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A REVIEW OF SEVERAL CLASSICAL MEASURE FTJNCT IONS 

CHAPTER I 

INTRODUCTIOB 

In elementary geometry the notions of length, area, and volume 

are familiar concepts and easily defined for a J>estricted number of 

geometrical figures. The problem of extending these ideas of length, 

area, aad volume to more complicated figu.res and seta in spaces of 

several dimensions gave rise to the theoey of measure . The first 

attempt to solve the problem was made b7 Hankel in a. discussion of 

integration. Re originated a theory of what he called content of a 

linear set of points. This theory was furthe:t developed by Harnack. 

Cantor generalized the concept of content to sets of points 1n a 

space of any number of dimensions. These earl1 theories have little 

value to~ other than historical, but a brief account of them will 

be given 1n order to point out certain defects which are remedied in 

latel" theories of measur.e . 

Let A. be ~ given set of pointe in the interval (a,b) • 

There corresponds to A a definite number S , which 1a such that 

all the points of A. a.re interior points of a finite number of 

intervals the sum of whose lengths exceeds S by less than an 

arbitra.rr positive numbe:t c , the number of intervale depending 

upon c This number S is called the sontent of the set A • 

The preceding definition of content was used b7 Hankel and 

Harnack (4, pp . 161 - 162) . A.n equivalent one was given by Cantor. 

• 
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Instead of enclosing the points of the set A in a finite nwnber of 

int~rvals, he enclosed each point x in an interval of length 2r 

whel"e x is the midpoint of the interval. Any parts of these 

covering intervals which lie outside of (a,b) are disregarded. If 

this infinite set of overlapping intervals is replaced b7 the set of 

non-overlapping intervals with the same interior points. a finite 

set of intervals of length 2'. r is obtained. With the eum of the 

lengths of these intervals denoted by Sr , the content of the set A. 

is defined to be the greatest lower bound of the numbers s . r 

Ca.ntol" extended this definition to a set A o:f' points in n-dimen­

sions b;y enclosing each po int x in an n-dimensiona.l sphere of 

radius r and center x and in a aimilar mannel" defined content 

of A as the greatest lower bound of the volumes made up of the 

points of A contained within the spheres (4, pp . 163 - 164). 

~hie theory of content has certain defects when applied to non-

closed sets, however. In order to be completely satisfactory, 

content should be a generalization of the notion of length of a 

linear set of points in a space of one dimension and the content of 

a continuous interval should be equivalent to the length of the 

interval. ~hue , if two sets ~ and A are two complementary sets
2 

in the intenal (0,1) , then the sum of their contents ahould be l 

in ordel" to correspond to the length of the interval. However, this 

is not necessa.r1J.y so lf ~ and A2 are not closed.. lor example, 

let ~ be the set of rational numbers and A the set of irrationals.2 
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The content of each of the seta ~ and A is 1. as is the content2 

of (O,l) itself . 

In order to remeey this defect 1n the definition of content . 

Peano and Jordan introduced what they called outer content and inne~ 

content and from it defined a mea~e whi¢h is ap~licable to seta in 

a space of n-dimensions (12, :p:p . 58 - 61). The definition mq be 

stated as follows: 

Let A be a set contained in a bounded interval. Let A be 

e~vered by sets {Ij} at intervals . Let jijl represent the 
n 

volume of each interval I. • Tha.t is, II . I = lT s .1 where 
J J i=l J 

s j 1• 1 = 1. 2, ••• ,n ,, :represent the edge lengths of I j • i'he 

outer epntent of A, ~ (A), is defined to be the greatest lower 

bound. of the sums l-j Ij I for all possible finite coverings of A • 

The inner epatent of A, £ (A), is defined to be the least upper 

bound of the sums of the volumes of intervals Ij where the {lj} 

are wch t.bat A ::l J~l I j • If e (A) = .£ (A) 1 then the set A is 

sa1d to be JorQ.aa m£:awa.J.>lt and the common value of c (A) and 

s (A) is called the Jord~n Qpntent e (A) of A • The outer content 

as defined here is equivalent to content as defined by Hankel and 

Cantor . 

Although the theory of content as developed by Peano and 

Jor~ bas been large~ replaced by other theories of mea.su.re, it 

has :played a part in the theory of integration. The connection 

between Jordan content and Riemann integration has been diecnsaed by 

Kestelman in his book oderp Theories Qi Inte . ation in which 

http:mea.su.re


4 
the following statement is proved (6, pp . e+- 65) . 

Let f(x) be a bounded, non-negative function defined for the 

closed interval (a,b] and let G be the plane set of points 

(:x,y) consisting of all the pointe a i x i b, 0 i y ~ f(x). Then 

S (G) = 5
b 

f(x)dx and e (G) • 5
b 

f(x)dx and each of the 
....A a 

following three statements implies the other two: 

i) f(x) ie Riemann integrable over [a,b] • 

ii) f(x) is continuous almost everywhere in [a,b] • 

Hi) 1'he set G is Jordan measurable. 

One of the deficiencies of the theory of Jordan content is that 

the sum of infinitely maey Jordan measurable sets need not be 

Jordan measurable . The theory of Riemann integration reflects the 

same deficiency in that a bounded function, defined as the limit of 

a sequence of integrable functions , may 1t self be non-in tegra.ble in 

the Riemann sense. 

~he theory of measare developed by Lebesgue overcomes this 

deficiency and the theory of integration based on Lebesgue measure is 

free from many of the limitations of the Riemann theory. The funda­

mental difference between Lebesgue measure and the outer content as 

defined by Jordan and Peano is that 1n the latter the covering 

intervals. in terms of which the content was defined, had to be 

finite in number, whereas Lebesgue's idea was to replace the finite 

systems of intervals by countable infinite ones. Thu.s aey set which 

is Jordan measurable is also Lebesgu.e measurable and the two measures 

are the same. ~he converse, however, is not true . 
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Lebesgue's theory of measure baa led to further generalizatione. 

If. instead of starting with the notions of length, area, and 

volume in attempting to develop a general concept of measure of a 

set, we imagine a mass distribution 1n the space under conaide7ation 

and assign to each set as its measure the amount of mass distributed 

on the set, we are led to a generalisation of Lebesgue mea~e which 

is called Lebeegue - Stieltjes measure. This measure haa 1~ortant 

applications to :physical problema and problema in pr-obability and 

statistics and gives rise to a generalization of Lebesgue integration. 

Another theoey of measure which is closely related to that of 

Lebesgue was developed by Hausdorff. It has special properties that 

enable it to be used to define dimensionality of a set. Although in 

general., the Hausdorff and Lebe&g\le measures of a set are not the 

same, they are identical for aet1 in E1 • 

~ese special theories of measure. together with a theory 

developed by Baar, will be discussed 1n detail in the following 

chapters . Also, in Chapter J, an abstract and general form of all 

these special theories which is due to Caratheodory will be given. 
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CHA.Pi'ER II 

A GENERAL DEFINITION OF MEASUlUi: 

In order to present a unified account of the various theories.of 

mea.EIW.'e to be diaoussed, we a.ball present in this chaptel' a general. 

axiomatic definition of a measure function . Our procedure will be 

to detetmine a particular class of sets and then define a mee.su.re 

for sets belonging to this class. Our procedure in dealing with 

some special iheorieo of mea.sa.re 1n later chapters will be l"evereed. 

That is, a measu.re will be defined tor all sets of a particular 

space und.el" consideration, and then by restricting thia mea8111'e to a 

smaller clasa of sets, a measure will be determined wb.1ch ea.t1sf1es 

the definition. to be given in t.hia chapter . 

De:finition 2 . 1. A class (A) of sets in an a.bst:t>aot space S will 

be called a ggm:p;J.etelz {!4dit1ve class of eats 1t it satisfies the 

following postulates: 

A-1. 'l1he empty set belongs to (A). 

A-2 . lf a set A belongs to (A), then the complement 

of A belongs to (A) • 

.A.-3 . lf {A. } n is a111 sequence of sets from (A) • 

Q) 

then U 
n=l 

A 
n 

also belongs to (A) • 

The class (A) is called a finitel:r @sdditiv~ clan ot aeta it 

A-3 is replaced by 

A-3'. It A a.nd B belong to (.A) • then A '-' B belongs 

http:measu.re
http:mea.sa.re
http:mee.su.re
http:theories.of
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to (A) • 

Two fundamental properties of completely additive classes are 

given 1n the following theorem. 

i'heorem 2.;1. . lt {An} 1s a sequence of sets belonging to (A) , 

then ~ A belongs to (A) and lim An and .um A belong to . nn=l n 
{A) (8, P • 64) , 

Note that because of postulates .A-1 and A-2 the space S 

1tself belongs to every additive claee of sets in S since S 1a 

the complement of the empty set , 

Two immediate examples of completely additive classes 1n S 

are the class consisting of the two sets S and the empty set and 

also the class consisting of S and 'all ~bsets of S • Another 

example which plays a useful role in the development of some of the 

special theories of measure and the applications of measure theory 

is the class of Borel sets . Before defining the Borel sets. however, 

some preliminary definitions and theol"ems are needed. 

