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A REVIEW OF SEVERAL CLASSICAL MEASURE FUNCTIONS

CHAPTIR I

INTRODUCTION

In elementary geometry the notions of length, area, and volume
are familiar concepts and easily defined for a restricted mumber of
geometrical figures. The problem of extending these ideas of length,
area, and volume to more complicated figures and sets in spaces of
several dimensions gave rise to the theory of measure. The first
attempt to solve the problem was made by Hankel in & discussion of
integration. He originated a theory of what he called content of a
linear set of points., This theory was further developed by Harnack.
Cantor generalized the concept of content to sets of pointe in a
space of any number of dimensions. These early theories have little
value today other than historical, but a brief account of them will
be given in order to point out certain defecte which are remedied in
later theories of measure,

Let A be any given set of points in the interval (a,b) .
There corresponds to A a definite number S , which is such that
all the points of A are interior points of a finite number of

intervals the sum of whose lengths exceeds 8 by less than an
arbitrary positive mumber ¢ , the number of intervals depending
upon € . This number S 48 called the gcontent of the set A .

The preceding definition of content was used by Hankel and

Harnack (4, pp. 161 =~ 162). An equivalent one was given by Cantor.
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Instead of enclosing the points of the set A in a finite mmber of
intervals, he enclosed each point x in an interval of length 2r
where x is the midpoint of the interval. Any parts of these
covering intervals which lie outside of (a,b) are disregarded. If
this infinite set of overlapping intervals is replaced by the set of
non-overlapping intervals with the same interior points, a finite
set of intervals of length 2 r is obtained. With the sum of the
lengths of these intervals denoted by S, , the gcontent of the set 4
is defined to be the greatest lower bound of the rnumbers Sr .
Cantor extended this definition to & set A of points in n-dimen-
sions by enclesing each point x in an n-dimensional sphere of
radius r and center x and in a similar manner defined content
of A as the greatest lower bound of the volumes made up of the
points of A contained within the spheres (4, pp. 163 - 164).

This theory of content has certain defects when applied to non-
closed sets, however. In order to be completely satisfactory,
content should be a generalization of the notion of length of a
linear set of points in a space of one dimension and the content of

a continuous interval should be equivalent to the length of the

interval. Thus, if two sets ‘1 and A2 are two complementary sets

in the interval (0,1) , then the sum of their contents should be 1

in order to correspond tc the length of the interval. However, this

is not necessarily so if ‘1 and A2 are not closed. For example,

let Al be the set of rational numbers and 12 the set of irrationals.
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The content of each of the sets 11 and Ae is 1, as is the content
of (0,1) itself.

In order to remedy this defect in the definition of content,
Peano and Jordan introduced what they called outer content and inner
content and from it defined a measure which is applicable to sets in
a space of n-dimensions (12, pp. 58 = 61)., The definition may be
stated as follows:

Let A Dbe a set contained in a bounded interval. Let A be

covered by sets {IJ} of intervals. Let IIJI represent the

n

volume of each interval I_ ., That is, |I.| = TTs where
J J j=1 9%

aji' i=1,2,...,0 , »epresent the edge lengths of IJ . The

guter content of A, c (A), 1is defined to be the greatest lower

bound of the 'ﬂEI'ZJIJI for all possible finite coverings of A .

The janner content of A, ¢ (4), 4is defined to be the least upper
bound of the sums of the volumes of intervals Zt.1 where the {IJ}

are such that “’ngl;' If ¢ (A) =g (A), then the set A is
said to be Jordan messurable and the common value of ¢ (A) and

¢ (A) is called the Jordan content ¢ (A) of A . The outer content
as defined here is equivalent to content as defined by Hankel and
Cantor.

Although the theory of content as developed by Peano and
Jordan has been largely replaced by other theories of measure, it
has played a part in the theory of integration. The connection
between Jordan content and RKiemann integration has been discussed by

Kestelman in his book  lodern Theories of Intesration in which
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the following statement is proved (6, pp. 6% = 65).

Let f(x) be a bounded, non-negative function defined for the
closed interval [a,b] and let G be the plane set of points

(x,y) consisting of all the points a { x < b, 0 £y £ f(x). Then

b b
e(@)= § f(x)ax ana T ()= J f(x)ax and each of the
-} a

following three statements implies the other two:
i) £(x) 4is Riemann integrable over La,b] .
ii) £(x) is contimuous almost everywhere in [a,b] .
iii) The set G is Jordan measurable.

One of the deficiencies of the theory of Jordan content is that
the sum of infinitely many Jordan measurable sets need not be
Jordan measurable, The theory of Riemann integration reflects the
same deficiency in that 2 bounded function, defined as the limit of
a sequence of integrable functions, may itself be non—-integrable in
the Riemann sense.

The theory of measure developed by Lebesgue overcomes this
deficiency and the theory of integration based on Lebesgue measure is
free from many of the limitations of the Riemann theory. The funda-
mental difference between Lebesgue measure and the outer content as
defined by Jordan and Peano is that in the latter the covering
intervals, in terms of which the content was defined, had to be
finite in number, whereas Lebesgue's idea was {o replace the finite
systems of intervals by countable infinite ones. Time any set which
is Jordan measurable is also Lebesgue measurable and the two measures

are the same. The converse, however, is not true.
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Lebesgue's theory of measure has led to further generalizations.

If, instead of starting with the notions of length, area, and
volume in attempting to develop a general concept of measure of a
set, we imagine a mass distribution in the space under consideration
and assign to each set as its measure the amount of mass distributed
on the set, we are led to a generalization of Lebesgue measure which
is called Lebesgue — Stieltjes measure. This measure has important
applications to physical problems and problems in probability and
statistice and gives rise to a generalization of Lebesgue integration.
Another theory of measure which is closely related to that of
Lebesgue was developed by Hausdorff. It has special properties that
enable it to be used to define dimensionality of a set. Although in
general, the Hausdorff and Lebesgue measures of 2 set are not the
same, they are identical for sets in El .

These special theories of measure, together with a theory
developed by Haar, will be discussed in detail in the following
chapters. Also, in Chapter 3, an abstract and general form of all

these special theories which is due to Omthéodory will be given.



CHAPTER II
A GENERAL DEFINITION OF MEASURE

In order to present a unified account of the various theories of

neasure to be discussed, we shall present in this chapter a general,
axiomatic definition of 2 measure function. Our procedure will be
to determine a particular class of sets and then define a measure
for sets belonging to this class, Our procedure in dealing with
some special theories of measure in later chapters will be reversed.
That is, a measure will be defined for all sets of a particular
space under consideration, and then by restricting this measure to a
smaller class of sets, a measure will be detemine@. which satisfies
the definition to be given in this chapter.

Definition 2.1. A class (A) of sets in an abstract space S will

be called a gompletely additive class of sets if it satisfies the
following postulatest
A-1. The empty set belongs to (4).
A-2, If a set A Dbelongs to (4), then the complement
of A belongs to (4) .

A-3, 1If {An] is any sequence of sets from (4) ,

®
then U 4 also belomgs %o (a) .
n=1

The class (A) 1is called a finitely additive class of sets if
A=3 is replaced by

A=3', If A and B belong to (A), then AVB belongs
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to (4) .

Two fundamental properties of completely additive classes are
given in the following theorem.

Theorem 2,1. If {An} is a sequence of sets belonging to (A) ,
then nrjx A belongs to (A) and lim A snd lin A Dbelong to
(4) (8, p. 64) .

liote that because of postulates A~l and 4~2 the space $
itself belongs to every additive class of sets in S since 5 is
the complement of the empty set.

