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Abstract

The varying-coefficient model is flexible and powerful for modeling the dynamic changes of re-

gression coefficients. It is important to identify significant covariates associated with response

variables, especially for high-dimensional settings where the number of covariates can be larger

than the sample size. We consider model selection in the high-dimensional setting and adopt differ-

ence convex programming to approximate the L0 penalty, and we investigate the global optimality

properties of the varying-coefficient estimator. The challenge of the variable selection problem

here is that the dimension of the nonparametric form for the varying-coefficient modeling could

be infinite, in addition to dealing with the high-dimensional linear covariates. We show that the

proposed varying-coefficient estimator is consistent, enjoys the oracle property and achieves an op-

timal convergence rate for the non-zero nonparametric components for high-dimensional data. Our

simulations and numerical examples indicate that the difference convex algorithm is efficient using

the coordinate decent algorithm, and is able to select the true model at a higher frequency than the

least absolute shrinkage and selection operator (LASSO), the adaptive LASSO and the smoothly

clipped absolute deviation (SCAD) approaches.

Keywords: coordinate decent algorithm, difference convex programming, L0- regularization,

large-p small-n, model selection, nonparametric function, oracle property, truncated L1 penalty

1. Introduction

High-dimensional data occur very frequently and are especially common in biomedical studies in-

cluding genome studies, cancer research and clinical trials, where one of the important scientific

interests is in dynamic changes of gene expression, long-term effects for treatment, or the progres-

sion of certain diseases.

We are particularly interested in the varying-coefficient model (Hastie and Tibshirani, 1993;

Ramsay and Silverman, 1997; Hoover et al., 1998; Fan and Zhang, 2000; Wu and Chiang, 2000;

Huang, Wu and Zhou, 2002, 2004; Qu and Li, 2006; Fan and Huang, 2005; among others) as it is

powerful for modeling the dynamic changes of regression coefficients. Here the response variables

are associated with the covariates through linear regression, but the regression coefficients can vary

and are modeled as a nonparametric function of other predictors.
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In the case where some of the predictor variables are redundant, the varying-coefficient model

might not be able to produce an accurate and efficient estimator. Model selection for significant pre-

dictors is especially critical when the dimension of covariates is high and possibly exceeds the sam-

ple size, but the number of nonzero varying-coefficient components is relatively small. This is be-

cause even a single predictor in the varying-coefficient model could be associated with a large num-

ber of unknown parameters involved in the nonparametric functions. Inclusion of high-dimensional

redundant variables can hinder efficient estimation and inference for the non-zero coefficients.

Recent developments in variable selection for varying-coefficient models include Wang, Li and

Huang (2008) and Wang and Xia (2009), where the dimension of candidate models is finite and

smaller than the sample size. Wang, Li and Huang (2008) considered the varying-coefficient model

in a longitudinal data setting built on the SCAD approach (Fan and Li, 2001; Fan and Peng, 2004),

and Wang and Xia (2009) proposed the use of local polynomial regression with an adaptive LASSO

penalty. For the high-dimensional case when the dimension of covariates is much larger than the

sample size, Wei, Huang and Li (2011) proposed an adaptive group LASSO approach using B-spline

basis approximation. The SCAD penalty approach has the advantages of unbiasedness, sparsity and

continuity. However, the SCAD approach involves non-convex optimization through local linear

or quadratic approximations (Hunter and Li, 2005; Zou and Li, 2008), which is quite sensitive to

the initial estimator. In general, the global minimum is not easily obtained for non-convex function

optimization. Kim, Choi and Oh (2008) have improved SCAD model selection using the difference

convex (DC) algorithm (An and Tao, 1997; Shen et al., 2003). Still, the existence of global opti-

mality for the SCAD has not been investigated for the case that the dimension of covariates exceeds

the sample size. Alternatively, the adaptive LASSO and the adaptive group LASSO approaches are

easier to implement due to solving the convex optimization problem. However, the adaptive LASSO

algorithm requires the initial estimators to be consistent, and such a requirement could be difficult

to obtain in high-dimensional settings.

Indeed, obtaining consistent initial estimators of the regression parameters is more difficult than

the model selection problem when the dimension of covariates exceeds the sample size, since if

the initial estimator is already close to the true value, then performing model selection is much less

challenging. So far, most model selection algorithms rely on consistent LASSO estimators as initial

values. However, the irrepresentable assumption (Zhao and Yu, 2006) to obtain consistent LASSO

estimators for high-dimensional data is unlikely to be satisfied, since most of the covariates are

correlated. When the initial consistent estimators are no longer available, the adaptive LASSO and

the SCAD algorithm based on either local linear or quadratic approximations are likely to fail.

To overcome the aforementioned problems, we approximate the L0 penalty effectively as the L0

penalty is considered to be optimal for achieving sparsity and unbiasedness, and is optimal even for

the high-dimensional data case. However, the challenge of L0 regularization is computational diffi-

culty due to its non-convexity and non-continuity. We use a newly developed truncated L1 penalty

(TLP, Shen, Pan and Zhu, 2012) for the varying-coefficient model which is piecewise linear and

continuous to approximate the non-convex penalty function. The new method intends to overcome

the computational difficulty of the L0 penalty while preserving the optimality of the L0 penalty. The

key idea is to decompose the non-convex penalty function by taking the difference between two

convex functions, thereby transforming a non-convex problem into a convex optimization problem.

One of the main advantages of the proposed approach is that the minimization process does not

depend on the initial estimator, which could be hard to obtain when the dimension of covariates is

high. In addition, the proposed algorithm for the varying-coefficient model is computationally effi-
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cient. This is reflected in that the proposed model selection performs better than existing approaches

such as SCAD in the high-dimensional case, based on our simulation and as applied to HIV AIDs

data, with a much higher frequency of choosing the correct model. The improvement is especially

significant when the dimension of covariates is much higher than the sample size.

We derive model selection consistency for the proposed method and show that it possesses the

oracle property when the dimension of covariates exceeds the sample size. Note that the theo-

retical derivation of asymptotic properties and global optimality results are rather challenging for

varying-coefficient model selection, as we are dealing with an infinite dimension of the nonpara-

metric component in addition to the high-dimensional covariates. In addition, the optimal rate

of convergence for the non-zero nonparametric components can be achieved in high-dimensional

varying-coefficient models. The theoretical techniques applied in this project are innovative as

there is no existing theoretical result on global optimality for high-dimensional model selection in

the varying-coefficient model framework.

The paper is organized as follows. Section 2 provides the background of varying-coefficient

models. Section 3 introduces the penalized polynomial spline procedure for selecting varying-

coefficient models when the dimension of covariates is high, provides the theoretical properties

for model selection consistency and establishes the relationship between the oracle estimator and

the global and local minimizers. Section 4 provides tuning parameter selection, and the coordinate

decent algorithm for model selection implementation. Section 5 demonstrates simulations and a data

example for high-dimensional data. The last section provides concluding remarks and discussion.

2. Varying-coefficient Model

Let (Xi,Ui,Yi) , i = 1, . . . ,n, be random vectors that are independently and identically distributed

as (X,U,Y ), where X = (X1, . . . ,Xd)
T

and a scalar U are predictor variables, and Y is a response

variable. The varying-coefficient model (Hastie and Tibshirani, 1993) has the following form:

Yi =
d

∑
j=1

β j (Ui)Xi j + εi, (1)

where Xi j is the jth component of Xi, β j (·)’s are unknown varying-coefficient functions, and εi is a

random noise with mean 0 and finite variance σ2. The varying-coefficient model is flexible in that the

responses are linearly associated with a set of covariates, but their regression coefficients can vary

with another variable U . We will call U the index variable and X the linear covariates. In practice,

some of the linear covariates may be irrelevant to the response variable, with the corresponding

varying-coefficient functions being zero almost surely. The goal of this paper is to identify the

irrelevant linear covariates and estimate the nonzero coefficient functions for the relevant ones.

In many applications, such as microarray studies, the total number of the available covariates d

can be much larger than the sample size n, although we assume that the number of relevant ones

is fixed. In this paper, we propose a penalized polynomial spline procedure in variable selection

for the varying-coefficient model where the number of linear covariates d is much larger than n.