Pef1nUiqn 2. ~· :Let (M) be 9ZJ¥ class of subsets of S • .A 

completely additive class (A) is caJ.led the m1,p.ima.l qomplete~ 

addj.tiye clasg ccmta1niiJ& .00. if (A) ::> (M) and if for any 

completely additive class (B) su.eh that (:e) ::> (M) it follows 

that (.B) :> (A) • 

~hegrem 2. 2 . Given a.tJ:3 class (M) of subsets of s, there exists a 

minimal complete~ additive class of seta (A) containing (M) 

(10. P• 8). 

Bow let S be a:ny space and (N) any class of subsets of s • 

• 
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Define (N) to be the class of all sets whiCh are countable unions a 

of sets from (ll) and (H) to be the class of all sets which are0 

countable intersections of sets from (li) • Since the union of a 

countable class of countable sets is a countable set. it follows 

tbat (N)aa • (N)a and (N) 66 • (H)6 • In order to obtain neW 

classes of sets it is su.ffioient to alternate the operators 'a and 

o • The usu.a.l notation is to write the subscripts in the order 1n 

which the operations are pel"formed. Let li' represent a closed aet 

and (F) represent the class of all closed ~bsets of S • Simi­

larly• G is an open set and (G) the class of all open sets of S • 

Also, to s!mpli!y notation, let 

(:F)0 
c; (F); (F)' =(F) ; (F)2 

c (F) R; (F)3 = (F) ~ i • • • ta av aoa 

0
( G) = (G)• (a/ = {G)a• (G)2 = (G)aa' (G}~ =(G)aaa; ••• 

TlJegrem 2.4. 1l'o't' every :posi t1ve 1ntege1' n, 

~e are now able to define the class of Borel sets. 

f>et'ig.Uion 2.3. ~e cd;ass (B) ~Bore+ ~ is the m1n1mal com­

pletely additive class of sets containing (F) • 

Theotem 2·5· ~or each positive integer n. (F)n c (B) and 

(G)n c:: (B) • 

Proof: Using induction, we shall first prove that 

(F)n c (.B). :By Definition 2.3, (F) 0 c. (:B) , Assume 

(F)n-lc. (:B) • If n is odd and R " (F)n. then 
00 

H = U A , where .A c (F)n-l c. (.B) • Using 
n=l n n 
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postulate A-3, since (B) is completely aaditivei the union 

of sets from (B) also belongs to (] ). 'herefore 

E: c ( .8) · a.nd ( J!' )n c:.. (B). If n is even and 
00 n 1E. e (F) , then H = A A • where .An c ( )n- C (:a) • nc:l n 

Using A-2 and A-3 , - A c ( ) , 
n co co 

C~1(-An)] c (B). (- n~1 (-An)] c (B). ~t 
00 00 

- U {-A )· c: (\ A c: H. Therefore H e {B) and
n=1 n n=1 n 

(:r)n c::::. (13). 

The proof tha.t (G)n C. (:B) follows from the above and 

'l'heorem 2.4. 

Definition 2~4. A set f r om either (1)n or (G )n 1s called a 

Borel set !JL prder ,a. 

We have defined a completely additive class (A) of sets for 

' 
aDil space and;-. ~.hown some examples of such classes. Our final step 

is to define a measure for sets which are elements of (A) . Su.ch a. 

meaS\lre is defined in terms of a completely additive set function. 

DeffAit1on 2.5. Let (A) be a completely additive class of sets 

in a space S • A set function w will be called a cgmpletelz 

a.dditiye se$ tg,netion .2n .!Al provided it satisfies the following 

postulates: 

:r-1. The func t ion w (X) is defined in the extended real 

number system for each X in (A). 

F-2. If {X } is a sequence of disjoint sets from (A),
n 
co 

t hen n~l w (Xn) is defined in t he extended real 



10 
00 00 

number system and w( U X ) = E w(X ) •1n= n n=l n 

E-3. 1£ A is t he empty •et. t hen w(A) • 0 • 

~efinitipn ?.6. A completely additive set function ~ on (A) 

will be called a measure for sets belonging to t he claas (A) 1t it is 

non-negative for eve~ set in (A) • A set X 1a said to be 

.1! me&surablt 1! .X belongs to (A) • 

The specific examples of measures to be discu.ssed in the 

following ehapters \'1111 be shown to satisfy Definition 2.5. Two 

rather trivial examples of measures which can be mentioned now are 

the following: 

1~ Let (X) be the class consisting of a space S and all of ita 

subsets. Let JJ.(X) =0 tor every set X in (X) • Then tJ. 

is obviously a measure as defined by Definition 2.5. 

2. Let (X) be def i ned as 1n the preceding eXBJnple and choose a 

point p which is an element of S • Define ~(X) = 1 if 

p is in X and ~Jr(X) = 0 1f p is not in X • Then I.A. is 

a measure as defined. 
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CHAPTER I II 

, 
CARATHEODORY MEASURE 

In the preceding chap ter we defined a measure function b~ 

starting with a particular class of sets and t hen defined a measure 

for sets belonging to this olase. Our procedure in dealing with 

some special measures will be reversed, That is, "e will begin b~ 

postulating a non-negative function of a set called an outer mea~re 

which is defined for all sets of the ~ce under consideration. fhis 

is not necessarily a measure as defined in t he l a st chap ter, but we 

will show that a suitable restriction of o.n outer meaeU1'e to a 

smaller class of sets will determine a measure as previously defined. 

A general theory of su.ch special measures is due to C. Caratheodory 

(10, pp . 43 - 47). so in t his chapter we shall define and discusa 

some of the propel"ties of Ca.rath6odoey measure, llhe special meaeuree 

discussed U1 the following cllapter will then be shown to be 

Oaratheodory measures. 

~finitign 3,.1. Let be a metric space. A function ~ 
+ of 

a set, defined and non-negative for all sets in (S,p) will be ealled 

a Caraibeodqg 9u.ter QftS!8Ul'e it it satisfies the following postulates: 

G-1. !J.+(A) ,5_ !J_+(:B) if A C :B • 
co (J) 

G-2. ll+( U X ) i t ._.•(x) fo.r any sequenee {X } 
n=l n n-1 n n 

of sets of ( S • p) • 

+ + +C-3. ~ {A + B) = ~ (A) + ~ (B) whenever p(A.:B) > 0 • 

C-4. If A is the empt~ set. ~ +(A) =0 • 
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Note that only c-) in these four conditione is metrical in character. 

Therefore. any of the reS\llta which are obta ined in this chapter 

without use of 0-3 are valid in a~ abst~act space . 

Definition 3.g. A set E is said to be m~a.Slllable .1!UJl rtooee' !9. 

~ if for every X c. (S,p) • 
+ +IJ.+(X) = ~ (XA E} + ._., {X- E) • 

Taeotem 3.1. A necessary and sufficient condition that a set E be 

measurable with respect to ._.+ is the.t for every X c. {S,p) , 

f.lo+(X) ~ j,.~.+{X /"\ E) + !Jo+(X - E) • 

Proof: Since (XA E) u (X- E) = X, it follows from 

G-3 that p.+(X) ~ ""+(X/"\ E) + 1J.+(X - E). Thia, together 

with the above definition. establishes the proof of the 

theorem. 

Denote the cla ss of all sets that are measurable with respect 

to J.1o+ by ( M). We want t o establish that (H) is a completely 

additive class so that the restriction of IJ.+ to (M) will be a 

measure as defined in Definition 2.5. In ordett to do this we need 

+to establish some fundamental properties of JJ. • 

f heorem 3.2. If JJ.+ (A) = o, then A is measurable (8. p . 88). 

Theorem 3,3. If A is measurable, tilen the complement of A ia 

measurable (llt P• 136) • 

Theorem 3.4. Any finite union or intersection of mea~able sets ie 

measurable (11. p . 137) • 

'l'.heorem 3.5. Any countable union of disjoint measu:~able sete 1e 

measurable (8, p . 89) . 
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The2r.em 3.6. Arry countable union of measurable sets is measurable 

(8 , p, 90). 

We are now able to prove the following theorem. 

Theorem 3.7. (M) is a completely additive class of seta tn the 

space (S1 p). 