Two immediate examples of completely additive classes in 8
are the class consisting of the two sets S and the empty set and
also the class consisting of § and all subsets of S . Another
example which plays a useful role in the development of some of the
special theories of measure and the applications of measure theory
is the class of Borel sets., Before defining the Borel sets, however,
some preliminary definitions and theorems are needed.

Definition 2.2. Let (M) be any class of subsets of S . A
completely additive class (A) is called the pminimal gompletely
additive class containing (M) if (A) O (M) and if for any
completely additive class (B) such that (B) O (M) it follows
that (B) O (a) .

Theorem 2.2. Given any class (M) of subsets of S, there exists a
minimal completely additive class of sets (A) containing (M)

(10, p. 8).

Now let S be any space and (N) any class of subsets of S,
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Def ine (H)a to be the class of all sets which are countable unions
of sets from (§) and (3)8 to be the class of all sets which are
countable intersections of sets from (H) . Since the union of a
countable class of countable sets is a countable set, it follows
that (W) = (N), and (N) . = (¥); . In order to obtain new
clagsses of sets it is sufficient to alternate the operators 'o and
8§ . The usual notation is to write the subscripts in the order in
which the operations are performed. Let ¥ represent a closed set
and (F) represent the class of all closed subsets of S . Simi-
larly, G 4s an open set and (G) the class of all open sets of S .
Also, to simplify notation, let
(F)° = (£); () = (D)5 (NP = (D) i (% = (W) i wee s
@)° = (8); (@' = @) (6% = (@55 @) = (B +vv -
Theorem 2,4, TFor every positive integer n,
(B (0% @I @ (e @)% @ e ()" (8, ». 65).
We are now able to define the class of Borel sets.
Definition 2.3. The glasg (B) of Borel geis is the minimal com—
pletely additive class of sets containing (F) .
Theoren 2.5. For each positive integer n, ()" C (B) and
)< () .
Proof: Using induction, we shall first prove that
(F)" < (B). By Definition 2.3, (F)°< (B) . Assume
(M®2c (8) . If nisodd and E e (7)°, then

00
EHe U A , where A ¢ (r)”‘l"— (B) . Using
n=1
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postulate A=3, since (B) is completely additive, the union
of sete from (B) alsc belomgs to (B). Therefore
He (B) and (F)®c (B). If n 4is even and
. n » . L §

E e (F)°, then H’nQL‘n' whereAnc (F)” "< (B) .
Using A-2 and A~3, -Ln ¢ (B),

@ ) 8
LY EaTe @), - Y (-a)] e (). Zut

o0 @
- - = n =
:\,J"l( An) Sy A =L Therefore H e (B) and

(Mt (3).

The proof that (G)"C (B) follows from the above and
Theorem 2.4,

Definition 2.%. A set from either (¥)® or (G)* is called a
Borel set of order a.

We have defined a completely additive class (4) of sets for
any space and shown some examples of such classes, Our final step
is to define a measure for sets which are elements of (A). Such a
measure is defined in terms of a completely additive set function.
Definition 2.5. Let (A) be a completely additive class of sets
in a space S . A set function ®w will be called a completely
additive set function on (A) provided it satisfies the following

postulates:

F<1, The function w (X) 4is defined in the extended real
number system for each X in (4).
F-2, 1If {Xn} is a sequence of disjoint sets from (4),

2]
then n§1 w (Xn) is defined in the extended real
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® ®
mmber system and w(n\ill In) = 2 N(In) .
n=1

F<3, If A 4is the empty set, then w(4d) =0 ,

Definition 2.6. A completely additive set function w om (4)
will be called a measure for sets belonging to the class (A) if it is
non-negative for every set in (A) . A set X is said to be
i measurable if X belongs to (4) .

The specific examples of measures to be discussed in the
following chapters will be shown to satisfy Definition 2.5. Two
rather trivial examples of measures which can be mentioned now are
the following:

1. Let (X) be the class consisting of a space S and all of its

subsets. Let u(X) 20 for every set X in (X) . Then 1

is obviously a measure as defined by Definition 2.5.

2, ket (X) be defined as in the preceding example and choose &
point p which is an element of S . Define w(X) =1 if
p 4sdn X and u(X) =0 4if p 4isnot in X . Then u is

a measure as defined.



CHAPTER III
CARATEEQDORY MEASURE

In the preceding chapter we defined a measure function by
starting with a particular class of sets and then defined a measure
for sets belonging to this class. Our procedure in dealing with
some special measures will be reversed. That is, we will begin by
postulating a non-negative function of a set called an outer measure
which is defined for all sets of the space under consideration. This
is not necessarily a measure as defined in the last chapter, but we
will show that a suitable restriction of an outer measure to a
snaller class of sets will determine a measure as previously defined.

A general theory of such special measures is due to C. Carathéodory

(10, pp. 43 = 47), so in this chapter we shall define and discuss

some of the properties of Carathéodory measure., The special measures

discussed in the following chapter will then be shown to be

Carath€odory measures.

Definition 3.1. Let (S,p) be a metric space. A function K of

a set, defined and non-negative for all sets in (S,p) will be called

a Carathéodory outer measure if it satisfies the following postulates:
c-1. w'(a) <u'(3) if ac B,

%, 0 ® o
C=2. (U In) £ B @ (In) for any sequence {In}
n=1 n=1

of sets of (S,p) .
+ + +
C~3. @ (A+ B) =pn (4) + 1 (B) whenever p(A,B) >0,

C-4, If A ie the empty set, u.+(A) =0.
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Note that only C~3 in these four conditions is metrical in character.
Therefore, any of the results which are obtained in this chapter
without use of (=3 are valid in any abstract space.

Defipition 3.2. 4 set E 1is said to be peasurable with respect to
9: if for every X C (S,p) .
HX) = wt @By + WX -B) .
Theorem 3.1. A necessary and sufficient condition that a set E De
measurable with respect to n.+ is that for every X < (S,p) ,
w0 2 pt@A ) st x-B) .
Proof: Since (XNE)UV (X =E) = X, it follows from
c-3 that w'(X) < w(XAE) + w'(X - E). This, together
with the above definition, establishes the proof of the
theoren.

Denote the clags of all sets that are measurable with respect
to p¥ by (M). We want to establish that (M) is a completely
additive class so that the restriction of ®' 1o (M) will be a
meagure as defined in Definition 2.5. In order to do this we need

to establish some fundamental properties of u.'t z
Lheorem 3.2, If u."' (A) = 0, then A 1is measurable (8, p. 88).

Theorem 3.3. If A is measurable, then the complement of A is

measurable (11, p. 136) .

Theorem 3.4. Any finite union or intersection of measurable sets is
measurable (11, p. 137) .

Theoren 3.5. Any countable union of disjoint measurable sets is
measurable (8, p. 89).



Theorem 3,6, Any countable union of measurable sets is measurable
(8, ». 90).

We are now able to prove the following theorem.
Theorem 3.7. (M) is a completely additive class of sets in the

space (5,p).

13

Proof: Referring to the definition of a completely additive

class given in Definition 2.1, postulate A-l is satis~
fied by C-4 and Theorem 3.2; A~2 is satisfied by
Theorem 3.3; A=3 by Theorem 3.6,

Thus the restriction of u.+ to the class of sets (M) is a
measure as defined in Chapter 2.

We would like to show now that there does exist a class of sets
which i8 p' messursble. In particular, we shall show that the
Borel sets are measurable with respect to u+ « In order to do
thig we need to make use of 2 lemma which is due to Carathéodory
(10, pp. 51 = 52).