The proposed method is easy to implement and fast to compute. In the following, without loss of

generality, we assume there exists an integer d0 such that 0 < E
[
β2

j (U)
]
< ∞ for j = 1, . . . ,d0, and

E
[
β2

j (U)
]
= 0 for j = d0, . . . ,d. Furthermore, we assume that only the first d0 covariates in X are

relevant, and that the rest of the covariates are redundant.
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3. Model Selection in High-dimensional Data

In our estimation procedure, we first approximate the smooth functions
{

β j (·)
}d

j=1
in (1) by poly-

nomial splines. Suppose U takes values in [a,b] with a < b. Let υ j be a partition of the interval

[a,b], with Nn interior knots

υ j =
{

a = υ j,0 < υ j,1 < · · ·< υ j,Nn
< υ j,Nn+1 = b

}
.

Using υ j as knots, the polynomial splines of order p + 1 are functions which are p-degree (or

less) of polynomials on intervals [υ j,i,υ j,i+1), i = 0, . . . ,Nn −1, and [υ j,Nn
,υ j,Nn+1], and have p−1

continuous derivatives globally. We denote the space of such spline functions by ϕ j. The advantage

of polynomial splines is that they often provide good approximations of smooth functions with only

a small number of knots.

Let
{

B jl (·)
}Jn

l=1
be a set of B-spline bases of ϕ j with Jn = Nn + p+1. Then for j = 1, . . . ,d,

β j (·)≈ s j (·) =
Jn

∑
l=1

γ jlB jl (·) = γT
j B j (·) ,

where γ j = (γ j1, . . . ,γ jJn
)T

is a set of coefficients, and B j (·) = (B j1 (·) , . . . ,B jJn
(·))T

are B- spline

bases. The standard polynomial spline method (Huang, Wu and Zhou, 2002) estimates the coeffi-

cient functions
{

β j (·)
}d

j=1
by spline functions which minimize the sum of squares

(
β̃1, . . . , β̃d

)
= argmin

s j∈ϕ j, j=1,...,d

1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

s j (Ui)Xi j

]2

.

Equivalently, in terms of B-spline basis, it estimates γ =
(
γT

1 , . . . ,γ
T
d

)T
by

γ̃=
(
γ̃T

1 , . . . , γ̃
T
d

)T
= argmin

γ j, j=1,...,d

1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γT
j Zi j

]2

, (2)

where Zi j = B j (Ui)Xi j = (B j1 (Ui)Xi j, . . . ,B jJn
(Ui)Xi j)

T . However, the standard polynomial spline

approach fails to reduce model complexity when some of the linear covariates are redundant, and

furthermore is not able to obtain parameter estimation when the dimension of model d is larger than

the sample size n. Therefore, to perform simultaneous variable selection and model estimation, we

propose minimizing the penalized sum of squares

Ln (s) =
1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

s j (Ui)Xi j

]2

+λn

d

∑
j=1

pn

(∥∥s j

∥∥
n

)
, (3)

where s = s(·) = (s1 (·) , . . . ,sd (·))
T , and

∥∥s j

∥∥
n
=
(

∑n
i=1 s2

j (Ui)X2
i j/n
)1/2

is the empirical norm. In

terms of the B-spline basis, (3) is equivalent to

Ln (γ) =
1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γT
j Zi j

]2

+λn

d

∑
j=1

pn

(∥∥γ j

∥∥
W j

)
, (4)
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where
∥∥γ j

∥∥
W j

=
√

γT
j W jγ j with W j =

n

∑
i=1

Zi jZ
T
i j/n. The formulation (3) is quite general. In

particular, for a linear model with β j (u) = β j and the linear covariates being standardized with

∑n
i=1 Xi j/n = 0 and ∑n

i=1 X2
i j/n = 1 for j = 1, . . . ,d, (3) reduces to a family of variable selection

methods for linear models with the penalty pn

(∥∥s j

∥∥
n

)
= pn

(∣∣β j

∣∣) . For instance, the L1 penalty

pn (|β|) = |β| results in LASSO (Tibshirani, 1996), and the smoothly clipped absolute deviation

penalty results in SCAD (Fan and Li, 2001). In this paper, we consider a rather different approach

for the penalty function such that

pn (β) = p(β,τn) = min(|β|/τn,1) , (5)

which is called a truncated L1−penalty (TLP) function, as proposed in Shen, Pan and Zhu (2012).

In (5), the additional tuning parameter τn is a threshold parameter determining which individual

components are to be shrunk towards to zero, or not. As pointed out by Shen, Pan and Zhu (2012),

the TLP corrects the bias of the LASSO induced by the convex L1-penalty and also reduces the

computational instability of the L0-penalty. The TLP is able to overcome the computation difficulty

for solving non-convex optimization problems by applying difference convex programming, which

transforms non-convex problems into convex optimization problems. This leads to significant com-

putational advantages over its smooth counterparts, such as the SCAD (Fan and Li, 2001) and the

minimum concavity penalty (MCP, Zhang, 2010). In addition, the TLP works particularly well for

high-dimensional linear regression models as it does not depend on initial consistent estimators of

coefficients, which could be difficult to obtain when d is much larger than n. In this paper, we will

investigate the local and global optimality of the TLP for variable selection in varying-coefficient

models in the high-dimensional case when d ≫ n, and n goes to infinity.

Here we obtain γ̂ by minimizing Ln (γ) in (4). As a result, for any u∈[a,b], the estimators of the

unknown varying-coefficient functions in (1) are given as

β̂ j (u) =
Jn

∑
l=1

γ̂ jlB jl (u) , j = 1, . . . ,d. (6)

Let γ̃(o)=(̃γ1, . . . , γ̃d0
,0, . . . ,0)

T
be the oracle estimator with the first d0 elements being the stan-

dard polynomial estimator (2) of the true model consisting of only the first d0 covariates. The

following theorems establish the asymptotic properties of the proposed estimator. We only state the

main results here and relegate the regularity conditions and proofs to the Appendix.

Theorem 1 Let An (λn,τn) be the set of local minima of (4). Under conditions (C1-C7) in the

Appendix, the oracle estimator is a local minimizer with probability tending to 1, that is,

P
(

γ̃(o) ∈ An (λn,τn)
)
→ 1,

as n → ∞.

Theorem 2 Let γ̂ = (̂γ1, . . . , γ̂d)
T be the global minima of (4). Under conditions (C1-C6), (C8) and

(C9) in the Appendix, the estimator by minimizing (4) enjoys the oracle property, that is,

P
(

γ̂ = γ̃(o)
)
→ 1,

as n → ∞.
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Theorem 1 guarantees that the oracle estimator must fall into the local minima set. Theorem 2,

in addition, provides sufficient conditions such that the global minimizer by solving the non-convex

objective function in (4) is also the oracle estimator.

In addition to the results of model selection consistency, we also establish the oracle property for

the non-zero components of the varying-coefficients. For any u∈[a,b], let β̂(1) (u) =(
β̂1 (u) , . . . , β̂d0

(u)
)

T be the estimator of the first d0 varying-coefficient functions which are non-

zero and are defined in (6) with γ̂ being the global minima of (4). Theorem 3 establishes the asymp-

totic normality of β̂(1) (u) with the optimal rate of convergence.

Theorem 3 Under conditions (C1) - (C6), (C8) and (C9) given in the Appendix, and if

limNn logNn/n = 0, then for any u ∈ [a,b],

{
V
(

β̂(1) (u)
)}−1/2(

β̂(1) (u)−β
(1)
0 (u)

)
→ N(0,I)

in distribution, where β
(1)
0 (u) = (β01 (u) , . . . ,β0d0

(u))T , I is a d0 ×d0 identity matrix, and

V
(

β̂(1) (u)
)
= B(1) (u)

(
n

∑
i=1

A
(1)T
i A

(1)
i

)−1

B(1) (u) = Op (Nn/n) ,

in which B(1) (u) =
(

BT
1 (u) , . . . ,B

T
d0
(u)
)T

, and A
(1)
i =

(
BT

1 (Ui)Xi1, . . . ,B
T
d0
(Ui)Xid0

)T

with

BT
j (Ui)Xi j = (B j1 (Ui)Xi j, . . . ,B jJn

(Ui)Xi j) .

4. Implementation

In this section, we extend the difference convex (DC) algorithm of Shen, Pan and Zhu (2012) to

solve the nonconvex minimization in (4) for varying-coefficient models. In addition, we provide the

tuning parameter selection criteria.

