1980	30.56	21.74	18.64	12.85	3.10	2.06	0.00	0.00	0.03	7.42	19.48	32.64	148.51
1981	13.03	13.77	13.56	5.18	2.11	1.88	0.38	0.00	4.98	21.49	46.36	68.61	191.34
1982	25.20	27.74	26.92	33.27	0.00	4.90	0.00	0.69	1.85	21.84	25.43	47.12	214.96
1983	35.38	53.85	49.07	9.35	5.11	1.07	3.56	8.20	1.45	5.05	46.81	43.03	261.92
1984	4.39	28.47	23.19	12.78	5.99	3.56	0.00	0.23	0.36	15.24	66.32	7.65	168.17
1985	1.35	15.65	17.86	2.29	2.16	4.01	0.43	0.00	5.00	9.02	15.32	14.20	87.27
1986	33.91	57.33	21.87	3.63	9.86	0.23	0.18	0.00	16.03	9.37	11.23	14.71	178.33
1987	33.32	20.14	24.71	1.63	2.57	0.05	1.80	0.00	0.00	0.18	10.67	42.77	137.85
1988	32.64	0.33	4.27	9.42	6.27	5.97	0.00	0.00	0.33	0.46	52.58	16.94	129.21
1989	11.48	10.44	34.39	10.11	5.99	0.97	0.15	0.13	2.90	16.64	8.18	4.72	106.10
1990	30.40	16.41	7.77	2.74	23.24	1.57	1.14	4.83	0.23	7.32	7.57	4.85	108.08
1991	12.22	11.43	30.73	10.24	4.50	1.60	1.93	0.71	0.00	4.60	13.28	12.09	103.33
Mean	26.23	19.86	19.28	9.08	4.58	1.51	0.56	1.62	3.20	8.98	25.53	28.42	148.84
Minimum	0.00	0.33	1.83	0.69	0.00	0.05	0.00	0.00	0.00	0.00	0.00	2.95	74.73
Maximum	63.02	57.33	49.07	33.27	23.24	5.97	3.56	9.37	16.43	26.67	76.53	76.61	261.92

Appendix II.8. Monthly precipitation at Little River weather station.