Proof~ .Referring to the definition of a completely additive 

claas given in Definition 2.1, postulate A•l ia satla­

fied by C-4 and Theorem 3.21 A-2 1s satisfied by 

Theorem 3.3; A-3 by Theorem 3.6. 
+Thus the restriction of ~ to the class of seta (M) b a 

measure as defined in Chapter 2. 

We would like to show now that there does exist a. class of seta 

+which is 1J. measurable . In particular" we shall show that the 

+Borel sets are measurable with respect to fJo • In order to do 

thi·&. we need to make use of a lemma which is due to Caratheodory 

(10, PP• 51 -52). 

Caratnio4orx• 1 Lemma. I£ G is an open set, A is arJ¥ set con­

tained in G, and A denotes the aet of points {x}, x 1n A , 
n 

such that p(z, -G) L 1/n for each positive integer n, then 

lim IJ.+ (A ) • ~+ (A) • 
n n 

Theorea }.AO· The class of all Borel sets is contained in (M). 

Proof: The proof will be established if we show that eYery 

+closed set F ie tJ. measurable, hence (F) c (M). 'lor, 

by Definition 2.3, the olaes of Borel sets (B) ia the 

http:The2r.em
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minimal completely additive cla.aa containing (F) and 

by Definition 2.2, 1t will follow that (B) c (M). To do 

this let X be a.cy set. !hen X - J C - F and -F is an 

open set. .By the p:r-ecedlng lemma. there 1s a sequence of 
l 

aete {An} such that .tn c X-i, p(An,F} ~ i tor 

n = 1,2•••• • and lim J1+(A) =IJ.+(X - F) . 
n 

Then we have X= ((XA N) V (X - F)] ::> ((X ll J') VA 
n 
J 

• 

+ + +tlsin~ C-3, 1J. (X) ~ JA. (Xf"\ F) + 1J. (A ). Letting n -> oo,. n 

+ + ' + we have IJ. (X) ~ 1J. (Xf"\ F) + J4 (X- F) • 'l'herefore, by 

heorem 3.1, F ia tJ.
+ mea&\U"able . 
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CHAPTER IT 

~e theory of mea.su.re developed by H. Lebesgue was the starting 

point of further extensions of ideas of measure and integration. 

~e method of developing Lebesgue measure to be given in this chapter 

wUl be to define a mea.eu.t"e for open intervals in the Eu.clidean 

space En which is a generalization of length, area, and volume. 

Using this we will define an outer measure for sets in En which 

was used by Lebes~~e to define a class of measurable aets. 

Definition 4,,. Let 

numbers such that ~ < bk for k =1,2, ••• ,n • The set 

I= t~·xa•···•xn)} in En• where ~ < ~ < bk' is defined to be 

an n:"41Jnensiop§1 .mum, mterval. If ~ i ~ i bk' then I is 

defined to be an n-dimensional closed. interyal.. 

Definition 4,2. The measure m (I) .Q.t !Jl .QlllUl interval. I in lll n n 
is defined to be the non-negative number m(l) =1T (bk•ak). 

k:::l 

Thu.' the measure of a one-dimenaional open interval 1a ita 

length, of a two-dimensional one ita area, and of a three• 

dimensional one its volume. 

Definition 4.j. The Lebesf!9:e exterior (outer) mea.sura 5li!: .ui A 
co 

in En is the greatest lower bound of the sums t m( I ) , where 
n=l n 

{I } ia any sequence of open intervals which cover A • Denote t he n 

Lebe~e exterior measure of A by me(A) • 

http:mea.su.re
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Theorem 4.1. ~he Lebesgue exterior mea~re is a Caratheodory 

outer measure. 

Proof: We must show that the postulates given in 

Definition 3.1 are satisfied. Let A and B be any 

two eet& in En such that A c. B • Any sequence of open 

intervals which covers B will also cover A so that 

it follows directly from Definition 4.3 that 

Let {Xn.} be aey sequence of sets in :B! and let 
n oo

(X) 

s. () X • We want to show that m (S) < D m (X ) • 
n=l n e · - n•l e n 

It the series on the right diverges the inequality is 

t:Plle. Assume that the series is convergent and let c be 

any positive number. for each po sitive integer n • 

there exists a sequence of open 1nterYals S\lch that 

(X) (X) c 
U 1_ 'fp-=> Xn and t m( Ink) i m (X ) + ""';)fl •2~l~ ~l en 

00 00 00 
Then S = U X c. U ( V I ) so that

n=l n n•l n=l nk 

00 00 (I) ...£.__ 
me (S) i t £ ~(Ink) i £ (m (X ) + 2 n ] 

n=l .~e=l n=l • n 
CD 

• t m ( X ) + c •n;::l e n 

Since this is true for all c , 0-~ is .satisfied. 
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Let A and B be two eeta 1n En Sllch that p(A,~) = , > o. 

lrom the preceding paragraph, •e(~V~)~6(A) + ms(D). 

Given c > o. t here e.xiata a sequence of open intervale of 
d 

edge lengths less than ~ where n is the dimenaional1t7 

<X> CD 
of the space E such that U . I')Av.B a.nd I: m(ln)iz (Av:B)+ c • 

n n•1 n n==l e 

Then no I contains pointe of both A and B. Therefore part
n 

of the sequence covers A and the rest covers B. Tlma 
CD 

m (A)+m (B) " i.t m( I ) < m {AoUB) + '. Since this 1s tl"'le e e ~ DPl n - e 

fo!' eTery c, m {A)+m (B) i m (AV.'a ). This result combined 
8 8 8 

with the reverse inequality above fulfils condition C-3. 

The eat1sfaet1on of C-4 follows directly from Def'inition 

4.). 

DAtiaUion 1;..4,, A set whioh is meamrable (cf. Definition 3.2) with 

respect to Lebesgu.e exterior meaeure 1a said t o be Lebesgy,e meamrable. 

Denote the class of sets which are LebeSc."'tl& measurable by (L}. 

It follows from 1heorem 3.9 that (L) ie a completely additiTe claea ot 

seta in E and all of the theorems concerning sets which were proTedn 

in Chapter 3 hold for sets which are elemente of (L). The xneaau.:re of 

a set A which 1a in (L) is denoted by m{A). 

~hftorem 4.2. The Lebeegue exterior measu:re of a set A is the greateat 

lower bow:ad of the measure of e.ll open aeta which contain A 

(ll, PP• 152 • 153). 
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Definitio; 4.5. !!!he L~best&'.\e inner measu.re of a set A, denoted by 

m1(A) , is the least upper bound of the mea~es of all closed seta 

which are contained in A • 

Theorem 4.3. m1(A) i me(A) • 

Proof: Let {F } be t he set of all closed sets Sllch n 

that 'nc:. A for each n • Then m(Fn) i me (A) for 

all n and me(A) is an upper bound of the set 

{m(Fn)} • But m1(A) ia the least upper bound of thia 

set. ~erefore m1(A) i m 
8 

(A) • 

In some discu.ssions of Lebesgue measure a. bounded set A is 

called Lebesgue measurable if the condition me(A) = m1(A) • 

i'he f ollowing theorem shows .that this condition is equivalent to the 

condition for measurability given in Definition 4.4. 

Theorem 4.4. A neces~ and sufficient condition for a bounaed set 

A to be Lebesgue ~easurable is that m1(A) =me(A) = m(A) (ll, 

P ~ 153) • 

Since Lebesgue measure is e. Carath:odoey outer measure , it 

follows from Theorem 3.10 that the class (B) of Borel sets 11 

Lebesgue measurable . The restriction of Lebesgue measure to the 

class (:a) ia sometimes called Borel measure. .Although it is true 

that every :Borel set is Lebesgu.e meamrable , not eveey Lebesgu.e 

measurable set is a :Borel set. The following theorem indicates a 

relationship that exists between the classes (L} and (B) • 

http:measu.re
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T.heol"ern 4.5. Each of t he following conditions is necesea:ey and 

sufficient for a set E to be Lebesgue measurable (10, pp. 69- 70): 

( i) given t > 0, there exists an open set G :> E 

such that m(G - E) < c; 

(11} t he:re exists a set B c (G) such that R:> E
0 

and m (li - E) • 0; 

(111) given c > 0, there exists a closed set Fe. E such 

that m (E - F) < c • 

( iv) there exists a set K c {ln0 such that E:> K 

and m (E - K) • 0. 

Manf investigations 1n measure theory wOUld be simplified if it 

were true that all sets in En are Lebesgue mea~able. Thia, 

however , is not t he case . In order to ahow this we sball construct 

a set which is non""'l'leasurable 1n the Lebesgne sense . It ia 

interesting to note, however , that a Lebesgue non-measurable 1et 

is such a strange thing that to date none has been constructed with­

ant using the axiom of choice. 