4.1 An Algorithm

The idea of the DC algorithm is to decompose a non-convex object function into a difference be-

tween two convex functions. Then the final solution is obtained iteratively by minimizing a se-

quence of upper convex approximations of the non-convex objective function. Specifically, we

decompose the penalty in (5) as pn (β) = pn1 (β)− pn2 (β) , where pn1 (β) = |β|/τn and pn2 (β) =
max(|β|/τn −1,0) . Note that both pn1 (·) and pn2 (·) are convex functions. Therefore, we can de-

compose the non-convex objective function Ln (γ) in (4) as a difference between two convex func-

tions,

Ln (γ) = Ln1 (γ)−Ln2 (γ) ,

where

Ln1 (γ) =
1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γT
j Zi j

]2

+λn

d

∑
j=1

pn1

(∥∥γ j

∥∥
W j

)
,

Ln2 (γ) = λn

d

∑
j=1

pn2

(∥∥γ j

∥∥
W j

)
.
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Let γ̂(0) be an initial value. From our experience, the proposed algorithm does not rely on initial

consistent estimators of coefficients so we have used γ̂(0) = 0 in the implementations. At iteration

m, we set L
(m)
n (γ), an upper approximation of Ln (γ), equal to

Ln1 (γ)−

[
Ln2

(
γ̂(m−1)

)
+λn

d

∑
j=1

(∥∥γ j

∥∥
Wj

−
∥∥∥γ̂

(m−1)
j

∥∥∥
Wj

)
p
′

n2

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

)]

≈
1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γT
j Zi j

]2

+
λn

τn

d

∑
j=1

∥∥γ j

∥∥
Wj

I

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

≤ τn

)

−Ln2

(
γ̂(m−1)

)
+

λn

τn

d

∑
j=1

∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

I

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

> τn

)
,

where p
′

n2

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

)
= 1

τn
I(
∥∥∥γ̂

(m−1)
j

∥∥∥
Wj

> τn) is the subgradient of pn2. Since the last two terms

of the above equation do not depend on γ, therefore at iteration m,

γ̂(m)= argmin
γ j, j=1,...,d





1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γT
j Zi j

]2

+
d

∑
j=1

λn j

∥∥γ j

∥∥
Wj



 , (7)

where λn j =
λn

τn
I

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

≤ τn

)
. Then it reduces to a group lasso with component-specific

tuning parameter λn j. It can be solved by applying the coordinate-wise descent (CWD) algorithm

as in Yuan and Lin (2006). To be more specific, let Z∗
i j = W

−1/2
j Zi j and γ∗j = W

1/2
j γ j. Then the

minimization problem in (7) reduces to

γ̂∗(m) = argmin
γ∗j , j=1,...,d





1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γ∗T
j Z∗

i j

]2

+λn j

d

∑
j=1

∥∥γ∗j
∥∥

2



 . (8)

Then the CWD algorithm minimizes (8) in each component while fixing the remaining components

at their current value. For the jth component, γ̂
∗(m)
j is updated by

γ
∗(m)
j =

(
1−

λn j∥∥S j

∥∥
2

)

+

S j, (9)

where S j = Z∗T
j

(
Y−Z∗γ

∗(m)
− j

)
with γ

∗(m)
− j =

(
γ
∗(m)T
1 , . . . ,γ

∗(m)T
j−1 ,0T ,γ

∗(m)T
j+1 , . . . ,γ

∗(m)T
d

)T

,

Z∗
j =
(

Z∗
1 j, . . . ,Z

∗
n j

)T

,Z∗ =
(
Z∗

1, . . . ,Z
∗
d

)
and (x)+ = xI{x≥0}. The solution to (8) can therefore be

obtained by iteratively applying Equation (9) to j = 1, . . . ,d until convergence.
The above algorithm is piece-wise linear and therefore it is computationally efficient. The

penalty part in (7) only involves a large L2-norm of the varying-coefficient function, implying that

there is no shrinkage for the non-zero components with a large magnitude of coefficients. In addi-

tion, the above algorithm can capture weak signals of varying-coefficients, and meanwhile is able to
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obtain the sparsest solution through tuning the additional thresholding parameters τn. The involve-

ment of the additional tuning of τn makes the TLP a flexible optimization procedure.

The minimization in (4) can achieve the global minima if the leading convex function can be ap-

proximated, and it is called the outer approximation method (Breiman and Cutler, 1993). However,

it has a slower convergence rate. Here we approximate the trailing convex function with fast com-

putation, and it leads to a good local minimum if it is not global (Shen, Pan and Zhu, 2012). It can

achieve the global minimizer if it is combined with the branch-and-bound method (Liu, Shen and

Wong, 2005), which searches through all the local minima with an additional cost in computation.

This contrasts to the SCAD or adaptive LASSO approaches which are based on local approxima-

tion. Achieving the global minimum is particularly important if the dimension of covariates is high,

as the number of possible local minima increases dramatically as p increases. Therefore, any local

approximation algorithm which relies on initial values likely fails.

4.2 Tuning Parameter Selection

The performance of the proposed spline TLP method crucially depends on the choice of tuning

parameters. One needs to choose the knot sequences in the polynomial spline approximation and

λn, τn in the penalty function. For computation convenience, we use equally spaced knots with the

number of interior knots Nn = [n1/(2p+3)], and select only λn, τn. A similar strategy for knot selection

can also be found in Huang, Wu and Zhou (2004), and Xue, Qu and Zhou (2010). Let θn = (λn,τn)
be the parameters to be selected. For faster computation, we use K-fold cross-validation to select

θn, with K = 5 in the implementation. The full data T is randomly partitioned into K groups of

about the same size, denoted as Tv , for v = 1, . . . ,K. Then for each v, the data T −Tv is used for

estimation and Tv is used for validation. For any given θn, let β̂
(v)
j (·,θn) be the estimators of β j (·)

using the training data T −Tv for j = 1, . . . ,d. Then the cross-validation criterion is given as

CV(θn) =
K

∑
v=1

∑
i∈Tv

{
Yi −

d

∑
j=1

β̂
(v)
j (Ui,θn)Xi j

}2

.

We select θ̂n by minimizing CV(θn).

5. Simulation and Application

In this section, we conduct simulation studies to demonstrate the finite sample performance of the

proposed method. We also illustrate the proposed method with an analysis of an AIDS data set. The

total average integrated squared error (TAISE) is evaluated to assess estimation accuracy. Let β̂(r) be

the estimator of a nonparametric function β in the r-th (1 ≤ r ≤ R) replication and {um}
ngrid

m=1 be the

grid points where β̂(r) is evaluated. We define AISE
(

β̂
)
= 1

R ∑R
r=1

1
ngrid

∑
ngrid

m=1

{
β(um)− β̂(r) (um)

}2

,

and TAISE=∑d
l=1 AISE

(
β̂l

)
. Let S and S0 be the selected and true index sets containing significant

variables, respectively. We say S is correct if S = S 0; S overfits if S0⊂ S but S0 6= S ; and S underfits

if S0 6⊂ S . In all simulation studies, the total number of simulations is 500.
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5.1 Simulated Example

We consider the following varying-coefficient model

Yi =
d

∑
j=1

β j (Ui)Xi j + εi, i = 1, . . . ,200, (10)

where the index variables Ui are generated from a Uniform [0,1], and the linear covariates Xi are

generated from a multivariate normal distribution with mean 0 and Cov(Xi j,Xi j
′ ) = 0.5| j− j

′
|, the

noises εi are generated from a standard normal distribution, and the coefficient functions are of the

forms

β1 (u) = sin(2πu) , β2 (u) = (2u−1)2 +0.5, β3 (u) = exp(2u−1)−1,

and β j (u) = 0 for j = 4, . . . ,d. Therefore only the first three covariates are relevant for predicting

the response variable, and the rest are null variables and do not contribute to the model prediction.

We consider the model (10) with d = 10, 100, 200, or 400 to examine the performance of model

selection and estimation when d is smaller than, close to, or exceeds the sample size.

We apply the proposed varying-coefficient TLP with a linear spline. The simulation results

based on the cubic spline are not provided here as they are quite similar to those based on the

linear spine. The tuning parameters are selected using the five-fold cross-validation procedure as

described in Section 4.2. We compare the TLP approach to a penalized spline procedure with

the SCAD penalty, the group LASSO (LASSO) and the group adaptive LASSO (AdLASSO) as

described in Wei, Huang and Li (2011). For the SCAD penalty, the first order derivative of pn (·) in

(4) is given as p
′

n (θ) = I (θ ≤ λn)+
(aλn−θ)+
(a−1)λn

I (θ > λn), and we set a = 3.7 as in Fan and Li (2001).