Cerathéodory's Lemma. If G is an open set, A is any set con-
tained in @, and .&n denotes the set of points {x}, x in A ,
such that p(x, =6) 2 1/n for each positive integer n, then

un w* (a) =" (4) .
n

Tueorem 3.10. The class of all Borel sets is contained in (M).
Proof: The proof will be established if we show that every
closed set F is p.+ measurable, hence (F) < (M). For,

by Definition 2.3, the class of Borel sets (B) is the
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L
ninimal completely additive class containing (F) and
by Definition 2.2, it will follow that (B)  (M). To do
this let X Dbe any set, Then X = FC~F and ~F is an
open set. By the preceding lemma, there is a sequence of
sets {.&n} such that A C X ~F, p(An.i') ?.?J;' for

n=1,2,..0y and 1lim p*(a) = p' (X - 7).
n

Then we have X = [(XnP)v (X - F)]>[(xnF) Uln] "

Using C-3, H-*(I) >t (xAPR) + u.+(An). Letting n ~> o,

we have u.*(x) 2 u."'(lf'\ F) + u"‘(x - ¥) . Therefore, by

Theorem 3.1, F is p.+ measurable,
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CHAPTER IV

LEBESGUE MEASURE

The theory of measure developed by H. Lebesgue was the starting
point of further extensions of ideas of measure and integration.
The method of developing Lebesgue measure to be given in this chapter
will be to define a measure for open intervals in the Euclidean
space En wvhich is a generalization of length, area, and volume.

Using this we will define an outer measure for sets in ln which

was used by Lebesgue to define a class of measurable sets.

Mo Lat al'aa.. .y ‘n‘ md bl'bZ'“"bn b. real
numbers such that & < b, for k=1,2,...,0 . The set

I= (xl.xz,...,xn)} in E, where 8, < x < b, is defined to be
an p~dimensional open interval. If aks_:kgbk. then I is
defined to be an n-dimensional closed intervel.

Definition 4.2. The measure m (I) of 2n open interval I in E
is defined to be the non-negative number m(Il) = ﬁl(bk-ak).

Thug the measure of a one-dimensional open interval is its
length, of a two-dimensional one its area, and of a three~
dimensional one its volume,

Definition 4.3. The Lebeszue exterior (outer) meagure of 2 set A
m

in En is the greatest lower bound of the sums £ m( In), where
n=1

{In} is any sequence of open intervals which cover A . Denote the

Lebesgue exterior measure of A Dby me(.{) p
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Theorem 4.1. The Lebesgue exterior measure is a Caratheodory
outer measure.
Prooft We must show that the postulates given in
Definition 3.1 are satisfied. Let A and B be any
two sets in En such that AC B ., Any sequence of open
intervals which covers B will also cover A so that
it follows directly from Definition 4.3 that

me(l) ,<_me(B) + This satisfies C-l.

Let {In} be any sequence of sets in E and let

@ W y¢ T
S = gl xn. e want to show that me(S, < nfl ne(xn) a

If the series on the right diverges the ineguality is

true. Assume that the series is convergent and let € be
any positive number. For each positive integer n ,

there exists a sequence of open intervals such that

® ©® €
VUL 2 X and I m(l )<m(X)+—Zm .
=1 nk n k=1 nk e'’'n
vi VIRV
(el
Then & = A xn n-].( B Ink) so that

()< E Ba(1) ¢ Blu(x)+38 ]
S) & En(l Z X)+,0
Ye - n=1 x:=? ak - nﬂln.( ” 2
[4¢]
AL

Since this is true for all ¢ , OC-Z is satisfied.
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Let A and B be two sets in E such that p(A,B) =& > 0,

From the preceding paragraph, m_(AVB)<n (A) + n (B).

Given € > 0, there exists a sequence of open intervals of

d
edge lengths less than ~FF where n is the dimensionality

® ®
of the space In guch that r}-JlI;M mglm(ln)sp‘(ws)-r ¥

Then no In contains points of both A and B, Therefore part

of the sequence covers A and the rest covers B, Thus

ll.(‘l.)‘hna(B) £ Jngzinz(xn) sn.(m) + ¢, Since this is true

for every ¢, m'(.l)'l-n.(li) 4 m.(AVB). This result combined
with the reverse inequality above fulfils condition C-3.
The satisfaction of C=l follows directly from Definition
4,3,
Definition 4.4, A set which is measurable (cf. Definition 3.2) with
respect to Lebesgue exterior measure is said to be Lebesgue measurable
Denote the class of sets which are Lebeszue measurable by (L).
It follows from Theorem 3,9 that (L) is a completely additive class of
sets in En and all of the theorems concerning sets which were proved
in Chapter 3 hold for sets which are elements of (L). The measure of
a set A which is in (L) is denoted by m(A).
Theorem 4,2, The Lebesgue exterior measure of a set A is the greatest
lovwer bound of the measure of all open sets which contain A

(11, pp. 152 = 153).
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Definition 4,5. The Lebeszue inner mezgure of a set 4, denoted by

mi(a). is the least upper bound of the measures of all closed sets

which are contained in 4 .

Theorem Y4,3. ni(A) < me(.&) “
Proof: Let {Pn} be the set of all closed sets such
that P, C A for each n . Then m(!‘n) < m.(l) for
all n and me(A) is an upper bound of the set
{n(l'n)} . But mi(a) is the least upper bound of this
set, Therefore mi(l.) Sng(a) "

In some discussions of Lebesgue measure a bounded set A is
called Lebesgue measurable if the condition me(!a) = mi(a&) .

The following theorem shows that this condition is equivalent to the
condition for measurability given in Definition 4.4,

Theorem 4.4, A necessary and sufficient condition for a bounded set
A to be Lebesgue measurable is that ni(al) = me(a) = m(4) (11,

p. 153).

Since Lebesgue measure is a Camthe’odory outer measure, it
follows from Theorem 3.10 that the class (B) of Borel sets is
Lebesgue measurable., The restriction of Lebesgue measure to the
class (B) is sometimes called Borel measure. Although it is true
that every Borel set is Lebesgue measurable, not every Lebesgue
measurable set is a Borel set, The following theorem indicates a

relationship that exists between the classes (L) and (B) .
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Theorem 4,5. Each of the following conditions is necessary and
sufficient for a set E to be Lebesgue measurable (10, pp. 69 = 70):
(1) given € > O, there exists an open set G2 E
such that m(G - E) < ¢;
(ii) there exists a set H ¢ (G)a such that HDE
and m (H - E) = 0;
(1i1) given € > O, there exists a closed set FCE such
that m (E-F) < ¢ .
(iv) there exists a set K ¢ (F), such that EOK

and m (E - X) = 0,

Many investigations in measure theory would be simplified if it
were true that all sets in En are Lebesgue measurable. This,
however, is not the case. In order to show this we shall construct
a set which is non-measurable in the Lebesgue sense. It is
interesting to note, however, that a Lebesgue non-measurable set
is such a strange thing that to date none has been constructed with—
out using the axiom of choice.