Before constructing such a set. we need to establish the 

property of 1nvar1ance of Lebe~e measure of sets in En under 

linear transformations. The following t heorem which is proved by 

P . Halmos in hie book MeasurE! Theou does this. 

~heorem 4,6, Let ~ be t he one to one transformation of the entire 

real line onto itself, defined b7 T(x) • ~ + ~ . where ~ and ~ 

are real numbers and ~ ~ 0 • If, for every subset E of the real 



20 

line E1• T(E) denotes the set of all points of the form T( x) with 

x in E, i.e., 

T(E) = {ax+ ~ : x e E}, then m (T(E)) = 1 ~ 1 m (B) and e e 

m1(T(~)) = lal m1(E) • The set T(E) is a Lebeao~e measurable set 

if and only if E is a Lebesgne measurable set , (3, pp. 64-65). 

Let A be a set in Ii , aueh that A C [O,l ), and let 

a t (O,l) . Express A as the union of two disjoint sets ~ and 

A where "J. = {x : x e A, x + e. < l} and2 

A ::: {x : X C A, X + a 2'_ 1}. ·e say that T = A + a [mod. 1}
2 

provided T = T V T where = {x +a : x t ~} and1 2 T1 

= {x + a - 1 : x e ~} •T2 

Theorem 4,1. If A c. (O,l), if a c [O,l), if T = A + a [mod. 1], 

then. me(T) =me(A) and m1(T) =m1(A) • 

Proof: From Theorem 4.6, me(~) =me( T1 ) and 

me(A2 ) =me(T2) • !low T • T1 u and A =~v ~T2 

where ~ and ~ are disjoint sets as are and T2•T1 

Therefore, from Theorem 3.5, 

m (T) =m (T1) + m (T2) = m (JL) + m (A2) = m (A) •e e e . e -~ e · e 

Similarly, m (T) = m (A) •1 1

Theorem 4.6. If T =A + a [mod. l], t hen H is Lebesgue measurable 

if and only if A is Lebesgue measurable. 

Proof: This follows directly :from t he :preceding theorem 

and from Theorem t~ . 4 . 
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Let R be the set of rational numbers in [ 0 ,1) • For each 

X t (0,1) le t A 
X 

= R + x ( mod.l). Any two of t hese sets, say Ax 
1 

and A • are 
x2 

ei ther ident i cal or disjoint. For let 

Y c (A " 
xl 

A )
x2 

and let z ' A • 
~ 

e have 

z - = (z - ~) -t· (~ - y) + (y- x2 ) where each term on thex2 

right side of the equation is rational. ~nen z - ia rational.x2 

Therefore Similarly, A C.. A 
~ ~ 

Therefore , if is non-empty, it follows that A and 
xl 

A are identical. Let (C) be t he class of disjoint eets of the 
.x2 

form A Using t he axiom of choice there is a set P0 consisting
X 

of one point from each of the sets belonging to (C) • We now 

enumerat.:o "!}.ll rational numbers in (0,1), obtaining a sequence of 

sets Pk are disjoint . For assume P~ P~ i a non-empty a.nd 

let y be an element of this intersection. Then. either (y - r~) 

and (y - r~) are elements of P0 or (y - rk]. + 1) and 

and (y - r + 1) are elements of P0 • Tnus contains two 
k2 

P0 

points who se difference is a rational number . But t his cannot be, 

since t hese two points must belong to t he same set Ax and P0 

contains only one po int f om each set of t he f orm A • Therefore,
.X 
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00 

the sets Pk are disjoint . 

Now for each k = 0,1, •••• k c (0 ,1) . Therefore, 

U Pk c. (0 ,1). Also , if x e [O,l), t hen f or some rk' x - rk is 
k=O 

the point of Ax (or differs by 1 from t he point of Ax) which 

00 
belongs to P • Therefore, [O,l ) C V :Pk0 k=l 

00 

Thu.s U Pk = [O,l). 
ki=O 

From Theorem 4.8 it fol lows that the sets Pk are either all 

Lebe~e measurable or all non-measurable. Assume t hey are mea~-
ex> 00 

able. Then m ( U Pk) = ~ m (Pk· ) c m [0,1) = l • 
e k=O k=O e e 

= ••• 
• 

If this common value of t he meaSQres is 0 , then we have 

(]) 

~ m (Pk) = 0 = m [ 0,1] =1 , a contradic tion. If the common 
k=O e e 

00 
value is a positive number , then t m (Pk) i s i nf inite, again

k=O e 
a contradiction. Therefore, the sets Pk are not Lebe sgue 

mea surable. 
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.A meaSil.l"e which is closely related to Lebesgue measure was 

defined by F. liausdorff for any- metric space. I t is of particular 

· inte~est in that it can be used to define the dimension of a. set. 

While Hausdorff easure is a metrical conee-pt and a dimension a 

topological one. it can be shown that there is a connection between 

t he two concepts. 

Definition 5.1. lor a. separable metric space ( S,p) and c > 0 

let p be a. positive real number and E a subset of (S;p) • 
CX) 

Define ""'Pc (E) = g .l.b. { l: [6(E ) ]P } for all decompositions11=1 
00 

E = U E such that 8(E1) < c where 6(E) denotes the diameter1=1 i 

+ t +of a set E .. Let ~ ( E) =lim ,.. ( ) • Then ~ ( E) 1s pP c->o P 

called the a&usdorff n.·"'SUmensj.onal outer meamu:e .Qi ! • 
1Xheorem 5·~· IJ.; is a. Ca.rathe'odory outer measure. 

Proof: First note , that IJ.+p ( E) is non-negative and de­

fined for all sets in (S,p). 

+ +
If A c. .B , then tJtp (A) .SO IJ.P ( :B) • For let 

<D 

I:. be any decomposition of .B such that 6(:& ) < c • 
i=l 

B1 1 

l+et A =.Af\ B so t"'-t A C:. B 1 = 1 2 • • • • 1 i ~ 1 t• • ' • 

Then lJ A1 = U(A f"\l\) = Af"\( U .Bi) = A/\ :S = A • 
1=1 1=1 i=l 
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00 

Hence U A1 is a decomposition of A such that 
i=l 

00 

Therefo?e ~;(A) is a lower bound of {f=1[a(B )]P} so
1 

that ~;(A) ~ ~;(B) • Taking the limit as e -> 0, 

+ +
J-4P(A) ~ 1.1.p (A) . Thus postulate 0-1 in Def inition 3.1 

is satisfied. 
00 + 00 +

If E = ~l E , then ~ (E) ~ E ~ (E ) • 
n- n p n=l p n 

a:> + 
If ~ ~ ( E ) = + oo , the inequality is obviously truep

n=l P n 
(X) 

Asswme ~ ~+ (E ) is finite . Let a be a posit ive 
n=l P n 

number . There exists a sequence of sets {Enk} such that 

for each n 

and 

(E ) + CfcP­
n 

00 00e have so tha.tnki kyl 

00 00 

n'tl J'1 Enk: is a decomposition of E such that 
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'.Vhen 

Q) = ~ ~c (E ) + a • 
n=l P n 

Since this is true for eve~y a • 

Jlpc (E) ~ ! ~pc (En) 
n=l 

+ CX> +
Letting c ""!> 0 , fJ. (E) i ); 1-1. (E ) so that 

P n=l P n 

postulate . c-2 is satisfied. 

If p(A, B) • Ot t hen ~+ {A · B) :: Jl+(A) +~+(B).
p p p 

Given an a > 0 there e~iats a se~ence {» } such that n. 

Q') 

lJ E =A V Bt whe~e 6(E ) < e < p(A,B) and 
n=1 n n 

QO 
!Joe {A V B) + a !_ t [&('lil. ) ]P • Then no E contains 

P · n=l n n 

00 
points of both A and B • 1'hus U t 1a a. combina.­

n=l n 

tion of a decomposition of A a.nd a decomposition of B 
(X) 

eo that llp( ) + IJ.; (»} i t (S(En)f i fJ.;(A u :B) + a • 
=l 

c ) c( ) c )Since this is true for ever.y a. llp(A + IJ.P B i Jlp(A V B. 

!!'hen taking the limit as e -> 0, ~;(A) + iJ.;(.a) ~ Jl;(A V B). 

:But from C-2, we have !Jo; (A V B) i JJ.;(A) + fJ.; (;B) • 

+ + +
~herefore, fJ. (A) + Jl (B) • fJ. (A V B) and C-3 is satisfied• . p p 
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C-4 follo\iB from the fact that if A 18 empty, 

then a(A.) = o . 