YEAR	Jan.	Feb	Mar	Apr	May	Jun	Jull	Alig	Sep	Oct	Nov	Dec	Total
1964	37.24	7.57	20.80	7.21	5.21	7.95	0.97	1.52	1.60	3.07	24.69	56.16	173.99
1965	29.74	9.30	2.72	9.78	5.44	2.03	0.23	4.11	0.10	7.11	15.54	20.68	106.78
1966	25.96	9.53	14.78	3.00	1.42	2.54	4.29	0.76	4.75	10.64	30.73	0.00	108.41
1967	22.45	9.98	14.07	11.20	6.63	1.04	0.00	0.00	5.31	12.62	6.07	14.71	104.09
1968	12.90	12.50	8.99	4.98	7.47	1.14	0.79	11.33	5.23	13.79	30.28	0.00	109.40
1969	25.93	9.58	12.70	0.00	0.00	8.74	0.00	0.00	3.53	14.20	6.65	0.00	81.33
1970	0.00	4.67	0.00	13.94	7.34	4.83	0.00	0.00	0.00	12.62	27.51	15.11	86.03
1971	29.77	19.28	20.40	13.18	7.82	0.00	0.00	1.63	9.47	9.42	29.08	30.76	170.82
1972	30.20	16.89	25.93	13.84	6.02	4.09	0.00	1.96	4.29	7.04	11.73	0.00	122.00
1973	14.00	3.02	16.05	10.77	3.45	2.79	0.08	1.22	8.20	10.97	53.16	21.77	145.49
1974	26.04	19.71	25.20	11.71	5.54	3.02	0.58	0.23	0.08	5.89	17.30	32.33	147.62
1975	23.22	15.49	19.20	12.75	6.38	2.01	1.63	5.03	1.09	18.29	19.58	27.97	152.63
1976	20.50	13.46	14.81	11.43	3.38	1.85	3.23	12.40	2.34	4.29	3.40	3.51	94.59
1977	4.67	6.86	18.64	6.45	16.71	0.51	0.00	5.38	10.97	7.92	28.85	24.33	131.32
1978	12.90	13.61	6.02	11.40	9.55	4.98	2.34	6.10	10.80	1.19	12.27	19.30	110.46
1979	13.89	26.72	12.62	18.67	7.39	4.29	1.24	4.85	2.08	15.72	15.11	14.10	136.70
1980	16.76	9.93	15.24	10.06	7.75	5.82	0.61	0.10	2.69	6.38	18.67	21.82	115.82
1981	4.95	9.68	9.42	8.79	11.13	6.48	1.27	0.00	6.88	11.43	17.45	45.36	132.84
1982	24.10	13.26	12.60	11.02	0.97	5.49	2.18	1.22	10.06	17.15	13.26	22.89	134.19
1983	11.76	24.36	21.21	12.07	7.87	5.08	7.80	4.52	0.91	3.89	28.30	32.16	159.92
1984	11.30	23.98	20.60	16.13	9.35	8.94	0.61	0.81	2.21	19.58	36.68	19.30	169.49
1985	2.46	13.00	14.99	8.10	4.72	7.85	1.68	1.55	5.79	15.67	18.59	6.60	101.02
1986	15.75	29.21	14.15	9.32	9.27	2.34	2.08	0.00	16.23	6.68	28.02	5.64	138.68
1987	17.88	12.80	10.74	5.08	0.00	1.07	10.44	0.10	0.10	0.00	14.96	22.20	95.38
1988	17.91	5.44	13.00	13.33	12.90	8.69	0.00	0.00	5.26	0.00	42.16	14.38	133.07
1989	22.91	7.09	25.86	10.44	7.72	1.85	0.84	8.23	2.62	7.54	10.13	5.94	111.18
1990	23.19	15.95	10.67	11.40	8.94	5.23	1.60	4.22	1.68	14.55	24.00	13.06	134.49
1991	8.05	10.67	19.00	15.70	3.48	2.87	1.35	0.00	0.00	12.17	24.94	13.74	111.96
Mean	18.09	13.34	15.02	10.42	6.57	4.05	1.64	2.76	4.44	9.64	21.76	17.99	125.70
Minimum	0.00	3.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.40	0.00	81.33
Maximum	37.24	29.21	25.93	18.67	16.71	8.94	10.44	12.40	16.23	19.58	53.16	56.16	173.99

Appendix II.9. Monthly precipitation at Riddle weather station.