Before constructing such a set, we need to establish the
property of invariance of Lebesgue measure of sets in ln under

linear transformations. The following theorem which is proved by

P, Halmos in his book Measure Theory does this.
Th 4,6, Let T be the one to one transformation of the entire

real line onto itself, defined by T(x) = ax + B, where « and B

are real numbers and o # O . If, for every subset E of the real
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line E,, T(E) denotes the set of all points of the form T(x) with
x in E, 1i.e.,

P(5) = {ax + B : x ¢ E}, then ne(T(E)) = |af mB(E) and
m, (2(2)) = |af m,(E) . The set T(E) 1is a Lebesgue measursble set
if and only if E is a Lebesgue measurable sei, (3, pp. 64-65).
Let A be a set in E, such that A< [0,1), =and let

a € [0,1]. Exoress A as the union of two disjoint sets 4 and
A, where A, = fxtxeA x+a<cl} and
12 ={x:xecA x+a2l}. VWesaythat T=4A+a [mod. 1]
provided T =T U T, wvhere T, = fx+a:zxec A} and
Tzw{::-ta.-l:xeAz}.
Theorem 4,7. If Ac [0,1), if a ¢ [0,1), if T = A + a [mod. 1],
then me(T) = mo(A) and mi(T) = mi(L) ”

Proof: From Theorem 4.6, ne(ll) = me(El) and

mc(Lz) ame(rg) o How T=D UT, end A=AUA,

where ‘1 and 42 are disjoint sets as are Tl and Ta.

Therefore, from Theorem 3.5,
n (7) = m (1) + n (7)) = n (&) + n(4;) = n (4) .
Similarly, mi(T) = mi(A) a
Theoren 4.8, If T = A+ a [mod. 1], then H is Lebesgue measurable
if and only if A is Lebesgue measurable.

Proof: This follows directly from the preceding theorem

and from Theorem 4.4,
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Let R be the set of rational numbers in [0,1) . For each
x e l0,1) let 5-_,‘ =R + x [mod.1]. Any two of these sets, say &‘7'1

and AIE, are either identical or disjoint. For let

ye€(A N A ) andlet z e A . Ye have
x1 o

X2

3-12-(s-xl)+(:.l-y)+(y-x2} where each term on the

right side of the equation is rational, Then 3z =~ x, is rational.

Therefore z € A_ and A_C A, Similarly, A < A
%2 5 % )

Therefore, if Aﬁﬁ sz is non-empty, it follows that A_ and

xl

Ax are identical. Let (C) be the class of disjoint sets of the
2

form Ax « Using the axiom of choice there is a set Po consisting
of one point from each of the sets belonging to (C) . We now
enumerats sll rational numbers in (0,1), obtaining a sequence of
rationals ) Poieeesfpeee o Lot T o= Po4r [mod. 1]. The

k (v}
sete P_ are disjoint. For assume P M 2 is noun~empty and

-

let y be an element of this intersection. Then either (y - r

)

and (y - rkz) are elements of P, or (y = rh.l. 4+1) and

and (y - T, * 1) are elements of P, . Tms P, contains two
2

points whose difference is a rational number. But this cannot be,

since these two points must belong to the same set Ax and PO

contains only one point from each set of the form ».x + Therefore,



the sets Pk are disjoint.

low for each k = 0,1,404, PkC (0,1). Therefore,

o
U Pkc [0.1). Algo, if x ¢ [0.1), then for some Tps X = rk is
k=0

the point of A_ (or differs by 1 from the point of .&x) which

oo
belongs to P Therefore, x ¢ P, and [0,1)C U P

C k =1 k
es]
Tms U Pk-[l),l).
k=0

From Theorem 4.8 it follows that the sets Pk are either all

Lebesgue measurable or all non-measurable., Assume they are measur-

@ w
. 5 P = = 0. = &
able hen me( ]go 1:) kfo me(Pk) me[ 1) =1

From Theorem 4.7 we have that m‘(Po) = me(Pl) o e me(P]:) = "

If this common value of the measures is 0 , then we have
@®

E nm (Pk) =0=mn_ [0,1]=1, a contradiction. If the common
k=0 ° o

oo
value is o positive number, then I me(Pk) is infinite, again
k=0

a contradiction. Therefore, the sets Pk are not Lebesgue

measurable.
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CHAPTER V

HAUSDORFF MEASURE

A measure which is closely related to Lebesgue measure was
defined by F¥. liausiorff for any metric space. It is of particular
“interest in that it can be used to define the dimension of a set.
While Hausdorff measure is a metrical concept and a dimension a
topological one, it can be shown that there is a connection between
the two concepts.
Definition 5,1, ¥or a separable metric space (S,p) and € > 0
let p be a positive real number and E a subset of (8,p)

(65 ]
Define u; (B) = gslobs { 2 [5(31)]1’ } for all decompositions
i=1

®
E= 191 E, such that S(Ei) < ¢ where &(%) denotes the diameter

g -+
of aset B, Let p (E)=1im u' (8) . Then u (E) is
P e->0 P ?

called the hsusdorff p-dimensiopal outer measure of E .
Pheoren 5.1, u.: is a Carathéodory outer measure.
Proof: First note that u; (E) 4is non-nezative and de-
fined for all sete in (8,p).
If AcB, then u; (a) £ u.; (8) . For let

@™
Z B, be any decomposition of B such that &(31) <e.,
i=1

Let Aicanﬂi 8o that AicBi. i=1,2,00%¢ .

® ®
Then \J 4, = U (Anxi) = AN\ lTBi) = ANB = A,
i=1 i=1 i=1
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00

Hence U A
i=1

4 is a decomposition of A such that

5(A,) < 8(B,) < ¢ Then we(4) < ;.D (8¢4,)1P< g[a(n )P
i1/ = "\ = o i=1 i j=1 g s

w
Therefore u;(A) is a lower bound of {§=l[a(31)]1’} s0

that u;(n) < p.;(ﬁ) . Taking the linit as ¢ => O,
u.;(a) < p; (A). Thus postulate C-1 in Definition 3.1
is satisfied.

@©

o
¥ E= U E , then IJ-P(E)S

o *
¥ El-tp(kn).

n=1
= B
It 2 E +
£ nwluP ( n) =+ ® , the inequality is obviously true,
D &
Aggume & (En) is finite. Let o De a positive
n=1
number. There exists a sequence of sets {Enk} such that

for each n

o©
kta Ex=E G(Enk) <e
and
=5 C
s laE )P < uf )+ T2
k=1 b
We have () O E. =& so that
)
® ®
U U E is a decomposition of E such that



Then

=
z [ (ué (3
Mm)s.;lm 8(B )P < gy (3) + ¢/ ]

= 3 u (B)+o .
nﬂ.p

Since this is true for every o ,
€ o ¢
E ) E
By (8) £ "y (&)

n=1

[0 4]
Letting ¢ > 0, u'(E) & Z W' (E) so that
D n-l P o

postulate OC-2 is satisfied.

If p(A,B) = 0, then u.; (A B) = u;(a\) + u;(B).

Given an o > O there exists a sequence {En} such that
@

Uﬁn = A VB, wvhere B(En) < ¢ < p(A,B) and

n=1

p. (AV3B) +02 L[a(l )P . Then no E contains
n=1

@
points of both A and B . Tms U En is a combina~-
n=1

tion of a decomposition of A and & decomposition of B

€ € ,. o €

so that uo(a) +pu° (8) < & [8(E)P cufauB) +0.
P p M=1 . p

Since this is true for every o, u;(a) + u.;(B) < u.;(t v B).

fhen taking the limit as ¢ => O, u. (A) + o (B) p (AU B),
But from (-2, we have up(A v i) £ up(A) + pp(.‘B) "

Therefore, u;(a) + u;(s) = u¥(A VB) and C-3 1s satisfied.
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C=4 followe from the fact that if A 1s empiy,
then 5(.&) = 0,

Tins u-; determines in (S,p) a class of seis which are

measurable,.e., a class of sets waich satisfy Jefinition 3.2. Let

(H) denote the class of sets which a.r; measurable with respect to
Hansdorff p-dimensional outer measure and dencte the measure of a
set A which is in (H) by p.P(H). By Theorem 3.10, the 3orel
sets (B) are contained in (E), hence the Borel sets are psp-neamrable.