Thu$ IJ.+ determines in ( S, p) a class of sets which are 
p 

measurable,~e., a class of sets which satisfy Definition 3.2. et 

(H) denote the class of sets \..rhich are mea.s able lti t h respect to 

liau.sdorff p-dimensior..al O'J.ter measure and denote the measure of a 

set A which is in (H) by JJ.P(H) . By ~heo~em 3 .10, the Borel 

sets (B) are contnined in (H), henee the Borel sets are ~J.p-mea.~rable . 

he next two theorems show a relationship behieen Lebesgue and 

Hausdorff measures. 

TheQrem .5·Z· If A is a set in :E such that ~n (A) = 0 ,. then n 

roof: Since JJ.+(A) =0, !J.l (A) = o. lienee, given 
n n 

a a > 0 there exists a sequence of sets {Aj} ~ch that 

m l a> 
A= V A. , o(Aj) < 1. and IJ. (A)+o ~ a~ E [o(Aj))n • 

j=l J n j=l 

Define the projection of each set Aj onto the k- th axis by 

Each Aj is bounded since 8(Aj) < l . Let 

Let I . be the open 
J 

interval defined by 
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IJ•i::.~J_•····~):aJi < x1 < bJi' 1==1,2.... ,n ) • 

-
For each k, djk < 1, a1nce 6(AJ) • 6(AJ) < 1 and there 

exht points y-J and sJ 1n AJ such t hat 

yJ • aJk and zj • bJk • 

Then djk = bjk-ajk i ~...+(bjk-ajk)2+••• =p(yJ,sJ)i6(Ej) < 1. 

Thus, 6(Aj)!. m~ djk so that 

n 
[&(A 4 ) ]n 2. n (max djk) l 1T djk 0 m( Ij) • 

tl k k=l 

But Ij AJ for j • 1,2, ••• ,n. We ha~e t hen 

co n cc . oo_ <X> 
a i; I! [s(Aj)] L .t m(IJ) • ~ m(IJ) L t m (AJ) L m (A) • 

J=l j=l . j•1 j=l 8 8 

Bat th1a 1a t:ru.e for every q > 0 eo that m (A) a o.
8 

Then by Theorem 3.2 • A 1a Lebesgue measurable and 

m(A) • 0. 

+Theorem 5.3, It A is a set in ~· then tJo1 (A) = me(A). 
. . ():) 

Proof t For every c > 0, ~(A) i l! 6(A ) where 
· J. n=l n 

00
A • VA and &(A)< c. Given a a > 0 there exists

n•1 n n 
co 

a sequence of se t a {A } aueh that A = V A , 6(.1 ) < c 
n n=l n n 

(] 00 

and ~~ (A) + 1r l t 6(E ). Nov 6(An) < c so that 
n•1 

A 1a bounded. Z:t any of the A 1 a are empt7, eliminate n n 
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them from the sequ.ence. ·Le<t 

b • l.u.b. {A } and define In to be the open 1nterTal n n 
a a 

(an - ~+2 • bi + n+2) • 
2

that A C. I • Then 
n n 

a oo oo aoo • a 
E m(I ) = E {b + • a + . . ~ · = ~ S(A ) + In=l n n=l n ~+2 n zn+2 n=l n n~l zn+l • 

Therefore; 

~l+ (A) +a!, me (A). Since this is t:rue for every a> o. 

r\ (A) L m (A) •6 

Given an o > o, there exists an c > 0, such that 

~~ (A) - cr i JJ.~ (A) • Let {In} be aey sequence of open 

•
intervals su.ch that A C. U I and &(I ) < c • TheA 

n•l n n 

+ c 00 • 
~l (A) - a i ~l (A) i ~ 3(1 ) • B m(I ) ao that 

· n=l n n=l n 

+"\ (A) - a is a. lower bound of the sum of the measu.res of 

all countable sequence.• of open intervale of diameter 

lesa than c,. But m (A) is the gt"eatest lower bound of e 

this sum. ~erefore, me(A) + a~ ·~ (A) and einoe 



coabined with the reTerse inequality obtained 1n the pre­

ceding paragraph gives a m (A) •!'; (A) 
8 

The property of Hausdorff meaB\U'e given 1n the following 

theorem makes 1t possible to uae liau.edortf measu.re to define dimen­

sionality of a eet. 

If ~+ 
p 

(A) < oo and lf q > Pt then JJ>+q (A) • 0 • 

Proof: Let n be any poa1tive integer and {"k:} a 

sequence o.f aete such that U 
~ "a: = A and 

k-1 
l 

~(~) < nfork= 1,2,3.... • ~hen 

[8(-'k:))q 
• (a(A >Jq-p < ( l ) q-p so that

k n 
[8(-'1c) ]P 

l 00 00 
l'n(A).S. s[a(~)]q< (!.)q-p t [a(~)JP. 

q brl n k=l • 

1 l (I) 

1'hlle ~ lr 1& a lower bound for (_)q-p I! [6(.&... ) )P and 
q n k=l -x: 

!. l q-p l 

therefore ~ n (A) i ( i ) ~ 
p 
-n (A) • 

q 

l 
Ba.t since q - p > O, lim I' Jt (A) • fJ..+ (A) < m • we 

n->oo P P 

have • taking the limit as n -> co , 

http:measu.re
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~ + 1 l 
~.!'00 !Jtq (A)~q ( .A) .$. !15loo ( ii )q-p 'fJ.rl- (A) • 0, and 

/ 
since JJ.+ (A) is non-negative, '-"+ (A) .;:: 0 • 

q q 

Corollaa; A set A can have finite, non-zero + ~ - measure for 
p . • 

at. JJl08t one "T~lue of P• 

Defa.D1t1Qa 5.2. L.et E be a. set in (S,p). 

dim&nsio; Jl1 1. denoted Be.uadol"ff dim (E) • is defined to be the 

leas\ upper bound of all positive real Dnmb$r& p ~oh that 

'fJ.p
+ 

(E) > O. 

It follows then from Theora 5.4 that if a set E haa finite 

+tlp - measure for some p • pt , then Hauadorlf dim (E) • p' • 

The definition of di1nension of a set given 1n Definition 5.2 

differs from the topological definition as given by Hurevic1 and 

Wallman in their book Dingm§iOQ T.Morx (5, p. 24). !he method ot 

defining d1men81on whioh t hey uae ia an inductive one and 1a g1Ten 

in the following definition. 

Definitiop 5.3. ~he empt7 set and only the empty set baa dimension 

A SJ)ace S baa dimenS~oa .$. n(n ~ 0) U A nob~$ Jl it p hae 

arbitrarily small neighborhoods whose bounda~ies l1ave d1mena1on 

in- 1. 

S baa dimension i n, dim S .$. n, 1f S has dimension.$. n 

at ea-ch of ita pointe, 

S has <Jj.meneioQ n §1 A poiQt. ». 1f it is true that S bAa 

dimension in at p and it 1e falee tha\ S has d imension S. n-1 a~ p. 
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~ baa d1mtp.tion n if dim S i n is true and dim S i n-1 

S.a false. 

S haa Q.j,menBioa m U dim S i n is false for each n • 

fhe following two theorem• whioh are proved by Hurevics and 

Wallman (5, p., 107) show the relat1onth1p betweea dimenaton aa 

defined above and the definition given 1n Definition 5.2. 

~QIQ£NP ;,4. "or an arbitrar1 nxetric space . X • 

Hausdorff d~ (X) Z. dim (X). 

ibtorem 5.6. lf x• is allowed to range over all the apacea 

homeomorphic to a gi.ven apace X , then 

g .l.b. {liauedorft dim ('X) } • dim ( X) 
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C.HAPTER VI 

ln thia chapter we Shall detine an outer measure which coneti­

tutee a generalization of Lebesgue outer measure and which plBJB a 

f®damental role 1n applica.ttona to theories of probability and. 

sta.tistioa. 

Lebesgue outer measure might be thought of as being eonatructed 

by weighting each of the open intervale in En according to their" 

volumes. The idea behind the conatruction of a Lebeague-St1eltJee 

outer measure la to obtain trom a point function a more general 

weighting of the 1nterv&le. 

fhe definition of a Lebesga.e - StieltJes measure in •n ie 

rather cwmberso~e, so we &.hall firat define 1t for seta 1n i •1 

When the generalisation to seta in J1 wUl contain the same bade
11 

ideas. 