Y/VEAP	Jan	Fimb	Memar	AP寝	May	,	Jul	Aug	Cheop	OCl	Nov	Dec	107tit
1900	9.96	3.99	3.30	3.66	6.73	5.33	0.00	0.00	2.29	10.57	3.71	15.24	64.77
1901	18.19	9.45	7.19	6.91	2.11	2.16	0.00	3.28	5.74	5.33	9.96	8.59	78.89
1902	3.71	22.35	9.35	9.07	5.26	0.51	1.40	0.00	0.64	0.99	20.88	18.85	92.99
1914	29.92	3.99	4.32	4.24	2.95	2.16	0.03	0.00	5.94	8.00	7.77	4.11	73.43
1915	8.41	11.30	3.23	3.48	6.27	0.74	2.16	0.00	0.51	1.52	15.88	13.89	67.39
1916	18.19	9.22	12.42	5.66	4.88	1.98	4.57	0.43	0.38	0.15	10.80	8.97	77.65
1917	4.50	12.80	6.93	4.93	5.59	0.61	0.00	0.00	1.04	0.13	17.6	6.38	60.53
1918	9.27	12.85	5.66	2.79	1.78	0.18	1.83	3.61	1.75	3.56	9.37	5.79	58.45
1919	22.68	15.95	10.11	7.26	2.06	0.89	0.00	0.10	6.50	5.08	9.19	13.94	93.78
1920	1.22	3.33	5.82	4.37	0.43	2.49	1.65	0.38	7.59	10.72	15.16	16.64	69.80
1921	12.29	9.75	3.86	5.23	3.68	1.60	0.00	0.10	0.94	5.74	16.08	4.62	63.91
1922	10.19	11.53	11.63	4.57	2.06	3.73	0.00	2.24	1.42	7.01	5.44	16.18	76.00
1923	15.29	3.23	3.02	3.89	4.27	2.46	0.94	0.41	2.59	8.69	3.9	9.40	58.12
1924	1.91	6.83	5.00	1.45	0.30	1.30	0.00	1.12	2.08	21.46	17.96	12.50	71.91
1925	13.74	18.36	2.31	10.06	7.72	1.93	0.00	1.07	2.82	0.33	9.68	8.38	76.40
1926	8.10	17.63	0.15	2.92	3.23	0.00	0.00	3.00	1.27	10.08	23.22	11.94	81.53
1927	13.74	21.77	6.10	4.50	3.61	2.41	0.00	0.05	6.02	3.86	12.85	8.6	83.52
1928	7.59	. 37	16.26	8.64	0.28	0.99	0.00	0.00	2.21	3.86	9.19	11.91	5.30
1929	9.75	4.17	5.59	7.26	1.04	6.99	0.10	0.00	0.00	4.22	1.09	29.6	69.90
1930	8.69	10.24	2.79	6.86	5.26	1.80	0.00	0.00	3.99	1.73	9.40	7.67	58.42
1931	12.85	6.17	8.33	5.87	0.25	8.28	0.00	0.00	1.27	8.15	11.91	17.98	81.08
1932	10.26	3.40	11.28	7.75	7.39	2.49	0.13	0.00	0.00	2.77	12.75	14.22	72.44
1933	15.95	4.37	5.99	2.24	5.84	1.17	0.00	0.08	1.27	3.33	2.74	16.23	59.21
1934	10.59	3.89	5.03	4.62	2.57	3.91	0.51	0.10	1.50	10.57	17.30	14.61	75.18
1935	9.83	7.70	8.64	9.70	0.89	0.48	0.00	1.24	0.28	9.12	4.85	9.75	62.48
1936	24.03	10.64	4.32	4.60	5.72	3.56	0.00	0.00	0.0	0.00	0.00	0.00	52.86
1937	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.46	1.91	4.62	17.65	16.36	0
1938	10.26	20.24	18.64	. 32	04	0.00	0.38	0.00	7.26	3.76	14.53	7.16	87.60
1939	8.46	10.72	8.18	0.74	5.26	2.62	0.89	1.52	1.24	5.99	0.84	22.81	69.27
1940	7.49	24.99	10.59	3.28	3.35	1.45	0.66	0.00	8.20	8.23	10.29	21.21	99.75
1941	8.33	7.87	1.85	6.43	5.54	6.73	0.18	1.37	3.28	4.19	13.	25.04	84.00
1942	12.60	0.00	43	4.57	0.00	1.83	0.00	0.00	2.59	3.89	25.02	23.60	2
1943	19.48	4.70	8.18	5.21	3.76	4.42	0.20	1.37	0.99	11.94	8.15	4.67	73.08
1944	5.97	6.30	6.93	0.00	0.00	0.00	0.00	0.00	0.00	3.68	9.27	4.57	36.73
1945	7.52	14.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.47	20.32	17.55	64.19
1946	13.69	00	0.00	00	0.00	0.00	0.00	0.00	1.55	8.15	15.62	5.21	44.22
1947	5.97	5.69	8.08	3.12	3.56	7.04	6.15	0.99	0.36	15.93	9.53	8.74	75.13
1948	15.60	13.61	8.66	6.68	4.80	4.62	0.30	0.94	2.54	2.92	12.07	19.41	92.15
1949	4.06	13.18	5.61	2.08	3.94	0.15	0.00	0.00	2.29	7.24	5.46	9.70	53.72
1950	25.65	7.72	10.29	1.68	1.37	7.85	0.00	0.18	1.30	29.59	13.03	11.43	110.08
1951	19.84	9.04	7.54	2.08	2.03	0.00	0.00	0.23	1.57	11.51	13.64	21.46	88.95
1952	12.65	6.63	7.62	2.03	1.57	7.04	0.03	0.00	1.93	1.07	2.67	22.02	65.25
