Is size-dependent pricing prevalent in fisheries?

The case of Norwegian demersal and pelagic fisheries

F. Zimmermann and M. Heino

IIFET Conference
9th July 2014

Size structure in fish stocks

- Fish stock are no homogeneous biomass but contain individuals with different characteristics and traits
- Individual size is a major trait and intertwined with growth, maturation, reproductive output, survival, etc.
- Size structure is relevant for:
 - population dynamics
 - recruitment potential
 - population stability
 - natural mortality
 - ..and therefore for resource economics!

The fish market

However, there is also a direct connection between size and economic value..

Fish attributes and price

Product state and price

Origin/fishery

End market

Fish and their price

- Fish of the same species can have different prices (per kg)
- Various reasons:
 - Consumer preference
 - Fish attributes (flesh quality, fat content, fillet size, etc.)
 - State of the product (e.g. value added through processing)
 - Origin
 - End market (e.g. human consumption vs. fish meal)
 - Scarcity of particular fish in catch
- Almost all attributes are directly or indirectly linked with size
- Size-price relationships are common in fisheries

Size-dependent pricing

- Economic value of fish size is widespread
- Often considered as general knowledge
 - Size-dependent pricing has been acknowledged in the literature for a long time (e.g. Gulland 1982)
 - However: Few facts beyond anectodal evidence

Plate-sized fish

Fig. 3. The mean price of *Lutjanus peru* by size class and fishing cooperative. Pichilingue, Sargento, and Dorado are located at increasing distances away from the markets of La Paz.

Reddy et al. 2013

- What is the relationship between fish size and price in Norway?
- Analysis of price data from eight Norwegian fisheries
 - Atlantic cod, Atlantic mackerel, Greenland halibut, haddock, horse mackerel, North Sea and Norwegian spring spawning herring, saithe
- Aggregated price data from 2000-2010 as registered by Norwegian sales organizations
 - Value and total yield per weight class
 - Assumed distribution of weight-at-age and catch-at-age as in ICES stock assessment
 - Mean weight per weight class
 - Average price for mean weight per weight class
 - Analysis with weight class as fixed and year as random effect

Standardized by mean catch weight:

Zimmermann & Heino (2013)

Figure 3. Temporal patterns in price as illustrated by linear mixed models regressing price against weight, with "year" as a random intercept and weighted by log-transformed total yield. For clarity, demersal (a) and pelagic stocks (b) are illustrated separately. In all cases the random effects are significant (p < 0.05).

Table 2. The correlations (white) and correlations of detrended (i.e. after removing linear time trend; grey) time-series of yearly anomalies in price for all stocks.

	Atlantic cod	Haddock	Saithe	Greenland halibut	Atlantic mackerel	NSS herring	North Sea herring	Horse mackerel
Atlantic cod	1.000	0.213	0.308	- 0.120	0.581*	-0.093	0.119	0.299
Haddock	-0.037	1.000	0.844**	0.272	0.013	-0.065	-0.204	0.464
Saithe	-0.149	0.854**	1.000	0.423	0.294	-0.103	-0.152	0.585*
Greenland halibut	-0.295	0.172	0.367	1.000	0.138	-0.116	-0.195	0.435
Atlantic mackerel	0.382	-0.520	- 0.569*	- 0.060	1.000	0.256	0.094	0.293
NSS herring	-0.024	0.007	0.019	- 0.082	0.502	1.000	0.539*	0.133
North Sea herring	0.215	-0.160	- 0.075	- 0.167	0.264	0.530*	1.000	0.563*
Horse mackerel	0.122	0.331	0.466	0.373	0.013	0.214	0.684**	1.000

Implications of size-dependent pricing

How does size-dependent pricing influence economic yield and optimal harvest?

Shift in biomass that produces MEY

Maximum sustainable economic rent shifts towards higher stock sizes

Zimmermann, Steinshamn & Heino (2011)

Conclusions

- Size-dependent pricing is prevalent in most fisheries
- However: Correlation is not causality
 - Demand and supply determines prices dynamically
 - Market value of size is linked with other quality attributes
 - Size may be a proxy than the cause itself
 - Further, more detailed analysis will reveal influence of other variables and temporal dynamics

Conclusions

- Influences optimal harvest strategies
 - Fishermen know price structures and try to utilize them
 - Ignoring size-dependent pricing may create unwanted incentives and undermine management policies
- To find the true efficient solutions the biological and economic relevance of size should be considered
 - Management strategies should account for value of size
 - Size-dependent pricing can create unwanted incentives (e.g. high-grading)
 - Size-dependent pricing may enhance long-term costs of decreasing catch sizes