Y,f.inition 6.1. Let f be a. monotone increasing, everywhere f1n1 te, 

real valued function whose domain 1a the real line which isE1 

oontinu0\18 on the right at eTerf point. lor ev&ey ha.lf open 

interval (a,b], define P0( (a,b] ) • f(b} - t(a). Let 

(I) • ( (a,b) ) be the elate of open bounded intervale. :ror each 

I define the function P(I) to be P0( (a,b] ). For any eet A 

in ~l the LtJ§Igu~S~1sltjee gqter Seature of A iDQuced itt il 

defined to be 
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+ 00 
~~ (A) • g.l.b. { g P(I )} for all sequences {I~} of open
• M-1 n " 

00 
intervale 1n E suoh tilat Ac. V I • fhe function t ia1~ l nM= ~ 

called a d~!ll&luliig& fungUoJ\ for tA-r+ • 

Note that the function P(l ) te always non-negative so n 
Q) 

that the sequence of numbera l E ~{In) } is bounded below. 
n-1 

Thus, the greatest lower bound ot th1a eequence doee exist. 

Thforg ~ 6.4,. J.l! is a Caratheodor;y outer measure • 
..1. 

+ . 
Proofs "'i is defined fol' all ~ete 1n -\ and since the 

f'Wlct1on f is monotone 1nel'easing . P ~ 0 and hence, 

+ > 0. It A and B are two sets su.oh that A c. B, 
....t ­
then given an c > 0 there exists a se~ence of open 

(I) 

intervale {~} aueh that U I ::. B ':)A and 
n-ln 

+ . (J) (I) 

~ (B) + c ~ E P(l ) • llo.t A C. U I , 80 that nt n•l n n=l 
+ ()() ... + 

P.1~. (.A.) i t f'(l ) 1 ~ (B) + c • Since th1a 1a true 
n=l n 

+ ) +tor every c > o, ~~ (A i ~~ {B) and C-1 ot Definition 

3.1 le satisfied. J;,et {A } be a:rry sequence of eet • n 
Q') 

from .11 and let A • V An • :For ee.ah ;positive integer 
n-1 

n e,nd G > 0 there exiet a a sequence {I } of openn 
(I) 

1nte'M'ale suCh that A C. V I_,. and 
n lt=l U4 

+ 00 
J.l.f (A ) + c/~ .t E P(lnk) • 

~ ll. k=l 

. ' 



countable 8Ul!1 of op q 1nter1'8l.a covering A • !Phen 

00 + CX) ... 
S ~ [~f (A ) + c/nnJ • t ~t (A _) + G • 

11n=l c-. n=l n 

But t h is is tru.e tor evsey c eo t hat 

+ (X) + 
~~ (A) i I: JJo.. (A ) and condition c-2 1a aat1af1ed. 

n;::l ... n 

Let A and :B be two eete aueh that p(A,.:B) • d > o. 

Given an c > O, there exiate a sequence of open intervale 
00

{I } auch that \.) I ;, (AV ;e) andn n•l n 
+ (X)

1.) J.lof(A B)+c/22. ~ P(I). Nowforeachopen 
- n•l n 

points xni euch that an=xnO < ~ <••• < ~ • bn 

and x111 - xn,i-1 < J1 for 11!!;1,2,.u, m • !hen 

m 

2.) 7=1PO( (~,1-1'~1) ) • f(~} - f(:tto) • P(In) • 

In ia not covered by the open intervale (xn,i·l'~i), but 

by extending each of them to the right t o a point z•ni 

Dl 

obtaining an open covering V(x _1. ~'n,i} ot In ¥here1i•l n, 



35 

x:U,-xn,i-1 i ng.+ 1 , to't' 1 • 1,2, ••• ,m • Since t 1a 

t 
right eont1nuou.a we can chooae the points x ni eo that, 

given an c•> o, t(x 
1 

) - t(x ) < c+
n1 n, 1 ~ 1 • 

I t 

~hen P( (xn,i_1 ,x ni) ) • f(x n1) - f(~. 1•1) 

• 

Using this last result together with 2.), we have 
m · m

1 

3.) t P((xn i-l'x ni))< ~ [PO((xn i-l'xni))
1•1 • 1•1 , 

+ c .. )•P( I )+ -..:.1 
-­

maD+l n 2n+l • 

Nov we have 

1 ':l (A V :S) • lN.t e1nce n 

I d 
x n1- xn,i•l i n+l < d • p(.t.:s), ne inte:rval 

t 
(xn, 1_1.x n. 1> contain• points of both A and B. 

(X) 11 •. 
~heretore part of U covel'e A ud\J (.x 1-l' x n· ~)

n•l 1•1 n, '"" 

the rest covers :S ao that 



equations 3.) and l.), we haTe 

+ 
I 

+ +
~t(A) + ~f(») i ~f(A B) + c • ~s 

~+(A)+ "'t+ (B) .i li't+ (AV B). The reverse inequality 
t ~ 

.,.. + + 
covera from C-2 so that ~1(A) + J.&.f(:B) = f.'t(AV .B), and 

c-3 1• satisfied, c-4 1a obT1ously satisfied aince 

P(.&.). where A 1a the empt,y set. ie defined to be sero. 

+Before proceding to the generalization of ~f to aets 1n Bn • 

we might state two theorems whioh point out something of the 

a1gn1ficance of the distribution funot1on t. 

Theorem 6.2. lf two distx-1but1on functions t and t 2 yield the1 

same Lebeeg\le-Stieltjes outer meaeure, then :t1 - t 1a a
2 

constant (2, P·53). 
+ ~eqrp 6.3. lf f is a distribution function and ~t 1e the 

.Lebesgue-Stieltj ee measure induced by f • then for fUIT halt--open 

interval (a,b], ll;((a,b]) =f(b) - f(a), (8, p. 117). 

The construction of a Lebeegue-Stieltjes mea~re in In from 

a distribution function which 1e a product of n real variable• 1• 

similar to the one-dimensional case. A half-open interTal (a,b] 

in En 1B .a set of the form {(,_·~· ••• ,~)} where 

~ < ~ i bk for k=l,2, •• , ,n • In order to define a 

function P ((a,b]), let f(x) • f(x, ••• ,xn) and define a set of0

difference operators ~,A2, ••• ,A auoh that 
11 
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Define P0((a,b]) ='\(A2( ... (An(f)) ••• )). Jor ea.ch n-d1mene1onal 

open interval I= (a,b). define P(l) • P0((a,b]). 

Det.init!on 6.2. It f(x) = f(:x1 , ... ,xn) 1s a function such that, 

for any half-open interval (a,b], P ((a,b)) is non-negative and0

f is continuous on the right in each variable x ,1•l•l, 2, • • • n,.. 1

separatelJ' ~d if A is any set in :In' then the kebeagur 

, §iielt,18a puter me&we srL ! a,¢uc!d l!z .,.. is defined to be 

+ ' . 00 
~f(A) =g.~b. { E P(In)}, where {In} is a sequence of open 

n=l 

intervale Bllcll that 

Teeprem 6.4. ~; is a Carath;odory outer measure. 

The proof of this theorem is similar to that of Theorem 6.1. It 

should be noted \imat in Theorem 6.1 the monotonicity of t insured 

that b.• non-negatt;re ·~d llence, ~~ 
+ 

~ o. However, 1nP0 .. 
• > 

Definition 6.2, we had to ·require that f y-ield a non-negative 

function P . since monotonicity of t in each variable aeparatelT
0 

does not gu.arantee that P be non-negative. For example let f0 

be a function of two variablea defined by 

x + y, when x + y < 0 
f(x,y-) • {0 , when x + y ~ 0 • 

The function f is monotone in x and in 1 • For if X]. < ~ , 
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then either ~ + 1 < 0 or ~ + 7 1, 0. It ~ + 1 < 0, then 

~ + 1 < 0 and f(~ ,f') = ~ + 1 < ~ + 1 • :f'(~,7). If 

x2 + 1 ~ O, then eit her Xi + 1 < 0 or Xi + 1 l 0 • If ~ + 1 < o, 

then f(Xi,7) • xt + y < 0 =f(X2•Y')• lf ~ + y 1, 0, then 

f(x,y) = 0 • f(~,y). In all caaea then, :;_ < ~ impliet that 

b7 I • {(x,y)} where 0 < x ~ 1 and -1 < 1 i o, P0(I) will be 

negative. lor P0(I) • Ax(A
1

(!)) 

• A (!(x,O)- f(x.-1)) • · f(l,O) ... f(1,-l)- !(0,0) + t(0,-1)
X 

=0 - 0 - 0 + (0 -1) • -1 • 

It follows from Theorem 6.4. that ~; determines a claea of 

sets which are measurable in the aense of Defini t i on 3.2 and that 

the Borel sets are a sub-class of this class of measu.rable eats. 

That Lebesgue outer measure is a special ca se of Lebeagu.e­

St1eltjes outer measure is shown b7 the following t h eorem. 
J1 

~heorp 6.5. If f(~•"2•, •• ,x!D.) • iT x1 , then the Le~eagu.e-
·~ . 1=1 . 