1953	19.41	9.80	7.49	5.05	9.12	4.93	0.00	1.65	2.51	5.99	19.46	11.00	96.42
1954	27.81	9.83	5.79	5.13	0.33	4.19	0.00	3.73	3.05	2.54	5.08	13.94	81.43
1955	9.80	5.69	7.21	10.01	1.04	0.61	0.91	0.00	1.70	8.15	12.47	39.09	96.70
1956	26.92	18.14	5.56	1.32	7.75	1.88	0.23	0.00	1.42	12.75	3.07	9.40	88.44
1957	8.38	12.70	17.22	4.39	4.39	0.46	0.20	0.13	2.97	8.2	8.71	21.13	88.90
1958	18.59	22.33	6.99	4.22	2.57	6.17	1.42	0.00	2.13	5.21	14.12	7.37	. 11
1959	22.17	15.01	5.56	1.45	4.65	0.84	0.18	0.03	1.80	4.19	1.75	6.78	64.41
1960	10.39	14.66	15.54	3.66	6.48	0.00	0.00	0.43	1.57	3.61	19.00	6.12	81.46
1961	4.85	13.06	17.40	2.24	4.70	0.99	0.33	0.30	1.73	12.09	20.80	9.09	87.58
1962	4.45	7.37	9.37	3.56	3.48	0.97	0.00	1.93	2.24	21.23	13.87	7.67	76.12
1963	4.34	10.87	10.64	10.57	12.07	2.87	0.53	0.00	1.70	4.04	14.33	4.11	76.07
1964	23.34	1.93	11.07	2.79	1.04	2.82	0.41	0.08	1.04	1.65	13.54	39.50	99.21
1965	17.83	3.71	0.64	6.65	1.19	0.61	0.05	2.67	0.00	3.81	11.99	22.68	71.83
1966	15.80	3.15	7.39	1.88	0.51	1.30	2.29	0.53	3.73	4.65	21.03	12.57	74.83
1967	15.54	2.84	8.61	3.51	2.34	0.64	0.00	0.00	0.89	5.59	4.14	13.13	57.23
1968	16.61	6.88	85	2.64	2.41	0.36	0.30	4.72	3.53	9.47	13.77	17.63	83.19
1969	23.39	4.98	2.34	3.20	4.78	3.05	0.00	0.00	2.26	7.62	3.12	25.02	79.76
1970	23.83	4.34	5.08	5.28	1.35	1.27	0.00	0.05	2.67	4.37	15.98	15.04	79.25
1971	16.15	11.84	13.23	6.20	3.89	2.46	0.03	1.17	5.38	3.18	18.42	17.98	99.92
1972	15.72	8.61	11.56	7.52	2.29	2.03	0.00	1.78	1.68	5.03	6.32	10.29	72.82
1973	10.06	3.68	7.14	4.24	2.49	1.07	0.03	0.51	3.84	7.24	38.76	14.55	93.60
1974	24.92	11.94	15.32	. 54	1.83	0.56	1.22	0.20	0.00	4.65	8.79	16.18	93.14
1975	13.34	12.57	14.25	4.78	1.24	0.61	0.91	2.13	1.70	10.54	10.49	14.22	86.79
1976	9.88	5.28	8.81	2.77	0.76	2.13	1.19	5.72	3.07	1.42	0.79	2.11	43.94
1977	3.91	5.56	7.95	2.01	7.16	0.25	0.00	3.38	8.28	3.48	16.26	12.22	70.46
1978	11.38	10.95	5.38	4.83	2.67	2.59	0.46	3.02	8.66	0.38	3.48	5.11	58.90
1979	8.13	12.90	5.41	10.64	3.81	1.27	0.56	3.12	1.68	12.75	8.99	14.90	84.25
1980	14.12	8.20	6.15	7.09	2.06	1.57	0.97	0.00	0.71	4.67	10.92	20.12	76.58
1981	4.67	7.72	8.86	3.02	4.88	2.21	0.00	0.00	5.00	4.42	20.29	28.93	90.02
1982	10.72	6.73	9.63	9.32	0.71	3.45	2.03	1.45	3.73	11.33	8.26	22.68	90.04
1983	14.35	23.55	17.40	6.55	2.72	1.70	3.35	7.82	0.91	1.50	24.99	16.79	121.64
1984	2.01	19.56	9.25	8.51	3.73	2.31	0.00	0.15	0.99	7.14	32.21	9.93	95.78
1985	2.01	8.05	8.51	2.62	2.13	2.13	0.13	0.66	3.33	5.87	10.24	6.27	51.94
1986	10.97	20.32	8.59	1.93	3.76	0.36	1.30	0.00	11.46	6.43	16.79	4.06	85.95
1987	10.08	11.10	5.87	3.15	1.85	1.22	3.78	0.18	0.00	0.08	8.53	22.45	68.30
1988	12.12	1.24	5.11	7.77	5.36	3.81	0.00	0.25	1.37	0.33	19.71	8.43	65.51
1989	9.07	4.22	14.02	6.98	3.12	0.99	0.03	2.24	2.13	5.05	4.90	3.25	56.01
1990	13.87	7.70	3.68	1.70	3.84	0.79	1.91	4.09	0.30	8.94	8.56	6.30	61.67
1991	4.27	5.97	13.13	6.45	7.57	2.67	2.06	0.41	0.03	4.04	11.58	5.94	64.11
Mean	12.75	9.98	7.89	4.94	3.43	2.35	0.59	1.02	2.53	6.48	12.23	13.96	75.75
Minimum	1.22	1.93	0.15	0.74	0.25	0.00	0.00	0.00	0.00	0.13	0.79	2.11	36.73
Maximum	29.92	24.99	18.64	10.64	12.07	8.28	6.15	7.82	11.46	29.50	38.76	39.50	121.64