The next two theorems show & relationship between Lebesgue and
Hanedorff measures.
Theorem 5.2, If A is a set in En such thet p.n(A) = 0, then
me(a) = 0,

Proof: Since u.:(al) = 0, u.i (A) = O, Hence, given

a o > 0 there exists a sequence of sets {A .1} such that

1

o @®
n
"521“.1’ s(AJ) <1, snd (A)4c = o 2 Jfl[s(uj)] .

Define the projection of each set AJ onto the k-th axis by

Pk(AJ)-{xxz(xl....,xk....,xn) € -'LJ

for some SULLRTE ML PPTPYE 1 a
Each Ad is bounded since B(Ad) <1. Let
a5 =g-1.0e {Pk(nj) Fabg= Lowabs {p, (A 5 },
djk'bjk-ajk for k=1,2,...,0 . Let IJ be the open

interval defined by



Ijﬂtﬁ.-...xn)iadi < x’. < bji. 1’1.2..-..3 } .

For each k, dJk:

exist points 7,1 and IJ in 11 such that

<1, since S(AJ) = 8(;.1) < 1 and there

y,j"',jk andsdnbjk

Then d Jk 3k S \/ +(bjk-ajk)2+ . “p(YJi‘J)S.u(ii) <1

Thus, 8(4\ )2 max d,, so that

ik

[a(AJ)]" > n(max djk) 1'1; dge = m(IJ) .

But ‘I’_1 A  for § = 1,2,...,n . We have then
- a0
o2 Z(s(apP2 Ta(i) = Ta(l) 2 I u,(a) 2m () .
=1 9 =1 9 = 3=1
But this is true for every o > 0 so that n.(A} = 0,
Then by Theorem 3.2 , A is Lebesgue measurable and
n(A) = 0. i
Zheorem 5.3, If A isa set in B, then W (4) =m (A).

®
Prooft TFor every ¢ > O, u.;_(j.) £ Z 8(A) where
n=1 2
o
A= Ul and G(A ) < €, Givena ¢ > O there exists

a sequence of sets {A. } such that A4 = U A, 8(A) < ¢
n=1 .

g
and n (A) + 5 2 2 8(E )., HNow 8(A) < ¢ so that
n=1 n

An is bounded. If any of the A 's are cupty, eliminate



them from the sequence. Let a = g.l.b. {.ln} and

hn = 1.,u,b. {.&n} and define I to be the open interval

g g
(a, = a2 ! b, + Ul Hote tiat 8(A ) =Db -a so

that lnCI + Then
00 o

=2 6(a,) + 2
2“*2 " a""’2 (n)+n-12n*1°

® ® o
n-lla(‘n) N nflmun) T2

00
nEIl( In) }.‘. (b +

I'\JIQ

Hence p (A)

nla

2 my(a) -

But p'{(a) 2 u5(A) . Therefore,

a g

I-‘l(l-)" ">H{ (a) + '2‘211‘(13 -~ 5 + or

I.LI (A) + o 2 m, (A). Since this is true for every ¢ > O,
By (&) 2 mg (8) .
Given an o > O, there exists an ¢ > 0O, such that

u-'{ (4) =0 < u; (A) . Let {In} be any sequence of open

®
intervals such that AC \J I and G(In) < e, Then
n=1

“*(1)-0314{ (a) £ f‘:oa(x)- 2 m(I) so that
i el B pe

u.; (A) =~ ¢ is a lower bound of the sum of the measures of

all countable sequences of open intervale of diameter

less than €. But ue(L) is the greatest lower bound of

this sum. Therefore, n.(g) +02 |.LI (A) and since



E
this is true for every 0> 0, m_(a) 2 4] (A) . This
combined with the reverse inequality obtained in the pre—
ceding paragraph gives BT (A) = m, (4) .

The property of Hausdorff measure given in the following
theorem makee it possible to use Hausdorff measure to define dimen=

pionality of a set.

Theorem G4, If u-;(A)<oo and if q > p, then u:u)-o.

Proof: Let n be any positive integer and {Ak} a

00
sequence of sets such that U A =4 and
k=1
1
G(A‘) < T fork=1,23,000 Then
(s(ap]?

= [3(a)1%P < ( 1) %P 4o that
(s(a)T?
1 ® 00
1 .
vE W g Blaalt < (g)%F zlau)? .

4
1 @™
Tms B B is a lower bound for (_n)q-p [B(Ak)]l’ and
q =1

2 1 qp X
therefore pqn (a) < (=) p.pn (a) .

1
But since q-p> 0, 1im w X (A) =p' (4) < 0, we
n—>mp P

have, teking the limit as n = o,


http:measu.re
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% + -:!'- q=p -]l
liw Wy (.l.)q&q (4) < )ip (=) e B () = 0, and
Ve
since i-l-; (A) is non-negative, u; (A) =0,
Corollary: A set A can have finite, non-zero n; - measure for

at most one value of p.

Definition 5.2, %et E be a set in (S5,p). The Hausdorff
dimension of E, denoted Hausdorff dim (E), is defined to be the
least upper bound of all positive real mumbers p such that

p.; (8) > o.

It follows then from Theorem 5.4 that if a set E has finite
u.; - measure for some p = p' , then Hausdorff dim (E) = p'.

The definition of dimension of a set given in Definition 5.2
differs from the topological definition as given by Hurewicz and
Wallman in their book Dimension Theory (5, p. 24). The method of
defining dimension which they use is an inductive one and is given
in the following definition.

Definition 5.3, The empty set and only the empty set has dimension
=l.

A space S has dimension < n(n 2 0) at a point p if p has
arbitrarily small neighborhoods whose boundaries have dimension
£na~-1.

S has dimension { n, dim 8 < n, if S has dimension { n
at each of its points.

S has dimension n at & point p if it is true that S has

dimension { n at p and it is false that S5 has dimension £ n-l at p.
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S has dimensjon n if dim S < n is true and dim 8 < n-l
is false.
§ has dimension o if dim S { n 4is false for each n .
The following two theorems which are proved by Hurewicz and
Wallman (5, p. 107) show the rolaﬁonnhip between dimension as
defined above and the definition given in Definition 5.2.
Theorem 5.,4. For an arbitrary metric space X,
Housdorff dim (X) 2 dim (X).
Theorem 5,6, If X' is allowed to range over all the spaces
homeomorphic to a given space X , then
£+1.b, {Hausdorff dim (I') } = dim (X) .
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CHAPTER VI

LEBESGUE - STIELTIJES MEASURE

In this chapter we shall define an outer measure which consti-
tutes a generalization of Lebesgue outer measure and which plays a
fundamental role in applications to theories of probability and
statistics.

Lebesgue outer measure might be thought of as being constructed
by weighting each of the open intervals in En according to their
volumes, The idea behind the construction of a Lebesgue-~Stieltjes
outer measure is to obtain from a point function a more general
weighting of the intervals.

The definition of a Lebesgue - Stieltjes measure in E 1is
rather cumbersome, S0 we shall first define it for sets in E].
Then the generalization to sets in ln will contain the same basic
ideas.