St iel t jes mea~re induced by f ie identicallY' equal to Lebe~e 

outer meaiJUl'e. 

Proof: lor any half-open interval (a,b), 
n n 

P0((a,b]) • '\(~(, •• (An Tr x1) ••• )) • 1T (b1 - a 1) • 
1=1 1=1 



39 

fhe tot any open 1nterTal I • (a,b}. 
n 

P(l) • P ((a,b]) • 1T (b - a ) a m (I) •0 1 1 81=1 

Tbue tor a;ny set A 1n En• and a:ny sequence of open 
00 

intervals {In} such that A. C:. V In , 
n=l 

+ . Q) (!) 

~f(A) • g.l..b. { }; P(I )} • · g.l.b. { £ m (I )} • lht 
11 8 11· n=l n=l 

tnie is preciselr the definition of Lebesgue outer 

mea~~e of A as given 1n Definition 4.3. Therefore, 

+~f(A) • me(A) • 



4o 

CHAPTER VII 

Alfred Haar developed a theor1 of measure which definea a 

meaeure in a locally compact separable metric apace for which the 

notion of ooncruent aete is defined. Thia measure is a Caratheodory 

outer measure and baa an important application 1n that it def1nea a 

measure 1n a locall.T compact separable metric space which has the 

algebraic structure of a group • 

.D!finitton 7.1. A set A is cpmpac~ if ever, infinite eub..t of A 

has at least one limit point ill A. A apace S is ).ocallz go;paci 

if every x of S has neighborhood B whose closure is compact.
X 

:Vef1aU1on ].2, Let ( s, p) be a locallf compact separable metric 

space and let ( V ) denote the elass of open sets in (S,p) whose 

closures are compact. For seta 1n (S.p) the notion of C2ncrBenCe, 

denoted I:, 11 defined so as to fUlfil the following conditione: 

s-1. 4 ;r l3 implies B at A., 

s-2, A;" B and B ; C imply A c; C. 

s-,3. If A r: :S and A. ia an element of ( \/ ),then B 

h also an element of ( \/ ) • 

s-4. If A~ B and {A } is a sequence of eeta 
n 

00 
belonging to ( V ) auch that A C. V A , then there 

n=l n 
(X) 

exiet·s a sequence of sets {:a }
n such that Be. V ll 

n•l n 

and A ; .B for n • 1 2n n • •••• • 
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S-5. lor any set A belonging to ( V ) the claas of aet a 

which are eongl:;U,ent to A covers the apace (S,p). 

s-6. If' {Sn} 1s a sequence of concentric neighborhoods 

whose closu.ret are OOMP&Ct and with radU approach­

ing zero. and if {G } 1e a sequence ot aeta such n 

that Gn; s • n • 1,,2, ••• , t hen the relations
11 

a ::: lim a and b • lim b , wb.ue a and bn 
n n n n n 

are elements of G , imply a =b. 
11 

Def1n\tion 7,3, .A measure !-' defined for all sets in the space 

(s.p) 18 called a J!J¥lr meawt U' it satisfies the following 

condi tiona; 

li-l. 1-' is a Caratheodory outer mea811re. 

H-2. If A ~ B, then "' (A) • ~(B ). .' 
R-3. For every non-empty Qpen set C whose cloeU!'e ia 

compact, 0 < !-'( o) < oo • 
1 ;( 

In order to construct a meaaure function Which will be ~ Haar 

measure let A and B be two eete belonging t o ( V ) • 1iy 

8-5, t he clals of sets congruent to A covers the set B and by 

s-3, this class of seta cQns1eta of open aets. Since i ia compact, 

by the Reine-Borel Tb.~rem, there exists a finite collection of aeta 

congruent to A which covers i . Let (lhA) denote the smallest 

number of sett which constitute auch a collection. It follows then 

that for a:IJ.7 seta A, B, C whicb. belong to ( 'I ) , (ll:A),$.(B:CXC:A~ 
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Now let G be an element of ( \1 ) and {S } a contracting
n 

sequence of concentric open spheres in G. Then the closure of each 

Sn is also compact. For any open aet A. whose closure 1a compact , 

define ln(A) • (A,Sn) • Then since 
(G:f>n) 

(A:Sn) i (.A.:G)•(G•Sn) and (GsSn) i (G:A)•(A:S11), it follow1 that 

(A: Sn) . : (A: Sn) . .1 
ln(A) • (G:~J i (AlG) and ~n(A) • (G:Sn) ·~ (G:.J.) • Therefore.• 

i l (A) i (A:G) for no 1,2•••• • 
Tlme {lu(A)} ls a 

(G:A.) n 

bounded se~ence of ~eal nnmbere so that we can make use of the 

following theorem. 

'.l!heorem 7.1. To eve'1!y bounded sequence {xn} of real numbet"a 

there correspond• a number LAm .zn (called t he generalized limit 

of the sequence fJI),.}, which baa the following propertiea 

(8, PP• 58- 59) and (4, P• 316): 

7.1-1. Llfi (aJtn + byn) • a LAm zn + b L~ 1n • 

7.1-2. If xn l 0 for eTeey- n, t hen LAm xn ~ 0 • 

7.11!114. If xn = l for every n, then Lift xn • 1. 

7.1-5. JJ.m ~ i Lim .zn i ffii 2'n • 
n n 

Using this t heorem t hen, for fftfe-ey set A belonging to ( V ) 

let l(A) • Lim 1 (A), For ~ arbitrary set X in {S,p),
n n 



(J) 

define !-'(X) • g~l.b. f l! l(A ) } for all sequ.encee {An} ot seta 
n=l n 

(I) 

belonging to ('\/ ) such that X C. \J 
n~:l 

A • 
n 

lf X 1a the empty aet, 

define !-'(X) • 0 (l, pp. 314 - 316). 

In order to establish that ~ as defined in the preceding 
,. 

p~agra.ph 1e a Cara.theodoq ou.tett mea~e, we prove aeTeral p1'opert1el 

of the function 1. 

~P.torg Z•2t Let the function l be ae defined above. Then for 

seta A and B which are elementa of ( \f ) the following proper­

ties hold: 

7.2-1. 0 < l(A) oo. 

7.2-2. AC :B implies l(J.) i l(B). 

7.2-3. l(A VB) i l(A) + l(B). 

7.2-4. p(A,:S ) > 0 implies l(J.\I :S) = 1(A) + l(B). 

Proof: Since each ln(A) is bounded below by a positive 

number, let 1n(A) ~ c > 0. Then for some non-negative 
1 l 

number Pn• ln(A) • c + Pn • Then i' ln(A) - i' Pn • 1 

and by Theorem 7.. 1-4, and 7.1-1, 
l 1 1 l 

~(c ln(A) - i' Pn) • ; LAm ln(A)- 'i' Lif Pn • 1. Thua 

LA_m ln(A) =c + L~ pn • But since pn-'. O, it followa from 

Theorem 7.1-2 t hat L~n ~ 0. Therefore. 

LA- ln(A) ~ c > 0 and l(A) > o. Also, from Theorem 7.1. 

l(A) < oo • 

http:p~agra.ph


lt .A<: :U, then (A:Sn) i (lhSn) eo tha.t 

(A; Sn) (:Bs S ) 
In (A) • (G:Sn) i (G: ~) i ln(B) • whe:re ,Sll .and G 

; I 

are ae defillad on pa,e 42, 11nee 1 and 2. fh.en. from 

fheorem 7.1 and the definition of 1. l(A) i l(:B). 

If A and B ai"e aet e from ( 'I ) • then 

It follows then• from Theorem 7.1, that 

1(4v B) i l(A) + 1(:.8). 

If p(A,B) • d > .o. then for d > 1/n and 

{~} a sequence of concentl'ic spheres with tt.ad1ua < l/n 

it follows that (Av:B:Sn) • (A:Sn) + (:S;Szl) • ~hue for 

n > 1/d. l (Av :B) • (Av.B;Sn) • (AtSn) + (.B:Sn) •ln(A) 
n (G:Sn) (G:Sn) (G:Su) 

+1 (:B) • 
n 

Using ~heorem 7.1-3 and 7.1-1, it follows that 

l(.tVB) =l(A) + l(.B). 

Theortm 7 .3, ~(X) is a, Haar meaaur• . 