For all procedures, we select the tuning parameters using a five-fold cross-validation procedure for

fair comparison. To assess the estimation accuracy of the penalized methods, we also consider

the standard polynomial spline estimations of the oracle model (ORACLE). The oracle model only

contains the first three relevant variables and is only available in simulation studies where the true

information is known.

Table 1 summarizes the simulation results. It gives the relative TAISEs (RTAISE) of the penal-

ized spline methods (TLP, SCAD, LASSO, AdLASSO) to the ORACLE estimator. It also reports

the percentage of correct fitting(C), underfitting(U) and overfitting(O) over 200 simulation runs for

the penalized methods. When d = 10, the performance of the TLP, SCAD, LASSO and AdLASSO

are comparable, with TLP being slightly better the rest. But as the dimension d increases, Table 1

clearly shows that the TLP outperforms the other procedures. The percentage of correct fitting for

SCAD, LASSO and AdLASSO decreases significantly more when d increases, while the perfor-

mance of the TLP is relatively stable as d increases. For example, when d = 400, the correct fitting

is 82.5% for TLP versus 58.5% for SCAD, 18% for LASSO, and 59.5% for AdLASSO in the linear

spline. In addition, SCAD, LASSO and AdLASSO also tend to over-fit the model when d increases,

for example, when d = 400, the over-fitting rate is 37% for SCAD, 81% for LASSO, and 39.5% for

AdLASSO versus 14.5% for TLP in the linear spline.

In terms of estimation accuracy, Table 1 shows that the RTAISE of the TLP is close to 1 when

d is small. This indicates that the TLP can estimate the nonzero components as accurately as the

oracle. But RTAISE increases as d increases, since variable selection becomes more challenging

as d increases. Figure 1 plots the typical estimated coefficient functions from ORACLE, TLP and

SCAD using linear splines (p = 1) when d = 100. The typical estimated coefficient functions are
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Penalty d RTAISE C U O

TLP 10 1.049 0.925 0.005 0.070

SCAD 1.051 0.875 0.010 0.125

LASSO 1.080 0.640 0.000 0.360

AdLASSO 1.061 0.895 0.000 0.105

TLP 100 1.230 0.890 0.030 0.080

SCAD 1.282 0.710 0.030 0.260

LASSO 1.391 0.410 0.000 0.590

AdLASSO 1.283 0.720 0.000 0.280

TLP 200 1.404 0.895 0.035 0.070

SCAD 1.546 0.705 0.035 0.260

LASSO 1.856 0.330 0.015 0.655

AdLASSO 1.509 0.710 0.015 0.275

TLP 400 1.715 0.825 0.030 0.145

SCAD 1.826 0.585 0.045 0.370

LASSO 2.364 0.180 0.010 0.810

AdLASSO 1.879 0.595 0.010 0.395

Table 1: Simulation results for model selection based on various penalty functions: Relative total

averaged integrated squared errors (RTAISEs) and the percentages of correct-fitting (C),

under-fitting (U) and over-fitting (O) over 200 replications.

those with TAISE being the median of the 200 TAISEs from the simulations. Also plotted are the

point-wise 95% confidence intervals from the ORACLE estimation, with the point-wise lower and

upper bounds being the 2.5% and 97.5% sample quantiles of the 200 ORACLE estimates. Figure 1

shows that the proposed TLP method estimates the coefficient functions reasonably well. Compared

with the SCAD, LASSO and AdLASSO, the TLP method gives better estimation in general, which

is consistent with the RTAISEs reported in Table 1.

5.2 Application to AIDS Data

In this subsection, we consider the AIDs data in Huang, Wu and Zhou (2004). The data set consists

of 283 homosexual males who were HIV positive between 1984 and 1991. Each patient was sched-

uled to undergo measurements related to their disease at a semi-annual base visit, but some of them

missed or rescheduled their appointments. Therefore, each patient had different measurement times

during the study period. It is known that HIV destroys CD4 cells, so by measuring CD4 cell counts

and percentages in the blood, patients can be regularly monitored for disease progression. One of

the study goals is to evaluate the effects of cigarette smoking status (Smoking), with 1 as smoker

and 0 as nonsmoker; pre-HIV infection CD4 cell percentage (Precd4); and age at HIV infection

(age), on the CD4 percentage after infection. Let ti j be the time in years of the jth measurement

for the ith individual after HIV infection, and yi j be the CD4 percentage of patient i at time ti j. We

consider the following varying-coefficient model

yi j = β0(ti j)+β1(ti j)Smoking+β2(ti j)Age+β3(ti j)Precd4+ εi j. (11)
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Figure 1: Simulated example: Plots of the estimated coefficient functions for (a) β1(u), (b) β2(u)
and (c) β3(u) based on Oracle, SCAD, TLP, LASSO and AdLASSO approaches using

linear spline when d = 100. In each plot, also plotted are the true curve and the point-

wise 95% confidence intervals from the ORACLE estimation.
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We apply the proposed penalized cubic spline (p = 3) with TLP, SCAD, LASSO and Adaptive

LASSO penalties to identify the non-zero coefficient functions. We also consider the standard

polynomial spline estimation of the coefficient functions. All four procedures selected two non-

zero coefficient functions β0(t) and β3(t), indicating that Smoking and Age have no effect on the

CD4 percentage. Figure 2 plots the estimated coefficient functions from the standard cubic spline,

SCAD, TLP, LASSO and Adaptive LASSO approaches. For the standard cubic spline estimation,

we also calculated the 95% point-wise bootstrap confidence intervals for the coefficient functions

based on 500 bootstrapped samples.
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Figure 2: AIDs data: Plots of the estimated coefficient functions using standard cubic spline (line),

penalized cubic spline with TLP (dotted), SCAD (dashed), LASSO (dotdash), Adaptive

LASSO (long dash) penalties, together with the point-wise 95% bootstrap confidence

intervals from the standard cubic spline estimation.
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In this example, the dimension of the linear covariates is rather small. In order to evaluate a

more challenging situation with higher dimension of d, we introduced an additional 100 redundant

linear covariates, which are artificially generated from a Uniform [0,1] distribution independently.

We then apply the penalized spline with TLP, SCAD, LASSO or Adaptive LASSO penalties to the

augmented data set. We repeated this procedure 100 times. For the three observed variables in

model (11), all four procedures always select the Precd4 and never select Smoking and Age. For the

100 artificial covariates, the TLP selects at least one of these artificial covariates only 8 times, while

LASSO, Adaptive LASSO, and SCAD select 28, 27, and 42 times respectively. Clearly, LASSO,

Adaptive LASSO and SCAD tend to overfit the model and select many more null variables in this

data example. Note that our analysis does not incorporate the dependent structure of the repeated

measurements. Using the dependent structure of correlated data for high-dimensional settings will

be further investigated in our future research.

6. Discussion

We propose simultaneous model selection and parameter estimation for the varying-coefficient

model in high-dimensional settings where the dimension of predictors exceeds the sample size.

The proposed model selection approach approximates the L0 penalty effectively, while overcom-

ing the computational difficulty of the L0 penalty. The key idea is to decompose the non-convex

penalty function by taking the difference between two convex functions, therefore transforming a

non-convex problem into a convex optimization problem. The main advantage is that the minimiza-

tion process does not depend on the initial consistent estimators of coefficients, which could be

hard to obtain when the dimension of covariates is high. Our simulation and data examples confirm

that the proposed model selection performs better than the SCAD in the high-dimensional case.

The model selection consistency property is derived for the proposed method. In addition, we

show that it possesses the oracle property when the dimension of covariates exceeds the sample

size. Note that the theoretical derivation of asymptotic properties and global optimality results are

rather challenging for varying-coefficient model selection, as the dimension of the nonparametric

component is also infinite in addition to the high-dimensional covariates.