Appendix II.10. Monthly precipitation at Sexton Summit weather station.

YEAR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1942	10.08	6.63	2.44	4.60	12.73	1.91	0.05	0.00	1.88	2.64	23.06	20.17	86.18
1943	14.55	3.68	7.77	6.58	2.82	2.82	0.15	1.45	0.71	12.90	7.37	3.48	64.29
1944	5.59	5.79	4.29	4.98	2.49	5.97	0.28	0.84	1.88	5.05	11.51	4.27	52.93
1945	6.48	14.71	9.80	3.15	12.24	0.69	0.20	0.05	2.44	8.48	21.46	16.59	96.29
1948	20.42	11.43	9.73	14.68	7.75	7.80	2.79	2.16	2.92	4.06	9.45	13.26	106.45
1949	2.82	13.03	7.14	1.83	6.96	0.38	0.00	0.00	2.92	3.56	5.56	7.06	51.26
1950	23.57	6.76	12.98	3.91	2.41	5.77	0.00	0.20	2.95	35.23	11.23	15.60	120.60
1951	16.61	13.13	7.34	2.31	4.98	0.00	0.00	0.43	3.10	15.70	16.61	20.60	100.81
1952	18.90	8.94	9.88	2.36	2.57	8.13	0.15	0.58	2.26	0.89	4.29	19.10	78.05
1953	25.76	9.60	7.52	6.68	11.05	4.22	0.00	5.36	2.29	7.92	20.78	9.07	110.24
1954	26.57	8.81	6.65	7.09	0.64	4.22	0.00	1.88	4.80	3.30	8.84	11.15	83.95
1955	7.70	5.33	6.20	9.75	1.73	0.99	0.56	0.00	3.35	7.21	12.83	37.36	93.01
1956	25.40	13.36	6.32	1.52	7.16	2.57	3.05	0.18	1.75	18.69	2.29	8.38	90.68
1957	8.86	13.06	18.01	2.84	6.40	0.61	0.97	0.10	6.22	8.38	8.46	18.08	92.00
1958	21.39	23.77	9.09	4.22	2.95	7.24	0.61	0.05	1.93	4.32	7.37	8.79	91.72
1959	21.51	9.30	5.00	1.75	3.68	1.73	0.00	0.18	7.14	3.86	1.45	6.83	62.43
1960	11.46	21.01	22.78	4.65	14.12	0.00	0.03	0.84	0.91	5.41	27.51	9.91	118.62
1961	12.29	26.26	22.58	4.47	9.60	2.87	0.89	0.69	3.38	13.56	29.92	11.28	137.80
1962	4.60	15.16	9.65	4.62	4.60	0.97	0.00	5.61	4.27	24.82	17.45	12.50	104.24
1963	10.03	17.09	13.13	19.15	18.44	3.73	0.89	0.00	1.37	7.59	29.85	7.19	128.47
1964	26.19	2.06	8.51	1.91	1.65	3.61	1.57	0.03	0.69	2.26	20.78	50.88	120.12
1965	16.28	2.90	0.66	11.18	1.30	1.14	0.13	3.38	0.00	2.26	11.94	17.65	68.81
1966	14.55	3.53	10.59	2.87	0.48	2.13	2.41	1.17	4.62	2.36	24.84	14.05	83.62
1967	14.38	3.07	8.64	4.42	2.72	0.71	0.00	0.00	1.57	6.38	3.38	7.52	52.78
1968	13.74	10.74	5.13	1.80	3.48	0.46	0.15	6.15	2.29	9.68	13.08	19.30	86.00
1969	33.27	6.40	2.41	4.47	6.78	4.19	0.48	0.00	3.18	11.73	3.53	35.69	112.14
1970	48.34	7.32	6.17	6.40	1.60	1.85	0.00	0.00	0.84	8.33	29.97	19.13	129.95
1971	23.98	9.65	18.69	9.53	3.99	4.29	0.38	1.50	5.56	3.33	24.08	24.08	129.06