Pl'oot: B.eferring to Det'1n1t1on 7.J, we mu.st ehow that 

/ 

~ is a Oaratheodory outer meawure 1n order to satist,y 

H-1. l'il"st. we have p.(X) defined fol" all X in (S.p} 

and ~ o f,.ll(~) ~ 0 since for any sequ.ence {.tn} of open 

set& whose clowres are compact ln(An) ~ 0; hence by 



7or given an ' > O, there exists a. sequence {B } of n 

seta belonging to ( V ) auch tha.t i <. ~l B ud.
11 

CXl CD 
tJo(B) + c ~ E l(J ) • Bu.t since :Bn:l A, 

n=l n n=l 
(I) 

~(A) i n~l l(Bu). Therefore ~Jo(A) ~~(B) + c • This 1e 

true for eveey ' > 0 eo that JJ.(A) i ~Jo(:B). l:t 
CO CD 

X • V l
n• 

X • -n then ~Jo(X) i I:
n•l 

IJo(Y ) • -n For let {X_""}
DA 

be 

a eequence of aeta belozag1ng to ( \1 } such that, g1Ten 
(I) 

e > o, for each n, ~l ~;:) ~ and 

CXl CD 00 00 

~l.l(Xnk) i!Jo(lft) + cf2n • Now XI- n~lxnc.n~l ~1 Xnk • a 

countable union of open eeta. Therefore, 
(1) 00 00 ~ 

!Jo(X),S. I: I: l(~)i t (~(X ) + cf~Ji t ~Jo(Xn) + G. 
n=l k=l n•l n n='l 

But this ie true for any c > o. ao that 
00 

tJo(X) .S. t . ,...(x ). If p(A,:.a) > o, then n=1 n 

1Jo(4'-':B) • tJ.(A) + f<l"fB). Jor let G and G be open
1 2 

seta such that Gl :a A and G2 ':) .B, and p(G1 ,G2) > O. 

Given an c >0 there exists a sequence of seta fEn} 
00 

belonging to ( V ) auch that (A.v B) c U :in and 
tt.=l 

00 
J.'(AVB) + c ~ E l(E ) t Let =r E / ' G1 and

n=l n 
E1.n 1



l(E1nv E ) • l(E111)+ l(E2n) i l(En). Now since211
00 00 

A c. n~l ~n and :a '"n;'l 12n• 
00 • 

!l(A) S l! 1(E1n) and tJ.(:S) i t l(E2n). Therefore, 
n~l n~l 

.Bat aince this holda lor every fl > 0, ll(A)-f\.t{B)~(Av.B). 

The reTeree 1nequa.lity was proved above. Thua. 

tJ.(A) + !l(B) :::: !l(A v .B). If A is the empty aet, then by 

definition~ !l(A) • 0. Thua postulate H-1 ot 

Definition 7·3 has been aatiatied• i.e., !l ia a 

Caratheodo:ry outer measure . 

To prove li-2, let A =:B and let {B } be arqn 
(]) 

sequence of eete f om ( V) auch that B C U J • Thenn-:1 n 

from s-4, there exiate a sequence of sets {A } IUCh thatn 
00 

A'n~l An and An~ :Bn for n•l,2,3,... • from s-3. 

the sets An also beloDg to ( V). Then. since 

ln(Bn) • ln(An), it f ollowa that l(Bn\= l(An) and 

00 00 
!l(A) i t l(A ) • D l(B ). Thus !l(A)1s a lower 

n•l n n=l n 
Q) 

bound of { t l{:B )} so that !l(A) i !l(B). Similarly,
n•l n 

by letting {An} be aRT sequence of sets from ( V) 8\lch 
(J) 

that A C. U A we obtain a sequence of seta {B } from 
n=l n n 

http:1nequa.li
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( V) auch that 1l c. \.) .S and A o :B • From ~hie wen nn•l n 

obtain ~(B) i ~(A). Therefore, ~(A) =~(B). 

To prove R-3 , let C be a~ non-empty set belong­

1ng to ('I). From Theorem 7.2-1, 0 < l(C) < m. !hen 

JJ.(C) i l(O) < oo. Let x be an element of C and c 

be arq poSitive number such that N(x,c) c. c. Let 

R • H(x, c/2). Given a ) O, there existe a sequence 

{An} of sets belonging to ( V) such that 

Cl) 

~ I. ;, C.::ai and ~ l(A ) i ~(C) + a, Since the apace
n-l n n•l n 

(S,p) is locally compact , i is compact. fnerefore, 

there exists a finite collection of the seta A which n 

covers H • hence R. Thus we have 
m oo 

l(R) i l( U A ) i ! l(A ) i ~ l(A ) i ~(C) + a. 
k.=l ~ kwl 'it n=l n 

Bnt since l(H) > 0 and ~(A) ~ l(A) > o, ~(X) > 0. 

Therefore• K-3 i.e proved. 

A set ie called meaeurable vi th respect to the Haar meaB\U"e ~ 

+if 1 t sati at'1ea Definition 3.2 vi th ~ • tJ.. Thus the Haar measure 

~ determines an additive class of aets in ( s, p) which are ~-measur­

able. Also since iJ. is a C.aratheodol'y measure. Borel seta a.re 

t.~o-mee.au.M.ble. 

fo give an example of a space in which a Haar measure ia defined, 

let (S,p) be a locally compact separable metric space which 



coneti~tea a group, i.e., for eTery pair x,y of elements 1n (S,p), 

there is also a.n element q in ( S,p) oa.lled product au.oh that 

the following conditione are aat1ef1edl 

G-1. For every x,y, and 1 1n (S,p)t (x;y)B • x(y~). 

G-2. There ex1ete in (S.p) a uniqu.e identity element 

e euch that xe • ex • x for every x in (S,p). 

G-3• To each element x in (S,p) there correaponda 

a u.niqu.e inverse z­1 1n (S,p) St.lah. that 

-l -l 
X lt :r D • e. 

Since we want the algebraic operation of multiplication to be oontta­

uoue in (S,p), suppose that (s.p) fulfils the additional condition•• 

G-4. If 1~ xn • :m and 1~ yn • y, t hen 

lift ~Yn .., %Y• 

If lim X ::: X then lim n n • 

It x is an element of {S, p) and A ( s, p), define 

:d.""' {xz } foX" all z in A 

Ax • {zx} for all z in A. 

The seta xA and Ax ar~ called the left translation and right 

translation of A by x reepectively. Also for A (S,p) and. 

B {S,p), define 

AB • {:Q'} for all x in A a.nd y 1n ll 

A-l = {x-1 } for all x in A. 

Definition J.~a A measure ~ defined on the Bor&l eats of (S,p) 

is celled a 1J.ti ~ mm&squ it 1t eatisfies the followU!g conditione~ 



L1i•l. ~ ie invariant undexo left translations. 

i.e., for every x 1Jl (s.p) and. A an element 

of (:a) • ~(:d.) • j.4(A). 

~-2. li'or {Weey compact eet O, JJ.(C) < ro. 

LH-J. For every open non•empty set G, ~(G) > o. 

A r!mt B•tr meature 1s one for which LR-1 postulates invaria.nce 

under righ·t tranelations. 

~o sets A and .B in ( S,p) are eongru.ent if there exieta 

an element x au.ch that A • xB. t.l:hie satisfies the definition of 

oo~~ence given in Definition 7.2. 

The restriction of the measure ~ as defined on 

page 4j to the Bo~el sets is a left Haar measure • 

.Proof : Dy Theo:£"em 7.3, p. i 1 a Haa.r mea.wre and hence 

satiefies Definition ·r .3. Then by R-1, p. is a 

Ca.ra..theodory oute:lr measure so t£1at the Borel eeta are 

"-measurable. LH-1 is eatiatied by H-2 and LH-2 followe 

!'rom H•3· Th.e proof ot LX-3 1s similar to the p:t!oof 

given in Theorem 7.3 to show that ~ eatisf1ed H-3· 

ln particular, when (S,p) 1e :&Uelidean IJP&.Ce ~ and group 

mul.tiplication is interpreted to be ordinary a4.dH1o:nt the lett .liaa1' 

llleasur'e of Borel sets is invariant under translation•. Jor let 

x • (~, ••• ,x) and 7 • (y. •••• ,y) be two points in E. Denote
.&. n 1. n n 

the s-.:un x + 1' by the point (~ + 11 •••• ·~ + yn). If I is aey 

set in i and a any point f~om E • let ~(a) denote the eet of n n 
points of the form a. + x where x in an element of X. x(e.) ia 
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called the tt"e.ne.la.t1on of X by ~. . Let group mul.tipl1catio:4 be 

1ntel"}?reted. to be addition. This aatiatiea G-l to G--5 where the 

identity element 1e taken to be 0 • (0, ••• ,O).. Then tor af17 aet .A. 

which 1~; a. :Bo!'el eet end ?.ny x in Jn' u • A(x) and it tollowa 

from TL.eorem 7. tb.at tJ>(xA) = tJ.(4(:1')) • 
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