Shen, Pan and Zhu (2012) provide stronger conditions under which a local minimizer can also

achieve the objective of a global minimizer through the penalized truncated L1 approach. The

derivation is based on the normality assumption and the projection theory. For the nonparametric

varying-coefficient model, these assumptions are not necessarily satisfied and the projection prop-

erty cannot be used due to the curse of dimensionality. In general, whether a local minimizer can

also hold the global optimality property for the high-dimensional varying-coefficient model requires

further investigation. Nevertheless, the DC algorithm yields a better local minimizer compared to

the SCAD, and can achieve the global minimum if it is combined with the branch-and-bound method

(Liu, Shen and Wong, 2005), although this might be more computationally intensive.
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Appendix A. Assumptions

To establish the asymptotic properties of the spline TLP estimators, we introduce the following

notation and technical assumptions. For a given sample size n, let Yn = (Y1, . . . ,Yn)
T , Xn =

(X1, . . . ,Xn)
T

and Un = (U1 . . . ,Un)
T . Let Xn j be the j-th column of Xn. Let ‖·‖2 be the usual

L2 norm for functions and vectors and C p ([a,b]) be the space of p-times continuously differ-

entiable functions defined on [a,b]. For two vectors of the same length a = (a1, . . . ,ad)
T

and

b = (b1, . . . ,bd)
T , denote a ◦ b = (a1b1, . . . ,adbd)

T
. For any scalar function g(·) and a vector

a = (a1, . . . ,ad)
T , we denote g(a) = (g(a1) , . . . ,g(ad))

T .

(C1) The number of relevant linear covariates d0 is fixed and there exists β0 j (·) ∈ Cp [a,b] for

some p ≥ 1 and j = 1, . . . ,d0, such that E (Y |X,U) =
d0

∑
j=1

β0 j (U)X j. Furthermore there exists

a constant c1 > 0 such that min1≤ j≤d0
E
[
β2

0 j (U)
]
> c1.

(C2) The noise ε satisfies E (ε) = 0, V (ε) = σ2 < ∞, and its tail probability satisfies P(|ε|> x)≤
c2 exp

(
−c3x2

)
for all x ≥ 0 and for some positive constants c2 and c3.

(C3) The index variable U has a compact support on [a,b] and its density is bounded away from 0

and infinity.

(C4) The eigenvalues of matrix E
(
XXT |U = u

)
are bounded away from 0 and infinity uniformly

for all u ∈ [a,b].

(C5) There exists a constant c > 0 such that
∣∣X j

∣∣< c with probability 1 for j = 1, . . . ,d.

(C6) The d sets of knots denoted as υ j =
{

a = υ j,0 < υ j,1 < · · ·< υ j,Nn
< υ j,Nn+1 = b

}
, j = 1, . . . ,d,

are quasi-uniform, that is, there exists c4 > 0, such that

max
j=1,...,d

max
(
υ j,l+1 −υ j,l, l = 0, . . . ,Nn

)

min(υ j,l+1 −υ j,l, l = 0, . . . ,Nn)
≤ c4.

(C7) The tuning parameters satisfy

τn

λn

√
log(Nnd)

nNn

+
τnN

−(p+2)
n

λn

= o(1)

Nn log(Nnd)

n
+ τn = o(1).

(C8) The tuning parameters satisfy

log(Nnd)Nn

nλn

+
n

log(Nnd)N
2p+3
n

= o(1)

nλn

log(Nnd)dNn

+
d log(n)τ2

n

λn

= o(1).
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(C9) For any subset A of {1, . . . ,d}, let

∆n (A) = min
β j∈ϕ j, j∈A

∥∥∥∥∥∑
j∈A

β j (Un)◦Xn j − ∑
j∈A0

β0 j (Un)◦Xn j

∥∥∥∥∥

2

2

.

We assume that the model (1) is empirically identifiable in the sense that,

lim
n→∞

min
{
(log(Nnd)Nnd)−1 ∆n (A) : A 6= A0, |A| ≤ αd0

}
= ∞,

where α > 1 is a constant, |A| denotes the cardinality of A, and A0 ={1, . . . ,d0}.

The above conditions are commonly assumed in the polynomial spline and variable selection

literature. Conditions similar to (C1) and (C2) are also assumed in Huang, Horowitz and Wei (2010).

Conditions similar to (C3)-(C6) can be found in Huang, Wu and Zhou (2002) and are needed for

estimation consistency even when the dimension of linear covariates d is fixed. Conditions (C7) and

(C8) are two different sets of conditions on tuning parameters for the local and global optimality of

the spline TLP, respectively. Condition (C9) is analogous to the “degree-of-separation” condition

assumed in Shen, Pan and Zhu (2012), and is weaker than the sparse Riesz condition assumed in

Wei, Huang and Li (2011).

Appendix B. Outline of Proofs

To establish the asymptotic properties of the proposed estimator, we first investigate the properties

of spline functions for high-dimensional data in Lemmas 4-5 and properties of the oracle spline esti-

mators of the coefficient functions in Lemma oracle. The approximation theory for spline functions

(De Boor, 2001) plays a key role in these proofs. When the true model is assumed to be known, it re-

duces to the estimation of the the varying-coefficient model with fixed dimensions. The asymptotic

properties of the resulting oracle spline estimators of the coefficient functions have been discussed

in the literature.Specifically, Lemma 6 follows directly from Theorems 2 and 3 of Huang, Wu and

Zhou (2004).

To prove Theorem 1, we first provide the sufficient conditions for a solution to be a local min-

imizer for the object function by differentiating the objective function through regular subdifferen-

tials. We then establish Theorem 1 by showing that the oracle estimator satisfies those conditions

with probability approaching 1. In Theorem 2, we show that the oracle estimator minimizes the

objective function globally with probability approaching 1, thereby establishing that the oracle esti-

mator is also the global optimizer. This is accomplished by showing that the sum of the probabilities

of all the other misspecified solutions minimizing the objective function converges to zero as n→∞.

Appendix C. Technical Lemmas

For any set A ⊂ {1, . . . ,d}, we denote β̃(A) the standard polynomial spline estimator of the model A,

that is, β̃
(A)
j = 0 if j /∈ A, and

(
β̃
(A)
j , j ∈ A

)
= argmin

s j∈ϕ j

1

2n

n

∑
i=1

[
Yi − ∑

j∈A

s j (Ui)Xi j

]2

. (12)
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In particular, β̃(o) = β̃(A0), with A0 = {1, . . . ,d0} being the standard polynomial spline estimator of

the oracle model.

We first investigate the property of splines. Here we use B-spline basis in the proof, but the

results still hold true for other choices of basis. For any s(1) (u) =
(

s
(1)
1 (u) , . . . ,s

(1)
d (u)

)T

and

s(2) (u) =
(

s
(2)
1 (u) , . . . ,s

(2)
d (u)

)T

with each s
(1)
j (u) ,s

(2)
j (u) ∈ S j, define the empirical inner product

as 〈
s(1),s(2)

〉
n
=

1

n

n

∑
i=1

(
d

∑
j=1

s
(1)
j (Ui)Xi j

)(
d

∑
j=1

s
(2)
j (Ui)Xi j

)
,

and theoretical inner product as

〈
s(1),s(2)

〉
= E

[(
d

∑
j=1

s
(1)
j (U)X j

)(
d

∑
j=1

s
(2)
j (U)X j

)]
.

Denote the induced empirical and theoretical norms as ‖·‖n and ‖·‖ respectively. Let ‖g‖∞ =
supx∈[a,b] g(u) be the supremum norm.

Lemma 4 For any s j (u) ∈ ϕ j, write s j (u) = ∑
Jn

l=1 γ jlB jl (u) for γ j = (γ j1, . . . ,γ jJn
)T . Let

γ =
(
γT

1 , . . . ,γ
T
d

)T
and s(u) = (s1 (u) , . . . ,sd (u))

T . Then there exist constants 0 < c ≤C such that

c‖γ‖2
2 /Nn ≤ ‖s‖2 ≤C‖γ‖2

2 /Nn.

Proof: Note that

‖s‖2 = E



(

d

∑
j=1

s j (U)X j

)2

= E

[
sT (U)XXT s(U)

]

= E
[
sT (U)E

{
XXT |U

}
s(U)

]
.

Therefore by (C4), there exist 0 < c1 ≤ c2, such that

c1E
[
sT (U)s(U)

]
≤ ‖s‖2 ≤ c2E

[
sT (U)s(U)

]
,

in which, by properties of B-spline basis functions, there exist 0 < c∗1 ≤ c∗2, such that

c∗1

d

∑
j=1

∥∥γ j

∥∥2

2
/Nn ≤ E

[
sT (U)s(U)

]
=

d

∑
j=1

E
[
s2

j (U)
]
≤ c∗2

d

∑
j=1

∥∥γ j

∥∥2

2
/Nn.