Definition 6.1, Let f be a monotone increasing, everywhere finite,
real valued function whose domain is the real line El which is
contimous on the right at every point. For every half open
interval (a,b], define P,( (a,b] ) = £(b) = £(a). Let

(I) = ( (a,b) ) Dbe the class of open bounded intervals. For each

1 define the function P(I) to be Py( (a,0] ). For any set A

in B, the Lebessue-Stieltjes outer measure of A induced by £ 1is
defined to be
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& ®
e (4) = g.lb. { 3 P(I )} for all sequences {I_} of open
Welp B »

00
intervals in B such that AC\ I, » The function £ dis

M=l
called a distribution function for wg .

Hote that the function P( In) is always non-negative so

®
that the sequence of mumbers { I P(In) } is bounded below.
n=1

Thus, the greatest lower bound of this sequence does exist.
Theorem 6.1, u; is a Caratheodory outer measure.
Proof: u-;' i3 defined for all sets in El and since the

function f is monotone increasing, P 2 0 and hence,

“42.0. If A and B are two sets such that A < 3B,
4

then given an € > O there exists a sequence of open

L 1]
intervals {I } such that U I_DBOA and
n 1 n

@® [44]
u;(n)-nzzp(z). Bat AC () I, so that
=l B n=l ®

-

+ g +
ke (4) £ & I-"(In) £ B (B) +e¢ . Since this is true
n=1

for every ¢ > O, n; (4) < u; (8) and C=1 of Definition
3.1 1s satisfied. Let {An} be any sequence of sets

@
from B end let A = V) A . TFor each positive integer
=1

n and @ > O there exists a sequence {In} of open

®
intervals such that Anc- (VA and

k=) 2E

% o
My (a) + ¢/2n 2 kfl P(1,) .



34
® 0 ®
Now ngl kgl. Inkn n;q An:A so that né{ hl_ll Ink is a
countable sum of open intervals covering A . Then

+() ® o0 )
w, (A) $ 2 = P
£ n=l k=l nk

(o 9] + oo +
< nfl (be (A) + ¢/ n] = nﬂl me (A) + 6.

But this is true for every ¢ 8o that

o 4]
g (A) & © uwp (A) and condition C-2 1is satisfied.
n=1

Let A and B be two sets such that p(A,B) =d > 0,
Given an € 2 0, there exists a sequence of open intervals

0
{In} such that \J I_D (AVB) and
=] B

@
%) u;(x B)+e¢/22 = P(1). Now for each open
n=l 2

interval I = ('n'bn) form a partition of In by
points X such that 8,=x o £ X, iwak B *® hn

and Ini e zh.i-l ( 7&1_ fol' 1‘1'2..... m . Th‘n
m
121(5,1-1':111] = (200,131, and

2.) & PO( (xn.,__l.:!m] ) = f(%n) s f(xo) - P(In) .

i=]}

I 1is not covered by the open intervals (’n, §=10%nq)s DUL

by extending each of them to the right to a point :' ni

m
obtaining an open covering U (x

]
A =10 % o 1) of ZIZn where
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3 -L
X%, 1= $ ey fori=1,2,...om . Since f is
1
right contimuous we can choose the points x ., s0 that,

given an e~ 0, f(xlni) - f(ln.i) < :Ei-i-'f"
Then P( (xn,i-l'x‘ni) ) = f(x'u) = £(x; 4.1)
=t(x' ) - £lx,,) + 2(xy) = £(x, 4

< -—‘-—zn.,_l + f(xni) - f(zn’ -1’

= Pollxy, 310 %y 1 m2n+;. .

Using this last result together with 2.), we have
m - 3 n
. P LA
3) hacy ((xy, 3-10% py)) 1,1&0((’%,1-1"‘:11])

e TR

Now we have

n 1

U U (xypex. 03 U
TR, S I 5 (AVB) . But since
pel g=1  PRTTRATT 5 m
' d
e e W L - Cdm p(A,B), no interval

'
(xn,i-l'x l:'1) contains points of both A and B.

©® m ¢
Therefore part of
erefore p o ngl 1!1(xn.i-1'x n.i) covers A and

the rest covers B 8o that
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u;(a) +p.;(:a) < : = P(x

]
n=]1 i=1 npi‘l'x n,l)' Using this and

equations 3.) and 1.), we have

pp(A) + ug(8) S pg(A B) 4 ¢ . Tms

)+ u-; (3) < p.; (AV B)., The reverse inequality
f : _
covers from C~2 so that u:(A) + p.;(B) = p;(AUB). and

C~3 is satisfied. C~4 is obviously satisfied since
P(A), where A 1is the empty set, is defined to be zero.
Before proceding to the generalization of v; to sets in ln "
we might etate two theorems which point out something of the
significance of the distribution funetion f£f.
Theorem 6.2. If two distribution functions £

and f_ yield the

1

same Lebesgue~Stieltjes outer measure, then 1'1 - f2

2
is a

constant (2, p.53).
Zheorem 6,3, If £ 1is a distridbution function and Wg is the
Lebesgue~Stieltjes measure induced by f, then for any half-open
tnterval (a,b], wg((a,b]) = £(b) = £(a), (8, p. 117).

The construction of a Lebesgue-Stieltjes measure in ln from
a distribution function which is a product of n real variables is

sinilar to the one-dimensional case. A half-open interval (a,b]
in E 4s & set of the form {(xl,xa.....xn)} where
a < x, < bk for k=1,2,...,0 . In order to define a

function PO((a.b]). let f(x) = f(x.....xn) and define a set of

difference operators Al.ﬁa.. vopld L such that
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Ak(f) = !'(xl....,bk....zn) ~ f(xl....,&k....,:n) £or k=1,2,40050

Define PO((n.,b]) = “1(“2(“'(%(”)“'”' For each n-dimensional
open interval I = (a,b), define P(I) = PO((a,'b]).

Definition 6.2, If f(x) = f(xl.....xn) is a function such that,
for any half-open interval (a,b], P ((a,b]) 1is non-negative and

f is continuous on the right in each variable xi,i.-l-l.a.... n,

separately and if A is any set in :‘n' then the Lebesgue—
.- Stieltjes outer measure of A induced by £ is defined to be

it o
p.;(A) =g,l.b. { E P(In”' where {In} is a sequence of open
n=l

intervals such that AC 3 In .
n=1
Zheorem 6.4, p.; is a Caratheodory outer measure.

The proof of this theorem is similar to that of Theorem 6.1. It
should be noted %hat in Theorem 6.1 the monotonicity of £ ineured
that P be non-negative ‘and hence, u.; > 0, However, in
Definition 6,2, we had to require that f yield a non-negative
function PO gince monotonicity of f 4in each wvariable separately
does not guarantee that P be non-negative., For example let f

0
be a funetion of two variables defined by

x4y, wvhenx+y <0
£(xy) = {0 , Waen x4+ y 2 0,

The function f 4is monotone 4in x and in y . TFor if X < X5



then either L +y <0 or x, +y20. If X, 4y < 0, then

X, 4y<0 and f(x.wy) =x +y<x+y=1f(x,y). If

x, + y 2 0, then either x +y <0 or x, +y 20, If x +y <0,
then f(x,,y) =x +y<0=£(x,y). If x, +y20, then

f(x,y) =0 = !(:é.y). In all cases then, x; < x, implies that

£(xy) £ £(x5,y). Similarly, y; < ¥, implies that
f(x.yl) s,f(x.ya). However, if I is the nalf open interval defined

by I={(x,;y)} where 0<x<1 and -1 <y<0, Py(I) will be
negative. For PO(I) = Ai(ﬂy(f))

=8 _(£(x,0) = £(x,-1)) = £(1,0) - £(1,-1) = £(0,0) + £(0,-1)
=0=0=-04+(0=-1)==-1,

It follows from Theorem 6.4. that n; determines a class of
sets which are measurable in the sense of Definition 3.2 and that
the Borel sets are a sub-class of this class of measurable sets.