1972	25.45	17.96	18.21	7.29	3.51	2.36	0.00	2.29	2.51	6.25	8.43	21.49	115.75
1973	16.89	6.40	10.92	2.59	12	1.09	0.36	0.25	7.87	16.26	61.19	23.52	148.46
1974	44.02	12.98	18.44	4.98	1.24	0.48	1.17	0.05	0.00	5.99	8.59	14.96	112.90
1975	10.59	18.34	18.64	6.22	1.70	0.81	0.97	2.03	1.78	12.70	12.95	11.58	98.32
1976	4.47	6.68	7.90	3.28	1.47	0.86	3.35	10.74	3.20	1.50	1.88	1.24	46.58
1977	2.59	5.97	7.57	2.57	10.31	0.86	0.56	1.68	10.82	4.62	13.13	13.87	74.55
1978	8.69	11.46	7.34	4.80	2.82	7.11	0.58	5.31	9.50	0.08	6.25	2.84	66.78
1979	8.08	12.09	4.72	9.55	7.52	1.63	1.24	3.07	2.26	16.74	11.61	14.25	92.76
1980	10.64	8.71	59	7.59	2.44	2.59	0.00	0.00	0.43	7.77	10.69	16.79	75.26
1981	3.71	7.85	7.77	2.44	3.63	3.23	0.41	0.00	4.17	12.67	21.01	25.50	92.38
1982	7.54	9.09	9.25	10.11	0.28	3.76	0.15	0.38	3.63	12.93	9.32	16.61	83.06
1983	9.75	21.56	17.73	4.83	2.41	1.93	4.60	7.34	0.58	4.24	22.20	17.07	114.25
1984	0.46	14.71	8.15	5.49	2.69	1.93	0.10	1.02	1.83	6.40	30.81	6.78	80.37
1985	0.00	6.05	7.44	1.85	1.52	3.58	0.53	0.28	3.10	2.29	6.12	3.96	36.73
1986	10.95	21.06	8.03	2.36	3.33	1.50	0.23	0.00	9.07	7.52	11.38	5.11	80.52
1987	11.99	10.52	8.64	2.44	0.69	1.91	2.82	0.00	0.03	0.18	5.56	19.51	64.26
1988	9.65	0.71	5.05	7.92	6.25	2.26	0.00	0.10	0.71	0.03	20.35	8.05	61.09
1989	9.25	5.38	13.67	7.85	2.39	1.14	0.13	2.57	4.14	6.10	2.92	2.62	58.14
1990	13.21	8.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.62	5.72	4.78	43.10
1991	4.50	7.98	13.49	5.38	6.48	1.93	1.75	0.76	0.00	2.57	0.94	M	45.77
Mean	14.54	10.56	9.58	5.28	4.56	2.54	0.72	1.47	2.98	7.86	14.16	14.16	88.41
Minimum	0.00	0.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.94	1.24	36.73
Maximum	48.34	26.26	22.78	19.15	18.44	8.13	4.60	10.74	10.82	35.23	61.19	50.88	148.46

Appendix III.1. Maps illustrating locations of individuals of Calochortus howellii within the five permanent plots at Mariposa Meadow. See Figure III. 1 for plot locations.

Calochortus howellii Permanent Plots
 Plot 1 Mariposa Meadow

Calochortus howellii Permanent Plots

 Plot 2 Mariposa Meadow

Calochortus howellii Permanent Plots Plot 3 Mariposa Meadow

Calochortus howellii Permanent Plots Plot 4 Mariposa Meadow

Calochortus howellii Permanent Plots Plot 5 Mariposa Meadow