The conclusion follows by taking c = c1c∗1, and C = c2c∗2.
For any A ⊂ {1, . . . ,d}, let |A| be the cardinality of A. Denote ZA = (Z j, j ∈ A) and DA =

ZT
AZA/n. Let ρmin (DA) and ρmax (DA) be the minimum and maximum eigenvalues of DA respec-

tively.

Lemma 5 Suppose that |A| is bounded by a fixed constant independent of n and d. Then under

conditions (C3)-(C5), one has

c1/Nn ≤ ρmin (DA)≤ ρmax (DA)≤ c2/Nn,

for some constants c1,c2 > 0.
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Proof: Without loss of generality, we assume A = {1, . . . ,k} for some constant k which does not

depend on n nor d. Note that for any γA = (γ j, j ∈ A), the triangular inequality gives

γT
ADAγA =

1

n

∥∥∥∥∥∑
j∈A

Z jγ j

∥∥∥∥∥

2

2

≤
2

n
∑
j∈A

∥∥Z jγ j

∥∥2

2
= 2 ∑

j∈A

γT
j D jγ j,

where D j = ZT
j Z j/n. By Lemma 6.2 of Zhou, Shen and Wolfe (1998), there exist constants c3,c4 >

0 c3/Nn ≤ ρmin (D j) ≤ ρmax (D j) ≤ c4/Nn. Therefore γT
ADAγA ≤ 2c4γT

AγA/Nn. That is ρmax (DA) ≤
2c4/Nn = c2/Nn. The lower bound follows from Lemma A.5 in Xue and Yang (2006) with d2 = 1.

Now we consider properties of the oracle spline estimators of the coefficient functions when the

true model is known. That is, β̂(o) =
(

β̂
(o)
1 , . . . , β̂

(o)
d0
,0, . . . ,0

)
is the polynomial spline estimator of

coefficient functions knowing only that the first d0 covariates are relevant. That is

(
β̂
(o)
1 , . . . , β̂

(o)
d0

)T

= argmin
s j∈ϕ j

n

∑
i=1

[
Yi −

d0

∑
j=1

s j (Ui)Xi j

]2

.

Lemma 6 Suppose conditions (C1)-(C6) hold. If limNn logNn/n = 0, then for j = 1, . . . ,d0,

E
(

β j (U)− β̂
(o)
j (U)

)2

= Op

(
Nn

n
+N

−2(p+1)
n

)
,

1

n

n

∑
i=1

(
β j (Ui)− β̂

(o)
j (Ui)

)2

= Op

(
Nn

n
+N

−2(p+1)
n

)
,

and {
V
(

β̂(o,1) (u)
)}−1/2(

β̂(o,1) (u)−β(1) (u)
)
→ N(0,I)

in distribution, where β̂(o,1) (u) =
(

β̂
(o)
1 (u) , . . . , β̂

(o)
d0

(u)
)T

, and β(1) (u) = (β1 (u) , . . . ,βd0
(u))T ,

and

V
(

β̂(o,1) (u)
)
= B(1) (u)

(
n

∑
i=1

A
(1)T
i A

(1)
i

)−1

B(1) (u) = Op (Nn/n) ,

where B(1) (u) =
(

BT
1 (u) , . . . ,B

T
d0
(u)
)T

, and A
(1)
i =

(
BT

1 (Ui)Xi1, . . . ,B
T
d0
(Ui)Xid0

)T

in which

BT
j (Ui)Xi j = (B j1 (Ui)Xi j, . . . ,B jJn

(Ui)Xi j) .

Proof: It follows from Theorems 2 and 3 of Huang, Wu and Zhou (2004).

Lemma 7 Suppose conditions (C1)-(C6) hold. Let Tjl =
√

Nn/n
n

∑
i=1

B jl (Ui)Xi jεi, for j = 1, . . . ,d,

and l = 1, . . . ,Jn. Let Tn = max1≤ j≤d,1≤l≤Jn

∣∣Tjl

∣∣ . If Nn log(Nnd)/n → 0, then

E (Tn) = O
(√

log(Nnd)
)
.
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Proof: Let m2
jl =

n

∑
i=1

B2
jl (Ui)X2

i j, and m2
n = max1≤ j≤d,1≤l≤Jn

m2
jl . By condition (C2) and the max-

imal inequality for gaussian random variables, there exists a constant C1 > 0 such that

E (Tn) = E

(
max

1≤ j≤d,1≤l≤Jn

∣∣Tjl

∣∣
)
≤C1

√
Nn/n

√
log(Nnd)E (mn) . (13)

Furthermore, by the definition of B-spline basis and (C5), there exists a C2 > 0, such that for each

1 ≤ j ≤ d,1 ≤ l ≤ Jn,
∣∣B2

jl (Ui)X2
i j

∣∣≤C2, and E
[
B2

jl (Ui)X2
i j

]
≤C2N−1

n .

As a result,
n

∑
i=1

E
[
B2

jl (Ui)X2
i j −E

(
B2

jl (Ui)X2
i j

)]2
≤ 4C2nN−1

n ,

and

max
1≤ j≤d,1≤l≤Jn

Em2
jl = max

1≤ j≤d,1≤l≤Jn

n

∑
i=1

E
(
B2

jl (Ui)X2
i j

)
≤C2nN−1

n . (14)

Then by Lemma A.1 of Van de Geer (2008), one has

E

(
max

1≤ j≤d,1≤l≤Jn

∣∣m2
jl −Em2

jl

∣∣
)

= E

(
max

1≤ j≤d,1≤l≤Jn

∣∣∣∣∣
n

∑
i=1

B2
jl (Ui)X2

i j −E
(
B2

jl (Ui)X2
i j

)
∣∣∣∣∣

)

≤

√
2C2nN−1

n log(Nnd)+4log(2Nnd) . (15)

Therefore (14) and (15) give that

Em2
n ≤ max

1≤ j≤d,1≤l≤Jn

Em2
jl +E

(
max

1≤ j≤d,1≤l≤Jn

∣∣m2
jl −Em2

jl

∣∣
)

≤ C2nN−1
n +

√
2C2nN−1

n log(Nnd)+4log(2Nnd) .

Furthermore, Emn ≤
√

Em2
n ≤

(√
2C2nN−1

n log(Nnd)+4log(2dNn)+C2nN−1
n

)1/2

. Together with

(13) and Nn log(Nnd)/n → 0, one has

E (Tn) ≤ C1

√
Nn/n

√
log(Nnd)

(√
2C2nN−1

n log(Nnd)+4log(2Nnd)+C2nN−1
n

)1/2

= O
(√

log(Nnd)
)
.

Lemma 8 Suppose conditions (C1)-(C7) hold. Let Z j = (Z1 j, . . . ,Zn j)
T ,Y =(Y1, . . . ,Yn)

T , and

Z(1) = (Z1, . . . ,Zd0
) . Then

P

(∥∥∥∥
1

n
ZT

j

(
Y−Z(1)γ̂

(o,1)
)∥∥∥∥

W j

>
λn

τn

, ∃ j = d0 +1, . . . ,d

)
→ 0.
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Proof: By the approximation theory (de Boor 2001, p. 149), there exist a constant c > 0 and

spline functions s0
j = ∑

Jn

l=1 γ0
jlB jl (t) ∈ S j, such that

max
1≤ j≤d0

∥∥β j − s0
j

∥∥
∞
≤ cN

−(p+1)
n . (16)

Let δi=∑
d0

j=1

[
β j (Ui)− s0

j (Ui)
]

Xi j, δ =(δ1, . . . ,δn)
T , and ε =(ε1, . . . ,εn)

T . Then one has

ZT
j

(
Y−Z(1)γ̂

(o,1)
)
= ZT

j HnY = ZT
j Hnε+ZT

j Hnδ,

where Hn = I−Z(1)

(
ZT
(1)Z(1)

)−1

ZT
(1). By Lemma 7, there exists a c > 0 such that

E

(
max

d0+1≤ j≤d

∥∥ZT
j Hnε

∥∥
W j

)
≤ c
√

n log(Nnd)/Nn.