That Lebesgue outer measure is a special case of Lebesgue—

Stieltjes outer measure is shown by the following theorem.
n
Zheorem 6.5, If £(x,X50000x) = ;\Tl:i. then the Lebesgue~
Stieltjes measure induced by f 4is identically equal to Lebesgue
outer measure.
Proof: For any half-open interval (a,bl,

Po((a.b]) = ‘1(“2(“‘(% 'rz"l' :1)...)) = 'ﬁ'(bi - si) .
1=1 i
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Then for any open interval I = (a,b),

n
P(I) L Po((aob]) - :1; (bi - 31) e llle(l) .

Thms for any set A in ln. and any sequence of open
@®

intervals {In} such that AC \J L
n=1

& 6+ @
ke(A) = gul.b. { nflr(ln)} = g.1.be { nEJ. n.(In)} . But

this is precisely the definition of Lebesgue outer
measare of A as given in Definition 4.3, Therefore,

ll-;(.l.) = me(A) ”



CHAPTER VII
HAAR MEASURE

Alfred Haar developed a theory of measure which defines a
measure in a locally compact separable metric space for which the
notion of congruent sets is defined. This measure is a Caratheodory
outer measure and has an important application in that it defines a
measure in a locally compact separable metric space which has the
algebraic structure of a group.

Definition 7.1, A set A 1is gompact if every infinite subset of A
has at least one limit point in A, A space S is locally compact
if every x of 8 has neighborhood Hx whose closure is compact.
Definition 7.2, Let (S,p) Dbe a locally compact separable metric
space and let (V ) denote the class of open sets in (S,p) whose
closures are compact, For sets in (S,p) the notion of gongruence,
denoted ¥, is defined so as to fulfil the following conditions:

5-1, AT B implies B ¥ A,

§-2. ATB and B & C tmply A= C.

8-3. If AT B and A is an element of (\Vv), then B

is also an element of (V).

S4, If A® B and {An} is a sequence of sets
o

belonging to (Vv ) such that AG \) A, then there
n=1 *
@
exiets a sequence of sets {Bn} such that Bel B
n=1

and An"-'Bn forn=1,2,...
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S5-5. For any set A belonging to (V) the class of sets
which are congruent to A covers the space (S,p).
8-6, If {Sn} is a sequence of concentric neighborhoods
whose closures are compact and with radii approach-
ing zero, and if [Gn] is a sequence of sets such
that G = 8» B =1,2,..., then the relations

a=1lim a aend b=1lim b, wherea and b
3 n & n n n

are elements of Gn' imply a = b,

Definition 7.3, A measure p defined for all sets in the space
(8,p) 4is called a Haar meagure if it satisfies the following
conditions?

H-l, u is a Caratheéodory outer measure.

BE-2, If A ¥ B, then p (A) = u(B).

H-3, For every non-empty open set C whose closure 15.

compact, O < u(C) < .
In order to construct a measure function which will be a Haar

measure let A and B Dbe two sets belonging to (V). By
5-5, the class of sets congruent to A covers the set B and by
5-3, this class of sets consists of open sets. Since B is compact,
by the Heine~Borel Theorem, there exists a finite collection of sets
congruent to A which covers B . Let (B:A) denote the smallest
number of sets which constitute such a collection. It follows then

that for any sets A, B, C which belong to (V ), (B:A)S(B:C){C:A)
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Now let G be an element of (V) and {Sn} a contracting

sequence of concentric open spheres in G, Then the closure of each

Sn is also compact. For any open set A whose closure is compact,

define ln(A) - (AtS) + Then since
(G:8p)

(438)) < (A16)+(@°S;) and (G:Sp)  (G:A)*(A:8,), it follows that

(A:Sy) (a:s,) 1
1.(4) = W < (4A:6) a.ndqln(n) = e EW) 2 (G:a) . Therefore,

TE::.—JS ln(;l) < (AG) for n=1,2,,.. _, Ts {1n(a)} is a

bounded sequence of real mumbers so that we can make use of the

following theorem.

Theorem 7.1, To every bounded sequence {xn} of real numbers
there corresponds & mumber Lim x, (called the generalized limit
of the sequence {xn}. which has the following properties
(8, pp. 58 = 59) and (4, p. 316):
7.1-1. Lin (axp # byp) =a Lim x + b Liny .
T.1-2. If xnz_o for every n, then Lﬁ" x 20.
133 bmx, = px .
T.184, If x =1 for every n, then Lim x = 1.
7.1-5. ]%mxn < Lim xp < i'nﬂﬁ.

Using this theorem then, for every set A belonging to (V)

let 1(4) = Lim 1n(A). ¥or any arbitrary set X in (8,p),
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®
define u(X) = g.l.b. { 31 l(ln)} for all sequences {An} of sets
n’

@
belonging to (V) such that X €\ A_,
n=] 2

If X 1is the empty set,
define p(X) = 0 (1, pp. 314 - 316).

In order to establish that @ as defined in the preceding
paragraph is a cara.th;odory outer measure, we prove several properties
of the function 1.

Theorem 7.2, Let the function 1 be as defined above. Then for
sets A and B which are elements of (V) the following proper-
ties hold:
7.2-1. 0<1(4) o.
7.2=2, ACB implies 1(4) < 1(B).
7.2=3. 1(AVUB) < 1(a) + 1(B).
7.2=4, p(A,B) > 0 implies 1(AVBEB) = 1(4) + 1(B).
Proof: Since each ln(L) is bounded below by a positive
mmber, let ln(A) 2 €> 0, Then f;r some nor;-mgntivo
number Poe 1n(a) =¢+p . Them T 1n(1) - € Py =1
and by Theorem 7.l-4, and 7.1-1,
1 1 1 1
Lin(g 1,(A) =€p ) =7 Ljm1 (A)-TLimp = 1. Ths
Lin ln(A) = ¢+ Limp . But since p, 2 0, it follows from

Theorem 7.1=2 that L&npn 2 0. Therefore,

L&n 1n(1) 2€>0 and 1(A) > O, Also, from Theorem 7.1,
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If AcB, thea (A:Sn) < (B:Sn) 80 that
(Ais) (315

A) = < B S G
In (&) Wg Gmn)“'ln( ), where n.a.nd
are as defined on page 42, lines 1 and 2, Then, from
Theorem 7.1 and the definition of 1, 1(4) £ 1(B).

If A and B are sets from (V ), then
(av B8 ) < (A18)) + (8:5;) and

" (AV BiSy) ., (AiSy) , (B:8n) _, 4 B).
e ot | 1,(4) + 1(

It follows then, from Theorem 7.l, that
1(AvB) £ 1(4) + 1(B).
If p(A,B) =d > 0, then for 4> 1/n and
{S,} a sequence of concentric spheres with radius < 1/n

it follows that (AVB:iS;) = (A:Sp) + (B:S;) . Thus for

(AvB:Sy) _ (A:8,) , (B:8y)
> 1/a, 1,.(Av B) = = + =1, (A)
. " (G:8,) (G:8,) (G:8,) =

+1n(.8) .
Using Theorem 7.l-3 and 7.1-1, it follows that
1(AVB) = 1(A) + 1(B).

Theorem 7.3, &(X) is 2 Haar measurs.