Therefore by Markov’s inequality, one has

P

(∥∥ZT
j Hnε

∥∥
W j

>
nλn

2τn

, ∃ j = d0 +1, . . . ,d

)
= P

(
max

d0+1≤ j≤d

∥∥ZT
j Hnε

∥∥
W j

>
nλn

2τn

)

≤
2cτn

λn

√
log(Nnd)

nNn

→ 0, (17)

as n → ∞, by condition (C7). On the other hand, let ρ j and ρHn
be the largest eigenvalue of ZT

j Z j/n

and Hn. Then Lemma (5) entails that maxd0+1≤ j≤d ρ j = Op (1/Nn) . Together with (16) and condi-

tion (C7), one has

max
d0+1≤ j≤d

1

n

∥∥ZT
j Hnδ

∥∥
W j

≤ (nNn)
−1/2√

max
d0+1≤ j≤d

ρ jρHn
‖δ‖2

= Op

(
N
−(p+1)
n /Nn

)
= op

(
λn

2τn

)
. (18)

Then the lemma follows from (17) and (18) and by noting that

P

(∥∥∥∥
1

n
ZT

j

(
Y−Z(1)γ̂

(o,1)
)∥∥∥∥

W j

>
λn

τn

, ∃ j = d0 +1, . . . ,d

)

≤ P

(
max

d0+1≤ j≤d

1

n

∥∥ZT
j Hnε

∥∥
W j

>
λn

2τn

)
+P

(
max

d0+1≤ j≤d

1

n

∥∥ZT
j Hnδ

∥∥
W j

>
λn

2τn

)
.

Appendix D. Proof of Theorem 1

For notation simplicity, let Z∗
i j = W

−1/2
j Zi j and γ∗j = W

1/2
j γ j. Then the minimization problem in (4)

becomes

Ln (γ
∗) =

1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γ∗T
j Z∗

i j

]2

+λn

d

∑
j=1

pn

(∥∥γ∗j
∥∥

2

)
.
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For i = 1, . . . ,n, and j = 1, . . . ,d, write Z∗
i =

(
Z∗T

i1 , . . . ,Z∗T
id

)T
, γ∗ =

(
γ∗T

1 , . . . ,γ∗T
d

)T
and c∗j (γ

∗) =

− 1
n

n

∑
i=1

Z∗
i j

(
Yi −Z∗T

i γ∗
)
. Differentiate Ln (γ

∗) with respect to γ∗j through regular subdifferentials, we

obtain the local optimality condition for Ln (γ
∗) as c∗j (γ

∗)+ λn

τn
ζ j = 0, where ζ j = γ∗j/

∥∥∥γ∗j

∥∥∥
2

if 0 <
∥∥∥γ∗j

∥∥∥
2
< τn; ζ j = {γ∗j ,

∥∥∥γ∗j

∥∥∥
2
≤ 1} if

∥∥∥γ∗j

∥∥∥
2
= 0;ζ j = 0, if

∥∥∥γ∗j

∥∥∥
2
> τn; and ζ j = /0, if

∥∥∥γ∗j

∥∥∥
2
= τn,

where /0 is an empty set. Therefore any γ∗ that satisfies

c∗j (γ
∗) = 0,

∥∥γ∗j
∥∥> τn for j = 1, . . . ,d0.

∥∥c∗j (γ
∗)
∥∥

2
≤

λn

τn

,
∥∥γ∗j
∥∥= 0 for j = d0 +1, . . . ,d,

is a local minimizer of Ln (γ
∗). Or equivalently, any γ that satisfies

c j (γ) = 0,
∥∥γ j

∥∥
W j

> τn for j = 1, . . . ,d0. (19)

∥∥c j (γ)
∥∥

Wj

≤
λn

τn

,
∥∥γ j

∥∥
W j

= 0 for j = d0 +1, . . . ,d, (20)

is a local minimizer of Ln (γ) , in which c j (γ) =− 1
n

n

∑
i=1

Zi j

(
Yi −ZT

i γ
)
. Therefore it suffices to show

that γ̂(o) satisfies (19) and (20).

For j = 1, . . . ,d0, c j

(
γ̂(o)
)
= 0 trivially by the definition of γ̂(o). On the other hand, conditions

(C1), (C7) and Lemma 6 give that

lim
n→∞

P

(∥∥∥γ̂
(o)
j

∥∥∥
W j

> τn, j = 1, . . . ,d0

)
= 1.

Therefore γ̂(o) satisfies (19). For (20), note that, by definition γ̂
(o)
j = 0, for j = d0 + 1, . . . ,d. Fur-

thermore, for j = d0 +1, . . . ,d,

c j

(
γ̂(o)
)
=−

1

n
ZT

j

(
Y−Z(1)γ̂

(o,1)
)
.

By Lemma 8,

P

(∥∥∥c j

(
γ̂(o)
)∥∥∥

W j

>
λn

τn

, ∃ j = d0 +1, . . . ,d

)
→ 0.

Therefore γ̂
(o)
j also satisfies (20) with probability approaching to 1. As a result, γ̂(o) is a local mini-

mum of Ln (γ) with probability approaching to 1.

Appendix E. Proof of Theorem 2

Note that for any γ =
(
γT

1 , . . . ,γ
T
d

)T
, one can write

Ln (γ) =
1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γT
j Zi j

]2

+λn

d

∑
j=1

min

(∥∥γ j

∥∥
Wj

/τn,1

)

=
1

2n

n

∑
i=1

[
Yi −

d

∑
j=1

γT
j Zi j

]2

+λn |A|+
λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

,
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where A = A(γ) =

{
j :
∥∥γ j

∥∥
Wj

≥ τn

}
, Ac =

{
j :
∥∥γ j

∥∥
Wj

< τn

}
, and |A| denotes the cardinality of

A. For a given set A, let γ̃(A) be the coefficient from the standard polynomial spline estimation of

the model A as defined in (12). Then for a = λn/
(
dτ2

n logn
)
+1 > 1, one has

Ln (γ)−λn |A|

=
1

2n

n

∑
i=1

[
Yi − ∑

j∈A

γT
j Zi j − ∑

j∈Ac

γT
j Zi j

]2

+
λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

≥
a−1

2an

n

∑
i=1

[
Yi − ∑

j∈A

γT
j Zi j

]2

−
a−1

2n

n

∑
i=1

[

∑
j∈Ac

γT
j Zi j

]2

+
λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

≥
a−1

2an

n

∑
i=1

[
Yi −

d

∑
j=1

γ̃
(A)T
j Zi j

]2

−
d (a−1)

2n

n

∑
i=1

∑
j∈Ac

(
γT

j Zi j

)2
+

λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

≥
a−1

2an

n

∑
i=1

[
Yi −

d

∑
j=1

γ̃
(A)T
j Zi j

]2

+

(
λn

τn

−
a−1

2
dτn

)
∑
j∈Ac

∥∥γ j

∥∥
Wj

.

Note that λn

τn
− a−1

2
dτn > 0 for sufficiently large n by the definition of a. Therefore,

Ln (γ)≥
a−1

2an

n

∑
i=1

[
Yi −

d

∑
j=1

γ̃
(A)T
j Zi j

]2

+λn |A| . (21)

Let Γ1 = {A : A ⊂ {1, . . . ,d} ,A0 ⊂ A, and A 6= A0} be the set of overfitting models and

Γ2 = {A : A ⊂ {1, . . . ,d} ,A0 6⊂ A and A 6= A0} be the set of underfitting models. For any γ, A(γ)
must fall into one of Γ j, j = 1,2. We now show that

∑
A∈Γ j

P

(
min

γ:A(γ)=A
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)
→ 0,

as n → ∞, for j = 1,2.

Let Z(A) = (Z j, j ∈ A) and Hn (A) = Z(A)
[
ZT (A)Z(A)

]−1
Z(A) . Let E =(ε1, . . . ,εn)

T ,

Y =(Y1, . . . ,Yn)
T

, m(Xi,Ui) = ∑d
j=1 β j (Ui)Xi j and M =(m(X1,U1) , . . . ,m(Xn,Un))

T . Lemma 6

entails that P

(
min j=1,...,d0

∥∥∥γ̃
(o)
j

∥∥∥
Wj

≥ τn

)
→ 1, as n → ∞. Therefore it follows from (21) that, with

probability approaching to one,

2n
{

Ln (γ)−Ln

(
γ̃(o)
)
−λn (|A|−d0)

}

≥ −YT (Hn (A)−Hn (A0))Y−
1

a
YT (In −Hn (A))Y

= −ET (Hn (A)−Hn (A0))E−MT (Hn (A)−Hn (A0))M

−2ET (Hn (A)−Hn (A0))M−
1

a
YT (In −Hn (A))Y

= −ET (Hn (A)−Hn (A0))E+ In1 + In2 + In3.
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Let r(A) and r(A0) be the ranks of Hn (A) and Hn (A0) respectively, and In = In1+In2+In3. Also note

that if Tm ∼ χ2
m, then the Cramer-Chernoff bound gives that P(Tm − m > km) ≤ exp{

−m
2
(k− log(1+ k))

}
for some constant k > 0. Then one has,

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}

= P
{

ET (Hn (A)−Hn (A0))E >In +2nλn (|A|−d0)
}

= P
{

χ2
r(A)−r(A0)

> In +2nλn (|A|−d0)
}

≤ exp

{
−

r(A)− r (A0)

2

[
In +2nλn (|A|−d0)

r(A)− r (A0)
−1− log

In +2nλn (|A|−d0)

r(A)− r (A0)

]}

≤ exp

{
−

r(A)− r (A0)

2

[
In +2nλn (|A|−d0)

r(A)− r (A0)
−1

]
1+ c

2

}
(22)

for some 0 < c < 1. To bound (22), we consider the following two cases. Case 1 (overfitting):

A = A(γ) ∈ Γ1. Let k = |A|−d0. By the spline approximation theorem (de Boor, 2001), there exist

spline functions s j ∈ϕ j and constant c such that max1≤ j≤d0

∥∥β j − s j

∥∥
∞
≤ cN

−(p+1)
n . Let m∗ (X,U) =

d0

∑
j=1

s j (U)X j, and M∗ = (m∗ (X1,U1) , . . . ,m
∗ (Xn,Un))

T . Then by the definition of projection

1

n
MT (In −Hn (A0))M ≤ ‖m−m∗‖2

n ≤ cd0N
−2(p+1)
n .

Similarly, one can show 1
n
MT (In −Hn (A))M ≤c |A|N

−2(p+1)
n . Therefore, by condition (C8)

In1 = MT (In −Hn (A))M−MT (In −Hn (A0))M ≤ ckN
−2(p+1)
n n = op (k log(dNn)Nn) .

Furthermore, the Cauchy-Schwartz inequality gives that,

|In2| ≤ 2

√
ET (Hn (A)−Hn (A0))E

√
MT (Hn (A)−Hn (A0))M

= Op

(
k
√

log(dNn)NnnN
−(p+1)
n

)
= op (k log(dNn)Nn) .

Finally In3 =− 1
a
YT (In −Hn (A))Y =op (k log(dNn)Nn) , since a → ∞ as n → ∞ by condition (C8).

Therefore, In = In1 + In2 + In3 = op (k log(dNn)Nn) . As a result, (22) gives that,

∑
A(γ)∈Γ1

P

(
min

γ
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)

≤
d−d0

∑
k=1

(
d −d0

k

)
exp

{
−

r(A)− r (A0)

2

[
In +2nλnk

r(A)− r (A0)
−1

]
1+ c

2

}

≤
d−d0

∑
k=1

dk exp

{
−

1+ c

4
[In +2nλnk− (r(A)− r (A0))]

}

=
d−d0

∑
k=1

exp

{
−

1+ c

4
[In +2nλnk− (r(A)− r (A0))]+ k logd

}
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in which 2nλnk is the dominated term inside of the exponential under condition (C8). Therefore,

∑
A(γ)∈Γ1

P

(
min

γ
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)

≤
d−d0

∑
k=1

exp

{
−

nλnk

2

}
= exp

{
−

nλn

2

} 1− exp
(
− n(d−d0)λn

2

)

1− exp
(
− nλn

2

) → 0 (23)

as n → ∞, by condition (C8).

Case 2 (underfitting): A = A(γ) ∈ Γ2. Note that,

In1 = MT (In −Hn (A))M−MT (In −Hn (A0))M =I
(1)
n1 − I

(2)
n1 ,

in which

I
(1)
n1 = MT (In −Hn (A))M ≥∆n (A) .

Therefore for any γ with A0 6⊂ A and |A| ≤ αd0 where α > 1 is a constant as given in condition (C9),

the empirically identifiable condition entails that, (log(Nnd)Nnd)−1
I
(1)
n1 → ∞,as n → ∞. On the

other hand, similar arguments for Case 1 give that I
(2)
n1 = Op

(
d0N

−2(p+1)
n n

)
= op (log(Nnd)Nnd) ,

and In2 + In3 = Op (log(Nnd)Nnd). Therefore I
(1)
n1 is the dominated term in In. As a result, together

with (22), one has

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}
≤exp

{
−

1+ c

4

[
I
(1)
n1

2
+2nλn (|A|−d0)− (r(A)− r (A0))

]}
.

Furthermore, note that for n large enough,

2nλn (|A|−d0)− (r(A)− r (A0)) ≥ (2nλn −Nn − p−1)(|A|−d0)

≥ nλn (|A|−d0)≥−nλnd0 = o(log(Nnd)Nnd)

by assumption (C8). Therefore I
(1)
n1 is the dominated term inside of the exponential. Thus, when n

is large enough, one has,

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}
≤exp

{
−

I
(1)
n1

8

}
≤exp

{
−

∆n (A)

8

}
. (24)

For any γ with A0 6⊂ A and |A| > αd0, we show that, In = L1 (A)+L2 (A)+L3 (A), where L1 (A) =
− 1

a
(E−(a−1)(In −Hn (A))M)T (In −Hn (A))(E−(a−1)(In −Hn (A))M) ,

L2 (A) = (a−1)MT (In −Hn (A))M, and

L3 (A) =−MT (In −Hn (A0))M−2ET (In −Hn (A0))M.

Here, −aL1 (A)/σ2 follows a noncentral χ2 distribution with the degree of freedom n−min(r (A) ,n)
and noncentral parameter (a−1)MT (In −Hn (A))M/σ2. Furthermore, as in Case 1, one can show
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that L3 (A) = op (log(dNn)Nnd0) .Therefore L2 (A) is the dominated term in In, by noting that a → ∞

by assumption (C8). Thus, for n sufficiently large,

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}

≤ exp

{
−

1+ c

4
[In +2nλn (|A|−d0)− (r(A)− r (A0))]

}

≤ exp

{
−

1+ c

4
[2nλn (|A|−d0)− (r(A)− r (A0))]

}
. (25)

Therefore, (24) and (25) give that,

∑
A(γ)∈Γ2

P

(
min

γ
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)

≤
[αd0]

∑
i=1

d0−1

∑
j=0

(
d0

j

)(
d −d0

i− j

)
exp

{
−

min∆n (A)

8

}

+
d

∑
i=[αd0]+1

d0−1

∑
j=0

(
d0

j

)(
d −d0

i− j

)
exp

{
−

1+ c

4
[2nλn (i−d0)− (r(A)− r (A0))]

}

= II1 + II2,

where, by noting that
(

a
b

)
≤ ab for any two integers a,b > 0,

II1 ≤
[αd0]

∑
i=1

d0−1

∑
j=0

d
j
0 (d −d0)

i− j
exp

(
−

min∆n (A)

8

)

≤ (Nnd)−Nnd/8
d
[αd0]
0 (d −d0)

[αd0] [αd0]d0 → 0,

as n → ∞, since d0 is fixed and Nn → ∞. Furthermore,

II2 ≤
d

∑
i=[αd0]+1

d0−1

∑
j=0

(
d0

j

)(
d −d0

i− j

)
exp

{
−

1+ c

4
[2nλn (i−d0)− (r(A)− r (A0))]

}

≤
d

∑
i=[αd0]+1

d0−1

∑
j=0

d
j
0 (d −d0)

i− j
exp

{
−

nλn (i−d0)

4

}

≤
d

∑
i=[αd0]+1

d0 exp

{
−

nλn (i−d0)

4
+ i log(d)

}
→ 0,

as n → ∞, by assumption (C8). Therefore, as n → ∞,

∑
A∈Γ2

P

(
min

γ:A(γ)=A
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)
→ 0. (26)

Note that for the global minima γ̂ of (4), one has

P
(

γ̂ 6= γ̃(o)
)
≤

2

∑
j=1

∑
A∈Γ j

P

(
min

γ:A(γ)=A
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)
.

Therefore, Theorem 2 follows from (23) and (26).
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Appendix F. Proof of Theorem 3

Theorem 3 follows immediately from Lemma 6 and Theorem 2.
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