Proof: Referring to Definition 7.3, we rmet show that
Bp is a Carathe;dory outer measure in order to satisfy
H~l. First, we have Wu(X) defined for all X in (8,p)
and also @(X) 2 O since for any sequence {An} of open

sets whose closures are compact ln(An) 2 0; hence by

Theorem 7.1-2, l(An) 20, If AcB, then wu(a) £ u(B).



u5

For given an ¢ > O, there exists a sequence {ln} of

sets belonging to (V) such that Bcg;

lnn“""

@ @
W(B) + €2 L 1(B)) . But since . ByDA,
n=1 n=1

®
w(a) < n§1 1(B,). Therefore u(4) £ u(B) + ¢ . This is

true for every ¢ > 0 so that w(A) £ u(B). If
o0 @
X = ;J_l X, then p(X) Snfl w(X,). For let {xnk} be

a sequence of sets belonging to (V) such that, given
®
e > 0, for each :1;.1“\_“1 X, 2% eand

@ @® oo
(21 (X) Su(Xp) +¢/n . Now e VXCH L Ko &

countable union of open sets. Therefore,

X)< g ;? X oo[ X 4 X G
WO BB AL 2 L n) * /R T w(E) 0.

But this is true for any ¢ > 0, so that

0 -
w(X) S-nz.l "(xn)o If p(A,B) > 0, then

w{AVB) = u(A) + u(B), ¥For let Gl and (}2 be open

sets such that U3 A and Gp23, and 9(01,92) > 0,

Given an € > O there exists a sequence of sets {ln}

(s o]
belonging to (V) such that (AV3B)c U E, and
~ n=1
w(AVB) + €2 2 1(E). Let B, =ENG
=l n n

and

in 1

Ean = lnﬂ Gs. Then p(Eln, Ean) > 0 so that, from

from Theorem 7.2-4, 1(11nU ‘an) = 1(xh) + 1(man).
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v
Also (B, U E, ) <E  so that, from Theorem 7.2-2,

1(1‘1 v E ) = 1(Eln)+ 1(lan) I(En). How since

sefhmy 245, T

@
w(a) £ 1;11(31,,&) and w(B) £ n_Bl 1(8,,). Therefore,

Lo o] @ (¢ 1]
w(a) + w(B)g nfll(Eln) + nfll(lzn)s. nﬁllcxgs Bw(AVB) + ¢,

But since this holds for every ¢ > 0, w(A)#u(B)<u(AVB).
The reverse inequality was proved above. Thus,
w(A) + u(B8) = w(AvB), If A 4is the empty set, then by
definition, n(A) = O, Thus postulate H~1 of
Definition 7.3 has been satisfied, i.e., B 1is a
Caratheodory outer measure.

To prove H-2, let A =3B and let {nn} be any

®
sequence of sets from (V) such that Bcgl B . Then

from S-4, there exists a sequence of sets {An} such that

Acngla and A =3 for n=1,2,3,.e0 « From 8-3,

the sets A also belong to (V). Then, since

1.(B) =1 (), 1t follows that 1(B)=1(A)) and

p(A) £ g 1(An) = ;o l(Bn). Thus w(A)is a lower
n=1 n=1

bound of { g‘.) 1(Bn)} so that w(A) < u(B). Similarly,
n=1

by letting {&n} be any sequence of sets from (V) such

®
that AC U A ~we obtain a sequence of sets {Bn} from
n=1
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o
(V) such that B¢ U B and A =3B . From this we
n=1 B n ‘n

obtain u(B) £ u(A). Therefore, n(A) = u(B).

To prove H~3, let C be any non-empty set belong=
ing to (V). PFrom Theorem 7.2=1, 0 < 1(C) < @. Then
w(C) £1(C) < v, Let x De an element of C and ¢
be any positive mumber such that N(x,e)SC. Let
H= N(x, ¢/2). Given o > 0, there exists a sequence

{l.n] of sets belonging to (V) such that

®
9 A3 C3H and Z 1(An) £ wp{C) + 0. Since the space
n=1 n=l

(8,p) 4s locally compact, H is compact. Therefore,
there exists a finite collection of the sets ‘n which
covers & y hence H, Thus we have

m e 4]
1E) <1 va )¢ 8 < A c A
( (MnkJ_k_lmnkJ_nfll(n)su()+a

But since 1(E) > 0 and n(A) 2 1(a) > 0, u(X) > O.
Therefore, -3 is proved.
A set is called measurable with respect to the Haar measure p
Af it satisfies Definition 3.2 with f = p, Thus the Haar measure
u determines an additive class of sete in (S,p) which are p-measur—
able., Also since u is a Carath&:dory measure, Borel sets are
p=-measurable.
To give an example of a space in wvhich a Haar measure is defined,

let (S,p) Vbe a locally compact separable metric space which
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constitutes a group, i.e., for every pair x,y of elements in (S,p),
there is also an element xy in (S,p) called product such that
the following conditions are satisfied:
G~1., For every x,y, and 2z 1in (8,p), (xy)z = x(yz).
G-2, There exists in (S,p) a unique identity element
e ouch that xe = ex = x for every x in (S,p).
G-3, To each element x in (S,p) there corresponds
a unique invarse xt in (S,p) such that
xix =t = e,
Since we want the algebraic operation of multiplication to be contin=
wous in (8,p), suppose that (S5,p) fulfils the additional conditions:

G-l, If 1in x = x and ljm y, =y, then

1&m::hyn=:y.
-1 -
G~5. Iflxiim X, = X, then :Lim.'q‘1 =x ",

If x is an element of (5,p) and 4 (8,p), define
xA = {xz} for all z in A
Ax = {2x} for all z in A,
The sets xA and Ax are called the left translaticn and right
translation of A by =x respectively. Also for 4 (S,p) and
B (8,p), define
AB = {xy} for all xin A and y in B
Al = (1} for a1l x in A.
Definition 7.4, A measure u defined on the Borel sets of (S,p)
is called a left Haar measure if it satisfies the following conditions:
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lH-1, p is invariant under left translations,
i.e., for every x 4in (S,p) and A an element
of (B), wn(xA) = u(a).
LE=-2, PFor every compact set C, B(C) < w.
Li=3, Por every open non-empty set &, w(G) > 0.
A pight Hear measure is one for waich Ld=1 postulates invariance
under right translations.

Pwo sets A and B in (S5,p) are congruent if there exists
an element x osuch that A = xB8, This satisfies the definition of
congruence given in Definition 7.2.

Theorem 7.4, The restriction of the measure i as defined on

page 43 to the Borel sets is a left Haar measure.
Proof: By Theorem (.3, B i@ a Haar measure and heace
gatiefies Definition 7.3. Then by H-l, p is a
Csra.th;odory oubter measure so that the Borel seis are
g~measurable, LH-]l is satisfied by H-2 and LH-2 follows
from H=3. The proof of LE-3 is similar to the proof
given in Theorem 7.3 to show that p satisfied H-3.

In particular, when (85,p) is Buclidean space B and group
maltiplication is interpreted to be ordinary additvion, the left Haar

ueasure of Borel sets is invariant under translations., For let
K- (ﬁ.otu.!n) and - (71...-.Yn) be two Paint' in ]n. Denote
the sum x + y by the point (:1+y1,....xn+yn). If X is any

set in In and a any point from ln' let I(a) denote the set of

points of the form a + x where x in an element of X, x(a) is
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called the traneletion of X by eo. Let group multiplication be
interpreted to be addition. This satiefies G-l to G~5 where the
identity element is taken to be O = (0,...,0). Then for any set 4
which is a Borsl eet and any x in ,n' xA = A(I) and it follows

from Theorem T.M that plxd) = u.(l-w).
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